]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: refactor get_request[_wait]()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
55782138
LZ
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
1da177e4 36
8324aa91 37#include "blk.h"
5efd6113 38#include "blk-cgroup.h"
8324aa91 39
d07335e5 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 43
a73f730d
TH
44DEFINE_IDA(blk_queue_ida);
45
1da177e4
LT
46/*
47 * For the allocated request tables
48 */
5ece6c52 49static struct kmem_cache *request_cachep;
1da177e4
LT
50
51/*
52 * For queue allocation
53 */
6728cb0e 54struct kmem_cache *blk_requestq_cachep;
1da177e4 55
1da177e4
LT
56/*
57 * Controlling structure to kblockd
58 */
ff856bad 59static struct workqueue_struct *kblockd_workqueue;
1da177e4 60
26b8256e
JA
61static void drive_stat_acct(struct request *rq, int new_io)
62{
28f13702 63 struct hd_struct *part;
26b8256e 64 int rw = rq_data_dir(rq);
c9959059 65 int cpu;
26b8256e 66
c2553b58 67 if (!blk_do_io_stat(rq))
26b8256e
JA
68 return;
69
074a7aca 70 cpu = part_stat_lock();
c9959059 71
09e099d4
JM
72 if (!new_io) {
73 part = rq->part;
074a7aca 74 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 77 if (!hd_struct_try_get(part)) {
09e099d4
JM
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
6c23a968 87 hd_struct_get(part);
09e099d4 88 }
074a7aca 89 part_round_stats(cpu, part);
316d315b 90 part_inc_in_flight(part, rw);
09e099d4 91 rq->part = part;
26b8256e 92 }
e71bf0d0 93
074a7aca 94 part_stat_unlock();
26b8256e
JA
95}
96
8324aa91 97void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
1da177e4
LT
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
165125e1 124 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
1da177e4
LT
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
2a4aa30c 132void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 133{
1afb20f3
FT
134 memset(rq, 0, sizeof(*rq));
135
1da177e4 136 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 137 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 138 rq->cpu = -1;
63a71386 139 rq->q = q;
a2dec7b3 140 rq->__sector = (sector_t) -1;
2e662b65
JA
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 143 rq->cmd = rq->__cmd;
e2494e1b 144 rq->cmd_len = BLK_MAX_CDB;
63a71386 145 rq->tag = -1;
1da177e4 146 rq->ref_count = 1;
b243ddcb 147 rq->start_time = jiffies;
9195291e 148 set_start_time_ns(rq);
09e099d4 149 rq->part = NULL;
1da177e4 150}
2a4aa30c 151EXPORT_SYMBOL(blk_rq_init);
1da177e4 152
5bb23a68
N
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
1da177e4 155{
143a87f4
TH
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
797e7dbb 160
143a87f4
TH
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
5bb23a68 165 }
797e7dbb 166
143a87f4
TH
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 169
143a87f4
TH
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
7ba1ba12 172
143a87f4
TH
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
7ba1ba12 175
143a87f4
TH
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
1da177e4 179}
1da177e4 180
1da177e4
LT
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
6728cb0e 185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
1da177e4 188
83096ebf
TH
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 194
33659ebb 195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
3cca6dc1 204static void blk_delay_work(struct work_struct *work)
1da177e4 205{
3cca6dc1 206 struct request_queue *q;
1da177e4 207
3cca6dc1
JA
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
24ecfbe2 210 __blk_run_queue(q);
3cca6dc1 211 spin_unlock_irq(q->queue_lock);
1da177e4 212}
1da177e4
LT
213
214/**
3cca6dc1
JA
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
1da177e4
LT
218 *
219 * Description:
3cca6dc1
JA
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 225{
4521cc4e
JA
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
2ad8b1ef 228}
3cca6dc1 229EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 230
1da177e4
LT
231/**
232 * blk_start_queue - restart a previously stopped queue
165125e1 233 * @q: The &struct request_queue in question
1da177e4
LT
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
165125e1 240void blk_start_queue(struct request_queue *q)
1da177e4 241{
a038e253
PBG
242 WARN_ON(!irqs_disabled());
243
75ad23bc 244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 245 __blk_run_queue(q);
1da177e4 246}
1da177e4
LT
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
165125e1 251 * @q: The &struct request_queue in question
1da177e4
LT
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
165125e1 263void blk_stop_queue(struct request_queue *q)
1da177e4 264{
ad3d9d7e 265 __cancel_delayed_work(&q->delay_work);
75ad23bc 266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
59c51591 279 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
da527770
VG
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 285 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 286 *
1da177e4
LT
287 */
288void blk_sync_queue(struct request_queue *q)
289{
70ed28b9 290 del_timer_sync(&q->timeout);
3cca6dc1 291 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
295/**
80a4b58e 296 * __blk_run_queue - run a single device queue
1da177e4 297 * @q: The queue to run
80a4b58e
JA
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 301 * held and interrupts disabled.
1da177e4 302 */
24ecfbe2 303void __blk_run_queue(struct request_queue *q)
1da177e4 304{
a538cd03
TH
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
c21e6beb 308 q->request_fn(q);
75ad23bc
NP
309}
310EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 311
24ecfbe2
CH
312/**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320void blk_run_queue_async(struct request_queue *q)
321{
3ec717b7
SL
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
24ecfbe2 324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 325 }
24ecfbe2 326}
c21e6beb 327EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 328
75ad23bc
NP
329/**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 335 * May be used to restart queueing when a request has completed.
75ad23bc
NP
336 */
337void blk_run_queue(struct request_queue *q)
338{
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 342 __blk_run_queue(q);
1da177e4
LT
343 spin_unlock_irqrestore(q->queue_lock, flags);
344}
345EXPORT_SYMBOL(blk_run_queue);
346
165125e1 347void blk_put_queue(struct request_queue *q)
483f4afc
AV
348{
349 kobject_put(&q->kobj);
350}
d86e0e83 351EXPORT_SYMBOL(blk_put_queue);
483f4afc 352
e3c78ca5
TH
353/**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
c9a929dd 356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 357 *
c9a929dd
TH
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 361 */
c9a929dd 362void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5 363{
458f27a9
AH
364 int i;
365
e3c78ca5 366 while (true) {
481a7d64 367 bool drain = false;
e3c78ca5
TH
368
369 spin_lock_irq(q->queue_lock);
370
b855b04a
TH
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
5efd6113 378 blkcg_drain_queue(q);
e3c78ca5 379
4eabc941
TH
380 /*
381 * This function might be called on a queue which failed
b855b04a
TH
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
4eabc941 386 */
b855b04a 387 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 388 __blk_run_queue(q);
c9a929dd 389
481a7d64
TH
390 drain |= q->rq.elvpriv;
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->rq.count[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
e3c78ca5
TH
405
406 spin_unlock_irq(q->queue_lock);
407
481a7d64 408 if (!drain)
e3c78ca5
TH
409 break;
410 msleep(10);
411 }
458f27a9
AH
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 spin_lock_irq(q->queue_lock);
420 for (i = 0; i < ARRAY_SIZE(q->rq.wait); i++)
421 wake_up_all(&q->rq.wait[i]);
422 spin_unlock_irq(q->queue_lock);
423 }
e3c78ca5
TH
424}
425
d732580b
TH
426/**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 432 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
d732580b
TH
435 */
436void blk_queue_bypass_start(struct request_queue *q)
437{
b82d4b19
TH
438 bool drain;
439
d732580b 440 spin_lock_irq(q->queue_lock);
b82d4b19 441 drain = !q->bypass_depth++;
d732580b
TH
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
b82d4b19
TH
445 if (drain) {
446 blk_drain_queue(q, false);
447 /* ensure blk_queue_bypass() is %true inside RCU read lock */
448 synchronize_rcu();
449 }
d732580b
TH
450}
451EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
452
453/**
454 * blk_queue_bypass_end - leave queue bypass mode
455 * @q: queue of interest
456 *
457 * Leave bypass mode and restore the normal queueing behavior.
458 */
459void blk_queue_bypass_end(struct request_queue *q)
460{
461 spin_lock_irq(q->queue_lock);
462 if (!--q->bypass_depth)
463 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
464 WARN_ON_ONCE(q->bypass_depth < 0);
465 spin_unlock_irq(q->queue_lock);
466}
467EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
468
c9a929dd
TH
469/**
470 * blk_cleanup_queue - shutdown a request queue
471 * @q: request queue to shutdown
472 *
473 * Mark @q DEAD, drain all pending requests, destroy and put it. All
474 * future requests will be failed immediately with -ENODEV.
c94a96ac 475 */
6728cb0e 476void blk_cleanup_queue(struct request_queue *q)
483f4afc 477{
c9a929dd 478 spinlock_t *lock = q->queue_lock;
e3335de9 479
c9a929dd 480 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 481 mutex_lock(&q->sysfs_lock);
75ad23bc 482 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd 483 spin_lock_irq(lock);
6ecf23af 484
80fd9979
TH
485 /*
486 * Dead queue is permanently in bypass mode till released. Note
487 * that, unlike blk_queue_bypass_start(), we aren't performing
488 * synchronize_rcu() after entering bypass mode to avoid the delay
489 * as some drivers create and destroy a lot of queues while
490 * probing. This is still safe because blk_release_queue() will be
491 * called only after the queue refcnt drops to zero and nothing,
492 * RCU or not, would be traversing the queue by then.
493 */
6ecf23af
TH
494 q->bypass_depth++;
495 queue_flag_set(QUEUE_FLAG_BYPASS, q);
496
c9a929dd
TH
497 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
498 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
499 queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
500 spin_unlock_irq(lock);
501 mutex_unlock(&q->sysfs_lock);
502
b855b04a
TH
503 /* drain all requests queued before DEAD marking */
504 blk_drain_queue(q, true);
c9a929dd
TH
505
506 /* @q won't process any more request, flush async actions */
507 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
508 blk_sync_queue(q);
509
5e5cfac0
AH
510 spin_lock_irq(lock);
511 if (q->queue_lock != &q->__queue_lock)
512 q->queue_lock = &q->__queue_lock;
513 spin_unlock_irq(lock);
514
c9a929dd 515 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
516 blk_put_queue(q);
517}
1da177e4
LT
518EXPORT_SYMBOL(blk_cleanup_queue);
519
165125e1 520static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
521{
522 struct request_list *rl = &q->rq;
523
1abec4fd
MS
524 if (unlikely(rl->rq_pool))
525 return 0;
526
1faa16d2
JA
527 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
528 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 529 rl->elvpriv = 0;
1faa16d2
JA
530 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
531 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 532
1946089a 533 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6
TH
534 mempool_free_slab, request_cachep,
535 GFP_KERNEL, q->node);
1da177e4
LT
536 if (!rl->rq_pool)
537 return -ENOMEM;
538
539 return 0;
540}
541
165125e1 542struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 543{
1946089a
CL
544 return blk_alloc_queue_node(gfp_mask, -1);
545}
546EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 547
165125e1 548struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 549{
165125e1 550 struct request_queue *q;
e0bf68dd 551 int err;
1946089a 552
8324aa91 553 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 554 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
555 if (!q)
556 return NULL;
557
00380a40 558 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
559 if (q->id < 0)
560 goto fail_q;
561
0989a025
JA
562 q->backing_dev_info.ra_pages =
563 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
564 q->backing_dev_info.state = 0;
565 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 566 q->backing_dev_info.name = "block";
5151412d 567 q->node = node_id;
0989a025 568
e0bf68dd 569 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
570 if (err)
571 goto fail_id;
e0bf68dd 572
31373d09
MG
573 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
574 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 575 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 576 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 577 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 578 INIT_LIST_HEAD(&q->icq_list);
4eef3049 579#ifdef CONFIG_BLK_CGROUP
e8989fae 580 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 581#endif
ae1b1539
TH
582 INIT_LIST_HEAD(&q->flush_queue[0]);
583 INIT_LIST_HEAD(&q->flush_queue[1]);
584 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 585 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 586
8324aa91 587 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 588
483f4afc 589 mutex_init(&q->sysfs_lock);
e7e72bf6 590 spin_lock_init(&q->__queue_lock);
483f4afc 591
c94a96ac
VG
592 /*
593 * By default initialize queue_lock to internal lock and driver can
594 * override it later if need be.
595 */
596 q->queue_lock = &q->__queue_lock;
597
b82d4b19
TH
598 /*
599 * A queue starts its life with bypass turned on to avoid
600 * unnecessary bypass on/off overhead and nasty surprises during
601 * init. The initial bypass will be finished at the end of
602 * blk_init_allocated_queue().
603 */
604 q->bypass_depth = 1;
605 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
606
5efd6113 607 if (blkcg_init_queue(q))
f51b802c
TH
608 goto fail_id;
609
1da177e4 610 return q;
a73f730d
TH
611
612fail_id:
613 ida_simple_remove(&blk_queue_ida, q->id);
614fail_q:
615 kmem_cache_free(blk_requestq_cachep, q);
616 return NULL;
1da177e4 617}
1946089a 618EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
619
620/**
621 * blk_init_queue - prepare a request queue for use with a block device
622 * @rfn: The function to be called to process requests that have been
623 * placed on the queue.
624 * @lock: Request queue spin lock
625 *
626 * Description:
627 * If a block device wishes to use the standard request handling procedures,
628 * which sorts requests and coalesces adjacent requests, then it must
629 * call blk_init_queue(). The function @rfn will be called when there
630 * are requests on the queue that need to be processed. If the device
631 * supports plugging, then @rfn may not be called immediately when requests
632 * are available on the queue, but may be called at some time later instead.
633 * Plugged queues are generally unplugged when a buffer belonging to one
634 * of the requests on the queue is needed, or due to memory pressure.
635 *
636 * @rfn is not required, or even expected, to remove all requests off the
637 * queue, but only as many as it can handle at a time. If it does leave
638 * requests on the queue, it is responsible for arranging that the requests
639 * get dealt with eventually.
640 *
641 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
642 * request queue; this lock will be taken also from interrupt context, so irq
643 * disabling is needed for it.
1da177e4 644 *
710027a4 645 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
646 * it didn't succeed.
647 *
648 * Note:
649 * blk_init_queue() must be paired with a blk_cleanup_queue() call
650 * when the block device is deactivated (such as at module unload).
651 **/
1946089a 652
165125e1 653struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 654{
1946089a
CL
655 return blk_init_queue_node(rfn, lock, -1);
656}
657EXPORT_SYMBOL(blk_init_queue);
658
165125e1 659struct request_queue *
1946089a
CL
660blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
661{
c86d1b8a 662 struct request_queue *uninit_q, *q;
1da177e4 663
c86d1b8a
MS
664 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
665 if (!uninit_q)
666 return NULL;
667
5151412d 668 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
669 if (!q)
670 blk_cleanup_queue(uninit_q);
671
672 return q;
01effb0d
MS
673}
674EXPORT_SYMBOL(blk_init_queue_node);
675
676struct request_queue *
677blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
678 spinlock_t *lock)
01effb0d 679{
1da177e4
LT
680 if (!q)
681 return NULL;
682
c86d1b8a 683 if (blk_init_free_list(q))
8669aafd 684 return NULL;
1da177e4
LT
685
686 q->request_fn = rfn;
1da177e4 687 q->prep_rq_fn = NULL;
28018c24 688 q->unprep_rq_fn = NULL;
bc58ba94 689 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
690
691 /* Override internal queue lock with supplied lock pointer */
692 if (lock)
693 q->queue_lock = lock;
1da177e4 694
f3b144aa
JA
695 /*
696 * This also sets hw/phys segments, boundary and size
697 */
c20e8de2 698 blk_queue_make_request(q, blk_queue_bio);
1da177e4 699
44ec9542
AS
700 q->sg_reserved_size = INT_MAX;
701
b82d4b19
TH
702 /* init elevator */
703 if (elevator_init(q, NULL))
704 return NULL;
1da177e4 705
b82d4b19
TH
706 blk_queue_congestion_threshold(q);
707
708 /* all done, end the initial bypass */
709 blk_queue_bypass_end(q);
710 return q;
1da177e4 711}
5151412d 712EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 713
09ac46c4 714bool blk_get_queue(struct request_queue *q)
1da177e4 715{
34f6055c 716 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
717 __blk_get_queue(q);
718 return true;
1da177e4
LT
719 }
720
09ac46c4 721 return false;
1da177e4 722}
d86e0e83 723EXPORT_SYMBOL(blk_get_queue);
1da177e4 724
165125e1 725static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 726{
f1f8cc94 727 if (rq->cmd_flags & REQ_ELVPRIV) {
cb98fc8b 728 elv_put_request(q, rq);
f1f8cc94 729 if (rq->elv.icq)
11a3122f 730 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
731 }
732
1da177e4
LT
733 mempool_free(rq, q->rq.rq_pool);
734}
735
1da177e4
LT
736/*
737 * ioc_batching returns true if the ioc is a valid batching request and
738 * should be given priority access to a request.
739 */
165125e1 740static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
741{
742 if (!ioc)
743 return 0;
744
745 /*
746 * Make sure the process is able to allocate at least 1 request
747 * even if the batch times out, otherwise we could theoretically
748 * lose wakeups.
749 */
750 return ioc->nr_batch_requests == q->nr_batching ||
751 (ioc->nr_batch_requests > 0
752 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
753}
754
755/*
756 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
757 * will cause the process to be a "batcher" on all queues in the system. This
758 * is the behaviour we want though - once it gets a wakeup it should be given
759 * a nice run.
760 */
165125e1 761static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
762{
763 if (!ioc || ioc_batching(q, ioc))
764 return;
765
766 ioc->nr_batch_requests = q->nr_batching;
767 ioc->last_waited = jiffies;
768}
769
1faa16d2 770static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
771{
772 struct request_list *rl = &q->rq;
773
1faa16d2
JA
774 if (rl->count[sync] < queue_congestion_off_threshold(q))
775 blk_clear_queue_congested(q, sync);
1da177e4 776
1faa16d2
JA
777 if (rl->count[sync] + 1 <= q->nr_requests) {
778 if (waitqueue_active(&rl->wait[sync]))
779 wake_up(&rl->wait[sync]);
1da177e4 780
1faa16d2 781 blk_clear_queue_full(q, sync);
1da177e4
LT
782 }
783}
784
785/*
786 * A request has just been released. Account for it, update the full and
787 * congestion status, wake up any waiters. Called under q->queue_lock.
788 */
75eb6c37 789static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
790{
791 struct request_list *rl = &q->rq;
75eb6c37 792 int sync = rw_is_sync(flags);
1da177e4 793
1faa16d2 794 rl->count[sync]--;
75eb6c37 795 if (flags & REQ_ELVPRIV)
cb98fc8b 796 rl->elvpriv--;
1da177e4 797
1faa16d2 798 __freed_request(q, sync);
1da177e4 799
1faa16d2
JA
800 if (unlikely(rl->starved[sync ^ 1]))
801 __freed_request(q, sync ^ 1);
1da177e4
LT
802}
803
9d5a4e94
MS
804/*
805 * Determine if elevator data should be initialized when allocating the
806 * request associated with @bio.
807 */
808static bool blk_rq_should_init_elevator(struct bio *bio)
809{
810 if (!bio)
811 return true;
812
813 /*
814 * Flush requests do not use the elevator so skip initialization.
815 * This allows a request to share the flush and elevator data.
816 */
817 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
818 return false;
819
820 return true;
821}
822
852c788f
TH
823/**
824 * rq_ioc - determine io_context for request allocation
825 * @bio: request being allocated is for this bio (can be %NULL)
826 *
827 * Determine io_context to use for request allocation for @bio. May return
828 * %NULL if %current->io_context doesn't exist.
829 */
830static struct io_context *rq_ioc(struct bio *bio)
831{
832#ifdef CONFIG_BLK_CGROUP
833 if (bio && bio->bi_ioc)
834 return bio->bi_ioc;
835#endif
836 return current->io_context;
837}
838
da8303c6 839/**
a06e05e6 840 * __get_request - get a free request
da8303c6
TH
841 * @q: request_queue to allocate request from
842 * @rw_flags: RW and SYNC flags
843 * @bio: bio to allocate request for (can be %NULL)
844 * @gfp_mask: allocation mask
845 *
846 * Get a free request from @q. This function may fail under memory
847 * pressure or if @q is dead.
848 *
849 * Must be callled with @q->queue_lock held and,
850 * Returns %NULL on failure, with @q->queue_lock held.
851 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 852 */
a06e05e6
TH
853static struct request *__get_request(struct request_queue *q, int rw_flags,
854 struct bio *bio, gfp_t gfp_mask)
1da177e4 855{
b679281a 856 struct request *rq;
1da177e4 857 struct request_list *rl = &q->rq;
f1f8cc94 858 struct elevator_type *et;
f2dbd76a 859 struct io_context *ioc;
f1f8cc94 860 struct io_cq *icq = NULL;
1faa16d2 861 const bool is_sync = rw_is_sync(rw_flags) != 0;
f2dbd76a 862 bool retried = false;
75eb6c37 863 int may_queue;
f2dbd76a 864retry:
f1f8cc94 865 et = q->elevator->type;
852c788f 866 ioc = rq_ioc(bio);
88ee5ef1 867
34f6055c 868 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
869 return NULL;
870
7749a8d4 871 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
872 if (may_queue == ELV_MQUEUE_NO)
873 goto rq_starved;
874
1faa16d2
JA
875 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
876 if (rl->count[is_sync]+1 >= q->nr_requests) {
f2dbd76a
TH
877 /*
878 * We want ioc to record batching state. If it's
879 * not already there, creating a new one requires
880 * dropping queue_lock, which in turn requires
881 * retesting conditions to avoid queue hang.
882 */
883 if (!ioc && !retried) {
884 spin_unlock_irq(q->queue_lock);
24acfc34 885 create_io_context(gfp_mask, q->node);
f2dbd76a
TH
886 spin_lock_irq(q->queue_lock);
887 retried = true;
888 goto retry;
889 }
890
88ee5ef1
JA
891 /*
892 * The queue will fill after this allocation, so set
893 * it as full, and mark this process as "batching".
894 * This process will be allowed to complete a batch of
895 * requests, others will be blocked.
896 */
1faa16d2 897 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 898 ioc_set_batching(q, ioc);
1faa16d2 899 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
900 } else {
901 if (may_queue != ELV_MQUEUE_MUST
902 && !ioc_batching(q, ioc)) {
903 /*
904 * The queue is full and the allocating
905 * process is not a "batcher", and not
906 * exempted by the IO scheduler
907 */
b679281a 908 return NULL;
88ee5ef1
JA
909 }
910 }
1da177e4 911 }
1faa16d2 912 blk_set_queue_congested(q, is_sync);
1da177e4
LT
913 }
914
082cf69e
JA
915 /*
916 * Only allow batching queuers to allocate up to 50% over the defined
917 * limit of requests, otherwise we could have thousands of requests
918 * allocated with any setting of ->nr_requests
919 */
1faa16d2 920 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 921 return NULL;
fd782a4a 922
1faa16d2
JA
923 rl->count[is_sync]++;
924 rl->starved[is_sync] = 0;
cb98fc8b 925
f1f8cc94
TH
926 /*
927 * Decide whether the new request will be managed by elevator. If
928 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
929 * prevent the current elevator from being destroyed until the new
930 * request is freed. This guarantees icq's won't be destroyed and
931 * makes creating new ones safe.
932 *
933 * Also, lookup icq while holding queue_lock. If it doesn't exist,
934 * it will be created after releasing queue_lock.
935 */
d732580b 936 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37
TH
937 rw_flags |= REQ_ELVPRIV;
938 rl->elvpriv++;
f1f8cc94
TH
939 if (et->icq_cache && ioc)
940 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 941 }
cb98fc8b 942
f253b86b
JA
943 if (blk_queue_io_stat(q))
944 rw_flags |= REQ_IO_STAT;
1da177e4
LT
945 spin_unlock_irq(q->queue_lock);
946
29e2b09a
TH
947 /* allocate and init request */
948 rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
949 if (!rq)
b679281a 950 goto fail_alloc;
1da177e4 951
29e2b09a
TH
952 blk_rq_init(q, rq);
953 rq->cmd_flags = rw_flags | REQ_ALLOCED;
954
aaf7c680 955 /* init elvpriv */
29e2b09a 956 if (rw_flags & REQ_ELVPRIV) {
aaf7c680
TH
957 if (unlikely(et->icq_cache && !icq)) {
958 create_io_context(gfp_mask, q->node);
959 ioc = rq_ioc(bio);
960 if (!ioc)
961 goto fail_elvpriv;
962
963 icq = ioc_create_icq(ioc, q, gfp_mask);
964 if (!icq)
965 goto fail_elvpriv;
29e2b09a 966 }
aaf7c680
TH
967
968 rq->elv.icq = icq;
969 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
970 goto fail_elvpriv;
971
972 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
973 if (icq)
974 get_io_context(icq->ioc);
975 }
aaf7c680 976out:
88ee5ef1
JA
977 /*
978 * ioc may be NULL here, and ioc_batching will be false. That's
979 * OK, if the queue is under the request limit then requests need
980 * not count toward the nr_batch_requests limit. There will always
981 * be some limit enforced by BLK_BATCH_TIME.
982 */
1da177e4
LT
983 if (ioc_batching(q, ioc))
984 ioc->nr_batch_requests--;
6728cb0e 985
1faa16d2 986 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 987 return rq;
b679281a 988
aaf7c680
TH
989fail_elvpriv:
990 /*
991 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
992 * and may fail indefinitely under memory pressure and thus
993 * shouldn't stall IO. Treat this request as !elvpriv. This will
994 * disturb iosched and blkcg but weird is bettern than dead.
995 */
996 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
997 dev_name(q->backing_dev_info.dev));
998
999 rq->cmd_flags &= ~REQ_ELVPRIV;
1000 rq->elv.icq = NULL;
1001
1002 spin_lock_irq(q->queue_lock);
1003 rl->elvpriv--;
1004 spin_unlock_irq(q->queue_lock);
1005 goto out;
1006
b679281a
TH
1007fail_alloc:
1008 /*
1009 * Allocation failed presumably due to memory. Undo anything we
1010 * might have messed up.
1011 *
1012 * Allocating task should really be put onto the front of the wait
1013 * queue, but this is pretty rare.
1014 */
1015 spin_lock_irq(q->queue_lock);
1016 freed_request(q, rw_flags);
1017
1018 /*
1019 * in the very unlikely event that allocation failed and no
1020 * requests for this direction was pending, mark us starved so that
1021 * freeing of a request in the other direction will notice
1022 * us. another possible fix would be to split the rq mempool into
1023 * READ and WRITE
1024 */
1025rq_starved:
1026 if (unlikely(rl->count[is_sync] == 0))
1027 rl->starved[is_sync] = 1;
1028 return NULL;
1da177e4
LT
1029}
1030
da8303c6 1031/**
a06e05e6 1032 * get_request - get a free request
da8303c6
TH
1033 * @q: request_queue to allocate request from
1034 * @rw_flags: RW and SYNC flags
1035 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1036 * @gfp_mask: allocation mask
da8303c6 1037 *
a06e05e6
TH
1038 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1039 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1040 *
da8303c6
TH
1041 * Must be callled with @q->queue_lock held and,
1042 * Returns %NULL on failure, with @q->queue_lock held.
1043 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1044 */
a06e05e6
TH
1045static struct request *get_request(struct request_queue *q, int rw_flags,
1046 struct bio *bio, gfp_t gfp_mask)
1da177e4 1047{
1faa16d2 1048 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6
TH
1049 DEFINE_WAIT(wait);
1050 struct request_list *rl = &q->rq;
1da177e4 1051 struct request *rq;
a06e05e6
TH
1052retry:
1053 rq = __get_request(q, rw_flags, bio, gfp_mask);
1054 if (rq)
1055 return rq;
1da177e4 1056
a06e05e6
TH
1057 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q)))
1058 return NULL;
1da177e4 1059
a06e05e6
TH
1060 /* wait on @rl and retry */
1061 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1062 TASK_UNINTERRUPTIBLE);
1da177e4 1063
a06e05e6 1064 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1065
a06e05e6
TH
1066 spin_unlock_irq(q->queue_lock);
1067 io_schedule();
d6344532 1068
a06e05e6
TH
1069 /*
1070 * After sleeping, we become a "batching" process and will be able
1071 * to allocate at least one request, and up to a big batch of them
1072 * for a small period time. See ioc_batching, ioc_set_batching
1073 */
1074 create_io_context(GFP_NOIO, q->node);
1075 ioc_set_batching(q, current->io_context);
05caf8db 1076
a06e05e6
TH
1077 spin_lock_irq(q->queue_lock);
1078 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1079
a06e05e6 1080 goto retry;
1da177e4
LT
1081}
1082
165125e1 1083struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1084{
1085 struct request *rq;
1086
1087 BUG_ON(rw != READ && rw != WRITE);
1088
d6344532 1089 spin_lock_irq(q->queue_lock);
a06e05e6 1090 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1091 if (!rq)
1092 spin_unlock_irq(q->queue_lock);
d6344532 1093 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1094
1095 return rq;
1096}
1da177e4
LT
1097EXPORT_SYMBOL(blk_get_request);
1098
dc72ef4a 1099/**
79eb63e9 1100 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1101 * @q: target request queue
79eb63e9
BH
1102 * @bio: The bio describing the memory mappings that will be submitted for IO.
1103 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1104 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1105 *
79eb63e9
BH
1106 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1107 * type commands. Where the struct request needs to be farther initialized by
1108 * the caller. It is passed a &struct bio, which describes the memory info of
1109 * the I/O transfer.
dc72ef4a 1110 *
79eb63e9
BH
1111 * The caller of blk_make_request must make sure that bi_io_vec
1112 * are set to describe the memory buffers. That bio_data_dir() will return
1113 * the needed direction of the request. (And all bio's in the passed bio-chain
1114 * are properly set accordingly)
1115 *
1116 * If called under none-sleepable conditions, mapped bio buffers must not
1117 * need bouncing, by calling the appropriate masked or flagged allocator,
1118 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1119 * BUG.
53674ac5
JA
1120 *
1121 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1122 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1123 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1124 * completion of a bio that hasn't been submitted yet, thus resulting in a
1125 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1126 * of bio_alloc(), as that avoids the mempool deadlock.
1127 * If possible a big IO should be split into smaller parts when allocation
1128 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1129 */
79eb63e9
BH
1130struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1131 gfp_t gfp_mask)
dc72ef4a 1132{
79eb63e9
BH
1133 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1134
1135 if (unlikely(!rq))
1136 return ERR_PTR(-ENOMEM);
1137
1138 for_each_bio(bio) {
1139 struct bio *bounce_bio = bio;
1140 int ret;
1141
1142 blk_queue_bounce(q, &bounce_bio);
1143 ret = blk_rq_append_bio(q, rq, bounce_bio);
1144 if (unlikely(ret)) {
1145 blk_put_request(rq);
1146 return ERR_PTR(ret);
1147 }
1148 }
1149
1150 return rq;
dc72ef4a 1151}
79eb63e9 1152EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1153
1da177e4
LT
1154/**
1155 * blk_requeue_request - put a request back on queue
1156 * @q: request queue where request should be inserted
1157 * @rq: request to be inserted
1158 *
1159 * Description:
1160 * Drivers often keep queueing requests until the hardware cannot accept
1161 * more, when that condition happens we need to put the request back
1162 * on the queue. Must be called with queue lock held.
1163 */
165125e1 1164void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1165{
242f9dcb
JA
1166 blk_delete_timer(rq);
1167 blk_clear_rq_complete(rq);
5f3ea37c 1168 trace_block_rq_requeue(q, rq);
2056a782 1169
1da177e4
LT
1170 if (blk_rq_tagged(rq))
1171 blk_queue_end_tag(q, rq);
1172
ba396a6c
JB
1173 BUG_ON(blk_queued_rq(rq));
1174
1da177e4
LT
1175 elv_requeue_request(q, rq);
1176}
1da177e4
LT
1177EXPORT_SYMBOL(blk_requeue_request);
1178
73c10101
JA
1179static void add_acct_request(struct request_queue *q, struct request *rq,
1180 int where)
1181{
1182 drive_stat_acct(rq, 1);
7eaceacc 1183 __elv_add_request(q, rq, where);
73c10101
JA
1184}
1185
074a7aca
TH
1186static void part_round_stats_single(int cpu, struct hd_struct *part,
1187 unsigned long now)
1188{
1189 if (now == part->stamp)
1190 return;
1191
316d315b 1192 if (part_in_flight(part)) {
074a7aca 1193 __part_stat_add(cpu, part, time_in_queue,
316d315b 1194 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1195 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1196 }
1197 part->stamp = now;
1198}
1199
1200/**
496aa8a9
RD
1201 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1202 * @cpu: cpu number for stats access
1203 * @part: target partition
1da177e4
LT
1204 *
1205 * The average IO queue length and utilisation statistics are maintained
1206 * by observing the current state of the queue length and the amount of
1207 * time it has been in this state for.
1208 *
1209 * Normally, that accounting is done on IO completion, but that can result
1210 * in more than a second's worth of IO being accounted for within any one
1211 * second, leading to >100% utilisation. To deal with that, we call this
1212 * function to do a round-off before returning the results when reading
1213 * /proc/diskstats. This accounts immediately for all queue usage up to
1214 * the current jiffies and restarts the counters again.
1215 */
c9959059 1216void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1217{
1218 unsigned long now = jiffies;
1219
074a7aca
TH
1220 if (part->partno)
1221 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1222 part_round_stats_single(cpu, part, now);
6f2576af 1223}
074a7aca 1224EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1225
1da177e4
LT
1226/*
1227 * queue lock must be held
1228 */
165125e1 1229void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1230{
1da177e4
LT
1231 if (unlikely(!q))
1232 return;
1233 if (unlikely(--req->ref_count))
1234 return;
1235
8922e16c
TH
1236 elv_completed_request(q, req);
1237
1cd96c24
BH
1238 /* this is a bio leak */
1239 WARN_ON(req->bio != NULL);
1240
1da177e4
LT
1241 /*
1242 * Request may not have originated from ll_rw_blk. if not,
1243 * it didn't come out of our reserved rq pools
1244 */
49171e5c 1245 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1246 unsigned int flags = req->cmd_flags;
1da177e4 1247
1da177e4 1248 BUG_ON(!list_empty(&req->queuelist));
9817064b 1249 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1250
1251 blk_free_request(q, req);
75eb6c37 1252 freed_request(q, flags);
1da177e4
LT
1253 }
1254}
6e39b69e
MC
1255EXPORT_SYMBOL_GPL(__blk_put_request);
1256
1da177e4
LT
1257void blk_put_request(struct request *req)
1258{
8922e16c 1259 unsigned long flags;
165125e1 1260 struct request_queue *q = req->q;
8922e16c 1261
52a93ba8
FT
1262 spin_lock_irqsave(q->queue_lock, flags);
1263 __blk_put_request(q, req);
1264 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1265}
1da177e4
LT
1266EXPORT_SYMBOL(blk_put_request);
1267
66ac0280
CH
1268/**
1269 * blk_add_request_payload - add a payload to a request
1270 * @rq: request to update
1271 * @page: page backing the payload
1272 * @len: length of the payload.
1273 *
1274 * This allows to later add a payload to an already submitted request by
1275 * a block driver. The driver needs to take care of freeing the payload
1276 * itself.
1277 *
1278 * Note that this is a quite horrible hack and nothing but handling of
1279 * discard requests should ever use it.
1280 */
1281void blk_add_request_payload(struct request *rq, struct page *page,
1282 unsigned int len)
1283{
1284 struct bio *bio = rq->bio;
1285
1286 bio->bi_io_vec->bv_page = page;
1287 bio->bi_io_vec->bv_offset = 0;
1288 bio->bi_io_vec->bv_len = len;
1289
1290 bio->bi_size = len;
1291 bio->bi_vcnt = 1;
1292 bio->bi_phys_segments = 1;
1293
1294 rq->__data_len = rq->resid_len = len;
1295 rq->nr_phys_segments = 1;
1296 rq->buffer = bio_data(bio);
1297}
1298EXPORT_SYMBOL_GPL(blk_add_request_payload);
1299
73c10101
JA
1300static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1301 struct bio *bio)
1302{
1303 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1304
73c10101
JA
1305 if (!ll_back_merge_fn(q, req, bio))
1306 return false;
1307
1308 trace_block_bio_backmerge(q, bio);
1309
1310 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1311 blk_rq_set_mixed_merge(req);
1312
1313 req->biotail->bi_next = bio;
1314 req->biotail = bio;
1315 req->__data_len += bio->bi_size;
1316 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1317
1318 drive_stat_acct(req, 0);
1319 return true;
1320}
1321
1322static bool bio_attempt_front_merge(struct request_queue *q,
1323 struct request *req, struct bio *bio)
1324{
1325 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1326
73c10101
JA
1327 if (!ll_front_merge_fn(q, req, bio))
1328 return false;
1329
1330 trace_block_bio_frontmerge(q, bio);
1331
1332 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1333 blk_rq_set_mixed_merge(req);
1334
73c10101
JA
1335 bio->bi_next = req->bio;
1336 req->bio = bio;
1337
1338 /*
1339 * may not be valid. if the low level driver said
1340 * it didn't need a bounce buffer then it better
1341 * not touch req->buffer either...
1342 */
1343 req->buffer = bio_data(bio);
1344 req->__sector = bio->bi_sector;
1345 req->__data_len += bio->bi_size;
1346 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1347
1348 drive_stat_acct(req, 0);
1349 return true;
1350}
1351
bd87b589
TH
1352/**
1353 * attempt_plug_merge - try to merge with %current's plugged list
1354 * @q: request_queue new bio is being queued at
1355 * @bio: new bio being queued
1356 * @request_count: out parameter for number of traversed plugged requests
1357 *
1358 * Determine whether @bio being queued on @q can be merged with a request
1359 * on %current's plugged list. Returns %true if merge was successful,
1360 * otherwise %false.
1361 *
07c2bd37
TH
1362 * Plugging coalesces IOs from the same issuer for the same purpose without
1363 * going through @q->queue_lock. As such it's more of an issuing mechanism
1364 * than scheduling, and the request, while may have elvpriv data, is not
1365 * added on the elevator at this point. In addition, we don't have
1366 * reliable access to the elevator outside queue lock. Only check basic
1367 * merging parameters without querying the elevator.
73c10101 1368 */
bd87b589
TH
1369static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1370 unsigned int *request_count)
73c10101
JA
1371{
1372 struct blk_plug *plug;
1373 struct request *rq;
1374 bool ret = false;
1375
bd87b589 1376 plug = current->plug;
73c10101
JA
1377 if (!plug)
1378 goto out;
56ebdaf2 1379 *request_count = 0;
73c10101
JA
1380
1381 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1382 int el_ret;
1383
1b2e19f1
SL
1384 if (rq->q == q)
1385 (*request_count)++;
56ebdaf2 1386
07c2bd37 1387 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1388 continue;
1389
050c8ea8 1390 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1391 if (el_ret == ELEVATOR_BACK_MERGE) {
1392 ret = bio_attempt_back_merge(q, rq, bio);
1393 if (ret)
1394 break;
1395 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1396 ret = bio_attempt_front_merge(q, rq, bio);
1397 if (ret)
1398 break;
1399 }
1400 }
1401out:
1402 return ret;
1403}
1404
86db1e29 1405void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1406{
4aff5e23 1407 req->cmd_type = REQ_TYPE_FS;
52d9e675 1408
7b6d91da
CH
1409 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1410 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1411 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1412
52d9e675 1413 req->errors = 0;
a2dec7b3 1414 req->__sector = bio->bi_sector;
52d9e675 1415 req->ioprio = bio_prio(bio);
bc1c56fd 1416 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1417}
1418
5a7bbad2 1419void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1420{
5e00d1b5 1421 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1422 struct blk_plug *plug;
1423 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1424 struct request *req;
56ebdaf2 1425 unsigned int request_count = 0;
1da177e4 1426
1da177e4
LT
1427 /*
1428 * low level driver can indicate that it wants pages above a
1429 * certain limit bounced to low memory (ie for highmem, or even
1430 * ISA dma in theory)
1431 */
1432 blk_queue_bounce(q, &bio);
1433
4fed947c 1434 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1435 spin_lock_irq(q->queue_lock);
ae1b1539 1436 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1437 goto get_rq;
1438 }
1439
73c10101
JA
1440 /*
1441 * Check if we can merge with the plugged list before grabbing
1442 * any locks.
1443 */
bd87b589 1444 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1445 return;
1da177e4 1446
73c10101 1447 spin_lock_irq(q->queue_lock);
2056a782 1448
73c10101
JA
1449 el_ret = elv_merge(q, &req, bio);
1450 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1451 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1452 elv_bio_merged(q, req, bio);
73c10101
JA
1453 if (!attempt_back_merge(q, req))
1454 elv_merged_request(q, req, el_ret);
1455 goto out_unlock;
1456 }
1457 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1458 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1459 elv_bio_merged(q, req, bio);
73c10101
JA
1460 if (!attempt_front_merge(q, req))
1461 elv_merged_request(q, req, el_ret);
1462 goto out_unlock;
80a761fd 1463 }
1da177e4
LT
1464 }
1465
450991bc 1466get_rq:
7749a8d4
JA
1467 /*
1468 * This sync check and mask will be re-done in init_request_from_bio(),
1469 * but we need to set it earlier to expose the sync flag to the
1470 * rq allocator and io schedulers.
1471 */
1472 rw_flags = bio_data_dir(bio);
1473 if (sync)
7b6d91da 1474 rw_flags |= REQ_SYNC;
7749a8d4 1475
1da177e4 1476 /*
450991bc 1477 * Grab a free request. This is might sleep but can not fail.
d6344532 1478 * Returns with the queue unlocked.
450991bc 1479 */
a06e05e6 1480 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1481 if (unlikely(!req)) {
1482 bio_endio(bio, -ENODEV); /* @q is dead */
1483 goto out_unlock;
1484 }
d6344532 1485
450991bc
NP
1486 /*
1487 * After dropping the lock and possibly sleeping here, our request
1488 * may now be mergeable after it had proven unmergeable (above).
1489 * We don't worry about that case for efficiency. It won't happen
1490 * often, and the elevators are able to handle it.
1da177e4 1491 */
52d9e675 1492 init_request_from_bio(req, bio);
1da177e4 1493
9562ad9a 1494 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1495 req->cpu = raw_smp_processor_id();
73c10101
JA
1496
1497 plug = current->plug;
721a9602 1498 if (plug) {
dc6d36c9
JA
1499 /*
1500 * If this is the first request added after a plug, fire
1501 * of a plug trace. If others have been added before, check
1502 * if we have multiple devices in this plug. If so, make a
1503 * note to sort the list before dispatch.
1504 */
1505 if (list_empty(&plug->list))
1506 trace_block_plug(q);
3540d5e8
SL
1507 else {
1508 if (!plug->should_sort) {
1509 struct request *__rq;
73c10101 1510
3540d5e8
SL
1511 __rq = list_entry_rq(plug->list.prev);
1512 if (__rq->q != q)
1513 plug->should_sort = 1;
1514 }
019ceb7d 1515 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1516 blk_flush_plug_list(plug, false);
019ceb7d
SL
1517 trace_block_plug(q);
1518 }
73c10101 1519 }
73c10101
JA
1520 list_add_tail(&req->queuelist, &plug->list);
1521 drive_stat_acct(req, 1);
1522 } else {
1523 spin_lock_irq(q->queue_lock);
1524 add_acct_request(q, req, where);
24ecfbe2 1525 __blk_run_queue(q);
73c10101
JA
1526out_unlock:
1527 spin_unlock_irq(q->queue_lock);
1528 }
1da177e4 1529}
c20e8de2 1530EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1531
1532/*
1533 * If bio->bi_dev is a partition, remap the location
1534 */
1535static inline void blk_partition_remap(struct bio *bio)
1536{
1537 struct block_device *bdev = bio->bi_bdev;
1538
bf2de6f5 1539 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1540 struct hd_struct *p = bdev->bd_part;
1541
1da177e4
LT
1542 bio->bi_sector += p->start_sect;
1543 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1544
d07335e5
MS
1545 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1546 bdev->bd_dev,
1547 bio->bi_sector - p->start_sect);
1da177e4
LT
1548 }
1549}
1550
1da177e4
LT
1551static void handle_bad_sector(struct bio *bio)
1552{
1553 char b[BDEVNAME_SIZE];
1554
1555 printk(KERN_INFO "attempt to access beyond end of device\n");
1556 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1557 bdevname(bio->bi_bdev, b),
1558 bio->bi_rw,
1559 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1560 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1561
1562 set_bit(BIO_EOF, &bio->bi_flags);
1563}
1564
c17bb495
AM
1565#ifdef CONFIG_FAIL_MAKE_REQUEST
1566
1567static DECLARE_FAULT_ATTR(fail_make_request);
1568
1569static int __init setup_fail_make_request(char *str)
1570{
1571 return setup_fault_attr(&fail_make_request, str);
1572}
1573__setup("fail_make_request=", setup_fail_make_request);
1574
b2c9cd37 1575static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1576{
b2c9cd37 1577 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1578}
1579
1580static int __init fail_make_request_debugfs(void)
1581{
dd48c085
AM
1582 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1583 NULL, &fail_make_request);
1584
1585 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1586}
1587
1588late_initcall(fail_make_request_debugfs);
1589
1590#else /* CONFIG_FAIL_MAKE_REQUEST */
1591
b2c9cd37
AM
1592static inline bool should_fail_request(struct hd_struct *part,
1593 unsigned int bytes)
c17bb495 1594{
b2c9cd37 1595 return false;
c17bb495
AM
1596}
1597
1598#endif /* CONFIG_FAIL_MAKE_REQUEST */
1599
c07e2b41
JA
1600/*
1601 * Check whether this bio extends beyond the end of the device.
1602 */
1603static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1604{
1605 sector_t maxsector;
1606
1607 if (!nr_sectors)
1608 return 0;
1609
1610 /* Test device or partition size, when known. */
77304d2a 1611 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1612 if (maxsector) {
1613 sector_t sector = bio->bi_sector;
1614
1615 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1616 /*
1617 * This may well happen - the kernel calls bread()
1618 * without checking the size of the device, e.g., when
1619 * mounting a device.
1620 */
1621 handle_bad_sector(bio);
1622 return 1;
1623 }
1624 }
1625
1626 return 0;
1627}
1628
27a84d54
CH
1629static noinline_for_stack bool
1630generic_make_request_checks(struct bio *bio)
1da177e4 1631{
165125e1 1632 struct request_queue *q;
5a7bbad2 1633 int nr_sectors = bio_sectors(bio);
51fd77bd 1634 int err = -EIO;
5a7bbad2
CH
1635 char b[BDEVNAME_SIZE];
1636 struct hd_struct *part;
1da177e4
LT
1637
1638 might_sleep();
1da177e4 1639
c07e2b41
JA
1640 if (bio_check_eod(bio, nr_sectors))
1641 goto end_io;
1da177e4 1642
5a7bbad2
CH
1643 q = bdev_get_queue(bio->bi_bdev);
1644 if (unlikely(!q)) {
1645 printk(KERN_ERR
1646 "generic_make_request: Trying to access "
1647 "nonexistent block-device %s (%Lu)\n",
1648 bdevname(bio->bi_bdev, b),
1649 (long long) bio->bi_sector);
1650 goto end_io;
1651 }
c17bb495 1652
5a7bbad2
CH
1653 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1654 nr_sectors > queue_max_hw_sectors(q))) {
1655 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1656 bdevname(bio->bi_bdev, b),
1657 bio_sectors(bio),
1658 queue_max_hw_sectors(q));
1659 goto end_io;
1660 }
1da177e4 1661
5a7bbad2
CH
1662 part = bio->bi_bdev->bd_part;
1663 if (should_fail_request(part, bio->bi_size) ||
1664 should_fail_request(&part_to_disk(part)->part0,
1665 bio->bi_size))
1666 goto end_io;
2056a782 1667
5a7bbad2
CH
1668 /*
1669 * If this device has partitions, remap block n
1670 * of partition p to block n+start(p) of the disk.
1671 */
1672 blk_partition_remap(bio);
2056a782 1673
5a7bbad2
CH
1674 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1675 goto end_io;
a7384677 1676
5a7bbad2
CH
1677 if (bio_check_eod(bio, nr_sectors))
1678 goto end_io;
1e87901e 1679
5a7bbad2
CH
1680 /*
1681 * Filter flush bio's early so that make_request based
1682 * drivers without flush support don't have to worry
1683 * about them.
1684 */
1685 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1686 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1687 if (!nr_sectors) {
1688 err = 0;
51fd77bd
JA
1689 goto end_io;
1690 }
5a7bbad2 1691 }
5ddfe969 1692
5a7bbad2
CH
1693 if ((bio->bi_rw & REQ_DISCARD) &&
1694 (!blk_queue_discard(q) ||
1695 ((bio->bi_rw & REQ_SECURE) &&
1696 !blk_queue_secdiscard(q)))) {
1697 err = -EOPNOTSUPP;
1698 goto end_io;
1699 }
01edede4 1700
bc16a4f9
TH
1701 if (blk_throtl_bio(q, bio))
1702 return false; /* throttled, will be resubmitted later */
27a84d54 1703
5a7bbad2 1704 trace_block_bio_queue(q, bio);
27a84d54 1705 return true;
a7384677
TH
1706
1707end_io:
1708 bio_endio(bio, err);
27a84d54 1709 return false;
1da177e4
LT
1710}
1711
27a84d54
CH
1712/**
1713 * generic_make_request - hand a buffer to its device driver for I/O
1714 * @bio: The bio describing the location in memory and on the device.
1715 *
1716 * generic_make_request() is used to make I/O requests of block
1717 * devices. It is passed a &struct bio, which describes the I/O that needs
1718 * to be done.
1719 *
1720 * generic_make_request() does not return any status. The
1721 * success/failure status of the request, along with notification of
1722 * completion, is delivered asynchronously through the bio->bi_end_io
1723 * function described (one day) else where.
1724 *
1725 * The caller of generic_make_request must make sure that bi_io_vec
1726 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1727 * set to describe the device address, and the
1728 * bi_end_io and optionally bi_private are set to describe how
1729 * completion notification should be signaled.
1730 *
1731 * generic_make_request and the drivers it calls may use bi_next if this
1732 * bio happens to be merged with someone else, and may resubmit the bio to
1733 * a lower device by calling into generic_make_request recursively, which
1734 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1735 */
1736void generic_make_request(struct bio *bio)
1737{
bddd87c7
AM
1738 struct bio_list bio_list_on_stack;
1739
27a84d54
CH
1740 if (!generic_make_request_checks(bio))
1741 return;
1742
1743 /*
1744 * We only want one ->make_request_fn to be active at a time, else
1745 * stack usage with stacked devices could be a problem. So use
1746 * current->bio_list to keep a list of requests submited by a
1747 * make_request_fn function. current->bio_list is also used as a
1748 * flag to say if generic_make_request is currently active in this
1749 * task or not. If it is NULL, then no make_request is active. If
1750 * it is non-NULL, then a make_request is active, and new requests
1751 * should be added at the tail
1752 */
bddd87c7 1753 if (current->bio_list) {
bddd87c7 1754 bio_list_add(current->bio_list, bio);
d89d8796
NB
1755 return;
1756 }
27a84d54 1757
d89d8796
NB
1758 /* following loop may be a bit non-obvious, and so deserves some
1759 * explanation.
1760 * Before entering the loop, bio->bi_next is NULL (as all callers
1761 * ensure that) so we have a list with a single bio.
1762 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1763 * we assign bio_list to a pointer to the bio_list_on_stack,
1764 * thus initialising the bio_list of new bios to be
27a84d54 1765 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1766 * through a recursive call to generic_make_request. If it
1767 * did, we find a non-NULL value in bio_list and re-enter the loop
1768 * from the top. In this case we really did just take the bio
bddd87c7 1769 * of the top of the list (no pretending) and so remove it from
27a84d54 1770 * bio_list, and call into ->make_request() again.
d89d8796
NB
1771 */
1772 BUG_ON(bio->bi_next);
bddd87c7
AM
1773 bio_list_init(&bio_list_on_stack);
1774 current->bio_list = &bio_list_on_stack;
d89d8796 1775 do {
27a84d54
CH
1776 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1777
1778 q->make_request_fn(q, bio);
1779
bddd87c7 1780 bio = bio_list_pop(current->bio_list);
d89d8796 1781 } while (bio);
bddd87c7 1782 current->bio_list = NULL; /* deactivate */
d89d8796 1783}
1da177e4
LT
1784EXPORT_SYMBOL(generic_make_request);
1785
1786/**
710027a4 1787 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1788 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1789 * @bio: The &struct bio which describes the I/O
1790 *
1791 * submit_bio() is very similar in purpose to generic_make_request(), and
1792 * uses that function to do most of the work. Both are fairly rough
710027a4 1793 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1794 *
1795 */
1796void submit_bio(int rw, struct bio *bio)
1797{
1798 int count = bio_sectors(bio);
1799
22e2c507 1800 bio->bi_rw |= rw;
1da177e4 1801
bf2de6f5
JA
1802 /*
1803 * If it's a regular read/write or a barrier with data attached,
1804 * go through the normal accounting stuff before submission.
1805 */
3ffb52e7 1806 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1807 if (rw & WRITE) {
1808 count_vm_events(PGPGOUT, count);
1809 } else {
1810 task_io_account_read(bio->bi_size);
1811 count_vm_events(PGPGIN, count);
1812 }
1813
1814 if (unlikely(block_dump)) {
1815 char b[BDEVNAME_SIZE];
8dcbdc74 1816 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1817 current->comm, task_pid_nr(current),
bf2de6f5
JA
1818 (rw & WRITE) ? "WRITE" : "READ",
1819 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1820 bdevname(bio->bi_bdev, b),
1821 count);
bf2de6f5 1822 }
1da177e4
LT
1823 }
1824
1825 generic_make_request(bio);
1826}
1da177e4
LT
1827EXPORT_SYMBOL(submit_bio);
1828
82124d60
KU
1829/**
1830 * blk_rq_check_limits - Helper function to check a request for the queue limit
1831 * @q: the queue
1832 * @rq: the request being checked
1833 *
1834 * Description:
1835 * @rq may have been made based on weaker limitations of upper-level queues
1836 * in request stacking drivers, and it may violate the limitation of @q.
1837 * Since the block layer and the underlying device driver trust @rq
1838 * after it is inserted to @q, it should be checked against @q before
1839 * the insertion using this generic function.
1840 *
1841 * This function should also be useful for request stacking drivers
eef35c2d 1842 * in some cases below, so export this function.
82124d60
KU
1843 * Request stacking drivers like request-based dm may change the queue
1844 * limits while requests are in the queue (e.g. dm's table swapping).
1845 * Such request stacking drivers should check those requests agaist
1846 * the new queue limits again when they dispatch those requests,
1847 * although such checkings are also done against the old queue limits
1848 * when submitting requests.
1849 */
1850int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1851{
3383977f
S
1852 if (rq->cmd_flags & REQ_DISCARD)
1853 return 0;
1854
ae03bf63
MP
1855 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1856 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1857 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1858 return -EIO;
1859 }
1860
1861 /*
1862 * queue's settings related to segment counting like q->bounce_pfn
1863 * may differ from that of other stacking queues.
1864 * Recalculate it to check the request correctly on this queue's
1865 * limitation.
1866 */
1867 blk_recalc_rq_segments(rq);
8a78362c 1868 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1869 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1870 return -EIO;
1871 }
1872
1873 return 0;
1874}
1875EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1876
1877/**
1878 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1879 * @q: the queue to submit the request
1880 * @rq: the request being queued
1881 */
1882int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1883{
1884 unsigned long flags;
4853abaa 1885 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1886
1887 if (blk_rq_check_limits(q, rq))
1888 return -EIO;
1889
b2c9cd37
AM
1890 if (rq->rq_disk &&
1891 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1892 return -EIO;
82124d60
KU
1893
1894 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1895 if (unlikely(blk_queue_dead(q))) {
1896 spin_unlock_irqrestore(q->queue_lock, flags);
1897 return -ENODEV;
1898 }
82124d60
KU
1899
1900 /*
1901 * Submitting request must be dequeued before calling this function
1902 * because it will be linked to another request_queue
1903 */
1904 BUG_ON(blk_queued_rq(rq));
1905
4853abaa
JM
1906 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1907 where = ELEVATOR_INSERT_FLUSH;
1908
1909 add_acct_request(q, rq, where);
e67b77c7
JM
1910 if (where == ELEVATOR_INSERT_FLUSH)
1911 __blk_run_queue(q);
82124d60
KU
1912 spin_unlock_irqrestore(q->queue_lock, flags);
1913
1914 return 0;
1915}
1916EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1917
80a761fd
TH
1918/**
1919 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1920 * @rq: request to examine
1921 *
1922 * Description:
1923 * A request could be merge of IOs which require different failure
1924 * handling. This function determines the number of bytes which
1925 * can be failed from the beginning of the request without
1926 * crossing into area which need to be retried further.
1927 *
1928 * Return:
1929 * The number of bytes to fail.
1930 *
1931 * Context:
1932 * queue_lock must be held.
1933 */
1934unsigned int blk_rq_err_bytes(const struct request *rq)
1935{
1936 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1937 unsigned int bytes = 0;
1938 struct bio *bio;
1939
1940 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1941 return blk_rq_bytes(rq);
1942
1943 /*
1944 * Currently the only 'mixing' which can happen is between
1945 * different fastfail types. We can safely fail portions
1946 * which have all the failfast bits that the first one has -
1947 * the ones which are at least as eager to fail as the first
1948 * one.
1949 */
1950 for (bio = rq->bio; bio; bio = bio->bi_next) {
1951 if ((bio->bi_rw & ff) != ff)
1952 break;
1953 bytes += bio->bi_size;
1954 }
1955
1956 /* this could lead to infinite loop */
1957 BUG_ON(blk_rq_bytes(rq) && !bytes);
1958 return bytes;
1959}
1960EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1961
bc58ba94
JA
1962static void blk_account_io_completion(struct request *req, unsigned int bytes)
1963{
c2553b58 1964 if (blk_do_io_stat(req)) {
bc58ba94
JA
1965 const int rw = rq_data_dir(req);
1966 struct hd_struct *part;
1967 int cpu;
1968
1969 cpu = part_stat_lock();
09e099d4 1970 part = req->part;
bc58ba94
JA
1971 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1972 part_stat_unlock();
1973 }
1974}
1975
1976static void blk_account_io_done(struct request *req)
1977{
bc58ba94 1978 /*
dd4c133f
TH
1979 * Account IO completion. flush_rq isn't accounted as a
1980 * normal IO on queueing nor completion. Accounting the
1981 * containing request is enough.
bc58ba94 1982 */
414b4ff5 1983 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1984 unsigned long duration = jiffies - req->start_time;
1985 const int rw = rq_data_dir(req);
1986 struct hd_struct *part;
1987 int cpu;
1988
1989 cpu = part_stat_lock();
09e099d4 1990 part = req->part;
bc58ba94
JA
1991
1992 part_stat_inc(cpu, part, ios[rw]);
1993 part_stat_add(cpu, part, ticks[rw], duration);
1994 part_round_stats(cpu, part);
316d315b 1995 part_dec_in_flight(part, rw);
bc58ba94 1996
6c23a968 1997 hd_struct_put(part);
bc58ba94
JA
1998 part_stat_unlock();
1999 }
2000}
2001
3bcddeac 2002/**
9934c8c0
TH
2003 * blk_peek_request - peek at the top of a request queue
2004 * @q: request queue to peek at
2005 *
2006 * Description:
2007 * Return the request at the top of @q. The returned request
2008 * should be started using blk_start_request() before LLD starts
2009 * processing it.
2010 *
2011 * Return:
2012 * Pointer to the request at the top of @q if available. Null
2013 * otherwise.
2014 *
2015 * Context:
2016 * queue_lock must be held.
2017 */
2018struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2019{
2020 struct request *rq;
2021 int ret;
2022
2023 while ((rq = __elv_next_request(q)) != NULL) {
2024 if (!(rq->cmd_flags & REQ_STARTED)) {
2025 /*
2026 * This is the first time the device driver
2027 * sees this request (possibly after
2028 * requeueing). Notify IO scheduler.
2029 */
33659ebb 2030 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2031 elv_activate_rq(q, rq);
2032
2033 /*
2034 * just mark as started even if we don't start
2035 * it, a request that has been delayed should
2036 * not be passed by new incoming requests
2037 */
2038 rq->cmd_flags |= REQ_STARTED;
2039 trace_block_rq_issue(q, rq);
2040 }
2041
2042 if (!q->boundary_rq || q->boundary_rq == rq) {
2043 q->end_sector = rq_end_sector(rq);
2044 q->boundary_rq = NULL;
2045 }
2046
2047 if (rq->cmd_flags & REQ_DONTPREP)
2048 break;
2049
2e46e8b2 2050 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2051 /*
2052 * make sure space for the drain appears we
2053 * know we can do this because max_hw_segments
2054 * has been adjusted to be one fewer than the
2055 * device can handle
2056 */
2057 rq->nr_phys_segments++;
2058 }
2059
2060 if (!q->prep_rq_fn)
2061 break;
2062
2063 ret = q->prep_rq_fn(q, rq);
2064 if (ret == BLKPREP_OK) {
2065 break;
2066 } else if (ret == BLKPREP_DEFER) {
2067 /*
2068 * the request may have been (partially) prepped.
2069 * we need to keep this request in the front to
2070 * avoid resource deadlock. REQ_STARTED will
2071 * prevent other fs requests from passing this one.
2072 */
2e46e8b2 2073 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2074 !(rq->cmd_flags & REQ_DONTPREP)) {
2075 /*
2076 * remove the space for the drain we added
2077 * so that we don't add it again
2078 */
2079 --rq->nr_phys_segments;
2080 }
2081
2082 rq = NULL;
2083 break;
2084 } else if (ret == BLKPREP_KILL) {
2085 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2086 /*
2087 * Mark this request as started so we don't trigger
2088 * any debug logic in the end I/O path.
2089 */
2090 blk_start_request(rq);
40cbbb78 2091 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2092 } else {
2093 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2094 break;
2095 }
2096 }
2097
2098 return rq;
2099}
9934c8c0 2100EXPORT_SYMBOL(blk_peek_request);
158dbda0 2101
9934c8c0 2102void blk_dequeue_request(struct request *rq)
158dbda0 2103{
9934c8c0
TH
2104 struct request_queue *q = rq->q;
2105
158dbda0
TH
2106 BUG_ON(list_empty(&rq->queuelist));
2107 BUG_ON(ELV_ON_HASH(rq));
2108
2109 list_del_init(&rq->queuelist);
2110
2111 /*
2112 * the time frame between a request being removed from the lists
2113 * and to it is freed is accounted as io that is in progress at
2114 * the driver side.
2115 */
9195291e 2116 if (blk_account_rq(rq)) {
0a7ae2ff 2117 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2118 set_io_start_time_ns(rq);
2119 }
158dbda0
TH
2120}
2121
9934c8c0
TH
2122/**
2123 * blk_start_request - start request processing on the driver
2124 * @req: request to dequeue
2125 *
2126 * Description:
2127 * Dequeue @req and start timeout timer on it. This hands off the
2128 * request to the driver.
2129 *
2130 * Block internal functions which don't want to start timer should
2131 * call blk_dequeue_request().
2132 *
2133 * Context:
2134 * queue_lock must be held.
2135 */
2136void blk_start_request(struct request *req)
2137{
2138 blk_dequeue_request(req);
2139
2140 /*
5f49f631
TH
2141 * We are now handing the request to the hardware, initialize
2142 * resid_len to full count and add the timeout handler.
9934c8c0 2143 */
5f49f631 2144 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2145 if (unlikely(blk_bidi_rq(req)))
2146 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2147
9934c8c0
TH
2148 blk_add_timer(req);
2149}
2150EXPORT_SYMBOL(blk_start_request);
2151
2152/**
2153 * blk_fetch_request - fetch a request from a request queue
2154 * @q: request queue to fetch a request from
2155 *
2156 * Description:
2157 * Return the request at the top of @q. The request is started on
2158 * return and LLD can start processing it immediately.
2159 *
2160 * Return:
2161 * Pointer to the request at the top of @q if available. Null
2162 * otherwise.
2163 *
2164 * Context:
2165 * queue_lock must be held.
2166 */
2167struct request *blk_fetch_request(struct request_queue *q)
2168{
2169 struct request *rq;
2170
2171 rq = blk_peek_request(q);
2172 if (rq)
2173 blk_start_request(rq);
2174 return rq;
2175}
2176EXPORT_SYMBOL(blk_fetch_request);
2177
3bcddeac 2178/**
2e60e022 2179 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2180 * @req: the request being processed
710027a4 2181 * @error: %0 for success, < %0 for error
8ebf9756 2182 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2183 *
2184 * Description:
8ebf9756
RD
2185 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2186 * the request structure even if @req doesn't have leftover.
2187 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2188 *
2189 * This special helper function is only for request stacking drivers
2190 * (e.g. request-based dm) so that they can handle partial completion.
2191 * Actual device drivers should use blk_end_request instead.
2192 *
2193 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2194 * %false return from this function.
3bcddeac
KU
2195 *
2196 * Return:
2e60e022
TH
2197 * %false - this request doesn't have any more data
2198 * %true - this request has more data
3bcddeac 2199 **/
2e60e022 2200bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2201{
5450d3e1 2202 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2203 struct bio *bio;
2204
2e60e022
TH
2205 if (!req->bio)
2206 return false;
2207
5f3ea37c 2208 trace_block_rq_complete(req->q, req);
2056a782 2209
1da177e4 2210 /*
6f41469c
TH
2211 * For fs requests, rq is just carrier of independent bio's
2212 * and each partial completion should be handled separately.
2213 * Reset per-request error on each partial completion.
2214 *
2215 * TODO: tj: This is too subtle. It would be better to let
2216 * low level drivers do what they see fit.
1da177e4 2217 */
33659ebb 2218 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2219 req->errors = 0;
2220
33659ebb
CH
2221 if (error && req->cmd_type == REQ_TYPE_FS &&
2222 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2223 char *error_type;
2224
2225 switch (error) {
2226 case -ENOLINK:
2227 error_type = "recoverable transport";
2228 break;
2229 case -EREMOTEIO:
2230 error_type = "critical target";
2231 break;
2232 case -EBADE:
2233 error_type = "critical nexus";
2234 break;
2235 case -EIO:
2236 default:
2237 error_type = "I/O";
2238 break;
2239 }
2240 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2241 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2242 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2243 }
2244
bc58ba94 2245 blk_account_io_completion(req, nr_bytes);
d72d904a 2246
1da177e4
LT
2247 total_bytes = bio_nbytes = 0;
2248 while ((bio = req->bio) != NULL) {
2249 int nbytes;
2250
2251 if (nr_bytes >= bio->bi_size) {
2252 req->bio = bio->bi_next;
2253 nbytes = bio->bi_size;
5bb23a68 2254 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2255 next_idx = 0;
2256 bio_nbytes = 0;
2257 } else {
2258 int idx = bio->bi_idx + next_idx;
2259
af498d7f 2260 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2261 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2262 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2263 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2264 break;
2265 }
2266
2267 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2268 BIO_BUG_ON(nbytes > bio->bi_size);
2269
2270 /*
2271 * not a complete bvec done
2272 */
2273 if (unlikely(nbytes > nr_bytes)) {
2274 bio_nbytes += nr_bytes;
2275 total_bytes += nr_bytes;
2276 break;
2277 }
2278
2279 /*
2280 * advance to the next vector
2281 */
2282 next_idx++;
2283 bio_nbytes += nbytes;
2284 }
2285
2286 total_bytes += nbytes;
2287 nr_bytes -= nbytes;
2288
6728cb0e
JA
2289 bio = req->bio;
2290 if (bio) {
1da177e4
LT
2291 /*
2292 * end more in this run, or just return 'not-done'
2293 */
2294 if (unlikely(nr_bytes <= 0))
2295 break;
2296 }
2297 }
2298
2299 /*
2300 * completely done
2301 */
2e60e022
TH
2302 if (!req->bio) {
2303 /*
2304 * Reset counters so that the request stacking driver
2305 * can find how many bytes remain in the request
2306 * later.
2307 */
a2dec7b3 2308 req->__data_len = 0;
2e60e022
TH
2309 return false;
2310 }
1da177e4
LT
2311
2312 /*
2313 * if the request wasn't completed, update state
2314 */
2315 if (bio_nbytes) {
5bb23a68 2316 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2317 bio->bi_idx += next_idx;
2318 bio_iovec(bio)->bv_offset += nr_bytes;
2319 bio_iovec(bio)->bv_len -= nr_bytes;
2320 }
2321
a2dec7b3 2322 req->__data_len -= total_bytes;
2e46e8b2
TH
2323 req->buffer = bio_data(req->bio);
2324
2325 /* update sector only for requests with clear definition of sector */
33659ebb 2326 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2327 req->__sector += total_bytes >> 9;
2e46e8b2 2328
80a761fd
TH
2329 /* mixed attributes always follow the first bio */
2330 if (req->cmd_flags & REQ_MIXED_MERGE) {
2331 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2332 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2333 }
2334
2e46e8b2
TH
2335 /*
2336 * If total number of sectors is less than the first segment
2337 * size, something has gone terribly wrong.
2338 */
2339 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2340 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2341 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2342 }
2343
2344 /* recalculate the number of segments */
1da177e4 2345 blk_recalc_rq_segments(req);
2e46e8b2 2346
2e60e022 2347 return true;
1da177e4 2348}
2e60e022 2349EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2350
2e60e022
TH
2351static bool blk_update_bidi_request(struct request *rq, int error,
2352 unsigned int nr_bytes,
2353 unsigned int bidi_bytes)
5efccd17 2354{
2e60e022
TH
2355 if (blk_update_request(rq, error, nr_bytes))
2356 return true;
5efccd17 2357
2e60e022
TH
2358 /* Bidi request must be completed as a whole */
2359 if (unlikely(blk_bidi_rq(rq)) &&
2360 blk_update_request(rq->next_rq, error, bidi_bytes))
2361 return true;
5efccd17 2362
e2e1a148
JA
2363 if (blk_queue_add_random(rq->q))
2364 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2365
2366 return false;
1da177e4
LT
2367}
2368
28018c24
JB
2369/**
2370 * blk_unprep_request - unprepare a request
2371 * @req: the request
2372 *
2373 * This function makes a request ready for complete resubmission (or
2374 * completion). It happens only after all error handling is complete,
2375 * so represents the appropriate moment to deallocate any resources
2376 * that were allocated to the request in the prep_rq_fn. The queue
2377 * lock is held when calling this.
2378 */
2379void blk_unprep_request(struct request *req)
2380{
2381 struct request_queue *q = req->q;
2382
2383 req->cmd_flags &= ~REQ_DONTPREP;
2384 if (q->unprep_rq_fn)
2385 q->unprep_rq_fn(q, req);
2386}
2387EXPORT_SYMBOL_GPL(blk_unprep_request);
2388
1da177e4
LT
2389/*
2390 * queue lock must be held
2391 */
2e60e022 2392static void blk_finish_request(struct request *req, int error)
1da177e4 2393{
b8286239
KU
2394 if (blk_rq_tagged(req))
2395 blk_queue_end_tag(req->q, req);
2396
ba396a6c 2397 BUG_ON(blk_queued_rq(req));
1da177e4 2398
33659ebb 2399 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2400 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2401
e78042e5
MA
2402 blk_delete_timer(req);
2403
28018c24
JB
2404 if (req->cmd_flags & REQ_DONTPREP)
2405 blk_unprep_request(req);
2406
2407
bc58ba94 2408 blk_account_io_done(req);
b8286239 2409
1da177e4 2410 if (req->end_io)
8ffdc655 2411 req->end_io(req, error);
b8286239
KU
2412 else {
2413 if (blk_bidi_rq(req))
2414 __blk_put_request(req->next_rq->q, req->next_rq);
2415
1da177e4 2416 __blk_put_request(req->q, req);
b8286239 2417 }
1da177e4
LT
2418}
2419
3b11313a 2420/**
2e60e022
TH
2421 * blk_end_bidi_request - Complete a bidi request
2422 * @rq: the request to complete
2423 * @error: %0 for success, < %0 for error
2424 * @nr_bytes: number of bytes to complete @rq
2425 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2426 *
2427 * Description:
e3a04fe3 2428 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2429 * Drivers that supports bidi can safely call this member for any
2430 * type of request, bidi or uni. In the later case @bidi_bytes is
2431 * just ignored.
336cdb40
KU
2432 *
2433 * Return:
2e60e022
TH
2434 * %false - we are done with this request
2435 * %true - still buffers pending for this request
a0cd1285 2436 **/
b1f74493 2437static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2438 unsigned int nr_bytes, unsigned int bidi_bytes)
2439{
336cdb40 2440 struct request_queue *q = rq->q;
2e60e022 2441 unsigned long flags;
32fab448 2442
2e60e022
TH
2443 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2444 return true;
32fab448 2445
336cdb40 2446 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2447 blk_finish_request(rq, error);
336cdb40
KU
2448 spin_unlock_irqrestore(q->queue_lock, flags);
2449
2e60e022 2450 return false;
32fab448
KU
2451}
2452
336cdb40 2453/**
2e60e022
TH
2454 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2455 * @rq: the request to complete
710027a4 2456 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2457 * @nr_bytes: number of bytes to complete @rq
2458 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2459 *
2460 * Description:
2e60e022
TH
2461 * Identical to blk_end_bidi_request() except that queue lock is
2462 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2463 *
2464 * Return:
2e60e022
TH
2465 * %false - we are done with this request
2466 * %true - still buffers pending for this request
336cdb40 2467 **/
4853abaa 2468bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2469 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2470{
2e60e022
TH
2471 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2472 return true;
336cdb40 2473
2e60e022 2474 blk_finish_request(rq, error);
336cdb40 2475
2e60e022 2476 return false;
336cdb40 2477}
e19a3ab0
KU
2478
2479/**
2480 * blk_end_request - Helper function for drivers to complete the request.
2481 * @rq: the request being processed
710027a4 2482 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2483 * @nr_bytes: number of bytes to complete
2484 *
2485 * Description:
2486 * Ends I/O on a number of bytes attached to @rq.
2487 * If @rq has leftover, sets it up for the next range of segments.
2488 *
2489 * Return:
b1f74493
FT
2490 * %false - we are done with this request
2491 * %true - still buffers pending for this request
e19a3ab0 2492 **/
b1f74493 2493bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2494{
b1f74493 2495 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2496}
56ad1740 2497EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2498
2499/**
b1f74493
FT
2500 * blk_end_request_all - Helper function for drives to finish the request.
2501 * @rq: the request to finish
8ebf9756 2502 * @error: %0 for success, < %0 for error
336cdb40
KU
2503 *
2504 * Description:
b1f74493
FT
2505 * Completely finish @rq.
2506 */
2507void blk_end_request_all(struct request *rq, int error)
336cdb40 2508{
b1f74493
FT
2509 bool pending;
2510 unsigned int bidi_bytes = 0;
336cdb40 2511
b1f74493
FT
2512 if (unlikely(blk_bidi_rq(rq)))
2513 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2514
b1f74493
FT
2515 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2516 BUG_ON(pending);
2517}
56ad1740 2518EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2519
b1f74493
FT
2520/**
2521 * blk_end_request_cur - Helper function to finish the current request chunk.
2522 * @rq: the request to finish the current chunk for
8ebf9756 2523 * @error: %0 for success, < %0 for error
b1f74493
FT
2524 *
2525 * Description:
2526 * Complete the current consecutively mapped chunk from @rq.
2527 *
2528 * Return:
2529 * %false - we are done with this request
2530 * %true - still buffers pending for this request
2531 */
2532bool blk_end_request_cur(struct request *rq, int error)
2533{
2534 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2535}
56ad1740 2536EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2537
80a761fd
TH
2538/**
2539 * blk_end_request_err - Finish a request till the next failure boundary.
2540 * @rq: the request to finish till the next failure boundary for
2541 * @error: must be negative errno
2542 *
2543 * Description:
2544 * Complete @rq till the next failure boundary.
2545 *
2546 * Return:
2547 * %false - we are done with this request
2548 * %true - still buffers pending for this request
2549 */
2550bool blk_end_request_err(struct request *rq, int error)
2551{
2552 WARN_ON(error >= 0);
2553 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2554}
2555EXPORT_SYMBOL_GPL(blk_end_request_err);
2556
e3a04fe3 2557/**
b1f74493
FT
2558 * __blk_end_request - Helper function for drivers to complete the request.
2559 * @rq: the request being processed
2560 * @error: %0 for success, < %0 for error
2561 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2562 *
2563 * Description:
b1f74493 2564 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2565 *
2566 * Return:
b1f74493
FT
2567 * %false - we are done with this request
2568 * %true - still buffers pending for this request
e3a04fe3 2569 **/
b1f74493 2570bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2571{
b1f74493 2572 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2573}
56ad1740 2574EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2575
32fab448 2576/**
b1f74493
FT
2577 * __blk_end_request_all - Helper function for drives to finish the request.
2578 * @rq: the request to finish
8ebf9756 2579 * @error: %0 for success, < %0 for error
32fab448
KU
2580 *
2581 * Description:
b1f74493 2582 * Completely finish @rq. Must be called with queue lock held.
32fab448 2583 */
b1f74493 2584void __blk_end_request_all(struct request *rq, int error)
32fab448 2585{
b1f74493
FT
2586 bool pending;
2587 unsigned int bidi_bytes = 0;
2588
2589 if (unlikely(blk_bidi_rq(rq)))
2590 bidi_bytes = blk_rq_bytes(rq->next_rq);
2591
2592 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2593 BUG_ON(pending);
32fab448 2594}
56ad1740 2595EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2596
e19a3ab0 2597/**
b1f74493
FT
2598 * __blk_end_request_cur - Helper function to finish the current request chunk.
2599 * @rq: the request to finish the current chunk for
8ebf9756 2600 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2601 *
2602 * Description:
b1f74493
FT
2603 * Complete the current consecutively mapped chunk from @rq. Must
2604 * be called with queue lock held.
e19a3ab0
KU
2605 *
2606 * Return:
b1f74493
FT
2607 * %false - we are done with this request
2608 * %true - still buffers pending for this request
2609 */
2610bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2611{
b1f74493 2612 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2613}
56ad1740 2614EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2615
80a761fd
TH
2616/**
2617 * __blk_end_request_err - Finish a request till the next failure boundary.
2618 * @rq: the request to finish till the next failure boundary for
2619 * @error: must be negative errno
2620 *
2621 * Description:
2622 * Complete @rq till the next failure boundary. Must be called
2623 * with queue lock held.
2624 *
2625 * Return:
2626 * %false - we are done with this request
2627 * %true - still buffers pending for this request
2628 */
2629bool __blk_end_request_err(struct request *rq, int error)
2630{
2631 WARN_ON(error >= 0);
2632 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2633}
2634EXPORT_SYMBOL_GPL(__blk_end_request_err);
2635
86db1e29
JA
2636void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2637 struct bio *bio)
1da177e4 2638{
a82afdfc 2639 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2640 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2641
fb2dce86
DW
2642 if (bio_has_data(bio)) {
2643 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2644 rq->buffer = bio_data(bio);
2645 }
a2dec7b3 2646 rq->__data_len = bio->bi_size;
1da177e4 2647 rq->bio = rq->biotail = bio;
1da177e4 2648
66846572
N
2649 if (bio->bi_bdev)
2650 rq->rq_disk = bio->bi_bdev->bd_disk;
2651}
1da177e4 2652
2d4dc890
IL
2653#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2654/**
2655 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2656 * @rq: the request to be flushed
2657 *
2658 * Description:
2659 * Flush all pages in @rq.
2660 */
2661void rq_flush_dcache_pages(struct request *rq)
2662{
2663 struct req_iterator iter;
2664 struct bio_vec *bvec;
2665
2666 rq_for_each_segment(bvec, rq, iter)
2667 flush_dcache_page(bvec->bv_page);
2668}
2669EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2670#endif
2671
ef9e3fac
KU
2672/**
2673 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2674 * @q : the queue of the device being checked
2675 *
2676 * Description:
2677 * Check if underlying low-level drivers of a device are busy.
2678 * If the drivers want to export their busy state, they must set own
2679 * exporting function using blk_queue_lld_busy() first.
2680 *
2681 * Basically, this function is used only by request stacking drivers
2682 * to stop dispatching requests to underlying devices when underlying
2683 * devices are busy. This behavior helps more I/O merging on the queue
2684 * of the request stacking driver and prevents I/O throughput regression
2685 * on burst I/O load.
2686 *
2687 * Return:
2688 * 0 - Not busy (The request stacking driver should dispatch request)
2689 * 1 - Busy (The request stacking driver should stop dispatching request)
2690 */
2691int blk_lld_busy(struct request_queue *q)
2692{
2693 if (q->lld_busy_fn)
2694 return q->lld_busy_fn(q);
2695
2696 return 0;
2697}
2698EXPORT_SYMBOL_GPL(blk_lld_busy);
2699
b0fd271d
KU
2700/**
2701 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2702 * @rq: the clone request to be cleaned up
2703 *
2704 * Description:
2705 * Free all bios in @rq for a cloned request.
2706 */
2707void blk_rq_unprep_clone(struct request *rq)
2708{
2709 struct bio *bio;
2710
2711 while ((bio = rq->bio) != NULL) {
2712 rq->bio = bio->bi_next;
2713
2714 bio_put(bio);
2715 }
2716}
2717EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2718
2719/*
2720 * Copy attributes of the original request to the clone request.
2721 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2722 */
2723static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2724{
2725 dst->cpu = src->cpu;
3a2edd0d 2726 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2727 dst->cmd_type = src->cmd_type;
2728 dst->__sector = blk_rq_pos(src);
2729 dst->__data_len = blk_rq_bytes(src);
2730 dst->nr_phys_segments = src->nr_phys_segments;
2731 dst->ioprio = src->ioprio;
2732 dst->extra_len = src->extra_len;
2733}
2734
2735/**
2736 * blk_rq_prep_clone - Helper function to setup clone request
2737 * @rq: the request to be setup
2738 * @rq_src: original request to be cloned
2739 * @bs: bio_set that bios for clone are allocated from
2740 * @gfp_mask: memory allocation mask for bio
2741 * @bio_ctr: setup function to be called for each clone bio.
2742 * Returns %0 for success, non %0 for failure.
2743 * @data: private data to be passed to @bio_ctr
2744 *
2745 * Description:
2746 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2747 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2748 * are not copied, and copying such parts is the caller's responsibility.
2749 * Also, pages which the original bios are pointing to are not copied
2750 * and the cloned bios just point same pages.
2751 * So cloned bios must be completed before original bios, which means
2752 * the caller must complete @rq before @rq_src.
2753 */
2754int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2755 struct bio_set *bs, gfp_t gfp_mask,
2756 int (*bio_ctr)(struct bio *, struct bio *, void *),
2757 void *data)
2758{
2759 struct bio *bio, *bio_src;
2760
2761 if (!bs)
2762 bs = fs_bio_set;
2763
2764 blk_rq_init(NULL, rq);
2765
2766 __rq_for_each_bio(bio_src, rq_src) {
2767 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2768 if (!bio)
2769 goto free_and_out;
2770
2771 __bio_clone(bio, bio_src);
2772
2773 if (bio_integrity(bio_src) &&
7878cba9 2774 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2775 goto free_and_out;
2776
2777 if (bio_ctr && bio_ctr(bio, bio_src, data))
2778 goto free_and_out;
2779
2780 if (rq->bio) {
2781 rq->biotail->bi_next = bio;
2782 rq->biotail = bio;
2783 } else
2784 rq->bio = rq->biotail = bio;
2785 }
2786
2787 __blk_rq_prep_clone(rq, rq_src);
2788
2789 return 0;
2790
2791free_and_out:
2792 if (bio)
2793 bio_free(bio, bs);
2794 blk_rq_unprep_clone(rq);
2795
2796 return -ENOMEM;
2797}
2798EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2799
18887ad9 2800int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2801{
2802 return queue_work(kblockd_workqueue, work);
2803}
1da177e4
LT
2804EXPORT_SYMBOL(kblockd_schedule_work);
2805
e43473b7
VG
2806int kblockd_schedule_delayed_work(struct request_queue *q,
2807 struct delayed_work *dwork, unsigned long delay)
2808{
2809 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2810}
2811EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2812
73c10101
JA
2813#define PLUG_MAGIC 0x91827364
2814
75df7136
SJ
2815/**
2816 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2817 * @plug: The &struct blk_plug that needs to be initialized
2818 *
2819 * Description:
2820 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2821 * pending I/O should the task end up blocking between blk_start_plug() and
2822 * blk_finish_plug(). This is important from a performance perspective, but
2823 * also ensures that we don't deadlock. For instance, if the task is blocking
2824 * for a memory allocation, memory reclaim could end up wanting to free a
2825 * page belonging to that request that is currently residing in our private
2826 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2827 * this kind of deadlock.
2828 */
73c10101
JA
2829void blk_start_plug(struct blk_plug *plug)
2830{
2831 struct task_struct *tsk = current;
2832
2833 plug->magic = PLUG_MAGIC;
2834 INIT_LIST_HEAD(&plug->list);
048c9374 2835 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2836 plug->should_sort = 0;
2837
2838 /*
2839 * If this is a nested plug, don't actually assign it. It will be
2840 * flushed on its own.
2841 */
2842 if (!tsk->plug) {
2843 /*
2844 * Store ordering should not be needed here, since a potential
2845 * preempt will imply a full memory barrier
2846 */
2847 tsk->plug = plug;
2848 }
2849}
2850EXPORT_SYMBOL(blk_start_plug);
2851
2852static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2853{
2854 struct request *rqa = container_of(a, struct request, queuelist);
2855 struct request *rqb = container_of(b, struct request, queuelist);
2856
f83e8261 2857 return !(rqa->q <= rqb->q);
73c10101
JA
2858}
2859
49cac01e
JA
2860/*
2861 * If 'from_schedule' is true, then postpone the dispatch of requests
2862 * until a safe kblockd context. We due this to avoid accidental big
2863 * additional stack usage in driver dispatch, in places where the originally
2864 * plugger did not intend it.
2865 */
f6603783 2866static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2867 bool from_schedule)
99e22598 2868 __releases(q->queue_lock)
94b5eb28 2869{
49cac01e 2870 trace_block_unplug(q, depth, !from_schedule);
99e22598 2871
8ba61435
TH
2872 /*
2873 * Don't mess with dead queue.
2874 */
2875 if (unlikely(blk_queue_dead(q))) {
2876 spin_unlock(q->queue_lock);
2877 return;
2878 }
2879
99e22598
JA
2880 /*
2881 * If we are punting this to kblockd, then we can safely drop
2882 * the queue_lock before waking kblockd (which needs to take
2883 * this lock).
2884 */
2885 if (from_schedule) {
2886 spin_unlock(q->queue_lock);
24ecfbe2 2887 blk_run_queue_async(q);
99e22598 2888 } else {
24ecfbe2 2889 __blk_run_queue(q);
99e22598
JA
2890 spin_unlock(q->queue_lock);
2891 }
2892
94b5eb28
JA
2893}
2894
048c9374
N
2895static void flush_plug_callbacks(struct blk_plug *plug)
2896{
2897 LIST_HEAD(callbacks);
2898
2899 if (list_empty(&plug->cb_list))
2900 return;
2901
2902 list_splice_init(&plug->cb_list, &callbacks);
2903
2904 while (!list_empty(&callbacks)) {
2905 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2906 struct blk_plug_cb,
2907 list);
2908 list_del(&cb->list);
2909 cb->callback(cb);
2910 }
2911}
2912
49cac01e 2913void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2914{
2915 struct request_queue *q;
2916 unsigned long flags;
2917 struct request *rq;
109b8129 2918 LIST_HEAD(list);
94b5eb28 2919 unsigned int depth;
73c10101
JA
2920
2921 BUG_ON(plug->magic != PLUG_MAGIC);
2922
048c9374 2923 flush_plug_callbacks(plug);
73c10101
JA
2924 if (list_empty(&plug->list))
2925 return;
2926
109b8129
N
2927 list_splice_init(&plug->list, &list);
2928
2929 if (plug->should_sort) {
2930 list_sort(NULL, &list, plug_rq_cmp);
2931 plug->should_sort = 0;
2932 }
73c10101
JA
2933
2934 q = NULL;
94b5eb28 2935 depth = 0;
18811272
JA
2936
2937 /*
2938 * Save and disable interrupts here, to avoid doing it for every
2939 * queue lock we have to take.
2940 */
73c10101 2941 local_irq_save(flags);
109b8129
N
2942 while (!list_empty(&list)) {
2943 rq = list_entry_rq(list.next);
73c10101 2944 list_del_init(&rq->queuelist);
73c10101
JA
2945 BUG_ON(!rq->q);
2946 if (rq->q != q) {
99e22598
JA
2947 /*
2948 * This drops the queue lock
2949 */
2950 if (q)
49cac01e 2951 queue_unplugged(q, depth, from_schedule);
73c10101 2952 q = rq->q;
94b5eb28 2953 depth = 0;
73c10101
JA
2954 spin_lock(q->queue_lock);
2955 }
8ba61435
TH
2956
2957 /*
2958 * Short-circuit if @q is dead
2959 */
2960 if (unlikely(blk_queue_dead(q))) {
2961 __blk_end_request_all(rq, -ENODEV);
2962 continue;
2963 }
2964
73c10101
JA
2965 /*
2966 * rq is already accounted, so use raw insert
2967 */
401a18e9
JA
2968 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2969 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2970 else
2971 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2972
2973 depth++;
73c10101
JA
2974 }
2975
99e22598
JA
2976 /*
2977 * This drops the queue lock
2978 */
2979 if (q)
49cac01e 2980 queue_unplugged(q, depth, from_schedule);
73c10101 2981
73c10101
JA
2982 local_irq_restore(flags);
2983}
73c10101
JA
2984
2985void blk_finish_plug(struct blk_plug *plug)
2986{
f6603783 2987 blk_flush_plug_list(plug, false);
73c10101 2988
88b996cd
CH
2989 if (plug == current->plug)
2990 current->plug = NULL;
73c10101 2991}
88b996cd 2992EXPORT_SYMBOL(blk_finish_plug);
73c10101 2993
1da177e4
LT
2994int __init blk_dev_init(void)
2995{
9eb55b03
NK
2996 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2997 sizeof(((struct request *)0)->cmd_flags));
2998
89b90be2
TH
2999 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3000 kblockd_workqueue = alloc_workqueue("kblockd",
3001 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3002 if (!kblockd_workqueue)
3003 panic("Failed to create kblockd\n");
3004
3005 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3006 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3007
8324aa91 3008 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3009 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3010
d38ecf93 3011 return 0;
1da177e4 3012}