]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: Factor out core logic of check_watchpoint()
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
1de7afc9
PB
38#include "qemu/timer.h"
39#include "qemu/config-file.h"
75a34036 40#include "qemu/error-report.h"
b6b71cb5 41#include "qemu/qemu-print.h"
53a5960a 42#if defined(CONFIG_USER_ONLY)
a9c94277 43#include "qemu.h"
432d268c 44#else /* !CONFIG_USER_ONLY */
741da0d3 45#include "exec/memory.h"
df43d49c 46#include "exec/ioport.h"
741da0d3 47#include "sysemu/dma.h"
b58c5c2d 48#include "sysemu/hostmem.h"
79ca7a1b 49#include "sysemu/hw_accel.h"
741da0d3 50#include "exec/address-spaces.h"
9c17d615 51#include "sysemu/xen-mapcache.h"
0ab8ed18 52#include "trace-root.h"
d3a5038c 53
e2fa71f5 54#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
e2eef170 93#endif
9fa3e853 94
20bccb82
PM
95#ifdef TARGET_PAGE_BITS_VARY
96int target_page_bits;
97bool target_page_bits_decided;
98#endif
99
f481ee2d
PB
100CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
101
6a00d601
FB
102/* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
f240eb6f 104__thread CPUState *current_cpu;
2e70f6ef 105/* 0 = Do not count executed instructions.
bf20dc07 106 1 = Precise instruction counting.
2e70f6ef 107 2 = Adaptive rate instruction counting. */
5708fc66 108int use_icount;
6a00d601 109
a0be0c58
YZ
110uintptr_t qemu_host_page_size;
111intptr_t qemu_host_page_mask;
a0be0c58 112
20bccb82
PM
113bool set_preferred_target_page_bits(int bits)
114{
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
119 */
120#ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
125 }
126 target_page_bits = bits;
127 }
128#endif
129 return true;
130}
131
e2eef170 132#if !defined(CONFIG_USER_ONLY)
4346ae3e 133
20bccb82
PM
134static void finalize_target_page_bits(void)
135{
136#ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
139 }
140 target_page_bits_decided = true;
141#endif
142}
143
1db8abb1
PB
144typedef struct PhysPageEntry PhysPageEntry;
145
146struct PhysPageEntry {
9736e55b 147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 148 uint32_t skip : 6;
9736e55b 149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 150 uint32_t ptr : 26;
1db8abb1
PB
151};
152
8b795765
MT
153#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
154
03f49957 155/* Size of the L2 (and L3, etc) page tables. */
57271d63 156#define ADDR_SPACE_BITS 64
03f49957 157
026736ce 158#define P_L2_BITS 9
03f49957
PB
159#define P_L2_SIZE (1 << P_L2_BITS)
160
161#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
162
163typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 164
53cb28cb 165typedef struct PhysPageMap {
79e2b9ae
PB
166 struct rcu_head rcu;
167
53cb28cb
MA
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174} PhysPageMap;
175
1db8abb1 176struct AddressSpaceDispatch {
729633c2 177 MemoryRegionSection *mru_section;
1db8abb1
PB
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
53cb28cb 182 PhysPageMap map;
1db8abb1
PB
183};
184
90260c6c
JK
185#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186typedef struct subpage_t {
187 MemoryRegion iomem;
16620684 188 FlatView *fv;
90260c6c 189 hwaddr base;
2615fabd 190 uint16_t sub_section[];
90260c6c
JK
191} subpage_t;
192
b41aac4f
LPF
193#define PHYS_SECTION_UNASSIGNED 0
194#define PHYS_SECTION_NOTDIRTY 1
195#define PHYS_SECTION_ROM 2
196#define PHYS_SECTION_WATCH 3
5312bd8b 197
e2eef170 198static void io_mem_init(void);
62152b8a 199static void memory_map_init(void);
9458a9a1 200static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 201static void tcg_commit(MemoryListener *listener);
e2eef170 202
1ec9b909 203static MemoryRegion io_mem_watch;
32857f4d
PM
204
205/**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217};
218
8deaf12c
GH
219struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
223};
224
6658ffb8 225#endif
fd6ce8f6 226
6d9a1304 227#if !defined(CONFIG_USER_ONLY)
d6f2ea22 228
53cb28cb 229static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 230{
101420b8 231 static unsigned alloc_hint = 16;
53cb28cb 232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 236 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 237 }
f7bf5461
AK
238}
239
db94604b 240static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
241{
242 unsigned i;
8b795765 243 uint32_t ret;
db94604b
PB
244 PhysPageEntry e;
245 PhysPageEntry *p;
f7bf5461 246
53cb28cb 247 ret = map->nodes_nb++;
db94604b 248 p = map->nodes[ret];
f7bf5461 249 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 250 assert(ret != map->nodes_nb_alloc);
db94604b
PB
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 254 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 255 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 256 }
f7bf5461 257 return ret;
d6f2ea22
AK
258}
259
53cb28cb
MA
260static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 262 int level)
f7bf5461
AK
263{
264 PhysPageEntry *p;
03f49957 265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 266
9736e55b 267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 268 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 269 }
db94604b 270 p = map->nodes[lp->ptr];
03f49957 271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 272
03f49957 273 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 274 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 275 lp->skip = 0;
c19e8800 276 lp->ptr = leaf;
07f07b31
AK
277 *index += step;
278 *nb -= step;
2999097b 279 } else {
53cb28cb 280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
281 }
282 ++lp;
f7bf5461
AK
283 }
284}
285
ac1970fb 286static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 287 hwaddr index, hwaddr nb,
2999097b 288 uint16_t leaf)
f7bf5461 289{
2999097b 290 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 292
53cb28cb 293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
294}
295
b35ba30f
MT
296/* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
efee678d 299static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
300{
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
efee678d 319 phys_page_compact(&p[i], nodes);
b35ba30f
MT
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347}
348
8629d3fc 349void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 350{
b35ba30f 351 if (d->phys_map.skip) {
efee678d 352 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
353 }
354}
355
29cb533d
FZ
356static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358{
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
258dfaaa 362 return int128_gethi(section->size) ||
29cb533d 363 range_covers_byte(section->offset_within_address_space,
258dfaaa 364 int128_getlo(section->size), addr);
29cb533d
FZ
365}
366
003a0cf2 367static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 368{
003a0cf2
PX
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
97115a8d 372 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 373 int i;
f1f6e3b8 374
9736e55b 375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 377 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 378 }
9affd6fc 379 p = nodes[lp.ptr];
03f49957 380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 381 }
b35ba30f 382
29cb533d 383 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
f3705d53
AK
388}
389
79e2b9ae 390/* Called from RCU critical section */
c7086b4a 391static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
392 hwaddr addr,
393 bool resolve_subpage)
9f029603 394{
729633c2 395 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
396 subpage_t *subpage;
397
07c114bb
PB
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
003a0cf2 400 section = phys_page_find(d, addr);
07c114bb 401 atomic_set(&d->mru_section, section);
729633c2 402 }
90260c6c
JK
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
406 }
407 return section;
9f029603
JK
408}
409
79e2b9ae 410/* Called from RCU critical section */
90260c6c 411static MemoryRegionSection *
c7086b4a 412address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 413 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
414{
415 MemoryRegionSection *section;
965eb2fc 416 MemoryRegion *mr;
a87f3954 417 Int128 diff;
149f54b5 418
c7086b4a 419 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
422
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
425
965eb2fc 426 mr = section->mr;
b242e0e0
PB
427
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
434 *
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
438 */
965eb2fc 439 if (memory_region_is_ram(mr)) {
e4a511f8 440 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 }
149f54b5
PB
443 return section;
444}
90260c6c 445
a411c84b
PB
446/**
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
449 *
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
2f7b009c 463 * @attrs: transaction attributes
a411c84b
PB
464 *
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
467 */
468static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
2f7b009c
PM
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
a411c84b
PB
476{
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
479
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
485
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
488 }
489
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
492
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
495 }
496
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
502
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
506
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
509
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
512 }
513 return *section;
514
515unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517}
518
d5e5fafd
PX
519/**
520 * flatview_do_translate - translate an address in FlatView
521 *
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 534 * @target_as: the address space targeted by the IOMMU
49e14aa8 535 * @attrs: memory transaction attributes
d5e5fafd
PX
536 *
537 * This function is called from RCU critical section
538 */
16620684
AK
539static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
d5e5fafd
PX
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
16620684
AK
544 bool is_write,
545 bool is_mmio,
49e14aa8
PM
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
052c8fa9 548{
052c8fa9 549 MemoryRegionSection *section;
3df9d748 550 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
551 hwaddr plen = (hwaddr)(-1);
552
ad2804d9
PB
553 if (!plen_out) {
554 plen_out = &plen;
d5e5fafd 555 }
052c8fa9 556
a411c84b
PB
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
052c8fa9 560
a411c84b
PB
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
2f7b009c 566 target_as, attrs);
052c8fa9 567 }
d5e5fafd 568 if (page_mask_out) {
a411c84b
PB
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
571 }
572
a764040c 573 return *section;
052c8fa9
JW
574}
575
576/* Called from RCU critical section */
a764040c 577IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 578 bool is_write, MemTxAttrs attrs)
90260c6c 579{
a764040c 580 MemoryRegionSection section;
076a93d7 581 hwaddr xlat, page_mask;
30951157 582
076a93d7
PX
583 /*
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
586 */
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
30951157 590
a764040c
PX
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
594 }
30951157 595
a764040c
PX
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
599
a764040c 600 return (IOMMUTLBEntry) {
e76bb18f 601 .target_as = as,
076a93d7
PX
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
a764040c
PX
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
607 };
608
609iotlb_fail:
610 return (IOMMUTLBEntry) {0};
611}
612
613/* Called from RCU critical section */
16620684 614MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
a764040c
PX
617{
618 MemoryRegion *mr;
619 MemoryRegionSection section;
16620684 620 AddressSpace *as = NULL;
a764040c
PX
621
622 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 624 is_write, true, &as, attrs);
a764040c
PX
625 mr = section.mr;
626
fe680d0d 627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 629 *plen = MIN(page, *plen);
a87f3954
PB
630 }
631
30951157 632 return mr;
90260c6c
JK
633}
634
1f871c5e
PM
635typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641} TCGIOMMUNotifier;
642
643static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644{
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646
647 if (!notifier->active) {
648 return;
649 }
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
656 */
657}
658
659static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
662{
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
666 */
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
670
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
675 }
676 }
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704}
705
706static void tcg_iommu_free_notifier_list(CPUState *cpu)
707{
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 715 g_free(notifier);
1f871c5e
PM
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718}
719
79e2b9ae 720/* Called from RCU critical section */
90260c6c 721MemoryRegionSection *
d7898cda 722address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
90260c6c 725{
30951157 726 MemoryRegionSection *section;
1f871c5e
PM
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
f35e44e7 731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 732
1f871c5e
PM
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
30951157 768
3df9d748 769 assert(!memory_region_is_iommu(section->mr));
1f871c5e 770 *xlat = addr;
30951157 771 return section;
1f871c5e
PM
772
773translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 775}
5b6dd868 776#endif
fd6ce8f6 777
b170fce3 778#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
779
780static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 781{
259186a7 782 CPUState *cpu = opaque;
a513fe19 783
5b6dd868
BS
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
259186a7 786 cpu->interrupt_request &= ~0x01;
d10eb08f 787 tlb_flush(cpu);
5b6dd868 788
15a356c4
PD
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
5b6dd868 796 return 0;
a513fe19 797}
7501267e 798
6c3bff0e
PD
799static int cpu_common_pre_load(void *opaque)
800{
801 CPUState *cpu = opaque;
802
adee6424 803 cpu->exception_index = -1;
6c3bff0e
PD
804
805 return 0;
806}
807
808static bool cpu_common_exception_index_needed(void *opaque)
809{
810 CPUState *cpu = opaque;
811
adee6424 812 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
813}
814
815static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
5cd8cada 819 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824};
825
bac05aa9
AS
826static bool cpu_common_crash_occurred_needed(void *opaque)
827{
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831}
832
833static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842};
843
1a1562f5 844const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
6c3bff0e 848 .pre_load = cpu_common_pre_load,
5b6dd868 849 .post_load = cpu_common_post_load,
35d08458 850 .fields = (VMStateField[]) {
259186a7
AF
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 853 VMSTATE_END_OF_LIST()
6c3bff0e 854 },
5cd8cada
JQ
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
bac05aa9 857 &vmstate_cpu_common_crash_occurred,
5cd8cada 858 NULL
5b6dd868
BS
859 }
860};
1a1562f5 861
5b6dd868 862#endif
ea041c0e 863
38d8f5c8 864CPUState *qemu_get_cpu(int index)
ea041c0e 865{
bdc44640 866 CPUState *cpu;
ea041c0e 867
bdc44640 868 CPU_FOREACH(cpu) {
55e5c285 869 if (cpu->cpu_index == index) {
bdc44640 870 return cpu;
55e5c285 871 }
ea041c0e 872 }
5b6dd868 873
bdc44640 874 return NULL;
ea041c0e
FB
875}
876
09daed84 877#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
878void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
09daed84 880{
12ebc9a7 881 CPUAddressSpace *newas;
80ceb07a 882 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 883 char *as_name;
80ceb07a
PX
884
885 assert(mr);
87a621d8
PX
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
12ebc9a7
PM
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
56943e8c
PM
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
12ebc9a7
PM
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
09daed84 900
12ebc9a7
PM
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 903 }
32857f4d 904
12ebc9a7
PM
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
56943e8c 908 if (tcg_enabled()) {
9458a9a1 909 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
910 newas->tcg_as_listener.commit = tcg_commit;
911 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 912 }
09daed84 913}
651a5bc0
PM
914
915AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
916{
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu->cpu_ases[asidx].as;
919}
09daed84
EI
920#endif
921
7bbc124e 922void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 923{
9dfeca7c
BR
924 CPUClass *cc = CPU_GET_CLASS(cpu);
925
267f685b 926 cpu_list_remove(cpu);
9dfeca7c
BR
927
928 if (cc->vmsd != NULL) {
929 vmstate_unregister(NULL, cc->vmsd, cpu);
930 }
931 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
932 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
933 }
1f871c5e
PM
934#ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu);
936#endif
1c59eb39
BR
937}
938
c7e002c5
FZ
939Property cpu_common_props[] = {
940#ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
2e5b09fd 942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
946 */
947 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
948 MemoryRegion *),
949#endif
950 DEFINE_PROP_END_OF_LIST(),
951};
952
39e329e3 953void cpu_exec_initfn(CPUState *cpu)
ea041c0e 954{
56943e8c 955 cpu->as = NULL;
12ebc9a7 956 cpu->num_ases = 0;
56943e8c 957
291135b5 958#ifndef CONFIG_USER_ONLY
291135b5 959 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
291135b5 962#endif
39e329e3
LV
963}
964
ce5b1bbf 965void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 966{
55c3ceef 967 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 968 static bool tcg_target_initialized;
291135b5 969
267f685b 970 cpu_list_add(cpu);
1bc7e522 971
2dda6354
EC
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
55c3ceef
RH
974 cc->tcg_initialize();
975 }
5005e253 976 tlb_init(cpu);
55c3ceef 977
1bc7e522 978#ifndef CONFIG_USER_ONLY
e0d47944 979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 981 }
b170fce3 982 if (cc->vmsd != NULL) {
741da0d3 983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 984 }
1f871c5e 985
5601be3b 986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 987#endif
ea041c0e
FB
988}
989
c1c8cfe5 990const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
991{
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
996
c1c8cfe5 997 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
998 if (!model_pieces[0]) {
999 error_report("-cpu option cannot be empty");
1000 exit(1);
1001 }
2278b939
IM
1002
1003 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1004 if (oc == NULL) {
1005 error_report("unable to find CPU model '%s'", model_pieces[0]);
1006 g_strfreev(model_pieces);
1007 exit(EXIT_FAILURE);
1008 }
1009
1010 cpu_type = object_class_get_name(oc);
1011 cc = CPU_CLASS(oc);
1012 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1013 g_strfreev(model_pieces);
1014 return cpu_type;
1015}
1016
c40d4792 1017#if defined(CONFIG_USER_ONLY)
8bca9a03 1018void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1019{
406bc339 1020 mmap_lock();
8bca9a03 1021 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1022 mmap_unlock();
1023}
8bca9a03
PB
1024
1025static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1026{
1027 tb_invalidate_phys_addr(pc);
1028}
406bc339 1029#else
8bca9a03
PB
1030void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1031{
1032 ram_addr_t ram_addr;
1033 MemoryRegion *mr;
1034 hwaddr l = 1;
1035
c40d4792
PB
1036 if (!tcg_enabled()) {
1037 return;
1038 }
1039
8bca9a03
PB
1040 rcu_read_lock();
1041 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1042 if (!(memory_region_is_ram(mr)
1043 || memory_region_is_romd(mr))) {
1044 rcu_read_unlock();
1045 return;
1046 }
1047 ram_addr = memory_region_get_ram_addr(mr) + addr;
1048 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1049 rcu_read_unlock();
1050}
1051
406bc339
PK
1052static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1053{
1054 MemTxAttrs attrs;
1055 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1056 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1057 if (phys != -1) {
1058 /* Locks grabbed by tb_invalidate_phys_addr */
1059 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1060 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1061 }
1e7855a5 1062}
406bc339 1063#endif
d720b93d 1064
74841f04 1065#ifndef CONFIG_USER_ONLY
6658ffb8 1066/* Add a watchpoint. */
75a34036 1067int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1068 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1069{
c0ce998e 1070 CPUWatchpoint *wp;
6658ffb8 1071
05068c0d 1072 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1073 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1074 error_report("tried to set invalid watchpoint at %"
1075 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1076 return -EINVAL;
1077 }
7267c094 1078 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1079
1080 wp->vaddr = addr;
05068c0d 1081 wp->len = len;
a1d1bb31
AL
1082 wp->flags = flags;
1083
2dc9f411 1084 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1085 if (flags & BP_GDB) {
1086 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1087 } else {
1088 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1089 }
6658ffb8 1090
31b030d4 1091 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1092
1093 if (watchpoint)
1094 *watchpoint = wp;
1095 return 0;
6658ffb8
PB
1096}
1097
a1d1bb31 1098/* Remove a specific watchpoint. */
75a34036 1099int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1100 int flags)
6658ffb8 1101{
a1d1bb31 1102 CPUWatchpoint *wp;
6658ffb8 1103
ff4700b0 1104 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1105 if (addr == wp->vaddr && len == wp->len
6e140f28 1106 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1107 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1108 return 0;
1109 }
1110 }
a1d1bb31 1111 return -ENOENT;
6658ffb8
PB
1112}
1113
a1d1bb31 1114/* Remove a specific watchpoint by reference. */
75a34036 1115void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1116{
ff4700b0 1117 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1118
31b030d4 1119 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1120
7267c094 1121 g_free(watchpoint);
a1d1bb31
AL
1122}
1123
1124/* Remove all matching watchpoints. */
75a34036 1125void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1126{
c0ce998e 1127 CPUWatchpoint *wp, *next;
a1d1bb31 1128
ff4700b0 1129 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1130 if (wp->flags & mask) {
1131 cpu_watchpoint_remove_by_ref(cpu, wp);
1132 }
c0ce998e 1133 }
7d03f82f 1134}
05068c0d
PM
1135
1136/* Return true if this watchpoint address matches the specified
1137 * access (ie the address range covered by the watchpoint overlaps
1138 * partially or completely with the address range covered by the
1139 * access).
1140 */
1141static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1142 vaddr addr,
1143 vaddr len)
1144{
1145 /* We know the lengths are non-zero, but a little caution is
1146 * required to avoid errors in the case where the range ends
1147 * exactly at the top of the address space and so addr + len
1148 * wraps round to zero.
1149 */
1150 vaddr wpend = wp->vaddr + wp->len - 1;
1151 vaddr addrend = addr + len - 1;
1152
1153 return !(addr > wpend || wp->vaddr > addrend);
1154}
74841f04 1155#endif /* !CONFIG_USER_ONLY */
7d03f82f 1156
a1d1bb31 1157/* Add a breakpoint. */
b3310ab3 1158int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1159 CPUBreakpoint **breakpoint)
4c3a88a2 1160{
c0ce998e 1161 CPUBreakpoint *bp;
3b46e624 1162
7267c094 1163 bp = g_malloc(sizeof(*bp));
4c3a88a2 1164
a1d1bb31
AL
1165 bp->pc = pc;
1166 bp->flags = flags;
1167
2dc9f411 1168 /* keep all GDB-injected breakpoints in front */
00b941e5 1169 if (flags & BP_GDB) {
f0c3c505 1170 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1171 } else {
f0c3c505 1172 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1173 }
3b46e624 1174
f0c3c505 1175 breakpoint_invalidate(cpu, pc);
a1d1bb31 1176
00b941e5 1177 if (breakpoint) {
a1d1bb31 1178 *breakpoint = bp;
00b941e5 1179 }
4c3a88a2 1180 return 0;
4c3a88a2
FB
1181}
1182
a1d1bb31 1183/* Remove a specific breakpoint. */
b3310ab3 1184int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1185{
a1d1bb31
AL
1186 CPUBreakpoint *bp;
1187
f0c3c505 1188 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1189 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1190 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1191 return 0;
1192 }
7d03f82f 1193 }
a1d1bb31 1194 return -ENOENT;
7d03f82f
EI
1195}
1196
a1d1bb31 1197/* Remove a specific breakpoint by reference. */
b3310ab3 1198void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1199{
f0c3c505
AF
1200 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1201
1202 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1203
7267c094 1204 g_free(breakpoint);
a1d1bb31
AL
1205}
1206
1207/* Remove all matching breakpoints. */
b3310ab3 1208void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1209{
c0ce998e 1210 CPUBreakpoint *bp, *next;
a1d1bb31 1211
f0c3c505 1212 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1213 if (bp->flags & mask) {
1214 cpu_breakpoint_remove_by_ref(cpu, bp);
1215 }
c0ce998e 1216 }
4c3a88a2
FB
1217}
1218
c33a346e
FB
1219/* enable or disable single step mode. EXCP_DEBUG is returned by the
1220 CPU loop after each instruction */
3825b28f 1221void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1222{
ed2803da
AF
1223 if (cpu->singlestep_enabled != enabled) {
1224 cpu->singlestep_enabled = enabled;
1225 if (kvm_enabled()) {
38e478ec 1226 kvm_update_guest_debug(cpu, 0);
ed2803da 1227 } else {
ccbb4d44 1228 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1229 /* XXX: only flush what is necessary */
bbd77c18 1230 tb_flush(cpu);
e22a25c9 1231 }
c33a346e 1232 }
c33a346e
FB
1233}
1234
a47dddd7 1235void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1236{
1237 va_list ap;
493ae1f0 1238 va_list ap2;
7501267e
FB
1239
1240 va_start(ap, fmt);
493ae1f0 1241 va_copy(ap2, ap);
7501267e
FB
1242 fprintf(stderr, "qemu: fatal: ");
1243 vfprintf(stderr, fmt, ap);
1244 fprintf(stderr, "\n");
90c84c56 1245 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1246 if (qemu_log_separate()) {
1ee73216 1247 qemu_log_lock();
93fcfe39
AL
1248 qemu_log("qemu: fatal: ");
1249 qemu_log_vprintf(fmt, ap2);
1250 qemu_log("\n");
a0762859 1251 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1252 qemu_log_flush();
1ee73216 1253 qemu_log_unlock();
93fcfe39 1254 qemu_log_close();
924edcae 1255 }
493ae1f0 1256 va_end(ap2);
f9373291 1257 va_end(ap);
7615936e 1258 replay_finish();
fd052bf6
RV
1259#if defined(CONFIG_USER_ONLY)
1260 {
1261 struct sigaction act;
1262 sigfillset(&act.sa_mask);
1263 act.sa_handler = SIG_DFL;
8347c185 1264 act.sa_flags = 0;
fd052bf6
RV
1265 sigaction(SIGABRT, &act, NULL);
1266 }
1267#endif
7501267e
FB
1268 abort();
1269}
1270
0124311e 1271#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1272/* Called from RCU critical section */
041603fe
PB
1273static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1274{
1275 RAMBlock *block;
1276
43771539 1277 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1278 if (block && addr - block->offset < block->max_length) {
68851b98 1279 return block;
041603fe 1280 }
99e15582 1281 RAMBLOCK_FOREACH(block) {
9b8424d5 1282 if (addr - block->offset < block->max_length) {
041603fe
PB
1283 goto found;
1284 }
1285 }
1286
1287 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1288 abort();
1289
1290found:
43771539
PB
1291 /* It is safe to write mru_block outside the iothread lock. This
1292 * is what happens:
1293 *
1294 * mru_block = xxx
1295 * rcu_read_unlock()
1296 * xxx removed from list
1297 * rcu_read_lock()
1298 * read mru_block
1299 * mru_block = NULL;
1300 * call_rcu(reclaim_ramblock, xxx);
1301 * rcu_read_unlock()
1302 *
1303 * atomic_rcu_set is not needed here. The block was already published
1304 * when it was placed into the list. Here we're just making an extra
1305 * copy of the pointer.
1306 */
041603fe
PB
1307 ram_list.mru_block = block;
1308 return block;
1309}
1310
a2f4d5be 1311static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1312{
9a13565d 1313 CPUState *cpu;
041603fe 1314 ram_addr_t start1;
a2f4d5be
JQ
1315 RAMBlock *block;
1316 ram_addr_t end;
1317
f28d0dfd 1318 assert(tcg_enabled());
a2f4d5be
JQ
1319 end = TARGET_PAGE_ALIGN(start + length);
1320 start &= TARGET_PAGE_MASK;
d24981d3 1321
0dc3f44a 1322 rcu_read_lock();
041603fe
PB
1323 block = qemu_get_ram_block(start);
1324 assert(block == qemu_get_ram_block(end - 1));
1240be24 1325 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1326 CPU_FOREACH(cpu) {
1327 tlb_reset_dirty(cpu, start1, length);
1328 }
0dc3f44a 1329 rcu_read_unlock();
d24981d3
JQ
1330}
1331
5579c7f3 1332/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1333bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1334 ram_addr_t length,
1335 unsigned client)
1ccde1cb 1336{
5b82b703 1337 DirtyMemoryBlocks *blocks;
03eebc9e 1338 unsigned long end, page;
5b82b703 1339 bool dirty = false;
077874e0
PX
1340 RAMBlock *ramblock;
1341 uint64_t mr_offset, mr_size;
03eebc9e
SH
1342
1343 if (length == 0) {
1344 return false;
1345 }
f23db169 1346
03eebc9e
SH
1347 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1348 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1349
1350 rcu_read_lock();
1351
1352 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
077874e0
PX
1353 ramblock = qemu_get_ram_block(start);
1354 /* Range sanity check on the ramblock */
1355 assert(start >= ramblock->offset &&
1356 start + length <= ramblock->offset + ramblock->used_length);
5b82b703
SH
1357
1358 while (page < end) {
1359 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1360 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1361 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1362
1363 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1364 offset, num);
1365 page += num;
1366 }
1367
077874e0
PX
1368 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1369 mr_size = (end - page) << TARGET_PAGE_BITS;
1370 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1371
5b82b703 1372 rcu_read_unlock();
03eebc9e
SH
1373
1374 if (dirty && tcg_enabled()) {
a2f4d5be 1375 tlb_reset_dirty_range_all(start, length);
5579c7f3 1376 }
03eebc9e
SH
1377
1378 return dirty;
1ccde1cb
FB
1379}
1380
8deaf12c 1381DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1382 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1383{
1384 DirtyMemoryBlocks *blocks;
5dea4079 1385 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1386 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1387 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1388 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1389 DirtyBitmapSnapshot *snap;
1390 unsigned long page, end, dest;
1391
1392 snap = g_malloc0(sizeof(*snap) +
1393 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1394 snap->start = first;
1395 snap->end = last;
1396
1397 page = first >> TARGET_PAGE_BITS;
1398 end = last >> TARGET_PAGE_BITS;
1399 dest = 0;
1400
1401 rcu_read_lock();
1402
1403 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1404
1405 while (page < end) {
1406 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1407 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1408 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1409
1410 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1411 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1412 offset >>= BITS_PER_LEVEL;
1413
1414 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1415 blocks->blocks[idx] + offset,
1416 num);
1417 page += num;
1418 dest += num >> BITS_PER_LEVEL;
1419 }
1420
1421 rcu_read_unlock();
1422
1423 if (tcg_enabled()) {
1424 tlb_reset_dirty_range_all(start, length);
1425 }
1426
077874e0
PX
1427 memory_region_clear_dirty_bitmap(mr, offset, length);
1428
8deaf12c
GH
1429 return snap;
1430}
1431
1432bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1433 ram_addr_t start,
1434 ram_addr_t length)
1435{
1436 unsigned long page, end;
1437
1438 assert(start >= snap->start);
1439 assert(start + length <= snap->end);
1440
1441 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1442 page = (start - snap->start) >> TARGET_PAGE_BITS;
1443
1444 while (page < end) {
1445 if (test_bit(page, snap->dirty)) {
1446 return true;
1447 }
1448 page++;
1449 }
1450 return false;
1451}
1452
79e2b9ae 1453/* Called from RCU critical section */
bb0e627a 1454hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1455 MemoryRegionSection *section,
1456 target_ulong vaddr,
1457 hwaddr paddr, hwaddr xlat,
1458 int prot,
1459 target_ulong *address)
e5548617 1460{
a8170e5e 1461 hwaddr iotlb;
e5548617
BS
1462 CPUWatchpoint *wp;
1463
cc5bea60 1464 if (memory_region_is_ram(section->mr)) {
e5548617 1465 /* Normal RAM. */
e4e69794 1466 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1467 if (!section->readonly) {
b41aac4f 1468 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1469 } else {
b41aac4f 1470 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1471 }
1472 } else {
0b8e2c10
PM
1473 AddressSpaceDispatch *d;
1474
16620684 1475 d = flatview_to_dispatch(section->fv);
0b8e2c10 1476 iotlb = section - d->map.sections;
149f54b5 1477 iotlb += xlat;
e5548617
BS
1478 }
1479
1480 /* Make accesses to pages with watchpoints go via the
1481 watchpoint trap routines. */
ff4700b0 1482 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1483 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1484 /* Avoid trapping reads of pages with a write breakpoint. */
1485 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1486 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1487 *address |= TLB_MMIO;
1488 break;
1489 }
1490 }
1491 }
1492
1493 return iotlb;
1494}
9fa3e853
FB
1495#endif /* defined(CONFIG_USER_ONLY) */
1496
e2eef170 1497#if !defined(CONFIG_USER_ONLY)
8da3ff18 1498
c227f099 1499static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1500 uint16_t section);
16620684 1501static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1502
06329cce 1503static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1504 qemu_anon_ram_alloc;
91138037
MA
1505
1506/*
1507 * Set a custom physical guest memory alloator.
1508 * Accelerators with unusual needs may need this. Hopefully, we can
1509 * get rid of it eventually.
1510 */
06329cce 1511void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1512{
1513 phys_mem_alloc = alloc;
1514}
1515
53cb28cb
MA
1516static uint16_t phys_section_add(PhysPageMap *map,
1517 MemoryRegionSection *section)
5312bd8b 1518{
68f3f65b
PB
1519 /* The physical section number is ORed with a page-aligned
1520 * pointer to produce the iotlb entries. Thus it should
1521 * never overflow into the page-aligned value.
1522 */
53cb28cb 1523 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1524
53cb28cb
MA
1525 if (map->sections_nb == map->sections_nb_alloc) {
1526 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1527 map->sections = g_renew(MemoryRegionSection, map->sections,
1528 map->sections_nb_alloc);
5312bd8b 1529 }
53cb28cb 1530 map->sections[map->sections_nb] = *section;
dfde4e6e 1531 memory_region_ref(section->mr);
53cb28cb 1532 return map->sections_nb++;
5312bd8b
AK
1533}
1534
058bc4b5
PB
1535static void phys_section_destroy(MemoryRegion *mr)
1536{
55b4e80b
DS
1537 bool have_sub_page = mr->subpage;
1538
dfde4e6e
PB
1539 memory_region_unref(mr);
1540
55b4e80b 1541 if (have_sub_page) {
058bc4b5 1542 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1543 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1544 g_free(subpage);
1545 }
1546}
1547
6092666e 1548static void phys_sections_free(PhysPageMap *map)
5312bd8b 1549{
9affd6fc
PB
1550 while (map->sections_nb > 0) {
1551 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1552 phys_section_destroy(section->mr);
1553 }
9affd6fc
PB
1554 g_free(map->sections);
1555 g_free(map->nodes);
5312bd8b
AK
1556}
1557
9950322a 1558static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1559{
9950322a 1560 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1561 subpage_t *subpage;
a8170e5e 1562 hwaddr base = section->offset_within_address_space
0f0cb164 1563 & TARGET_PAGE_MASK;
003a0cf2 1564 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1565 MemoryRegionSection subsection = {
1566 .offset_within_address_space = base,
052e87b0 1567 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1568 };
a8170e5e 1569 hwaddr start, end;
0f0cb164 1570
f3705d53 1571 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1572
f3705d53 1573 if (!(existing->mr->subpage)) {
16620684
AK
1574 subpage = subpage_init(fv, base);
1575 subsection.fv = fv;
0f0cb164 1576 subsection.mr = &subpage->iomem;
ac1970fb 1577 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1578 phys_section_add(&d->map, &subsection));
0f0cb164 1579 } else {
f3705d53 1580 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1581 }
1582 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1583 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1584 subpage_register(subpage, start, end,
1585 phys_section_add(&d->map, section));
0f0cb164
AK
1586}
1587
1588
9950322a 1589static void register_multipage(FlatView *fv,
052e87b0 1590 MemoryRegionSection *section)
33417e70 1591{
9950322a 1592 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1593 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1594 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1595 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1596 TARGET_PAGE_BITS));
dd81124b 1597
733d5ef5
PB
1598 assert(num_pages);
1599 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1600}
1601
494d1997
WY
1602/*
1603 * The range in *section* may look like this:
1604 *
1605 * |s|PPPPPPP|s|
1606 *
1607 * where s stands for subpage and P for page.
1608 */
8629d3fc 1609void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1610{
494d1997 1611 MemoryRegionSection remain = *section;
052e87b0 1612 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1613
494d1997
WY
1614 /* register first subpage */
1615 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1616 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1617 - remain.offset_within_address_space;
733d5ef5 1618
494d1997 1619 MemoryRegionSection now = remain;
052e87b0 1620 now.size = int128_min(int128_make64(left), now.size);
9950322a 1621 register_subpage(fv, &now);
494d1997
WY
1622 if (int128_eq(remain.size, now.size)) {
1623 return;
1624 }
052e87b0
PB
1625 remain.size = int128_sub(remain.size, now.size);
1626 remain.offset_within_address_space += int128_get64(now.size);
1627 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1628 }
1629
1630 /* register whole pages */
1631 if (int128_ge(remain.size, page_size)) {
1632 MemoryRegionSection now = remain;
1633 now.size = int128_and(now.size, int128_neg(page_size));
1634 register_multipage(fv, &now);
1635 if (int128_eq(remain.size, now.size)) {
1636 return;
69b67646 1637 }
494d1997
WY
1638 remain.size = int128_sub(remain.size, now.size);
1639 remain.offset_within_address_space += int128_get64(now.size);
1640 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1641 }
494d1997
WY
1642
1643 /* register last subpage */
1644 register_subpage(fv, &remain);
0f0cb164
AK
1645}
1646
62a2744c
SY
1647void qemu_flush_coalesced_mmio_buffer(void)
1648{
1649 if (kvm_enabled())
1650 kvm_flush_coalesced_mmio_buffer();
1651}
1652
b2a8658e
UD
1653void qemu_mutex_lock_ramlist(void)
1654{
1655 qemu_mutex_lock(&ram_list.mutex);
1656}
1657
1658void qemu_mutex_unlock_ramlist(void)
1659{
1660 qemu_mutex_unlock(&ram_list.mutex);
1661}
1662
be9b23c4
PX
1663void ram_block_dump(Monitor *mon)
1664{
1665 RAMBlock *block;
1666 char *psize;
1667
1668 rcu_read_lock();
1669 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1670 "Block Name", "PSize", "Offset", "Used", "Total");
1671 RAMBLOCK_FOREACH(block) {
1672 psize = size_to_str(block->page_size);
1673 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1674 " 0x%016" PRIx64 "\n", block->idstr, psize,
1675 (uint64_t)block->offset,
1676 (uint64_t)block->used_length,
1677 (uint64_t)block->max_length);
1678 g_free(psize);
1679 }
1680 rcu_read_unlock();
1681}
1682
9c607668
AK
1683#ifdef __linux__
1684/*
1685 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1686 * may or may not name the same files / on the same filesystem now as
1687 * when we actually open and map them. Iterate over the file
1688 * descriptors instead, and use qemu_fd_getpagesize().
1689 */
905b7ee4 1690static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1691{
9c607668
AK
1692 long *hpsize_min = opaque;
1693
1694 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1695 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1696 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1697
7d5489e6 1698 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1699 *hpsize_min = hpsize;
9c607668
AK
1700 }
1701 }
1702
1703 return 0;
1704}
1705
905b7ee4
DH
1706static int find_max_backend_pagesize(Object *obj, void *opaque)
1707{
1708 long *hpsize_max = opaque;
1709
1710 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1711 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1712 long hpsize = host_memory_backend_pagesize(backend);
1713
1714 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1715 *hpsize_max = hpsize;
1716 }
1717 }
1718
1719 return 0;
1720}
1721
1722/*
1723 * TODO: We assume right now that all mapped host memory backends are
1724 * used as RAM, however some might be used for different purposes.
1725 */
1726long qemu_minrampagesize(void)
9c607668
AK
1727{
1728 long hpsize = LONG_MAX;
1729 long mainrampagesize;
1730 Object *memdev_root;
1731
0de6e2a3 1732 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1733
1734 /* it's possible we have memory-backend objects with
1735 * hugepage-backed RAM. these may get mapped into system
1736 * address space via -numa parameters or memory hotplug
1737 * hooks. we want to take these into account, but we
1738 * also want to make sure these supported hugepage
1739 * sizes are applicable across the entire range of memory
1740 * we may boot from, so we take the min across all
1741 * backends, and assume normal pages in cases where a
1742 * backend isn't backed by hugepages.
1743 */
1744 memdev_root = object_resolve_path("/objects", NULL);
1745 if (memdev_root) {
905b7ee4 1746 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1747 }
1748 if (hpsize == LONG_MAX) {
1749 /* No additional memory regions found ==> Report main RAM page size */
1750 return mainrampagesize;
1751 }
1752
1753 /* If NUMA is disabled or the NUMA nodes are not backed with a
1754 * memory-backend, then there is at least one node using "normal" RAM,
1755 * so if its page size is smaller we have got to report that size instead.
1756 */
1757 if (hpsize > mainrampagesize &&
1758 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1759 static bool warned;
1760 if (!warned) {
1761 error_report("Huge page support disabled (n/a for main memory).");
1762 warned = true;
1763 }
1764 return mainrampagesize;
1765 }
1766
1767 return hpsize;
1768}
905b7ee4
DH
1769
1770long qemu_maxrampagesize(void)
1771{
1772 long pagesize = qemu_mempath_getpagesize(mem_path);
1773 Object *memdev_root = object_resolve_path("/objects", NULL);
1774
1775 if (memdev_root) {
1776 object_child_foreach(memdev_root, find_max_backend_pagesize,
1777 &pagesize);
1778 }
1779 return pagesize;
1780}
9c607668 1781#else
905b7ee4
DH
1782long qemu_minrampagesize(void)
1783{
1784 return getpagesize();
1785}
1786long qemu_maxrampagesize(void)
9c607668
AK
1787{
1788 return getpagesize();
1789}
1790#endif
1791
d5dbde46 1792#ifdef CONFIG_POSIX
d6af99c9
HZ
1793static int64_t get_file_size(int fd)
1794{
1795 int64_t size = lseek(fd, 0, SEEK_END);
1796 if (size < 0) {
1797 return -errno;
1798 }
1799 return size;
1800}
1801
8d37b030
MAL
1802static int file_ram_open(const char *path,
1803 const char *region_name,
1804 bool *created,
1805 Error **errp)
c902760f
MT
1806{
1807 char *filename;
8ca761f6
PF
1808 char *sanitized_name;
1809 char *c;
5c3ece79 1810 int fd = -1;
c902760f 1811
8d37b030 1812 *created = false;
fd97fd44
MA
1813 for (;;) {
1814 fd = open(path, O_RDWR);
1815 if (fd >= 0) {
1816 /* @path names an existing file, use it */
1817 break;
8d31d6b6 1818 }
fd97fd44
MA
1819 if (errno == ENOENT) {
1820 /* @path names a file that doesn't exist, create it */
1821 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1822 if (fd >= 0) {
8d37b030 1823 *created = true;
fd97fd44
MA
1824 break;
1825 }
1826 } else if (errno == EISDIR) {
1827 /* @path names a directory, create a file there */
1828 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1829 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1830 for (c = sanitized_name; *c != '\0'; c++) {
1831 if (*c == '/') {
1832 *c = '_';
1833 }
1834 }
8ca761f6 1835
fd97fd44
MA
1836 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1837 sanitized_name);
1838 g_free(sanitized_name);
8d31d6b6 1839
fd97fd44
MA
1840 fd = mkstemp(filename);
1841 if (fd >= 0) {
1842 unlink(filename);
1843 g_free(filename);
1844 break;
1845 }
1846 g_free(filename);
8d31d6b6 1847 }
fd97fd44
MA
1848 if (errno != EEXIST && errno != EINTR) {
1849 error_setg_errno(errp, errno,
1850 "can't open backing store %s for guest RAM",
1851 path);
8d37b030 1852 return -1;
fd97fd44
MA
1853 }
1854 /*
1855 * Try again on EINTR and EEXIST. The latter happens when
1856 * something else creates the file between our two open().
1857 */
8d31d6b6 1858 }
c902760f 1859
8d37b030
MAL
1860 return fd;
1861}
1862
1863static void *file_ram_alloc(RAMBlock *block,
1864 ram_addr_t memory,
1865 int fd,
1866 bool truncate,
1867 Error **errp)
1868{
5cc8767d 1869 MachineState *ms = MACHINE(qdev_get_machine());
8d37b030
MAL
1870 void *area;
1871
863e9621 1872 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1873 if (block->mr->align % block->page_size) {
1874 error_setg(errp, "alignment 0x%" PRIx64
1875 " must be multiples of page size 0x%zx",
1876 block->mr->align, block->page_size);
1877 return NULL;
61362b71
DH
1878 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1879 error_setg(errp, "alignment 0x%" PRIx64
1880 " must be a power of two", block->mr->align);
1881 return NULL;
98376843
HZ
1882 }
1883 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1884#if defined(__s390x__)
1885 if (kvm_enabled()) {
1886 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1887 }
1888#endif
fd97fd44 1889
863e9621 1890 if (memory < block->page_size) {
fd97fd44 1891 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1892 "or larger than page size 0x%zx",
1893 memory, block->page_size);
8d37b030 1894 return NULL;
1775f111
HZ
1895 }
1896
863e9621 1897 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1898
1899 /*
1900 * ftruncate is not supported by hugetlbfs in older
1901 * hosts, so don't bother bailing out on errors.
1902 * If anything goes wrong with it under other filesystems,
1903 * mmap will fail.
d6af99c9
HZ
1904 *
1905 * Do not truncate the non-empty backend file to avoid corrupting
1906 * the existing data in the file. Disabling shrinking is not
1907 * enough. For example, the current vNVDIMM implementation stores
1908 * the guest NVDIMM labels at the end of the backend file. If the
1909 * backend file is later extended, QEMU will not be able to find
1910 * those labels. Therefore, extending the non-empty backend file
1911 * is disabled as well.
c902760f 1912 */
8d37b030 1913 if (truncate && ftruncate(fd, memory)) {
9742bf26 1914 perror("ftruncate");
7f56e740 1915 }
c902760f 1916
d2f39add 1917 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1918 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1919 if (area == MAP_FAILED) {
7f56e740 1920 error_setg_errno(errp, errno,
fd97fd44 1921 "unable to map backing store for guest RAM");
8d37b030 1922 return NULL;
c902760f 1923 }
ef36fa14
MT
1924
1925 if (mem_prealloc) {
5cc8767d 1926 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
056b68af 1927 if (errp && *errp) {
53adb9d4 1928 qemu_ram_munmap(fd, area, memory);
8d37b030 1929 return NULL;
056b68af 1930 }
ef36fa14
MT
1931 }
1932
04b16653 1933 block->fd = fd;
c902760f
MT
1934 return area;
1935}
1936#endif
1937
154cc9ea
DDAG
1938/* Allocate space within the ram_addr_t space that governs the
1939 * dirty bitmaps.
1940 * Called with the ramlist lock held.
1941 */
d17b5288 1942static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1943{
1944 RAMBlock *block, *next_block;
3e837b2c 1945 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1946
49cd9ac6
SH
1947 assert(size != 0); /* it would hand out same offset multiple times */
1948
0dc3f44a 1949 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1950 return 0;
0d53d9fe 1951 }
04b16653 1952
99e15582 1953 RAMBLOCK_FOREACH(block) {
154cc9ea 1954 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1955
801110ab
DDAG
1956 /* Align blocks to start on a 'long' in the bitmap
1957 * which makes the bitmap sync'ing take the fast path.
1958 */
154cc9ea 1959 candidate = block->offset + block->max_length;
801110ab 1960 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1961
154cc9ea
DDAG
1962 /* Search for the closest following block
1963 * and find the gap.
1964 */
99e15582 1965 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1966 if (next_block->offset >= candidate) {
04b16653
AW
1967 next = MIN(next, next_block->offset);
1968 }
1969 }
154cc9ea
DDAG
1970
1971 /* If it fits remember our place and remember the size
1972 * of gap, but keep going so that we might find a smaller
1973 * gap to fill so avoiding fragmentation.
1974 */
1975 if (next - candidate >= size && next - candidate < mingap) {
1976 offset = candidate;
1977 mingap = next - candidate;
04b16653 1978 }
154cc9ea
DDAG
1979
1980 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1981 }
3e837b2c
AW
1982
1983 if (offset == RAM_ADDR_MAX) {
1984 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1985 (uint64_t)size);
1986 abort();
1987 }
1988
154cc9ea
DDAG
1989 trace_find_ram_offset(size, offset);
1990
04b16653
AW
1991 return offset;
1992}
1993
c136180c 1994static unsigned long last_ram_page(void)
d17b5288
AW
1995{
1996 RAMBlock *block;
1997 ram_addr_t last = 0;
1998
0dc3f44a 1999 rcu_read_lock();
99e15582 2000 RAMBLOCK_FOREACH(block) {
62be4e3a 2001 last = MAX(last, block->offset + block->max_length);
0d53d9fe 2002 }
0dc3f44a 2003 rcu_read_unlock();
b8c48993 2004 return last >> TARGET_PAGE_BITS;
d17b5288
AW
2005}
2006
ddb97f1d
JB
2007static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2008{
2009 int ret;
ddb97f1d
JB
2010
2011 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 2012 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
2013 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2014 if (ret) {
2015 perror("qemu_madvise");
2016 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2017 "but dump_guest_core=off specified\n");
2018 }
2019 }
2020}
2021
422148d3
DDAG
2022const char *qemu_ram_get_idstr(RAMBlock *rb)
2023{
2024 return rb->idstr;
2025}
2026
754cb9c0
YK
2027void *qemu_ram_get_host_addr(RAMBlock *rb)
2028{
2029 return rb->host;
2030}
2031
2032ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2033{
2034 return rb->offset;
2035}
2036
2037ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2038{
2039 return rb->used_length;
2040}
2041
463a4ac2
DDAG
2042bool qemu_ram_is_shared(RAMBlock *rb)
2043{
2044 return rb->flags & RAM_SHARED;
2045}
2046
2ce16640
DDAG
2047/* Note: Only set at the start of postcopy */
2048bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2049{
2050 return rb->flags & RAM_UF_ZEROPAGE;
2051}
2052
2053void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2054{
2055 rb->flags |= RAM_UF_ZEROPAGE;
2056}
2057
b895de50
CLG
2058bool qemu_ram_is_migratable(RAMBlock *rb)
2059{
2060 return rb->flags & RAM_MIGRATABLE;
2061}
2062
2063void qemu_ram_set_migratable(RAMBlock *rb)
2064{
2065 rb->flags |= RAM_MIGRATABLE;
2066}
2067
2068void qemu_ram_unset_migratable(RAMBlock *rb)
2069{
2070 rb->flags &= ~RAM_MIGRATABLE;
2071}
2072
ae3a7047 2073/* Called with iothread lock held. */
fa53a0e5 2074void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2075{
fa53a0e5 2076 RAMBlock *block;
20cfe881 2077
c5705a77
AK
2078 assert(new_block);
2079 assert(!new_block->idstr[0]);
84b89d78 2080
09e5ab63
AL
2081 if (dev) {
2082 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2083 if (id) {
2084 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2085 g_free(id);
84b89d78
CM
2086 }
2087 }
2088 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2089
ab0a9956 2090 rcu_read_lock();
99e15582 2091 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2092 if (block != new_block &&
2093 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2094 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2095 new_block->idstr);
2096 abort();
2097 }
2098 }
0dc3f44a 2099 rcu_read_unlock();
c5705a77
AK
2100}
2101
ae3a7047 2102/* Called with iothread lock held. */
fa53a0e5 2103void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2104{
ae3a7047
MD
2105 /* FIXME: arch_init.c assumes that this is not called throughout
2106 * migration. Ignore the problem since hot-unplug during migration
2107 * does not work anyway.
2108 */
20cfe881
HT
2109 if (block) {
2110 memset(block->idstr, 0, sizeof(block->idstr));
2111 }
2112}
2113
863e9621
DDAG
2114size_t qemu_ram_pagesize(RAMBlock *rb)
2115{
2116 return rb->page_size;
2117}
2118
67f11b5c
DDAG
2119/* Returns the largest size of page in use */
2120size_t qemu_ram_pagesize_largest(void)
2121{
2122 RAMBlock *block;
2123 size_t largest = 0;
2124
99e15582 2125 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2126 largest = MAX(largest, qemu_ram_pagesize(block));
2127 }
2128
2129 return largest;
2130}
2131
8490fc78
LC
2132static int memory_try_enable_merging(void *addr, size_t len)
2133{
75cc7f01 2134 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2135 /* disabled by the user */
2136 return 0;
2137 }
2138
2139 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2140}
2141
62be4e3a
MT
2142/* Only legal before guest might have detected the memory size: e.g. on
2143 * incoming migration, or right after reset.
2144 *
2145 * As memory core doesn't know how is memory accessed, it is up to
2146 * resize callback to update device state and/or add assertions to detect
2147 * misuse, if necessary.
2148 */
fa53a0e5 2149int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2150{
62be4e3a
MT
2151 assert(block);
2152
4ed023ce 2153 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2154
62be4e3a
MT
2155 if (block->used_length == newsize) {
2156 return 0;
2157 }
2158
2159 if (!(block->flags & RAM_RESIZEABLE)) {
2160 error_setg_errno(errp, EINVAL,
2161 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2162 " in != 0x" RAM_ADDR_FMT, block->idstr,
2163 newsize, block->used_length);
2164 return -EINVAL;
2165 }
2166
2167 if (block->max_length < newsize) {
2168 error_setg_errno(errp, EINVAL,
2169 "Length too large: %s: 0x" RAM_ADDR_FMT
2170 " > 0x" RAM_ADDR_FMT, block->idstr,
2171 newsize, block->max_length);
2172 return -EINVAL;
2173 }
2174
2175 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2176 block->used_length = newsize;
58d2707e
PB
2177 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2178 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2179 memory_region_set_size(block->mr, newsize);
2180 if (block->resized) {
2181 block->resized(block->idstr, newsize, block->host);
2182 }
2183 return 0;
2184}
2185
5b82b703
SH
2186/* Called with ram_list.mutex held */
2187static void dirty_memory_extend(ram_addr_t old_ram_size,
2188 ram_addr_t new_ram_size)
2189{
2190 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2191 DIRTY_MEMORY_BLOCK_SIZE);
2192 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2193 DIRTY_MEMORY_BLOCK_SIZE);
2194 int i;
2195
2196 /* Only need to extend if block count increased */
2197 if (new_num_blocks <= old_num_blocks) {
2198 return;
2199 }
2200
2201 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2202 DirtyMemoryBlocks *old_blocks;
2203 DirtyMemoryBlocks *new_blocks;
2204 int j;
2205
2206 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2207 new_blocks = g_malloc(sizeof(*new_blocks) +
2208 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2209
2210 if (old_num_blocks) {
2211 memcpy(new_blocks->blocks, old_blocks->blocks,
2212 old_num_blocks * sizeof(old_blocks->blocks[0]));
2213 }
2214
2215 for (j = old_num_blocks; j < new_num_blocks; j++) {
2216 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2217 }
2218
2219 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2220
2221 if (old_blocks) {
2222 g_free_rcu(old_blocks, rcu);
2223 }
2224 }
2225}
2226
06329cce 2227static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2228{
e1c57ab8 2229 RAMBlock *block;
0d53d9fe 2230 RAMBlock *last_block = NULL;
2152f5ca 2231 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2232 Error *err = NULL;
2152f5ca 2233
b8c48993 2234 old_ram_size = last_ram_page();
c5705a77 2235
b2a8658e 2236 qemu_mutex_lock_ramlist();
9b8424d5 2237 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2238
2239 if (!new_block->host) {
2240 if (xen_enabled()) {
9b8424d5 2241 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2242 new_block->mr, &err);
2243 if (err) {
2244 error_propagate(errp, err);
2245 qemu_mutex_unlock_ramlist();
39c350ee 2246 return;
37aa7a0e 2247 }
e1c57ab8 2248 } else {
9b8424d5 2249 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2250 &new_block->mr->align, shared);
39228250 2251 if (!new_block->host) {
ef701d7b
HT
2252 error_setg_errno(errp, errno,
2253 "cannot set up guest memory '%s'",
2254 memory_region_name(new_block->mr));
2255 qemu_mutex_unlock_ramlist();
39c350ee 2256 return;
39228250 2257 }
9b8424d5 2258 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2259 }
c902760f 2260 }
94a6b54f 2261
dd631697
LZ
2262 new_ram_size = MAX(old_ram_size,
2263 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2264 if (new_ram_size > old_ram_size) {
5b82b703 2265 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2266 }
0d53d9fe
MD
2267 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2268 * QLIST (which has an RCU-friendly variant) does not have insertion at
2269 * tail, so save the last element in last_block.
2270 */
99e15582 2271 RAMBLOCK_FOREACH(block) {
0d53d9fe 2272 last_block = block;
9b8424d5 2273 if (block->max_length < new_block->max_length) {
abb26d63
PB
2274 break;
2275 }
2276 }
2277 if (block) {
0dc3f44a 2278 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2279 } else if (last_block) {
0dc3f44a 2280 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2281 } else { /* list is empty */
0dc3f44a 2282 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2283 }
0d6d3c87 2284 ram_list.mru_block = NULL;
94a6b54f 2285
0dc3f44a
MD
2286 /* Write list before version */
2287 smp_wmb();
f798b07f 2288 ram_list.version++;
b2a8658e 2289 qemu_mutex_unlock_ramlist();
f798b07f 2290
9b8424d5 2291 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2292 new_block->used_length,
2293 DIRTY_CLIENTS_ALL);
94a6b54f 2294
a904c911
PB
2295 if (new_block->host) {
2296 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2297 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2298 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2299 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2300 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2301 }
94a6b54f 2302}
e9a1ab19 2303
d5dbde46 2304#ifdef CONFIG_POSIX
38b3362d 2305RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2306 uint32_t ram_flags, int fd,
38b3362d 2307 Error **errp)
e1c57ab8
PB
2308{
2309 RAMBlock *new_block;
ef701d7b 2310 Error *local_err = NULL;
8d37b030 2311 int64_t file_size;
e1c57ab8 2312
a4de8552
JH
2313 /* Just support these ram flags by now. */
2314 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2315
e1c57ab8 2316 if (xen_enabled()) {
7f56e740 2317 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2318 return NULL;
e1c57ab8
PB
2319 }
2320
e45e7ae2
MAL
2321 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2322 error_setg(errp,
2323 "host lacks kvm mmu notifiers, -mem-path unsupported");
2324 return NULL;
2325 }
2326
e1c57ab8
PB
2327 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2328 /*
2329 * file_ram_alloc() needs to allocate just like
2330 * phys_mem_alloc, but we haven't bothered to provide
2331 * a hook there.
2332 */
7f56e740
PB
2333 error_setg(errp,
2334 "-mem-path not supported with this accelerator");
528f46af 2335 return NULL;
e1c57ab8
PB
2336 }
2337
4ed023ce 2338 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2339 file_size = get_file_size(fd);
2340 if (file_size > 0 && file_size < size) {
2341 error_setg(errp, "backing store %s size 0x%" PRIx64
2342 " does not match 'size' option 0x" RAM_ADDR_FMT,
2343 mem_path, file_size, size);
8d37b030
MAL
2344 return NULL;
2345 }
2346
e1c57ab8
PB
2347 new_block = g_malloc0(sizeof(*new_block));
2348 new_block->mr = mr;
9b8424d5
MT
2349 new_block->used_length = size;
2350 new_block->max_length = size;
cbfc0171 2351 new_block->flags = ram_flags;
8d37b030 2352 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2353 if (!new_block->host) {
2354 g_free(new_block);
528f46af 2355 return NULL;
7f56e740
PB
2356 }
2357
cbfc0171 2358 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2359 if (local_err) {
2360 g_free(new_block);
2361 error_propagate(errp, local_err);
528f46af 2362 return NULL;
ef701d7b 2363 }
528f46af 2364 return new_block;
38b3362d
MAL
2365
2366}
2367
2368
2369RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2370 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2371 Error **errp)
2372{
2373 int fd;
2374 bool created;
2375 RAMBlock *block;
2376
2377 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2378 if (fd < 0) {
2379 return NULL;
2380 }
2381
cbfc0171 2382 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2383 if (!block) {
2384 if (created) {
2385 unlink(mem_path);
2386 }
2387 close(fd);
2388 return NULL;
2389 }
2390
2391 return block;
e1c57ab8 2392}
0b183fc8 2393#endif
e1c57ab8 2394
62be4e3a 2395static
528f46af
FZ
2396RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2397 void (*resized)(const char*,
2398 uint64_t length,
2399 void *host),
06329cce 2400 void *host, bool resizeable, bool share,
528f46af 2401 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2402{
2403 RAMBlock *new_block;
ef701d7b 2404 Error *local_err = NULL;
e1c57ab8 2405
4ed023ce
DDAG
2406 size = HOST_PAGE_ALIGN(size);
2407 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2408 new_block = g_malloc0(sizeof(*new_block));
2409 new_block->mr = mr;
62be4e3a 2410 new_block->resized = resized;
9b8424d5
MT
2411 new_block->used_length = size;
2412 new_block->max_length = max_size;
62be4e3a 2413 assert(max_size >= size);
e1c57ab8 2414 new_block->fd = -1;
863e9621 2415 new_block->page_size = getpagesize();
e1c57ab8
PB
2416 new_block->host = host;
2417 if (host) {
7bd4f430 2418 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2419 }
62be4e3a
MT
2420 if (resizeable) {
2421 new_block->flags |= RAM_RESIZEABLE;
2422 }
06329cce 2423 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2424 if (local_err) {
2425 g_free(new_block);
2426 error_propagate(errp, local_err);
528f46af 2427 return NULL;
ef701d7b 2428 }
528f46af 2429 return new_block;
e1c57ab8
PB
2430}
2431
528f46af 2432RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2433 MemoryRegion *mr, Error **errp)
2434{
06329cce
MA
2435 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2436 false, mr, errp);
62be4e3a
MT
2437}
2438
06329cce
MA
2439RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2440 MemoryRegion *mr, Error **errp)
6977dfe6 2441{
06329cce
MA
2442 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2443 share, mr, errp);
62be4e3a
MT
2444}
2445
528f46af 2446RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2447 void (*resized)(const char*,
2448 uint64_t length,
2449 void *host),
2450 MemoryRegion *mr, Error **errp)
2451{
06329cce
MA
2452 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2453 false, mr, errp);
6977dfe6
YT
2454}
2455
43771539
PB
2456static void reclaim_ramblock(RAMBlock *block)
2457{
2458 if (block->flags & RAM_PREALLOC) {
2459 ;
2460 } else if (xen_enabled()) {
2461 xen_invalidate_map_cache_entry(block->host);
2462#ifndef _WIN32
2463 } else if (block->fd >= 0) {
53adb9d4 2464 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2465 close(block->fd);
2466#endif
2467 } else {
2468 qemu_anon_ram_free(block->host, block->max_length);
2469 }
2470 g_free(block);
2471}
2472
f1060c55 2473void qemu_ram_free(RAMBlock *block)
e9a1ab19 2474{
85bc2a15
MAL
2475 if (!block) {
2476 return;
2477 }
2478
0987d735
PB
2479 if (block->host) {
2480 ram_block_notify_remove(block->host, block->max_length);
2481 }
2482
b2a8658e 2483 qemu_mutex_lock_ramlist();
f1060c55
FZ
2484 QLIST_REMOVE_RCU(block, next);
2485 ram_list.mru_block = NULL;
2486 /* Write list before version */
2487 smp_wmb();
2488 ram_list.version++;
2489 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2490 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2491}
2492
cd19cfa2
HY
2493#ifndef _WIN32
2494void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2495{
2496 RAMBlock *block;
2497 ram_addr_t offset;
2498 int flags;
2499 void *area, *vaddr;
2500
99e15582 2501 RAMBLOCK_FOREACH(block) {
cd19cfa2 2502 offset = addr - block->offset;
9b8424d5 2503 if (offset < block->max_length) {
1240be24 2504 vaddr = ramblock_ptr(block, offset);
7bd4f430 2505 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2506 ;
dfeaf2ab
MA
2507 } else if (xen_enabled()) {
2508 abort();
cd19cfa2
HY
2509 } else {
2510 flags = MAP_FIXED;
3435f395 2511 if (block->fd >= 0) {
dbcb8981
PB
2512 flags |= (block->flags & RAM_SHARED ?
2513 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2514 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2515 flags, block->fd, offset);
cd19cfa2 2516 } else {
2eb9fbaa
MA
2517 /*
2518 * Remap needs to match alloc. Accelerators that
2519 * set phys_mem_alloc never remap. If they did,
2520 * we'd need a remap hook here.
2521 */
2522 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2523
cd19cfa2
HY
2524 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2525 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2526 flags, -1, 0);
cd19cfa2
HY
2527 }
2528 if (area != vaddr) {
493d89bf
AF
2529 error_report("Could not remap addr: "
2530 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2531 length, addr);
cd19cfa2
HY
2532 exit(1);
2533 }
8490fc78 2534 memory_try_enable_merging(vaddr, length);
ddb97f1d 2535 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2536 }
cd19cfa2
HY
2537 }
2538 }
2539}
2540#endif /* !_WIN32 */
2541
1b5ec234 2542/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2543 * This should not be used for general purpose DMA. Use address_space_map
2544 * or address_space_rw instead. For local memory (e.g. video ram) that the
2545 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2546 *
49b24afc 2547 * Called within RCU critical section.
1b5ec234 2548 */
0878d0e1 2549void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2550{
3655cb9c
GA
2551 RAMBlock *block = ram_block;
2552
2553 if (block == NULL) {
2554 block = qemu_get_ram_block(addr);
0878d0e1 2555 addr -= block->offset;
3655cb9c 2556 }
ae3a7047
MD
2557
2558 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2559 /* We need to check if the requested address is in the RAM
2560 * because we don't want to map the entire memory in QEMU.
2561 * In that case just map until the end of the page.
2562 */
2563 if (block->offset == 0) {
1ff7c598 2564 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2565 }
ae3a7047 2566
1ff7c598 2567 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2568 }
0878d0e1 2569 return ramblock_ptr(block, addr);
dc828ca1
PB
2570}
2571
0878d0e1 2572/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2573 * but takes a size argument.
0dc3f44a 2574 *
e81bcda5 2575 * Called within RCU critical section.
ae3a7047 2576 */
3655cb9c 2577static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2578 hwaddr *size, bool lock)
38bee5dc 2579{
3655cb9c 2580 RAMBlock *block = ram_block;
8ab934f9
SS
2581 if (*size == 0) {
2582 return NULL;
2583 }
e81bcda5 2584
3655cb9c
GA
2585 if (block == NULL) {
2586 block = qemu_get_ram_block(addr);
0878d0e1 2587 addr -= block->offset;
3655cb9c 2588 }
0878d0e1 2589 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2590
2591 if (xen_enabled() && block->host == NULL) {
2592 /* We need to check if the requested address is in the RAM
2593 * because we don't want to map the entire memory in QEMU.
2594 * In that case just map the requested area.
2595 */
2596 if (block->offset == 0) {
f5aa69bd 2597 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2598 }
2599
f5aa69bd 2600 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2601 }
e81bcda5 2602
0878d0e1 2603 return ramblock_ptr(block, addr);
38bee5dc
SS
2604}
2605
f90bb71b
DDAG
2606/* Return the offset of a hostpointer within a ramblock */
2607ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2608{
2609 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2610 assert((uintptr_t)host >= (uintptr_t)rb->host);
2611 assert(res < rb->max_length);
2612
2613 return res;
2614}
2615
422148d3
DDAG
2616/*
2617 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2618 * in that RAMBlock.
2619 *
2620 * ptr: Host pointer to look up
2621 * round_offset: If true round the result offset down to a page boundary
2622 * *ram_addr: set to result ram_addr
2623 * *offset: set to result offset within the RAMBlock
2624 *
2625 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2626 *
2627 * By the time this function returns, the returned pointer is not protected
2628 * by RCU anymore. If the caller is not within an RCU critical section and
2629 * does not hold the iothread lock, it must have other means of protecting the
2630 * pointer, such as a reference to the region that includes the incoming
2631 * ram_addr_t.
2632 */
422148d3 2633RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2634 ram_addr_t *offset)
5579c7f3 2635{
94a6b54f
PB
2636 RAMBlock *block;
2637 uint8_t *host = ptr;
2638
868bb33f 2639 if (xen_enabled()) {
f615f396 2640 ram_addr_t ram_addr;
0dc3f44a 2641 rcu_read_lock();
f615f396
PB
2642 ram_addr = xen_ram_addr_from_mapcache(ptr);
2643 block = qemu_get_ram_block(ram_addr);
422148d3 2644 if (block) {
d6b6aec4 2645 *offset = ram_addr - block->offset;
422148d3 2646 }
0dc3f44a 2647 rcu_read_unlock();
422148d3 2648 return block;
712c2b41
SS
2649 }
2650
0dc3f44a
MD
2651 rcu_read_lock();
2652 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2653 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2654 goto found;
2655 }
2656
99e15582 2657 RAMBLOCK_FOREACH(block) {
432d268c
JN
2658 /* This case append when the block is not mapped. */
2659 if (block->host == NULL) {
2660 continue;
2661 }
9b8424d5 2662 if (host - block->host < block->max_length) {
23887b79 2663 goto found;
f471a17e 2664 }
94a6b54f 2665 }
432d268c 2666
0dc3f44a 2667 rcu_read_unlock();
1b5ec234 2668 return NULL;
23887b79
PB
2669
2670found:
422148d3
DDAG
2671 *offset = (host - block->host);
2672 if (round_offset) {
2673 *offset &= TARGET_PAGE_MASK;
2674 }
0dc3f44a 2675 rcu_read_unlock();
422148d3
DDAG
2676 return block;
2677}
2678
e3dd7493
DDAG
2679/*
2680 * Finds the named RAMBlock
2681 *
2682 * name: The name of RAMBlock to find
2683 *
2684 * Returns: RAMBlock (or NULL if not found)
2685 */
2686RAMBlock *qemu_ram_block_by_name(const char *name)
2687{
2688 RAMBlock *block;
2689
99e15582 2690 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2691 if (!strcmp(name, block->idstr)) {
2692 return block;
2693 }
2694 }
2695
2696 return NULL;
2697}
2698
422148d3
DDAG
2699/* Some of the softmmu routines need to translate from a host pointer
2700 (typically a TLB entry) back to a ram offset. */
07bdaa41 2701ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2702{
2703 RAMBlock *block;
f615f396 2704 ram_addr_t offset;
422148d3 2705
f615f396 2706 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2707 if (!block) {
07bdaa41 2708 return RAM_ADDR_INVALID;
422148d3
DDAG
2709 }
2710
07bdaa41 2711 return block->offset + offset;
e890261f 2712}
f471a17e 2713
27266271
PM
2714/* Called within RCU critical section. */
2715void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2716 CPUState *cpu,
2717 vaddr mem_vaddr,
2718 ram_addr_t ram_addr,
2719 unsigned size)
2720{
2721 ndi->cpu = cpu;
2722 ndi->ram_addr = ram_addr;
2723 ndi->mem_vaddr = mem_vaddr;
2724 ndi->size = size;
0ac20318 2725 ndi->pages = NULL;
ba051fb5 2726
5aa1ef71 2727 assert(tcg_enabled());
52159192 2728 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2729 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2730 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2731 }
27266271
PM
2732}
2733
2734/* Called within RCU critical section. */
2735void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2736{
0ac20318 2737 if (ndi->pages) {
f28d0dfd 2738 assert(tcg_enabled());
0ac20318
EC
2739 page_collection_unlock(ndi->pages);
2740 ndi->pages = NULL;
27266271
PM
2741 }
2742
2743 /* Set both VGA and migration bits for simplicity and to remove
2744 * the notdirty callback faster.
2745 */
2746 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2747 DIRTY_CLIENTS_NOCODE);
2748 /* we remove the notdirty callback only if the code has been
2749 flushed */
2750 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2751 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2752 }
2753}
2754
2755/* Called within RCU critical section. */
2756static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2757 uint64_t val, unsigned size)
2758{
2759 NotDirtyInfo ndi;
2760
2761 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2762 ram_addr, size);
2763
6d3ede54 2764 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2765 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2766}
2767
b018ddf6 2768static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2769 unsigned size, bool is_write,
2770 MemTxAttrs attrs)
b018ddf6
PB
2771{
2772 return is_write;
2773}
2774
0e0df1e2 2775static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2776 .write = notdirty_mem_write,
b018ddf6 2777 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2778 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2779 .valid = {
2780 .min_access_size = 1,
2781 .max_access_size = 8,
2782 .unaligned = false,
2783 },
2784 .impl = {
2785 .min_access_size = 1,
2786 .max_access_size = 8,
2787 .unaligned = false,
2788 },
1ccde1cb
FB
2789};
2790
0f459d16 2791/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2792void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2793 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2794{
568496c0 2795 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2796 CPUWatchpoint *wp;
0f459d16 2797
5aa1ef71 2798 assert(tcg_enabled());
ff4700b0 2799 if (cpu->watchpoint_hit) {
06d55cc1
AL
2800 /* We re-entered the check after replacing the TB. Now raise
2801 * the debug interrupt so that is will trigger after the
2802 * current instruction. */
93afeade 2803 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2804 return;
2805 }
0026348b
DH
2806
2807 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2808 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
0026348b 2809 if (cpu_watchpoint_address_matches(wp, addr, len)
05068c0d 2810 && (wp->flags & flags)) {
08225676
PM
2811 if (flags == BP_MEM_READ) {
2812 wp->flags |= BP_WATCHPOINT_HIT_READ;
2813 } else {
2814 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2815 }
0026348b 2816 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2817 wp->hitattrs = attrs;
ff4700b0 2818 if (!cpu->watchpoint_hit) {
568496c0
SF
2819 if (wp->flags & BP_CPU &&
2820 !cc->debug_check_watchpoint(cpu, wp)) {
2821 wp->flags &= ~BP_WATCHPOINT_HIT;
2822 continue;
2823 }
ff4700b0 2824 cpu->watchpoint_hit = wp;
a5e99826 2825
0ac20318 2826 mmap_lock();
239c51a5 2827 tb_check_watchpoint(cpu);
6e140f28 2828 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2829 cpu->exception_index = EXCP_DEBUG;
0ac20318 2830 mmap_unlock();
0026348b 2831 cpu_loop_exit_restore(cpu, ra);
6e140f28 2832 } else {
9b990ee5
RH
2833 /* Force execution of one insn next time. */
2834 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2835 mmap_unlock();
0026348b
DH
2836 if (ra) {
2837 cpu_restore_state(cpu, ra, true);
2838 }
6886b980 2839 cpu_loop_exit_noexc(cpu);
6e140f28 2840 }
06d55cc1 2841 }
6e140f28
AL
2842 } else {
2843 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2844 }
2845 }
2846}
2847
0026348b
DH
2848static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2849{
2850 CPUState *cpu = current_cpu;
2851 vaddr addr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2852
2853 cpu_check_watchpoint(cpu, addr, len, attrs, flags, 0);
2854}
2855
6658ffb8
PB
2856/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2857 so these check for a hit then pass through to the normal out-of-line
2858 phys routines. */
66b9b43c
PM
2859static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2860 unsigned size, MemTxAttrs attrs)
6658ffb8 2861{
66b9b43c
PM
2862 MemTxResult res;
2863 uint64_t data;
79ed0416
PM
2864 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2865 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2866
2867 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2868 switch (size) {
66b9b43c 2869 case 1:
79ed0416 2870 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2871 break;
2872 case 2:
79ed0416 2873 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2874 break;
2875 case 4:
79ed0416 2876 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2877 break;
306526b5
PB
2878 case 8:
2879 data = address_space_ldq(as, addr, attrs, &res);
2880 break;
1ec9b909
AK
2881 default: abort();
2882 }
66b9b43c
PM
2883 *pdata = data;
2884 return res;
6658ffb8
PB
2885}
2886
66b9b43c
PM
2887static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2888 uint64_t val, unsigned size,
2889 MemTxAttrs attrs)
6658ffb8 2890{
66b9b43c 2891 MemTxResult res;
79ed0416
PM
2892 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2893 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2894
2895 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2896 switch (size) {
67364150 2897 case 1:
79ed0416 2898 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2899 break;
2900 case 2:
79ed0416 2901 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2902 break;
2903 case 4:
79ed0416 2904 address_space_stl(as, addr, val, attrs, &res);
67364150 2905 break;
306526b5
PB
2906 case 8:
2907 address_space_stq(as, addr, val, attrs, &res);
2908 break;
1ec9b909
AK
2909 default: abort();
2910 }
66b9b43c 2911 return res;
6658ffb8
PB
2912}
2913
1ec9b909 2914static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2915 .read_with_attrs = watch_mem_read,
2916 .write_with_attrs = watch_mem_write,
1ec9b909 2917 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2918 .valid = {
2919 .min_access_size = 1,
2920 .max_access_size = 8,
2921 .unaligned = false,
2922 },
2923 .impl = {
2924 .min_access_size = 1,
2925 .max_access_size = 8,
2926 .unaligned = false,
2927 },
6658ffb8 2928};
6658ffb8 2929
b2a44fca 2930static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2931 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2932static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2933 const uint8_t *buf, hwaddr len);
2934static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2935 bool is_write, MemTxAttrs attrs);
16620684 2936
f25a49e0
PM
2937static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2938 unsigned len, MemTxAttrs attrs)
db7b5426 2939{
acc9d80b 2940 subpage_t *subpage = opaque;
ff6cff75 2941 uint8_t buf[8];
5c9eb028 2942 MemTxResult res;
791af8c8 2943
db7b5426 2944#if defined(DEBUG_SUBPAGE)
016e9d62 2945 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2946 subpage, len, addr);
db7b5426 2947#endif
16620684 2948 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2949 if (res) {
2950 return res;
f25a49e0 2951 }
6d3ede54
PM
2952 *data = ldn_p(buf, len);
2953 return MEMTX_OK;
db7b5426
BS
2954}
2955
f25a49e0
PM
2956static MemTxResult subpage_write(void *opaque, hwaddr addr,
2957 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2958{
acc9d80b 2959 subpage_t *subpage = opaque;
ff6cff75 2960 uint8_t buf[8];
acc9d80b 2961
db7b5426 2962#if defined(DEBUG_SUBPAGE)
016e9d62 2963 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2964 " value %"PRIx64"\n",
2965 __func__, subpage, len, addr, value);
db7b5426 2966#endif
6d3ede54 2967 stn_p(buf, len, value);
16620684 2968 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2969}
2970
c353e4cc 2971static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2972 unsigned len, bool is_write,
2973 MemTxAttrs attrs)
c353e4cc 2974{
acc9d80b 2975 subpage_t *subpage = opaque;
c353e4cc 2976#if defined(DEBUG_SUBPAGE)
016e9d62 2977 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2978 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2979#endif
2980
16620684 2981 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2982 len, is_write, attrs);
c353e4cc
PB
2983}
2984
70c68e44 2985static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2986 .read_with_attrs = subpage_read,
2987 .write_with_attrs = subpage_write,
ff6cff75
PB
2988 .impl.min_access_size = 1,
2989 .impl.max_access_size = 8,
2990 .valid.min_access_size = 1,
2991 .valid.max_access_size = 8,
c353e4cc 2992 .valid.accepts = subpage_accepts,
70c68e44 2993 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2994};
2995
c227f099 2996static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2997 uint16_t section)
db7b5426
BS
2998{
2999 int idx, eidx;
3000
3001 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3002 return -1;
3003 idx = SUBPAGE_IDX(start);
3004 eidx = SUBPAGE_IDX(end);
3005#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3006 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3007 __func__, mmio, start, end, idx, eidx, section);
db7b5426 3008#endif
db7b5426 3009 for (; idx <= eidx; idx++) {
5312bd8b 3010 mmio->sub_section[idx] = section;
db7b5426
BS
3011 }
3012
3013 return 0;
3014}
3015
16620684 3016static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 3017{
c227f099 3018 subpage_t *mmio;
db7b5426 3019
2615fabd 3020 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 3021 mmio->fv = fv;
1eec614b 3022 mmio->base = base;
2c9b15ca 3023 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 3024 NULL, TARGET_PAGE_SIZE);
b3b00c78 3025 mmio->iomem.subpage = true;
db7b5426 3026#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3027 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3028 mmio, base, TARGET_PAGE_SIZE);
db7b5426 3029#endif
b41aac4f 3030 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
3031
3032 return mmio;
3033}
3034
16620684 3035static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 3036{
16620684 3037 assert(fv);
5312bd8b 3038 MemoryRegionSection section = {
16620684 3039 .fv = fv,
5312bd8b
AK
3040 .mr = mr,
3041 .offset_within_address_space = 0,
3042 .offset_within_region = 0,
052e87b0 3043 .size = int128_2_64(),
5312bd8b
AK
3044 };
3045
53cb28cb 3046 return phys_section_add(map, &section);
5312bd8b
AK
3047}
3048
8af36743
PM
3049static void readonly_mem_write(void *opaque, hwaddr addr,
3050 uint64_t val, unsigned size)
3051{
3052 /* Ignore any write to ROM. */
3053}
3054
3055static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
3056 unsigned size, bool is_write,
3057 MemTxAttrs attrs)
8af36743
PM
3058{
3059 return is_write;
3060}
3061
3062/* This will only be used for writes, because reads are special cased
3063 * to directly access the underlying host ram.
3064 */
3065static const MemoryRegionOps readonly_mem_ops = {
3066 .write = readonly_mem_write,
3067 .valid.accepts = readonly_mem_accepts,
3068 .endianness = DEVICE_NATIVE_ENDIAN,
3069 .valid = {
3070 .min_access_size = 1,
3071 .max_access_size = 8,
3072 .unaligned = false,
3073 },
3074 .impl = {
3075 .min_access_size = 1,
3076 .max_access_size = 8,
3077 .unaligned = false,
3078 },
3079};
3080
2d54f194
PM
3081MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3082 hwaddr index, MemTxAttrs attrs)
aa102231 3083{
a54c87b6
PM
3084 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3085 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3086 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3087 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3088
2d54f194 3089 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3090}
3091
e9179ce1
AK
3092static void io_mem_init(void)
3093{
8af36743
PM
3094 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3095 NULL, NULL, UINT64_MAX);
2c9b15ca 3096 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3097 NULL, UINT64_MAX);
8d04fb55
JK
3098
3099 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3100 * which can be called without the iothread mutex.
3101 */
2c9b15ca 3102 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3103 NULL, UINT64_MAX);
8d04fb55
JK
3104 memory_region_clear_global_locking(&io_mem_notdirty);
3105
2c9b15ca 3106 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3107 NULL, UINT64_MAX);
e9179ce1
AK
3108}
3109
8629d3fc 3110AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3111{
53cb28cb
MA
3112 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3113 uint16_t n;
3114
16620684 3115 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3116 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3117 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3118 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3119 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3120 assert(n == PHYS_SECTION_ROM);
16620684 3121 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3122 assert(n == PHYS_SECTION_WATCH);
00752703 3123
9736e55b 3124 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3125
3126 return d;
00752703
PB
3127}
3128
66a6df1d 3129void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3130{
3131 phys_sections_free(&d->map);
3132 g_free(d);
3133}
3134
9458a9a1
PB
3135static void do_nothing(CPUState *cpu, run_on_cpu_data d)
3136{
3137}
3138
3139static void tcg_log_global_after_sync(MemoryListener *listener)
3140{
3141 CPUAddressSpace *cpuas;
3142
3143 /* Wait for the CPU to end the current TB. This avoids the following
3144 * incorrect race:
3145 *
3146 * vCPU migration
3147 * ---------------------- -------------------------
3148 * TLB check -> slow path
3149 * notdirty_mem_write
3150 * write to RAM
3151 * mark dirty
3152 * clear dirty flag
3153 * TLB check -> fast path
3154 * read memory
3155 * write to RAM
3156 *
3157 * by pushing the migration thread's memory read after the vCPU thread has
3158 * written the memory.
3159 */
3160 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3161 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3162}
3163
1d71148e 3164static void tcg_commit(MemoryListener *listener)
50c1e149 3165{
32857f4d
PM
3166 CPUAddressSpace *cpuas;
3167 AddressSpaceDispatch *d;
117712c3 3168
f28d0dfd 3169 assert(tcg_enabled());
117712c3
AK
3170 /* since each CPU stores ram addresses in its TLB cache, we must
3171 reset the modified entries */
32857f4d
PM
3172 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3173 cpu_reloading_memory_map();
3174 /* The CPU and TLB are protected by the iothread lock.
3175 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3176 * may have split the RCU critical section.
3177 */
66a6df1d 3178 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3179 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3180 tlb_flush(cpuas->cpu);
50c1e149
AK
3181}
3182
62152b8a
AK
3183static void memory_map_init(void)
3184{
7267c094 3185 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3186
57271d63 3187 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3188 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3189
7267c094 3190 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3191 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3192 65536);
7dca8043 3193 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3194}
3195
3196MemoryRegion *get_system_memory(void)
3197{
3198 return system_memory;
3199}
3200
309cb471
AK
3201MemoryRegion *get_system_io(void)
3202{
3203 return system_io;
3204}
3205
e2eef170
PB
3206#endif /* !defined(CONFIG_USER_ONLY) */
3207
13eb76e0
FB
3208/* physical memory access (slow version, mainly for debug) */
3209#if defined(CONFIG_USER_ONLY)
f17ec444 3210int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3211 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3212{
0c249ff7
LZ
3213 int flags;
3214 target_ulong l, page;
53a5960a 3215 void * p;
13eb76e0
FB
3216
3217 while (len > 0) {
3218 page = addr & TARGET_PAGE_MASK;
3219 l = (page + TARGET_PAGE_SIZE) - addr;
3220 if (l > len)
3221 l = len;
3222 flags = page_get_flags(page);
3223 if (!(flags & PAGE_VALID))
a68fe89c 3224 return -1;
13eb76e0
FB
3225 if (is_write) {
3226 if (!(flags & PAGE_WRITE))
a68fe89c 3227 return -1;
579a97f7 3228 /* XXX: this code should not depend on lock_user */
72fb7daa 3229 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3230 return -1;
72fb7daa
AJ
3231 memcpy(p, buf, l);
3232 unlock_user(p, addr, l);
13eb76e0
FB
3233 } else {
3234 if (!(flags & PAGE_READ))
a68fe89c 3235 return -1;
579a97f7 3236 /* XXX: this code should not depend on lock_user */
72fb7daa 3237 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3238 return -1;
72fb7daa 3239 memcpy(buf, p, l);
5b257578 3240 unlock_user(p, addr, 0);
13eb76e0
FB
3241 }
3242 len -= l;
3243 buf += l;
3244 addr += l;
3245 }
a68fe89c 3246 return 0;
13eb76e0 3247}
8df1cd07 3248
13eb76e0 3249#else
51d7a9eb 3250
845b6214 3251static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3252 hwaddr length)
51d7a9eb 3253{
e87f7778 3254 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3255 addr += memory_region_get_ram_addr(mr);
3256
e87f7778
PB
3257 /* No early return if dirty_log_mask is or becomes 0, because
3258 * cpu_physical_memory_set_dirty_range will still call
3259 * xen_modified_memory.
3260 */
3261 if (dirty_log_mask) {
3262 dirty_log_mask =
3263 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3264 }
3265 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3266 assert(tcg_enabled());
e87f7778
PB
3267 tb_invalidate_phys_range(addr, addr + length);
3268 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3269 }
e87f7778 3270 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3271}
3272
047be4ed
SH
3273void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3274{
3275 /*
3276 * In principle this function would work on other memory region types too,
3277 * but the ROM device use case is the only one where this operation is
3278 * necessary. Other memory regions should use the
3279 * address_space_read/write() APIs.
3280 */
3281 assert(memory_region_is_romd(mr));
3282
3283 invalidate_and_set_dirty(mr, addr, size);
3284}
3285
23326164 3286static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3287{
e1622f4b 3288 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3289
3290 /* Regions are assumed to support 1-4 byte accesses unless
3291 otherwise specified. */
23326164
RH
3292 if (access_size_max == 0) {
3293 access_size_max = 4;
3294 }
3295
3296 /* Bound the maximum access by the alignment of the address. */
3297 if (!mr->ops->impl.unaligned) {
3298 unsigned align_size_max = addr & -addr;
3299 if (align_size_max != 0 && align_size_max < access_size_max) {
3300 access_size_max = align_size_max;
3301 }
82f2563f 3302 }
23326164
RH
3303
3304 /* Don't attempt accesses larger than the maximum. */
3305 if (l > access_size_max) {
3306 l = access_size_max;
82f2563f 3307 }
6554f5c0 3308 l = pow2floor(l);
23326164
RH
3309
3310 return l;
82f2563f
PB
3311}
3312
4840f10e 3313static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3314{
4840f10e
JK
3315 bool unlocked = !qemu_mutex_iothread_locked();
3316 bool release_lock = false;
3317
3318 if (unlocked && mr->global_locking) {
3319 qemu_mutex_lock_iothread();
3320 unlocked = false;
3321 release_lock = true;
3322 }
125b3806 3323 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3324 if (unlocked) {
3325 qemu_mutex_lock_iothread();
3326 }
125b3806 3327 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3328 if (unlocked) {
3329 qemu_mutex_unlock_iothread();
3330 }
125b3806 3331 }
4840f10e
JK
3332
3333 return release_lock;
125b3806
PB
3334}
3335
a203ac70 3336/* Called within RCU critical section. */
16620684
AK
3337static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3338 MemTxAttrs attrs,
3339 const uint8_t *buf,
0c249ff7 3340 hwaddr len, hwaddr addr1,
16620684 3341 hwaddr l, MemoryRegion *mr)
13eb76e0 3342{
13eb76e0 3343 uint8_t *ptr;
791af8c8 3344 uint64_t val;
3b643495 3345 MemTxResult result = MEMTX_OK;
4840f10e 3346 bool release_lock = false;
3b46e624 3347
a203ac70 3348 for (;;) {
eb7eeb88
PB
3349 if (!memory_access_is_direct(mr, true)) {
3350 release_lock |= prepare_mmio_access(mr);
3351 l = memory_access_size(mr, l, addr1);
3352 /* XXX: could force current_cpu to NULL to avoid
3353 potential bugs */
9bf825bf 3354 val = ldn_he_p(buf, l);
3d9e7c3e 3355 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3356 size_memop(l), attrs);
13eb76e0 3357 } else {
eb7eeb88 3358 /* RAM case */
f5aa69bd 3359 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3360 memcpy(ptr, buf, l);
3361 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3362 }
4840f10e
JK
3363
3364 if (release_lock) {
3365 qemu_mutex_unlock_iothread();
3366 release_lock = false;
3367 }
3368
13eb76e0
FB
3369 len -= l;
3370 buf += l;
3371 addr += l;
a203ac70
PB
3372
3373 if (!len) {
3374 break;
3375 }
3376
3377 l = len;
efa99a2f 3378 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3379 }
fd8aaa76 3380
3b643495 3381 return result;
13eb76e0 3382}
8df1cd07 3383
4c6ebbb3 3384/* Called from RCU critical section. */
16620684 3385static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3386 const uint8_t *buf, hwaddr len)
ac1970fb 3387{
eb7eeb88 3388 hwaddr l;
eb7eeb88
PB
3389 hwaddr addr1;
3390 MemoryRegion *mr;
3391 MemTxResult result = MEMTX_OK;
eb7eeb88 3392
4c6ebbb3 3393 l = len;
efa99a2f 3394 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3395 result = flatview_write_continue(fv, addr, attrs, buf, len,
3396 addr1, l, mr);
a203ac70
PB
3397
3398 return result;
3399}
3400
3401/* Called within RCU critical section. */
16620684
AK
3402MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3403 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3404 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3405 MemoryRegion *mr)
a203ac70
PB
3406{
3407 uint8_t *ptr;
3408 uint64_t val;
3409 MemTxResult result = MEMTX_OK;
3410 bool release_lock = false;
eb7eeb88 3411
a203ac70 3412 for (;;) {
eb7eeb88
PB
3413 if (!memory_access_is_direct(mr, false)) {
3414 /* I/O case */
3415 release_lock |= prepare_mmio_access(mr);
3416 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3417 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3418 size_memop(l), attrs);
3419 stn_he_p(buf, l, val);
eb7eeb88
PB
3420 } else {
3421 /* RAM case */
f5aa69bd 3422 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3423 memcpy(buf, ptr, l);
3424 }
3425
3426 if (release_lock) {
3427 qemu_mutex_unlock_iothread();
3428 release_lock = false;
3429 }
3430
3431 len -= l;
3432 buf += l;
3433 addr += l;
a203ac70
PB
3434
3435 if (!len) {
3436 break;
3437 }
3438
3439 l = len;
efa99a2f 3440 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3441 }
3442
3443 return result;
3444}
3445
b2a44fca
PB
3446/* Called from RCU critical section. */
3447static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3448 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3449{
3450 hwaddr l;
3451 hwaddr addr1;
3452 MemoryRegion *mr;
eb7eeb88 3453
b2a44fca 3454 l = len;
efa99a2f 3455 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3456 return flatview_read_continue(fv, addr, attrs, buf, len,
3457 addr1, l, mr);
ac1970fb
AK
3458}
3459
b2a44fca 3460MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3461 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3462{
3463 MemTxResult result = MEMTX_OK;
3464 FlatView *fv;
3465
3466 if (len > 0) {
3467 rcu_read_lock();
3468 fv = address_space_to_flatview(as);
3469 result = flatview_read(fv, addr, attrs, buf, len);
3470 rcu_read_unlock();
3471 }
3472
3473 return result;
3474}
3475
4c6ebbb3
PB
3476MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3477 MemTxAttrs attrs,
0c249ff7 3478 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3479{
3480 MemTxResult result = MEMTX_OK;
3481 FlatView *fv;
3482
3483 if (len > 0) {
3484 rcu_read_lock();
3485 fv = address_space_to_flatview(as);
3486 result = flatview_write(fv, addr, attrs, buf, len);
3487 rcu_read_unlock();
3488 }
3489
3490 return result;
3491}
3492
db84fd97 3493MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3494 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3495{
3496 if (is_write) {
3497 return address_space_write(as, addr, attrs, buf, len);
3498 } else {
3499 return address_space_read_full(as, addr, attrs, buf, len);
3500 }
3501}
3502
a8170e5e 3503void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3504 hwaddr len, int is_write)
ac1970fb 3505{
5c9eb028
PM
3506 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3507 buf, len, is_write);
ac1970fb
AK
3508}
3509
582b55a9
AG
3510enum write_rom_type {
3511 WRITE_DATA,
3512 FLUSH_CACHE,
3513};
3514
75693e14
PM
3515static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3516 hwaddr addr,
3517 MemTxAttrs attrs,
3518 const uint8_t *buf,
0c249ff7 3519 hwaddr len,
75693e14 3520 enum write_rom_type type)
d0ecd2aa 3521{
149f54b5 3522 hwaddr l;
d0ecd2aa 3523 uint8_t *ptr;
149f54b5 3524 hwaddr addr1;
5c8a00ce 3525 MemoryRegion *mr;
3b46e624 3526
41063e1e 3527 rcu_read_lock();
d0ecd2aa 3528 while (len > 0) {
149f54b5 3529 l = len;
75693e14 3530 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3531
5c8a00ce
PB
3532 if (!(memory_region_is_ram(mr) ||
3533 memory_region_is_romd(mr))) {
b242e0e0 3534 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3535 } else {
d0ecd2aa 3536 /* ROM/RAM case */
0878d0e1 3537 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3538 switch (type) {
3539 case WRITE_DATA:
3540 memcpy(ptr, buf, l);
845b6214 3541 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3542 break;
3543 case FLUSH_CACHE:
3544 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3545 break;
3546 }
d0ecd2aa
FB
3547 }
3548 len -= l;
3549 buf += l;
3550 addr += l;
3551 }
41063e1e 3552 rcu_read_unlock();
75693e14 3553 return MEMTX_OK;
d0ecd2aa
FB
3554}
3555
582b55a9 3556/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3557MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3558 MemTxAttrs attrs,
0c249ff7 3559 const uint8_t *buf, hwaddr len)
582b55a9 3560{
3c8133f9
PM
3561 return address_space_write_rom_internal(as, addr, attrs,
3562 buf, len, WRITE_DATA);
582b55a9
AG
3563}
3564
0c249ff7 3565void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3566{
3567 /*
3568 * This function should do the same thing as an icache flush that was
3569 * triggered from within the guest. For TCG we are always cache coherent,
3570 * so there is no need to flush anything. For KVM / Xen we need to flush
3571 * the host's instruction cache at least.
3572 */
3573 if (tcg_enabled()) {
3574 return;
3575 }
3576
75693e14
PM
3577 address_space_write_rom_internal(&address_space_memory,
3578 start, MEMTXATTRS_UNSPECIFIED,
3579 NULL, len, FLUSH_CACHE);
582b55a9
AG
3580}
3581
6d16c2f8 3582typedef struct {
d3e71559 3583 MemoryRegion *mr;
6d16c2f8 3584 void *buffer;
a8170e5e
AK
3585 hwaddr addr;
3586 hwaddr len;
c2cba0ff 3587 bool in_use;
6d16c2f8
AL
3588} BounceBuffer;
3589
3590static BounceBuffer bounce;
3591
ba223c29 3592typedef struct MapClient {
e95205e1 3593 QEMUBH *bh;
72cf2d4f 3594 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3595} MapClient;
3596
38e047b5 3597QemuMutex map_client_list_lock;
b58deb34 3598static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3599 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3600
e95205e1
FZ
3601static void cpu_unregister_map_client_do(MapClient *client)
3602{
3603 QLIST_REMOVE(client, link);
3604 g_free(client);
3605}
3606
33b6c2ed
FZ
3607static void cpu_notify_map_clients_locked(void)
3608{
3609 MapClient *client;
3610
3611 while (!QLIST_EMPTY(&map_client_list)) {
3612 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3613 qemu_bh_schedule(client->bh);
3614 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3615 }
3616}
3617
e95205e1 3618void cpu_register_map_client(QEMUBH *bh)
ba223c29 3619{
7267c094 3620 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3621
38e047b5 3622 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3623 client->bh = bh;
72cf2d4f 3624 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3625 if (!atomic_read(&bounce.in_use)) {
3626 cpu_notify_map_clients_locked();
3627 }
38e047b5 3628 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3629}
3630
38e047b5 3631void cpu_exec_init_all(void)
ba223c29 3632{
38e047b5 3633 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3634 /* The data structures we set up here depend on knowing the page size,
3635 * so no more changes can be made after this point.
3636 * In an ideal world, nothing we did before we had finished the
3637 * machine setup would care about the target page size, and we could
3638 * do this much later, rather than requiring board models to state
3639 * up front what their requirements are.
3640 */
3641 finalize_target_page_bits();
38e047b5 3642 io_mem_init();
680a4783 3643 memory_map_init();
38e047b5 3644 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3645}
3646
e95205e1 3647void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3648{
3649 MapClient *client;
3650
e95205e1
FZ
3651 qemu_mutex_lock(&map_client_list_lock);
3652 QLIST_FOREACH(client, &map_client_list, link) {
3653 if (client->bh == bh) {
3654 cpu_unregister_map_client_do(client);
3655 break;
3656 }
ba223c29 3657 }
e95205e1 3658 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3659}
3660
3661static void cpu_notify_map_clients(void)
3662{
38e047b5 3663 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3664 cpu_notify_map_clients_locked();
38e047b5 3665 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3666}
3667
0c249ff7 3668static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3669 bool is_write, MemTxAttrs attrs)
51644ab7 3670{
5c8a00ce 3671 MemoryRegion *mr;
51644ab7
PB
3672 hwaddr l, xlat;
3673
3674 while (len > 0) {
3675 l = len;
efa99a2f 3676 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3677 if (!memory_access_is_direct(mr, is_write)) {
3678 l = memory_access_size(mr, l, addr);
eace72b7 3679 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3680 return false;
3681 }
3682 }
3683
3684 len -= l;
3685 addr += l;
3686 }
3687 return true;
3688}
3689
16620684 3690bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3691 hwaddr len, bool is_write,
fddffa42 3692 MemTxAttrs attrs)
16620684 3693{
11e732a5
PB
3694 FlatView *fv;
3695 bool result;
3696
3697 rcu_read_lock();
3698 fv = address_space_to_flatview(as);
eace72b7 3699 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3700 rcu_read_unlock();
3701 return result;
16620684
AK
3702}
3703
715c31ec 3704static hwaddr
16620684 3705flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3706 hwaddr target_len,
3707 MemoryRegion *mr, hwaddr base, hwaddr len,
3708 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3709{
3710 hwaddr done = 0;
3711 hwaddr xlat;
3712 MemoryRegion *this_mr;
3713
3714 for (;;) {
3715 target_len -= len;
3716 addr += len;
3717 done += len;
3718 if (target_len == 0) {
3719 return done;
3720 }
3721
3722 len = target_len;
16620684 3723 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3724 &len, is_write, attrs);
715c31ec
PB
3725 if (this_mr != mr || xlat != base + done) {
3726 return done;
3727 }
3728 }
3729}
3730
6d16c2f8
AL
3731/* Map a physical memory region into a host virtual address.
3732 * May map a subset of the requested range, given by and returned in *plen.
3733 * May return NULL if resources needed to perform the mapping are exhausted.
3734 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3735 * Use cpu_register_map_client() to know when retrying the map operation is
3736 * likely to succeed.
6d16c2f8 3737 */
ac1970fb 3738void *address_space_map(AddressSpace *as,
a8170e5e
AK
3739 hwaddr addr,
3740 hwaddr *plen,
f26404fb
PM
3741 bool is_write,
3742 MemTxAttrs attrs)
6d16c2f8 3743{
a8170e5e 3744 hwaddr len = *plen;
715c31ec
PB
3745 hwaddr l, xlat;
3746 MemoryRegion *mr;
e81bcda5 3747 void *ptr;
ad0c60fa 3748 FlatView *fv;
6d16c2f8 3749
e3127ae0
PB
3750 if (len == 0) {
3751 return NULL;
3752 }
38bee5dc 3753
e3127ae0 3754 l = len;
41063e1e 3755 rcu_read_lock();
ad0c60fa 3756 fv = address_space_to_flatview(as);
efa99a2f 3757 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3758
e3127ae0 3759 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3760 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3761 rcu_read_unlock();
e3127ae0 3762 return NULL;
6d16c2f8 3763 }
e85d9db5
KW
3764 /* Avoid unbounded allocations */
3765 l = MIN(l, TARGET_PAGE_SIZE);
3766 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3767 bounce.addr = addr;
3768 bounce.len = l;
d3e71559
PB
3769
3770 memory_region_ref(mr);
3771 bounce.mr = mr;
e3127ae0 3772 if (!is_write) {
16620684 3773 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3774 bounce.buffer, l);
8ab934f9 3775 }
6d16c2f8 3776
41063e1e 3777 rcu_read_unlock();
e3127ae0
PB
3778 *plen = l;
3779 return bounce.buffer;
3780 }
3781
e3127ae0 3782
d3e71559 3783 memory_region_ref(mr);
16620684 3784 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3785 l, is_write, attrs);
f5aa69bd 3786 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3787 rcu_read_unlock();
3788
3789 return ptr;
6d16c2f8
AL
3790}
3791
ac1970fb 3792/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3793 * Will also mark the memory as dirty if is_write == 1. access_len gives
3794 * the amount of memory that was actually read or written by the caller.
3795 */
a8170e5e
AK
3796void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3797 int is_write, hwaddr access_len)
6d16c2f8
AL
3798{
3799 if (buffer != bounce.buffer) {
d3e71559
PB
3800 MemoryRegion *mr;
3801 ram_addr_t addr1;
3802
07bdaa41 3803 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3804 assert(mr != NULL);
6d16c2f8 3805 if (is_write) {
845b6214 3806 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3807 }
868bb33f 3808 if (xen_enabled()) {
e41d7c69 3809 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3810 }
d3e71559 3811 memory_region_unref(mr);
6d16c2f8
AL
3812 return;
3813 }
3814 if (is_write) {
5c9eb028
PM
3815 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3816 bounce.buffer, access_len);
6d16c2f8 3817 }
f8a83245 3818 qemu_vfree(bounce.buffer);
6d16c2f8 3819 bounce.buffer = NULL;
d3e71559 3820 memory_region_unref(bounce.mr);
c2cba0ff 3821 atomic_mb_set(&bounce.in_use, false);
ba223c29 3822 cpu_notify_map_clients();
6d16c2f8 3823}
d0ecd2aa 3824
a8170e5e
AK
3825void *cpu_physical_memory_map(hwaddr addr,
3826 hwaddr *plen,
ac1970fb
AK
3827 int is_write)
3828{
f26404fb
PM
3829 return address_space_map(&address_space_memory, addr, plen, is_write,
3830 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3831}
3832
a8170e5e
AK
3833void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3834 int is_write, hwaddr access_len)
ac1970fb
AK
3835{
3836 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3837}
3838
0ce265ff
PB
3839#define ARG1_DECL AddressSpace *as
3840#define ARG1 as
3841#define SUFFIX
3842#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3843#define RCU_READ_LOCK(...) rcu_read_lock()
3844#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3845#include "memory_ldst.inc.c"
1e78bcc1 3846
1f4e496e
PB
3847int64_t address_space_cache_init(MemoryRegionCache *cache,
3848 AddressSpace *as,
3849 hwaddr addr,
3850 hwaddr len,
3851 bool is_write)
3852{
48564041
PB
3853 AddressSpaceDispatch *d;
3854 hwaddr l;
3855 MemoryRegion *mr;
3856
3857 assert(len > 0);
3858
3859 l = len;
3860 cache->fv = address_space_get_flatview(as);
3861 d = flatview_to_dispatch(cache->fv);
3862 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3863
3864 mr = cache->mrs.mr;
3865 memory_region_ref(mr);
3866 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3867 /* We don't care about the memory attributes here as we're only
3868 * doing this if we found actual RAM, which behaves the same
3869 * regardless of attributes; so UNSPECIFIED is fine.
3870 */
48564041 3871 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3872 cache->xlat, l, is_write,
3873 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3874 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3875 } else {
3876 cache->ptr = NULL;
3877 }
3878
3879 cache->len = l;
3880 cache->is_write = is_write;
3881 return l;
1f4e496e
PB
3882}
3883
3884void address_space_cache_invalidate(MemoryRegionCache *cache,
3885 hwaddr addr,
3886 hwaddr access_len)
3887{
48564041
PB
3888 assert(cache->is_write);
3889 if (likely(cache->ptr)) {
3890 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3891 }
1f4e496e
PB
3892}
3893
3894void address_space_cache_destroy(MemoryRegionCache *cache)
3895{
48564041
PB
3896 if (!cache->mrs.mr) {
3897 return;
3898 }
3899
3900 if (xen_enabled()) {
3901 xen_invalidate_map_cache_entry(cache->ptr);
3902 }
3903 memory_region_unref(cache->mrs.mr);
3904 flatview_unref(cache->fv);
3905 cache->mrs.mr = NULL;
3906 cache->fv = NULL;
3907}
3908
3909/* Called from RCU critical section. This function has the same
3910 * semantics as address_space_translate, but it only works on a
3911 * predefined range of a MemoryRegion that was mapped with
3912 * address_space_cache_init.
3913 */
3914static inline MemoryRegion *address_space_translate_cached(
3915 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3916 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3917{
3918 MemoryRegionSection section;
3919 MemoryRegion *mr;
3920 IOMMUMemoryRegion *iommu_mr;
3921 AddressSpace *target_as;
3922
3923 assert(!cache->ptr);
3924 *xlat = addr + cache->xlat;
3925
3926 mr = cache->mrs.mr;
3927 iommu_mr = memory_region_get_iommu(mr);
3928 if (!iommu_mr) {
3929 /* MMIO region. */
3930 return mr;
3931 }
3932
3933 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3934 NULL, is_write, true,
2f7b009c 3935 &target_as, attrs);
48564041
PB
3936 return section.mr;
3937}
3938
3939/* Called from RCU critical section. address_space_read_cached uses this
3940 * out of line function when the target is an MMIO or IOMMU region.
3941 */
3942void
3943address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3944 void *buf, hwaddr len)
48564041
PB
3945{
3946 hwaddr addr1, l;
3947 MemoryRegion *mr;
3948
3949 l = len;
bc6b1cec
PM
3950 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3951 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3952 flatview_read_continue(cache->fv,
3953 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3954 addr1, l, mr);
3955}
3956
3957/* Called from RCU critical section. address_space_write_cached uses this
3958 * out of line function when the target is an MMIO or IOMMU region.
3959 */
3960void
3961address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3962 const void *buf, hwaddr len)
48564041
PB
3963{
3964 hwaddr addr1, l;
3965 MemoryRegion *mr;
3966
3967 l = len;
bc6b1cec
PM
3968 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3969 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3970 flatview_write_continue(cache->fv,
3971 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3972 addr1, l, mr);
1f4e496e
PB
3973}
3974
3975#define ARG1_DECL MemoryRegionCache *cache
3976#define ARG1 cache
48564041
PB
3977#define SUFFIX _cached_slow
3978#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3979#define RCU_READ_LOCK() ((void)0)
3980#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3981#include "memory_ldst.inc.c"
3982
5e2972fd 3983/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3984int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3985 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3986{
a8170e5e 3987 hwaddr phys_addr;
0c249ff7 3988 target_ulong l, page;
13eb76e0 3989
79ca7a1b 3990 cpu_synchronize_state(cpu);
13eb76e0 3991 while (len > 0) {
5232e4c7
PM
3992 int asidx;
3993 MemTxAttrs attrs;
3994
13eb76e0 3995 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3996 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3997 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3998 /* if no physical page mapped, return an error */
3999 if (phys_addr == -1)
4000 return -1;
4001 l = (page + TARGET_PAGE_SIZE) - addr;
4002 if (l > len)
4003 l = len;
5e2972fd 4004 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 4005 if (is_write) {
3c8133f9 4006 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 4007 attrs, buf, l);
2e38847b 4008 } else {
5232e4c7 4009 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 4010 attrs, buf, l, 0);
2e38847b 4011 }
13eb76e0
FB
4012 len -= l;
4013 buf += l;
4014 addr += l;
4015 }
4016 return 0;
4017}
038629a6
DDAG
4018
4019/*
4020 * Allows code that needs to deal with migration bitmaps etc to still be built
4021 * target independent.
4022 */
20afaed9 4023size_t qemu_target_page_size(void)
038629a6 4024{
20afaed9 4025 return TARGET_PAGE_SIZE;
038629a6
DDAG
4026}
4027
46d702b1
JQ
4028int qemu_target_page_bits(void)
4029{
4030 return TARGET_PAGE_BITS;
4031}
4032
4033int qemu_target_page_bits_min(void)
4034{
4035 return TARGET_PAGE_BITS_MIN;
4036}
a68fe89c 4037#endif
13eb76e0 4038
98ed8ecf 4039bool target_words_bigendian(void)
8e4a424b
BS
4040{
4041#if defined(TARGET_WORDS_BIGENDIAN)
4042 return true;
4043#else
4044 return false;
4045#endif
4046}
4047
76f35538 4048#ifndef CONFIG_USER_ONLY
a8170e5e 4049bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 4050{
5c8a00ce 4051 MemoryRegion*mr;
149f54b5 4052 hwaddr l = 1;
41063e1e 4053 bool res;
76f35538 4054
41063e1e 4055 rcu_read_lock();
5c8a00ce 4056 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
4057 phys_addr, &phys_addr, &l, false,
4058 MEMTXATTRS_UNSPECIFIED);
76f35538 4059
41063e1e
PB
4060 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4061 rcu_read_unlock();
4062 return res;
76f35538 4063}
bd2fa51f 4064
e3807054 4065int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
4066{
4067 RAMBlock *block;
e3807054 4068 int ret = 0;
bd2fa51f 4069
0dc3f44a 4070 rcu_read_lock();
99e15582 4071 RAMBLOCK_FOREACH(block) {
754cb9c0 4072 ret = func(block, opaque);
e3807054
DDAG
4073 if (ret) {
4074 break;
4075 }
bd2fa51f 4076 }
0dc3f44a 4077 rcu_read_unlock();
e3807054 4078 return ret;
bd2fa51f 4079}
d3a5038c
DDAG
4080
4081/*
4082 * Unmap pages of memory from start to start+length such that
4083 * they a) read as 0, b) Trigger whatever fault mechanism
4084 * the OS provides for postcopy.
4085 * The pages must be unmapped by the end of the function.
4086 * Returns: 0 on success, none-0 on failure
4087 *
4088 */
4089int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4090{
4091 int ret = -1;
4092
4093 uint8_t *host_startaddr = rb->host + start;
4094
4095 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4096 error_report("ram_block_discard_range: Unaligned start address: %p",
4097 host_startaddr);
4098 goto err;
4099 }
4100
4101 if ((start + length) <= rb->used_length) {
db144f70 4102 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4103 uint8_t *host_endaddr = host_startaddr + length;
4104 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4105 error_report("ram_block_discard_range: Unaligned end address: %p",
4106 host_endaddr);
4107 goto err;
4108 }
4109
4110 errno = ENOTSUP; /* If we are missing MADVISE etc */
4111
db144f70
DDAG
4112 /* The logic here is messy;
4113 * madvise DONTNEED fails for hugepages
4114 * fallocate works on hugepages and shmem
4115 */
4116 need_madvise = (rb->page_size == qemu_host_page_size);
4117 need_fallocate = rb->fd != -1;
4118 if (need_fallocate) {
4119 /* For a file, this causes the area of the file to be zero'd
4120 * if read, and for hugetlbfs also causes it to be unmapped
4121 * so a userfault will trigger.
e2fa71f5
DDAG
4122 */
4123#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4124 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4125 start, length);
db144f70
DDAG
4126 if (ret) {
4127 ret = -errno;
4128 error_report("ram_block_discard_range: Failed to fallocate "
4129 "%s:%" PRIx64 " +%zx (%d)",
4130 rb->idstr, start, length, ret);
4131 goto err;
4132 }
4133#else
4134 ret = -ENOSYS;
4135 error_report("ram_block_discard_range: fallocate not available/file"
4136 "%s:%" PRIx64 " +%zx (%d)",
4137 rb->idstr, start, length, ret);
4138 goto err;
e2fa71f5
DDAG
4139#endif
4140 }
db144f70
DDAG
4141 if (need_madvise) {
4142 /* For normal RAM this causes it to be unmapped,
4143 * for shared memory it causes the local mapping to disappear
4144 * and to fall back on the file contents (which we just
4145 * fallocate'd away).
4146 */
4147#if defined(CONFIG_MADVISE)
4148 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4149 if (ret) {
4150 ret = -errno;
4151 error_report("ram_block_discard_range: Failed to discard range "
4152 "%s:%" PRIx64 " +%zx (%d)",
4153 rb->idstr, start, length, ret);
4154 goto err;
4155 }
4156#else
4157 ret = -ENOSYS;
4158 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4159 "%s:%" PRIx64 " +%zx (%d)",
4160 rb->idstr, start, length, ret);
db144f70
DDAG
4161 goto err;
4162#endif
d3a5038c 4163 }
db144f70
DDAG
4164 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4165 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4166 } else {
4167 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4168 "/%zx/" RAM_ADDR_FMT")",
4169 rb->idstr, start, length, rb->used_length);
4170 }
4171
4172err:
4173 return ret;
4174}
4175
a4de8552
JH
4176bool ramblock_is_pmem(RAMBlock *rb)
4177{
4178 return rb->flags & RAM_PMEM;
4179}
4180
ec3f8c99 4181#endif
a0be0c58
YZ
4182
4183void page_size_init(void)
4184{
4185 /* NOTE: we can always suppose that qemu_host_page_size >=
4186 TARGET_PAGE_SIZE */
a0be0c58
YZ
4187 if (qemu_host_page_size == 0) {
4188 qemu_host_page_size = qemu_real_host_page_size;
4189 }
4190 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4191 qemu_host_page_size = TARGET_PAGE_SIZE;
4192 }
4193 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4194}
5e8fd947
AK
4195
4196#if !defined(CONFIG_USER_ONLY)
4197
b6b71cb5 4198static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4199{
4200 if (start == end - 1) {
b6b71cb5 4201 qemu_printf("\t%3d ", start);
5e8fd947 4202 } else {
b6b71cb5 4203 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4204 }
b6b71cb5 4205 qemu_printf(" skip=%d ", skip);
5e8fd947 4206 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4207 qemu_printf(" ptr=NIL");
5e8fd947 4208 } else if (!skip) {
b6b71cb5 4209 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4210 } else {
b6b71cb5 4211 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4212 }
b6b71cb5 4213 qemu_printf("\n");
5e8fd947
AK
4214}
4215
4216#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4217 int128_sub((size), int128_one())) : 0)
4218
b6b71cb5 4219void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4220{
4221 int i;
4222
b6b71cb5
MA
4223 qemu_printf(" Dispatch\n");
4224 qemu_printf(" Physical sections\n");
5e8fd947
AK
4225
4226 for (i = 0; i < d->map.sections_nb; ++i) {
4227 MemoryRegionSection *s = d->map.sections + i;
4228 const char *names[] = { " [unassigned]", " [not dirty]",
4229 " [ROM]", " [watch]" };
4230
b6b71cb5
MA
4231 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4232 " %s%s%s%s%s",
5e8fd947
AK
4233 i,
4234 s->offset_within_address_space,
4235 s->offset_within_address_space + MR_SIZE(s->mr->size),
4236 s->mr->name ? s->mr->name : "(noname)",
4237 i < ARRAY_SIZE(names) ? names[i] : "",
4238 s->mr == root ? " [ROOT]" : "",
4239 s == d->mru_section ? " [MRU]" : "",
4240 s->mr->is_iommu ? " [iommu]" : "");
4241
4242 if (s->mr->alias) {
b6b71cb5 4243 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4244 s->mr->alias->name : "noname");
4245 }
b6b71cb5 4246 qemu_printf("\n");
5e8fd947
AK
4247 }
4248
b6b71cb5 4249 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4250 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4251 for (i = 0; i < d->map.nodes_nb; ++i) {
4252 int j, jprev;
4253 PhysPageEntry prev;
4254 Node *n = d->map.nodes + i;
4255
b6b71cb5 4256 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4257
4258 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4259 PhysPageEntry *pe = *n + j;
4260
4261 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4262 continue;
4263 }
4264
b6b71cb5 4265 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4266
4267 jprev = j;
4268 prev = *pe;
4269 }
4270
4271 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4272 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4273 }
4274 }
4275}
4276
4277#endif