]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/block/nvme-core.c
Merge branch 'for-4.2/core' of git://git.kernel.dk/linux-block
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
15#include <linux/nvme.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
1fa6aead 30#include <linux/kthread.h>
b60503ba
MW
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
5d0f6131 42#include <scsi/sg.h>
797a796a
HM
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
b3fffdef 45#define NVME_MINORS (1U << MINORBITS)
9d43cf64 46#define NVME_Q_DEPTH 1024
d31af0a3 47#define NVME_AQ_DEPTH 256
b60503ba
MW
48#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 50#define ADMIN_TIMEOUT (admin_timeout * HZ)
2484f407 51#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
9d43cf64
KB
52
53static unsigned char admin_timeout = 60;
54module_param(admin_timeout, byte, 0644);
55MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 56
bd67608a
MW
57unsigned char nvme_io_timeout = 30;
58module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 59MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 60
2484f407
DM
61static unsigned char shutdown_timeout = 5;
62module_param(shutdown_timeout, byte, 0644);
63MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
b60503ba
MW
65static int nvme_major;
66module_param(nvme_major, int, 0);
67
b3fffdef
KB
68static int nvme_char_major;
69module_param(nvme_char_major, int, 0);
70
58ffacb5
MW
71static int use_threaded_interrupts;
72module_param(use_threaded_interrupts, int, 0);
73
1fa6aead
MW
74static DEFINE_SPINLOCK(dev_list_lock);
75static LIST_HEAD(dev_list);
76static struct task_struct *nvme_thread;
9a6b9458 77static struct workqueue_struct *nvme_workq;
b9afca3e 78static wait_queue_head_t nvme_kthread_wait;
1fa6aead 79
b3fffdef
KB
80static struct class *nvme_class;
81
d4b4ff8e 82static void nvme_reset_failed_dev(struct work_struct *ws);
a4aea562 83static int nvme_process_cq(struct nvme_queue *nvmeq);
d4b4ff8e 84
4d115420
KB
85struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
a4aea562 88 struct request *req;
4d115420
KB
89 u32 result;
90 int status;
91 void *ctx;
92};
1fa6aead 93
b60503ba
MW
94/*
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
97 */
98struct nvme_queue {
99 struct device *q_dmadev;
091b6092 100 struct nvme_dev *dev;
3193f07b 101 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
b60503ba
MW
107 u32 __iomem *q_db;
108 u16 q_depth;
6222d172 109 s16 cq_vector;
b60503ba
MW
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
c30341dc 113 u16 qid;
e9539f47
MW
114 u8 cq_phase;
115 u8 cqe_seen;
4d115420 116 struct async_cmd_info cmdinfo;
a4aea562 117 struct blk_mq_hw_ctx *hctx;
b60503ba
MW
118};
119
120/*
121 * Check we didin't inadvertently grow the command struct
122 */
123static inline void _nvme_check_size(void)
124{
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
137}
138
edd10d33 139typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
140 struct nvme_completion *);
141
e85248e5 142struct nvme_cmd_info {
c2f5b650
MW
143 nvme_completion_fn fn;
144 void *ctx;
c30341dc 145 int aborted;
a4aea562 146 struct nvme_queue *nvmeq;
ac3dd5bd 147 struct nvme_iod iod[0];
e85248e5
MW
148};
149
ac3dd5bd
JA
150/*
151 * Max size of iod being embedded in the request payload
152 */
153#define NVME_INT_PAGES 2
154#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
fda631ff 155#define NVME_INT_MASK 0x01
ac3dd5bd
JA
156
157/*
158 * Will slightly overestimate the number of pages needed. This is OK
159 * as it only leads to a small amount of wasted memory for the lifetime of
160 * the I/O.
161 */
162static int nvme_npages(unsigned size, struct nvme_dev *dev)
163{
164 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
165 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
166}
167
168static unsigned int nvme_cmd_size(struct nvme_dev *dev)
169{
170 unsigned int ret = sizeof(struct nvme_cmd_info);
171
172 ret += sizeof(struct nvme_iod);
173 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
174 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
175
176 return ret;
177}
178
a4aea562
MB
179static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
180 unsigned int hctx_idx)
e85248e5 181{
a4aea562
MB
182 struct nvme_dev *dev = data;
183 struct nvme_queue *nvmeq = dev->queues[0];
184
185 WARN_ON(nvmeq->hctx);
186 nvmeq->hctx = hctx;
187 hctx->driver_data = nvmeq;
188 return 0;
e85248e5
MW
189}
190
a4aea562
MB
191static int nvme_admin_init_request(void *data, struct request *req,
192 unsigned int hctx_idx, unsigned int rq_idx,
193 unsigned int numa_node)
22404274 194{
a4aea562
MB
195 struct nvme_dev *dev = data;
196 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
197 struct nvme_queue *nvmeq = dev->queues[0];
198
199 BUG_ON(!nvmeq);
200 cmd->nvmeq = nvmeq;
201 return 0;
22404274
KB
202}
203
2c30540b
JA
204static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205{
206 struct nvme_queue *nvmeq = hctx->driver_data;
207
208 nvmeq->hctx = NULL;
209}
210
a4aea562
MB
211static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
b60503ba 213{
a4aea562
MB
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[
216 (hctx_idx % dev->queue_count) + 1];
b60503ba 217
a4aea562
MB
218 if (!nvmeq->hctx)
219 nvmeq->hctx = hctx;
220
221 /* nvmeq queues are shared between namespaces. We assume here that
222 * blk-mq map the tags so they match up with the nvme queue tags. */
223 WARN_ON(nvmeq->hctx->tags != hctx->tags);
b60503ba 224
a4aea562
MB
225 hctx->driver_data = nvmeq;
226 return 0;
b60503ba
MW
227}
228
a4aea562
MB
229static int nvme_init_request(void *data, struct request *req,
230 unsigned int hctx_idx, unsigned int rq_idx,
231 unsigned int numa_node)
b60503ba 232{
a4aea562
MB
233 struct nvme_dev *dev = data;
234 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
235 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
236
237 BUG_ON(!nvmeq);
238 cmd->nvmeq = nvmeq;
239 return 0;
240}
241
242static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
243 nvme_completion_fn handler)
244{
245 cmd->fn = handler;
246 cmd->ctx = ctx;
247 cmd->aborted = 0;
c917dfe5 248 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
249}
250
ac3dd5bd
JA
251static void *iod_get_private(struct nvme_iod *iod)
252{
253 return (void *) (iod->private & ~0x1UL);
254}
255
256/*
257 * If bit 0 is set, the iod is embedded in the request payload.
258 */
259static bool iod_should_kfree(struct nvme_iod *iod)
260{
fda631ff 261 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
262}
263
c2f5b650
MW
264/* Special values must be less than 0x1000 */
265#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
266#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
267#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
268#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 269
edd10d33 270static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
271 struct nvme_completion *cqe)
272{
273 if (ctx == CMD_CTX_CANCELLED)
274 return;
c2f5b650 275 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 276 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
277 "completed id %d twice on queue %d\n",
278 cqe->command_id, le16_to_cpup(&cqe->sq_id));
279 return;
280 }
281 if (ctx == CMD_CTX_INVALID) {
edd10d33 282 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
283 "invalid id %d completed on queue %d\n",
284 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285 return;
286 }
edd10d33 287 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
288}
289
a4aea562 290static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 291{
c2f5b650 292 void *ctx;
b60503ba 293
859361a2 294 if (fn)
a4aea562
MB
295 *fn = cmd->fn;
296 ctx = cmd->ctx;
297 cmd->fn = special_completion;
298 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 299 return ctx;
b60503ba
MW
300}
301
a4aea562
MB
302static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
303 struct nvme_completion *cqe)
3c0cf138 304{
a4aea562
MB
305 u32 result = le32_to_cpup(&cqe->result);
306 u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
309 ++nvmeq->dev->event_limit;
310 if (status == NVME_SC_SUCCESS)
311 dev_warn(nvmeq->q_dmadev,
312 "async event result %08x\n", result);
b60503ba
MW
313}
314
a4aea562
MB
315static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
5a92e700 317{
a4aea562
MB
318 struct request *req = ctx;
319
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321 u32 result = le32_to_cpup(&cqe->result);
a51afb54 322
9d135bb8 323 blk_mq_free_hctx_request(nvmeq->hctx, req);
a51afb54 324
a4aea562
MB
325 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
326 ++nvmeq->dev->abort_limit;
5a92e700
KB
327}
328
a4aea562
MB
329static void async_completion(struct nvme_queue *nvmeq, void *ctx,
330 struct nvme_completion *cqe)
b60503ba 331{
a4aea562
MB
332 struct async_cmd_info *cmdinfo = ctx;
333 cmdinfo->result = le32_to_cpup(&cqe->result);
334 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
335 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
9d135bb8 336 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
b60503ba
MW
337}
338
a4aea562
MB
339static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
340 unsigned int tag)
b60503ba 341{
a4aea562
MB
342 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
343 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
a51afb54 344
a4aea562 345 return blk_mq_rq_to_pdu(req);
4f5099af
KB
346}
347
a4aea562
MB
348/*
349 * Called with local interrupts disabled and the q_lock held. May not sleep.
350 */
351static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
352 nvme_completion_fn *fn)
4f5099af 353{
a4aea562
MB
354 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
355 void *ctx;
356 if (tag >= nvmeq->q_depth) {
357 *fn = special_completion;
358 return CMD_CTX_INVALID;
359 }
360 if (fn)
361 *fn = cmd->fn;
362 ctx = cmd->ctx;
363 cmd->fn = special_completion;
364 cmd->ctx = CMD_CTX_COMPLETED;
365 return ctx;
b60503ba
MW
366}
367
368/**
714a7a22 369 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
370 * @nvmeq: The queue to use
371 * @cmd: The command to send
372 *
373 * Safe to use from interrupt context
374 */
a4aea562 375static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
b60503ba 376{
a4aea562
MB
377 u16 tail = nvmeq->sq_tail;
378
b60503ba 379 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
380 if (++tail == nvmeq->q_depth)
381 tail = 0;
7547881d 382 writel(tail, nvmeq->q_db);
b60503ba 383 nvmeq->sq_tail = tail;
b60503ba
MW
384
385 return 0;
386}
387
a4aea562
MB
388static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
389{
390 unsigned long flags;
391 int ret;
392 spin_lock_irqsave(&nvmeq->q_lock, flags);
393 ret = __nvme_submit_cmd(nvmeq, cmd);
394 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
395 return ret;
396}
397
eca18b23 398static __le64 **iod_list(struct nvme_iod *iod)
e025344c 399{
eca18b23 400 return ((void *)iod) + iod->offset;
e025344c
SMM
401}
402
ac3dd5bd
JA
403static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
404 unsigned nseg, unsigned long private)
eca18b23 405{
ac3dd5bd
JA
406 iod->private = private;
407 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
408 iod->npages = -1;
409 iod->length = nbytes;
410 iod->nents = 0;
eca18b23 411}
b60503ba 412
eca18b23 413static struct nvme_iod *
ac3dd5bd
JA
414__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
415 unsigned long priv, gfp_t gfp)
b60503ba 416{
eca18b23 417 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 418 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
419 sizeof(struct scatterlist) * nseg, gfp);
420
ac3dd5bd
JA
421 if (iod)
422 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
423
424 return iod;
b60503ba
MW
425}
426
ac3dd5bd
JA
427static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
428 gfp_t gfp)
429{
430 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
431 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
432 struct nvme_iod *iod;
433
434 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
435 size <= NVME_INT_BYTES(dev)) {
436 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
437
438 iod = cmd->iod;
ac3dd5bd 439 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 440 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
441 return iod;
442 }
443
444 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
445 (unsigned long) rq, gfp);
446}
447
5d0f6131 448void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 449{
1d090624 450 const int last_prp = dev->page_size / 8 - 1;
eca18b23
MW
451 int i;
452 __le64 **list = iod_list(iod);
453 dma_addr_t prp_dma = iod->first_dma;
454
455 if (iod->npages == 0)
456 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
457 for (i = 0; i < iod->npages; i++) {
458 __le64 *prp_list = list[i];
459 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
460 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
461 prp_dma = next_prp_dma;
462 }
ac3dd5bd
JA
463
464 if (iod_should_kfree(iod))
465 kfree(iod);
b60503ba
MW
466}
467
b4ff9c8d
KB
468static int nvme_error_status(u16 status)
469{
470 switch (status & 0x7ff) {
471 case NVME_SC_SUCCESS:
472 return 0;
473 case NVME_SC_CAP_EXCEEDED:
474 return -ENOSPC;
475 default:
476 return -EIO;
477 }
478}
479
52b68d7e 480#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
481static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
482{
483 if (be32_to_cpu(pi->ref_tag) == v)
484 pi->ref_tag = cpu_to_be32(p);
485}
486
487static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488{
489 if (be32_to_cpu(pi->ref_tag) == p)
490 pi->ref_tag = cpu_to_be32(v);
491}
492
493/**
494 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
495 *
496 * The virtual start sector is the one that was originally submitted by the
497 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
498 * start sector may be different. Remap protection information to match the
499 * physical LBA on writes, and back to the original seed on reads.
500 *
501 * Type 0 and 3 do not have a ref tag, so no remapping required.
502 */
503static void nvme_dif_remap(struct request *req,
504 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
505{
506 struct nvme_ns *ns = req->rq_disk->private_data;
507 struct bio_integrity_payload *bip;
508 struct t10_pi_tuple *pi;
509 void *p, *pmap;
510 u32 i, nlb, ts, phys, virt;
511
512 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
513 return;
514
515 bip = bio_integrity(req->bio);
516 if (!bip)
517 return;
518
519 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
520
521 p = pmap;
522 virt = bip_get_seed(bip);
523 phys = nvme_block_nr(ns, blk_rq_pos(req));
524 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
525 ts = ns->disk->integrity->tuple_size;
526
527 for (i = 0; i < nlb; i++, virt++, phys++) {
528 pi = (struct t10_pi_tuple *)p;
529 dif_swap(phys, virt, pi);
530 p += ts;
531 }
532 kunmap_atomic(pmap);
533}
534
52b68d7e
KB
535static int nvme_noop_verify(struct blk_integrity_iter *iter)
536{
537 return 0;
538}
539
540static int nvme_noop_generate(struct blk_integrity_iter *iter)
541{
542 return 0;
543}
544
545struct blk_integrity nvme_meta_noop = {
546 .name = "NVME_META_NOOP",
547 .generate_fn = nvme_noop_generate,
548 .verify_fn = nvme_noop_verify,
549};
550
551static void nvme_init_integrity(struct nvme_ns *ns)
552{
553 struct blk_integrity integrity;
554
555 switch (ns->pi_type) {
556 case NVME_NS_DPS_PI_TYPE3:
557 integrity = t10_pi_type3_crc;
558 break;
559 case NVME_NS_DPS_PI_TYPE1:
560 case NVME_NS_DPS_PI_TYPE2:
561 integrity = t10_pi_type1_crc;
562 break;
563 default:
564 integrity = nvme_meta_noop;
565 break;
566 }
567 integrity.tuple_size = ns->ms;
568 blk_integrity_register(ns->disk, &integrity);
569 blk_queue_max_integrity_segments(ns->queue, 1);
570}
571#else /* CONFIG_BLK_DEV_INTEGRITY */
572static void nvme_dif_remap(struct request *req,
573 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
574{
575}
576static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
577{
578}
579static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
580{
581}
582static void nvme_init_integrity(struct nvme_ns *ns)
583{
584}
585#endif
586
a4aea562 587static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
588 struct nvme_completion *cqe)
589{
eca18b23 590 struct nvme_iod *iod = ctx;
ac3dd5bd 591 struct request *req = iod_get_private(iod);
a4aea562
MB
592 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
593
b60503ba
MW
594 u16 status = le16_to_cpup(&cqe->status) >> 1;
595
edd10d33 596 if (unlikely(status)) {
a4aea562
MB
597 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
598 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
599 unsigned long flags;
600
a4aea562 601 blk_mq_requeue_request(req);
c9d3bf88
KB
602 spin_lock_irqsave(req->q->queue_lock, flags);
603 if (!blk_queue_stopped(req->q))
604 blk_mq_kick_requeue_list(req->q);
605 spin_unlock_irqrestore(req->q->queue_lock, flags);
edd10d33
KB
606 return;
607 }
a4aea562
MB
608 req->errors = nvme_error_status(status);
609 } else
610 req->errors = 0;
611
612 if (cmd_rq->aborted)
613 dev_warn(&nvmeq->dev->pci_dev->dev,
614 "completing aborted command with status:%04x\n",
615 status);
616
e1e5e564 617 if (iod->nents) {
a4aea562
MB
618 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
619 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
e1e5e564
KB
620 if (blk_integrity_rq(req)) {
621 if (!rq_data_dir(req))
622 nvme_dif_remap(req, nvme_dif_complete);
623 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
624 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
625 }
626 }
edd10d33 627 nvme_free_iod(nvmeq->dev, iod);
3291fa57 628
a4aea562 629 blk_mq_complete_request(req);
b60503ba
MW
630}
631
184d2944 632/* length is in bytes. gfp flags indicates whether we may sleep. */
edd10d33
KB
633int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
634 gfp_t gfp)
ff22b54f 635{
99802a7a 636 struct dma_pool *pool;
eca18b23
MW
637 int length = total_len;
638 struct scatterlist *sg = iod->sg;
ff22b54f
MW
639 int dma_len = sg_dma_len(sg);
640 u64 dma_addr = sg_dma_address(sg);
f137e0f1
MI
641 u32 page_size = dev->page_size;
642 int offset = dma_addr & (page_size - 1);
e025344c 643 __le64 *prp_list;
eca18b23 644 __le64 **list = iod_list(iod);
e025344c 645 dma_addr_t prp_dma;
eca18b23 646 int nprps, i;
ff22b54f 647
1d090624 648 length -= (page_size - offset);
ff22b54f 649 if (length <= 0)
eca18b23 650 return total_len;
ff22b54f 651
1d090624 652 dma_len -= (page_size - offset);
ff22b54f 653 if (dma_len) {
1d090624 654 dma_addr += (page_size - offset);
ff22b54f
MW
655 } else {
656 sg = sg_next(sg);
657 dma_addr = sg_dma_address(sg);
658 dma_len = sg_dma_len(sg);
659 }
660
1d090624 661 if (length <= page_size) {
edd10d33 662 iod->first_dma = dma_addr;
eca18b23 663 return total_len;
e025344c
SMM
664 }
665
1d090624 666 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
667 if (nprps <= (256 / 8)) {
668 pool = dev->prp_small_pool;
eca18b23 669 iod->npages = 0;
99802a7a
MW
670 } else {
671 pool = dev->prp_page_pool;
eca18b23 672 iod->npages = 1;
99802a7a
MW
673 }
674
b77954cb
MW
675 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
676 if (!prp_list) {
edd10d33 677 iod->first_dma = dma_addr;
eca18b23 678 iod->npages = -1;
1d090624 679 return (total_len - length) + page_size;
b77954cb 680 }
eca18b23
MW
681 list[0] = prp_list;
682 iod->first_dma = prp_dma;
e025344c
SMM
683 i = 0;
684 for (;;) {
1d090624 685 if (i == page_size >> 3) {
e025344c 686 __le64 *old_prp_list = prp_list;
b77954cb 687 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
688 if (!prp_list)
689 return total_len - length;
690 list[iod->npages++] = prp_list;
7523d834
MW
691 prp_list[0] = old_prp_list[i - 1];
692 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
693 i = 1;
e025344c
SMM
694 }
695 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
696 dma_len -= page_size;
697 dma_addr += page_size;
698 length -= page_size;
e025344c
SMM
699 if (length <= 0)
700 break;
701 if (dma_len > 0)
702 continue;
703 BUG_ON(dma_len < 0);
704 sg = sg_next(sg);
705 dma_addr = sg_dma_address(sg);
706 dma_len = sg_dma_len(sg);
ff22b54f
MW
707 }
708
eca18b23 709 return total_len;
ff22b54f
MW
710}
711
a4aea562
MB
712/*
713 * We reuse the small pool to allocate the 16-byte range here as it is not
714 * worth having a special pool for these or additional cases to handle freeing
715 * the iod.
716 */
717static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
718 struct request *req, struct nvme_iod *iod)
0e5e4f0e 719{
edd10d33
KB
720 struct nvme_dsm_range *range =
721 (struct nvme_dsm_range *)iod_list(iod)[0];
0e5e4f0e
KB
722 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
723
0e5e4f0e 724 range->cattr = cpu_to_le32(0);
a4aea562
MB
725 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
726 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e
KB
727
728 memset(cmnd, 0, sizeof(*cmnd));
729 cmnd->dsm.opcode = nvme_cmd_dsm;
a4aea562 730 cmnd->dsm.command_id = req->tag;
0e5e4f0e
KB
731 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
732 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
733 cmnd->dsm.nr = 0;
734 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
735
736 if (++nvmeq->sq_tail == nvmeq->q_depth)
737 nvmeq->sq_tail = 0;
738 writel(nvmeq->sq_tail, nvmeq->q_db);
0e5e4f0e
KB
739}
740
a4aea562 741static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
00df5cb4
MW
742 int cmdid)
743{
744 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
745
746 memset(cmnd, 0, sizeof(*cmnd));
747 cmnd->common.opcode = nvme_cmd_flush;
748 cmnd->common.command_id = cmdid;
749 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
750
751 if (++nvmeq->sq_tail == nvmeq->q_depth)
752 nvmeq->sq_tail = 0;
753 writel(nvmeq->sq_tail, nvmeq->q_db);
00df5cb4
MW
754}
755
a4aea562
MB
756static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
757 struct nvme_ns *ns)
b60503ba 758{
ac3dd5bd 759 struct request *req = iod_get_private(iod);
ff22b54f 760 struct nvme_command *cmnd;
a4aea562
MB
761 u16 control = 0;
762 u32 dsmgmt = 0;
00df5cb4 763
a4aea562 764 if (req->cmd_flags & REQ_FUA)
b60503ba 765 control |= NVME_RW_FUA;
a4aea562 766 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
b60503ba
MW
767 control |= NVME_RW_LR;
768
a4aea562 769 if (req->cmd_flags & REQ_RAHEAD)
b60503ba
MW
770 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
771
ff22b54f 772 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b8deb62c 773 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 774
a4aea562
MB
775 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
776 cmnd->rw.command_id = req->tag;
ff22b54f 777 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
edd10d33
KB
778 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
779 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
a4aea562
MB
780 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
781 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
e1e5e564
KB
782
783 if (blk_integrity_rq(req)) {
784 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
785 switch (ns->pi_type) {
786 case NVME_NS_DPS_PI_TYPE3:
787 control |= NVME_RW_PRINFO_PRCHK_GUARD;
788 break;
789 case NVME_NS_DPS_PI_TYPE1:
790 case NVME_NS_DPS_PI_TYPE2:
791 control |= NVME_RW_PRINFO_PRCHK_GUARD |
792 NVME_RW_PRINFO_PRCHK_REF;
793 cmnd->rw.reftag = cpu_to_le32(
794 nvme_block_nr(ns, blk_rq_pos(req)));
795 break;
796 }
797 } else if (ns->ms)
798 control |= NVME_RW_PRINFO_PRACT;
799
ff22b54f
MW
800 cmnd->rw.control = cpu_to_le16(control);
801 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 802
b60503ba
MW
803 if (++nvmeq->sq_tail == nvmeq->q_depth)
804 nvmeq->sq_tail = 0;
7547881d 805 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 806
1974b1ae 807 return 0;
edd10d33
KB
808}
809
a4aea562
MB
810static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
811 const struct blk_mq_queue_data *bd)
edd10d33 812{
a4aea562
MB
813 struct nvme_ns *ns = hctx->queue->queuedata;
814 struct nvme_queue *nvmeq = hctx->driver_data;
815 struct request *req = bd->rq;
816 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 817 struct nvme_iod *iod;
a4aea562 818 enum dma_data_direction dma_dir;
edd10d33 819
e1e5e564
KB
820 /*
821 * If formated with metadata, require the block layer provide a buffer
822 * unless this namespace is formated such that the metadata can be
823 * stripped/generated by the controller with PRACT=1.
824 */
825 if (ns->ms && !blk_integrity_rq(req)) {
826 if (!(ns->pi_type && ns->ms == 8)) {
827 req->errors = -EFAULT;
828 blk_mq_complete_request(req);
829 return BLK_MQ_RQ_QUEUE_OK;
830 }
831 }
832
ac3dd5bd 833 iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
edd10d33 834 if (!iod)
fe54303e 835 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 836
a4aea562 837 if (req->cmd_flags & REQ_DISCARD) {
edd10d33
KB
838 void *range;
839 /*
840 * We reuse the small pool to allocate the 16-byte range here
841 * as it is not worth having a special pool for these or
842 * additional cases to handle freeing the iod.
843 */
844 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
845 GFP_ATOMIC,
846 &iod->first_dma);
a4aea562 847 if (!range)
fe54303e 848 goto retry_cmd;
edd10d33
KB
849 iod_list(iod)[0] = (__le64 *)range;
850 iod->npages = 0;
ac3dd5bd 851 } else if (req->nr_phys_segments) {
a4aea562
MB
852 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
853
ac3dd5bd 854 sg_init_table(iod->sg, req->nr_phys_segments);
a4aea562 855 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
fe54303e
JA
856 if (!iod->nents)
857 goto error_cmd;
a4aea562
MB
858
859 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
fe54303e 860 goto retry_cmd;
a4aea562 861
fe54303e
JA
862 if (blk_rq_bytes(req) !=
863 nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
864 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
865 iod->nents, dma_dir);
866 goto retry_cmd;
867 }
e1e5e564
KB
868 if (blk_integrity_rq(req)) {
869 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
870 goto error_cmd;
871
872 sg_init_table(iod->meta_sg, 1);
873 if (blk_rq_map_integrity_sg(
874 req->q, req->bio, iod->meta_sg) != 1)
875 goto error_cmd;
876
877 if (rq_data_dir(req))
878 nvme_dif_remap(req, nvme_dif_prep);
879
880 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
881 goto error_cmd;
882 }
edd10d33 883 }
1974b1ae 884
9af8785a 885 nvme_set_info(cmd, iod, req_completion);
a4aea562
MB
886 spin_lock_irq(&nvmeq->q_lock);
887 if (req->cmd_flags & REQ_DISCARD)
888 nvme_submit_discard(nvmeq, ns, req, iod);
889 else if (req->cmd_flags & REQ_FLUSH)
890 nvme_submit_flush(nvmeq, ns, req->tag);
891 else
892 nvme_submit_iod(nvmeq, iod, ns);
893
894 nvme_process_cq(nvmeq);
895 spin_unlock_irq(&nvmeq->q_lock);
896 return BLK_MQ_RQ_QUEUE_OK;
897
fe54303e
JA
898 error_cmd:
899 nvme_free_iod(nvmeq->dev, iod);
900 return BLK_MQ_RQ_QUEUE_ERROR;
901 retry_cmd:
eca18b23 902 nvme_free_iod(nvmeq->dev, iod);
fe54303e 903 return BLK_MQ_RQ_QUEUE_BUSY;
b60503ba
MW
904}
905
e9539f47 906static int nvme_process_cq(struct nvme_queue *nvmeq)
b60503ba 907{
82123460 908 u16 head, phase;
b60503ba 909
b60503ba 910 head = nvmeq->cq_head;
82123460 911 phase = nvmeq->cq_phase;
b60503ba
MW
912
913 for (;;) {
c2f5b650
MW
914 void *ctx;
915 nvme_completion_fn fn;
b60503ba 916 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 917 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
918 break;
919 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
920 if (++head == nvmeq->q_depth) {
921 head = 0;
82123460 922 phase = !phase;
b60503ba 923 }
a4aea562 924 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 925 fn(nvmeq, ctx, &cqe);
b60503ba
MW
926 }
927
928 /* If the controller ignores the cq head doorbell and continuously
929 * writes to the queue, it is theoretically possible to wrap around
930 * the queue twice and mistakenly return IRQ_NONE. Linux only
931 * requires that 0.1% of your interrupts are handled, so this isn't
932 * a big problem.
933 */
82123460 934 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
e9539f47 935 return 0;
b60503ba 936
b80d5ccc 937 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 938 nvmeq->cq_head = head;
82123460 939 nvmeq->cq_phase = phase;
b60503ba 940
e9539f47
MW
941 nvmeq->cqe_seen = 1;
942 return 1;
b60503ba
MW
943}
944
a4aea562
MB
945/* Admin queue isn't initialized as a request queue. If at some point this
946 * happens anyway, make sure to notify the user */
947static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
948 const struct blk_mq_queue_data *bd)
7d822457 949{
a4aea562
MB
950 WARN_ON_ONCE(1);
951 return BLK_MQ_RQ_QUEUE_ERROR;
7d822457
MW
952}
953
b60503ba 954static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
955{
956 irqreturn_t result;
957 struct nvme_queue *nvmeq = data;
958 spin_lock(&nvmeq->q_lock);
e9539f47
MW
959 nvme_process_cq(nvmeq);
960 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
961 nvmeq->cqe_seen = 0;
58ffacb5
MW
962 spin_unlock(&nvmeq->q_lock);
963 return result;
964}
965
966static irqreturn_t nvme_irq_check(int irq, void *data)
967{
968 struct nvme_queue *nvmeq = data;
969 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
970 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
971 return IRQ_NONE;
972 return IRQ_WAKE_THREAD;
973}
974
c2f5b650
MW
975struct sync_cmd_info {
976 struct task_struct *task;
977 u32 result;
978 int status;
979};
980
edd10d33 981static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
982 struct nvme_completion *cqe)
983{
984 struct sync_cmd_info *cmdinfo = ctx;
985 cmdinfo->result = le32_to_cpup(&cqe->result);
986 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
987 wake_up_process(cmdinfo->task);
988}
989
b60503ba
MW
990/*
991 * Returns 0 on success. If the result is negative, it's a Linux error code;
992 * if the result is positive, it's an NVM Express status code
993 */
a4aea562 994static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
5d0f6131 995 u32 *result, unsigned timeout)
b60503ba 996{
b60503ba 997 struct sync_cmd_info cmdinfo;
a4aea562
MB
998 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
999 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
b60503ba
MW
1000
1001 cmdinfo.task = current;
1002 cmdinfo.status = -EINTR;
1003
a4aea562
MB
1004 cmd->common.command_id = req->tag;
1005
1006 nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
b60503ba 1007
0c0f9b95
KB
1008 set_current_state(TASK_UNINTERRUPTIBLE);
1009 nvme_submit_cmd(nvmeq, cmd);
1010 schedule();
3c0cf138 1011
b60503ba
MW
1012 if (result)
1013 *result = cmdinfo.result;
b60503ba
MW
1014 return cmdinfo.status;
1015}
1016
a4aea562
MB
1017static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1018{
1019 struct nvme_queue *nvmeq = dev->queues[0];
1020 struct nvme_command c;
1021 struct nvme_cmd_info *cmd_info;
1022 struct request *req;
1023
1efccc9d 1024 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
9f173b33
DC
1025 if (IS_ERR(req))
1026 return PTR_ERR(req);
a4aea562 1027
c917dfe5 1028 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 1029 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 1030 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
1031
1032 memset(&c, 0, sizeof(c));
1033 c.common.opcode = nvme_admin_async_event;
1034 c.common.command_id = req->tag;
1035
1efccc9d 1036 blk_mq_free_hctx_request(nvmeq->hctx, req);
a4aea562
MB
1037 return __nvme_submit_cmd(nvmeq, &c);
1038}
1039
1040static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1041 struct nvme_command *cmd,
1042 struct async_cmd_info *cmdinfo, unsigned timeout)
1043{
a4aea562
MB
1044 struct nvme_queue *nvmeq = dev->queues[0];
1045 struct request *req;
1046 struct nvme_cmd_info *cmd_rq;
4d115420 1047
a4aea562 1048 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
9f173b33
DC
1049 if (IS_ERR(req))
1050 return PTR_ERR(req);
a4aea562
MB
1051
1052 req->timeout = timeout;
1053 cmd_rq = blk_mq_rq_to_pdu(req);
1054 cmdinfo->req = req;
1055 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1056 cmdinfo->status = -EINTR;
a4aea562
MB
1057
1058 cmd->common.command_id = req->tag;
1059
4f5099af 1060 return nvme_submit_cmd(nvmeq, cmd);
4d115420
KB
1061}
1062
a64e6bb4 1063static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
a4aea562 1064 u32 *result, unsigned timeout)
b60503ba 1065{
a4aea562
MB
1066 int res;
1067 struct request *req;
1068
1069 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
97fe3832
JA
1070 if (IS_ERR(req))
1071 return PTR_ERR(req);
a4aea562 1072 res = nvme_submit_sync_cmd(req, cmd, result, timeout);
9d135bb8 1073 blk_mq_free_request(req);
a4aea562 1074 return res;
4f5099af
KB
1075}
1076
a4aea562 1077int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
4f5099af
KB
1078 u32 *result)
1079{
a4aea562 1080 return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
1081}
1082
a4aea562
MB
1083int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1084 struct nvme_command *cmd, u32 *result)
4d115420 1085{
a4aea562
MB
1086 int res;
1087 struct request *req;
1088
1089 req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1090 false);
97fe3832
JA
1091 if (IS_ERR(req))
1092 return PTR_ERR(req);
a4aea562 1093 res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
9d135bb8 1094 blk_mq_free_request(req);
a4aea562 1095 return res;
4d115420
KB
1096}
1097
b60503ba
MW
1098static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1099{
b60503ba
MW
1100 struct nvme_command c;
1101
1102 memset(&c, 0, sizeof(c));
1103 c.delete_queue.opcode = opcode;
1104 c.delete_queue.qid = cpu_to_le16(id);
1105
a4aea562 1106 return nvme_submit_admin_cmd(dev, &c, NULL);
b60503ba
MW
1107}
1108
1109static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1110 struct nvme_queue *nvmeq)
1111{
b60503ba
MW
1112 struct nvme_command c;
1113 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1114
1115 memset(&c, 0, sizeof(c));
1116 c.create_cq.opcode = nvme_admin_create_cq;
1117 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1118 c.create_cq.cqid = cpu_to_le16(qid);
1119 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1120 c.create_cq.cq_flags = cpu_to_le16(flags);
1121 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1122
a4aea562 1123 return nvme_submit_admin_cmd(dev, &c, NULL);
b60503ba
MW
1124}
1125
1126static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1127 struct nvme_queue *nvmeq)
1128{
b60503ba
MW
1129 struct nvme_command c;
1130 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1131
1132 memset(&c, 0, sizeof(c));
1133 c.create_sq.opcode = nvme_admin_create_sq;
1134 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1135 c.create_sq.sqid = cpu_to_le16(qid);
1136 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1137 c.create_sq.sq_flags = cpu_to_le16(flags);
1138 c.create_sq.cqid = cpu_to_le16(qid);
1139
a4aea562 1140 return nvme_submit_admin_cmd(dev, &c, NULL);
b60503ba
MW
1141}
1142
1143static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1144{
1145 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1146}
1147
1148static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1149{
1150 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1151}
1152
5d0f6131 1153int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
bc5fc7e4
MW
1154 dma_addr_t dma_addr)
1155{
1156 struct nvme_command c;
1157
1158 memset(&c, 0, sizeof(c));
1159 c.identify.opcode = nvme_admin_identify;
1160 c.identify.nsid = cpu_to_le32(nsid);
1161 c.identify.prp1 = cpu_to_le64(dma_addr);
1162 c.identify.cns = cpu_to_le32(cns);
1163
1164 return nvme_submit_admin_cmd(dev, &c, NULL);
1165}
1166
5d0f6131 1167int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 1168 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
1169{
1170 struct nvme_command c;
1171
1172 memset(&c, 0, sizeof(c));
1173 c.features.opcode = nvme_admin_get_features;
a42cecce 1174 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
1175 c.features.prp1 = cpu_to_le64(dma_addr);
1176 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 1177
08df1e05 1178 return nvme_submit_admin_cmd(dev, &c, result);
df348139
MW
1179}
1180
5d0f6131
VV
1181int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1182 dma_addr_t dma_addr, u32 *result)
df348139
MW
1183{
1184 struct nvme_command c;
1185
1186 memset(&c, 0, sizeof(c));
1187 c.features.opcode = nvme_admin_set_features;
1188 c.features.prp1 = cpu_to_le64(dma_addr);
1189 c.features.fid = cpu_to_le32(fid);
1190 c.features.dword11 = cpu_to_le32(dword11);
1191
bc5fc7e4
MW
1192 return nvme_submit_admin_cmd(dev, &c, result);
1193}
1194
c30341dc 1195/**
a4aea562 1196 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1197 *
1198 * Schedule controller reset if the command was already aborted once before and
1199 * still hasn't been returned to the driver, or if this is the admin queue.
1200 */
a4aea562 1201static void nvme_abort_req(struct request *req)
c30341dc 1202{
a4aea562
MB
1203 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1204 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1205 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1206 struct request *abort_req;
1207 struct nvme_cmd_info *abort_cmd;
1208 struct nvme_command cmd;
c30341dc 1209
a4aea562 1210 if (!nvmeq->qid || cmd_rq->aborted) {
7a509a6b
KB
1211 unsigned long flags;
1212
1213 spin_lock_irqsave(&dev_list_lock, flags);
c30341dc 1214 if (work_busy(&dev->reset_work))
7a509a6b 1215 goto out;
c30341dc
KB
1216 list_del_init(&dev->node);
1217 dev_warn(&dev->pci_dev->dev,
a4aea562
MB
1218 "I/O %d QID %d timeout, reset controller\n",
1219 req->tag, nvmeq->qid);
9ca97374 1220 dev->reset_workfn = nvme_reset_failed_dev;
c30341dc 1221 queue_work(nvme_workq, &dev->reset_work);
7a509a6b
KB
1222 out:
1223 spin_unlock_irqrestore(&dev_list_lock, flags);
c30341dc
KB
1224 return;
1225 }
1226
1227 if (!dev->abort_limit)
1228 return;
1229
a4aea562
MB
1230 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1231 false);
9f173b33 1232 if (IS_ERR(abort_req))
c30341dc
KB
1233 return;
1234
a4aea562
MB
1235 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1236 nvme_set_info(abort_cmd, abort_req, abort_completion);
1237
c30341dc
KB
1238 memset(&cmd, 0, sizeof(cmd));
1239 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1240 cmd.abort.cid = req->tag;
c30341dc 1241 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1242 cmd.abort.command_id = abort_req->tag;
c30341dc
KB
1243
1244 --dev->abort_limit;
a4aea562 1245 cmd_rq->aborted = 1;
c30341dc 1246
a4aea562 1247 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1248 nvmeq->qid);
a4aea562
MB
1249 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1250 dev_warn(nvmeq->q_dmadev,
1251 "Could not abort I/O %d QID %d",
1252 req->tag, nvmeq->qid);
c87fd540 1253 blk_mq_free_request(abort_req);
a4aea562 1254 }
c30341dc
KB
1255}
1256
a4aea562
MB
1257static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1258 struct request *req, void *data, bool reserved)
a09115b2 1259{
a4aea562
MB
1260 struct nvme_queue *nvmeq = data;
1261 void *ctx;
1262 nvme_completion_fn fn;
1263 struct nvme_cmd_info *cmd;
cef6a948
KB
1264 struct nvme_completion cqe;
1265
1266 if (!blk_mq_request_started(req))
1267 return;
a09115b2 1268
a4aea562 1269 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1270
a4aea562
MB
1271 if (cmd->ctx == CMD_CTX_CANCELLED)
1272 return;
1273
cef6a948
KB
1274 if (blk_queue_dying(req->q))
1275 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1276 else
1277 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1278
1279
a4aea562
MB
1280 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1281 req->tag, nvmeq->qid);
1282 ctx = cancel_cmd_info(cmd, &fn);
1283 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1284}
1285
a4aea562 1286static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1287{
a4aea562
MB
1288 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1289 struct nvme_queue *nvmeq = cmd->nvmeq;
1290
1291 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1292 nvmeq->qid);
7a509a6b 1293 spin_lock_irq(&nvmeq->q_lock);
07836e65 1294 nvme_abort_req(req);
7a509a6b 1295 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1296
07836e65
KB
1297 /*
1298 * The aborted req will be completed on receiving the abort req.
1299 * We enable the timer again. If hit twice, it'll cause a device reset,
1300 * as the device then is in a faulty state.
1301 */
1302 return BLK_EH_RESET_TIMER;
a4aea562 1303}
22404274 1304
a4aea562
MB
1305static void nvme_free_queue(struct nvme_queue *nvmeq)
1306{
9e866774
MW
1307 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1308 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1309 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1310 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1311 kfree(nvmeq);
1312}
1313
a1a5ef99 1314static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1315{
1316 int i;
1317
a1a5ef99 1318 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1319 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1320 dev->queue_count--;
a4aea562 1321 dev->queues[i] = NULL;
f435c282 1322 nvme_free_queue(nvmeq);
121c7ad4 1323 }
22404274
KB
1324}
1325
4d115420
KB
1326/**
1327 * nvme_suspend_queue - put queue into suspended state
1328 * @nvmeq - queue to suspend
4d115420
KB
1329 */
1330static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1331{
2b25d981 1332 int vector;
b60503ba 1333
a09115b2 1334 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1335 if (nvmeq->cq_vector == -1) {
1336 spin_unlock_irq(&nvmeq->q_lock);
1337 return 1;
1338 }
1339 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1340 nvmeq->dev->online_queues--;
2b25d981 1341 nvmeq->cq_vector = -1;
a09115b2
MW
1342 spin_unlock_irq(&nvmeq->q_lock);
1343
6df3dbc8
KB
1344 if (!nvmeq->qid && nvmeq->dev->admin_q)
1345 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1346
aba2080f
MW
1347 irq_set_affinity_hint(vector, NULL);
1348 free_irq(vector, nvmeq);
b60503ba 1349
4d115420
KB
1350 return 0;
1351}
b60503ba 1352
4d115420
KB
1353static void nvme_clear_queue(struct nvme_queue *nvmeq)
1354{
a4aea562
MB
1355 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1356
22404274 1357 spin_lock_irq(&nvmeq->q_lock);
a4aea562
MB
1358 if (hctx && hctx->tags)
1359 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
22404274 1360 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1361}
1362
4d115420
KB
1363static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1364{
a4aea562 1365 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1366
1367 if (!nvmeq)
1368 return;
1369 if (nvme_suspend_queue(nvmeq))
1370 return;
1371
0e53d180
KB
1372 /* Don't tell the adapter to delete the admin queue.
1373 * Don't tell a removed adapter to delete IO queues. */
1374 if (qid && readl(&dev->bar->csts) != -1) {
b60503ba
MW
1375 adapter_delete_sq(dev, qid);
1376 adapter_delete_cq(dev, qid);
1377 }
07836e65
KB
1378
1379 spin_lock_irq(&nvmeq->q_lock);
1380 nvme_process_cq(nvmeq);
1381 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1382}
1383
1384static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1385 int depth)
b60503ba
MW
1386{
1387 struct device *dmadev = &dev->pci_dev->dev;
a4aea562 1388 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1389 if (!nvmeq)
1390 return NULL;
1391
4d51abf9
JP
1392 nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1393 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1394 if (!nvmeq->cqes)
1395 goto free_nvmeq;
b60503ba
MW
1396
1397 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1398 &nvmeq->sq_dma_addr, GFP_KERNEL);
1399 if (!nvmeq->sq_cmds)
1400 goto free_cqdma;
1401
1402 nvmeq->q_dmadev = dmadev;
091b6092 1403 nvmeq->dev = dev;
3193f07b
MW
1404 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1405 dev->instance, qid);
b60503ba
MW
1406 spin_lock_init(&nvmeq->q_lock);
1407 nvmeq->cq_head = 0;
82123460 1408 nvmeq->cq_phase = 1;
b80d5ccc 1409 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1410 nvmeq->q_depth = depth;
c30341dc 1411 nvmeq->qid = qid;
22404274 1412 dev->queue_count++;
a4aea562 1413 dev->queues[qid] = nvmeq;
b60503ba
MW
1414
1415 return nvmeq;
1416
1417 free_cqdma:
68b8eca5 1418 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1419 nvmeq->cq_dma_addr);
1420 free_nvmeq:
1421 kfree(nvmeq);
1422 return NULL;
1423}
1424
3001082c
MW
1425static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1426 const char *name)
1427{
58ffacb5
MW
1428 if (use_threaded_interrupts)
1429 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1430 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1431 name, nvmeq);
3001082c 1432 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1433 IRQF_SHARED, name, nvmeq);
3001082c
MW
1434}
1435
22404274 1436static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1437{
22404274 1438 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1439
7be50e93 1440 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1441 nvmeq->sq_tail = 0;
1442 nvmeq->cq_head = 0;
1443 nvmeq->cq_phase = 1;
b80d5ccc 1444 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1445 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1446 dev->online_queues++;
7be50e93 1447 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1448}
1449
1450static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1451{
1452 struct nvme_dev *dev = nvmeq->dev;
1453 int result;
3f85d50b 1454
2b25d981 1455 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1456 result = adapter_alloc_cq(dev, qid, nvmeq);
1457 if (result < 0)
22404274 1458 return result;
b60503ba
MW
1459
1460 result = adapter_alloc_sq(dev, qid, nvmeq);
1461 if (result < 0)
1462 goto release_cq;
1463
3193f07b 1464 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1465 if (result < 0)
1466 goto release_sq;
1467
22404274 1468 nvme_init_queue(nvmeq, qid);
22404274 1469 return result;
b60503ba
MW
1470
1471 release_sq:
1472 adapter_delete_sq(dev, qid);
1473 release_cq:
1474 adapter_delete_cq(dev, qid);
22404274 1475 return result;
b60503ba
MW
1476}
1477
ba47e386
MW
1478static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1479{
1480 unsigned long timeout;
1481 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1482
1483 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1484
1485 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1486 msleep(100);
1487 if (fatal_signal_pending(current))
1488 return -EINTR;
1489 if (time_after(jiffies, timeout)) {
1490 dev_err(&dev->pci_dev->dev,
27e8166c
MW
1491 "Device not ready; aborting %s\n", enabled ?
1492 "initialisation" : "reset");
ba47e386
MW
1493 return -ENODEV;
1494 }
1495 }
1496
1497 return 0;
1498}
1499
1500/*
1501 * If the device has been passed off to us in an enabled state, just clear
1502 * the enabled bit. The spec says we should set the 'shutdown notification
1503 * bits', but doing so may cause the device to complete commands to the
1504 * admin queue ... and we don't know what memory that might be pointing at!
1505 */
1506static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1507{
01079522
DM
1508 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1509 dev->ctrl_config &= ~NVME_CC_ENABLE;
1510 writel(dev->ctrl_config, &dev->bar->cc);
44af146a 1511
ba47e386
MW
1512 return nvme_wait_ready(dev, cap, false);
1513}
1514
1515static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1516{
01079522
DM
1517 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1518 dev->ctrl_config |= NVME_CC_ENABLE;
1519 writel(dev->ctrl_config, &dev->bar->cc);
1520
ba47e386
MW
1521 return nvme_wait_ready(dev, cap, true);
1522}
1523
1894d8f1
KB
1524static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1525{
1526 unsigned long timeout;
1894d8f1 1527
01079522
DM
1528 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1529 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1530
1531 writel(dev->ctrl_config, &dev->bar->cc);
1894d8f1 1532
2484f407 1533 timeout = SHUTDOWN_TIMEOUT + jiffies;
1894d8f1
KB
1534 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1535 NVME_CSTS_SHST_CMPLT) {
1536 msleep(100);
1537 if (fatal_signal_pending(current))
1538 return -EINTR;
1539 if (time_after(jiffies, timeout)) {
1540 dev_err(&dev->pci_dev->dev,
1541 "Device shutdown incomplete; abort shutdown\n");
1542 return -ENODEV;
1543 }
1544 }
1545
1546 return 0;
1547}
1548
a4aea562
MB
1549static struct blk_mq_ops nvme_mq_admin_ops = {
1550 .queue_rq = nvme_admin_queue_rq,
1551 .map_queue = blk_mq_map_queue,
1552 .init_hctx = nvme_admin_init_hctx,
2c30540b 1553 .exit_hctx = nvme_exit_hctx,
a4aea562
MB
1554 .init_request = nvme_admin_init_request,
1555 .timeout = nvme_timeout,
1556};
1557
1558static struct blk_mq_ops nvme_mq_ops = {
1559 .queue_rq = nvme_queue_rq,
1560 .map_queue = blk_mq_map_queue,
1561 .init_hctx = nvme_init_hctx,
2c30540b 1562 .exit_hctx = nvme_exit_hctx,
a4aea562
MB
1563 .init_request = nvme_init_request,
1564 .timeout = nvme_timeout,
1565};
1566
ea191d2f
KB
1567static void nvme_dev_remove_admin(struct nvme_dev *dev)
1568{
1569 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1570 blk_cleanup_queue(dev->admin_q);
1571 blk_mq_free_tag_set(&dev->admin_tagset);
1572 }
1573}
1574
a4aea562
MB
1575static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1576{
1577 if (!dev->admin_q) {
1578 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1579 dev->admin_tagset.nr_hw_queues = 1;
1580 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1581 dev->admin_tagset.reserved_tags = 1;
a4aea562
MB
1582 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1583 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
ac3dd5bd 1584 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1585 dev->admin_tagset.driver_data = dev;
1586
1587 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1588 return -ENOMEM;
1589
1590 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
35b489d3 1591 if (IS_ERR(dev->admin_q)) {
a4aea562
MB
1592 blk_mq_free_tag_set(&dev->admin_tagset);
1593 return -ENOMEM;
1594 }
ea191d2f
KB
1595 if (!blk_get_queue(dev->admin_q)) {
1596 nvme_dev_remove_admin(dev);
1597 return -ENODEV;
1598 }
0fb59cbc
KB
1599 } else
1600 blk_mq_unfreeze_queue(dev->admin_q);
a4aea562
MB
1601
1602 return 0;
1603}
1604
8d85fce7 1605static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1606{
ba47e386 1607 int result;
b60503ba 1608 u32 aqa;
ba47e386 1609 u64 cap = readq(&dev->bar->cap);
b60503ba 1610 struct nvme_queue *nvmeq;
1d090624
KB
1611 unsigned page_shift = PAGE_SHIFT;
1612 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1613 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1614
1615 if (page_shift < dev_page_min) {
1616 dev_err(&dev->pci_dev->dev,
1617 "Minimum device page size (%u) too large for "
1618 "host (%u)\n", 1 << dev_page_min,
1619 1 << page_shift);
1620 return -ENODEV;
1621 }
1622 if (page_shift > dev_page_max) {
1623 dev_info(&dev->pci_dev->dev,
1624 "Device maximum page size (%u) smaller than "
1625 "host (%u); enabling work-around\n",
1626 1 << dev_page_max, 1 << page_shift);
1627 page_shift = dev_page_max;
1628 }
b60503ba 1629
ba47e386
MW
1630 result = nvme_disable_ctrl(dev, cap);
1631 if (result < 0)
1632 return result;
b60503ba 1633
a4aea562 1634 nvmeq = dev->queues[0];
cd638946 1635 if (!nvmeq) {
2b25d981 1636 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1637 if (!nvmeq)
1638 return -ENOMEM;
cd638946 1639 }
b60503ba
MW
1640
1641 aqa = nvmeq->q_depth - 1;
1642 aqa |= aqa << 16;
1643
1d090624
KB
1644 dev->page_size = 1 << page_shift;
1645
01079522 1646 dev->ctrl_config = NVME_CC_CSS_NVM;
1d090624 1647 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
b60503ba 1648 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1649 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1650
1651 writel(aqa, &dev->bar->aqa);
1652 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1653 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
b60503ba 1654
ba47e386 1655 result = nvme_enable_ctrl(dev, cap);
025c557a 1656 if (result)
a4aea562
MB
1657 goto free_nvmeq;
1658
2b25d981 1659 nvmeq->cq_vector = 0;
3193f07b 1660 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
025c557a 1661 if (result)
0fb59cbc 1662 goto free_nvmeq;
025c557a 1663
b60503ba 1664 return result;
a4aea562 1665
a4aea562
MB
1666 free_nvmeq:
1667 nvme_free_queues(dev, 0);
1668 return result;
b60503ba
MW
1669}
1670
5d0f6131 1671struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
eca18b23 1672 unsigned long addr, unsigned length)
b60503ba 1673{
36c14ed9 1674 int i, err, count, nents, offset;
7fc3cdab
MW
1675 struct scatterlist *sg;
1676 struct page **pages;
eca18b23 1677 struct nvme_iod *iod;
36c14ed9
MW
1678
1679 if (addr & 3)
eca18b23 1680 return ERR_PTR(-EINVAL);
5460fc03 1681 if (!length || length > INT_MAX - PAGE_SIZE)
eca18b23 1682 return ERR_PTR(-EINVAL);
7fc3cdab 1683
36c14ed9 1684 offset = offset_in_page(addr);
7fc3cdab
MW
1685 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1686 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
22fff826
DC
1687 if (!pages)
1688 return ERR_PTR(-ENOMEM);
36c14ed9
MW
1689
1690 err = get_user_pages_fast(addr, count, 1, pages);
1691 if (err < count) {
1692 count = err;
1693 err = -EFAULT;
1694 goto put_pages;
1695 }
7fc3cdab 1696
6808c5fb 1697 err = -ENOMEM;
ac3dd5bd 1698 iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
6808c5fb
S
1699 if (!iod)
1700 goto put_pages;
1701
eca18b23 1702 sg = iod->sg;
36c14ed9 1703 sg_init_table(sg, count);
d0ba1e49
MW
1704 for (i = 0; i < count; i++) {
1705 sg_set_page(&sg[i], pages[i],
5460fc03
DC
1706 min_t(unsigned, length, PAGE_SIZE - offset),
1707 offset);
d0ba1e49
MW
1708 length -= (PAGE_SIZE - offset);
1709 offset = 0;
7fc3cdab 1710 }
fe304c43 1711 sg_mark_end(&sg[i - 1]);
1c2ad9fa 1712 iod->nents = count;
7fc3cdab 1713
7fc3cdab
MW
1714 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1715 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9 1716 if (!nents)
eca18b23 1717 goto free_iod;
b60503ba 1718
7fc3cdab 1719 kfree(pages);
eca18b23 1720 return iod;
b60503ba 1721
eca18b23
MW
1722 free_iod:
1723 kfree(iod);
7fc3cdab
MW
1724 put_pages:
1725 for (i = 0; i < count; i++)
1726 put_page(pages[i]);
1727 kfree(pages);
eca18b23 1728 return ERR_PTR(err);
7fc3cdab 1729}
b60503ba 1730
5d0f6131 1731void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1c2ad9fa 1732 struct nvme_iod *iod)
7fc3cdab 1733{
1c2ad9fa 1734 int i;
b60503ba 1735
1c2ad9fa
MW
1736 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1737 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
7fc3cdab 1738
1c2ad9fa
MW
1739 for (i = 0; i < iod->nents; i++)
1740 put_page(sg_page(&iod->sg[i]));
7fc3cdab 1741}
b60503ba 1742
a53295b6
MW
1743static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1744{
1745 struct nvme_dev *dev = ns->dev;
a53295b6
MW
1746 struct nvme_user_io io;
1747 struct nvme_command c;
a67a9513
KB
1748 unsigned length, meta_len, prp_len;
1749 int status, write;
1750 struct nvme_iod *iod;
1751 dma_addr_t meta_dma = 0;
1752 void *meta = NULL;
fec558b5 1753 void __user *metadata;
a53295b6
MW
1754
1755 if (copy_from_user(&io, uio, sizeof(io)))
1756 return -EFAULT;
6c7d4945 1757 length = (io.nblocks + 1) << ns->lba_shift;
f410c680
KB
1758 meta_len = (io.nblocks + 1) * ns->ms;
1759
a67a9513 1760 if (meta_len && ((io.metadata & 3) || !io.metadata) && !ns->ext)
f410c680 1761 return -EINVAL;
a67a9513
KB
1762 else if (meta_len && ns->ext) {
1763 length += meta_len;
1764 meta_len = 0;
1765 }
1766
fec558b5
AB
1767 metadata = (void __user *)(unsigned long)io.metadata;
1768
a67a9513 1769 write = io.opcode & 1;
6c7d4945
MW
1770
1771 switch (io.opcode) {
1772 case nvme_cmd_write:
1773 case nvme_cmd_read:
6bbf1acd 1774 case nvme_cmd_compare:
a67a9513 1775 iod = nvme_map_user_pages(dev, write, io.addr, length);
6413214c 1776 break;
6c7d4945 1777 default:
6bbf1acd 1778 return -EINVAL;
6c7d4945
MW
1779 }
1780
eca18b23
MW
1781 if (IS_ERR(iod))
1782 return PTR_ERR(iod);
a53295b6 1783
a67a9513
KB
1784 prp_len = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1785 if (length != prp_len) {
1786 status = -ENOMEM;
1787 goto unmap;
1788 }
1789 if (meta_len) {
1790 meta = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1791 &meta_dma, GFP_KERNEL);
fec558b5 1792
a67a9513
KB
1793 if (!meta) {
1794 status = -ENOMEM;
1795 goto unmap;
1796 }
1797 if (write) {
fec558b5 1798 if (copy_from_user(meta, metadata, meta_len)) {
a67a9513
KB
1799 status = -EFAULT;
1800 goto unmap;
1801 }
1802 }
1803 }
1804
a53295b6
MW
1805 memset(&c, 0, sizeof(c));
1806 c.rw.opcode = io.opcode;
1807 c.rw.flags = io.flags;
6c7d4945 1808 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1809 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1810 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1811 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1812 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1813 c.rw.reftag = cpu_to_le32(io.reftag);
1814 c.rw.apptag = cpu_to_le16(io.apptag);
1815 c.rw.appmask = cpu_to_le16(io.appmask);
edd10d33
KB
1816 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1817 c.rw.prp2 = cpu_to_le64(iod->first_dma);
a67a9513
KB
1818 c.rw.metadata = cpu_to_le64(meta_dma);
1819 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
f410c680 1820 unmap:
a67a9513 1821 nvme_unmap_user_pages(dev, write, iod);
eca18b23 1822 nvme_free_iod(dev, iod);
a67a9513
KB
1823 if (meta) {
1824 if (status == NVME_SC_SUCCESS && !write) {
fec558b5 1825 if (copy_to_user(metadata, meta, meta_len))
a67a9513
KB
1826 status = -EFAULT;
1827 }
1828 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta, meta_dma);
f410c680 1829 }
a53295b6
MW
1830 return status;
1831}
1832
a4aea562
MB
1833static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1834 struct nvme_passthru_cmd __user *ucmd)
6ee44cdc 1835{
7963e521 1836 struct nvme_passthru_cmd cmd;
6ee44cdc 1837 struct nvme_command c;
eca18b23 1838 int status, length;
c7d36ab8 1839 struct nvme_iod *uninitialized_var(iod);
94f370ca 1840 unsigned timeout;
6ee44cdc 1841
6bbf1acd
MW
1842 if (!capable(CAP_SYS_ADMIN))
1843 return -EACCES;
1844 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1845 return -EFAULT;
6ee44cdc
MW
1846
1847 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1848 c.common.opcode = cmd.opcode;
1849 c.common.flags = cmd.flags;
1850 c.common.nsid = cpu_to_le32(cmd.nsid);
1851 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1852 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1853 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1854 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1855 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1856 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1857 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1858 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1859
1860 length = cmd.data_len;
1861 if (cmd.data_len) {
49742188
MW
1862 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1863 length);
eca18b23
MW
1864 if (IS_ERR(iod))
1865 return PTR_ERR(iod);
edd10d33
KB
1866 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1867 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1868 c.common.prp2 = cpu_to_le64(iod->first_dma);
6bbf1acd
MW
1869 }
1870
94f370ca
KB
1871 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1872 ADMIN_TIMEOUT;
a4aea562 1873
6bbf1acd 1874 if (length != cmd.data_len)
b77954cb 1875 status = -ENOMEM;
a4aea562
MB
1876 else if (ns) {
1877 struct request *req;
1878
1879 req = blk_mq_alloc_request(ns->queue, WRITE,
1880 (GFP_KERNEL|__GFP_WAIT), false);
97fe3832
JA
1881 if (IS_ERR(req))
1882 status = PTR_ERR(req);
a4aea562
MB
1883 else {
1884 status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1885 timeout);
9d135bb8 1886 blk_mq_free_request(req);
a4aea562
MB
1887 }
1888 } else
1889 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
eca18b23 1890
6bbf1acd 1891 if (cmd.data_len) {
1c2ad9fa 1892 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
eca18b23 1893 nvme_free_iod(dev, iod);
6bbf1acd 1894 }
f4f117f6 1895
cf90bc48 1896 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
f4f117f6
KB
1897 sizeof(cmd.result)))
1898 status = -EFAULT;
1899
6ee44cdc
MW
1900 return status;
1901}
1902
b60503ba
MW
1903static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1904 unsigned long arg)
1905{
1906 struct nvme_ns *ns = bdev->bd_disk->private_data;
1907
1908 switch (cmd) {
6bbf1acd 1909 case NVME_IOCTL_ID:
c3bfe717 1910 force_successful_syscall_return();
6bbf1acd
MW
1911 return ns->ns_id;
1912 case NVME_IOCTL_ADMIN_CMD:
a4aea562 1913 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
7963e521 1914 case NVME_IOCTL_IO_CMD:
a4aea562 1915 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
a53295b6
MW
1916 case NVME_IOCTL_SUBMIT_IO:
1917 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1918 case SG_GET_VERSION_NUM:
1919 return nvme_sg_get_version_num((void __user *)arg);
1920 case SG_IO:
1921 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1922 default:
1923 return -ENOTTY;
1924 }
1925}
1926
320a3827
KB
1927#ifdef CONFIG_COMPAT
1928static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1929 unsigned int cmd, unsigned long arg)
1930{
320a3827
KB
1931 switch (cmd) {
1932 case SG_IO:
e179729a 1933 return -ENOIOCTLCMD;
320a3827
KB
1934 }
1935 return nvme_ioctl(bdev, mode, cmd, arg);
1936}
1937#else
1938#define nvme_compat_ioctl NULL
1939#endif
1940
9ac27090
KB
1941static int nvme_open(struct block_device *bdev, fmode_t mode)
1942{
9e60352c
KB
1943 int ret = 0;
1944 struct nvme_ns *ns;
9ac27090 1945
9e60352c
KB
1946 spin_lock(&dev_list_lock);
1947 ns = bdev->bd_disk->private_data;
1948 if (!ns)
1949 ret = -ENXIO;
1950 else if (!kref_get_unless_zero(&ns->dev->kref))
1951 ret = -ENXIO;
1952 spin_unlock(&dev_list_lock);
1953
1954 return ret;
9ac27090
KB
1955}
1956
1957static void nvme_free_dev(struct kref *kref);
1958
1959static void nvme_release(struct gendisk *disk, fmode_t mode)
1960{
1961 struct nvme_ns *ns = disk->private_data;
1962 struct nvme_dev *dev = ns->dev;
1963
1964 kref_put(&dev->kref, nvme_free_dev);
1965}
1966
4cc09e2d
KB
1967static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1968{
1969 /* some standard values */
1970 geo->heads = 1 << 6;
1971 geo->sectors = 1 << 5;
1972 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1973 return 0;
1974}
1975
e1e5e564
KB
1976static void nvme_config_discard(struct nvme_ns *ns)
1977{
1978 u32 logical_block_size = queue_logical_block_size(ns->queue);
1979 ns->queue->limits.discard_zeroes_data = 0;
1980 ns->queue->limits.discard_alignment = logical_block_size;
1981 ns->queue->limits.discard_granularity = logical_block_size;
1982 ns->queue->limits.max_discard_sectors = 0xffffffff;
1983 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1984}
1985
1b9dbf7f
KB
1986static int nvme_revalidate_disk(struct gendisk *disk)
1987{
1988 struct nvme_ns *ns = disk->private_data;
1989 struct nvme_dev *dev = ns->dev;
1990 struct nvme_id_ns *id;
1991 dma_addr_t dma_addr;
a67a9513
KB
1992 u8 lbaf, pi_type;
1993 u16 old_ms;
e1e5e564 1994 unsigned short bs;
1b9dbf7f
KB
1995
1996 id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
1997 GFP_KERNEL);
1998 if (!id) {
1999 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2000 __func__);
2001 return 0;
2002 }
e1e5e564
KB
2003 if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2004 dev_warn(&dev->pci_dev->dev,
2005 "identify failed ns:%d, setting capacity to 0\n",
2006 ns->ns_id);
2007 memset(id, 0, sizeof(*id));
2008 }
1b9dbf7f 2009
e1e5e564
KB
2010 old_ms = ns->ms;
2011 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1b9dbf7f 2012 ns->lba_shift = id->lbaf[lbaf].ds;
e1e5e564 2013 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
a67a9513 2014 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
e1e5e564
KB
2015
2016 /*
2017 * If identify namespace failed, use default 512 byte block size so
2018 * block layer can use before failing read/write for 0 capacity.
2019 */
2020 if (ns->lba_shift == 0)
2021 ns->lba_shift = 9;
2022 bs = 1 << ns->lba_shift;
2023
2024 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2025 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2026 id->dps & NVME_NS_DPS_PI_MASK : 0;
2027
52b68d7e
KB
2028 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2029 ns->ms != old_ms ||
e1e5e564 2030 bs != queue_logical_block_size(disk->queue) ||
a67a9513 2031 (ns->ms && ns->ext)))
e1e5e564
KB
2032 blk_integrity_unregister(disk);
2033
2034 ns->pi_type = pi_type;
2035 blk_queue_logical_block_size(ns->queue, bs);
2036
52b68d7e 2037 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
a67a9513 2038 !ns->ext)
e1e5e564
KB
2039 nvme_init_integrity(ns);
2040
52b68d7e 2041 if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
e1e5e564
KB
2042 set_capacity(disk, 0);
2043 else
2044 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2045
2046 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2047 nvme_config_discard(ns);
1b9dbf7f 2048
1b9dbf7f
KB
2049 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2050 return 0;
2051}
2052
b60503ba
MW
2053static const struct block_device_operations nvme_fops = {
2054 .owner = THIS_MODULE,
2055 .ioctl = nvme_ioctl,
320a3827 2056 .compat_ioctl = nvme_compat_ioctl,
9ac27090
KB
2057 .open = nvme_open,
2058 .release = nvme_release,
4cc09e2d 2059 .getgeo = nvme_getgeo,
1b9dbf7f 2060 .revalidate_disk= nvme_revalidate_disk,
b60503ba
MW
2061};
2062
1fa6aead
MW
2063static int nvme_kthread(void *data)
2064{
d4b4ff8e 2065 struct nvme_dev *dev, *next;
1fa6aead
MW
2066
2067 while (!kthread_should_stop()) {
564a232c 2068 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 2069 spin_lock(&dev_list_lock);
d4b4ff8e 2070 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 2071 int i;
07836e65 2072 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
d4b4ff8e
KB
2073 if (work_busy(&dev->reset_work))
2074 continue;
2075 list_del_init(&dev->node);
2076 dev_warn(&dev->pci_dev->dev,
a4aea562
MB
2077 "Failed status: %x, reset controller\n",
2078 readl(&dev->bar->csts));
9ca97374 2079 dev->reset_workfn = nvme_reset_failed_dev;
d4b4ff8e
KB
2080 queue_work(nvme_workq, &dev->reset_work);
2081 continue;
2082 }
1fa6aead 2083 for (i = 0; i < dev->queue_count; i++) {
a4aea562 2084 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
2085 if (!nvmeq)
2086 continue;
1fa6aead 2087 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 2088 nvme_process_cq(nvmeq);
6fccf938
KB
2089
2090 while ((i == 0) && (dev->event_limit > 0)) {
a4aea562 2091 if (nvme_submit_async_admin_req(dev))
6fccf938
KB
2092 break;
2093 dev->event_limit--;
2094 }
1fa6aead
MW
2095 spin_unlock_irq(&nvmeq->q_lock);
2096 }
2097 }
2098 spin_unlock(&dev_list_lock);
acb7aa0d 2099 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
2100 }
2101 return 0;
2102}
2103
e1e5e564 2104static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
b60503ba
MW
2105{
2106 struct nvme_ns *ns;
2107 struct gendisk *disk;
a4aea562 2108 int node = dev_to_node(&dev->pci_dev->dev);
b60503ba 2109
a4aea562 2110 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
b60503ba 2111 if (!ns)
e1e5e564
KB
2112 return;
2113
a4aea562 2114 ns->queue = blk_mq_init_queue(&dev->tagset);
9f173b33 2115 if (IS_ERR(ns->queue))
b60503ba 2116 goto out_free_ns;
4eeb9215
MW
2117 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2118 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
a4aea562 2119 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
b60503ba
MW
2120 ns->dev = dev;
2121 ns->queue->queuedata = ns;
2122
a4aea562 2123 disk = alloc_disk_node(0, node);
b60503ba
MW
2124 if (!disk)
2125 goto out_free_queue;
a4aea562 2126
5aff9382 2127 ns->ns_id = nsid;
b60503ba 2128 ns->disk = disk;
e1e5e564
KB
2129 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2130 list_add_tail(&ns->list, &dev->namespaces);
2131
e9ef4636 2132 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
2133 if (dev->max_hw_sectors)
2134 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
a4aea562
MB
2135 if (dev->stripe_size)
2136 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
a7d2ce28
KB
2137 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2138 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
b60503ba
MW
2139
2140 disk->major = nvme_major;
469071a3 2141 disk->first_minor = 0;
b60503ba
MW
2142 disk->fops = &nvme_fops;
2143 disk->private_data = ns;
2144 disk->queue = ns->queue;
b3fffdef 2145 disk->driverfs_dev = dev->device;
469071a3 2146 disk->flags = GENHD_FL_EXT_DEVT;
5aff9382 2147 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba 2148
e1e5e564
KB
2149 /*
2150 * Initialize capacity to 0 until we establish the namespace format and
2151 * setup integrity extentions if necessary. The revalidate_disk after
2152 * add_disk allows the driver to register with integrity if the format
2153 * requires it.
2154 */
2155 set_capacity(disk, 0);
2156 nvme_revalidate_disk(ns->disk);
2157 add_disk(ns->disk);
2158 if (ns->ms)
2159 revalidate_disk(ns->disk);
2160 return;
b60503ba
MW
2161 out_free_queue:
2162 blk_cleanup_queue(ns->queue);
2163 out_free_ns:
2164 kfree(ns);
b60503ba
MW
2165}
2166
42f61420
KB
2167static void nvme_create_io_queues(struct nvme_dev *dev)
2168{
a4aea562 2169 unsigned i;
42f61420 2170
a4aea562 2171 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 2172 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
2173 break;
2174
a4aea562
MB
2175 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2176 if (nvme_create_queue(dev->queues[i], i))
42f61420
KB
2177 break;
2178}
2179
b3b06812 2180static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
2181{
2182 int status;
2183 u32 result;
b3b06812 2184 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 2185
df348139 2186 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 2187 &result);
27e8166c
MW
2188 if (status < 0)
2189 return status;
2190 if (status > 0) {
2191 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2192 status);
badc34d4 2193 return 0;
27e8166c 2194 }
b60503ba
MW
2195 return min(result & 0xffff, result >> 16) + 1;
2196}
2197
9d713c2b
KB
2198static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2199{
b80d5ccc 2200 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
2201}
2202
8d85fce7 2203static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2204{
a4aea562 2205 struct nvme_queue *adminq = dev->queues[0];
fa08a396 2206 struct pci_dev *pdev = dev->pci_dev;
42f61420 2207 int result, i, vecs, nr_io_queues, size;
b60503ba 2208
42f61420 2209 nr_io_queues = num_possible_cpus();
b348b7d5 2210 result = set_queue_count(dev, nr_io_queues);
badc34d4 2211 if (result <= 0)
1b23484b 2212 return result;
b348b7d5
MW
2213 if (result < nr_io_queues)
2214 nr_io_queues = result;
b60503ba 2215
9d713c2b
KB
2216 size = db_bar_size(dev, nr_io_queues);
2217 if (size > 8192) {
f1938f6e 2218 iounmap(dev->bar);
9d713c2b
KB
2219 do {
2220 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2221 if (dev->bar)
2222 break;
2223 if (!--nr_io_queues)
2224 return -ENOMEM;
2225 size = db_bar_size(dev, nr_io_queues);
2226 } while (1);
f1938f6e 2227 dev->dbs = ((void __iomem *)dev->bar) + 4096;
5a92e700 2228 adminq->q_db = dev->dbs;
f1938f6e
MW
2229 }
2230
9d713c2b 2231 /* Deregister the admin queue's interrupt */
3193f07b 2232 free_irq(dev->entry[0].vector, adminq);
9d713c2b 2233
e32efbfc
JA
2234 /*
2235 * If we enable msix early due to not intx, disable it again before
2236 * setting up the full range we need.
2237 */
2238 if (!pdev->irq)
2239 pci_disable_msix(pdev);
2240
be577fab 2241 for (i = 0; i < nr_io_queues; i++)
1b23484b 2242 dev->entry[i].entry = i;
be577fab
AG
2243 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2244 if (vecs < 0) {
2245 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2246 if (vecs < 0) {
2247 vecs = 1;
2248 } else {
2249 for (i = 0; i < vecs; i++)
2250 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
2251 }
2252 }
2253
063a8096
MW
2254 /*
2255 * Should investigate if there's a performance win from allocating
2256 * more queues than interrupt vectors; it might allow the submission
2257 * path to scale better, even if the receive path is limited by the
2258 * number of interrupts.
2259 */
2260 nr_io_queues = vecs;
42f61420 2261 dev->max_qid = nr_io_queues;
063a8096 2262
3193f07b 2263 result = queue_request_irq(dev, adminq, adminq->irqname);
a4aea562 2264 if (result)
22404274 2265 goto free_queues;
1b23484b 2266
cd638946 2267 /* Free previously allocated queues that are no longer usable */
42f61420 2268 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 2269 nvme_create_io_queues(dev);
9ecdc946 2270
22404274 2271 return 0;
b60503ba 2272
22404274 2273 free_queues:
a1a5ef99 2274 nvme_free_queues(dev, 1);
22404274 2275 return result;
b60503ba
MW
2276}
2277
422ef0c7
MW
2278/*
2279 * Return: error value if an error occurred setting up the queues or calling
2280 * Identify Device. 0 if these succeeded, even if adding some of the
2281 * namespaces failed. At the moment, these failures are silent. TBD which
2282 * failures should be reported.
2283 */
8d85fce7 2284static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2285{
68608c26 2286 struct pci_dev *pdev = dev->pci_dev;
c3bfe717
MW
2287 int res;
2288 unsigned nn, i;
51814232 2289 struct nvme_id_ctrl *ctrl;
bc5fc7e4 2290 void *mem;
b60503ba 2291 dma_addr_t dma_addr;
159b67d7 2292 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba 2293
e1e5e564 2294 mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
a9ef4343
KB
2295 if (!mem)
2296 return -ENOMEM;
b60503ba 2297
bc5fc7e4 2298 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba 2299 if (res) {
27e8166c 2300 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
e1e5e564
KB
2301 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2302 return -EIO;
b60503ba
MW
2303 }
2304
bc5fc7e4 2305 ctrl = mem;
51814232 2306 nn = le32_to_cpup(&ctrl->nn);
0e5e4f0e 2307 dev->oncs = le16_to_cpup(&ctrl->oncs);
c30341dc 2308 dev->abort_limit = ctrl->acl + 1;
a7d2ce28 2309 dev->vwc = ctrl->vwc;
51814232
MW
2310 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2311 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2312 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 2313 if (ctrl->mdts)
8fc23e03 2314 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
68608c26 2315 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
a4aea562
MB
2316 (pdev->device == 0x0953) && ctrl->vs[3]) {
2317 unsigned int max_hw_sectors;
2318
159b67d7 2319 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
a4aea562
MB
2320 max_hw_sectors = dev->stripe_size >> (shift - 9);
2321 if (dev->max_hw_sectors) {
2322 dev->max_hw_sectors = min(max_hw_sectors,
2323 dev->max_hw_sectors);
2324 } else
2325 dev->max_hw_sectors = max_hw_sectors;
2326 }
e1e5e564 2327 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
a4aea562
MB
2328
2329 dev->tagset.ops = &nvme_mq_ops;
2330 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2331 dev->tagset.timeout = NVME_IO_TIMEOUT;
2332 dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2333 dev->tagset.queue_depth =
2334 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ac3dd5bd 2335 dev->tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
2336 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2337 dev->tagset.driver_data = dev;
2338
2339 if (blk_mq_alloc_tag_set(&dev->tagset))
e1e5e564 2340 return 0;
b60503ba 2341
e1e5e564
KB
2342 for (i = 1; i <= nn; i++)
2343 nvme_alloc_ns(dev, i);
b60503ba 2344
e1e5e564 2345 return 0;
b60503ba
MW
2346}
2347
0877cb0d
KB
2348static int nvme_dev_map(struct nvme_dev *dev)
2349{
42f61420 2350 u64 cap;
0877cb0d
KB
2351 int bars, result = -ENOMEM;
2352 struct pci_dev *pdev = dev->pci_dev;
2353
2354 if (pci_enable_device_mem(pdev))
2355 return result;
2356
2357 dev->entry[0].vector = pdev->irq;
2358 pci_set_master(pdev);
2359 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
2360 if (!bars)
2361 goto disable_pci;
2362
0877cb0d
KB
2363 if (pci_request_selected_regions(pdev, bars, "nvme"))
2364 goto disable_pci;
2365
052d0efa
RK
2366 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2367 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2368 goto disable;
0877cb0d 2369
0877cb0d
KB
2370 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2371 if (!dev->bar)
2372 goto disable;
e32efbfc 2373
0e53d180
KB
2374 if (readl(&dev->bar->csts) == -1) {
2375 result = -ENODEV;
2376 goto unmap;
2377 }
e32efbfc
JA
2378
2379 /*
2380 * Some devices don't advertse INTx interrupts, pre-enable a single
2381 * MSIX vec for setup. We'll adjust this later.
2382 */
2383 if (!pdev->irq) {
2384 result = pci_enable_msix(pdev, dev->entry, 1);
2385 if (result < 0)
2386 goto unmap;
2387 }
2388
42f61420
KB
2389 cap = readq(&dev->bar->cap);
2390 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2391 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
0877cb0d
KB
2392 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2393
2394 return 0;
2395
0e53d180
KB
2396 unmap:
2397 iounmap(dev->bar);
2398 dev->bar = NULL;
0877cb0d
KB
2399 disable:
2400 pci_release_regions(pdev);
2401 disable_pci:
2402 pci_disable_device(pdev);
2403 return result;
2404}
2405
2406static void nvme_dev_unmap(struct nvme_dev *dev)
2407{
2408 if (dev->pci_dev->msi_enabled)
2409 pci_disable_msi(dev->pci_dev);
2410 else if (dev->pci_dev->msix_enabled)
2411 pci_disable_msix(dev->pci_dev);
2412
2413 if (dev->bar) {
2414 iounmap(dev->bar);
2415 dev->bar = NULL;
9a6b9458 2416 pci_release_regions(dev->pci_dev);
0877cb0d
KB
2417 }
2418
0877cb0d
KB
2419 if (pci_is_enabled(dev->pci_dev))
2420 pci_disable_device(dev->pci_dev);
2421}
2422
4d115420
KB
2423struct nvme_delq_ctx {
2424 struct task_struct *waiter;
2425 struct kthread_worker *worker;
2426 atomic_t refcount;
2427};
2428
2429static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2430{
2431 dq->waiter = current;
2432 mb();
2433
2434 for (;;) {
2435 set_current_state(TASK_KILLABLE);
2436 if (!atomic_read(&dq->refcount))
2437 break;
2438 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2439 fatal_signal_pending(current)) {
0fb59cbc
KB
2440 /*
2441 * Disable the controller first since we can't trust it
2442 * at this point, but leave the admin queue enabled
2443 * until all queue deletion requests are flushed.
2444 * FIXME: This may take a while if there are more h/w
2445 * queues than admin tags.
2446 */
4d115420 2447 set_current_state(TASK_RUNNING);
4d115420 2448 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
0fb59cbc 2449 nvme_clear_queue(dev->queues[0]);
4d115420 2450 flush_kthread_worker(dq->worker);
0fb59cbc 2451 nvme_disable_queue(dev, 0);
4d115420
KB
2452 return;
2453 }
2454 }
2455 set_current_state(TASK_RUNNING);
2456}
2457
2458static void nvme_put_dq(struct nvme_delq_ctx *dq)
2459{
2460 atomic_dec(&dq->refcount);
2461 if (dq->waiter)
2462 wake_up_process(dq->waiter);
2463}
2464
2465static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2466{
2467 atomic_inc(&dq->refcount);
2468 return dq;
2469}
2470
2471static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2472{
2473 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420
KB
2474 nvme_put_dq(dq);
2475}
2476
2477static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2478 kthread_work_func_t fn)
2479{
2480 struct nvme_command c;
2481
2482 memset(&c, 0, sizeof(c));
2483 c.delete_queue.opcode = opcode;
2484 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2485
2486 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
2487 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2488 ADMIN_TIMEOUT);
4d115420
KB
2489}
2490
2491static void nvme_del_cq_work_handler(struct kthread_work *work)
2492{
2493 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2494 cmdinfo.work);
2495 nvme_del_queue_end(nvmeq);
2496}
2497
2498static int nvme_delete_cq(struct nvme_queue *nvmeq)
2499{
2500 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2501 nvme_del_cq_work_handler);
2502}
2503
2504static void nvme_del_sq_work_handler(struct kthread_work *work)
2505{
2506 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2507 cmdinfo.work);
2508 int status = nvmeq->cmdinfo.status;
2509
2510 if (!status)
2511 status = nvme_delete_cq(nvmeq);
2512 if (status)
2513 nvme_del_queue_end(nvmeq);
2514}
2515
2516static int nvme_delete_sq(struct nvme_queue *nvmeq)
2517{
2518 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2519 nvme_del_sq_work_handler);
2520}
2521
2522static void nvme_del_queue_start(struct kthread_work *work)
2523{
2524 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2525 cmdinfo.work);
4d115420
KB
2526 if (nvme_delete_sq(nvmeq))
2527 nvme_del_queue_end(nvmeq);
2528}
2529
2530static void nvme_disable_io_queues(struct nvme_dev *dev)
2531{
2532 int i;
2533 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2534 struct nvme_delq_ctx dq;
2535 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2536 &worker, "nvme%d", dev->instance);
2537
2538 if (IS_ERR(kworker_task)) {
2539 dev_err(&dev->pci_dev->dev,
2540 "Failed to create queue del task\n");
2541 for (i = dev->queue_count - 1; i > 0; i--)
2542 nvme_disable_queue(dev, i);
2543 return;
2544 }
2545
2546 dq.waiter = NULL;
2547 atomic_set(&dq.refcount, 0);
2548 dq.worker = &worker;
2549 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2550 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2551
2552 if (nvme_suspend_queue(nvmeq))
2553 continue;
2554 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2555 nvmeq->cmdinfo.worker = dq.worker;
2556 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2557 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2558 }
2559 nvme_wait_dq(&dq, dev);
2560 kthread_stop(kworker_task);
2561}
2562
b9afca3e
DM
2563/*
2564* Remove the node from the device list and check
2565* for whether or not we need to stop the nvme_thread.
2566*/
2567static void nvme_dev_list_remove(struct nvme_dev *dev)
2568{
2569 struct task_struct *tmp = NULL;
2570
2571 spin_lock(&dev_list_lock);
2572 list_del_init(&dev->node);
2573 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2574 tmp = nvme_thread;
2575 nvme_thread = NULL;
2576 }
2577 spin_unlock(&dev_list_lock);
2578
2579 if (tmp)
2580 kthread_stop(tmp);
2581}
2582
c9d3bf88
KB
2583static void nvme_freeze_queues(struct nvme_dev *dev)
2584{
2585 struct nvme_ns *ns;
2586
2587 list_for_each_entry(ns, &dev->namespaces, list) {
2588 blk_mq_freeze_queue_start(ns->queue);
2589
2590 spin_lock(ns->queue->queue_lock);
2591 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2592 spin_unlock(ns->queue->queue_lock);
2593
2594 blk_mq_cancel_requeue_work(ns->queue);
2595 blk_mq_stop_hw_queues(ns->queue);
2596 }
2597}
2598
2599static void nvme_unfreeze_queues(struct nvme_dev *dev)
2600{
2601 struct nvme_ns *ns;
2602
2603 list_for_each_entry(ns, &dev->namespaces, list) {
2604 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2605 blk_mq_unfreeze_queue(ns->queue);
2606 blk_mq_start_stopped_hw_queues(ns->queue, true);
2607 blk_mq_kick_requeue_list(ns->queue);
2608 }
2609}
2610
f0b50732 2611static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2612{
22404274 2613 int i;
7c1b2450 2614 u32 csts = -1;
22404274 2615
b9afca3e 2616 nvme_dev_list_remove(dev);
1fa6aead 2617
c9d3bf88
KB
2618 if (dev->bar) {
2619 nvme_freeze_queues(dev);
7c1b2450 2620 csts = readl(&dev->bar->csts);
c9d3bf88 2621 }
7c1b2450 2622 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2623 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2624 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2625 nvme_suspend_queue(nvmeq);
4d115420
KB
2626 }
2627 } else {
2628 nvme_disable_io_queues(dev);
1894d8f1 2629 nvme_shutdown_ctrl(dev);
4d115420
KB
2630 nvme_disable_queue(dev, 0);
2631 }
f0b50732 2632 nvme_dev_unmap(dev);
07836e65
KB
2633
2634 for (i = dev->queue_count - 1; i >= 0; i--)
2635 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2636}
2637
2638static void nvme_dev_remove(struct nvme_dev *dev)
2639{
9ac27090 2640 struct nvme_ns *ns;
f0b50732 2641
9ac27090 2642 list_for_each_entry(ns, &dev->namespaces, list) {
e1e5e564 2643 if (ns->disk->flags & GENHD_FL_UP) {
52b68d7e 2644 if (blk_get_integrity(ns->disk))
e1e5e564 2645 blk_integrity_unregister(ns->disk);
9ac27090 2646 del_gendisk(ns->disk);
e1e5e564 2647 }
cef6a948
KB
2648 if (!blk_queue_dying(ns->queue)) {
2649 blk_mq_abort_requeue_list(ns->queue);
9ac27090 2650 blk_cleanup_queue(ns->queue);
cef6a948 2651 }
b60503ba 2652 }
b60503ba
MW
2653}
2654
091b6092
MW
2655static int nvme_setup_prp_pools(struct nvme_dev *dev)
2656{
2657 struct device *dmadev = &dev->pci_dev->dev;
2658 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2659 PAGE_SIZE, PAGE_SIZE, 0);
2660 if (!dev->prp_page_pool)
2661 return -ENOMEM;
2662
99802a7a
MW
2663 /* Optimisation for I/Os between 4k and 128k */
2664 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2665 256, 256, 0);
2666 if (!dev->prp_small_pool) {
2667 dma_pool_destroy(dev->prp_page_pool);
2668 return -ENOMEM;
2669 }
091b6092
MW
2670 return 0;
2671}
2672
2673static void nvme_release_prp_pools(struct nvme_dev *dev)
2674{
2675 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2676 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2677}
2678
cd58ad7d
QSA
2679static DEFINE_IDA(nvme_instance_ida);
2680
2681static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2682{
cd58ad7d
QSA
2683 int instance, error;
2684
2685 do {
2686 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2687 return -ENODEV;
2688
2689 spin_lock(&dev_list_lock);
2690 error = ida_get_new(&nvme_instance_ida, &instance);
2691 spin_unlock(&dev_list_lock);
2692 } while (error == -EAGAIN);
2693
2694 if (error)
2695 return -ENODEV;
2696
2697 dev->instance = instance;
2698 return 0;
b60503ba
MW
2699}
2700
2701static void nvme_release_instance(struct nvme_dev *dev)
2702{
cd58ad7d
QSA
2703 spin_lock(&dev_list_lock);
2704 ida_remove(&nvme_instance_ida, dev->instance);
2705 spin_unlock(&dev_list_lock);
b60503ba
MW
2706}
2707
9ac27090
KB
2708static void nvme_free_namespaces(struct nvme_dev *dev)
2709{
2710 struct nvme_ns *ns, *next;
2711
2712 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2713 list_del(&ns->list);
9e60352c
KB
2714
2715 spin_lock(&dev_list_lock);
2716 ns->disk->private_data = NULL;
2717 spin_unlock(&dev_list_lock);
2718
9ac27090
KB
2719 put_disk(ns->disk);
2720 kfree(ns);
2721 }
2722}
2723
5e82e952
KB
2724static void nvme_free_dev(struct kref *kref)
2725{
2726 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
9ac27090 2727
a96d4f5c 2728 pci_dev_put(dev->pci_dev);
b3fffdef 2729 put_device(dev->device);
9ac27090 2730 nvme_free_namespaces(dev);
285dffc9 2731 nvme_release_instance(dev);
a4aea562 2732 blk_mq_free_tag_set(&dev->tagset);
ea191d2f 2733 blk_put_queue(dev->admin_q);
5e82e952
KB
2734 kfree(dev->queues);
2735 kfree(dev->entry);
2736 kfree(dev);
2737}
2738
2739static int nvme_dev_open(struct inode *inode, struct file *f)
2740{
b3fffdef
KB
2741 struct nvme_dev *dev;
2742 int instance = iminor(inode);
2743 int ret = -ENODEV;
2744
2745 spin_lock(&dev_list_lock);
2746 list_for_each_entry(dev, &dev_list, node) {
2747 if (dev->instance == instance) {
2e1d8448
KB
2748 if (!dev->admin_q) {
2749 ret = -EWOULDBLOCK;
2750 break;
2751 }
b3fffdef
KB
2752 if (!kref_get_unless_zero(&dev->kref))
2753 break;
2754 f->private_data = dev;
2755 ret = 0;
2756 break;
2757 }
2758 }
2759 spin_unlock(&dev_list_lock);
2760
2761 return ret;
5e82e952
KB
2762}
2763
2764static int nvme_dev_release(struct inode *inode, struct file *f)
2765{
2766 struct nvme_dev *dev = f->private_data;
2767 kref_put(&dev->kref, nvme_free_dev);
2768 return 0;
2769}
2770
2771static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2772{
2773 struct nvme_dev *dev = f->private_data;
a4aea562
MB
2774 struct nvme_ns *ns;
2775
5e82e952
KB
2776 switch (cmd) {
2777 case NVME_IOCTL_ADMIN_CMD:
a4aea562 2778 return nvme_user_cmd(dev, NULL, (void __user *)arg);
7963e521 2779 case NVME_IOCTL_IO_CMD:
a4aea562
MB
2780 if (list_empty(&dev->namespaces))
2781 return -ENOTTY;
2782 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2783 return nvme_user_cmd(dev, ns, (void __user *)arg);
5e82e952
KB
2784 default:
2785 return -ENOTTY;
2786 }
2787}
2788
2789static const struct file_operations nvme_dev_fops = {
2790 .owner = THIS_MODULE,
2791 .open = nvme_dev_open,
2792 .release = nvme_dev_release,
2793 .unlocked_ioctl = nvme_dev_ioctl,
2794 .compat_ioctl = nvme_dev_ioctl,
2795};
2796
a4aea562
MB
2797static void nvme_set_irq_hints(struct nvme_dev *dev)
2798{
2799 struct nvme_queue *nvmeq;
2800 int i;
2801
2802 for (i = 0; i < dev->online_queues; i++) {
2803 nvmeq = dev->queues[i];
2804
2805 if (!nvmeq->hctx)
2806 continue;
2807
2808 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2809 nvmeq->hctx->cpumask);
2810 }
2811}
2812
f0b50732
KB
2813static int nvme_dev_start(struct nvme_dev *dev)
2814{
2815 int result;
b9afca3e 2816 bool start_thread = false;
f0b50732
KB
2817
2818 result = nvme_dev_map(dev);
2819 if (result)
2820 return result;
2821
2822 result = nvme_configure_admin_queue(dev);
2823 if (result)
2824 goto unmap;
2825
2826 spin_lock(&dev_list_lock);
b9afca3e
DM
2827 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2828 start_thread = true;
2829 nvme_thread = NULL;
2830 }
f0b50732
KB
2831 list_add(&dev->node, &dev_list);
2832 spin_unlock(&dev_list_lock);
2833
b9afca3e
DM
2834 if (start_thread) {
2835 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 2836 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
2837 } else
2838 wait_event_killable(nvme_kthread_wait, nvme_thread);
2839
2840 if (IS_ERR_OR_NULL(nvme_thread)) {
2841 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2842 goto disable;
2843 }
a4aea562
MB
2844
2845 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2846 result = nvme_alloc_admin_tags(dev);
2847 if (result)
2848 goto disable;
b9afca3e 2849
f0b50732 2850 result = nvme_setup_io_queues(dev);
badc34d4 2851 if (result)
0fb59cbc 2852 goto free_tags;
f0b50732 2853
a4aea562
MB
2854 nvme_set_irq_hints(dev);
2855
1efccc9d 2856 dev->event_limit = 1;
d82e8bfd 2857 return result;
f0b50732 2858
0fb59cbc
KB
2859 free_tags:
2860 nvme_dev_remove_admin(dev);
f0b50732 2861 disable:
a1a5ef99 2862 nvme_disable_queue(dev, 0);
b9afca3e 2863 nvme_dev_list_remove(dev);
f0b50732
KB
2864 unmap:
2865 nvme_dev_unmap(dev);
2866 return result;
2867}
2868
9a6b9458
KB
2869static int nvme_remove_dead_ctrl(void *arg)
2870{
2871 struct nvme_dev *dev = (struct nvme_dev *)arg;
2872 struct pci_dev *pdev = dev->pci_dev;
2873
2874 if (pci_get_drvdata(pdev))
c81f4975 2875 pci_stop_and_remove_bus_device_locked(pdev);
9a6b9458
KB
2876 kref_put(&dev->kref, nvme_free_dev);
2877 return 0;
2878}
2879
2880static void nvme_remove_disks(struct work_struct *ws)
2881{
9a6b9458
KB
2882 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2883
5a92e700 2884 nvme_free_queues(dev, 1);
302c6727 2885 nvme_dev_remove(dev);
9a6b9458
KB
2886}
2887
2888static int nvme_dev_resume(struct nvme_dev *dev)
2889{
2890 int ret;
2891
2892 ret = nvme_dev_start(dev);
badc34d4 2893 if (ret)
9a6b9458 2894 return ret;
badc34d4 2895 if (dev->online_queues < 2) {
9a6b9458 2896 spin_lock(&dev_list_lock);
9ca97374 2897 dev->reset_workfn = nvme_remove_disks;
9a6b9458
KB
2898 queue_work(nvme_workq, &dev->reset_work);
2899 spin_unlock(&dev_list_lock);
c9d3bf88
KB
2900 } else {
2901 nvme_unfreeze_queues(dev);
2902 nvme_set_irq_hints(dev);
9a6b9458
KB
2903 }
2904 return 0;
2905}
2906
2907static void nvme_dev_reset(struct nvme_dev *dev)
2908{
2909 nvme_dev_shutdown(dev);
2910 if (nvme_dev_resume(dev)) {
a4aea562 2911 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
9a6b9458
KB
2912 kref_get(&dev->kref);
2913 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2914 dev->instance))) {
2915 dev_err(&dev->pci_dev->dev,
2916 "Failed to start controller remove task\n");
2917 kref_put(&dev->kref, nvme_free_dev);
2918 }
2919 }
2920}
2921
2922static void nvme_reset_failed_dev(struct work_struct *ws)
2923{
2924 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2925 nvme_dev_reset(dev);
2926}
2927
9ca97374
TH
2928static void nvme_reset_workfn(struct work_struct *work)
2929{
2930 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2931 dev->reset_workfn(work);
2932}
2933
2e1d8448 2934static void nvme_async_probe(struct work_struct *work);
8d85fce7 2935static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2936{
a4aea562 2937 int node, result = -ENOMEM;
b60503ba
MW
2938 struct nvme_dev *dev;
2939
a4aea562
MB
2940 node = dev_to_node(&pdev->dev);
2941 if (node == NUMA_NO_NODE)
2942 set_dev_node(&pdev->dev, 0);
2943
2944 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2945 if (!dev)
2946 return -ENOMEM;
a4aea562
MB
2947 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2948 GFP_KERNEL, node);
b60503ba
MW
2949 if (!dev->entry)
2950 goto free;
a4aea562
MB
2951 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2952 GFP_KERNEL, node);
b60503ba
MW
2953 if (!dev->queues)
2954 goto free;
2955
2956 INIT_LIST_HEAD(&dev->namespaces);
9ca97374
TH
2957 dev->reset_workfn = nvme_reset_failed_dev;
2958 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
a96d4f5c 2959 dev->pci_dev = pci_dev_get(pdev);
9a6b9458 2960 pci_set_drvdata(pdev, dev);
cd58ad7d
QSA
2961 result = nvme_set_instance(dev);
2962 if (result)
a96d4f5c 2963 goto put_pci;
b60503ba 2964
091b6092
MW
2965 result = nvme_setup_prp_pools(dev);
2966 if (result)
0877cb0d 2967 goto release;
091b6092 2968
fb35e914 2969 kref_init(&dev->kref);
b3fffdef
KB
2970 dev->device = device_create(nvme_class, &pdev->dev,
2971 MKDEV(nvme_char_major, dev->instance),
2972 dev, "nvme%d", dev->instance);
2973 if (IS_ERR(dev->device)) {
2974 result = PTR_ERR(dev->device);
2e1d8448 2975 goto release_pools;
b3fffdef
KB
2976 }
2977 get_device(dev->device);
740216fc 2978
e6e96d73 2979 INIT_LIST_HEAD(&dev->node);
2e1d8448
KB
2980 INIT_WORK(&dev->probe_work, nvme_async_probe);
2981 schedule_work(&dev->probe_work);
b60503ba
MW
2982 return 0;
2983
0877cb0d 2984 release_pools:
091b6092 2985 nvme_release_prp_pools(dev);
0877cb0d
KB
2986 release:
2987 nvme_release_instance(dev);
a96d4f5c
KB
2988 put_pci:
2989 pci_dev_put(dev->pci_dev);
b60503ba
MW
2990 free:
2991 kfree(dev->queues);
2992 kfree(dev->entry);
2993 kfree(dev);
2994 return result;
2995}
2996
2e1d8448
KB
2997static void nvme_async_probe(struct work_struct *work)
2998{
2999 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3000 int result;
3001
3002 result = nvme_dev_start(dev);
3003 if (result)
3004 goto reset;
3005
3006 if (dev->online_queues > 1)
3007 result = nvme_dev_add(dev);
3008 if (result)
3009 goto reset;
3010
3011 nvme_set_irq_hints(dev);
2e1d8448
KB
3012 return;
3013 reset:
07836e65
KB
3014 if (!work_busy(&dev->reset_work)) {
3015 dev->reset_workfn = nvme_reset_failed_dev;
3016 queue_work(nvme_workq, &dev->reset_work);
3017 }
2e1d8448
KB
3018}
3019
f0d54a54
KB
3020static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3021{
a6739479 3022 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 3023
a6739479
KB
3024 if (prepare)
3025 nvme_dev_shutdown(dev);
3026 else
3027 nvme_dev_resume(dev);
f0d54a54
KB
3028}
3029
09ece142
KB
3030static void nvme_shutdown(struct pci_dev *pdev)
3031{
3032 struct nvme_dev *dev = pci_get_drvdata(pdev);
3033 nvme_dev_shutdown(dev);
3034}
3035
8d85fce7 3036static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3037{
3038 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
3039
3040 spin_lock(&dev_list_lock);
3041 list_del_init(&dev->node);
3042 spin_unlock(&dev_list_lock);
3043
3044 pci_set_drvdata(pdev, NULL);
2e1d8448 3045 flush_work(&dev->probe_work);
9a6b9458 3046 flush_work(&dev->reset_work);
9a6b9458 3047 nvme_dev_shutdown(dev);
c9d3bf88 3048 nvme_dev_remove(dev);
a4aea562 3049 nvme_dev_remove_admin(dev);
b3fffdef 3050 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
a1a5ef99 3051 nvme_free_queues(dev, 0);
9a6b9458 3052 nvme_release_prp_pools(dev);
5e82e952 3053 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
3054}
3055
3056/* These functions are yet to be implemented */
3057#define nvme_error_detected NULL
3058#define nvme_dump_registers NULL
3059#define nvme_link_reset NULL
3060#define nvme_slot_reset NULL
3061#define nvme_error_resume NULL
cd638946 3062
671a6018 3063#ifdef CONFIG_PM_SLEEP
cd638946
KB
3064static int nvme_suspend(struct device *dev)
3065{
3066 struct pci_dev *pdev = to_pci_dev(dev);
3067 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3068
3069 nvme_dev_shutdown(ndev);
3070 return 0;
3071}
3072
3073static int nvme_resume(struct device *dev)
3074{
3075 struct pci_dev *pdev = to_pci_dev(dev);
3076 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3077
9a6b9458 3078 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
9ca97374 3079 ndev->reset_workfn = nvme_reset_failed_dev;
9a6b9458
KB
3080 queue_work(nvme_workq, &ndev->reset_work);
3081 }
3082 return 0;
cd638946 3083}
671a6018 3084#endif
cd638946
KB
3085
3086static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 3087
1d352035 3088static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
3089 .error_detected = nvme_error_detected,
3090 .mmio_enabled = nvme_dump_registers,
3091 .link_reset = nvme_link_reset,
3092 .slot_reset = nvme_slot_reset,
3093 .resume = nvme_error_resume,
f0d54a54 3094 .reset_notify = nvme_reset_notify,
b60503ba
MW
3095};
3096
3097/* Move to pci_ids.h later */
3098#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3099
6eb0d698 3100static const struct pci_device_id nvme_id_table[] = {
b60503ba
MW
3101 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3102 { 0, }
3103};
3104MODULE_DEVICE_TABLE(pci, nvme_id_table);
3105
3106static struct pci_driver nvme_driver = {
3107 .name = "nvme",
3108 .id_table = nvme_id_table,
3109 .probe = nvme_probe,
8d85fce7 3110 .remove = nvme_remove,
09ece142 3111 .shutdown = nvme_shutdown,
cd638946
KB
3112 .driver = {
3113 .pm = &nvme_dev_pm_ops,
3114 },
b60503ba
MW
3115 .err_handler = &nvme_err_handler,
3116};
3117
3118static int __init nvme_init(void)
3119{
0ac13140 3120 int result;
1fa6aead 3121
b9afca3e 3122 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 3123
9a6b9458
KB
3124 nvme_workq = create_singlethread_workqueue("nvme");
3125 if (!nvme_workq)
b9afca3e 3126 return -ENOMEM;
9a6b9458 3127
5c42ea16
KB
3128 result = register_blkdev(nvme_major, "nvme");
3129 if (result < 0)
9a6b9458 3130 goto kill_workq;
5c42ea16 3131 else if (result > 0)
0ac13140 3132 nvme_major = result;
b60503ba 3133
b3fffdef
KB
3134 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3135 &nvme_dev_fops);
3136 if (result < 0)
3137 goto unregister_blkdev;
3138 else if (result > 0)
3139 nvme_char_major = result;
3140
3141 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
3142 if (IS_ERR(nvme_class)) {
3143 result = PTR_ERR(nvme_class);
b3fffdef 3144 goto unregister_chrdev;
c727040b 3145 }
b3fffdef 3146
f3db22fe
KB
3147 result = pci_register_driver(&nvme_driver);
3148 if (result)
b3fffdef 3149 goto destroy_class;
1fa6aead 3150 return 0;
b60503ba 3151
b3fffdef
KB
3152 destroy_class:
3153 class_destroy(nvme_class);
3154 unregister_chrdev:
3155 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 3156 unregister_blkdev:
b60503ba 3157 unregister_blkdev(nvme_major, "nvme");
9a6b9458
KB
3158 kill_workq:
3159 destroy_workqueue(nvme_workq);
b60503ba
MW
3160 return result;
3161}
3162
3163static void __exit nvme_exit(void)
3164{
3165 pci_unregister_driver(&nvme_driver);
3166 unregister_blkdev(nvme_major, "nvme");
9a6b9458 3167 destroy_workqueue(nvme_workq);
b3fffdef
KB
3168 class_destroy(nvme_class);
3169 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 3170 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 3171 _nvme_check_size();
b60503ba
MW
3172}
3173
3174MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3175MODULE_LICENSE("GPL");
c78b4713 3176MODULE_VERSION("1.0");
b60503ba
MW
3177module_init(nvme_init);
3178module_exit(nvme_exit);