]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Make netdev_del delete the netdev even when it's in use
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
41c1b1c9 154/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
155 while in user mode we want it to be based on virtual addresses. */
156#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
157#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159#else
5cd2c5b6 160# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 161#endif
bedb69ea 162#else
5cd2c5b6 163# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 164#endif
54936004 165
5cd2c5b6
RH
166/* Size of the L2 (and L3, etc) page tables. */
167#define L2_BITS 10
54936004
FB
168#define L2_SIZE (1 << L2_BITS)
169
5cd2c5b6
RH
170/* The bits remaining after N lower levels of page tables. */
171#define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173#define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176/* Size of the L1 page table. Avoid silly small sizes. */
177#if P_L1_BITS_REM < 4
178#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179#else
180#define P_L1_BITS P_L1_BITS_REM
181#endif
182
183#if V_L1_BITS_REM < 4
184#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185#else
186#define V_L1_BITS V_L1_BITS_REM
187#endif
188
189#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
83fb7adf
FB
195unsigned long qemu_real_host_page_size;
196unsigned long qemu_host_page_bits;
197unsigned long qemu_host_page_size;
198unsigned long qemu_host_page_mask;
54936004 199
5cd2c5b6
RH
200/* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202static void *l1_map[V_L1_SIZE];
54936004 203
e2eef170 204#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
205typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209} PhysPageDesc;
210
5cd2c5b6
RH
211/* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213static void *l1_phys_map[P_L1_SIZE];
6d9a1304 214
e2eef170
PB
215static void io_mem_init(void);
216
33417e70 217/* io memory support */
33417e70
FB
218CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 220void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 221static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
222static int io_mem_watch;
223#endif
33417e70 224
34865134 225/* log support */
1e8b27ca
JR
226#ifdef WIN32
227static const char *logfilename = "qemu.log";
228#else
d9b630fd 229static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 230#endif
34865134
FB
231FILE *logfile;
232int loglevel;
e735b91c 233static int log_append = 0;
34865134 234
e3db7226 235/* statistics */
b3755a91 236#if !defined(CONFIG_USER_ONLY)
e3db7226 237static int tlb_flush_count;
b3755a91 238#endif
e3db7226
FB
239static int tb_flush_count;
240static int tb_phys_invalidate_count;
241
7cb69cae
FB
242#ifdef _WIN32
243static void map_exec(void *addr, long size)
244{
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249}
250#else
251static void map_exec(void *addr, long size)
252{
4369415f 253 unsigned long start, end, page_size;
7cb69cae 254
4369415f 255 page_size = getpagesize();
7cb69cae 256 start = (unsigned long)addr;
4369415f 257 start &= ~(page_size - 1);
7cb69cae
FB
258
259 end = (unsigned long)addr + size;
4369415f
FB
260 end += page_size - 1;
261 end &= ~(page_size - 1);
7cb69cae
FB
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265}
266#endif
267
b346ff46 268static void page_init(void)
54936004 269{
83fb7adf 270 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 271 TARGET_PAGE_SIZE */
c2b48b69
AL
272#ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279#else
280 qemu_real_host_page_size = getpagesize();
281#endif
83fb7adf
FB
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 290
2e9a5713 291#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 292 {
f01576f1
JL
293#ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
fd436907 310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
311 } else {
312#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
fd436907 314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
315#endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322#else
50a9569b 323 FILE *f;
50a9569b 324
0776590d 325 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 326
fd436907 327 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 328 if (f) {
5cd2c5b6
RH
329 mmap_lock();
330
50a9569b 331 do {
5cd2c5b6
RH
332 unsigned long startaddr, endaddr;
333 int n;
334
335 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
336
337 if (n == 2 && h2g_valid(startaddr)) {
338 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
339
340 if (h2g_valid(endaddr)) {
341 endaddr = h2g(endaddr);
342 } else {
343 endaddr = ~0ul;
344 }
345 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
346 }
347 } while (!feof(f));
5cd2c5b6 348
50a9569b 349 fclose(f);
5cd2c5b6 350 mmap_unlock();
50a9569b 351 }
f01576f1 352#endif
50a9569b
AZ
353 }
354#endif
54936004
FB
355}
356
41c1b1c9 357static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 358{
41c1b1c9
PB
359 PageDesc *pd;
360 void **lp;
361 int i;
362
5cd2c5b6 363#if defined(CONFIG_USER_ONLY)
2e9a5713 364 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
365# define ALLOC(P, SIZE) \
366 do { \
367 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
368 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
369 } while (0)
370#else
371# define ALLOC(P, SIZE) \
372 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 373#endif
434929bf 374
5cd2c5b6
RH
375 /* Level 1. Always allocated. */
376 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
377
378 /* Level 2..N-1. */
379 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
380 void **p = *lp;
381
382 if (p == NULL) {
383 if (!alloc) {
384 return NULL;
385 }
386 ALLOC(p, sizeof(void *) * L2_SIZE);
387 *lp = p;
17e2377a 388 }
5cd2c5b6
RH
389
390 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
391 }
392
393 pd = *lp;
394 if (pd == NULL) {
395 if (!alloc) {
396 return NULL;
397 }
398 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
399 *lp = pd;
54936004 400 }
5cd2c5b6
RH
401
402#undef ALLOC
5cd2c5b6
RH
403
404 return pd + (index & (L2_SIZE - 1));
54936004
FB
405}
406
41c1b1c9 407static inline PageDesc *page_find(tb_page_addr_t index)
54936004 408{
5cd2c5b6 409 return page_find_alloc(index, 0);
fd6ce8f6
FB
410}
411
6d9a1304 412#if !defined(CONFIG_USER_ONLY)
c227f099 413static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 414{
e3f4e2a4 415 PhysPageDesc *pd;
5cd2c5b6
RH
416 void **lp;
417 int i;
92e873b9 418
5cd2c5b6
RH
419 /* Level 1. Always allocated. */
420 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 421
5cd2c5b6
RH
422 /* Level 2..N-1. */
423 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
424 void **p = *lp;
425 if (p == NULL) {
426 if (!alloc) {
427 return NULL;
428 }
429 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
430 }
431 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 432 }
5cd2c5b6 433
e3f4e2a4 434 pd = *lp;
5cd2c5b6 435 if (pd == NULL) {
e3f4e2a4 436 int i;
5cd2c5b6
RH
437
438 if (!alloc) {
108c49b8 439 return NULL;
5cd2c5b6
RH
440 }
441
442 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
443
67c4d23c 444 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
445 pd[i].phys_offset = IO_MEM_UNASSIGNED;
446 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 447 }
92e873b9 448 }
5cd2c5b6
RH
449
450 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
451}
452
c227f099 453static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 454{
108c49b8 455 return phys_page_find_alloc(index, 0);
92e873b9
FB
456}
457
c227f099
AL
458static void tlb_protect_code(ram_addr_t ram_addr);
459static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 460 target_ulong vaddr);
c8a706fe
PB
461#define mmap_lock() do { } while(0)
462#define mmap_unlock() do { } while(0)
9fa3e853 463#endif
fd6ce8f6 464
4369415f
FB
465#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
466
467#if defined(CONFIG_USER_ONLY)
ccbb4d44 468/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
469 user mode. It will change when a dedicated libc will be used */
470#define USE_STATIC_CODE_GEN_BUFFER
471#endif
472
473#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
474static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
475 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
476#endif
477
8fcd3692 478static void code_gen_alloc(unsigned long tb_size)
26a5f13b 479{
4369415f
FB
480#ifdef USE_STATIC_CODE_GEN_BUFFER
481 code_gen_buffer = static_code_gen_buffer;
482 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484#else
26a5f13b
FB
485 code_gen_buffer_size = tb_size;
486 if (code_gen_buffer_size == 0) {
4369415f
FB
487#if defined(CONFIG_USER_ONLY)
488 /* in user mode, phys_ram_size is not meaningful */
489 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
490#else
ccbb4d44 491 /* XXX: needs adjustments */
94a6b54f 492 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 493#endif
26a5f13b
FB
494 }
495 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
496 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
497 /* The code gen buffer location may have constraints depending on
498 the host cpu and OS */
499#if defined(__linux__)
500 {
501 int flags;
141ac468
BS
502 void *start = NULL;
503
26a5f13b
FB
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505#if defined(__x86_64__)
506 flags |= MAP_32BIT;
507 /* Cannot map more than that */
508 if (code_gen_buffer_size > (800 * 1024 * 1024))
509 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
510#elif defined(__sparc_v9__)
511 // Map the buffer below 2G, so we can use direct calls and branches
512 flags |= MAP_FIXED;
513 start = (void *) 0x60000000UL;
514 if (code_gen_buffer_size > (512 * 1024 * 1024))
515 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 516#elif defined(__arm__)
63d41246 517 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
518 flags |= MAP_FIXED;
519 start = (void *) 0x01000000UL;
520 if (code_gen_buffer_size > 16 * 1024 * 1024)
521 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
522#elif defined(__s390x__)
523 /* Map the buffer so that we can use direct calls and branches. */
524 /* We have a +- 4GB range on the branches; leave some slop. */
525 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
526 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
527 }
528 start = (void *)0x90000000UL;
26a5f13b 529#endif
141ac468
BS
530 code_gen_buffer = mmap(start, code_gen_buffer_size,
531 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
532 flags, -1, 0);
533 if (code_gen_buffer == MAP_FAILED) {
534 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
535 exit(1);
536 }
537 }
a167ba50 538#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
539 {
540 int flags;
541 void *addr = NULL;
542 flags = MAP_PRIVATE | MAP_ANONYMOUS;
543#if defined(__x86_64__)
544 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
545 * 0x40000000 is free */
546 flags |= MAP_FIXED;
547 addr = (void *)0x40000000;
548 /* Cannot map more than that */
549 if (code_gen_buffer_size > (800 * 1024 * 1024))
550 code_gen_buffer_size = (800 * 1024 * 1024);
551#endif
552 code_gen_buffer = mmap(addr, code_gen_buffer_size,
553 PROT_WRITE | PROT_READ | PROT_EXEC,
554 flags, -1, 0);
555 if (code_gen_buffer == MAP_FAILED) {
556 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
557 exit(1);
558 }
559 }
26a5f13b
FB
560#else
561 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
562 map_exec(code_gen_buffer, code_gen_buffer_size);
563#endif
4369415f 564#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
565 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
566 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 567 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
568 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
569 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
570}
571
572/* Must be called before using the QEMU cpus. 'tb_size' is the size
573 (in bytes) allocated to the translation buffer. Zero means default
574 size. */
575void cpu_exec_init_all(unsigned long tb_size)
576{
26a5f13b
FB
577 cpu_gen_init();
578 code_gen_alloc(tb_size);
579 code_gen_ptr = code_gen_buffer;
4369415f 580 page_init();
e2eef170 581#if !defined(CONFIG_USER_ONLY)
26a5f13b 582 io_mem_init();
e2eef170 583#endif
9002ec79
RH
584#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
585 /* There's no guest base to take into account, so go ahead and
586 initialize the prologue now. */
587 tcg_prologue_init(&tcg_ctx);
588#endif
26a5f13b
FB
589}
590
9656f324
PB
591#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
592
e59fb374 593static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
594{
595 CPUState *env = opaque;
9656f324 596
3098dba0
AJ
597 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
598 version_id is increased. */
599 env->interrupt_request &= ~0x01;
9656f324
PB
600 tlb_flush(env, 1);
601
602 return 0;
603}
e7f4eff7
JQ
604
605static const VMStateDescription vmstate_cpu_common = {
606 .name = "cpu_common",
607 .version_id = 1,
608 .minimum_version_id = 1,
609 .minimum_version_id_old = 1,
e7f4eff7
JQ
610 .post_load = cpu_common_post_load,
611 .fields = (VMStateField []) {
612 VMSTATE_UINT32(halted, CPUState),
613 VMSTATE_UINT32(interrupt_request, CPUState),
614 VMSTATE_END_OF_LIST()
615 }
616};
9656f324
PB
617#endif
618
950f1472
GC
619CPUState *qemu_get_cpu(int cpu)
620{
621 CPUState *env = first_cpu;
622
623 while (env) {
624 if (env->cpu_index == cpu)
625 break;
626 env = env->next_cpu;
627 }
628
629 return env;
630}
631
6a00d601 632void cpu_exec_init(CPUState *env)
fd6ce8f6 633{
6a00d601
FB
634 CPUState **penv;
635 int cpu_index;
636
c2764719
PB
637#if defined(CONFIG_USER_ONLY)
638 cpu_list_lock();
639#endif
6a00d601
FB
640 env->next_cpu = NULL;
641 penv = &first_cpu;
642 cpu_index = 0;
643 while (*penv != NULL) {
1e9fa730 644 penv = &(*penv)->next_cpu;
6a00d601
FB
645 cpu_index++;
646 }
647 env->cpu_index = cpu_index;
268a362c 648 env->numa_node = 0;
72cf2d4f
BS
649 QTAILQ_INIT(&env->breakpoints);
650 QTAILQ_INIT(&env->watchpoints);
6a00d601 651 *penv = env;
c2764719
PB
652#if defined(CONFIG_USER_ONLY)
653 cpu_list_unlock();
654#endif
b3c7724c 655#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 656 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
657 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
658 cpu_save, cpu_load, env);
659#endif
fd6ce8f6
FB
660}
661
9fa3e853
FB
662static inline void invalidate_page_bitmap(PageDesc *p)
663{
664 if (p->code_bitmap) {
59817ccb 665 qemu_free(p->code_bitmap);
9fa3e853
FB
666 p->code_bitmap = NULL;
667 }
668 p->code_write_count = 0;
669}
670
5cd2c5b6
RH
671/* Set to NULL all the 'first_tb' fields in all PageDescs. */
672
673static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 674{
5cd2c5b6 675 int i;
fd6ce8f6 676
5cd2c5b6
RH
677 if (*lp == NULL) {
678 return;
679 }
680 if (level == 0) {
681 PageDesc *pd = *lp;
7296abac 682 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
683 pd[i].first_tb = NULL;
684 invalidate_page_bitmap(pd + i);
fd6ce8f6 685 }
5cd2c5b6
RH
686 } else {
687 void **pp = *lp;
7296abac 688 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
689 page_flush_tb_1 (level - 1, pp + i);
690 }
691 }
692}
693
694static void page_flush_tb(void)
695{
696 int i;
697 for (i = 0; i < V_L1_SIZE; i++) {
698 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
699 }
700}
701
702/* flush all the translation blocks */
d4e8164f 703/* XXX: tb_flush is currently not thread safe */
6a00d601 704void tb_flush(CPUState *env1)
fd6ce8f6 705{
6a00d601 706 CPUState *env;
0124311e 707#if defined(DEBUG_FLUSH)
ab3d1727
BS
708 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
709 (unsigned long)(code_gen_ptr - code_gen_buffer),
710 nb_tbs, nb_tbs > 0 ?
711 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 712#endif
26a5f13b 713 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
714 cpu_abort(env1, "Internal error: code buffer overflow\n");
715
fd6ce8f6 716 nb_tbs = 0;
3b46e624 717
6a00d601
FB
718 for(env = first_cpu; env != NULL; env = env->next_cpu) {
719 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
720 }
9fa3e853 721
8a8a608f 722 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 723 page_flush_tb();
9fa3e853 724
fd6ce8f6 725 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
726 /* XXX: flush processor icache at this point if cache flush is
727 expensive */
e3db7226 728 tb_flush_count++;
fd6ce8f6
FB
729}
730
731#ifdef DEBUG_TB_CHECK
732
bc98a7ef 733static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
734{
735 TranslationBlock *tb;
736 int i;
737 address &= TARGET_PAGE_MASK;
99773bd4
PB
738 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
739 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
740 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
741 address >= tb->pc + tb->size)) {
0bf9e31a
BS
742 printf("ERROR invalidate: address=" TARGET_FMT_lx
743 " PC=%08lx size=%04x\n",
99773bd4 744 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
745 }
746 }
747 }
748}
749
750/* verify that all the pages have correct rights for code */
751static void tb_page_check(void)
752{
753 TranslationBlock *tb;
754 int i, flags1, flags2;
3b46e624 755
99773bd4
PB
756 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
757 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
758 flags1 = page_get_flags(tb->pc);
759 flags2 = page_get_flags(tb->pc + tb->size - 1);
760 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
761 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 762 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
763 }
764 }
765 }
766}
767
768#endif
769
770/* invalidate one TB */
771static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
772 int next_offset)
773{
774 TranslationBlock *tb1;
775 for(;;) {
776 tb1 = *ptb;
777 if (tb1 == tb) {
778 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
779 break;
780 }
781 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
782 }
783}
784
9fa3e853
FB
785static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
786{
787 TranslationBlock *tb1;
788 unsigned int n1;
789
790 for(;;) {
791 tb1 = *ptb;
792 n1 = (long)tb1 & 3;
793 tb1 = (TranslationBlock *)((long)tb1 & ~3);
794 if (tb1 == tb) {
795 *ptb = tb1->page_next[n1];
796 break;
797 }
798 ptb = &tb1->page_next[n1];
799 }
800}
801
d4e8164f
FB
802static inline void tb_jmp_remove(TranslationBlock *tb, int n)
803{
804 TranslationBlock *tb1, **ptb;
805 unsigned int n1;
806
807 ptb = &tb->jmp_next[n];
808 tb1 = *ptb;
809 if (tb1) {
810 /* find tb(n) in circular list */
811 for(;;) {
812 tb1 = *ptb;
813 n1 = (long)tb1 & 3;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 if (n1 == n && tb1 == tb)
816 break;
817 if (n1 == 2) {
818 ptb = &tb1->jmp_first;
819 } else {
820 ptb = &tb1->jmp_next[n1];
821 }
822 }
823 /* now we can suppress tb(n) from the list */
824 *ptb = tb->jmp_next[n];
825
826 tb->jmp_next[n] = NULL;
827 }
828}
829
830/* reset the jump entry 'n' of a TB so that it is not chained to
831 another TB */
832static inline void tb_reset_jump(TranslationBlock *tb, int n)
833{
834 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
835}
836
41c1b1c9 837void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 838{
6a00d601 839 CPUState *env;
8a40a180 840 PageDesc *p;
d4e8164f 841 unsigned int h, n1;
41c1b1c9 842 tb_page_addr_t phys_pc;
8a40a180 843 TranslationBlock *tb1, *tb2;
3b46e624 844
8a40a180
FB
845 /* remove the TB from the hash list */
846 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
847 h = tb_phys_hash_func(phys_pc);
5fafdf24 848 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
849 offsetof(TranslationBlock, phys_hash_next));
850
851 /* remove the TB from the page list */
852 if (tb->page_addr[0] != page_addr) {
853 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
854 tb_page_remove(&p->first_tb, tb);
855 invalidate_page_bitmap(p);
856 }
857 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
858 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
859 tb_page_remove(&p->first_tb, tb);
860 invalidate_page_bitmap(p);
861 }
862
36bdbe54 863 tb_invalidated_flag = 1;
59817ccb 864
fd6ce8f6 865 /* remove the TB from the hash list */
8a40a180 866 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
867 for(env = first_cpu; env != NULL; env = env->next_cpu) {
868 if (env->tb_jmp_cache[h] == tb)
869 env->tb_jmp_cache[h] = NULL;
870 }
d4e8164f
FB
871
872 /* suppress this TB from the two jump lists */
873 tb_jmp_remove(tb, 0);
874 tb_jmp_remove(tb, 1);
875
876 /* suppress any remaining jumps to this TB */
877 tb1 = tb->jmp_first;
878 for(;;) {
879 n1 = (long)tb1 & 3;
880 if (n1 == 2)
881 break;
882 tb1 = (TranslationBlock *)((long)tb1 & ~3);
883 tb2 = tb1->jmp_next[n1];
884 tb_reset_jump(tb1, n1);
885 tb1->jmp_next[n1] = NULL;
886 tb1 = tb2;
887 }
888 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 889
e3db7226 890 tb_phys_invalidate_count++;
9fa3e853
FB
891}
892
893static inline void set_bits(uint8_t *tab, int start, int len)
894{
895 int end, mask, end1;
896
897 end = start + len;
898 tab += start >> 3;
899 mask = 0xff << (start & 7);
900 if ((start & ~7) == (end & ~7)) {
901 if (start < end) {
902 mask &= ~(0xff << (end & 7));
903 *tab |= mask;
904 }
905 } else {
906 *tab++ |= mask;
907 start = (start + 8) & ~7;
908 end1 = end & ~7;
909 while (start < end1) {
910 *tab++ = 0xff;
911 start += 8;
912 }
913 if (start < end) {
914 mask = ~(0xff << (end & 7));
915 *tab |= mask;
916 }
917 }
918}
919
920static void build_page_bitmap(PageDesc *p)
921{
922 int n, tb_start, tb_end;
923 TranslationBlock *tb;
3b46e624 924
b2a7081a 925 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
926
927 tb = p->first_tb;
928 while (tb != NULL) {
929 n = (long)tb & 3;
930 tb = (TranslationBlock *)((long)tb & ~3);
931 /* NOTE: this is subtle as a TB may span two physical pages */
932 if (n == 0) {
933 /* NOTE: tb_end may be after the end of the page, but
934 it is not a problem */
935 tb_start = tb->pc & ~TARGET_PAGE_MASK;
936 tb_end = tb_start + tb->size;
937 if (tb_end > TARGET_PAGE_SIZE)
938 tb_end = TARGET_PAGE_SIZE;
939 } else {
940 tb_start = 0;
941 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
942 }
943 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
944 tb = tb->page_next[n];
945 }
946}
947
2e70f6ef
PB
948TranslationBlock *tb_gen_code(CPUState *env,
949 target_ulong pc, target_ulong cs_base,
950 int flags, int cflags)
d720b93d
FB
951{
952 TranslationBlock *tb;
953 uint8_t *tc_ptr;
41c1b1c9
PB
954 tb_page_addr_t phys_pc, phys_page2;
955 target_ulong virt_page2;
d720b93d
FB
956 int code_gen_size;
957
41c1b1c9 958 phys_pc = get_page_addr_code(env, pc);
c27004ec 959 tb = tb_alloc(pc);
d720b93d
FB
960 if (!tb) {
961 /* flush must be done */
962 tb_flush(env);
963 /* cannot fail at this point */
c27004ec 964 tb = tb_alloc(pc);
2e70f6ef
PB
965 /* Don't forget to invalidate previous TB info. */
966 tb_invalidated_flag = 1;
d720b93d
FB
967 }
968 tc_ptr = code_gen_ptr;
969 tb->tc_ptr = tc_ptr;
970 tb->cs_base = cs_base;
971 tb->flags = flags;
972 tb->cflags = cflags;
d07bde88 973 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 974 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 975
d720b93d 976 /* check next page if needed */
c27004ec 977 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 978 phys_page2 = -1;
c27004ec 979 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 980 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 981 }
41c1b1c9 982 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 983 return tb;
d720b93d 984}
3b46e624 985
9fa3e853
FB
986/* invalidate all TBs which intersect with the target physical page
987 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
988 the same physical page. 'is_cpu_write_access' should be true if called
989 from a real cpu write access: the virtual CPU will exit the current
990 TB if code is modified inside this TB. */
41c1b1c9 991void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
992 int is_cpu_write_access)
993{
6b917547 994 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 995 CPUState *env = cpu_single_env;
41c1b1c9 996 tb_page_addr_t tb_start, tb_end;
6b917547
AL
997 PageDesc *p;
998 int n;
999#ifdef TARGET_HAS_PRECISE_SMC
1000 int current_tb_not_found = is_cpu_write_access;
1001 TranslationBlock *current_tb = NULL;
1002 int current_tb_modified = 0;
1003 target_ulong current_pc = 0;
1004 target_ulong current_cs_base = 0;
1005 int current_flags = 0;
1006#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1007
1008 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1009 if (!p)
9fa3e853 1010 return;
5fafdf24 1011 if (!p->code_bitmap &&
d720b93d
FB
1012 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1013 is_cpu_write_access) {
9fa3e853
FB
1014 /* build code bitmap */
1015 build_page_bitmap(p);
1016 }
1017
1018 /* we remove all the TBs in the range [start, end[ */
1019 /* XXX: see if in some cases it could be faster to invalidate all the code */
1020 tb = p->first_tb;
1021 while (tb != NULL) {
1022 n = (long)tb & 3;
1023 tb = (TranslationBlock *)((long)tb & ~3);
1024 tb_next = tb->page_next[n];
1025 /* NOTE: this is subtle as a TB may span two physical pages */
1026 if (n == 0) {
1027 /* NOTE: tb_end may be after the end of the page, but
1028 it is not a problem */
1029 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1030 tb_end = tb_start + tb->size;
1031 } else {
1032 tb_start = tb->page_addr[1];
1033 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1034 }
1035 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1036#ifdef TARGET_HAS_PRECISE_SMC
1037 if (current_tb_not_found) {
1038 current_tb_not_found = 0;
1039 current_tb = NULL;
2e70f6ef 1040 if (env->mem_io_pc) {
d720b93d 1041 /* now we have a real cpu fault */
2e70f6ef 1042 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1043 }
1044 }
1045 if (current_tb == tb &&
2e70f6ef 1046 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1047 /* If we are modifying the current TB, we must stop
1048 its execution. We could be more precise by checking
1049 that the modification is after the current PC, but it
1050 would require a specialized function to partially
1051 restore the CPU state */
3b46e624 1052
d720b93d 1053 current_tb_modified = 1;
5fafdf24 1054 cpu_restore_state(current_tb, env,
2e70f6ef 1055 env->mem_io_pc, NULL);
6b917547
AL
1056 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1057 &current_flags);
d720b93d
FB
1058 }
1059#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1060 /* we need to do that to handle the case where a signal
1061 occurs while doing tb_phys_invalidate() */
1062 saved_tb = NULL;
1063 if (env) {
1064 saved_tb = env->current_tb;
1065 env->current_tb = NULL;
1066 }
9fa3e853 1067 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1068 if (env) {
1069 env->current_tb = saved_tb;
1070 if (env->interrupt_request && env->current_tb)
1071 cpu_interrupt(env, env->interrupt_request);
1072 }
9fa3e853
FB
1073 }
1074 tb = tb_next;
1075 }
1076#if !defined(CONFIG_USER_ONLY)
1077 /* if no code remaining, no need to continue to use slow writes */
1078 if (!p->first_tb) {
1079 invalidate_page_bitmap(p);
d720b93d 1080 if (is_cpu_write_access) {
2e70f6ef 1081 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1082 }
1083 }
1084#endif
1085#ifdef TARGET_HAS_PRECISE_SMC
1086 if (current_tb_modified) {
1087 /* we generate a block containing just the instruction
1088 modifying the memory. It will ensure that it cannot modify
1089 itself */
ea1c1802 1090 env->current_tb = NULL;
2e70f6ef 1091 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1092 cpu_resume_from_signal(env, NULL);
9fa3e853 1093 }
fd6ce8f6 1094#endif
9fa3e853 1095}
fd6ce8f6 1096
9fa3e853 1097/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1098static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1099{
1100 PageDesc *p;
1101 int offset, b;
59817ccb 1102#if 0
a4193c8a 1103 if (1) {
93fcfe39
AL
1104 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1105 cpu_single_env->mem_io_vaddr, len,
1106 cpu_single_env->eip,
1107 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1108 }
1109#endif
9fa3e853 1110 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1111 if (!p)
9fa3e853
FB
1112 return;
1113 if (p->code_bitmap) {
1114 offset = start & ~TARGET_PAGE_MASK;
1115 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1116 if (b & ((1 << len) - 1))
1117 goto do_invalidate;
1118 } else {
1119 do_invalidate:
d720b93d 1120 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1121 }
1122}
1123
9fa3e853 1124#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1125static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1126 unsigned long pc, void *puc)
9fa3e853 1127{
6b917547 1128 TranslationBlock *tb;
9fa3e853 1129 PageDesc *p;
6b917547 1130 int n;
d720b93d 1131#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1132 TranslationBlock *current_tb = NULL;
d720b93d 1133 CPUState *env = cpu_single_env;
6b917547
AL
1134 int current_tb_modified = 0;
1135 target_ulong current_pc = 0;
1136 target_ulong current_cs_base = 0;
1137 int current_flags = 0;
d720b93d 1138#endif
9fa3e853
FB
1139
1140 addr &= TARGET_PAGE_MASK;
1141 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1142 if (!p)
9fa3e853
FB
1143 return;
1144 tb = p->first_tb;
d720b93d
FB
1145#ifdef TARGET_HAS_PRECISE_SMC
1146 if (tb && pc != 0) {
1147 current_tb = tb_find_pc(pc);
1148 }
1149#endif
9fa3e853
FB
1150 while (tb != NULL) {
1151 n = (long)tb & 3;
1152 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1153#ifdef TARGET_HAS_PRECISE_SMC
1154 if (current_tb == tb &&
2e70f6ef 1155 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1156 /* If we are modifying the current TB, we must stop
1157 its execution. We could be more precise by checking
1158 that the modification is after the current PC, but it
1159 would require a specialized function to partially
1160 restore the CPU state */
3b46e624 1161
d720b93d
FB
1162 current_tb_modified = 1;
1163 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1164 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1165 &current_flags);
d720b93d
FB
1166 }
1167#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1168 tb_phys_invalidate(tb, addr);
1169 tb = tb->page_next[n];
1170 }
fd6ce8f6 1171 p->first_tb = NULL;
d720b93d
FB
1172#ifdef TARGET_HAS_PRECISE_SMC
1173 if (current_tb_modified) {
1174 /* we generate a block containing just the instruction
1175 modifying the memory. It will ensure that it cannot modify
1176 itself */
ea1c1802 1177 env->current_tb = NULL;
2e70f6ef 1178 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1179 cpu_resume_from_signal(env, puc);
1180 }
1181#endif
fd6ce8f6 1182}
9fa3e853 1183#endif
fd6ce8f6
FB
1184
1185/* add the tb in the target page and protect it if necessary */
5fafdf24 1186static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1187 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1188{
1189 PageDesc *p;
9fa3e853
FB
1190 TranslationBlock *last_first_tb;
1191
1192 tb->page_addr[n] = page_addr;
5cd2c5b6 1193 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1194 tb->page_next[n] = p->first_tb;
1195 last_first_tb = p->first_tb;
1196 p->first_tb = (TranslationBlock *)((long)tb | n);
1197 invalidate_page_bitmap(p);
fd6ce8f6 1198
107db443 1199#if defined(TARGET_HAS_SMC) || 1
d720b93d 1200
9fa3e853 1201#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1202 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1203 target_ulong addr;
1204 PageDesc *p2;
9fa3e853
FB
1205 int prot;
1206
fd6ce8f6
FB
1207 /* force the host page as non writable (writes will have a
1208 page fault + mprotect overhead) */
53a5960a 1209 page_addr &= qemu_host_page_mask;
fd6ce8f6 1210 prot = 0;
53a5960a
PB
1211 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1212 addr += TARGET_PAGE_SIZE) {
1213
1214 p2 = page_find (addr >> TARGET_PAGE_BITS);
1215 if (!p2)
1216 continue;
1217 prot |= p2->flags;
1218 p2->flags &= ~PAGE_WRITE;
53a5960a 1219 }
5fafdf24 1220 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1221 (prot & PAGE_BITS) & ~PAGE_WRITE);
1222#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1223 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1224 page_addr);
fd6ce8f6 1225#endif
fd6ce8f6 1226 }
9fa3e853
FB
1227#else
1228 /* if some code is already present, then the pages are already
1229 protected. So we handle the case where only the first TB is
1230 allocated in a physical page */
1231 if (!last_first_tb) {
6a00d601 1232 tlb_protect_code(page_addr);
9fa3e853
FB
1233 }
1234#endif
d720b93d
FB
1235
1236#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1237}
1238
1239/* Allocate a new translation block. Flush the translation buffer if
1240 too many translation blocks or too much generated code. */
c27004ec 1241TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1242{
1243 TranslationBlock *tb;
fd6ce8f6 1244
26a5f13b
FB
1245 if (nb_tbs >= code_gen_max_blocks ||
1246 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1247 return NULL;
fd6ce8f6
FB
1248 tb = &tbs[nb_tbs++];
1249 tb->pc = pc;
b448f2f3 1250 tb->cflags = 0;
d4e8164f
FB
1251 return tb;
1252}
1253
2e70f6ef
PB
1254void tb_free(TranslationBlock *tb)
1255{
bf20dc07 1256 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1257 Ignore the hard cases and just back up if this TB happens to
1258 be the last one generated. */
1259 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1260 code_gen_ptr = tb->tc_ptr;
1261 nb_tbs--;
1262 }
1263}
1264
9fa3e853
FB
1265/* add a new TB and link it to the physical page tables. phys_page2 is
1266 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1267void tb_link_page(TranslationBlock *tb,
1268 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1269{
9fa3e853
FB
1270 unsigned int h;
1271 TranslationBlock **ptb;
1272
c8a706fe
PB
1273 /* Grab the mmap lock to stop another thread invalidating this TB
1274 before we are done. */
1275 mmap_lock();
9fa3e853
FB
1276 /* add in the physical hash table */
1277 h = tb_phys_hash_func(phys_pc);
1278 ptb = &tb_phys_hash[h];
1279 tb->phys_hash_next = *ptb;
1280 *ptb = tb;
fd6ce8f6
FB
1281
1282 /* add in the page list */
9fa3e853
FB
1283 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1284 if (phys_page2 != -1)
1285 tb_alloc_page(tb, 1, phys_page2);
1286 else
1287 tb->page_addr[1] = -1;
9fa3e853 1288
d4e8164f
FB
1289 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1290 tb->jmp_next[0] = NULL;
1291 tb->jmp_next[1] = NULL;
1292
1293 /* init original jump addresses */
1294 if (tb->tb_next_offset[0] != 0xffff)
1295 tb_reset_jump(tb, 0);
1296 if (tb->tb_next_offset[1] != 0xffff)
1297 tb_reset_jump(tb, 1);
8a40a180
FB
1298
1299#ifdef DEBUG_TB_CHECK
1300 tb_page_check();
1301#endif
c8a706fe 1302 mmap_unlock();
fd6ce8f6
FB
1303}
1304
9fa3e853
FB
1305/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1306 tb[1].tc_ptr. Return NULL if not found */
1307TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1308{
9fa3e853
FB
1309 int m_min, m_max, m;
1310 unsigned long v;
1311 TranslationBlock *tb;
a513fe19
FB
1312
1313 if (nb_tbs <= 0)
1314 return NULL;
1315 if (tc_ptr < (unsigned long)code_gen_buffer ||
1316 tc_ptr >= (unsigned long)code_gen_ptr)
1317 return NULL;
1318 /* binary search (cf Knuth) */
1319 m_min = 0;
1320 m_max = nb_tbs - 1;
1321 while (m_min <= m_max) {
1322 m = (m_min + m_max) >> 1;
1323 tb = &tbs[m];
1324 v = (unsigned long)tb->tc_ptr;
1325 if (v == tc_ptr)
1326 return tb;
1327 else if (tc_ptr < v) {
1328 m_max = m - 1;
1329 } else {
1330 m_min = m + 1;
1331 }
5fafdf24 1332 }
a513fe19
FB
1333 return &tbs[m_max];
1334}
7501267e 1335
ea041c0e
FB
1336static void tb_reset_jump_recursive(TranslationBlock *tb);
1337
1338static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1339{
1340 TranslationBlock *tb1, *tb_next, **ptb;
1341 unsigned int n1;
1342
1343 tb1 = tb->jmp_next[n];
1344 if (tb1 != NULL) {
1345 /* find head of list */
1346 for(;;) {
1347 n1 = (long)tb1 & 3;
1348 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1349 if (n1 == 2)
1350 break;
1351 tb1 = tb1->jmp_next[n1];
1352 }
1353 /* we are now sure now that tb jumps to tb1 */
1354 tb_next = tb1;
1355
1356 /* remove tb from the jmp_first list */
1357 ptb = &tb_next->jmp_first;
1358 for(;;) {
1359 tb1 = *ptb;
1360 n1 = (long)tb1 & 3;
1361 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1362 if (n1 == n && tb1 == tb)
1363 break;
1364 ptb = &tb1->jmp_next[n1];
1365 }
1366 *ptb = tb->jmp_next[n];
1367 tb->jmp_next[n] = NULL;
3b46e624 1368
ea041c0e
FB
1369 /* suppress the jump to next tb in generated code */
1370 tb_reset_jump(tb, n);
1371
0124311e 1372 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1373 tb_reset_jump_recursive(tb_next);
1374 }
1375}
1376
1377static void tb_reset_jump_recursive(TranslationBlock *tb)
1378{
1379 tb_reset_jump_recursive2(tb, 0);
1380 tb_reset_jump_recursive2(tb, 1);
1381}
1382
1fddef4b 1383#if defined(TARGET_HAS_ICE)
94df27fd
PB
1384#if defined(CONFIG_USER_ONLY)
1385static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1386{
1387 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1388}
1389#else
d720b93d
FB
1390static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1391{
c227f099 1392 target_phys_addr_t addr;
9b3c35e0 1393 target_ulong pd;
c227f099 1394 ram_addr_t ram_addr;
c2f07f81 1395 PhysPageDesc *p;
d720b93d 1396
c2f07f81
PB
1397 addr = cpu_get_phys_page_debug(env, pc);
1398 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1399 if (!p) {
1400 pd = IO_MEM_UNASSIGNED;
1401 } else {
1402 pd = p->phys_offset;
1403 }
1404 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1405 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1406}
c27004ec 1407#endif
94df27fd 1408#endif /* TARGET_HAS_ICE */
d720b93d 1409
c527ee8f
PB
1410#if defined(CONFIG_USER_ONLY)
1411void cpu_watchpoint_remove_all(CPUState *env, int mask)
1412
1413{
1414}
1415
1416int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1417 int flags, CPUWatchpoint **watchpoint)
1418{
1419 return -ENOSYS;
1420}
1421#else
6658ffb8 1422/* Add a watchpoint. */
a1d1bb31
AL
1423int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1424 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1425{
b4051334 1426 target_ulong len_mask = ~(len - 1);
c0ce998e 1427 CPUWatchpoint *wp;
6658ffb8 1428
b4051334
AL
1429 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1430 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1431 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1432 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1433 return -EINVAL;
1434 }
a1d1bb31 1435 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1436
1437 wp->vaddr = addr;
b4051334 1438 wp->len_mask = len_mask;
a1d1bb31
AL
1439 wp->flags = flags;
1440
2dc9f411 1441 /* keep all GDB-injected watchpoints in front */
c0ce998e 1442 if (flags & BP_GDB)
72cf2d4f 1443 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1444 else
72cf2d4f 1445 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1446
6658ffb8 1447 tlb_flush_page(env, addr);
a1d1bb31
AL
1448
1449 if (watchpoint)
1450 *watchpoint = wp;
1451 return 0;
6658ffb8
PB
1452}
1453
a1d1bb31
AL
1454/* Remove a specific watchpoint. */
1455int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1456 int flags)
6658ffb8 1457{
b4051334 1458 target_ulong len_mask = ~(len - 1);
a1d1bb31 1459 CPUWatchpoint *wp;
6658ffb8 1460
72cf2d4f 1461 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1462 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1463 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1464 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1465 return 0;
1466 }
1467 }
a1d1bb31 1468 return -ENOENT;
6658ffb8
PB
1469}
1470
a1d1bb31
AL
1471/* Remove a specific watchpoint by reference. */
1472void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1473{
72cf2d4f 1474 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1475
a1d1bb31
AL
1476 tlb_flush_page(env, watchpoint->vaddr);
1477
1478 qemu_free(watchpoint);
1479}
1480
1481/* Remove all matching watchpoints. */
1482void cpu_watchpoint_remove_all(CPUState *env, int mask)
1483{
c0ce998e 1484 CPUWatchpoint *wp, *next;
a1d1bb31 1485
72cf2d4f 1486 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1487 if (wp->flags & mask)
1488 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1489 }
7d03f82f 1490}
c527ee8f 1491#endif
7d03f82f 1492
a1d1bb31
AL
1493/* Add a breakpoint. */
1494int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1495 CPUBreakpoint **breakpoint)
4c3a88a2 1496{
1fddef4b 1497#if defined(TARGET_HAS_ICE)
c0ce998e 1498 CPUBreakpoint *bp;
3b46e624 1499
a1d1bb31 1500 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1501
a1d1bb31
AL
1502 bp->pc = pc;
1503 bp->flags = flags;
1504
2dc9f411 1505 /* keep all GDB-injected breakpoints in front */
c0ce998e 1506 if (flags & BP_GDB)
72cf2d4f 1507 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1508 else
72cf2d4f 1509 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1510
d720b93d 1511 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1512
1513 if (breakpoint)
1514 *breakpoint = bp;
4c3a88a2
FB
1515 return 0;
1516#else
a1d1bb31 1517 return -ENOSYS;
4c3a88a2
FB
1518#endif
1519}
1520
a1d1bb31
AL
1521/* Remove a specific breakpoint. */
1522int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1523{
7d03f82f 1524#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1525 CPUBreakpoint *bp;
1526
72cf2d4f 1527 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1528 if (bp->pc == pc && bp->flags == flags) {
1529 cpu_breakpoint_remove_by_ref(env, bp);
1530 return 0;
1531 }
7d03f82f 1532 }
a1d1bb31
AL
1533 return -ENOENT;
1534#else
1535 return -ENOSYS;
7d03f82f
EI
1536#endif
1537}
1538
a1d1bb31
AL
1539/* Remove a specific breakpoint by reference. */
1540void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1541{
1fddef4b 1542#if defined(TARGET_HAS_ICE)
72cf2d4f 1543 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1544
a1d1bb31
AL
1545 breakpoint_invalidate(env, breakpoint->pc);
1546
1547 qemu_free(breakpoint);
1548#endif
1549}
1550
1551/* Remove all matching breakpoints. */
1552void cpu_breakpoint_remove_all(CPUState *env, int mask)
1553{
1554#if defined(TARGET_HAS_ICE)
c0ce998e 1555 CPUBreakpoint *bp, *next;
a1d1bb31 1556
72cf2d4f 1557 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1558 if (bp->flags & mask)
1559 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1560 }
4c3a88a2
FB
1561#endif
1562}
1563
c33a346e
FB
1564/* enable or disable single step mode. EXCP_DEBUG is returned by the
1565 CPU loop after each instruction */
1566void cpu_single_step(CPUState *env, int enabled)
1567{
1fddef4b 1568#if defined(TARGET_HAS_ICE)
c33a346e
FB
1569 if (env->singlestep_enabled != enabled) {
1570 env->singlestep_enabled = enabled;
e22a25c9
AL
1571 if (kvm_enabled())
1572 kvm_update_guest_debug(env, 0);
1573 else {
ccbb4d44 1574 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1575 /* XXX: only flush what is necessary */
1576 tb_flush(env);
1577 }
c33a346e
FB
1578 }
1579#endif
1580}
1581
34865134
FB
1582/* enable or disable low levels log */
1583void cpu_set_log(int log_flags)
1584{
1585 loglevel = log_flags;
1586 if (loglevel && !logfile) {
11fcfab4 1587 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1588 if (!logfile) {
1589 perror(logfilename);
1590 _exit(1);
1591 }
9fa3e853
FB
1592#if !defined(CONFIG_SOFTMMU)
1593 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1594 {
b55266b5 1595 static char logfile_buf[4096];
9fa3e853
FB
1596 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1597 }
bf65f53f
FN
1598#elif !defined(_WIN32)
1599 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1600 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1601#endif
e735b91c
PB
1602 log_append = 1;
1603 }
1604 if (!loglevel && logfile) {
1605 fclose(logfile);
1606 logfile = NULL;
34865134
FB
1607 }
1608}
1609
1610void cpu_set_log_filename(const char *filename)
1611{
1612 logfilename = strdup(filename);
e735b91c
PB
1613 if (logfile) {
1614 fclose(logfile);
1615 logfile = NULL;
1616 }
1617 cpu_set_log(loglevel);
34865134 1618}
c33a346e 1619
3098dba0 1620static void cpu_unlink_tb(CPUState *env)
ea041c0e 1621{
3098dba0
AJ
1622 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1623 problem and hope the cpu will stop of its own accord. For userspace
1624 emulation this often isn't actually as bad as it sounds. Often
1625 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1626 TranslationBlock *tb;
c227f099 1627 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1628
cab1b4bd 1629 spin_lock(&interrupt_lock);
3098dba0
AJ
1630 tb = env->current_tb;
1631 /* if the cpu is currently executing code, we must unlink it and
1632 all the potentially executing TB */
f76cfe56 1633 if (tb) {
3098dba0
AJ
1634 env->current_tb = NULL;
1635 tb_reset_jump_recursive(tb);
be214e6c 1636 }
cab1b4bd 1637 spin_unlock(&interrupt_lock);
3098dba0
AJ
1638}
1639
1640/* mask must never be zero, except for A20 change call */
1641void cpu_interrupt(CPUState *env, int mask)
1642{
1643 int old_mask;
be214e6c 1644
2e70f6ef 1645 old_mask = env->interrupt_request;
68a79315 1646 env->interrupt_request |= mask;
3098dba0 1647
8edac960
AL
1648#ifndef CONFIG_USER_ONLY
1649 /*
1650 * If called from iothread context, wake the target cpu in
1651 * case its halted.
1652 */
1653 if (!qemu_cpu_self(env)) {
1654 qemu_cpu_kick(env);
1655 return;
1656 }
1657#endif
1658
2e70f6ef 1659 if (use_icount) {
266910c4 1660 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1661#ifndef CONFIG_USER_ONLY
2e70f6ef 1662 if (!can_do_io(env)
be214e6c 1663 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1664 cpu_abort(env, "Raised interrupt while not in I/O function");
1665 }
1666#endif
1667 } else {
3098dba0 1668 cpu_unlink_tb(env);
ea041c0e
FB
1669 }
1670}
1671
b54ad049
FB
1672void cpu_reset_interrupt(CPUState *env, int mask)
1673{
1674 env->interrupt_request &= ~mask;
1675}
1676
3098dba0
AJ
1677void cpu_exit(CPUState *env)
1678{
1679 env->exit_request = 1;
1680 cpu_unlink_tb(env);
1681}
1682
c7cd6a37 1683const CPULogItem cpu_log_items[] = {
5fafdf24 1684 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1685 "show generated host assembly code for each compiled TB" },
1686 { CPU_LOG_TB_IN_ASM, "in_asm",
1687 "show target assembly code for each compiled TB" },
5fafdf24 1688 { CPU_LOG_TB_OP, "op",
57fec1fe 1689 "show micro ops for each compiled TB" },
f193c797 1690 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1691 "show micro ops "
1692#ifdef TARGET_I386
1693 "before eflags optimization and "
f193c797 1694#endif
e01a1157 1695 "after liveness analysis" },
f193c797
FB
1696 { CPU_LOG_INT, "int",
1697 "show interrupts/exceptions in short format" },
1698 { CPU_LOG_EXEC, "exec",
1699 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1700 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1701 "show CPU state before block translation" },
f193c797
FB
1702#ifdef TARGET_I386
1703 { CPU_LOG_PCALL, "pcall",
1704 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1705 { CPU_LOG_RESET, "cpu_reset",
1706 "show CPU state before CPU resets" },
f193c797 1707#endif
8e3a9fd2 1708#ifdef DEBUG_IOPORT
fd872598
FB
1709 { CPU_LOG_IOPORT, "ioport",
1710 "show all i/o ports accesses" },
8e3a9fd2 1711#endif
f193c797
FB
1712 { 0, NULL, NULL },
1713};
1714
f6f3fbca
MT
1715#ifndef CONFIG_USER_ONLY
1716static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1717 = QLIST_HEAD_INITIALIZER(memory_client_list);
1718
1719static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1720 ram_addr_t size,
1721 ram_addr_t phys_offset)
1722{
1723 CPUPhysMemoryClient *client;
1724 QLIST_FOREACH(client, &memory_client_list, list) {
1725 client->set_memory(client, start_addr, size, phys_offset);
1726 }
1727}
1728
1729static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1730 target_phys_addr_t end)
1731{
1732 CPUPhysMemoryClient *client;
1733 QLIST_FOREACH(client, &memory_client_list, list) {
1734 int r = client->sync_dirty_bitmap(client, start, end);
1735 if (r < 0)
1736 return r;
1737 }
1738 return 0;
1739}
1740
1741static int cpu_notify_migration_log(int enable)
1742{
1743 CPUPhysMemoryClient *client;
1744 QLIST_FOREACH(client, &memory_client_list, list) {
1745 int r = client->migration_log(client, enable);
1746 if (r < 0)
1747 return r;
1748 }
1749 return 0;
1750}
1751
5cd2c5b6
RH
1752static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1753 int level, void **lp)
f6f3fbca 1754{
5cd2c5b6 1755 int i;
f6f3fbca 1756
5cd2c5b6
RH
1757 if (*lp == NULL) {
1758 return;
1759 }
1760 if (level == 0) {
1761 PhysPageDesc *pd = *lp;
7296abac 1762 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1763 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1764 client->set_memory(client, pd[i].region_offset,
1765 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1766 }
5cd2c5b6
RH
1767 }
1768 } else {
1769 void **pp = *lp;
7296abac 1770 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1771 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1772 }
1773 }
1774}
1775
1776static void phys_page_for_each(CPUPhysMemoryClient *client)
1777{
5cd2c5b6
RH
1778 int i;
1779 for (i = 0; i < P_L1_SIZE; ++i) {
1780 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1781 l1_phys_map + 1);
f6f3fbca 1782 }
f6f3fbca
MT
1783}
1784
1785void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1786{
1787 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1788 phys_page_for_each(client);
1789}
1790
1791void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1792{
1793 QLIST_REMOVE(client, list);
1794}
1795#endif
1796
f193c797
FB
1797static int cmp1(const char *s1, int n, const char *s2)
1798{
1799 if (strlen(s2) != n)
1800 return 0;
1801 return memcmp(s1, s2, n) == 0;
1802}
3b46e624 1803
f193c797
FB
1804/* takes a comma separated list of log masks. Return 0 if error. */
1805int cpu_str_to_log_mask(const char *str)
1806{
c7cd6a37 1807 const CPULogItem *item;
f193c797
FB
1808 int mask;
1809 const char *p, *p1;
1810
1811 p = str;
1812 mask = 0;
1813 for(;;) {
1814 p1 = strchr(p, ',');
1815 if (!p1)
1816 p1 = p + strlen(p);
8e3a9fd2
FB
1817 if(cmp1(p,p1-p,"all")) {
1818 for(item = cpu_log_items; item->mask != 0; item++) {
1819 mask |= item->mask;
1820 }
1821 } else {
f193c797
FB
1822 for(item = cpu_log_items; item->mask != 0; item++) {
1823 if (cmp1(p, p1 - p, item->name))
1824 goto found;
1825 }
1826 return 0;
8e3a9fd2 1827 }
f193c797
FB
1828 found:
1829 mask |= item->mask;
1830 if (*p1 != ',')
1831 break;
1832 p = p1 + 1;
1833 }
1834 return mask;
1835}
ea041c0e 1836
7501267e
FB
1837void cpu_abort(CPUState *env, const char *fmt, ...)
1838{
1839 va_list ap;
493ae1f0 1840 va_list ap2;
7501267e
FB
1841
1842 va_start(ap, fmt);
493ae1f0 1843 va_copy(ap2, ap);
7501267e
FB
1844 fprintf(stderr, "qemu: fatal: ");
1845 vfprintf(stderr, fmt, ap);
1846 fprintf(stderr, "\n");
1847#ifdef TARGET_I386
7fe48483
FB
1848 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1849#else
1850 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1851#endif
93fcfe39
AL
1852 if (qemu_log_enabled()) {
1853 qemu_log("qemu: fatal: ");
1854 qemu_log_vprintf(fmt, ap2);
1855 qemu_log("\n");
f9373291 1856#ifdef TARGET_I386
93fcfe39 1857 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1858#else
93fcfe39 1859 log_cpu_state(env, 0);
f9373291 1860#endif
31b1a7b4 1861 qemu_log_flush();
93fcfe39 1862 qemu_log_close();
924edcae 1863 }
493ae1f0 1864 va_end(ap2);
f9373291 1865 va_end(ap);
fd052bf6
RV
1866#if defined(CONFIG_USER_ONLY)
1867 {
1868 struct sigaction act;
1869 sigfillset(&act.sa_mask);
1870 act.sa_handler = SIG_DFL;
1871 sigaction(SIGABRT, &act, NULL);
1872 }
1873#endif
7501267e
FB
1874 abort();
1875}
1876
c5be9f08
TS
1877CPUState *cpu_copy(CPUState *env)
1878{
01ba9816 1879 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1880 CPUState *next_cpu = new_env->next_cpu;
1881 int cpu_index = new_env->cpu_index;
5a38f081
AL
1882#if defined(TARGET_HAS_ICE)
1883 CPUBreakpoint *bp;
1884 CPUWatchpoint *wp;
1885#endif
1886
c5be9f08 1887 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1888
1889 /* Preserve chaining and index. */
c5be9f08
TS
1890 new_env->next_cpu = next_cpu;
1891 new_env->cpu_index = cpu_index;
5a38f081
AL
1892
1893 /* Clone all break/watchpoints.
1894 Note: Once we support ptrace with hw-debug register access, make sure
1895 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1896 QTAILQ_INIT(&env->breakpoints);
1897 QTAILQ_INIT(&env->watchpoints);
5a38f081 1898#if defined(TARGET_HAS_ICE)
72cf2d4f 1899 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1900 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1901 }
72cf2d4f 1902 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1903 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1904 wp->flags, NULL);
1905 }
1906#endif
1907
c5be9f08
TS
1908 return new_env;
1909}
1910
0124311e
FB
1911#if !defined(CONFIG_USER_ONLY)
1912
5c751e99
EI
1913static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1914{
1915 unsigned int i;
1916
1917 /* Discard jump cache entries for any tb which might potentially
1918 overlap the flushed page. */
1919 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1920 memset (&env->tb_jmp_cache[i], 0,
1921 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1922
1923 i = tb_jmp_cache_hash_page(addr);
1924 memset (&env->tb_jmp_cache[i], 0,
1925 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1926}
1927
08738984
IK
1928static CPUTLBEntry s_cputlb_empty_entry = {
1929 .addr_read = -1,
1930 .addr_write = -1,
1931 .addr_code = -1,
1932 .addend = -1,
1933};
1934
ee8b7021
FB
1935/* NOTE: if flush_global is true, also flush global entries (not
1936 implemented yet) */
1937void tlb_flush(CPUState *env, int flush_global)
33417e70 1938{
33417e70 1939 int i;
0124311e 1940
9fa3e853
FB
1941#if defined(DEBUG_TLB)
1942 printf("tlb_flush:\n");
1943#endif
0124311e
FB
1944 /* must reset current TB so that interrupts cannot modify the
1945 links while we are modifying them */
1946 env->current_tb = NULL;
1947
33417e70 1948 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1949 int mmu_idx;
1950 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1951 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1952 }
33417e70 1953 }
9fa3e853 1954
8a40a180 1955 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1956
d4c430a8
PB
1957 env->tlb_flush_addr = -1;
1958 env->tlb_flush_mask = 0;
e3db7226 1959 tlb_flush_count++;
33417e70
FB
1960}
1961
274da6b2 1962static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1963{
5fafdf24 1964 if (addr == (tlb_entry->addr_read &
84b7b8e7 1965 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1966 addr == (tlb_entry->addr_write &
84b7b8e7 1967 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1968 addr == (tlb_entry->addr_code &
84b7b8e7 1969 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1970 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1971 }
61382a50
FB
1972}
1973
2e12669a 1974void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1975{
8a40a180 1976 int i;
cfde4bd9 1977 int mmu_idx;
0124311e 1978
9fa3e853 1979#if defined(DEBUG_TLB)
108c49b8 1980 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1981#endif
d4c430a8
PB
1982 /* Check if we need to flush due to large pages. */
1983 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1984#if defined(DEBUG_TLB)
1985 printf("tlb_flush_page: forced full flush ("
1986 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1987 env->tlb_flush_addr, env->tlb_flush_mask);
1988#endif
1989 tlb_flush(env, 1);
1990 return;
1991 }
0124311e
FB
1992 /* must reset current TB so that interrupts cannot modify the
1993 links while we are modifying them */
1994 env->current_tb = NULL;
61382a50
FB
1995
1996 addr &= TARGET_PAGE_MASK;
1997 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1998 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1999 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2000
5c751e99 2001 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2002}
2003
9fa3e853
FB
2004/* update the TLBs so that writes to code in the virtual page 'addr'
2005 can be detected */
c227f099 2006static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2007{
5fafdf24 2008 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2009 ram_addr + TARGET_PAGE_SIZE,
2010 CODE_DIRTY_FLAG);
9fa3e853
FB
2011}
2012
9fa3e853 2013/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2014 tested for self modifying code */
c227f099 2015static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2016 target_ulong vaddr)
9fa3e853 2017{
f7c11b53 2018 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2019}
2020
5fafdf24 2021static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2022 unsigned long start, unsigned long length)
2023{
2024 unsigned long addr;
84b7b8e7
FB
2025 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2026 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2027 if ((addr - start) < length) {
0f459d16 2028 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2029 }
2030 }
2031}
2032
5579c7f3 2033/* Note: start and end must be within the same ram block. */
c227f099 2034void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2035 int dirty_flags)
1ccde1cb
FB
2036{
2037 CPUState *env;
4f2ac237 2038 unsigned long length, start1;
f7c11b53 2039 int i;
1ccde1cb
FB
2040
2041 start &= TARGET_PAGE_MASK;
2042 end = TARGET_PAGE_ALIGN(end);
2043
2044 length = end - start;
2045 if (length == 0)
2046 return;
f7c11b53 2047 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2048
1ccde1cb
FB
2049 /* we modify the TLB cache so that the dirty bit will be set again
2050 when accessing the range */
5579c7f3
PB
2051 start1 = (unsigned long)qemu_get_ram_ptr(start);
2052 /* Chek that we don't span multiple blocks - this breaks the
2053 address comparisons below. */
2054 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2055 != (end - 1) - start) {
2056 abort();
2057 }
2058
6a00d601 2059 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2060 int mmu_idx;
2061 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2062 for(i = 0; i < CPU_TLB_SIZE; i++)
2063 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2064 start1, length);
2065 }
6a00d601 2066 }
1ccde1cb
FB
2067}
2068
74576198
AL
2069int cpu_physical_memory_set_dirty_tracking(int enable)
2070{
f6f3fbca 2071 int ret = 0;
74576198 2072 in_migration = enable;
f6f3fbca
MT
2073 ret = cpu_notify_migration_log(!!enable);
2074 return ret;
74576198
AL
2075}
2076
2077int cpu_physical_memory_get_dirty_tracking(void)
2078{
2079 return in_migration;
2080}
2081
c227f099
AL
2082int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2083 target_phys_addr_t end_addr)
2bec46dc 2084{
7b8f3b78 2085 int ret;
151f7749 2086
f6f3fbca 2087 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2088 return ret;
2bec46dc
AL
2089}
2090
3a7d929e
FB
2091static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2092{
c227f099 2093 ram_addr_t ram_addr;
5579c7f3 2094 void *p;
3a7d929e 2095
84b7b8e7 2096 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2097 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2098 + tlb_entry->addend);
2099 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2100 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2101 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2102 }
2103 }
2104}
2105
2106/* update the TLB according to the current state of the dirty bits */
2107void cpu_tlb_update_dirty(CPUState *env)
2108{
2109 int i;
cfde4bd9
IY
2110 int mmu_idx;
2111 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2112 for(i = 0; i < CPU_TLB_SIZE; i++)
2113 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2114 }
3a7d929e
FB
2115}
2116
0f459d16 2117static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2118{
0f459d16
PB
2119 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2120 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2121}
2122
0f459d16
PB
2123/* update the TLB corresponding to virtual page vaddr
2124 so that it is no longer dirty */
2125static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2126{
1ccde1cb 2127 int i;
cfde4bd9 2128 int mmu_idx;
1ccde1cb 2129
0f459d16 2130 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2131 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2132 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2133 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2134}
2135
d4c430a8
PB
2136/* Our TLB does not support large pages, so remember the area covered by
2137 large pages and trigger a full TLB flush if these are invalidated. */
2138static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2139 target_ulong size)
2140{
2141 target_ulong mask = ~(size - 1);
2142
2143 if (env->tlb_flush_addr == (target_ulong)-1) {
2144 env->tlb_flush_addr = vaddr & mask;
2145 env->tlb_flush_mask = mask;
2146 return;
2147 }
2148 /* Extend the existing region to include the new page.
2149 This is a compromise between unnecessary flushes and the cost
2150 of maintaining a full variable size TLB. */
2151 mask &= env->tlb_flush_mask;
2152 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2153 mask <<= 1;
2154 }
2155 env->tlb_flush_addr &= mask;
2156 env->tlb_flush_mask = mask;
2157}
2158
2159/* Add a new TLB entry. At most one entry for a given virtual address
2160 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2161 supplied size is only used by tlb_flush_page. */
2162void tlb_set_page(CPUState *env, target_ulong vaddr,
2163 target_phys_addr_t paddr, int prot,
2164 int mmu_idx, target_ulong size)
9fa3e853 2165{
92e873b9 2166 PhysPageDesc *p;
4f2ac237 2167 unsigned long pd;
9fa3e853 2168 unsigned int index;
4f2ac237 2169 target_ulong address;
0f459d16 2170 target_ulong code_address;
355b1943 2171 unsigned long addend;
84b7b8e7 2172 CPUTLBEntry *te;
a1d1bb31 2173 CPUWatchpoint *wp;
c227f099 2174 target_phys_addr_t iotlb;
9fa3e853 2175
d4c430a8
PB
2176 assert(size >= TARGET_PAGE_SIZE);
2177 if (size != TARGET_PAGE_SIZE) {
2178 tlb_add_large_page(env, vaddr, size);
2179 }
92e873b9 2180 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2181 if (!p) {
2182 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2183 } else {
2184 pd = p->phys_offset;
9fa3e853
FB
2185 }
2186#if defined(DEBUG_TLB)
6ebbf390
JM
2187 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2188 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2189#endif
2190
0f459d16
PB
2191 address = vaddr;
2192 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2193 /* IO memory case (romd handled later) */
2194 address |= TLB_MMIO;
2195 }
5579c7f3 2196 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2197 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2198 /* Normal RAM. */
2199 iotlb = pd & TARGET_PAGE_MASK;
2200 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2201 iotlb |= IO_MEM_NOTDIRTY;
2202 else
2203 iotlb |= IO_MEM_ROM;
2204 } else {
ccbb4d44 2205 /* IO handlers are currently passed a physical address.
0f459d16
PB
2206 It would be nice to pass an offset from the base address
2207 of that region. This would avoid having to special case RAM,
2208 and avoid full address decoding in every device.
2209 We can't use the high bits of pd for this because
2210 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2211 iotlb = (pd & ~TARGET_PAGE_MASK);
2212 if (p) {
8da3ff18
PB
2213 iotlb += p->region_offset;
2214 } else {
2215 iotlb += paddr;
2216 }
0f459d16
PB
2217 }
2218
2219 code_address = address;
2220 /* Make accesses to pages with watchpoints go via the
2221 watchpoint trap routines. */
72cf2d4f 2222 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2223 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2224 iotlb = io_mem_watch + paddr;
2225 /* TODO: The memory case can be optimized by not trapping
2226 reads of pages with a write breakpoint. */
2227 address |= TLB_MMIO;
6658ffb8 2228 }
0f459d16 2229 }
d79acba4 2230
0f459d16
PB
2231 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2232 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2233 te = &env->tlb_table[mmu_idx][index];
2234 te->addend = addend - vaddr;
2235 if (prot & PAGE_READ) {
2236 te->addr_read = address;
2237 } else {
2238 te->addr_read = -1;
2239 }
5c751e99 2240
0f459d16
PB
2241 if (prot & PAGE_EXEC) {
2242 te->addr_code = code_address;
2243 } else {
2244 te->addr_code = -1;
2245 }
2246 if (prot & PAGE_WRITE) {
2247 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2248 (pd & IO_MEM_ROMD)) {
2249 /* Write access calls the I/O callback. */
2250 te->addr_write = address | TLB_MMIO;
2251 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2252 !cpu_physical_memory_is_dirty(pd)) {
2253 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2254 } else {
0f459d16 2255 te->addr_write = address;
9fa3e853 2256 }
0f459d16
PB
2257 } else {
2258 te->addr_write = -1;
9fa3e853 2259 }
9fa3e853
FB
2260}
2261
0124311e
FB
2262#else
2263
ee8b7021 2264void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2265{
2266}
2267
2e12669a 2268void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2269{
2270}
2271
edf8e2af
MW
2272/*
2273 * Walks guest process memory "regions" one by one
2274 * and calls callback function 'fn' for each region.
2275 */
5cd2c5b6
RH
2276
2277struct walk_memory_regions_data
2278{
2279 walk_memory_regions_fn fn;
2280 void *priv;
2281 unsigned long start;
2282 int prot;
2283};
2284
2285static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2286 abi_ulong end, int new_prot)
5cd2c5b6
RH
2287{
2288 if (data->start != -1ul) {
2289 int rc = data->fn(data->priv, data->start, end, data->prot);
2290 if (rc != 0) {
2291 return rc;
2292 }
2293 }
2294
2295 data->start = (new_prot ? end : -1ul);
2296 data->prot = new_prot;
2297
2298 return 0;
2299}
2300
2301static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2302 abi_ulong base, int level, void **lp)
5cd2c5b6 2303{
b480d9b7 2304 abi_ulong pa;
5cd2c5b6
RH
2305 int i, rc;
2306
2307 if (*lp == NULL) {
2308 return walk_memory_regions_end(data, base, 0);
2309 }
2310
2311 if (level == 0) {
2312 PageDesc *pd = *lp;
7296abac 2313 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2314 int prot = pd[i].flags;
2315
2316 pa = base | (i << TARGET_PAGE_BITS);
2317 if (prot != data->prot) {
2318 rc = walk_memory_regions_end(data, pa, prot);
2319 if (rc != 0) {
2320 return rc;
9fa3e853 2321 }
9fa3e853 2322 }
5cd2c5b6
RH
2323 }
2324 } else {
2325 void **pp = *lp;
7296abac 2326 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2327 pa = base | ((abi_ulong)i <<
2328 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2329 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2330 if (rc != 0) {
2331 return rc;
2332 }
2333 }
2334 }
2335
2336 return 0;
2337}
2338
2339int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2340{
2341 struct walk_memory_regions_data data;
2342 unsigned long i;
2343
2344 data.fn = fn;
2345 data.priv = priv;
2346 data.start = -1ul;
2347 data.prot = 0;
2348
2349 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2350 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2351 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2352 if (rc != 0) {
2353 return rc;
9fa3e853 2354 }
33417e70 2355 }
5cd2c5b6
RH
2356
2357 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2358}
2359
b480d9b7
PB
2360static int dump_region(void *priv, abi_ulong start,
2361 abi_ulong end, unsigned long prot)
edf8e2af
MW
2362{
2363 FILE *f = (FILE *)priv;
2364
b480d9b7
PB
2365 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2366 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2367 start, end, end - start,
2368 ((prot & PAGE_READ) ? 'r' : '-'),
2369 ((prot & PAGE_WRITE) ? 'w' : '-'),
2370 ((prot & PAGE_EXEC) ? 'x' : '-'));
2371
2372 return (0);
2373}
2374
2375/* dump memory mappings */
2376void page_dump(FILE *f)
2377{
2378 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2379 "start", "end", "size", "prot");
2380 walk_memory_regions(f, dump_region);
33417e70
FB
2381}
2382
53a5960a 2383int page_get_flags(target_ulong address)
33417e70 2384{
9fa3e853
FB
2385 PageDesc *p;
2386
2387 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2388 if (!p)
9fa3e853
FB
2389 return 0;
2390 return p->flags;
2391}
2392
376a7909
RH
2393/* Modify the flags of a page and invalidate the code if necessary.
2394 The flag PAGE_WRITE_ORG is positioned automatically depending
2395 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2396void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2397{
376a7909
RH
2398 target_ulong addr, len;
2399
2400 /* This function should never be called with addresses outside the
2401 guest address space. If this assert fires, it probably indicates
2402 a missing call to h2g_valid. */
b480d9b7
PB
2403#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2404 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2405#endif
2406 assert(start < end);
9fa3e853
FB
2407
2408 start = start & TARGET_PAGE_MASK;
2409 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2410
2411 if (flags & PAGE_WRITE) {
9fa3e853 2412 flags |= PAGE_WRITE_ORG;
376a7909
RH
2413 }
2414
2415 for (addr = start, len = end - start;
2416 len != 0;
2417 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2418 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2419
2420 /* If the write protection bit is set, then we invalidate
2421 the code inside. */
5fafdf24 2422 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2423 (flags & PAGE_WRITE) &&
2424 p->first_tb) {
d720b93d 2425 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2426 }
2427 p->flags = flags;
2428 }
33417e70
FB
2429}
2430
3d97b40b
TS
2431int page_check_range(target_ulong start, target_ulong len, int flags)
2432{
2433 PageDesc *p;
2434 target_ulong end;
2435 target_ulong addr;
2436
376a7909
RH
2437 /* This function should never be called with addresses outside the
2438 guest address space. If this assert fires, it probably indicates
2439 a missing call to h2g_valid. */
338e9e6c
BS
2440#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2441 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2442#endif
2443
3e0650a9
RH
2444 if (len == 0) {
2445 return 0;
2446 }
376a7909
RH
2447 if (start + len - 1 < start) {
2448 /* We've wrapped around. */
55f280c9 2449 return -1;
376a7909 2450 }
55f280c9 2451
3d97b40b
TS
2452 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2453 start = start & TARGET_PAGE_MASK;
2454
376a7909
RH
2455 for (addr = start, len = end - start;
2456 len != 0;
2457 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2458 p = page_find(addr >> TARGET_PAGE_BITS);
2459 if( !p )
2460 return -1;
2461 if( !(p->flags & PAGE_VALID) )
2462 return -1;
2463
dae3270c 2464 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2465 return -1;
dae3270c
FB
2466 if (flags & PAGE_WRITE) {
2467 if (!(p->flags & PAGE_WRITE_ORG))
2468 return -1;
2469 /* unprotect the page if it was put read-only because it
2470 contains translated code */
2471 if (!(p->flags & PAGE_WRITE)) {
2472 if (!page_unprotect(addr, 0, NULL))
2473 return -1;
2474 }
2475 return 0;
2476 }
3d97b40b
TS
2477 }
2478 return 0;
2479}
2480
9fa3e853 2481/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2482 page. Return TRUE if the fault was successfully handled. */
53a5960a 2483int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2484{
45d679d6
AJ
2485 unsigned int prot;
2486 PageDesc *p;
53a5960a 2487 target_ulong host_start, host_end, addr;
9fa3e853 2488
c8a706fe
PB
2489 /* Technically this isn't safe inside a signal handler. However we
2490 know this only ever happens in a synchronous SEGV handler, so in
2491 practice it seems to be ok. */
2492 mmap_lock();
2493
45d679d6
AJ
2494 p = page_find(address >> TARGET_PAGE_BITS);
2495 if (!p) {
c8a706fe 2496 mmap_unlock();
9fa3e853 2497 return 0;
c8a706fe 2498 }
45d679d6 2499
9fa3e853
FB
2500 /* if the page was really writable, then we change its
2501 protection back to writable */
45d679d6
AJ
2502 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2503 host_start = address & qemu_host_page_mask;
2504 host_end = host_start + qemu_host_page_size;
2505
2506 prot = 0;
2507 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2508 p = page_find(addr >> TARGET_PAGE_BITS);
2509 p->flags |= PAGE_WRITE;
2510 prot |= p->flags;
2511
9fa3e853
FB
2512 /* and since the content will be modified, we must invalidate
2513 the corresponding translated code. */
45d679d6 2514 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2515#ifdef DEBUG_TB_CHECK
45d679d6 2516 tb_invalidate_check(addr);
9fa3e853 2517#endif
9fa3e853 2518 }
45d679d6
AJ
2519 mprotect((void *)g2h(host_start), qemu_host_page_size,
2520 prot & PAGE_BITS);
2521
2522 mmap_unlock();
2523 return 1;
9fa3e853 2524 }
c8a706fe 2525 mmap_unlock();
9fa3e853
FB
2526 return 0;
2527}
2528
6a00d601
FB
2529static inline void tlb_set_dirty(CPUState *env,
2530 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2531{
2532}
9fa3e853
FB
2533#endif /* defined(CONFIG_USER_ONLY) */
2534
e2eef170 2535#if !defined(CONFIG_USER_ONLY)
8da3ff18 2536
c04b2b78
PB
2537#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2538typedef struct subpage_t {
2539 target_phys_addr_t base;
f6405247
RH
2540 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2541 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2542} subpage_t;
2543
c227f099
AL
2544static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2545 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2546static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2547 ram_addr_t orig_memory,
2548 ram_addr_t region_offset);
db7b5426
BS
2549#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2550 need_subpage) \
2551 do { \
2552 if (addr > start_addr) \
2553 start_addr2 = 0; \
2554 else { \
2555 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2556 if (start_addr2 > 0) \
2557 need_subpage = 1; \
2558 } \
2559 \
49e9fba2 2560 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2561 end_addr2 = TARGET_PAGE_SIZE - 1; \
2562 else { \
2563 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2564 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2565 need_subpage = 1; \
2566 } \
2567 } while (0)
2568
8f2498f9
MT
2569/* register physical memory.
2570 For RAM, 'size' must be a multiple of the target page size.
2571 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2572 io memory page. The address used when calling the IO function is
2573 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2574 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2575 before calculating this offset. This should not be a problem unless
2576 the low bits of start_addr and region_offset differ. */
c227f099
AL
2577void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2578 ram_addr_t size,
2579 ram_addr_t phys_offset,
2580 ram_addr_t region_offset)
33417e70 2581{
c227f099 2582 target_phys_addr_t addr, end_addr;
92e873b9 2583 PhysPageDesc *p;
9d42037b 2584 CPUState *env;
c227f099 2585 ram_addr_t orig_size = size;
f6405247 2586 subpage_t *subpage;
33417e70 2587
f6f3fbca
MT
2588 cpu_notify_set_memory(start_addr, size, phys_offset);
2589
67c4d23c
PB
2590 if (phys_offset == IO_MEM_UNASSIGNED) {
2591 region_offset = start_addr;
2592 }
8da3ff18 2593 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2594 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2595 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2596 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2597 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2598 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2599 ram_addr_t orig_memory = p->phys_offset;
2600 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2601 int need_subpage = 0;
2602
2603 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2604 need_subpage);
f6405247 2605 if (need_subpage) {
db7b5426
BS
2606 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2607 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2608 &p->phys_offset, orig_memory,
2609 p->region_offset);
db7b5426
BS
2610 } else {
2611 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2612 >> IO_MEM_SHIFT];
2613 }
8da3ff18
PB
2614 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2615 region_offset);
2616 p->region_offset = 0;
db7b5426
BS
2617 } else {
2618 p->phys_offset = phys_offset;
2619 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2620 (phys_offset & IO_MEM_ROMD))
2621 phys_offset += TARGET_PAGE_SIZE;
2622 }
2623 } else {
2624 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2625 p->phys_offset = phys_offset;
8da3ff18 2626 p->region_offset = region_offset;
db7b5426 2627 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2628 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2629 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2630 } else {
c227f099 2631 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2632 int need_subpage = 0;
2633
2634 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2635 end_addr2, need_subpage);
2636
f6405247 2637 if (need_subpage) {
db7b5426 2638 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2639 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2640 addr & TARGET_PAGE_MASK);
db7b5426 2641 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2642 phys_offset, region_offset);
2643 p->region_offset = 0;
db7b5426
BS
2644 }
2645 }
2646 }
8da3ff18 2647 region_offset += TARGET_PAGE_SIZE;
33417e70 2648 }
3b46e624 2649
9d42037b
FB
2650 /* since each CPU stores ram addresses in its TLB cache, we must
2651 reset the modified entries */
2652 /* XXX: slow ! */
2653 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2654 tlb_flush(env, 1);
2655 }
33417e70
FB
2656}
2657
ba863458 2658/* XXX: temporary until new memory mapping API */
c227f099 2659ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2660{
2661 PhysPageDesc *p;
2662
2663 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2664 if (!p)
2665 return IO_MEM_UNASSIGNED;
2666 return p->phys_offset;
2667}
2668
c227f099 2669void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2670{
2671 if (kvm_enabled())
2672 kvm_coalesce_mmio_region(addr, size);
2673}
2674
c227f099 2675void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2676{
2677 if (kvm_enabled())
2678 kvm_uncoalesce_mmio_region(addr, size);
2679}
2680
62a2744c
SY
2681void qemu_flush_coalesced_mmio_buffer(void)
2682{
2683 if (kvm_enabled())
2684 kvm_flush_coalesced_mmio_buffer();
2685}
2686
c902760f
MT
2687#if defined(__linux__) && !defined(TARGET_S390X)
2688
2689#include <sys/vfs.h>
2690
2691#define HUGETLBFS_MAGIC 0x958458f6
2692
2693static long gethugepagesize(const char *path)
2694{
2695 struct statfs fs;
2696 int ret;
2697
2698 do {
2699 ret = statfs(path, &fs);
2700 } while (ret != 0 && errno == EINTR);
2701
2702 if (ret != 0) {
6adc0549 2703 perror(path);
c902760f
MT
2704 return 0;
2705 }
2706
2707 if (fs.f_type != HUGETLBFS_MAGIC)
2708 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2709
2710 return fs.f_bsize;
2711}
2712
2713static void *file_ram_alloc(ram_addr_t memory, const char *path)
2714{
2715 char *filename;
2716 void *area;
2717 int fd;
2718#ifdef MAP_POPULATE
2719 int flags;
2720#endif
2721 unsigned long hpagesize;
2722
2723 hpagesize = gethugepagesize(path);
2724 if (!hpagesize) {
2725 return NULL;
2726 }
2727
2728 if (memory < hpagesize) {
2729 return NULL;
2730 }
2731
2732 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2733 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2734 return NULL;
2735 }
2736
2737 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2738 return NULL;
2739 }
2740
2741 fd = mkstemp(filename);
2742 if (fd < 0) {
6adc0549 2743 perror("unable to create backing store for hugepages");
c902760f
MT
2744 free(filename);
2745 return NULL;
2746 }
2747 unlink(filename);
2748 free(filename);
2749
2750 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2751
2752 /*
2753 * ftruncate is not supported by hugetlbfs in older
2754 * hosts, so don't bother bailing out on errors.
2755 * If anything goes wrong with it under other filesystems,
2756 * mmap will fail.
2757 */
2758 if (ftruncate(fd, memory))
2759 perror("ftruncate");
2760
2761#ifdef MAP_POPULATE
2762 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2763 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2764 * to sidestep this quirk.
2765 */
2766 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2767 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2768#else
2769 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2770#endif
2771 if (area == MAP_FAILED) {
2772 perror("file_ram_alloc: can't mmap RAM pages");
2773 close(fd);
2774 return (NULL);
2775 }
2776 return area;
2777}
2778#endif
2779
c227f099 2780ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2781{
2782 RAMBlock *new_block;
2783
94a6b54f
PB
2784 size = TARGET_PAGE_ALIGN(size);
2785 new_block = qemu_malloc(sizeof(*new_block));
2786
c902760f
MT
2787 if (mem_path) {
2788#if defined (__linux__) && !defined(TARGET_S390X)
2789 new_block->host = file_ram_alloc(size, mem_path);
618a568d
MT
2790 if (!new_block->host) {
2791 new_block->host = qemu_vmalloc(size);
2792#ifdef MADV_MERGEABLE
2793 madvise(new_block->host, size, MADV_MERGEABLE);
2794#endif
2795 }
c902760f
MT
2796#else
2797 fprintf(stderr, "-mem-path option unsupported\n");
2798 exit(1);
2799#endif
2800 } else {
6b02494d 2801#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2802 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2803 new_block->host = mmap((void*)0x1000000, size,
2804 PROT_EXEC|PROT_READ|PROT_WRITE,
2805 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2806#else
c902760f 2807 new_block->host = qemu_vmalloc(size);
6b02494d 2808#endif
ccb167e9 2809#ifdef MADV_MERGEABLE
c902760f 2810 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2811#endif
c902760f 2812 }
94a6b54f
PB
2813 new_block->offset = last_ram_offset;
2814 new_block->length = size;
2815
2816 new_block->next = ram_blocks;
2817 ram_blocks = new_block;
2818
2819 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2820 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2821 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2822 0xff, size >> TARGET_PAGE_BITS);
2823
2824 last_ram_offset += size;
2825
6f0437e8
JK
2826 if (kvm_enabled())
2827 kvm_setup_guest_memory(new_block->host, size);
2828
94a6b54f
PB
2829 return new_block->offset;
2830}
e9a1ab19 2831
c227f099 2832void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2833{
94a6b54f 2834 /* TODO: implement this. */
e9a1ab19
FB
2835}
2836
dc828ca1 2837/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2838 With the exception of the softmmu code in this file, this should
2839 only be used for local memory (e.g. video ram) that the device owns,
2840 and knows it isn't going to access beyond the end of the block.
2841
2842 It should not be used for general purpose DMA.
2843 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2844 */
c227f099 2845void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2846{
94a6b54f
PB
2847 RAMBlock *prev;
2848 RAMBlock **prevp;
2849 RAMBlock *block;
2850
94a6b54f
PB
2851 prev = NULL;
2852 prevp = &ram_blocks;
2853 block = ram_blocks;
2854 while (block && (block->offset > addr
2855 || block->offset + block->length <= addr)) {
2856 if (prev)
2857 prevp = &prev->next;
2858 prev = block;
2859 block = block->next;
2860 }
2861 if (!block) {
2862 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2863 abort();
2864 }
2865 /* Move this entry to to start of the list. */
2866 if (prev) {
2867 prev->next = block->next;
2868 block->next = *prevp;
2869 *prevp = block;
2870 }
2871 return block->host + (addr - block->offset);
dc828ca1
PB
2872}
2873
5579c7f3
PB
2874/* Some of the softmmu routines need to translate from a host pointer
2875 (typically a TLB entry) back to a ram offset. */
c227f099 2876ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2877{
94a6b54f
PB
2878 RAMBlock *block;
2879 uint8_t *host = ptr;
2880
94a6b54f
PB
2881 block = ram_blocks;
2882 while (block && (block->host > host
2883 || block->host + block->length <= host)) {
94a6b54f
PB
2884 block = block->next;
2885 }
2886 if (!block) {
2887 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2888 abort();
2889 }
2890 return block->offset + (host - block->host);
5579c7f3
PB
2891}
2892
c227f099 2893static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2894{
67d3b957 2895#ifdef DEBUG_UNASSIGNED
ab3d1727 2896 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2897#endif
faed1c2a 2898#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2899 do_unassigned_access(addr, 0, 0, 0, 1);
2900#endif
2901 return 0;
2902}
2903
c227f099 2904static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2905{
2906#ifdef DEBUG_UNASSIGNED
2907 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2908#endif
faed1c2a 2909#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2910 do_unassigned_access(addr, 0, 0, 0, 2);
2911#endif
2912 return 0;
2913}
2914
c227f099 2915static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2916{
2917#ifdef DEBUG_UNASSIGNED
2918 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2919#endif
faed1c2a 2920#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2921 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2922#endif
33417e70
FB
2923 return 0;
2924}
2925
c227f099 2926static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2927{
67d3b957 2928#ifdef DEBUG_UNASSIGNED
ab3d1727 2929 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2930#endif
faed1c2a 2931#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2932 do_unassigned_access(addr, 1, 0, 0, 1);
2933#endif
2934}
2935
c227f099 2936static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2937{
2938#ifdef DEBUG_UNASSIGNED
2939 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2940#endif
faed1c2a 2941#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2942 do_unassigned_access(addr, 1, 0, 0, 2);
2943#endif
2944}
2945
c227f099 2946static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2947{
2948#ifdef DEBUG_UNASSIGNED
2949 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2950#endif
faed1c2a 2951#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2952 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2953#endif
33417e70
FB
2954}
2955
d60efc6b 2956static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2957 unassigned_mem_readb,
e18231a3
BS
2958 unassigned_mem_readw,
2959 unassigned_mem_readl,
33417e70
FB
2960};
2961
d60efc6b 2962static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2963 unassigned_mem_writeb,
e18231a3
BS
2964 unassigned_mem_writew,
2965 unassigned_mem_writel,
33417e70
FB
2966};
2967
c227f099 2968static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2969 uint32_t val)
9fa3e853 2970{
3a7d929e 2971 int dirty_flags;
f7c11b53 2972 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2973 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2974#if !defined(CONFIG_USER_ONLY)
3a7d929e 2975 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 2976 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2977#endif
3a7d929e 2978 }
5579c7f3 2979 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2980 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2981 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2982 /* we remove the notdirty callback only if the code has been
2983 flushed */
2984 if (dirty_flags == 0xff)
2e70f6ef 2985 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2986}
2987
c227f099 2988static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2989 uint32_t val)
9fa3e853 2990{
3a7d929e 2991 int dirty_flags;
f7c11b53 2992 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2993 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2994#if !defined(CONFIG_USER_ONLY)
3a7d929e 2995 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 2996 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2997#endif
3a7d929e 2998 }
5579c7f3 2999 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3000 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3001 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3002 /* we remove the notdirty callback only if the code has been
3003 flushed */
3004 if (dirty_flags == 0xff)
2e70f6ef 3005 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3006}
3007
c227f099 3008static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3009 uint32_t val)
9fa3e853 3010{
3a7d929e 3011 int dirty_flags;
f7c11b53 3012 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3013 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3014#if !defined(CONFIG_USER_ONLY)
3a7d929e 3015 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3016 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3017#endif
3a7d929e 3018 }
5579c7f3 3019 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3020 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3021 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3022 /* we remove the notdirty callback only if the code has been
3023 flushed */
3024 if (dirty_flags == 0xff)
2e70f6ef 3025 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3026}
3027
d60efc6b 3028static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3029 NULL, /* never used */
3030 NULL, /* never used */
3031 NULL, /* never used */
3032};
3033
d60efc6b 3034static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3035 notdirty_mem_writeb,
3036 notdirty_mem_writew,
3037 notdirty_mem_writel,
3038};
3039
0f459d16 3040/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3041static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3042{
3043 CPUState *env = cpu_single_env;
06d55cc1
AL
3044 target_ulong pc, cs_base;
3045 TranslationBlock *tb;
0f459d16 3046 target_ulong vaddr;
a1d1bb31 3047 CPUWatchpoint *wp;
06d55cc1 3048 int cpu_flags;
0f459d16 3049
06d55cc1
AL
3050 if (env->watchpoint_hit) {
3051 /* We re-entered the check after replacing the TB. Now raise
3052 * the debug interrupt so that is will trigger after the
3053 * current instruction. */
3054 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3055 return;
3056 }
2e70f6ef 3057 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3058 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3059 if ((vaddr == (wp->vaddr & len_mask) ||
3060 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3061 wp->flags |= BP_WATCHPOINT_HIT;
3062 if (!env->watchpoint_hit) {
3063 env->watchpoint_hit = wp;
3064 tb = tb_find_pc(env->mem_io_pc);
3065 if (!tb) {
3066 cpu_abort(env, "check_watchpoint: could not find TB for "
3067 "pc=%p", (void *)env->mem_io_pc);
3068 }
3069 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3070 tb_phys_invalidate(tb, -1);
3071 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3072 env->exception_index = EXCP_DEBUG;
3073 } else {
3074 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3075 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3076 }
3077 cpu_resume_from_signal(env, NULL);
06d55cc1 3078 }
6e140f28
AL
3079 } else {
3080 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3081 }
3082 }
3083}
3084
6658ffb8
PB
3085/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3086 so these check for a hit then pass through to the normal out-of-line
3087 phys routines. */
c227f099 3088static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3089{
b4051334 3090 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3091 return ldub_phys(addr);
3092}
3093
c227f099 3094static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3095{
b4051334 3096 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3097 return lduw_phys(addr);
3098}
3099
c227f099 3100static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3101{
b4051334 3102 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3103 return ldl_phys(addr);
3104}
3105
c227f099 3106static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3107 uint32_t val)
3108{
b4051334 3109 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3110 stb_phys(addr, val);
3111}
3112
c227f099 3113static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3114 uint32_t val)
3115{
b4051334 3116 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3117 stw_phys(addr, val);
3118}
3119
c227f099 3120static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3121 uint32_t val)
3122{
b4051334 3123 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3124 stl_phys(addr, val);
3125}
3126
d60efc6b 3127static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3128 watch_mem_readb,
3129 watch_mem_readw,
3130 watch_mem_readl,
3131};
3132
d60efc6b 3133static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3134 watch_mem_writeb,
3135 watch_mem_writew,
3136 watch_mem_writel,
3137};
6658ffb8 3138
f6405247
RH
3139static inline uint32_t subpage_readlen (subpage_t *mmio,
3140 target_phys_addr_t addr,
3141 unsigned int len)
db7b5426 3142{
f6405247 3143 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3144#if defined(DEBUG_SUBPAGE)
3145 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3146 mmio, len, addr, idx);
3147#endif
db7b5426 3148
f6405247
RH
3149 addr += mmio->region_offset[idx];
3150 idx = mmio->sub_io_index[idx];
3151 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3152}
3153
c227f099 3154static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3155 uint32_t value, unsigned int len)
db7b5426 3156{
f6405247 3157 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3158#if defined(DEBUG_SUBPAGE)
f6405247
RH
3159 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3160 __func__, mmio, len, addr, idx, value);
db7b5426 3161#endif
f6405247
RH
3162
3163 addr += mmio->region_offset[idx];
3164 idx = mmio->sub_io_index[idx];
3165 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3166}
3167
c227f099 3168static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3169{
db7b5426
BS
3170 return subpage_readlen(opaque, addr, 0);
3171}
3172
c227f099 3173static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3174 uint32_t value)
3175{
db7b5426
BS
3176 subpage_writelen(opaque, addr, value, 0);
3177}
3178
c227f099 3179static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3180{
db7b5426
BS
3181 return subpage_readlen(opaque, addr, 1);
3182}
3183
c227f099 3184static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3185 uint32_t value)
3186{
db7b5426
BS
3187 subpage_writelen(opaque, addr, value, 1);
3188}
3189
c227f099 3190static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3191{
db7b5426
BS
3192 return subpage_readlen(opaque, addr, 2);
3193}
3194
f6405247
RH
3195static void subpage_writel (void *opaque, target_phys_addr_t addr,
3196 uint32_t value)
db7b5426 3197{
db7b5426
BS
3198 subpage_writelen(opaque, addr, value, 2);
3199}
3200
d60efc6b 3201static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3202 &subpage_readb,
3203 &subpage_readw,
3204 &subpage_readl,
3205};
3206
d60efc6b 3207static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3208 &subpage_writeb,
3209 &subpage_writew,
3210 &subpage_writel,
3211};
3212
c227f099
AL
3213static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3214 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3215{
3216 int idx, eidx;
3217
3218 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3219 return -1;
3220 idx = SUBPAGE_IDX(start);
3221 eidx = SUBPAGE_IDX(end);
3222#if defined(DEBUG_SUBPAGE)
0bf9e31a 3223 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3224 mmio, start, end, idx, eidx, memory);
3225#endif
f6405247 3226 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3227 for (; idx <= eidx; idx++) {
f6405247
RH
3228 mmio->sub_io_index[idx] = memory;
3229 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3230 }
3231
3232 return 0;
3233}
3234
f6405247
RH
3235static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3236 ram_addr_t orig_memory,
3237 ram_addr_t region_offset)
db7b5426 3238{
c227f099 3239 subpage_t *mmio;
db7b5426
BS
3240 int subpage_memory;
3241
c227f099 3242 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3243
3244 mmio->base = base;
1eed09cb 3245 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3246#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3247 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3248 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3249#endif
1eec614b 3250 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3251 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3252
3253 return mmio;
3254}
3255
88715657
AL
3256static int get_free_io_mem_idx(void)
3257{
3258 int i;
3259
3260 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3261 if (!io_mem_used[i]) {
3262 io_mem_used[i] = 1;
3263 return i;
3264 }
c6703b47 3265 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3266 return -1;
3267}
3268
33417e70
FB
3269/* mem_read and mem_write are arrays of functions containing the
3270 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3271 2). Functions can be omitted with a NULL function pointer.
3ee89922 3272 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3273 modified. If it is zero, a new io zone is allocated. The return
3274 value can be used with cpu_register_physical_memory(). (-1) is
3275 returned if error. */
1eed09cb 3276static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3277 CPUReadMemoryFunc * const *mem_read,
3278 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3279 void *opaque)
33417e70 3280{
3cab721d
RH
3281 int i;
3282
33417e70 3283 if (io_index <= 0) {
88715657
AL
3284 io_index = get_free_io_mem_idx();
3285 if (io_index == -1)
3286 return io_index;
33417e70 3287 } else {
1eed09cb 3288 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3289 if (io_index >= IO_MEM_NB_ENTRIES)
3290 return -1;
3291 }
b5ff1b31 3292
3cab721d
RH
3293 for (i = 0; i < 3; ++i) {
3294 io_mem_read[io_index][i]
3295 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3296 }
3297 for (i = 0; i < 3; ++i) {
3298 io_mem_write[io_index][i]
3299 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3300 }
a4193c8a 3301 io_mem_opaque[io_index] = opaque;
f6405247
RH
3302
3303 return (io_index << IO_MEM_SHIFT);
33417e70 3304}
61382a50 3305
d60efc6b
BS
3306int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3307 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3308 void *opaque)
3309{
3310 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3311}
3312
88715657
AL
3313void cpu_unregister_io_memory(int io_table_address)
3314{
3315 int i;
3316 int io_index = io_table_address >> IO_MEM_SHIFT;
3317
3318 for (i=0;i < 3; i++) {
3319 io_mem_read[io_index][i] = unassigned_mem_read[i];
3320 io_mem_write[io_index][i] = unassigned_mem_write[i];
3321 }
3322 io_mem_opaque[io_index] = NULL;
3323 io_mem_used[io_index] = 0;
3324}
3325
e9179ce1
AK
3326static void io_mem_init(void)
3327{
3328 int i;
3329
3330 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3331 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3332 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3333 for (i=0; i<5; i++)
3334 io_mem_used[i] = 1;
3335
3336 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3337 watch_mem_write, NULL);
e9179ce1
AK
3338}
3339
e2eef170
PB
3340#endif /* !defined(CONFIG_USER_ONLY) */
3341
13eb76e0
FB
3342/* physical memory access (slow version, mainly for debug) */
3343#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3344int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3345 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3346{
3347 int l, flags;
3348 target_ulong page;
53a5960a 3349 void * p;
13eb76e0
FB
3350
3351 while (len > 0) {
3352 page = addr & TARGET_PAGE_MASK;
3353 l = (page + TARGET_PAGE_SIZE) - addr;
3354 if (l > len)
3355 l = len;
3356 flags = page_get_flags(page);
3357 if (!(flags & PAGE_VALID))
a68fe89c 3358 return -1;
13eb76e0
FB
3359 if (is_write) {
3360 if (!(flags & PAGE_WRITE))
a68fe89c 3361 return -1;
579a97f7 3362 /* XXX: this code should not depend on lock_user */
72fb7daa 3363 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3364 return -1;
72fb7daa
AJ
3365 memcpy(p, buf, l);
3366 unlock_user(p, addr, l);
13eb76e0
FB
3367 } else {
3368 if (!(flags & PAGE_READ))
a68fe89c 3369 return -1;
579a97f7 3370 /* XXX: this code should not depend on lock_user */
72fb7daa 3371 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3372 return -1;
72fb7daa 3373 memcpy(buf, p, l);
5b257578 3374 unlock_user(p, addr, 0);
13eb76e0
FB
3375 }
3376 len -= l;
3377 buf += l;
3378 addr += l;
3379 }
a68fe89c 3380 return 0;
13eb76e0 3381}
8df1cd07 3382
13eb76e0 3383#else
c227f099 3384void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3385 int len, int is_write)
3386{
3387 int l, io_index;
3388 uint8_t *ptr;
3389 uint32_t val;
c227f099 3390 target_phys_addr_t page;
2e12669a 3391 unsigned long pd;
92e873b9 3392 PhysPageDesc *p;
3b46e624 3393
13eb76e0
FB
3394 while (len > 0) {
3395 page = addr & TARGET_PAGE_MASK;
3396 l = (page + TARGET_PAGE_SIZE) - addr;
3397 if (l > len)
3398 l = len;
92e873b9 3399 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3400 if (!p) {
3401 pd = IO_MEM_UNASSIGNED;
3402 } else {
3403 pd = p->phys_offset;
3404 }
3b46e624 3405
13eb76e0 3406 if (is_write) {
3a7d929e 3407 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3408 target_phys_addr_t addr1 = addr;
13eb76e0 3409 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3410 if (p)
6c2934db 3411 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3412 /* XXX: could force cpu_single_env to NULL to avoid
3413 potential bugs */
6c2934db 3414 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3415 /* 32 bit write access */
c27004ec 3416 val = ldl_p(buf);
6c2934db 3417 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3418 l = 4;
6c2934db 3419 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3420 /* 16 bit write access */
c27004ec 3421 val = lduw_p(buf);
6c2934db 3422 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3423 l = 2;
3424 } else {
1c213d19 3425 /* 8 bit write access */
c27004ec 3426 val = ldub_p(buf);
6c2934db 3427 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3428 l = 1;
3429 }
3430 } else {
b448f2f3
FB
3431 unsigned long addr1;
3432 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3433 /* RAM case */
5579c7f3 3434 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3435 memcpy(ptr, buf, l);
3a7d929e
FB
3436 if (!cpu_physical_memory_is_dirty(addr1)) {
3437 /* invalidate code */
3438 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3439 /* set dirty bit */
f7c11b53
YT
3440 cpu_physical_memory_set_dirty_flags(
3441 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3442 }
13eb76e0
FB
3443 }
3444 } else {
5fafdf24 3445 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3446 !(pd & IO_MEM_ROMD)) {
c227f099 3447 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3448 /* I/O case */
3449 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3450 if (p)
6c2934db
AJ
3451 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3452 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3453 /* 32 bit read access */
6c2934db 3454 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3455 stl_p(buf, val);
13eb76e0 3456 l = 4;
6c2934db 3457 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3458 /* 16 bit read access */
6c2934db 3459 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3460 stw_p(buf, val);
13eb76e0
FB
3461 l = 2;
3462 } else {
1c213d19 3463 /* 8 bit read access */
6c2934db 3464 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3465 stb_p(buf, val);
13eb76e0
FB
3466 l = 1;
3467 }
3468 } else {
3469 /* RAM case */
5579c7f3 3470 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3471 (addr & ~TARGET_PAGE_MASK);
3472 memcpy(buf, ptr, l);
3473 }
3474 }
3475 len -= l;
3476 buf += l;
3477 addr += l;
3478 }
3479}
8df1cd07 3480
d0ecd2aa 3481/* used for ROM loading : can write in RAM and ROM */
c227f099 3482void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3483 const uint8_t *buf, int len)
3484{
3485 int l;
3486 uint8_t *ptr;
c227f099 3487 target_phys_addr_t page;
d0ecd2aa
FB
3488 unsigned long pd;
3489 PhysPageDesc *p;
3b46e624 3490
d0ecd2aa
FB
3491 while (len > 0) {
3492 page = addr & TARGET_PAGE_MASK;
3493 l = (page + TARGET_PAGE_SIZE) - addr;
3494 if (l > len)
3495 l = len;
3496 p = phys_page_find(page >> TARGET_PAGE_BITS);
3497 if (!p) {
3498 pd = IO_MEM_UNASSIGNED;
3499 } else {
3500 pd = p->phys_offset;
3501 }
3b46e624 3502
d0ecd2aa 3503 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3504 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3505 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3506 /* do nothing */
3507 } else {
3508 unsigned long addr1;
3509 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3510 /* ROM/RAM case */
5579c7f3 3511 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3512 memcpy(ptr, buf, l);
3513 }
3514 len -= l;
3515 buf += l;
3516 addr += l;
3517 }
3518}
3519
6d16c2f8
AL
3520typedef struct {
3521 void *buffer;
c227f099
AL
3522 target_phys_addr_t addr;
3523 target_phys_addr_t len;
6d16c2f8
AL
3524} BounceBuffer;
3525
3526static BounceBuffer bounce;
3527
ba223c29
AL
3528typedef struct MapClient {
3529 void *opaque;
3530 void (*callback)(void *opaque);
72cf2d4f 3531 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3532} MapClient;
3533
72cf2d4f
BS
3534static QLIST_HEAD(map_client_list, MapClient) map_client_list
3535 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3536
3537void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3538{
3539 MapClient *client = qemu_malloc(sizeof(*client));
3540
3541 client->opaque = opaque;
3542 client->callback = callback;
72cf2d4f 3543 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3544 return client;
3545}
3546
3547void cpu_unregister_map_client(void *_client)
3548{
3549 MapClient *client = (MapClient *)_client;
3550
72cf2d4f 3551 QLIST_REMOVE(client, link);
34d5e948 3552 qemu_free(client);
ba223c29
AL
3553}
3554
3555static void cpu_notify_map_clients(void)
3556{
3557 MapClient *client;
3558
72cf2d4f
BS
3559 while (!QLIST_EMPTY(&map_client_list)) {
3560 client = QLIST_FIRST(&map_client_list);
ba223c29 3561 client->callback(client->opaque);
34d5e948 3562 cpu_unregister_map_client(client);
ba223c29
AL
3563 }
3564}
3565
6d16c2f8
AL
3566/* Map a physical memory region into a host virtual address.
3567 * May map a subset of the requested range, given by and returned in *plen.
3568 * May return NULL if resources needed to perform the mapping are exhausted.
3569 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3570 * Use cpu_register_map_client() to know when retrying the map operation is
3571 * likely to succeed.
6d16c2f8 3572 */
c227f099
AL
3573void *cpu_physical_memory_map(target_phys_addr_t addr,
3574 target_phys_addr_t *plen,
6d16c2f8
AL
3575 int is_write)
3576{
c227f099
AL
3577 target_phys_addr_t len = *plen;
3578 target_phys_addr_t done = 0;
6d16c2f8
AL
3579 int l;
3580 uint8_t *ret = NULL;
3581 uint8_t *ptr;
c227f099 3582 target_phys_addr_t page;
6d16c2f8
AL
3583 unsigned long pd;
3584 PhysPageDesc *p;
3585 unsigned long addr1;
3586
3587 while (len > 0) {
3588 page = addr & TARGET_PAGE_MASK;
3589 l = (page + TARGET_PAGE_SIZE) - addr;
3590 if (l > len)
3591 l = len;
3592 p = phys_page_find(page >> TARGET_PAGE_BITS);
3593 if (!p) {
3594 pd = IO_MEM_UNASSIGNED;
3595 } else {
3596 pd = p->phys_offset;
3597 }
3598
3599 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3600 if (done || bounce.buffer) {
3601 break;
3602 }
3603 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3604 bounce.addr = addr;
3605 bounce.len = l;
3606 if (!is_write) {
3607 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3608 }
3609 ptr = bounce.buffer;
3610 } else {
3611 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3612 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3613 }
3614 if (!done) {
3615 ret = ptr;
3616 } else if (ret + done != ptr) {
3617 break;
3618 }
3619
3620 len -= l;
3621 addr += l;
3622 done += l;
3623 }
3624 *plen = done;
3625 return ret;
3626}
3627
3628/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3629 * Will also mark the memory as dirty if is_write == 1. access_len gives
3630 * the amount of memory that was actually read or written by the caller.
3631 */
c227f099
AL
3632void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3633 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3634{
3635 if (buffer != bounce.buffer) {
3636 if (is_write) {
c227f099 3637 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3638 while (access_len) {
3639 unsigned l;
3640 l = TARGET_PAGE_SIZE;
3641 if (l > access_len)
3642 l = access_len;
3643 if (!cpu_physical_memory_is_dirty(addr1)) {
3644 /* invalidate code */
3645 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3646 /* set dirty bit */
f7c11b53
YT
3647 cpu_physical_memory_set_dirty_flags(
3648 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3649 }
3650 addr1 += l;
3651 access_len -= l;
3652 }
3653 }
3654 return;
3655 }
3656 if (is_write) {
3657 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3658 }
f8a83245 3659 qemu_vfree(bounce.buffer);
6d16c2f8 3660 bounce.buffer = NULL;
ba223c29 3661 cpu_notify_map_clients();
6d16c2f8 3662}
d0ecd2aa 3663
8df1cd07 3664/* warning: addr must be aligned */
c227f099 3665uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3666{
3667 int io_index;
3668 uint8_t *ptr;
3669 uint32_t val;
3670 unsigned long pd;
3671 PhysPageDesc *p;
3672
3673 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3674 if (!p) {
3675 pd = IO_MEM_UNASSIGNED;
3676 } else {
3677 pd = p->phys_offset;
3678 }
3b46e624 3679
5fafdf24 3680 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3681 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3682 /* I/O case */
3683 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3684 if (p)
3685 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3686 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3687 } else {
3688 /* RAM case */
5579c7f3 3689 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3690 (addr & ~TARGET_PAGE_MASK);
3691 val = ldl_p(ptr);
3692 }
3693 return val;
3694}
3695
84b7b8e7 3696/* warning: addr must be aligned */
c227f099 3697uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3698{
3699 int io_index;
3700 uint8_t *ptr;
3701 uint64_t val;
3702 unsigned long pd;
3703 PhysPageDesc *p;
3704
3705 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3706 if (!p) {
3707 pd = IO_MEM_UNASSIGNED;
3708 } else {
3709 pd = p->phys_offset;
3710 }
3b46e624 3711
2a4188a3
FB
3712 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3713 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3714 /* I/O case */
3715 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3716 if (p)
3717 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3718#ifdef TARGET_WORDS_BIGENDIAN
3719 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3720 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3721#else
3722 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3723 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3724#endif
3725 } else {
3726 /* RAM case */
5579c7f3 3727 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3728 (addr & ~TARGET_PAGE_MASK);
3729 val = ldq_p(ptr);
3730 }
3731 return val;
3732}
3733
aab33094 3734/* XXX: optimize */
c227f099 3735uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3736{
3737 uint8_t val;
3738 cpu_physical_memory_read(addr, &val, 1);
3739 return val;
3740}
3741
733f0b02 3742/* warning: addr must be aligned */
c227f099 3743uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 3744{
733f0b02
MT
3745 int io_index;
3746 uint8_t *ptr;
3747 uint64_t val;
3748 unsigned long pd;
3749 PhysPageDesc *p;
3750
3751 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3752 if (!p) {
3753 pd = IO_MEM_UNASSIGNED;
3754 } else {
3755 pd = p->phys_offset;
3756 }
3757
3758 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3759 !(pd & IO_MEM_ROMD)) {
3760 /* I/O case */
3761 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3762 if (p)
3763 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3764 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3765 } else {
3766 /* RAM case */
3767 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3768 (addr & ~TARGET_PAGE_MASK);
3769 val = lduw_p(ptr);
3770 }
3771 return val;
aab33094
FB
3772}
3773
8df1cd07
FB
3774/* warning: addr must be aligned. The ram page is not masked as dirty
3775 and the code inside is not invalidated. It is useful if the dirty
3776 bits are used to track modified PTEs */
c227f099 3777void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3778{
3779 int io_index;
3780 uint8_t *ptr;
3781 unsigned long pd;
3782 PhysPageDesc *p;
3783
3784 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3785 if (!p) {
3786 pd = IO_MEM_UNASSIGNED;
3787 } else {
3788 pd = p->phys_offset;
3789 }
3b46e624 3790
3a7d929e 3791 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3792 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3793 if (p)
3794 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3795 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3796 } else {
74576198 3797 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3798 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3799 stl_p(ptr, val);
74576198
AL
3800
3801 if (unlikely(in_migration)) {
3802 if (!cpu_physical_memory_is_dirty(addr1)) {
3803 /* invalidate code */
3804 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3805 /* set dirty bit */
f7c11b53
YT
3806 cpu_physical_memory_set_dirty_flags(
3807 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3808 }
3809 }
8df1cd07
FB
3810 }
3811}
3812
c227f099 3813void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3814{
3815 int io_index;
3816 uint8_t *ptr;
3817 unsigned long pd;
3818 PhysPageDesc *p;
3819
3820 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3821 if (!p) {
3822 pd = IO_MEM_UNASSIGNED;
3823 } else {
3824 pd = p->phys_offset;
3825 }
3b46e624 3826
bc98a7ef
JM
3827 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3828 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3829 if (p)
3830 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3831#ifdef TARGET_WORDS_BIGENDIAN
3832 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3833 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3834#else
3835 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3836 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3837#endif
3838 } else {
5579c7f3 3839 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3840 (addr & ~TARGET_PAGE_MASK);
3841 stq_p(ptr, val);
3842 }
3843}
3844
8df1cd07 3845/* warning: addr must be aligned */
c227f099 3846void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3847{
3848 int io_index;
3849 uint8_t *ptr;
3850 unsigned long pd;
3851 PhysPageDesc *p;
3852
3853 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3854 if (!p) {
3855 pd = IO_MEM_UNASSIGNED;
3856 } else {
3857 pd = p->phys_offset;
3858 }
3b46e624 3859
3a7d929e 3860 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3861 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3862 if (p)
3863 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3864 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3865 } else {
3866 unsigned long addr1;
3867 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3868 /* RAM case */
5579c7f3 3869 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3870 stl_p(ptr, val);
3a7d929e
FB
3871 if (!cpu_physical_memory_is_dirty(addr1)) {
3872 /* invalidate code */
3873 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3874 /* set dirty bit */
f7c11b53
YT
3875 cpu_physical_memory_set_dirty_flags(addr1,
3876 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3877 }
8df1cd07
FB
3878 }
3879}
3880
aab33094 3881/* XXX: optimize */
c227f099 3882void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3883{
3884 uint8_t v = val;
3885 cpu_physical_memory_write(addr, &v, 1);
3886}
3887
733f0b02 3888/* warning: addr must be aligned */
c227f099 3889void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 3890{
733f0b02
MT
3891 int io_index;
3892 uint8_t *ptr;
3893 unsigned long pd;
3894 PhysPageDesc *p;
3895
3896 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3897 if (!p) {
3898 pd = IO_MEM_UNASSIGNED;
3899 } else {
3900 pd = p->phys_offset;
3901 }
3902
3903 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3904 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3905 if (p)
3906 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3907 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3908 } else {
3909 unsigned long addr1;
3910 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3911 /* RAM case */
3912 ptr = qemu_get_ram_ptr(addr1);
3913 stw_p(ptr, val);
3914 if (!cpu_physical_memory_is_dirty(addr1)) {
3915 /* invalidate code */
3916 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3917 /* set dirty bit */
3918 cpu_physical_memory_set_dirty_flags(addr1,
3919 (0xff & ~CODE_DIRTY_FLAG));
3920 }
3921 }
aab33094
FB
3922}
3923
3924/* XXX: optimize */
c227f099 3925void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3926{
3927 val = tswap64(val);
3928 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3929}
3930
5e2972fd 3931/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3932int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3933 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3934{
3935 int l;
c227f099 3936 target_phys_addr_t phys_addr;
9b3c35e0 3937 target_ulong page;
13eb76e0
FB
3938
3939 while (len > 0) {
3940 page = addr & TARGET_PAGE_MASK;
3941 phys_addr = cpu_get_phys_page_debug(env, page);
3942 /* if no physical page mapped, return an error */
3943 if (phys_addr == -1)
3944 return -1;
3945 l = (page + TARGET_PAGE_SIZE) - addr;
3946 if (l > len)
3947 l = len;
5e2972fd 3948 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3949 if (is_write)
3950 cpu_physical_memory_write_rom(phys_addr, buf, l);
3951 else
5e2972fd 3952 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3953 len -= l;
3954 buf += l;
3955 addr += l;
3956 }
3957 return 0;
3958}
a68fe89c 3959#endif
13eb76e0 3960
2e70f6ef
PB
3961/* in deterministic execution mode, instructions doing device I/Os
3962 must be at the end of the TB */
3963void cpu_io_recompile(CPUState *env, void *retaddr)
3964{
3965 TranslationBlock *tb;
3966 uint32_t n, cflags;
3967 target_ulong pc, cs_base;
3968 uint64_t flags;
3969
3970 tb = tb_find_pc((unsigned long)retaddr);
3971 if (!tb) {
3972 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3973 retaddr);
3974 }
3975 n = env->icount_decr.u16.low + tb->icount;
3976 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3977 /* Calculate how many instructions had been executed before the fault
bf20dc07 3978 occurred. */
2e70f6ef
PB
3979 n = n - env->icount_decr.u16.low;
3980 /* Generate a new TB ending on the I/O insn. */
3981 n++;
3982 /* On MIPS and SH, delay slot instructions can only be restarted if
3983 they were already the first instruction in the TB. If this is not
bf20dc07 3984 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3985 branch. */
3986#if defined(TARGET_MIPS)
3987 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3988 env->active_tc.PC -= 4;
3989 env->icount_decr.u16.low++;
3990 env->hflags &= ~MIPS_HFLAG_BMASK;
3991 }
3992#elif defined(TARGET_SH4)
3993 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3994 && n > 1) {
3995 env->pc -= 2;
3996 env->icount_decr.u16.low++;
3997 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3998 }
3999#endif
4000 /* This should never happen. */
4001 if (n > CF_COUNT_MASK)
4002 cpu_abort(env, "TB too big during recompile");
4003
4004 cflags = n | CF_LAST_IO;
4005 pc = tb->pc;
4006 cs_base = tb->cs_base;
4007 flags = tb->flags;
4008 tb_phys_invalidate(tb, -1);
4009 /* FIXME: In theory this could raise an exception. In practice
4010 we have already translated the block once so it's probably ok. */
4011 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4012 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4013 the first in the TB) then we end up generating a whole new TB and
4014 repeating the fault, which is horribly inefficient.
4015 Better would be to execute just this insn uncached, or generate a
4016 second new TB. */
4017 cpu_resume_from_signal(env, NULL);
4018}
4019
b3755a91
PB
4020#if !defined(CONFIG_USER_ONLY)
4021
e3db7226
FB
4022void dump_exec_info(FILE *f,
4023 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4024{
4025 int i, target_code_size, max_target_code_size;
4026 int direct_jmp_count, direct_jmp2_count, cross_page;
4027 TranslationBlock *tb;
3b46e624 4028
e3db7226
FB
4029 target_code_size = 0;
4030 max_target_code_size = 0;
4031 cross_page = 0;
4032 direct_jmp_count = 0;
4033 direct_jmp2_count = 0;
4034 for(i = 0; i < nb_tbs; i++) {
4035 tb = &tbs[i];
4036 target_code_size += tb->size;
4037 if (tb->size > max_target_code_size)
4038 max_target_code_size = tb->size;
4039 if (tb->page_addr[1] != -1)
4040 cross_page++;
4041 if (tb->tb_next_offset[0] != 0xffff) {
4042 direct_jmp_count++;
4043 if (tb->tb_next_offset[1] != 0xffff) {
4044 direct_jmp2_count++;
4045 }
4046 }
4047 }
4048 /* XXX: avoid using doubles ? */
57fec1fe 4049 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4050 cpu_fprintf(f, "gen code size %ld/%ld\n",
4051 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4052 cpu_fprintf(f, "TB count %d/%d\n",
4053 nb_tbs, code_gen_max_blocks);
5fafdf24 4054 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4055 nb_tbs ? target_code_size / nb_tbs : 0,
4056 max_target_code_size);
5fafdf24 4057 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4058 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4059 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4060 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4061 cross_page,
e3db7226
FB
4062 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4063 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4064 direct_jmp_count,
e3db7226
FB
4065 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4066 direct_jmp2_count,
4067 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4068 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4069 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4070 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4071 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4072 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4073}
4074
61382a50
FB
4075#define MMUSUFFIX _cmmu
4076#define GETPC() NULL
4077#define env cpu_single_env
b769d8fe 4078#define SOFTMMU_CODE_ACCESS
61382a50
FB
4079
4080#define SHIFT 0
4081#include "softmmu_template.h"
4082
4083#define SHIFT 1
4084#include "softmmu_template.h"
4085
4086#define SHIFT 2
4087#include "softmmu_template.h"
4088
4089#define SHIFT 3
4090#include "softmmu_template.h"
4091
4092#undef env
4093
4094#endif