]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
elevator: make elevator_init_fn() return 0/-errno
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91
JA
36#include "blk.h"
37
d07335e5 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 41
a73f730d
TH
42DEFINE_IDA(blk_queue_ida);
43
1da177e4
LT
44/*
45 * For the allocated request tables
46 */
5ece6c52 47static struct kmem_cache *request_cachep;
1da177e4
LT
48
49/*
50 * For queue allocation
51 */
6728cb0e 52struct kmem_cache *blk_requestq_cachep;
1da177e4 53
1da177e4
LT
54/*
55 * Controlling structure to kblockd
56 */
ff856bad 57static struct workqueue_struct *kblockd_workqueue;
1da177e4 58
26b8256e
JA
59static void drive_stat_acct(struct request *rq, int new_io)
60{
28f13702 61 struct hd_struct *part;
26b8256e 62 int rw = rq_data_dir(rq);
c9959059 63 int cpu;
26b8256e 64
c2553b58 65 if (!blk_do_io_stat(rq))
26b8256e
JA
66 return;
67
074a7aca 68 cpu = part_stat_lock();
c9959059 69
09e099d4
JM
70 if (!new_io) {
71 part = rq->part;
074a7aca 72 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
73 } else {
74 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 75 if (!hd_struct_try_get(part)) {
09e099d4
JM
76 /*
77 * The partition is already being removed,
78 * the request will be accounted on the disk only
79 *
80 * We take a reference on disk->part0 although that
81 * partition will never be deleted, so we can treat
82 * it as any other partition.
83 */
84 part = &rq->rq_disk->part0;
6c23a968 85 hd_struct_get(part);
09e099d4 86 }
074a7aca 87 part_round_stats(cpu, part);
316d315b 88 part_inc_in_flight(part, rw);
09e099d4 89 rq->part = part;
26b8256e 90 }
e71bf0d0 91
074a7aca 92 part_stat_unlock();
26b8256e
JA
93}
94
8324aa91 95void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
96{
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108}
109
1da177e4
LT
110/**
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112 * @bdev: device
113 *
114 * Locates the passed device's request queue and returns the address of its
115 * backing_dev_info
116 *
117 * Will return NULL if the request queue cannot be located.
118 */
119struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120{
121 struct backing_dev_info *ret = NULL;
165125e1 122 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
123
124 if (q)
125 ret = &q->backing_dev_info;
126 return ret;
127}
1da177e4
LT
128EXPORT_SYMBOL(blk_get_backing_dev_info);
129
2a4aa30c 130void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 131{
1afb20f3
FT
132 memset(rq, 0, sizeof(*rq));
133
1da177e4 134 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 135 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 136 rq->cpu = -1;
63a71386 137 rq->q = q;
a2dec7b3 138 rq->__sector = (sector_t) -1;
2e662b65
JA
139 INIT_HLIST_NODE(&rq->hash);
140 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 141 rq->cmd = rq->__cmd;
e2494e1b 142 rq->cmd_len = BLK_MAX_CDB;
63a71386 143 rq->tag = -1;
1da177e4 144 rq->ref_count = 1;
b243ddcb 145 rq->start_time = jiffies;
9195291e 146 set_start_time_ns(rq);
09e099d4 147 rq->part = NULL;
1da177e4 148}
2a4aa30c 149EXPORT_SYMBOL(blk_rq_init);
1da177e4 150
5bb23a68
N
151static void req_bio_endio(struct request *rq, struct bio *bio,
152 unsigned int nbytes, int error)
1da177e4 153{
143a87f4
TH
154 if (error)
155 clear_bit(BIO_UPTODATE, &bio->bi_flags);
156 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
157 error = -EIO;
797e7dbb 158
143a87f4
TH
159 if (unlikely(nbytes > bio->bi_size)) {
160 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
161 __func__, nbytes, bio->bi_size);
162 nbytes = bio->bi_size;
5bb23a68 163 }
797e7dbb 164
143a87f4
TH
165 if (unlikely(rq->cmd_flags & REQ_QUIET))
166 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 167
143a87f4
TH
168 bio->bi_size -= nbytes;
169 bio->bi_sector += (nbytes >> 9);
7ba1ba12 170
143a87f4
TH
171 if (bio_integrity(bio))
172 bio_integrity_advance(bio, nbytes);
7ba1ba12 173
143a87f4
TH
174 /* don't actually finish bio if it's part of flush sequence */
175 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
176 bio_endio(bio, error);
1da177e4 177}
1da177e4 178
1da177e4
LT
179void blk_dump_rq_flags(struct request *rq, char *msg)
180{
181 int bit;
182
6728cb0e 183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
1da177e4 186
83096ebf
TH
187 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
188 (unsigned long long)blk_rq_pos(rq),
189 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 191 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 192
33659ebb 193 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 194 printk(KERN_INFO " cdb: ");
d34c87e4 195 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
196 printk("%02x ", rq->cmd[bit]);
197 printk("\n");
198 }
199}
1da177e4
LT
200EXPORT_SYMBOL(blk_dump_rq_flags);
201
3cca6dc1 202static void blk_delay_work(struct work_struct *work)
1da177e4 203{
3cca6dc1 204 struct request_queue *q;
1da177e4 205
3cca6dc1
JA
206 q = container_of(work, struct request_queue, delay_work.work);
207 spin_lock_irq(q->queue_lock);
24ecfbe2 208 __blk_run_queue(q);
3cca6dc1 209 spin_unlock_irq(q->queue_lock);
1da177e4 210}
1da177e4
LT
211
212/**
3cca6dc1
JA
213 * blk_delay_queue - restart queueing after defined interval
214 * @q: The &struct request_queue in question
215 * @msecs: Delay in msecs
1da177e4
LT
216 *
217 * Description:
3cca6dc1
JA
218 * Sometimes queueing needs to be postponed for a little while, to allow
219 * resources to come back. This function will make sure that queueing is
220 * restarted around the specified time.
221 */
222void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 223{
4521cc4e
JA
224 queue_delayed_work(kblockd_workqueue, &q->delay_work,
225 msecs_to_jiffies(msecs));
2ad8b1ef 226}
3cca6dc1 227EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 228
1da177e4
LT
229/**
230 * blk_start_queue - restart a previously stopped queue
165125e1 231 * @q: The &struct request_queue in question
1da177e4
LT
232 *
233 * Description:
234 * blk_start_queue() will clear the stop flag on the queue, and call
235 * the request_fn for the queue if it was in a stopped state when
236 * entered. Also see blk_stop_queue(). Queue lock must be held.
237 **/
165125e1 238void blk_start_queue(struct request_queue *q)
1da177e4 239{
a038e253
PBG
240 WARN_ON(!irqs_disabled());
241
75ad23bc 242 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 243 __blk_run_queue(q);
1da177e4 244}
1da177e4
LT
245EXPORT_SYMBOL(blk_start_queue);
246
247/**
248 * blk_stop_queue - stop a queue
165125e1 249 * @q: The &struct request_queue in question
1da177e4
LT
250 *
251 * Description:
252 * The Linux block layer assumes that a block driver will consume all
253 * entries on the request queue when the request_fn strategy is called.
254 * Often this will not happen, because of hardware limitations (queue
255 * depth settings). If a device driver gets a 'queue full' response,
256 * or if it simply chooses not to queue more I/O at one point, it can
257 * call this function to prevent the request_fn from being called until
258 * the driver has signalled it's ready to go again. This happens by calling
259 * blk_start_queue() to restart queue operations. Queue lock must be held.
260 **/
165125e1 261void blk_stop_queue(struct request_queue *q)
1da177e4 262{
ad3d9d7e 263 __cancel_delayed_work(&q->delay_work);
75ad23bc 264 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
265}
266EXPORT_SYMBOL(blk_stop_queue);
267
268/**
269 * blk_sync_queue - cancel any pending callbacks on a queue
270 * @q: the queue
271 *
272 * Description:
273 * The block layer may perform asynchronous callback activity
274 * on a queue, such as calling the unplug function after a timeout.
275 * A block device may call blk_sync_queue to ensure that any
276 * such activity is cancelled, thus allowing it to release resources
59c51591 277 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
278 * that its ->make_request_fn will not re-add plugging prior to calling
279 * this function.
280 *
da527770
VG
281 * This function does not cancel any asynchronous activity arising
282 * out of elevator or throttling code. That would require elevaotor_exit()
283 * and blk_throtl_exit() to be called with queue lock initialized.
284 *
1da177e4
LT
285 */
286void blk_sync_queue(struct request_queue *q)
287{
70ed28b9 288 del_timer_sync(&q->timeout);
3cca6dc1 289 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
290}
291EXPORT_SYMBOL(blk_sync_queue);
292
293/**
80a4b58e 294 * __blk_run_queue - run a single device queue
1da177e4 295 * @q: The queue to run
80a4b58e
JA
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 299 * held and interrupts disabled.
1da177e4 300 */
24ecfbe2 301void __blk_run_queue(struct request_queue *q)
1da177e4 302{
a538cd03
TH
303 if (unlikely(blk_queue_stopped(q)))
304 return;
305
c21e6beb 306 q->request_fn(q);
75ad23bc
NP
307}
308EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 309
24ecfbe2
CH
310/**
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
313 *
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us.
317 */
318void blk_run_queue_async(struct request_queue *q)
319{
3ec717b7
SL
320 if (likely(!blk_queue_stopped(q))) {
321 __cancel_delayed_work(&q->delay_work);
24ecfbe2 322 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 323 }
24ecfbe2 324}
c21e6beb 325EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 326
75ad23bc
NP
327/**
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
80a4b58e
JA
330 *
331 * Description:
332 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 333 * May be used to restart queueing when a request has completed.
75ad23bc
NP
334 */
335void blk_run_queue(struct request_queue *q)
336{
337 unsigned long flags;
338
339 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 340 __blk_run_queue(q);
1da177e4
LT
341 spin_unlock_irqrestore(q->queue_lock, flags);
342}
343EXPORT_SYMBOL(blk_run_queue);
344
165125e1 345void blk_put_queue(struct request_queue *q)
483f4afc
AV
346{
347 kobject_put(&q->kobj);
348}
d86e0e83 349EXPORT_SYMBOL(blk_put_queue);
483f4afc 350
e3c78ca5
TH
351/**
352 * blk_drain_queue - drain requests from request_queue
353 * @q: queue to drain
c9a929dd 354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 355 *
c9a929dd
TH
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 359 */
c9a929dd 360void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5
TH
361{
362 while (true) {
481a7d64
TH
363 bool drain = false;
364 int i;
e3c78ca5
TH
365
366 spin_lock_irq(q->queue_lock);
367
b855b04a
TH
368 /*
369 * The caller might be trying to drain @q before its
370 * elevator is initialized.
371 */
372 if (q->elevator)
373 elv_drain_elevator(q);
374
c9a929dd
TH
375 if (drain_all)
376 blk_throtl_drain(q);
e3c78ca5 377
4eabc941
TH
378 /*
379 * This function might be called on a queue which failed
b855b04a
TH
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
4eabc941 384 */
b855b04a 385 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 386 __blk_run_queue(q);
c9a929dd 387
481a7d64
TH
388 drain |= q->rq.elvpriv;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->rq.count[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
e3c78ca5
TH
403
404 spin_unlock_irq(q->queue_lock);
405
481a7d64 406 if (!drain)
e3c78ca5
TH
407 break;
408 msleep(10);
409 }
410}
411
c9a929dd
TH
412/**
413 * blk_cleanup_queue - shutdown a request queue
414 * @q: request queue to shutdown
415 *
416 * Mark @q DEAD, drain all pending requests, destroy and put it. All
417 * future requests will be failed immediately with -ENODEV.
c94a96ac 418 */
6728cb0e 419void blk_cleanup_queue(struct request_queue *q)
483f4afc 420{
c9a929dd 421 spinlock_t *lock = q->queue_lock;
e3335de9 422
c9a929dd 423 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 424 mutex_lock(&q->sysfs_lock);
75ad23bc 425 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
426
427 spin_lock_irq(lock);
428 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
429 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
430 queue_flag_set(QUEUE_FLAG_DEAD, q);
483f4afc 431
777eb1bf
HR
432 if (q->queue_lock != &q->__queue_lock)
433 q->queue_lock = &q->__queue_lock;
da527770 434
c9a929dd
TH
435 spin_unlock_irq(lock);
436 mutex_unlock(&q->sysfs_lock);
437
b855b04a
TH
438 /* drain all requests queued before DEAD marking */
439 blk_drain_queue(q, true);
c9a929dd
TH
440
441 /* @q won't process any more request, flush async actions */
442 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
443 blk_sync_queue(q);
444
445 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
446 blk_put_queue(q);
447}
1da177e4
LT
448EXPORT_SYMBOL(blk_cleanup_queue);
449
165125e1 450static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
451{
452 struct request_list *rl = &q->rq;
453
1abec4fd
MS
454 if (unlikely(rl->rq_pool))
455 return 0;
456
1faa16d2
JA
457 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
458 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 459 rl->elvpriv = 0;
1faa16d2
JA
460 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
461 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 462
1946089a
CL
463 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
464 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
465
466 if (!rl->rq_pool)
467 return -ENOMEM;
468
469 return 0;
470}
471
165125e1 472struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 473{
1946089a
CL
474 return blk_alloc_queue_node(gfp_mask, -1);
475}
476EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 477
165125e1 478struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 479{
165125e1 480 struct request_queue *q;
e0bf68dd 481 int err;
1946089a 482
8324aa91 483 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 484 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
485 if (!q)
486 return NULL;
487
a73f730d
TH
488 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
489 if (q->id < 0)
490 goto fail_q;
491
0989a025
JA
492 q->backing_dev_info.ra_pages =
493 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
494 q->backing_dev_info.state = 0;
495 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 496 q->backing_dev_info.name = "block";
5151412d 497 q->node = node_id;
0989a025 498
e0bf68dd 499 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
500 if (err)
501 goto fail_id;
e0bf68dd 502
a73f730d
TH
503 if (blk_throtl_init(q))
504 goto fail_id;
e43473b7 505
31373d09
MG
506 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
507 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 508 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 509 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 510 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 511 INIT_LIST_HEAD(&q->icq_list);
ae1b1539
TH
512 INIT_LIST_HEAD(&q->flush_queue[0]);
513 INIT_LIST_HEAD(&q->flush_queue[1]);
514 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 515 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 516
8324aa91 517 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 518
483f4afc 519 mutex_init(&q->sysfs_lock);
e7e72bf6 520 spin_lock_init(&q->__queue_lock);
483f4afc 521
c94a96ac
VG
522 /*
523 * By default initialize queue_lock to internal lock and driver can
524 * override it later if need be.
525 */
526 q->queue_lock = &q->__queue_lock;
527
1da177e4 528 return q;
a73f730d
TH
529
530fail_id:
531 ida_simple_remove(&blk_queue_ida, q->id);
532fail_q:
533 kmem_cache_free(blk_requestq_cachep, q);
534 return NULL;
1da177e4 535}
1946089a 536EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
537
538/**
539 * blk_init_queue - prepare a request queue for use with a block device
540 * @rfn: The function to be called to process requests that have been
541 * placed on the queue.
542 * @lock: Request queue spin lock
543 *
544 * Description:
545 * If a block device wishes to use the standard request handling procedures,
546 * which sorts requests and coalesces adjacent requests, then it must
547 * call blk_init_queue(). The function @rfn will be called when there
548 * are requests on the queue that need to be processed. If the device
549 * supports plugging, then @rfn may not be called immediately when requests
550 * are available on the queue, but may be called at some time later instead.
551 * Plugged queues are generally unplugged when a buffer belonging to one
552 * of the requests on the queue is needed, or due to memory pressure.
553 *
554 * @rfn is not required, or even expected, to remove all requests off the
555 * queue, but only as many as it can handle at a time. If it does leave
556 * requests on the queue, it is responsible for arranging that the requests
557 * get dealt with eventually.
558 *
559 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
560 * request queue; this lock will be taken also from interrupt context, so irq
561 * disabling is needed for it.
1da177e4 562 *
710027a4 563 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
564 * it didn't succeed.
565 *
566 * Note:
567 * blk_init_queue() must be paired with a blk_cleanup_queue() call
568 * when the block device is deactivated (such as at module unload).
569 **/
1946089a 570
165125e1 571struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 572{
1946089a
CL
573 return blk_init_queue_node(rfn, lock, -1);
574}
575EXPORT_SYMBOL(blk_init_queue);
576
165125e1 577struct request_queue *
1946089a
CL
578blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
579{
c86d1b8a 580 struct request_queue *uninit_q, *q;
1da177e4 581
c86d1b8a
MS
582 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
583 if (!uninit_q)
584 return NULL;
585
5151412d 586 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
587 if (!q)
588 blk_cleanup_queue(uninit_q);
589
590 return q;
01effb0d
MS
591}
592EXPORT_SYMBOL(blk_init_queue_node);
593
594struct request_queue *
595blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
596 spinlock_t *lock)
01effb0d 597{
1da177e4
LT
598 if (!q)
599 return NULL;
600
c86d1b8a 601 if (blk_init_free_list(q))
8669aafd 602 return NULL;
1da177e4
LT
603
604 q->request_fn = rfn;
1da177e4 605 q->prep_rq_fn = NULL;
28018c24 606 q->unprep_rq_fn = NULL;
bc58ba94 607 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
608
609 /* Override internal queue lock with supplied lock pointer */
610 if (lock)
611 q->queue_lock = lock;
1da177e4 612
f3b144aa
JA
613 /*
614 * This also sets hw/phys segments, boundary and size
615 */
c20e8de2 616 blk_queue_make_request(q, blk_queue_bio);
1da177e4 617
44ec9542
AS
618 q->sg_reserved_size = INT_MAX;
619
1da177e4
LT
620 /*
621 * all done
622 */
623 if (!elevator_init(q, NULL)) {
624 blk_queue_congestion_threshold(q);
625 return q;
626 }
627
1da177e4
LT
628 return NULL;
629}
5151412d 630EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 631
09ac46c4 632bool blk_get_queue(struct request_queue *q)
1da177e4 633{
34f6055c 634 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
635 __blk_get_queue(q);
636 return true;
1da177e4
LT
637 }
638
09ac46c4 639 return false;
1da177e4 640}
d86e0e83 641EXPORT_SYMBOL(blk_get_queue);
1da177e4 642
165125e1 643static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 644{
f1f8cc94 645 if (rq->cmd_flags & REQ_ELVPRIV) {
cb98fc8b 646 elv_put_request(q, rq);
f1f8cc94 647 if (rq->elv.icq)
11a3122f 648 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
649 }
650
1da177e4
LT
651 mempool_free(rq, q->rq.rq_pool);
652}
653
1ea25ecb 654static struct request *
f1f8cc94
TH
655blk_alloc_request(struct request_queue *q, struct io_cq *icq,
656 unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
657{
658 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
659
660 if (!rq)
661 return NULL;
662
2a4aa30c 663 blk_rq_init(q, rq);
1afb20f3 664
42dad764 665 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 666
f1f8cc94
TH
667 if (flags & REQ_ELVPRIV) {
668 rq->elv.icq = icq;
669 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
670 mempool_free(rq, q->rq.rq_pool);
671 return NULL;
672 }
673 /* @rq->elv.icq holds on to io_context until @rq is freed */
674 if (icq)
675 get_io_context(icq->ioc);
cb98fc8b 676 }
1da177e4 677
cb98fc8b 678 return rq;
1da177e4
LT
679}
680
681/*
682 * ioc_batching returns true if the ioc is a valid batching request and
683 * should be given priority access to a request.
684 */
165125e1 685static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
686{
687 if (!ioc)
688 return 0;
689
690 /*
691 * Make sure the process is able to allocate at least 1 request
692 * even if the batch times out, otherwise we could theoretically
693 * lose wakeups.
694 */
695 return ioc->nr_batch_requests == q->nr_batching ||
696 (ioc->nr_batch_requests > 0
697 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
698}
699
700/*
701 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
702 * will cause the process to be a "batcher" on all queues in the system. This
703 * is the behaviour we want though - once it gets a wakeup it should be given
704 * a nice run.
705 */
165125e1 706static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
707{
708 if (!ioc || ioc_batching(q, ioc))
709 return;
710
711 ioc->nr_batch_requests = q->nr_batching;
712 ioc->last_waited = jiffies;
713}
714
1faa16d2 715static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
716{
717 struct request_list *rl = &q->rq;
718
1faa16d2
JA
719 if (rl->count[sync] < queue_congestion_off_threshold(q))
720 blk_clear_queue_congested(q, sync);
1da177e4 721
1faa16d2
JA
722 if (rl->count[sync] + 1 <= q->nr_requests) {
723 if (waitqueue_active(&rl->wait[sync]))
724 wake_up(&rl->wait[sync]);
1da177e4 725
1faa16d2 726 blk_clear_queue_full(q, sync);
1da177e4
LT
727 }
728}
729
730/*
731 * A request has just been released. Account for it, update the full and
732 * congestion status, wake up any waiters. Called under q->queue_lock.
733 */
75eb6c37 734static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
735{
736 struct request_list *rl = &q->rq;
75eb6c37 737 int sync = rw_is_sync(flags);
1da177e4 738
1faa16d2 739 rl->count[sync]--;
75eb6c37 740 if (flags & REQ_ELVPRIV)
cb98fc8b 741 rl->elvpriv--;
1da177e4 742
1faa16d2 743 __freed_request(q, sync);
1da177e4 744
1faa16d2
JA
745 if (unlikely(rl->starved[sync ^ 1]))
746 __freed_request(q, sync ^ 1);
1da177e4
LT
747}
748
9d5a4e94
MS
749/*
750 * Determine if elevator data should be initialized when allocating the
751 * request associated with @bio.
752 */
753static bool blk_rq_should_init_elevator(struct bio *bio)
754{
755 if (!bio)
756 return true;
757
758 /*
759 * Flush requests do not use the elevator so skip initialization.
760 * This allows a request to share the flush and elevator data.
761 */
762 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
763 return false;
764
765 return true;
766}
767
da8303c6
TH
768/**
769 * get_request - get a free request
770 * @q: request_queue to allocate request from
771 * @rw_flags: RW and SYNC flags
772 * @bio: bio to allocate request for (can be %NULL)
773 * @gfp_mask: allocation mask
774 *
775 * Get a free request from @q. This function may fail under memory
776 * pressure or if @q is dead.
777 *
778 * Must be callled with @q->queue_lock held and,
779 * Returns %NULL on failure, with @q->queue_lock held.
780 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 781 */
165125e1 782static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 783 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
784{
785 struct request *rq = NULL;
786 struct request_list *rl = &q->rq;
f1f8cc94 787 struct elevator_type *et;
f2dbd76a 788 struct io_context *ioc;
f1f8cc94 789 struct io_cq *icq = NULL;
1faa16d2 790 const bool is_sync = rw_is_sync(rw_flags) != 0;
f2dbd76a 791 bool retried = false;
75eb6c37 792 int may_queue;
f2dbd76a 793retry:
f1f8cc94 794 et = q->elevator->type;
f2dbd76a 795 ioc = current->io_context;
88ee5ef1 796
34f6055c 797 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
798 return NULL;
799
7749a8d4 800 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
801 if (may_queue == ELV_MQUEUE_NO)
802 goto rq_starved;
803
1faa16d2
JA
804 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
805 if (rl->count[is_sync]+1 >= q->nr_requests) {
f2dbd76a
TH
806 /*
807 * We want ioc to record batching state. If it's
808 * not already there, creating a new one requires
809 * dropping queue_lock, which in turn requires
810 * retesting conditions to avoid queue hang.
811 */
812 if (!ioc && !retried) {
813 spin_unlock_irq(q->queue_lock);
814 create_io_context(current, gfp_mask, q->node);
815 spin_lock_irq(q->queue_lock);
816 retried = true;
817 goto retry;
818 }
819
88ee5ef1
JA
820 /*
821 * The queue will fill after this allocation, so set
822 * it as full, and mark this process as "batching".
823 * This process will be allowed to complete a batch of
824 * requests, others will be blocked.
825 */
1faa16d2 826 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 827 ioc_set_batching(q, ioc);
1faa16d2 828 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
829 } else {
830 if (may_queue != ELV_MQUEUE_MUST
831 && !ioc_batching(q, ioc)) {
832 /*
833 * The queue is full and the allocating
834 * process is not a "batcher", and not
835 * exempted by the IO scheduler
836 */
837 goto out;
838 }
839 }
1da177e4 840 }
1faa16d2 841 blk_set_queue_congested(q, is_sync);
1da177e4
LT
842 }
843
082cf69e
JA
844 /*
845 * Only allow batching queuers to allocate up to 50% over the defined
846 * limit of requests, otherwise we could have thousands of requests
847 * allocated with any setting of ->nr_requests
848 */
1faa16d2 849 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 850 goto out;
fd782a4a 851
1faa16d2
JA
852 rl->count[is_sync]++;
853 rl->starved[is_sync] = 0;
cb98fc8b 854
f1f8cc94
TH
855 /*
856 * Decide whether the new request will be managed by elevator. If
857 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
858 * prevent the current elevator from being destroyed until the new
859 * request is freed. This guarantees icq's won't be destroyed and
860 * makes creating new ones safe.
861 *
862 * Also, lookup icq while holding queue_lock. If it doesn't exist,
863 * it will be created after releasing queue_lock.
864 */
75eb6c37
TH
865 if (blk_rq_should_init_elevator(bio) &&
866 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
867 rw_flags |= REQ_ELVPRIV;
868 rl->elvpriv++;
f1f8cc94
TH
869 if (et->icq_cache && ioc)
870 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 871 }
cb98fc8b 872
f253b86b
JA
873 if (blk_queue_io_stat(q))
874 rw_flags |= REQ_IO_STAT;
1da177e4
LT
875 spin_unlock_irq(q->queue_lock);
876
f1f8cc94 877 /* create icq if missing */
05c30b95 878 if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
f1f8cc94 879 icq = ioc_create_icq(q, gfp_mask);
05c30b95
SL
880 if (!icq)
881 goto fail_icq;
882 }
f1f8cc94 883
05c30b95 884 rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
f1f8cc94 885
05c30b95 886fail_icq:
88ee5ef1 887 if (unlikely(!rq)) {
1da177e4
LT
888 /*
889 * Allocation failed presumably due to memory. Undo anything
890 * we might have messed up.
891 *
892 * Allocating task should really be put onto the front of the
893 * wait queue, but this is pretty rare.
894 */
895 spin_lock_irq(q->queue_lock);
75eb6c37 896 freed_request(q, rw_flags);
1da177e4
LT
897
898 /*
899 * in the very unlikely event that allocation failed and no
900 * requests for this direction was pending, mark us starved
901 * so that freeing of a request in the other direction will
902 * notice us. another possible fix would be to split the
903 * rq mempool into READ and WRITE
904 */
905rq_starved:
1faa16d2
JA
906 if (unlikely(rl->count[is_sync] == 0))
907 rl->starved[is_sync] = 1;
1da177e4 908
1da177e4
LT
909 goto out;
910 }
911
88ee5ef1
JA
912 /*
913 * ioc may be NULL here, and ioc_batching will be false. That's
914 * OK, if the queue is under the request limit then requests need
915 * not count toward the nr_batch_requests limit. There will always
916 * be some limit enforced by BLK_BATCH_TIME.
917 */
1da177e4
LT
918 if (ioc_batching(q, ioc))
919 ioc->nr_batch_requests--;
6728cb0e 920
1faa16d2 921 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 922out:
1da177e4
LT
923 return rq;
924}
925
da8303c6
TH
926/**
927 * get_request_wait - get a free request with retry
928 * @q: request_queue to allocate request from
929 * @rw_flags: RW and SYNC flags
930 * @bio: bio to allocate request for (can be %NULL)
931 *
932 * Get a free request from @q. This function keeps retrying under memory
933 * pressure and fails iff @q is dead.
d6344532 934 *
da8303c6
TH
935 * Must be callled with @q->queue_lock held and,
936 * Returns %NULL on failure, with @q->queue_lock held.
937 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 938 */
165125e1 939static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 940 struct bio *bio)
1da177e4 941{
1faa16d2 942 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
943 struct request *rq;
944
7749a8d4 945 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
946 while (!rq) {
947 DEFINE_WAIT(wait);
1da177e4
LT
948 struct request_list *rl = &q->rq;
949
34f6055c 950 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
951 return NULL;
952
1faa16d2 953 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
954 TASK_UNINTERRUPTIBLE);
955
1faa16d2 956 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 957
05caf8db
ZY
958 spin_unlock_irq(q->queue_lock);
959 io_schedule();
1da177e4 960
05caf8db
ZY
961 /*
962 * After sleeping, we become a "batching" process and
963 * will be able to allocate at least one request, and
964 * up to a big batch of them for a small period time.
965 * See ioc_batching, ioc_set_batching
966 */
f2dbd76a
TH
967 create_io_context(current, GFP_NOIO, q->node);
968 ioc_set_batching(q, current->io_context);
d6344532 969
05caf8db 970 spin_lock_irq(q->queue_lock);
1faa16d2 971 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
972
973 rq = get_request(q, rw_flags, bio, GFP_NOIO);
974 };
1da177e4
LT
975
976 return rq;
977}
978
165125e1 979struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
980{
981 struct request *rq;
982
983 BUG_ON(rw != READ && rw != WRITE);
984
d6344532 985 spin_lock_irq(q->queue_lock);
da8303c6 986 if (gfp_mask & __GFP_WAIT)
22e2c507 987 rq = get_request_wait(q, rw, NULL);
da8303c6 988 else
22e2c507 989 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
990 if (!rq)
991 spin_unlock_irq(q->queue_lock);
d6344532 992 /* q->queue_lock is unlocked at this point */
1da177e4
LT
993
994 return rq;
995}
1da177e4
LT
996EXPORT_SYMBOL(blk_get_request);
997
dc72ef4a 998/**
79eb63e9 999 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1000 * @q: target request queue
79eb63e9
BH
1001 * @bio: The bio describing the memory mappings that will be submitted for IO.
1002 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1003 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1004 *
79eb63e9
BH
1005 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1006 * type commands. Where the struct request needs to be farther initialized by
1007 * the caller. It is passed a &struct bio, which describes the memory info of
1008 * the I/O transfer.
dc72ef4a 1009 *
79eb63e9
BH
1010 * The caller of blk_make_request must make sure that bi_io_vec
1011 * are set to describe the memory buffers. That bio_data_dir() will return
1012 * the needed direction of the request. (And all bio's in the passed bio-chain
1013 * are properly set accordingly)
1014 *
1015 * If called under none-sleepable conditions, mapped bio buffers must not
1016 * need bouncing, by calling the appropriate masked or flagged allocator,
1017 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1018 * BUG.
53674ac5
JA
1019 *
1020 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1021 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1022 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1023 * completion of a bio that hasn't been submitted yet, thus resulting in a
1024 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1025 * of bio_alloc(), as that avoids the mempool deadlock.
1026 * If possible a big IO should be split into smaller parts when allocation
1027 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1028 */
79eb63e9
BH
1029struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1030 gfp_t gfp_mask)
dc72ef4a 1031{
79eb63e9
BH
1032 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1033
1034 if (unlikely(!rq))
1035 return ERR_PTR(-ENOMEM);
1036
1037 for_each_bio(bio) {
1038 struct bio *bounce_bio = bio;
1039 int ret;
1040
1041 blk_queue_bounce(q, &bounce_bio);
1042 ret = blk_rq_append_bio(q, rq, bounce_bio);
1043 if (unlikely(ret)) {
1044 blk_put_request(rq);
1045 return ERR_PTR(ret);
1046 }
1047 }
1048
1049 return rq;
dc72ef4a 1050}
79eb63e9 1051EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1052
1da177e4
LT
1053/**
1054 * blk_requeue_request - put a request back on queue
1055 * @q: request queue where request should be inserted
1056 * @rq: request to be inserted
1057 *
1058 * Description:
1059 * Drivers often keep queueing requests until the hardware cannot accept
1060 * more, when that condition happens we need to put the request back
1061 * on the queue. Must be called with queue lock held.
1062 */
165125e1 1063void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1064{
242f9dcb
JA
1065 blk_delete_timer(rq);
1066 blk_clear_rq_complete(rq);
5f3ea37c 1067 trace_block_rq_requeue(q, rq);
2056a782 1068
1da177e4
LT
1069 if (blk_rq_tagged(rq))
1070 blk_queue_end_tag(q, rq);
1071
ba396a6c
JB
1072 BUG_ON(blk_queued_rq(rq));
1073
1da177e4
LT
1074 elv_requeue_request(q, rq);
1075}
1da177e4
LT
1076EXPORT_SYMBOL(blk_requeue_request);
1077
73c10101
JA
1078static void add_acct_request(struct request_queue *q, struct request *rq,
1079 int where)
1080{
1081 drive_stat_acct(rq, 1);
7eaceacc 1082 __elv_add_request(q, rq, where);
73c10101
JA
1083}
1084
074a7aca
TH
1085static void part_round_stats_single(int cpu, struct hd_struct *part,
1086 unsigned long now)
1087{
1088 if (now == part->stamp)
1089 return;
1090
316d315b 1091 if (part_in_flight(part)) {
074a7aca 1092 __part_stat_add(cpu, part, time_in_queue,
316d315b 1093 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1094 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1095 }
1096 part->stamp = now;
1097}
1098
1099/**
496aa8a9
RD
1100 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1101 * @cpu: cpu number for stats access
1102 * @part: target partition
1da177e4
LT
1103 *
1104 * The average IO queue length and utilisation statistics are maintained
1105 * by observing the current state of the queue length and the amount of
1106 * time it has been in this state for.
1107 *
1108 * Normally, that accounting is done on IO completion, but that can result
1109 * in more than a second's worth of IO being accounted for within any one
1110 * second, leading to >100% utilisation. To deal with that, we call this
1111 * function to do a round-off before returning the results when reading
1112 * /proc/diskstats. This accounts immediately for all queue usage up to
1113 * the current jiffies and restarts the counters again.
1114 */
c9959059 1115void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1116{
1117 unsigned long now = jiffies;
1118
074a7aca
TH
1119 if (part->partno)
1120 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1121 part_round_stats_single(cpu, part, now);
6f2576af 1122}
074a7aca 1123EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1124
1da177e4
LT
1125/*
1126 * queue lock must be held
1127 */
165125e1 1128void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1129{
1da177e4
LT
1130 if (unlikely(!q))
1131 return;
1132 if (unlikely(--req->ref_count))
1133 return;
1134
8922e16c
TH
1135 elv_completed_request(q, req);
1136
1cd96c24
BH
1137 /* this is a bio leak */
1138 WARN_ON(req->bio != NULL);
1139
1da177e4
LT
1140 /*
1141 * Request may not have originated from ll_rw_blk. if not,
1142 * it didn't come out of our reserved rq pools
1143 */
49171e5c 1144 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1145 unsigned int flags = req->cmd_flags;
1da177e4 1146
1da177e4 1147 BUG_ON(!list_empty(&req->queuelist));
9817064b 1148 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1149
1150 blk_free_request(q, req);
75eb6c37 1151 freed_request(q, flags);
1da177e4
LT
1152 }
1153}
6e39b69e
MC
1154EXPORT_SYMBOL_GPL(__blk_put_request);
1155
1da177e4
LT
1156void blk_put_request(struct request *req)
1157{
8922e16c 1158 unsigned long flags;
165125e1 1159 struct request_queue *q = req->q;
8922e16c 1160
52a93ba8
FT
1161 spin_lock_irqsave(q->queue_lock, flags);
1162 __blk_put_request(q, req);
1163 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1164}
1da177e4
LT
1165EXPORT_SYMBOL(blk_put_request);
1166
66ac0280
CH
1167/**
1168 * blk_add_request_payload - add a payload to a request
1169 * @rq: request to update
1170 * @page: page backing the payload
1171 * @len: length of the payload.
1172 *
1173 * This allows to later add a payload to an already submitted request by
1174 * a block driver. The driver needs to take care of freeing the payload
1175 * itself.
1176 *
1177 * Note that this is a quite horrible hack and nothing but handling of
1178 * discard requests should ever use it.
1179 */
1180void blk_add_request_payload(struct request *rq, struct page *page,
1181 unsigned int len)
1182{
1183 struct bio *bio = rq->bio;
1184
1185 bio->bi_io_vec->bv_page = page;
1186 bio->bi_io_vec->bv_offset = 0;
1187 bio->bi_io_vec->bv_len = len;
1188
1189 bio->bi_size = len;
1190 bio->bi_vcnt = 1;
1191 bio->bi_phys_segments = 1;
1192
1193 rq->__data_len = rq->resid_len = len;
1194 rq->nr_phys_segments = 1;
1195 rq->buffer = bio_data(bio);
1196}
1197EXPORT_SYMBOL_GPL(blk_add_request_payload);
1198
73c10101
JA
1199static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1200 struct bio *bio)
1201{
1202 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1203
73c10101
JA
1204 if (!ll_back_merge_fn(q, req, bio))
1205 return false;
1206
1207 trace_block_bio_backmerge(q, bio);
1208
1209 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1210 blk_rq_set_mixed_merge(req);
1211
1212 req->biotail->bi_next = bio;
1213 req->biotail = bio;
1214 req->__data_len += bio->bi_size;
1215 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1216
1217 drive_stat_acct(req, 0);
1218 return true;
1219}
1220
1221static bool bio_attempt_front_merge(struct request_queue *q,
1222 struct request *req, struct bio *bio)
1223{
1224 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1225
73c10101
JA
1226 if (!ll_front_merge_fn(q, req, bio))
1227 return false;
1228
1229 trace_block_bio_frontmerge(q, bio);
1230
1231 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1232 blk_rq_set_mixed_merge(req);
1233
73c10101
JA
1234 bio->bi_next = req->bio;
1235 req->bio = bio;
1236
1237 /*
1238 * may not be valid. if the low level driver said
1239 * it didn't need a bounce buffer then it better
1240 * not touch req->buffer either...
1241 */
1242 req->buffer = bio_data(bio);
1243 req->__sector = bio->bi_sector;
1244 req->__data_len += bio->bi_size;
1245 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1246
1247 drive_stat_acct(req, 0);
1248 return true;
1249}
1250
bd87b589
TH
1251/**
1252 * attempt_plug_merge - try to merge with %current's plugged list
1253 * @q: request_queue new bio is being queued at
1254 * @bio: new bio being queued
1255 * @request_count: out parameter for number of traversed plugged requests
1256 *
1257 * Determine whether @bio being queued on @q can be merged with a request
1258 * on %current's plugged list. Returns %true if merge was successful,
1259 * otherwise %false.
1260 *
07c2bd37
TH
1261 * Plugging coalesces IOs from the same issuer for the same purpose without
1262 * going through @q->queue_lock. As such it's more of an issuing mechanism
1263 * than scheduling, and the request, while may have elvpriv data, is not
1264 * added on the elevator at this point. In addition, we don't have
1265 * reliable access to the elevator outside queue lock. Only check basic
1266 * merging parameters without querying the elevator.
73c10101 1267 */
bd87b589
TH
1268static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1269 unsigned int *request_count)
73c10101
JA
1270{
1271 struct blk_plug *plug;
1272 struct request *rq;
1273 bool ret = false;
1274
bd87b589 1275 plug = current->plug;
73c10101
JA
1276 if (!plug)
1277 goto out;
56ebdaf2 1278 *request_count = 0;
73c10101
JA
1279
1280 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1281 int el_ret;
1282
56ebdaf2
SL
1283 (*request_count)++;
1284
07c2bd37 1285 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1286 continue;
1287
050c8ea8 1288 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1289 if (el_ret == ELEVATOR_BACK_MERGE) {
1290 ret = bio_attempt_back_merge(q, rq, bio);
1291 if (ret)
1292 break;
1293 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1294 ret = bio_attempt_front_merge(q, rq, bio);
1295 if (ret)
1296 break;
1297 }
1298 }
1299out:
1300 return ret;
1301}
1302
86db1e29 1303void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1304{
4aff5e23 1305 req->cmd_type = REQ_TYPE_FS;
52d9e675 1306
7b6d91da
CH
1307 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1308 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1309 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1310
52d9e675 1311 req->errors = 0;
a2dec7b3 1312 req->__sector = bio->bi_sector;
52d9e675 1313 req->ioprio = bio_prio(bio);
bc1c56fd 1314 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1315}
1316
5a7bbad2 1317void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1318{
5e00d1b5 1319 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1320 struct blk_plug *plug;
1321 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1322 struct request *req;
56ebdaf2 1323 unsigned int request_count = 0;
1da177e4 1324
1da177e4
LT
1325 /*
1326 * low level driver can indicate that it wants pages above a
1327 * certain limit bounced to low memory (ie for highmem, or even
1328 * ISA dma in theory)
1329 */
1330 blk_queue_bounce(q, &bio);
1331
4fed947c 1332 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1333 spin_lock_irq(q->queue_lock);
ae1b1539 1334 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1335 goto get_rq;
1336 }
1337
73c10101
JA
1338 /*
1339 * Check if we can merge with the plugged list before grabbing
1340 * any locks.
1341 */
bd87b589 1342 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1343 return;
1da177e4 1344
73c10101 1345 spin_lock_irq(q->queue_lock);
2056a782 1346
73c10101
JA
1347 el_ret = elv_merge(q, &req, bio);
1348 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1349 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1350 elv_bio_merged(q, req, bio);
73c10101
JA
1351 if (!attempt_back_merge(q, req))
1352 elv_merged_request(q, req, el_ret);
1353 goto out_unlock;
1354 }
1355 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1356 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1357 elv_bio_merged(q, req, bio);
73c10101
JA
1358 if (!attempt_front_merge(q, req))
1359 elv_merged_request(q, req, el_ret);
1360 goto out_unlock;
80a761fd 1361 }
1da177e4
LT
1362 }
1363
450991bc 1364get_rq:
7749a8d4
JA
1365 /*
1366 * This sync check and mask will be re-done in init_request_from_bio(),
1367 * but we need to set it earlier to expose the sync flag to the
1368 * rq allocator and io schedulers.
1369 */
1370 rw_flags = bio_data_dir(bio);
1371 if (sync)
7b6d91da 1372 rw_flags |= REQ_SYNC;
7749a8d4 1373
1da177e4 1374 /*
450991bc 1375 * Grab a free request. This is might sleep but can not fail.
d6344532 1376 * Returns with the queue unlocked.
450991bc 1377 */
7749a8d4 1378 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1379 if (unlikely(!req)) {
1380 bio_endio(bio, -ENODEV); /* @q is dead */
1381 goto out_unlock;
1382 }
d6344532 1383
450991bc
NP
1384 /*
1385 * After dropping the lock and possibly sleeping here, our request
1386 * may now be mergeable after it had proven unmergeable (above).
1387 * We don't worry about that case for efficiency. It won't happen
1388 * often, and the elevators are able to handle it.
1da177e4 1389 */
52d9e675 1390 init_request_from_bio(req, bio);
1da177e4 1391
9562ad9a 1392 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1393 req->cpu = raw_smp_processor_id();
73c10101
JA
1394
1395 plug = current->plug;
721a9602 1396 if (plug) {
dc6d36c9
JA
1397 /*
1398 * If this is the first request added after a plug, fire
1399 * of a plug trace. If others have been added before, check
1400 * if we have multiple devices in this plug. If so, make a
1401 * note to sort the list before dispatch.
1402 */
1403 if (list_empty(&plug->list))
1404 trace_block_plug(q);
3540d5e8
SL
1405 else {
1406 if (!plug->should_sort) {
1407 struct request *__rq;
73c10101 1408
3540d5e8
SL
1409 __rq = list_entry_rq(plug->list.prev);
1410 if (__rq->q != q)
1411 plug->should_sort = 1;
1412 }
019ceb7d 1413 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1414 blk_flush_plug_list(plug, false);
019ceb7d
SL
1415 trace_block_plug(q);
1416 }
73c10101 1417 }
73c10101
JA
1418 list_add_tail(&req->queuelist, &plug->list);
1419 drive_stat_acct(req, 1);
1420 } else {
1421 spin_lock_irq(q->queue_lock);
1422 add_acct_request(q, req, where);
24ecfbe2 1423 __blk_run_queue(q);
73c10101
JA
1424out_unlock:
1425 spin_unlock_irq(q->queue_lock);
1426 }
1da177e4 1427}
c20e8de2 1428EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1429
1430/*
1431 * If bio->bi_dev is a partition, remap the location
1432 */
1433static inline void blk_partition_remap(struct bio *bio)
1434{
1435 struct block_device *bdev = bio->bi_bdev;
1436
bf2de6f5 1437 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1438 struct hd_struct *p = bdev->bd_part;
1439
1da177e4
LT
1440 bio->bi_sector += p->start_sect;
1441 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1442
d07335e5
MS
1443 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1444 bdev->bd_dev,
1445 bio->bi_sector - p->start_sect);
1da177e4
LT
1446 }
1447}
1448
1da177e4
LT
1449static void handle_bad_sector(struct bio *bio)
1450{
1451 char b[BDEVNAME_SIZE];
1452
1453 printk(KERN_INFO "attempt to access beyond end of device\n");
1454 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1455 bdevname(bio->bi_bdev, b),
1456 bio->bi_rw,
1457 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1458 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1459
1460 set_bit(BIO_EOF, &bio->bi_flags);
1461}
1462
c17bb495
AM
1463#ifdef CONFIG_FAIL_MAKE_REQUEST
1464
1465static DECLARE_FAULT_ATTR(fail_make_request);
1466
1467static int __init setup_fail_make_request(char *str)
1468{
1469 return setup_fault_attr(&fail_make_request, str);
1470}
1471__setup("fail_make_request=", setup_fail_make_request);
1472
b2c9cd37 1473static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1474{
b2c9cd37 1475 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1476}
1477
1478static int __init fail_make_request_debugfs(void)
1479{
dd48c085
AM
1480 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1481 NULL, &fail_make_request);
1482
1483 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1484}
1485
1486late_initcall(fail_make_request_debugfs);
1487
1488#else /* CONFIG_FAIL_MAKE_REQUEST */
1489
b2c9cd37
AM
1490static inline bool should_fail_request(struct hd_struct *part,
1491 unsigned int bytes)
c17bb495 1492{
b2c9cd37 1493 return false;
c17bb495
AM
1494}
1495
1496#endif /* CONFIG_FAIL_MAKE_REQUEST */
1497
c07e2b41
JA
1498/*
1499 * Check whether this bio extends beyond the end of the device.
1500 */
1501static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1502{
1503 sector_t maxsector;
1504
1505 if (!nr_sectors)
1506 return 0;
1507
1508 /* Test device or partition size, when known. */
77304d2a 1509 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1510 if (maxsector) {
1511 sector_t sector = bio->bi_sector;
1512
1513 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1514 /*
1515 * This may well happen - the kernel calls bread()
1516 * without checking the size of the device, e.g., when
1517 * mounting a device.
1518 */
1519 handle_bad_sector(bio);
1520 return 1;
1521 }
1522 }
1523
1524 return 0;
1525}
1526
27a84d54
CH
1527static noinline_for_stack bool
1528generic_make_request_checks(struct bio *bio)
1da177e4 1529{
165125e1 1530 struct request_queue *q;
5a7bbad2 1531 int nr_sectors = bio_sectors(bio);
51fd77bd 1532 int err = -EIO;
5a7bbad2
CH
1533 char b[BDEVNAME_SIZE];
1534 struct hd_struct *part;
1da177e4
LT
1535
1536 might_sleep();
1da177e4 1537
c07e2b41
JA
1538 if (bio_check_eod(bio, nr_sectors))
1539 goto end_io;
1da177e4 1540
5a7bbad2
CH
1541 q = bdev_get_queue(bio->bi_bdev);
1542 if (unlikely(!q)) {
1543 printk(KERN_ERR
1544 "generic_make_request: Trying to access "
1545 "nonexistent block-device %s (%Lu)\n",
1546 bdevname(bio->bi_bdev, b),
1547 (long long) bio->bi_sector);
1548 goto end_io;
1549 }
c17bb495 1550
5a7bbad2
CH
1551 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1552 nr_sectors > queue_max_hw_sectors(q))) {
1553 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1554 bdevname(bio->bi_bdev, b),
1555 bio_sectors(bio),
1556 queue_max_hw_sectors(q));
1557 goto end_io;
1558 }
1da177e4 1559
5a7bbad2
CH
1560 part = bio->bi_bdev->bd_part;
1561 if (should_fail_request(part, bio->bi_size) ||
1562 should_fail_request(&part_to_disk(part)->part0,
1563 bio->bi_size))
1564 goto end_io;
2056a782 1565
5a7bbad2
CH
1566 /*
1567 * If this device has partitions, remap block n
1568 * of partition p to block n+start(p) of the disk.
1569 */
1570 blk_partition_remap(bio);
2056a782 1571
5a7bbad2
CH
1572 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1573 goto end_io;
a7384677 1574
5a7bbad2
CH
1575 if (bio_check_eod(bio, nr_sectors))
1576 goto end_io;
1e87901e 1577
5a7bbad2
CH
1578 /*
1579 * Filter flush bio's early so that make_request based
1580 * drivers without flush support don't have to worry
1581 * about them.
1582 */
1583 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1584 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1585 if (!nr_sectors) {
1586 err = 0;
51fd77bd
JA
1587 goto end_io;
1588 }
5a7bbad2 1589 }
5ddfe969 1590
5a7bbad2
CH
1591 if ((bio->bi_rw & REQ_DISCARD) &&
1592 (!blk_queue_discard(q) ||
1593 ((bio->bi_rw & REQ_SECURE) &&
1594 !blk_queue_secdiscard(q)))) {
1595 err = -EOPNOTSUPP;
1596 goto end_io;
1597 }
01edede4 1598
bc16a4f9
TH
1599 if (blk_throtl_bio(q, bio))
1600 return false; /* throttled, will be resubmitted later */
27a84d54 1601
5a7bbad2 1602 trace_block_bio_queue(q, bio);
27a84d54 1603 return true;
a7384677
TH
1604
1605end_io:
1606 bio_endio(bio, err);
27a84d54 1607 return false;
1da177e4
LT
1608}
1609
27a84d54
CH
1610/**
1611 * generic_make_request - hand a buffer to its device driver for I/O
1612 * @bio: The bio describing the location in memory and on the device.
1613 *
1614 * generic_make_request() is used to make I/O requests of block
1615 * devices. It is passed a &struct bio, which describes the I/O that needs
1616 * to be done.
1617 *
1618 * generic_make_request() does not return any status. The
1619 * success/failure status of the request, along with notification of
1620 * completion, is delivered asynchronously through the bio->bi_end_io
1621 * function described (one day) else where.
1622 *
1623 * The caller of generic_make_request must make sure that bi_io_vec
1624 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1625 * set to describe the device address, and the
1626 * bi_end_io and optionally bi_private are set to describe how
1627 * completion notification should be signaled.
1628 *
1629 * generic_make_request and the drivers it calls may use bi_next if this
1630 * bio happens to be merged with someone else, and may resubmit the bio to
1631 * a lower device by calling into generic_make_request recursively, which
1632 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1633 */
1634void generic_make_request(struct bio *bio)
1635{
bddd87c7
AM
1636 struct bio_list bio_list_on_stack;
1637
27a84d54
CH
1638 if (!generic_make_request_checks(bio))
1639 return;
1640
1641 /*
1642 * We only want one ->make_request_fn to be active at a time, else
1643 * stack usage with stacked devices could be a problem. So use
1644 * current->bio_list to keep a list of requests submited by a
1645 * make_request_fn function. current->bio_list is also used as a
1646 * flag to say if generic_make_request is currently active in this
1647 * task or not. If it is NULL, then no make_request is active. If
1648 * it is non-NULL, then a make_request is active, and new requests
1649 * should be added at the tail
1650 */
bddd87c7 1651 if (current->bio_list) {
bddd87c7 1652 bio_list_add(current->bio_list, bio);
d89d8796
NB
1653 return;
1654 }
27a84d54 1655
d89d8796
NB
1656 /* following loop may be a bit non-obvious, and so deserves some
1657 * explanation.
1658 * Before entering the loop, bio->bi_next is NULL (as all callers
1659 * ensure that) so we have a list with a single bio.
1660 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1661 * we assign bio_list to a pointer to the bio_list_on_stack,
1662 * thus initialising the bio_list of new bios to be
27a84d54 1663 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1664 * through a recursive call to generic_make_request. If it
1665 * did, we find a non-NULL value in bio_list and re-enter the loop
1666 * from the top. In this case we really did just take the bio
bddd87c7 1667 * of the top of the list (no pretending) and so remove it from
27a84d54 1668 * bio_list, and call into ->make_request() again.
d89d8796
NB
1669 */
1670 BUG_ON(bio->bi_next);
bddd87c7
AM
1671 bio_list_init(&bio_list_on_stack);
1672 current->bio_list = &bio_list_on_stack;
d89d8796 1673 do {
27a84d54
CH
1674 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1675
1676 q->make_request_fn(q, bio);
1677
bddd87c7 1678 bio = bio_list_pop(current->bio_list);
d89d8796 1679 } while (bio);
bddd87c7 1680 current->bio_list = NULL; /* deactivate */
d89d8796 1681}
1da177e4
LT
1682EXPORT_SYMBOL(generic_make_request);
1683
1684/**
710027a4 1685 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1686 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1687 * @bio: The &struct bio which describes the I/O
1688 *
1689 * submit_bio() is very similar in purpose to generic_make_request(), and
1690 * uses that function to do most of the work. Both are fairly rough
710027a4 1691 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1692 *
1693 */
1694void submit_bio(int rw, struct bio *bio)
1695{
1696 int count = bio_sectors(bio);
1697
22e2c507 1698 bio->bi_rw |= rw;
1da177e4 1699
bf2de6f5
JA
1700 /*
1701 * If it's a regular read/write or a barrier with data attached,
1702 * go through the normal accounting stuff before submission.
1703 */
3ffb52e7 1704 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1705 if (rw & WRITE) {
1706 count_vm_events(PGPGOUT, count);
1707 } else {
1708 task_io_account_read(bio->bi_size);
1709 count_vm_events(PGPGIN, count);
1710 }
1711
1712 if (unlikely(block_dump)) {
1713 char b[BDEVNAME_SIZE];
8dcbdc74 1714 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1715 current->comm, task_pid_nr(current),
bf2de6f5
JA
1716 (rw & WRITE) ? "WRITE" : "READ",
1717 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1718 bdevname(bio->bi_bdev, b),
1719 count);
bf2de6f5 1720 }
1da177e4
LT
1721 }
1722
1723 generic_make_request(bio);
1724}
1da177e4
LT
1725EXPORT_SYMBOL(submit_bio);
1726
82124d60
KU
1727/**
1728 * blk_rq_check_limits - Helper function to check a request for the queue limit
1729 * @q: the queue
1730 * @rq: the request being checked
1731 *
1732 * Description:
1733 * @rq may have been made based on weaker limitations of upper-level queues
1734 * in request stacking drivers, and it may violate the limitation of @q.
1735 * Since the block layer and the underlying device driver trust @rq
1736 * after it is inserted to @q, it should be checked against @q before
1737 * the insertion using this generic function.
1738 *
1739 * This function should also be useful for request stacking drivers
eef35c2d 1740 * in some cases below, so export this function.
82124d60
KU
1741 * Request stacking drivers like request-based dm may change the queue
1742 * limits while requests are in the queue (e.g. dm's table swapping).
1743 * Such request stacking drivers should check those requests agaist
1744 * the new queue limits again when they dispatch those requests,
1745 * although such checkings are also done against the old queue limits
1746 * when submitting requests.
1747 */
1748int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1749{
3383977f
S
1750 if (rq->cmd_flags & REQ_DISCARD)
1751 return 0;
1752
ae03bf63
MP
1753 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1754 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1755 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1756 return -EIO;
1757 }
1758
1759 /*
1760 * queue's settings related to segment counting like q->bounce_pfn
1761 * may differ from that of other stacking queues.
1762 * Recalculate it to check the request correctly on this queue's
1763 * limitation.
1764 */
1765 blk_recalc_rq_segments(rq);
8a78362c 1766 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1767 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1768 return -EIO;
1769 }
1770
1771 return 0;
1772}
1773EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1774
1775/**
1776 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1777 * @q: the queue to submit the request
1778 * @rq: the request being queued
1779 */
1780int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1781{
1782 unsigned long flags;
4853abaa 1783 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1784
1785 if (blk_rq_check_limits(q, rq))
1786 return -EIO;
1787
b2c9cd37
AM
1788 if (rq->rq_disk &&
1789 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1790 return -EIO;
82124d60
KU
1791
1792 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1793 if (unlikely(blk_queue_dead(q))) {
1794 spin_unlock_irqrestore(q->queue_lock, flags);
1795 return -ENODEV;
1796 }
82124d60
KU
1797
1798 /*
1799 * Submitting request must be dequeued before calling this function
1800 * because it will be linked to another request_queue
1801 */
1802 BUG_ON(blk_queued_rq(rq));
1803
4853abaa
JM
1804 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1805 where = ELEVATOR_INSERT_FLUSH;
1806
1807 add_acct_request(q, rq, where);
e67b77c7
JM
1808 if (where == ELEVATOR_INSERT_FLUSH)
1809 __blk_run_queue(q);
82124d60
KU
1810 spin_unlock_irqrestore(q->queue_lock, flags);
1811
1812 return 0;
1813}
1814EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1815
80a761fd
TH
1816/**
1817 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1818 * @rq: request to examine
1819 *
1820 * Description:
1821 * A request could be merge of IOs which require different failure
1822 * handling. This function determines the number of bytes which
1823 * can be failed from the beginning of the request without
1824 * crossing into area which need to be retried further.
1825 *
1826 * Return:
1827 * The number of bytes to fail.
1828 *
1829 * Context:
1830 * queue_lock must be held.
1831 */
1832unsigned int blk_rq_err_bytes(const struct request *rq)
1833{
1834 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1835 unsigned int bytes = 0;
1836 struct bio *bio;
1837
1838 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1839 return blk_rq_bytes(rq);
1840
1841 /*
1842 * Currently the only 'mixing' which can happen is between
1843 * different fastfail types. We can safely fail portions
1844 * which have all the failfast bits that the first one has -
1845 * the ones which are at least as eager to fail as the first
1846 * one.
1847 */
1848 for (bio = rq->bio; bio; bio = bio->bi_next) {
1849 if ((bio->bi_rw & ff) != ff)
1850 break;
1851 bytes += bio->bi_size;
1852 }
1853
1854 /* this could lead to infinite loop */
1855 BUG_ON(blk_rq_bytes(rq) && !bytes);
1856 return bytes;
1857}
1858EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1859
bc58ba94
JA
1860static void blk_account_io_completion(struct request *req, unsigned int bytes)
1861{
c2553b58 1862 if (blk_do_io_stat(req)) {
bc58ba94
JA
1863 const int rw = rq_data_dir(req);
1864 struct hd_struct *part;
1865 int cpu;
1866
1867 cpu = part_stat_lock();
09e099d4 1868 part = req->part;
bc58ba94
JA
1869 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1870 part_stat_unlock();
1871 }
1872}
1873
1874static void blk_account_io_done(struct request *req)
1875{
bc58ba94 1876 /*
dd4c133f
TH
1877 * Account IO completion. flush_rq isn't accounted as a
1878 * normal IO on queueing nor completion. Accounting the
1879 * containing request is enough.
bc58ba94 1880 */
414b4ff5 1881 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1882 unsigned long duration = jiffies - req->start_time;
1883 const int rw = rq_data_dir(req);
1884 struct hd_struct *part;
1885 int cpu;
1886
1887 cpu = part_stat_lock();
09e099d4 1888 part = req->part;
bc58ba94
JA
1889
1890 part_stat_inc(cpu, part, ios[rw]);
1891 part_stat_add(cpu, part, ticks[rw], duration);
1892 part_round_stats(cpu, part);
316d315b 1893 part_dec_in_flight(part, rw);
bc58ba94 1894
6c23a968 1895 hd_struct_put(part);
bc58ba94
JA
1896 part_stat_unlock();
1897 }
1898}
1899
3bcddeac 1900/**
9934c8c0
TH
1901 * blk_peek_request - peek at the top of a request queue
1902 * @q: request queue to peek at
1903 *
1904 * Description:
1905 * Return the request at the top of @q. The returned request
1906 * should be started using blk_start_request() before LLD starts
1907 * processing it.
1908 *
1909 * Return:
1910 * Pointer to the request at the top of @q if available. Null
1911 * otherwise.
1912 *
1913 * Context:
1914 * queue_lock must be held.
1915 */
1916struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1917{
1918 struct request *rq;
1919 int ret;
1920
1921 while ((rq = __elv_next_request(q)) != NULL) {
1922 if (!(rq->cmd_flags & REQ_STARTED)) {
1923 /*
1924 * This is the first time the device driver
1925 * sees this request (possibly after
1926 * requeueing). Notify IO scheduler.
1927 */
33659ebb 1928 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1929 elv_activate_rq(q, rq);
1930
1931 /*
1932 * just mark as started even if we don't start
1933 * it, a request that has been delayed should
1934 * not be passed by new incoming requests
1935 */
1936 rq->cmd_flags |= REQ_STARTED;
1937 trace_block_rq_issue(q, rq);
1938 }
1939
1940 if (!q->boundary_rq || q->boundary_rq == rq) {
1941 q->end_sector = rq_end_sector(rq);
1942 q->boundary_rq = NULL;
1943 }
1944
1945 if (rq->cmd_flags & REQ_DONTPREP)
1946 break;
1947
2e46e8b2 1948 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1949 /*
1950 * make sure space for the drain appears we
1951 * know we can do this because max_hw_segments
1952 * has been adjusted to be one fewer than the
1953 * device can handle
1954 */
1955 rq->nr_phys_segments++;
1956 }
1957
1958 if (!q->prep_rq_fn)
1959 break;
1960
1961 ret = q->prep_rq_fn(q, rq);
1962 if (ret == BLKPREP_OK) {
1963 break;
1964 } else if (ret == BLKPREP_DEFER) {
1965 /*
1966 * the request may have been (partially) prepped.
1967 * we need to keep this request in the front to
1968 * avoid resource deadlock. REQ_STARTED will
1969 * prevent other fs requests from passing this one.
1970 */
2e46e8b2 1971 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1972 !(rq->cmd_flags & REQ_DONTPREP)) {
1973 /*
1974 * remove the space for the drain we added
1975 * so that we don't add it again
1976 */
1977 --rq->nr_phys_segments;
1978 }
1979
1980 rq = NULL;
1981 break;
1982 } else if (ret == BLKPREP_KILL) {
1983 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1984 /*
1985 * Mark this request as started so we don't trigger
1986 * any debug logic in the end I/O path.
1987 */
1988 blk_start_request(rq);
40cbbb78 1989 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1990 } else {
1991 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1992 break;
1993 }
1994 }
1995
1996 return rq;
1997}
9934c8c0 1998EXPORT_SYMBOL(blk_peek_request);
158dbda0 1999
9934c8c0 2000void blk_dequeue_request(struct request *rq)
158dbda0 2001{
9934c8c0
TH
2002 struct request_queue *q = rq->q;
2003
158dbda0
TH
2004 BUG_ON(list_empty(&rq->queuelist));
2005 BUG_ON(ELV_ON_HASH(rq));
2006
2007 list_del_init(&rq->queuelist);
2008
2009 /*
2010 * the time frame between a request being removed from the lists
2011 * and to it is freed is accounted as io that is in progress at
2012 * the driver side.
2013 */
9195291e 2014 if (blk_account_rq(rq)) {
0a7ae2ff 2015 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2016 set_io_start_time_ns(rq);
2017 }
158dbda0
TH
2018}
2019
9934c8c0
TH
2020/**
2021 * blk_start_request - start request processing on the driver
2022 * @req: request to dequeue
2023 *
2024 * Description:
2025 * Dequeue @req and start timeout timer on it. This hands off the
2026 * request to the driver.
2027 *
2028 * Block internal functions which don't want to start timer should
2029 * call blk_dequeue_request().
2030 *
2031 * Context:
2032 * queue_lock must be held.
2033 */
2034void blk_start_request(struct request *req)
2035{
2036 blk_dequeue_request(req);
2037
2038 /*
5f49f631
TH
2039 * We are now handing the request to the hardware, initialize
2040 * resid_len to full count and add the timeout handler.
9934c8c0 2041 */
5f49f631 2042 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2043 if (unlikely(blk_bidi_rq(req)))
2044 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2045
9934c8c0
TH
2046 blk_add_timer(req);
2047}
2048EXPORT_SYMBOL(blk_start_request);
2049
2050/**
2051 * blk_fetch_request - fetch a request from a request queue
2052 * @q: request queue to fetch a request from
2053 *
2054 * Description:
2055 * Return the request at the top of @q. The request is started on
2056 * return and LLD can start processing it immediately.
2057 *
2058 * Return:
2059 * Pointer to the request at the top of @q if available. Null
2060 * otherwise.
2061 *
2062 * Context:
2063 * queue_lock must be held.
2064 */
2065struct request *blk_fetch_request(struct request_queue *q)
2066{
2067 struct request *rq;
2068
2069 rq = blk_peek_request(q);
2070 if (rq)
2071 blk_start_request(rq);
2072 return rq;
2073}
2074EXPORT_SYMBOL(blk_fetch_request);
2075
3bcddeac 2076/**
2e60e022 2077 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2078 * @req: the request being processed
710027a4 2079 * @error: %0 for success, < %0 for error
8ebf9756 2080 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2081 *
2082 * Description:
8ebf9756
RD
2083 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2084 * the request structure even if @req doesn't have leftover.
2085 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2086 *
2087 * This special helper function is only for request stacking drivers
2088 * (e.g. request-based dm) so that they can handle partial completion.
2089 * Actual device drivers should use blk_end_request instead.
2090 *
2091 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2092 * %false return from this function.
3bcddeac
KU
2093 *
2094 * Return:
2e60e022
TH
2095 * %false - this request doesn't have any more data
2096 * %true - this request has more data
3bcddeac 2097 **/
2e60e022 2098bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2099{
5450d3e1 2100 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2101 struct bio *bio;
2102
2e60e022
TH
2103 if (!req->bio)
2104 return false;
2105
5f3ea37c 2106 trace_block_rq_complete(req->q, req);
2056a782 2107
1da177e4 2108 /*
6f41469c
TH
2109 * For fs requests, rq is just carrier of independent bio's
2110 * and each partial completion should be handled separately.
2111 * Reset per-request error on each partial completion.
2112 *
2113 * TODO: tj: This is too subtle. It would be better to let
2114 * low level drivers do what they see fit.
1da177e4 2115 */
33659ebb 2116 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2117 req->errors = 0;
2118
33659ebb
CH
2119 if (error && req->cmd_type == REQ_TYPE_FS &&
2120 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2121 char *error_type;
2122
2123 switch (error) {
2124 case -ENOLINK:
2125 error_type = "recoverable transport";
2126 break;
2127 case -EREMOTEIO:
2128 error_type = "critical target";
2129 break;
2130 case -EBADE:
2131 error_type = "critical nexus";
2132 break;
2133 case -EIO:
2134 default:
2135 error_type = "I/O";
2136 break;
2137 }
2138 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2139 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2140 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2141 }
2142
bc58ba94 2143 blk_account_io_completion(req, nr_bytes);
d72d904a 2144
1da177e4
LT
2145 total_bytes = bio_nbytes = 0;
2146 while ((bio = req->bio) != NULL) {
2147 int nbytes;
2148
2149 if (nr_bytes >= bio->bi_size) {
2150 req->bio = bio->bi_next;
2151 nbytes = bio->bi_size;
5bb23a68 2152 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2153 next_idx = 0;
2154 bio_nbytes = 0;
2155 } else {
2156 int idx = bio->bi_idx + next_idx;
2157
af498d7f 2158 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2159 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2160 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2161 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2162 break;
2163 }
2164
2165 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2166 BIO_BUG_ON(nbytes > bio->bi_size);
2167
2168 /*
2169 * not a complete bvec done
2170 */
2171 if (unlikely(nbytes > nr_bytes)) {
2172 bio_nbytes += nr_bytes;
2173 total_bytes += nr_bytes;
2174 break;
2175 }
2176
2177 /*
2178 * advance to the next vector
2179 */
2180 next_idx++;
2181 bio_nbytes += nbytes;
2182 }
2183
2184 total_bytes += nbytes;
2185 nr_bytes -= nbytes;
2186
6728cb0e
JA
2187 bio = req->bio;
2188 if (bio) {
1da177e4
LT
2189 /*
2190 * end more in this run, or just return 'not-done'
2191 */
2192 if (unlikely(nr_bytes <= 0))
2193 break;
2194 }
2195 }
2196
2197 /*
2198 * completely done
2199 */
2e60e022
TH
2200 if (!req->bio) {
2201 /*
2202 * Reset counters so that the request stacking driver
2203 * can find how many bytes remain in the request
2204 * later.
2205 */
a2dec7b3 2206 req->__data_len = 0;
2e60e022
TH
2207 return false;
2208 }
1da177e4
LT
2209
2210 /*
2211 * if the request wasn't completed, update state
2212 */
2213 if (bio_nbytes) {
5bb23a68 2214 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2215 bio->bi_idx += next_idx;
2216 bio_iovec(bio)->bv_offset += nr_bytes;
2217 bio_iovec(bio)->bv_len -= nr_bytes;
2218 }
2219
a2dec7b3 2220 req->__data_len -= total_bytes;
2e46e8b2
TH
2221 req->buffer = bio_data(req->bio);
2222
2223 /* update sector only for requests with clear definition of sector */
33659ebb 2224 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2225 req->__sector += total_bytes >> 9;
2e46e8b2 2226
80a761fd
TH
2227 /* mixed attributes always follow the first bio */
2228 if (req->cmd_flags & REQ_MIXED_MERGE) {
2229 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2230 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2231 }
2232
2e46e8b2
TH
2233 /*
2234 * If total number of sectors is less than the first segment
2235 * size, something has gone terribly wrong.
2236 */
2237 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2238 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2239 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2240 }
2241
2242 /* recalculate the number of segments */
1da177e4 2243 blk_recalc_rq_segments(req);
2e46e8b2 2244
2e60e022 2245 return true;
1da177e4 2246}
2e60e022 2247EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2248
2e60e022
TH
2249static bool blk_update_bidi_request(struct request *rq, int error,
2250 unsigned int nr_bytes,
2251 unsigned int bidi_bytes)
5efccd17 2252{
2e60e022
TH
2253 if (blk_update_request(rq, error, nr_bytes))
2254 return true;
5efccd17 2255
2e60e022
TH
2256 /* Bidi request must be completed as a whole */
2257 if (unlikely(blk_bidi_rq(rq)) &&
2258 blk_update_request(rq->next_rq, error, bidi_bytes))
2259 return true;
5efccd17 2260
e2e1a148
JA
2261 if (blk_queue_add_random(rq->q))
2262 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2263
2264 return false;
1da177e4
LT
2265}
2266
28018c24
JB
2267/**
2268 * blk_unprep_request - unprepare a request
2269 * @req: the request
2270 *
2271 * This function makes a request ready for complete resubmission (or
2272 * completion). It happens only after all error handling is complete,
2273 * so represents the appropriate moment to deallocate any resources
2274 * that were allocated to the request in the prep_rq_fn. The queue
2275 * lock is held when calling this.
2276 */
2277void blk_unprep_request(struct request *req)
2278{
2279 struct request_queue *q = req->q;
2280
2281 req->cmd_flags &= ~REQ_DONTPREP;
2282 if (q->unprep_rq_fn)
2283 q->unprep_rq_fn(q, req);
2284}
2285EXPORT_SYMBOL_GPL(blk_unprep_request);
2286
1da177e4
LT
2287/*
2288 * queue lock must be held
2289 */
2e60e022 2290static void blk_finish_request(struct request *req, int error)
1da177e4 2291{
b8286239
KU
2292 if (blk_rq_tagged(req))
2293 blk_queue_end_tag(req->q, req);
2294
ba396a6c 2295 BUG_ON(blk_queued_rq(req));
1da177e4 2296
33659ebb 2297 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2298 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2299
e78042e5
MA
2300 blk_delete_timer(req);
2301
28018c24
JB
2302 if (req->cmd_flags & REQ_DONTPREP)
2303 blk_unprep_request(req);
2304
2305
bc58ba94 2306 blk_account_io_done(req);
b8286239 2307
1da177e4 2308 if (req->end_io)
8ffdc655 2309 req->end_io(req, error);
b8286239
KU
2310 else {
2311 if (blk_bidi_rq(req))
2312 __blk_put_request(req->next_rq->q, req->next_rq);
2313
1da177e4 2314 __blk_put_request(req->q, req);
b8286239 2315 }
1da177e4
LT
2316}
2317
3b11313a 2318/**
2e60e022
TH
2319 * blk_end_bidi_request - Complete a bidi request
2320 * @rq: the request to complete
2321 * @error: %0 for success, < %0 for error
2322 * @nr_bytes: number of bytes to complete @rq
2323 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2324 *
2325 * Description:
e3a04fe3 2326 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2327 * Drivers that supports bidi can safely call this member for any
2328 * type of request, bidi or uni. In the later case @bidi_bytes is
2329 * just ignored.
336cdb40
KU
2330 *
2331 * Return:
2e60e022
TH
2332 * %false - we are done with this request
2333 * %true - still buffers pending for this request
a0cd1285 2334 **/
b1f74493 2335static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2336 unsigned int nr_bytes, unsigned int bidi_bytes)
2337{
336cdb40 2338 struct request_queue *q = rq->q;
2e60e022 2339 unsigned long flags;
32fab448 2340
2e60e022
TH
2341 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2342 return true;
32fab448 2343
336cdb40 2344 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2345 blk_finish_request(rq, error);
336cdb40
KU
2346 spin_unlock_irqrestore(q->queue_lock, flags);
2347
2e60e022 2348 return false;
32fab448
KU
2349}
2350
336cdb40 2351/**
2e60e022
TH
2352 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2353 * @rq: the request to complete
710027a4 2354 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2355 * @nr_bytes: number of bytes to complete @rq
2356 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2357 *
2358 * Description:
2e60e022
TH
2359 * Identical to blk_end_bidi_request() except that queue lock is
2360 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2361 *
2362 * Return:
2e60e022
TH
2363 * %false - we are done with this request
2364 * %true - still buffers pending for this request
336cdb40 2365 **/
4853abaa 2366bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2367 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2368{
2e60e022
TH
2369 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2370 return true;
336cdb40 2371
2e60e022 2372 blk_finish_request(rq, error);
336cdb40 2373
2e60e022 2374 return false;
336cdb40 2375}
e19a3ab0
KU
2376
2377/**
2378 * blk_end_request - Helper function for drivers to complete the request.
2379 * @rq: the request being processed
710027a4 2380 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2381 * @nr_bytes: number of bytes to complete
2382 *
2383 * Description:
2384 * Ends I/O on a number of bytes attached to @rq.
2385 * If @rq has leftover, sets it up for the next range of segments.
2386 *
2387 * Return:
b1f74493
FT
2388 * %false - we are done with this request
2389 * %true - still buffers pending for this request
e19a3ab0 2390 **/
b1f74493 2391bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2392{
b1f74493 2393 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2394}
56ad1740 2395EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2396
2397/**
b1f74493
FT
2398 * blk_end_request_all - Helper function for drives to finish the request.
2399 * @rq: the request to finish
8ebf9756 2400 * @error: %0 for success, < %0 for error
336cdb40
KU
2401 *
2402 * Description:
b1f74493
FT
2403 * Completely finish @rq.
2404 */
2405void blk_end_request_all(struct request *rq, int error)
336cdb40 2406{
b1f74493
FT
2407 bool pending;
2408 unsigned int bidi_bytes = 0;
336cdb40 2409
b1f74493
FT
2410 if (unlikely(blk_bidi_rq(rq)))
2411 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2412
b1f74493
FT
2413 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2414 BUG_ON(pending);
2415}
56ad1740 2416EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2417
b1f74493
FT
2418/**
2419 * blk_end_request_cur - Helper function to finish the current request chunk.
2420 * @rq: the request to finish the current chunk for
8ebf9756 2421 * @error: %0 for success, < %0 for error
b1f74493
FT
2422 *
2423 * Description:
2424 * Complete the current consecutively mapped chunk from @rq.
2425 *
2426 * Return:
2427 * %false - we are done with this request
2428 * %true - still buffers pending for this request
2429 */
2430bool blk_end_request_cur(struct request *rq, int error)
2431{
2432 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2433}
56ad1740 2434EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2435
80a761fd
TH
2436/**
2437 * blk_end_request_err - Finish a request till the next failure boundary.
2438 * @rq: the request to finish till the next failure boundary for
2439 * @error: must be negative errno
2440 *
2441 * Description:
2442 * Complete @rq till the next failure boundary.
2443 *
2444 * Return:
2445 * %false - we are done with this request
2446 * %true - still buffers pending for this request
2447 */
2448bool blk_end_request_err(struct request *rq, int error)
2449{
2450 WARN_ON(error >= 0);
2451 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2452}
2453EXPORT_SYMBOL_GPL(blk_end_request_err);
2454
e3a04fe3 2455/**
b1f74493
FT
2456 * __blk_end_request - Helper function for drivers to complete the request.
2457 * @rq: the request being processed
2458 * @error: %0 for success, < %0 for error
2459 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2460 *
2461 * Description:
b1f74493 2462 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2463 *
2464 * Return:
b1f74493
FT
2465 * %false - we are done with this request
2466 * %true - still buffers pending for this request
e3a04fe3 2467 **/
b1f74493 2468bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2469{
b1f74493 2470 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2471}
56ad1740 2472EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2473
32fab448 2474/**
b1f74493
FT
2475 * __blk_end_request_all - Helper function for drives to finish the request.
2476 * @rq: the request to finish
8ebf9756 2477 * @error: %0 for success, < %0 for error
32fab448
KU
2478 *
2479 * Description:
b1f74493 2480 * Completely finish @rq. Must be called with queue lock held.
32fab448 2481 */
b1f74493 2482void __blk_end_request_all(struct request *rq, int error)
32fab448 2483{
b1f74493
FT
2484 bool pending;
2485 unsigned int bidi_bytes = 0;
2486
2487 if (unlikely(blk_bidi_rq(rq)))
2488 bidi_bytes = blk_rq_bytes(rq->next_rq);
2489
2490 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2491 BUG_ON(pending);
32fab448 2492}
56ad1740 2493EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2494
e19a3ab0 2495/**
b1f74493
FT
2496 * __blk_end_request_cur - Helper function to finish the current request chunk.
2497 * @rq: the request to finish the current chunk for
8ebf9756 2498 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2499 *
2500 * Description:
b1f74493
FT
2501 * Complete the current consecutively mapped chunk from @rq. Must
2502 * be called with queue lock held.
e19a3ab0
KU
2503 *
2504 * Return:
b1f74493
FT
2505 * %false - we are done with this request
2506 * %true - still buffers pending for this request
2507 */
2508bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2509{
b1f74493 2510 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2511}
56ad1740 2512EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2513
80a761fd
TH
2514/**
2515 * __blk_end_request_err - Finish a request till the next failure boundary.
2516 * @rq: the request to finish till the next failure boundary for
2517 * @error: must be negative errno
2518 *
2519 * Description:
2520 * Complete @rq till the next failure boundary. Must be called
2521 * with queue lock held.
2522 *
2523 * Return:
2524 * %false - we are done with this request
2525 * %true - still buffers pending for this request
2526 */
2527bool __blk_end_request_err(struct request *rq, int error)
2528{
2529 WARN_ON(error >= 0);
2530 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2531}
2532EXPORT_SYMBOL_GPL(__blk_end_request_err);
2533
86db1e29
JA
2534void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2535 struct bio *bio)
1da177e4 2536{
a82afdfc 2537 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2538 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2539
fb2dce86
DW
2540 if (bio_has_data(bio)) {
2541 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2542 rq->buffer = bio_data(bio);
2543 }
a2dec7b3 2544 rq->__data_len = bio->bi_size;
1da177e4 2545 rq->bio = rq->biotail = bio;
1da177e4 2546
66846572
N
2547 if (bio->bi_bdev)
2548 rq->rq_disk = bio->bi_bdev->bd_disk;
2549}
1da177e4 2550
2d4dc890
IL
2551#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2552/**
2553 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2554 * @rq: the request to be flushed
2555 *
2556 * Description:
2557 * Flush all pages in @rq.
2558 */
2559void rq_flush_dcache_pages(struct request *rq)
2560{
2561 struct req_iterator iter;
2562 struct bio_vec *bvec;
2563
2564 rq_for_each_segment(bvec, rq, iter)
2565 flush_dcache_page(bvec->bv_page);
2566}
2567EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2568#endif
2569
ef9e3fac
KU
2570/**
2571 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2572 * @q : the queue of the device being checked
2573 *
2574 * Description:
2575 * Check if underlying low-level drivers of a device are busy.
2576 * If the drivers want to export their busy state, they must set own
2577 * exporting function using blk_queue_lld_busy() first.
2578 *
2579 * Basically, this function is used only by request stacking drivers
2580 * to stop dispatching requests to underlying devices when underlying
2581 * devices are busy. This behavior helps more I/O merging on the queue
2582 * of the request stacking driver and prevents I/O throughput regression
2583 * on burst I/O load.
2584 *
2585 * Return:
2586 * 0 - Not busy (The request stacking driver should dispatch request)
2587 * 1 - Busy (The request stacking driver should stop dispatching request)
2588 */
2589int blk_lld_busy(struct request_queue *q)
2590{
2591 if (q->lld_busy_fn)
2592 return q->lld_busy_fn(q);
2593
2594 return 0;
2595}
2596EXPORT_SYMBOL_GPL(blk_lld_busy);
2597
b0fd271d
KU
2598/**
2599 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2600 * @rq: the clone request to be cleaned up
2601 *
2602 * Description:
2603 * Free all bios in @rq for a cloned request.
2604 */
2605void blk_rq_unprep_clone(struct request *rq)
2606{
2607 struct bio *bio;
2608
2609 while ((bio = rq->bio) != NULL) {
2610 rq->bio = bio->bi_next;
2611
2612 bio_put(bio);
2613 }
2614}
2615EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2616
2617/*
2618 * Copy attributes of the original request to the clone request.
2619 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2620 */
2621static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2622{
2623 dst->cpu = src->cpu;
3a2edd0d 2624 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2625 dst->cmd_type = src->cmd_type;
2626 dst->__sector = blk_rq_pos(src);
2627 dst->__data_len = blk_rq_bytes(src);
2628 dst->nr_phys_segments = src->nr_phys_segments;
2629 dst->ioprio = src->ioprio;
2630 dst->extra_len = src->extra_len;
2631}
2632
2633/**
2634 * blk_rq_prep_clone - Helper function to setup clone request
2635 * @rq: the request to be setup
2636 * @rq_src: original request to be cloned
2637 * @bs: bio_set that bios for clone are allocated from
2638 * @gfp_mask: memory allocation mask for bio
2639 * @bio_ctr: setup function to be called for each clone bio.
2640 * Returns %0 for success, non %0 for failure.
2641 * @data: private data to be passed to @bio_ctr
2642 *
2643 * Description:
2644 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2645 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2646 * are not copied, and copying such parts is the caller's responsibility.
2647 * Also, pages which the original bios are pointing to are not copied
2648 * and the cloned bios just point same pages.
2649 * So cloned bios must be completed before original bios, which means
2650 * the caller must complete @rq before @rq_src.
2651 */
2652int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2653 struct bio_set *bs, gfp_t gfp_mask,
2654 int (*bio_ctr)(struct bio *, struct bio *, void *),
2655 void *data)
2656{
2657 struct bio *bio, *bio_src;
2658
2659 if (!bs)
2660 bs = fs_bio_set;
2661
2662 blk_rq_init(NULL, rq);
2663
2664 __rq_for_each_bio(bio_src, rq_src) {
2665 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2666 if (!bio)
2667 goto free_and_out;
2668
2669 __bio_clone(bio, bio_src);
2670
2671 if (bio_integrity(bio_src) &&
7878cba9 2672 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2673 goto free_and_out;
2674
2675 if (bio_ctr && bio_ctr(bio, bio_src, data))
2676 goto free_and_out;
2677
2678 if (rq->bio) {
2679 rq->biotail->bi_next = bio;
2680 rq->biotail = bio;
2681 } else
2682 rq->bio = rq->biotail = bio;
2683 }
2684
2685 __blk_rq_prep_clone(rq, rq_src);
2686
2687 return 0;
2688
2689free_and_out:
2690 if (bio)
2691 bio_free(bio, bs);
2692 blk_rq_unprep_clone(rq);
2693
2694 return -ENOMEM;
2695}
2696EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2697
18887ad9 2698int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2699{
2700 return queue_work(kblockd_workqueue, work);
2701}
1da177e4
LT
2702EXPORT_SYMBOL(kblockd_schedule_work);
2703
e43473b7
VG
2704int kblockd_schedule_delayed_work(struct request_queue *q,
2705 struct delayed_work *dwork, unsigned long delay)
2706{
2707 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2708}
2709EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2710
73c10101
JA
2711#define PLUG_MAGIC 0x91827364
2712
75df7136
SJ
2713/**
2714 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2715 * @plug: The &struct blk_plug that needs to be initialized
2716 *
2717 * Description:
2718 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2719 * pending I/O should the task end up blocking between blk_start_plug() and
2720 * blk_finish_plug(). This is important from a performance perspective, but
2721 * also ensures that we don't deadlock. For instance, if the task is blocking
2722 * for a memory allocation, memory reclaim could end up wanting to free a
2723 * page belonging to that request that is currently residing in our private
2724 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2725 * this kind of deadlock.
2726 */
73c10101
JA
2727void blk_start_plug(struct blk_plug *plug)
2728{
2729 struct task_struct *tsk = current;
2730
2731 plug->magic = PLUG_MAGIC;
2732 INIT_LIST_HEAD(&plug->list);
048c9374 2733 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2734 plug->should_sort = 0;
2735
2736 /*
2737 * If this is a nested plug, don't actually assign it. It will be
2738 * flushed on its own.
2739 */
2740 if (!tsk->plug) {
2741 /*
2742 * Store ordering should not be needed here, since a potential
2743 * preempt will imply a full memory barrier
2744 */
2745 tsk->plug = plug;
2746 }
2747}
2748EXPORT_SYMBOL(blk_start_plug);
2749
2750static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2751{
2752 struct request *rqa = container_of(a, struct request, queuelist);
2753 struct request *rqb = container_of(b, struct request, queuelist);
2754
f83e8261 2755 return !(rqa->q <= rqb->q);
73c10101
JA
2756}
2757
49cac01e
JA
2758/*
2759 * If 'from_schedule' is true, then postpone the dispatch of requests
2760 * until a safe kblockd context. We due this to avoid accidental big
2761 * additional stack usage in driver dispatch, in places where the originally
2762 * plugger did not intend it.
2763 */
f6603783 2764static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2765 bool from_schedule)
99e22598 2766 __releases(q->queue_lock)
94b5eb28 2767{
49cac01e 2768 trace_block_unplug(q, depth, !from_schedule);
99e22598 2769
8ba61435
TH
2770 /*
2771 * Don't mess with dead queue.
2772 */
2773 if (unlikely(blk_queue_dead(q))) {
2774 spin_unlock(q->queue_lock);
2775 return;
2776 }
2777
99e22598
JA
2778 /*
2779 * If we are punting this to kblockd, then we can safely drop
2780 * the queue_lock before waking kblockd (which needs to take
2781 * this lock).
2782 */
2783 if (from_schedule) {
2784 spin_unlock(q->queue_lock);
24ecfbe2 2785 blk_run_queue_async(q);
99e22598 2786 } else {
24ecfbe2 2787 __blk_run_queue(q);
99e22598
JA
2788 spin_unlock(q->queue_lock);
2789 }
2790
94b5eb28
JA
2791}
2792
048c9374
N
2793static void flush_plug_callbacks(struct blk_plug *plug)
2794{
2795 LIST_HEAD(callbacks);
2796
2797 if (list_empty(&plug->cb_list))
2798 return;
2799
2800 list_splice_init(&plug->cb_list, &callbacks);
2801
2802 while (!list_empty(&callbacks)) {
2803 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2804 struct blk_plug_cb,
2805 list);
2806 list_del(&cb->list);
2807 cb->callback(cb);
2808 }
2809}
2810
49cac01e 2811void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2812{
2813 struct request_queue *q;
2814 unsigned long flags;
2815 struct request *rq;
109b8129 2816 LIST_HEAD(list);
94b5eb28 2817 unsigned int depth;
73c10101
JA
2818
2819 BUG_ON(plug->magic != PLUG_MAGIC);
2820
048c9374 2821 flush_plug_callbacks(plug);
73c10101
JA
2822 if (list_empty(&plug->list))
2823 return;
2824
109b8129
N
2825 list_splice_init(&plug->list, &list);
2826
2827 if (plug->should_sort) {
2828 list_sort(NULL, &list, plug_rq_cmp);
2829 plug->should_sort = 0;
2830 }
73c10101
JA
2831
2832 q = NULL;
94b5eb28 2833 depth = 0;
18811272
JA
2834
2835 /*
2836 * Save and disable interrupts here, to avoid doing it for every
2837 * queue lock we have to take.
2838 */
73c10101 2839 local_irq_save(flags);
109b8129
N
2840 while (!list_empty(&list)) {
2841 rq = list_entry_rq(list.next);
73c10101 2842 list_del_init(&rq->queuelist);
73c10101
JA
2843 BUG_ON(!rq->q);
2844 if (rq->q != q) {
99e22598
JA
2845 /*
2846 * This drops the queue lock
2847 */
2848 if (q)
49cac01e 2849 queue_unplugged(q, depth, from_schedule);
73c10101 2850 q = rq->q;
94b5eb28 2851 depth = 0;
73c10101
JA
2852 spin_lock(q->queue_lock);
2853 }
8ba61435
TH
2854
2855 /*
2856 * Short-circuit if @q is dead
2857 */
2858 if (unlikely(blk_queue_dead(q))) {
2859 __blk_end_request_all(rq, -ENODEV);
2860 continue;
2861 }
2862
73c10101
JA
2863 /*
2864 * rq is already accounted, so use raw insert
2865 */
401a18e9
JA
2866 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2867 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2868 else
2869 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2870
2871 depth++;
73c10101
JA
2872 }
2873
99e22598
JA
2874 /*
2875 * This drops the queue lock
2876 */
2877 if (q)
49cac01e 2878 queue_unplugged(q, depth, from_schedule);
73c10101 2879
73c10101
JA
2880 local_irq_restore(flags);
2881}
73c10101
JA
2882
2883void blk_finish_plug(struct blk_plug *plug)
2884{
f6603783 2885 blk_flush_plug_list(plug, false);
73c10101 2886
88b996cd
CH
2887 if (plug == current->plug)
2888 current->plug = NULL;
73c10101 2889}
88b996cd 2890EXPORT_SYMBOL(blk_finish_plug);
73c10101 2891
1da177e4
LT
2892int __init blk_dev_init(void)
2893{
9eb55b03
NK
2894 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2895 sizeof(((struct request *)0)->cmd_flags));
2896
89b90be2
TH
2897 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2898 kblockd_workqueue = alloc_workqueue("kblockd",
2899 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2900 if (!kblockd_workqueue)
2901 panic("Failed to create kblockd\n");
2902
2903 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2904 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2905
8324aa91 2906 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2907 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2908
d38ecf93 2909 return 0;
1da177e4 2910}