]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Better default guest_base
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
41c1b1c9 154/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
155 while in user mode we want it to be based on virtual addresses. */
156#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
157#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159#else
5cd2c5b6 160# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 161#endif
bedb69ea 162#else
5cd2c5b6 163# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 164#endif
54936004 165
5cd2c5b6
RH
166/* Size of the L2 (and L3, etc) page tables. */
167#define L2_BITS 10
54936004
FB
168#define L2_SIZE (1 << L2_BITS)
169
5cd2c5b6
RH
170/* The bits remaining after N lower levels of page tables. */
171#define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173#define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176/* Size of the L1 page table. Avoid silly small sizes. */
177#if P_L1_BITS_REM < 4
178#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179#else
180#define P_L1_BITS P_L1_BITS_REM
181#endif
182
183#if V_L1_BITS_REM < 4
184#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185#else
186#define V_L1_BITS V_L1_BITS_REM
187#endif
188
189#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
83fb7adf
FB
195unsigned long qemu_real_host_page_size;
196unsigned long qemu_host_page_bits;
197unsigned long qemu_host_page_size;
198unsigned long qemu_host_page_mask;
54936004 199
5cd2c5b6
RH
200/* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202static void *l1_map[V_L1_SIZE];
54936004 203
e2eef170 204#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
205typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209} PhysPageDesc;
210
5cd2c5b6
RH
211/* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213static void *l1_phys_map[P_L1_SIZE];
6d9a1304 214
e2eef170
PB
215static void io_mem_init(void);
216
33417e70 217/* io memory support */
33417e70
FB
218CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 220void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 221static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
222static int io_mem_watch;
223#endif
33417e70 224
34865134 225/* log support */
1e8b27ca
JR
226#ifdef WIN32
227static const char *logfilename = "qemu.log";
228#else
d9b630fd 229static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 230#endif
34865134
FB
231FILE *logfile;
232int loglevel;
e735b91c 233static int log_append = 0;
34865134 234
e3db7226 235/* statistics */
b3755a91 236#if !defined(CONFIG_USER_ONLY)
e3db7226 237static int tlb_flush_count;
b3755a91 238#endif
e3db7226
FB
239static int tb_flush_count;
240static int tb_phys_invalidate_count;
241
7cb69cae
FB
242#ifdef _WIN32
243static void map_exec(void *addr, long size)
244{
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249}
250#else
251static void map_exec(void *addr, long size)
252{
4369415f 253 unsigned long start, end, page_size;
7cb69cae 254
4369415f 255 page_size = getpagesize();
7cb69cae 256 start = (unsigned long)addr;
4369415f 257 start &= ~(page_size - 1);
7cb69cae
FB
258
259 end = (unsigned long)addr + size;
4369415f
FB
260 end += page_size - 1;
261 end &= ~(page_size - 1);
7cb69cae
FB
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265}
266#endif
267
b346ff46 268static void page_init(void)
54936004 269{
83fb7adf 270 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 271 TARGET_PAGE_SIZE */
c2b48b69
AL
272#ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279#else
280 qemu_real_host_page_size = getpagesize();
281#endif
83fb7adf
FB
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 290
2e9a5713 291#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 292 {
f01576f1
JL
293#ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
fd436907 310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
311 } else {
312#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
fd436907 314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
315#endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322#else
50a9569b 323 FILE *f;
50a9569b 324
0776590d 325 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 326
fd436907 327 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 328 if (f) {
5cd2c5b6
RH
329 mmap_lock();
330
50a9569b 331 do {
5cd2c5b6
RH
332 unsigned long startaddr, endaddr;
333 int n;
334
335 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
336
337 if (n == 2 && h2g_valid(startaddr)) {
338 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
339
340 if (h2g_valid(endaddr)) {
341 endaddr = h2g(endaddr);
342 } else {
343 endaddr = ~0ul;
344 }
345 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
346 }
347 } while (!feof(f));
5cd2c5b6 348
50a9569b 349 fclose(f);
5cd2c5b6 350 mmap_unlock();
50a9569b 351 }
f01576f1 352#endif
50a9569b
AZ
353 }
354#endif
54936004
FB
355}
356
41c1b1c9 357static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 358{
41c1b1c9
PB
359 PageDesc *pd;
360 void **lp;
361 int i;
362
5cd2c5b6 363#if defined(CONFIG_USER_ONLY)
2e9a5713 364 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
365# define ALLOC(P, SIZE) \
366 do { \
367 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
368 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
369 } while (0)
370#else
371# define ALLOC(P, SIZE) \
372 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 373#endif
434929bf 374
5cd2c5b6
RH
375 /* Level 1. Always allocated. */
376 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
377
378 /* Level 2..N-1. */
379 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
380 void **p = *lp;
381
382 if (p == NULL) {
383 if (!alloc) {
384 return NULL;
385 }
386 ALLOC(p, sizeof(void *) * L2_SIZE);
387 *lp = p;
17e2377a 388 }
5cd2c5b6
RH
389
390 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
391 }
392
393 pd = *lp;
394 if (pd == NULL) {
395 if (!alloc) {
396 return NULL;
397 }
398 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
399 *lp = pd;
54936004 400 }
5cd2c5b6
RH
401
402#undef ALLOC
5cd2c5b6
RH
403
404 return pd + (index & (L2_SIZE - 1));
54936004
FB
405}
406
41c1b1c9 407static inline PageDesc *page_find(tb_page_addr_t index)
54936004 408{
5cd2c5b6 409 return page_find_alloc(index, 0);
fd6ce8f6
FB
410}
411
6d9a1304 412#if !defined(CONFIG_USER_ONLY)
c227f099 413static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 414{
e3f4e2a4 415 PhysPageDesc *pd;
5cd2c5b6
RH
416 void **lp;
417 int i;
92e873b9 418
5cd2c5b6
RH
419 /* Level 1. Always allocated. */
420 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 421
5cd2c5b6
RH
422 /* Level 2..N-1. */
423 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
424 void **p = *lp;
425 if (p == NULL) {
426 if (!alloc) {
427 return NULL;
428 }
429 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
430 }
431 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 432 }
5cd2c5b6 433
e3f4e2a4 434 pd = *lp;
5cd2c5b6 435 if (pd == NULL) {
e3f4e2a4 436 int i;
5cd2c5b6
RH
437
438 if (!alloc) {
108c49b8 439 return NULL;
5cd2c5b6
RH
440 }
441
442 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
443
67c4d23c 444 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
445 pd[i].phys_offset = IO_MEM_UNASSIGNED;
446 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 447 }
92e873b9 448 }
5cd2c5b6
RH
449
450 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
451}
452
c227f099 453static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 454{
108c49b8 455 return phys_page_find_alloc(index, 0);
92e873b9
FB
456}
457
c227f099
AL
458static void tlb_protect_code(ram_addr_t ram_addr);
459static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 460 target_ulong vaddr);
c8a706fe
PB
461#define mmap_lock() do { } while(0)
462#define mmap_unlock() do { } while(0)
9fa3e853 463#endif
fd6ce8f6 464
4369415f
FB
465#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
466
467#if defined(CONFIG_USER_ONLY)
ccbb4d44 468/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
469 user mode. It will change when a dedicated libc will be used */
470#define USE_STATIC_CODE_GEN_BUFFER
471#endif
472
473#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
474static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
475 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
476#endif
477
8fcd3692 478static void code_gen_alloc(unsigned long tb_size)
26a5f13b 479{
4369415f
FB
480#ifdef USE_STATIC_CODE_GEN_BUFFER
481 code_gen_buffer = static_code_gen_buffer;
482 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484#else
26a5f13b
FB
485 code_gen_buffer_size = tb_size;
486 if (code_gen_buffer_size == 0) {
4369415f
FB
487#if defined(CONFIG_USER_ONLY)
488 /* in user mode, phys_ram_size is not meaningful */
489 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
490#else
ccbb4d44 491 /* XXX: needs adjustments */
94a6b54f 492 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 493#endif
26a5f13b
FB
494 }
495 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
496 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
497 /* The code gen buffer location may have constraints depending on
498 the host cpu and OS */
499#if defined(__linux__)
500 {
501 int flags;
141ac468
BS
502 void *start = NULL;
503
26a5f13b
FB
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505#if defined(__x86_64__)
506 flags |= MAP_32BIT;
507 /* Cannot map more than that */
508 if (code_gen_buffer_size > (800 * 1024 * 1024))
509 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
510#elif defined(__sparc_v9__)
511 // Map the buffer below 2G, so we can use direct calls and branches
512 flags |= MAP_FIXED;
513 start = (void *) 0x60000000UL;
514 if (code_gen_buffer_size > (512 * 1024 * 1024))
515 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 516#elif defined(__arm__)
63d41246 517 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
518 flags |= MAP_FIXED;
519 start = (void *) 0x01000000UL;
520 if (code_gen_buffer_size > 16 * 1024 * 1024)
521 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 522#endif
141ac468
BS
523 code_gen_buffer = mmap(start, code_gen_buffer_size,
524 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
525 flags, -1, 0);
526 if (code_gen_buffer == MAP_FAILED) {
527 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
528 exit(1);
529 }
530 }
a167ba50 531#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
532 {
533 int flags;
534 void *addr = NULL;
535 flags = MAP_PRIVATE | MAP_ANONYMOUS;
536#if defined(__x86_64__)
537 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
538 * 0x40000000 is free */
539 flags |= MAP_FIXED;
540 addr = (void *)0x40000000;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544#endif
545 code_gen_buffer = mmap(addr, code_gen_buffer_size,
546 PROT_WRITE | PROT_READ | PROT_EXEC,
547 flags, -1, 0);
548 if (code_gen_buffer == MAP_FAILED) {
549 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
550 exit(1);
551 }
552 }
26a5f13b
FB
553#else
554 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
555 map_exec(code_gen_buffer, code_gen_buffer_size);
556#endif
4369415f 557#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
558 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
559 code_gen_buffer_max_size = code_gen_buffer_size -
560 code_gen_max_block_size();
561 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
562 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
563}
564
565/* Must be called before using the QEMU cpus. 'tb_size' is the size
566 (in bytes) allocated to the translation buffer. Zero means default
567 size. */
568void cpu_exec_init_all(unsigned long tb_size)
569{
26a5f13b
FB
570 cpu_gen_init();
571 code_gen_alloc(tb_size);
572 code_gen_ptr = code_gen_buffer;
4369415f 573 page_init();
e2eef170 574#if !defined(CONFIG_USER_ONLY)
26a5f13b 575 io_mem_init();
e2eef170 576#endif
26a5f13b
FB
577}
578
9656f324
PB
579#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
580
e59fb374 581static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
582{
583 CPUState *env = opaque;
9656f324 584
3098dba0
AJ
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env->interrupt_request &= ~0x01;
9656f324
PB
588 tlb_flush(env, 1);
589
590 return 0;
591}
e7f4eff7
JQ
592
593static const VMStateDescription vmstate_cpu_common = {
594 .name = "cpu_common",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .minimum_version_id_old = 1,
e7f4eff7
JQ
598 .post_load = cpu_common_post_load,
599 .fields = (VMStateField []) {
600 VMSTATE_UINT32(halted, CPUState),
601 VMSTATE_UINT32(interrupt_request, CPUState),
602 VMSTATE_END_OF_LIST()
603 }
604};
9656f324
PB
605#endif
606
950f1472
GC
607CPUState *qemu_get_cpu(int cpu)
608{
609 CPUState *env = first_cpu;
610
611 while (env) {
612 if (env->cpu_index == cpu)
613 break;
614 env = env->next_cpu;
615 }
616
617 return env;
618}
619
6a00d601 620void cpu_exec_init(CPUState *env)
fd6ce8f6 621{
6a00d601
FB
622 CPUState **penv;
623 int cpu_index;
624
c2764719
PB
625#if defined(CONFIG_USER_ONLY)
626 cpu_list_lock();
627#endif
6a00d601
FB
628 env->next_cpu = NULL;
629 penv = &first_cpu;
630 cpu_index = 0;
631 while (*penv != NULL) {
1e9fa730 632 penv = &(*penv)->next_cpu;
6a00d601
FB
633 cpu_index++;
634 }
635 env->cpu_index = cpu_index;
268a362c 636 env->numa_node = 0;
72cf2d4f
BS
637 QTAILQ_INIT(&env->breakpoints);
638 QTAILQ_INIT(&env->watchpoints);
6a00d601 639 *penv = env;
c2764719
PB
640#if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642#endif
b3c7724c 643#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 644 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
645 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, env);
647#endif
fd6ce8f6
FB
648}
649
9fa3e853
FB
650static inline void invalidate_page_bitmap(PageDesc *p)
651{
652 if (p->code_bitmap) {
59817ccb 653 qemu_free(p->code_bitmap);
9fa3e853
FB
654 p->code_bitmap = NULL;
655 }
656 p->code_write_count = 0;
657}
658
5cd2c5b6
RH
659/* Set to NULL all the 'first_tb' fields in all PageDescs. */
660
661static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 662{
5cd2c5b6 663 int i;
fd6ce8f6 664
5cd2c5b6
RH
665 if (*lp == NULL) {
666 return;
667 }
668 if (level == 0) {
669 PageDesc *pd = *lp;
7296abac 670 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
671 pd[i].first_tb = NULL;
672 invalidate_page_bitmap(pd + i);
fd6ce8f6 673 }
5cd2c5b6
RH
674 } else {
675 void **pp = *lp;
7296abac 676 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
677 page_flush_tb_1 (level - 1, pp + i);
678 }
679 }
680}
681
682static void page_flush_tb(void)
683{
684 int i;
685 for (i = 0; i < V_L1_SIZE; i++) {
686 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
687 }
688}
689
690/* flush all the translation blocks */
d4e8164f 691/* XXX: tb_flush is currently not thread safe */
6a00d601 692void tb_flush(CPUState *env1)
fd6ce8f6 693{
6a00d601 694 CPUState *env;
0124311e 695#if defined(DEBUG_FLUSH)
ab3d1727
BS
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr - code_gen_buffer),
698 nb_tbs, nb_tbs > 0 ?
699 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 700#endif
26a5f13b 701 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
703
fd6ce8f6 704 nb_tbs = 0;
3b46e624 705
6a00d601
FB
706 for(env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
708 }
9fa3e853 709
8a8a608f 710 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 711 page_flush_tb();
9fa3e853 712
fd6ce8f6 713 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
e3db7226 716 tb_flush_count++;
fd6ce8f6
FB
717}
718
719#ifdef DEBUG_TB_CHECK
720
bc98a7ef 721static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
722{
723 TranslationBlock *tb;
724 int i;
725 address &= TARGET_PAGE_MASK;
99773bd4
PB
726 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
727 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
728 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
729 address >= tb->pc + tb->size)) {
0bf9e31a
BS
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
99773bd4 732 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
733 }
734 }
735 }
736}
737
738/* verify that all the pages have correct rights for code */
739static void tb_page_check(void)
740{
741 TranslationBlock *tb;
742 int i, flags1, flags2;
3b46e624 743
99773bd4
PB
744 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
745 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
746 flags1 = page_get_flags(tb->pc);
747 flags2 = page_get_flags(tb->pc + tb->size - 1);
748 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 750 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
751 }
752 }
753 }
754}
755
756#endif
757
758/* invalidate one TB */
759static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
760 int next_offset)
761{
762 TranslationBlock *tb1;
763 for(;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
767 break;
768 }
769 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
770 }
771}
772
9fa3e853
FB
773static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
774{
775 TranslationBlock *tb1;
776 unsigned int n1;
777
778 for(;;) {
779 tb1 = *ptb;
780 n1 = (long)tb1 & 3;
781 tb1 = (TranslationBlock *)((long)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
785 }
786 ptb = &tb1->page_next[n1];
787 }
788}
789
d4e8164f
FB
790static inline void tb_jmp_remove(TranslationBlock *tb, int n)
791{
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
794
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for(;;) {
800 tb1 = *ptb;
801 n1 = (long)tb1 & 3;
802 tb1 = (TranslationBlock *)((long)tb1 & ~3);
803 if (n1 == n && tb1 == tb)
804 break;
805 if (n1 == 2) {
806 ptb = &tb1->jmp_first;
807 } else {
808 ptb = &tb1->jmp_next[n1];
809 }
810 }
811 /* now we can suppress tb(n) from the list */
812 *ptb = tb->jmp_next[n];
813
814 tb->jmp_next[n] = NULL;
815 }
816}
817
818/* reset the jump entry 'n' of a TB so that it is not chained to
819 another TB */
820static inline void tb_reset_jump(TranslationBlock *tb, int n)
821{
822 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
823}
824
41c1b1c9 825void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 826{
6a00d601 827 CPUState *env;
8a40a180 828 PageDesc *p;
d4e8164f 829 unsigned int h, n1;
41c1b1c9 830 tb_page_addr_t phys_pc;
8a40a180 831 TranslationBlock *tb1, *tb2;
3b46e624 832
8a40a180
FB
833 /* remove the TB from the hash list */
834 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
835 h = tb_phys_hash_func(phys_pc);
5fafdf24 836 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
837 offsetof(TranslationBlock, phys_hash_next));
838
839 /* remove the TB from the page list */
840 if (tb->page_addr[0] != page_addr) {
841 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
842 tb_page_remove(&p->first_tb, tb);
843 invalidate_page_bitmap(p);
844 }
845 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
846 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
847 tb_page_remove(&p->first_tb, tb);
848 invalidate_page_bitmap(p);
849 }
850
36bdbe54 851 tb_invalidated_flag = 1;
59817ccb 852
fd6ce8f6 853 /* remove the TB from the hash list */
8a40a180 854 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
856 if (env->tb_jmp_cache[h] == tb)
857 env->tb_jmp_cache[h] = NULL;
858 }
d4e8164f
FB
859
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb, 0);
862 tb_jmp_remove(tb, 1);
863
864 /* suppress any remaining jumps to this TB */
865 tb1 = tb->jmp_first;
866 for(;;) {
867 n1 = (long)tb1 & 3;
868 if (n1 == 2)
869 break;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 tb2 = tb1->jmp_next[n1];
872 tb_reset_jump(tb1, n1);
873 tb1->jmp_next[n1] = NULL;
874 tb1 = tb2;
875 }
876 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 877
e3db7226 878 tb_phys_invalidate_count++;
9fa3e853
FB
879}
880
881static inline void set_bits(uint8_t *tab, int start, int len)
882{
883 int end, mask, end1;
884
885 end = start + len;
886 tab += start >> 3;
887 mask = 0xff << (start & 7);
888 if ((start & ~7) == (end & ~7)) {
889 if (start < end) {
890 mask &= ~(0xff << (end & 7));
891 *tab |= mask;
892 }
893 } else {
894 *tab++ |= mask;
895 start = (start + 8) & ~7;
896 end1 = end & ~7;
897 while (start < end1) {
898 *tab++ = 0xff;
899 start += 8;
900 }
901 if (start < end) {
902 mask = ~(0xff << (end & 7));
903 *tab |= mask;
904 }
905 }
906}
907
908static void build_page_bitmap(PageDesc *p)
909{
910 int n, tb_start, tb_end;
911 TranslationBlock *tb;
3b46e624 912
b2a7081a 913 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
914
915 tb = p->first_tb;
916 while (tb != NULL) {
917 n = (long)tb & 3;
918 tb = (TranslationBlock *)((long)tb & ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->pc & ~TARGET_PAGE_MASK;
924 tb_end = tb_start + tb->size;
925 if (tb_end > TARGET_PAGE_SIZE)
926 tb_end = TARGET_PAGE_SIZE;
927 } else {
928 tb_start = 0;
929 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
930 }
931 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
932 tb = tb->page_next[n];
933 }
934}
935
2e70f6ef
PB
936TranslationBlock *tb_gen_code(CPUState *env,
937 target_ulong pc, target_ulong cs_base,
938 int flags, int cflags)
d720b93d
FB
939{
940 TranslationBlock *tb;
941 uint8_t *tc_ptr;
41c1b1c9
PB
942 tb_page_addr_t phys_pc, phys_page2;
943 target_ulong virt_page2;
d720b93d
FB
944 int code_gen_size;
945
41c1b1c9 946 phys_pc = get_page_addr_code(env, pc);
c27004ec 947 tb = tb_alloc(pc);
d720b93d
FB
948 if (!tb) {
949 /* flush must be done */
950 tb_flush(env);
951 /* cannot fail at this point */
c27004ec 952 tb = tb_alloc(pc);
2e70f6ef
PB
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag = 1;
d720b93d
FB
955 }
956 tc_ptr = code_gen_ptr;
957 tb->tc_ptr = tc_ptr;
958 tb->cs_base = cs_base;
959 tb->flags = flags;
960 tb->cflags = cflags;
d07bde88 961 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 962 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 963
d720b93d 964 /* check next page if needed */
c27004ec 965 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 966 phys_page2 = -1;
c27004ec 967 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 968 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 969 }
41c1b1c9 970 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 971 return tb;
d720b93d 972}
3b46e624 973
9fa3e853
FB
974/* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
41c1b1c9 979void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
980 int is_cpu_write_access)
981{
6b917547 982 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 983 CPUState *env = cpu_single_env;
41c1b1c9 984 tb_page_addr_t tb_start, tb_end;
6b917547
AL
985 PageDesc *p;
986 int n;
987#ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found = is_cpu_write_access;
989 TranslationBlock *current_tb = NULL;
990 int current_tb_modified = 0;
991 target_ulong current_pc = 0;
992 target_ulong current_cs_base = 0;
993 int current_flags = 0;
994#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
995
996 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 997 if (!p)
9fa3e853 998 return;
5fafdf24 999 if (!p->code_bitmap &&
d720b93d
FB
1000 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1001 is_cpu_write_access) {
9fa3e853
FB
1002 /* build code bitmap */
1003 build_page_bitmap(p);
1004 }
1005
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (long)tb & 3;
1011 tb = (TranslationBlock *)((long)tb & ~3);
1012 tb_next = tb->page_next[n];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1014 if (n == 0) {
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1018 tb_end = tb_start + tb->size;
1019 } else {
1020 tb_start = tb->page_addr[1];
1021 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1022 }
1023 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1024#ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found) {
1026 current_tb_not_found = 0;
1027 current_tb = NULL;
2e70f6ef 1028 if (env->mem_io_pc) {
d720b93d 1029 /* now we have a real cpu fault */
2e70f6ef 1030 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1031 }
1032 }
1033 if (current_tb == tb &&
2e70f6ef 1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
3b46e624 1040
d720b93d 1041 current_tb_modified = 1;
5fafdf24 1042 cpu_restore_state(current_tb, env,
2e70f6ef 1043 env->mem_io_pc, NULL);
6b917547
AL
1044 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1045 &current_flags);
d720b93d
FB
1046 }
1047#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1050 saved_tb = NULL;
1051 if (env) {
1052 saved_tb = env->current_tb;
1053 env->current_tb = NULL;
1054 }
9fa3e853 1055 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1056 if (env) {
1057 env->current_tb = saved_tb;
1058 if (env->interrupt_request && env->current_tb)
1059 cpu_interrupt(env, env->interrupt_request);
1060 }
9fa3e853
FB
1061 }
1062 tb = tb_next;
1063 }
1064#if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1066 if (!p->first_tb) {
1067 invalidate_page_bitmap(p);
d720b93d 1068 if (is_cpu_write_access) {
2e70f6ef 1069 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1070 }
1071 }
1072#endif
1073#ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1077 itself */
ea1c1802 1078 env->current_tb = NULL;
2e70f6ef 1079 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1080 cpu_resume_from_signal(env, NULL);
9fa3e853 1081 }
fd6ce8f6 1082#endif
9fa3e853 1083}
fd6ce8f6 1084
9fa3e853 1085/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1086static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1087{
1088 PageDesc *p;
1089 int offset, b;
59817ccb 1090#if 0
a4193c8a 1091 if (1) {
93fcfe39
AL
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env->mem_io_vaddr, len,
1094 cpu_single_env->eip,
1095 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1096 }
1097#endif
9fa3e853 1098 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1099 if (!p)
9fa3e853
FB
1100 return;
1101 if (p->code_bitmap) {
1102 offset = start & ~TARGET_PAGE_MASK;
1103 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1104 if (b & ((1 << len) - 1))
1105 goto do_invalidate;
1106 } else {
1107 do_invalidate:
d720b93d 1108 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1109 }
1110}
1111
9fa3e853 1112#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1113static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1114 unsigned long pc, void *puc)
9fa3e853 1115{
6b917547 1116 TranslationBlock *tb;
9fa3e853 1117 PageDesc *p;
6b917547 1118 int n;
d720b93d 1119#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1120 TranslationBlock *current_tb = NULL;
d720b93d 1121 CPUState *env = cpu_single_env;
6b917547
AL
1122 int current_tb_modified = 0;
1123 target_ulong current_pc = 0;
1124 target_ulong current_cs_base = 0;
1125 int current_flags = 0;
d720b93d 1126#endif
9fa3e853
FB
1127
1128 addr &= TARGET_PAGE_MASK;
1129 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1130 if (!p)
9fa3e853
FB
1131 return;
1132 tb = p->first_tb;
d720b93d
FB
1133#ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb && pc != 0) {
1135 current_tb = tb_find_pc(pc);
1136 }
1137#endif
9fa3e853
FB
1138 while (tb != NULL) {
1139 n = (long)tb & 3;
1140 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1141#ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb == tb &&
2e70f6ef 1143 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
3b46e624 1149
d720b93d
FB
1150 current_tb_modified = 1;
1151 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1152 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1153 &current_flags);
d720b93d
FB
1154 }
1155#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1156 tb_phys_invalidate(tb, addr);
1157 tb = tb->page_next[n];
1158 }
fd6ce8f6 1159 p->first_tb = NULL;
d720b93d
FB
1160#ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
ea1c1802 1165 env->current_tb = NULL;
2e70f6ef 1166 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1167 cpu_resume_from_signal(env, puc);
1168 }
1169#endif
fd6ce8f6 1170}
9fa3e853 1171#endif
fd6ce8f6
FB
1172
1173/* add the tb in the target page and protect it if necessary */
5fafdf24 1174static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1175 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1176{
1177 PageDesc *p;
9fa3e853
FB
1178 TranslationBlock *last_first_tb;
1179
1180 tb->page_addr[n] = page_addr;
5cd2c5b6 1181 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1182 tb->page_next[n] = p->first_tb;
1183 last_first_tb = p->first_tb;
1184 p->first_tb = (TranslationBlock *)((long)tb | n);
1185 invalidate_page_bitmap(p);
fd6ce8f6 1186
107db443 1187#if defined(TARGET_HAS_SMC) || 1
d720b93d 1188
9fa3e853 1189#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1190 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1191 target_ulong addr;
1192 PageDesc *p2;
9fa3e853
FB
1193 int prot;
1194
fd6ce8f6
FB
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
53a5960a 1197 page_addr &= qemu_host_page_mask;
fd6ce8f6 1198 prot = 0;
53a5960a
PB
1199 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1200 addr += TARGET_PAGE_SIZE) {
1201
1202 p2 = page_find (addr >> TARGET_PAGE_BITS);
1203 if (!p2)
1204 continue;
1205 prot |= p2->flags;
1206 p2->flags &= ~PAGE_WRITE;
53a5960a 1207 }
5fafdf24 1208 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1209 (prot & PAGE_BITS) & ~PAGE_WRITE);
1210#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1211 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1212 page_addr);
fd6ce8f6 1213#endif
fd6ce8f6 1214 }
9fa3e853
FB
1215#else
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb) {
6a00d601 1220 tlb_protect_code(page_addr);
9fa3e853
FB
1221 }
1222#endif
d720b93d
FB
1223
1224#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1225}
1226
1227/* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
c27004ec 1229TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1230{
1231 TranslationBlock *tb;
fd6ce8f6 1232
26a5f13b
FB
1233 if (nb_tbs >= code_gen_max_blocks ||
1234 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1235 return NULL;
fd6ce8f6
FB
1236 tb = &tbs[nb_tbs++];
1237 tb->pc = pc;
b448f2f3 1238 tb->cflags = 0;
d4e8164f
FB
1239 return tb;
1240}
1241
2e70f6ef
PB
1242void tb_free(TranslationBlock *tb)
1243{
bf20dc07 1244 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1248 code_gen_ptr = tb->tc_ptr;
1249 nb_tbs--;
1250 }
1251}
1252
9fa3e853
FB
1253/* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1255void tb_link_page(TranslationBlock *tb,
1256 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1257{
9fa3e853
FB
1258 unsigned int h;
1259 TranslationBlock **ptb;
1260
c8a706fe
PB
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1263 mmap_lock();
9fa3e853
FB
1264 /* add in the physical hash table */
1265 h = tb_phys_hash_func(phys_pc);
1266 ptb = &tb_phys_hash[h];
1267 tb->phys_hash_next = *ptb;
1268 *ptb = tb;
fd6ce8f6
FB
1269
1270 /* add in the page list */
9fa3e853
FB
1271 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1272 if (phys_page2 != -1)
1273 tb_alloc_page(tb, 1, phys_page2);
1274 else
1275 tb->page_addr[1] = -1;
9fa3e853 1276
d4e8164f
FB
1277 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1278 tb->jmp_next[0] = NULL;
1279 tb->jmp_next[1] = NULL;
1280
1281 /* init original jump addresses */
1282 if (tb->tb_next_offset[0] != 0xffff)
1283 tb_reset_jump(tb, 0);
1284 if (tb->tb_next_offset[1] != 0xffff)
1285 tb_reset_jump(tb, 1);
8a40a180
FB
1286
1287#ifdef DEBUG_TB_CHECK
1288 tb_page_check();
1289#endif
c8a706fe 1290 mmap_unlock();
fd6ce8f6
FB
1291}
1292
9fa3e853
FB
1293/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1296{
9fa3e853
FB
1297 int m_min, m_max, m;
1298 unsigned long v;
1299 TranslationBlock *tb;
a513fe19
FB
1300
1301 if (nb_tbs <= 0)
1302 return NULL;
1303 if (tc_ptr < (unsigned long)code_gen_buffer ||
1304 tc_ptr >= (unsigned long)code_gen_ptr)
1305 return NULL;
1306 /* binary search (cf Knuth) */
1307 m_min = 0;
1308 m_max = nb_tbs - 1;
1309 while (m_min <= m_max) {
1310 m = (m_min + m_max) >> 1;
1311 tb = &tbs[m];
1312 v = (unsigned long)tb->tc_ptr;
1313 if (v == tc_ptr)
1314 return tb;
1315 else if (tc_ptr < v) {
1316 m_max = m - 1;
1317 } else {
1318 m_min = m + 1;
1319 }
5fafdf24 1320 }
a513fe19
FB
1321 return &tbs[m_max];
1322}
7501267e 1323
ea041c0e
FB
1324static void tb_reset_jump_recursive(TranslationBlock *tb);
1325
1326static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1327{
1328 TranslationBlock *tb1, *tb_next, **ptb;
1329 unsigned int n1;
1330
1331 tb1 = tb->jmp_next[n];
1332 if (tb1 != NULL) {
1333 /* find head of list */
1334 for(;;) {
1335 n1 = (long)tb1 & 3;
1336 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1337 if (n1 == 2)
1338 break;
1339 tb1 = tb1->jmp_next[n1];
1340 }
1341 /* we are now sure now that tb jumps to tb1 */
1342 tb_next = tb1;
1343
1344 /* remove tb from the jmp_first list */
1345 ptb = &tb_next->jmp_first;
1346 for(;;) {
1347 tb1 = *ptb;
1348 n1 = (long)tb1 & 3;
1349 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1350 if (n1 == n && tb1 == tb)
1351 break;
1352 ptb = &tb1->jmp_next[n1];
1353 }
1354 *ptb = tb->jmp_next[n];
1355 tb->jmp_next[n] = NULL;
3b46e624 1356
ea041c0e
FB
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb, n);
1359
0124311e 1360 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1361 tb_reset_jump_recursive(tb_next);
1362 }
1363}
1364
1365static void tb_reset_jump_recursive(TranslationBlock *tb)
1366{
1367 tb_reset_jump_recursive2(tb, 0);
1368 tb_reset_jump_recursive2(tb, 1);
1369}
1370
1fddef4b 1371#if defined(TARGET_HAS_ICE)
94df27fd
PB
1372#if defined(CONFIG_USER_ONLY)
1373static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1374{
1375 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1376}
1377#else
d720b93d
FB
1378static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1379{
c227f099 1380 target_phys_addr_t addr;
9b3c35e0 1381 target_ulong pd;
c227f099 1382 ram_addr_t ram_addr;
c2f07f81 1383 PhysPageDesc *p;
d720b93d 1384
c2f07f81
PB
1385 addr = cpu_get_phys_page_debug(env, pc);
1386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1387 if (!p) {
1388 pd = IO_MEM_UNASSIGNED;
1389 } else {
1390 pd = p->phys_offset;
1391 }
1392 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1393 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1394}
c27004ec 1395#endif
94df27fd 1396#endif /* TARGET_HAS_ICE */
d720b93d 1397
c527ee8f
PB
1398#if defined(CONFIG_USER_ONLY)
1399void cpu_watchpoint_remove_all(CPUState *env, int mask)
1400
1401{
1402}
1403
1404int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1405 int flags, CPUWatchpoint **watchpoint)
1406{
1407 return -ENOSYS;
1408}
1409#else
6658ffb8 1410/* Add a watchpoint. */
a1d1bb31
AL
1411int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1413{
b4051334 1414 target_ulong len_mask = ~(len - 1);
c0ce998e 1415 CPUWatchpoint *wp;
6658ffb8 1416
b4051334
AL
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1419 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1421 return -EINVAL;
1422 }
a1d1bb31 1423 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1424
1425 wp->vaddr = addr;
b4051334 1426 wp->len_mask = len_mask;
a1d1bb31
AL
1427 wp->flags = flags;
1428
2dc9f411 1429 /* keep all GDB-injected watchpoints in front */
c0ce998e 1430 if (flags & BP_GDB)
72cf2d4f 1431 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1432 else
72cf2d4f 1433 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1434
6658ffb8 1435 tlb_flush_page(env, addr);
a1d1bb31
AL
1436
1437 if (watchpoint)
1438 *watchpoint = wp;
1439 return 0;
6658ffb8
PB
1440}
1441
a1d1bb31
AL
1442/* Remove a specific watchpoint. */
1443int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1444 int flags)
6658ffb8 1445{
b4051334 1446 target_ulong len_mask = ~(len - 1);
a1d1bb31 1447 CPUWatchpoint *wp;
6658ffb8 1448
72cf2d4f 1449 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1450 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1451 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1452 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1453 return 0;
1454 }
1455 }
a1d1bb31 1456 return -ENOENT;
6658ffb8
PB
1457}
1458
a1d1bb31
AL
1459/* Remove a specific watchpoint by reference. */
1460void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1461{
72cf2d4f 1462 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1463
a1d1bb31
AL
1464 tlb_flush_page(env, watchpoint->vaddr);
1465
1466 qemu_free(watchpoint);
1467}
1468
1469/* Remove all matching watchpoints. */
1470void cpu_watchpoint_remove_all(CPUState *env, int mask)
1471{
c0ce998e 1472 CPUWatchpoint *wp, *next;
a1d1bb31 1473
72cf2d4f 1474 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1475 if (wp->flags & mask)
1476 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1477 }
7d03f82f 1478}
c527ee8f 1479#endif
7d03f82f 1480
a1d1bb31
AL
1481/* Add a breakpoint. */
1482int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1483 CPUBreakpoint **breakpoint)
4c3a88a2 1484{
1fddef4b 1485#if defined(TARGET_HAS_ICE)
c0ce998e 1486 CPUBreakpoint *bp;
3b46e624 1487
a1d1bb31 1488 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1489
a1d1bb31
AL
1490 bp->pc = pc;
1491 bp->flags = flags;
1492
2dc9f411 1493 /* keep all GDB-injected breakpoints in front */
c0ce998e 1494 if (flags & BP_GDB)
72cf2d4f 1495 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1496 else
72cf2d4f 1497 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1498
d720b93d 1499 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1500
1501 if (breakpoint)
1502 *breakpoint = bp;
4c3a88a2
FB
1503 return 0;
1504#else
a1d1bb31 1505 return -ENOSYS;
4c3a88a2
FB
1506#endif
1507}
1508
a1d1bb31
AL
1509/* Remove a specific breakpoint. */
1510int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1511{
7d03f82f 1512#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1513 CPUBreakpoint *bp;
1514
72cf2d4f 1515 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1516 if (bp->pc == pc && bp->flags == flags) {
1517 cpu_breakpoint_remove_by_ref(env, bp);
1518 return 0;
1519 }
7d03f82f 1520 }
a1d1bb31
AL
1521 return -ENOENT;
1522#else
1523 return -ENOSYS;
7d03f82f
EI
1524#endif
1525}
1526
a1d1bb31
AL
1527/* Remove a specific breakpoint by reference. */
1528void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1529{
1fddef4b 1530#if defined(TARGET_HAS_ICE)
72cf2d4f 1531 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1532
a1d1bb31
AL
1533 breakpoint_invalidate(env, breakpoint->pc);
1534
1535 qemu_free(breakpoint);
1536#endif
1537}
1538
1539/* Remove all matching breakpoints. */
1540void cpu_breakpoint_remove_all(CPUState *env, int mask)
1541{
1542#if defined(TARGET_HAS_ICE)
c0ce998e 1543 CPUBreakpoint *bp, *next;
a1d1bb31 1544
72cf2d4f 1545 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1546 if (bp->flags & mask)
1547 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1548 }
4c3a88a2
FB
1549#endif
1550}
1551
c33a346e
FB
1552/* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554void cpu_single_step(CPUState *env, int enabled)
1555{
1fddef4b 1556#if defined(TARGET_HAS_ICE)
c33a346e
FB
1557 if (env->singlestep_enabled != enabled) {
1558 env->singlestep_enabled = enabled;
e22a25c9
AL
1559 if (kvm_enabled())
1560 kvm_update_guest_debug(env, 0);
1561 else {
ccbb4d44 1562 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1563 /* XXX: only flush what is necessary */
1564 tb_flush(env);
1565 }
c33a346e
FB
1566 }
1567#endif
1568}
1569
34865134
FB
1570/* enable or disable low levels log */
1571void cpu_set_log(int log_flags)
1572{
1573 loglevel = log_flags;
1574 if (loglevel && !logfile) {
11fcfab4 1575 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1576 if (!logfile) {
1577 perror(logfilename);
1578 _exit(1);
1579 }
9fa3e853
FB
1580#if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1582 {
b55266b5 1583 static char logfile_buf[4096];
9fa3e853
FB
1584 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1585 }
bf65f53f
FN
1586#elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1588 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1589#endif
e735b91c
PB
1590 log_append = 1;
1591 }
1592 if (!loglevel && logfile) {
1593 fclose(logfile);
1594 logfile = NULL;
34865134
FB
1595 }
1596}
1597
1598void cpu_set_log_filename(const char *filename)
1599{
1600 logfilename = strdup(filename);
e735b91c
PB
1601 if (logfile) {
1602 fclose(logfile);
1603 logfile = NULL;
1604 }
1605 cpu_set_log(loglevel);
34865134 1606}
c33a346e 1607
3098dba0 1608static void cpu_unlink_tb(CPUState *env)
ea041c0e 1609{
3098dba0
AJ
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1614 TranslationBlock *tb;
c227f099 1615 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1616
cab1b4bd 1617 spin_lock(&interrupt_lock);
3098dba0
AJ
1618 tb = env->current_tb;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
f76cfe56 1621 if (tb) {
3098dba0
AJ
1622 env->current_tb = NULL;
1623 tb_reset_jump_recursive(tb);
be214e6c 1624 }
cab1b4bd 1625 spin_unlock(&interrupt_lock);
3098dba0
AJ
1626}
1627
1628/* mask must never be zero, except for A20 change call */
1629void cpu_interrupt(CPUState *env, int mask)
1630{
1631 int old_mask;
be214e6c 1632
2e70f6ef 1633 old_mask = env->interrupt_request;
68a79315 1634 env->interrupt_request |= mask;
3098dba0 1635
8edac960
AL
1636#ifndef CONFIG_USER_ONLY
1637 /*
1638 * If called from iothread context, wake the target cpu in
1639 * case its halted.
1640 */
1641 if (!qemu_cpu_self(env)) {
1642 qemu_cpu_kick(env);
1643 return;
1644 }
1645#endif
1646
2e70f6ef 1647 if (use_icount) {
266910c4 1648 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1649#ifndef CONFIG_USER_ONLY
2e70f6ef 1650 if (!can_do_io(env)
be214e6c 1651 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1652 cpu_abort(env, "Raised interrupt while not in I/O function");
1653 }
1654#endif
1655 } else {
3098dba0 1656 cpu_unlink_tb(env);
ea041c0e
FB
1657 }
1658}
1659
b54ad049
FB
1660void cpu_reset_interrupt(CPUState *env, int mask)
1661{
1662 env->interrupt_request &= ~mask;
1663}
1664
3098dba0
AJ
1665void cpu_exit(CPUState *env)
1666{
1667 env->exit_request = 1;
1668 cpu_unlink_tb(env);
1669}
1670
c7cd6a37 1671const CPULogItem cpu_log_items[] = {
5fafdf24 1672 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM, "in_asm",
1675 "show target assembly code for each compiled TB" },
5fafdf24 1676 { CPU_LOG_TB_OP, "op",
57fec1fe 1677 "show micro ops for each compiled TB" },
f193c797 1678 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1679 "show micro ops "
1680#ifdef TARGET_I386
1681 "before eflags optimization and "
f193c797 1682#endif
e01a1157 1683 "after liveness analysis" },
f193c797
FB
1684 { CPU_LOG_INT, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC, "exec",
1687 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1688 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1689 "show CPU state before block translation" },
f193c797
FB
1690#ifdef TARGET_I386
1691 { CPU_LOG_PCALL, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1693 { CPU_LOG_RESET, "cpu_reset",
1694 "show CPU state before CPU resets" },
f193c797 1695#endif
8e3a9fd2 1696#ifdef DEBUG_IOPORT
fd872598
FB
1697 { CPU_LOG_IOPORT, "ioport",
1698 "show all i/o ports accesses" },
8e3a9fd2 1699#endif
f193c797
FB
1700 { 0, NULL, NULL },
1701};
1702
f6f3fbca
MT
1703#ifndef CONFIG_USER_ONLY
1704static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list);
1706
1707static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1708 ram_addr_t size,
1709 ram_addr_t phys_offset)
1710{
1711 CPUPhysMemoryClient *client;
1712 QLIST_FOREACH(client, &memory_client_list, list) {
1713 client->set_memory(client, start_addr, size, phys_offset);
1714 }
1715}
1716
1717static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1718 target_phys_addr_t end)
1719{
1720 CPUPhysMemoryClient *client;
1721 QLIST_FOREACH(client, &memory_client_list, list) {
1722 int r = client->sync_dirty_bitmap(client, start, end);
1723 if (r < 0)
1724 return r;
1725 }
1726 return 0;
1727}
1728
1729static int cpu_notify_migration_log(int enable)
1730{
1731 CPUPhysMemoryClient *client;
1732 QLIST_FOREACH(client, &memory_client_list, list) {
1733 int r = client->migration_log(client, enable);
1734 if (r < 0)
1735 return r;
1736 }
1737 return 0;
1738}
1739
5cd2c5b6
RH
1740static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1741 int level, void **lp)
f6f3fbca 1742{
5cd2c5b6 1743 int i;
f6f3fbca 1744
5cd2c5b6
RH
1745 if (*lp == NULL) {
1746 return;
1747 }
1748 if (level == 0) {
1749 PhysPageDesc *pd = *lp;
7296abac 1750 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1751 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1752 client->set_memory(client, pd[i].region_offset,
1753 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1754 }
5cd2c5b6
RH
1755 }
1756 } else {
1757 void **pp = *lp;
7296abac 1758 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1759 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1760 }
1761 }
1762}
1763
1764static void phys_page_for_each(CPUPhysMemoryClient *client)
1765{
5cd2c5b6
RH
1766 int i;
1767 for (i = 0; i < P_L1_SIZE; ++i) {
1768 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1769 l1_phys_map + 1);
f6f3fbca 1770 }
f6f3fbca
MT
1771}
1772
1773void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1774{
1775 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1776 phys_page_for_each(client);
1777}
1778
1779void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1780{
1781 QLIST_REMOVE(client, list);
1782}
1783#endif
1784
f193c797
FB
1785static int cmp1(const char *s1, int n, const char *s2)
1786{
1787 if (strlen(s2) != n)
1788 return 0;
1789 return memcmp(s1, s2, n) == 0;
1790}
3b46e624 1791
f193c797
FB
1792/* takes a comma separated list of log masks. Return 0 if error. */
1793int cpu_str_to_log_mask(const char *str)
1794{
c7cd6a37 1795 const CPULogItem *item;
f193c797
FB
1796 int mask;
1797 const char *p, *p1;
1798
1799 p = str;
1800 mask = 0;
1801 for(;;) {
1802 p1 = strchr(p, ',');
1803 if (!p1)
1804 p1 = p + strlen(p);
8e3a9fd2
FB
1805 if(cmp1(p,p1-p,"all")) {
1806 for(item = cpu_log_items; item->mask != 0; item++) {
1807 mask |= item->mask;
1808 }
1809 } else {
f193c797
FB
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 if (cmp1(p, p1 - p, item->name))
1812 goto found;
1813 }
1814 return 0;
8e3a9fd2 1815 }
f193c797
FB
1816 found:
1817 mask |= item->mask;
1818 if (*p1 != ',')
1819 break;
1820 p = p1 + 1;
1821 }
1822 return mask;
1823}
ea041c0e 1824
7501267e
FB
1825void cpu_abort(CPUState *env, const char *fmt, ...)
1826{
1827 va_list ap;
493ae1f0 1828 va_list ap2;
7501267e
FB
1829
1830 va_start(ap, fmt);
493ae1f0 1831 va_copy(ap2, ap);
7501267e
FB
1832 fprintf(stderr, "qemu: fatal: ");
1833 vfprintf(stderr, fmt, ap);
1834 fprintf(stderr, "\n");
1835#ifdef TARGET_I386
7fe48483
FB
1836 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1837#else
1838 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1839#endif
93fcfe39
AL
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt, ap2);
1843 qemu_log("\n");
f9373291 1844#ifdef TARGET_I386
93fcfe39 1845 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1846#else
93fcfe39 1847 log_cpu_state(env, 0);
f9373291 1848#endif
31b1a7b4 1849 qemu_log_flush();
93fcfe39 1850 qemu_log_close();
924edcae 1851 }
493ae1f0 1852 va_end(ap2);
f9373291 1853 va_end(ap);
fd052bf6
RV
1854#if defined(CONFIG_USER_ONLY)
1855 {
1856 struct sigaction act;
1857 sigfillset(&act.sa_mask);
1858 act.sa_handler = SIG_DFL;
1859 sigaction(SIGABRT, &act, NULL);
1860 }
1861#endif
7501267e
FB
1862 abort();
1863}
1864
c5be9f08
TS
1865CPUState *cpu_copy(CPUState *env)
1866{
01ba9816 1867 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1868 CPUState *next_cpu = new_env->next_cpu;
1869 int cpu_index = new_env->cpu_index;
5a38f081
AL
1870#if defined(TARGET_HAS_ICE)
1871 CPUBreakpoint *bp;
1872 CPUWatchpoint *wp;
1873#endif
1874
c5be9f08 1875 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1876
1877 /* Preserve chaining and index. */
c5be9f08
TS
1878 new_env->next_cpu = next_cpu;
1879 new_env->cpu_index = cpu_index;
5a38f081
AL
1880
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1884 QTAILQ_INIT(&env->breakpoints);
1885 QTAILQ_INIT(&env->watchpoints);
5a38f081 1886#if defined(TARGET_HAS_ICE)
72cf2d4f 1887 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1888 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1889 }
72cf2d4f 1890 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1891 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1892 wp->flags, NULL);
1893 }
1894#endif
1895
c5be9f08
TS
1896 return new_env;
1897}
1898
0124311e
FB
1899#if !defined(CONFIG_USER_ONLY)
1900
5c751e99
EI
1901static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1902{
1903 unsigned int i;
1904
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1908 memset (&env->tb_jmp_cache[i], 0,
1909 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1910
1911 i = tb_jmp_cache_hash_page(addr);
1912 memset (&env->tb_jmp_cache[i], 0,
1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1914}
1915
08738984
IK
1916static CPUTLBEntry s_cputlb_empty_entry = {
1917 .addr_read = -1,
1918 .addr_write = -1,
1919 .addr_code = -1,
1920 .addend = -1,
1921};
1922
ee8b7021
FB
1923/* NOTE: if flush_global is true, also flush global entries (not
1924 implemented yet) */
1925void tlb_flush(CPUState *env, int flush_global)
33417e70 1926{
33417e70 1927 int i;
0124311e 1928
9fa3e853
FB
1929#if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1931#endif
0124311e
FB
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env->current_tb = NULL;
1935
33417e70 1936 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1939 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1940 }
33417e70 1941 }
9fa3e853 1942
8a40a180 1943 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1944
d4c430a8
PB
1945 env->tlb_flush_addr = -1;
1946 env->tlb_flush_mask = 0;
e3db7226 1947 tlb_flush_count++;
33417e70
FB
1948}
1949
274da6b2 1950static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1951{
5fafdf24 1952 if (addr == (tlb_entry->addr_read &
84b7b8e7 1953 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1954 addr == (tlb_entry->addr_write &
84b7b8e7 1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1956 addr == (tlb_entry->addr_code &
84b7b8e7 1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1958 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1959 }
61382a50
FB
1960}
1961
2e12669a 1962void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1963{
8a40a180 1964 int i;
cfde4bd9 1965 int mmu_idx;
0124311e 1966
9fa3e853 1967#if defined(DEBUG_TLB)
108c49b8 1968 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1969#endif
d4c430a8
PB
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1972#if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1975 env->tlb_flush_addr, env->tlb_flush_mask);
1976#endif
1977 tlb_flush(env, 1);
1978 return;
1979 }
0124311e
FB
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
61382a50
FB
1983
1984 addr &= TARGET_PAGE_MASK;
1985 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1987 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1988
5c751e99 1989 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1990}
1991
9fa3e853
FB
1992/* update the TLBs so that writes to code in the virtual page 'addr'
1993 can be detected */
c227f099 1994static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1995{
5fafdf24 1996 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1997 ram_addr + TARGET_PAGE_SIZE,
1998 CODE_DIRTY_FLAG);
9fa3e853
FB
1999}
2000
9fa3e853 2001/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2002 tested for self modifying code */
c227f099 2003static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2004 target_ulong vaddr)
9fa3e853 2005{
f7c11b53 2006 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2007}
2008
5fafdf24 2009static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2010 unsigned long start, unsigned long length)
2011{
2012 unsigned long addr;
84b7b8e7
FB
2013 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2014 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2015 if ((addr - start) < length) {
0f459d16 2016 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2017 }
2018 }
2019}
2020
5579c7f3 2021/* Note: start and end must be within the same ram block. */
c227f099 2022void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2023 int dirty_flags)
1ccde1cb
FB
2024{
2025 CPUState *env;
4f2ac237 2026 unsigned long length, start1;
f7c11b53 2027 int i;
1ccde1cb
FB
2028
2029 start &= TARGET_PAGE_MASK;
2030 end = TARGET_PAGE_ALIGN(end);
2031
2032 length = end - start;
2033 if (length == 0)
2034 return;
f7c11b53 2035 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2036
1ccde1cb
FB
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
5579c7f3
PB
2039 start1 = (unsigned long)qemu_get_ram_ptr(start);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2043 != (end - 1) - start) {
2044 abort();
2045 }
2046
6a00d601 2047 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2048 int mmu_idx;
2049 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2050 for(i = 0; i < CPU_TLB_SIZE; i++)
2051 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2052 start1, length);
2053 }
6a00d601 2054 }
1ccde1cb
FB
2055}
2056
74576198
AL
2057int cpu_physical_memory_set_dirty_tracking(int enable)
2058{
f6f3fbca 2059 int ret = 0;
74576198 2060 in_migration = enable;
f6f3fbca
MT
2061 ret = cpu_notify_migration_log(!!enable);
2062 return ret;
74576198
AL
2063}
2064
2065int cpu_physical_memory_get_dirty_tracking(void)
2066{
2067 return in_migration;
2068}
2069
c227f099
AL
2070int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2071 target_phys_addr_t end_addr)
2bec46dc 2072{
7b8f3b78 2073 int ret;
151f7749 2074
f6f3fbca 2075 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2076 return ret;
2bec46dc
AL
2077}
2078
3a7d929e
FB
2079static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2080{
c227f099 2081 ram_addr_t ram_addr;
5579c7f3 2082 void *p;
3a7d929e 2083
84b7b8e7 2084 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2085 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2086 + tlb_entry->addend);
2087 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2088 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2089 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2090 }
2091 }
2092}
2093
2094/* update the TLB according to the current state of the dirty bits */
2095void cpu_tlb_update_dirty(CPUState *env)
2096{
2097 int i;
cfde4bd9
IY
2098 int mmu_idx;
2099 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2100 for(i = 0; i < CPU_TLB_SIZE; i++)
2101 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2102 }
3a7d929e
FB
2103}
2104
0f459d16 2105static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2106{
0f459d16
PB
2107 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2108 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2109}
2110
0f459d16
PB
2111/* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2114{
1ccde1cb 2115 int i;
cfde4bd9 2116 int mmu_idx;
1ccde1cb 2117
0f459d16 2118 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2119 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2121 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2122}
2123
d4c430a8
PB
2124/* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2127 target_ulong size)
2128{
2129 target_ulong mask = ~(size - 1);
2130
2131 if (env->tlb_flush_addr == (target_ulong)-1) {
2132 env->tlb_flush_addr = vaddr & mask;
2133 env->tlb_flush_mask = mask;
2134 return;
2135 }
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask &= env->tlb_flush_mask;
2140 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2141 mask <<= 1;
2142 }
2143 env->tlb_flush_addr &= mask;
2144 env->tlb_flush_mask = mask;
2145}
2146
2147/* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150void tlb_set_page(CPUState *env, target_ulong vaddr,
2151 target_phys_addr_t paddr, int prot,
2152 int mmu_idx, target_ulong size)
9fa3e853 2153{
92e873b9 2154 PhysPageDesc *p;
4f2ac237 2155 unsigned long pd;
9fa3e853 2156 unsigned int index;
4f2ac237 2157 target_ulong address;
0f459d16 2158 target_ulong code_address;
355b1943 2159 unsigned long addend;
84b7b8e7 2160 CPUTLBEntry *te;
a1d1bb31 2161 CPUWatchpoint *wp;
c227f099 2162 target_phys_addr_t iotlb;
9fa3e853 2163
d4c430a8
PB
2164 assert(size >= TARGET_PAGE_SIZE);
2165 if (size != TARGET_PAGE_SIZE) {
2166 tlb_add_large_page(env, vaddr, size);
2167 }
92e873b9 2168 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2169 if (!p) {
2170 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2171 } else {
2172 pd = p->phys_offset;
9fa3e853
FB
2173 }
2174#if defined(DEBUG_TLB)
6ebbf390
JM
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2177#endif
2178
0f459d16
PB
2179 address = vaddr;
2180 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2181 /* IO memory case (romd handled later) */
2182 address |= TLB_MMIO;
2183 }
5579c7f3 2184 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2185 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2186 /* Normal RAM. */
2187 iotlb = pd & TARGET_PAGE_MASK;
2188 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2189 iotlb |= IO_MEM_NOTDIRTY;
2190 else
2191 iotlb |= IO_MEM_ROM;
2192 } else {
ccbb4d44 2193 /* IO handlers are currently passed a physical address.
0f459d16
PB
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2199 iotlb = (pd & ~TARGET_PAGE_MASK);
2200 if (p) {
8da3ff18
PB
2201 iotlb += p->region_offset;
2202 } else {
2203 iotlb += paddr;
2204 }
0f459d16
PB
2205 }
2206
2207 code_address = address;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
72cf2d4f 2210 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2211 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2212 iotlb = io_mem_watch + paddr;
2213 /* TODO: The memory case can be optimized by not trapping
2214 reads of pages with a write breakpoint. */
2215 address |= TLB_MMIO;
6658ffb8 2216 }
0f459d16 2217 }
d79acba4 2218
0f459d16
PB
2219 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2220 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2221 te = &env->tlb_table[mmu_idx][index];
2222 te->addend = addend - vaddr;
2223 if (prot & PAGE_READ) {
2224 te->addr_read = address;
2225 } else {
2226 te->addr_read = -1;
2227 }
5c751e99 2228
0f459d16
PB
2229 if (prot & PAGE_EXEC) {
2230 te->addr_code = code_address;
2231 } else {
2232 te->addr_code = -1;
2233 }
2234 if (prot & PAGE_WRITE) {
2235 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2236 (pd & IO_MEM_ROMD)) {
2237 /* Write access calls the I/O callback. */
2238 te->addr_write = address | TLB_MMIO;
2239 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2240 !cpu_physical_memory_is_dirty(pd)) {
2241 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2242 } else {
0f459d16 2243 te->addr_write = address;
9fa3e853 2244 }
0f459d16
PB
2245 } else {
2246 te->addr_write = -1;
9fa3e853 2247 }
9fa3e853
FB
2248}
2249
0124311e
FB
2250#else
2251
ee8b7021 2252void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2253{
2254}
2255
2e12669a 2256void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2257{
2258}
2259
edf8e2af
MW
2260/*
2261 * Walks guest process memory "regions" one by one
2262 * and calls callback function 'fn' for each region.
2263 */
5cd2c5b6
RH
2264
2265struct walk_memory_regions_data
2266{
2267 walk_memory_regions_fn fn;
2268 void *priv;
2269 unsigned long start;
2270 int prot;
2271};
2272
2273static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2274 abi_ulong end, int new_prot)
5cd2c5b6
RH
2275{
2276 if (data->start != -1ul) {
2277 int rc = data->fn(data->priv, data->start, end, data->prot);
2278 if (rc != 0) {
2279 return rc;
2280 }
2281 }
2282
2283 data->start = (new_prot ? end : -1ul);
2284 data->prot = new_prot;
2285
2286 return 0;
2287}
2288
2289static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2290 abi_ulong base, int level, void **lp)
5cd2c5b6 2291{
b480d9b7 2292 abi_ulong pa;
5cd2c5b6
RH
2293 int i, rc;
2294
2295 if (*lp == NULL) {
2296 return walk_memory_regions_end(data, base, 0);
2297 }
2298
2299 if (level == 0) {
2300 PageDesc *pd = *lp;
7296abac 2301 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2302 int prot = pd[i].flags;
2303
2304 pa = base | (i << TARGET_PAGE_BITS);
2305 if (prot != data->prot) {
2306 rc = walk_memory_regions_end(data, pa, prot);
2307 if (rc != 0) {
2308 return rc;
9fa3e853 2309 }
9fa3e853 2310 }
5cd2c5b6
RH
2311 }
2312 } else {
2313 void **pp = *lp;
7296abac 2314 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2315 pa = base | ((abi_ulong)i <<
2316 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2317 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2318 if (rc != 0) {
2319 return rc;
2320 }
2321 }
2322 }
2323
2324 return 0;
2325}
2326
2327int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2328{
2329 struct walk_memory_regions_data data;
2330 unsigned long i;
2331
2332 data.fn = fn;
2333 data.priv = priv;
2334 data.start = -1ul;
2335 data.prot = 0;
2336
2337 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2338 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2339 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2340 if (rc != 0) {
2341 return rc;
9fa3e853 2342 }
33417e70 2343 }
5cd2c5b6
RH
2344
2345 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2346}
2347
b480d9b7
PB
2348static int dump_region(void *priv, abi_ulong start,
2349 abi_ulong end, unsigned long prot)
edf8e2af
MW
2350{
2351 FILE *f = (FILE *)priv;
2352
b480d9b7
PB
2353 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2354 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2355 start, end, end - start,
2356 ((prot & PAGE_READ) ? 'r' : '-'),
2357 ((prot & PAGE_WRITE) ? 'w' : '-'),
2358 ((prot & PAGE_EXEC) ? 'x' : '-'));
2359
2360 return (0);
2361}
2362
2363/* dump memory mappings */
2364void page_dump(FILE *f)
2365{
2366 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2367 "start", "end", "size", "prot");
2368 walk_memory_regions(f, dump_region);
33417e70
FB
2369}
2370
53a5960a 2371int page_get_flags(target_ulong address)
33417e70 2372{
9fa3e853
FB
2373 PageDesc *p;
2374
2375 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2376 if (!p)
9fa3e853
FB
2377 return 0;
2378 return p->flags;
2379}
2380
376a7909
RH
2381/* Modify the flags of a page and invalidate the code if necessary.
2382 The flag PAGE_WRITE_ORG is positioned automatically depending
2383 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2384void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2385{
376a7909
RH
2386 target_ulong addr, len;
2387
2388 /* This function should never be called with addresses outside the
2389 guest address space. If this assert fires, it probably indicates
2390 a missing call to h2g_valid. */
b480d9b7
PB
2391#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2392 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2393#endif
2394 assert(start < end);
9fa3e853
FB
2395
2396 start = start & TARGET_PAGE_MASK;
2397 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2398
2399 if (flags & PAGE_WRITE) {
9fa3e853 2400 flags |= PAGE_WRITE_ORG;
376a7909
RH
2401 }
2402
2403 for (addr = start, len = end - start;
2404 len != 0;
2405 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2406 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2407
2408 /* If the write protection bit is set, then we invalidate
2409 the code inside. */
5fafdf24 2410 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2411 (flags & PAGE_WRITE) &&
2412 p->first_tb) {
d720b93d 2413 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2414 }
2415 p->flags = flags;
2416 }
33417e70
FB
2417}
2418
3d97b40b
TS
2419int page_check_range(target_ulong start, target_ulong len, int flags)
2420{
2421 PageDesc *p;
2422 target_ulong end;
2423 target_ulong addr;
2424
376a7909
RH
2425 /* This function should never be called with addresses outside the
2426 guest address space. If this assert fires, it probably indicates
2427 a missing call to h2g_valid. */
338e9e6c
BS
2428#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2429 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2430#endif
2431
2432 if (start + len - 1 < start) {
2433 /* We've wrapped around. */
55f280c9 2434 return -1;
376a7909 2435 }
55f280c9 2436
3d97b40b
TS
2437 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2438 start = start & TARGET_PAGE_MASK;
2439
376a7909
RH
2440 for (addr = start, len = end - start;
2441 len != 0;
2442 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2443 p = page_find(addr >> TARGET_PAGE_BITS);
2444 if( !p )
2445 return -1;
2446 if( !(p->flags & PAGE_VALID) )
2447 return -1;
2448
dae3270c 2449 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2450 return -1;
dae3270c
FB
2451 if (flags & PAGE_WRITE) {
2452 if (!(p->flags & PAGE_WRITE_ORG))
2453 return -1;
2454 /* unprotect the page if it was put read-only because it
2455 contains translated code */
2456 if (!(p->flags & PAGE_WRITE)) {
2457 if (!page_unprotect(addr, 0, NULL))
2458 return -1;
2459 }
2460 return 0;
2461 }
3d97b40b
TS
2462 }
2463 return 0;
2464}
2465
9fa3e853 2466/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2467 page. Return TRUE if the fault was successfully handled. */
53a5960a 2468int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2469{
45d679d6
AJ
2470 unsigned int prot;
2471 PageDesc *p;
53a5960a 2472 target_ulong host_start, host_end, addr;
9fa3e853 2473
c8a706fe
PB
2474 /* Technically this isn't safe inside a signal handler. However we
2475 know this only ever happens in a synchronous SEGV handler, so in
2476 practice it seems to be ok. */
2477 mmap_lock();
2478
45d679d6
AJ
2479 p = page_find(address >> TARGET_PAGE_BITS);
2480 if (!p) {
c8a706fe 2481 mmap_unlock();
9fa3e853 2482 return 0;
c8a706fe 2483 }
45d679d6 2484
9fa3e853
FB
2485 /* if the page was really writable, then we change its
2486 protection back to writable */
45d679d6
AJ
2487 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2488 host_start = address & qemu_host_page_mask;
2489 host_end = host_start + qemu_host_page_size;
2490
2491 prot = 0;
2492 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2493 p = page_find(addr >> TARGET_PAGE_BITS);
2494 p->flags |= PAGE_WRITE;
2495 prot |= p->flags;
2496
9fa3e853
FB
2497 /* and since the content will be modified, we must invalidate
2498 the corresponding translated code. */
45d679d6 2499 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2500#ifdef DEBUG_TB_CHECK
45d679d6 2501 tb_invalidate_check(addr);
9fa3e853 2502#endif
9fa3e853 2503 }
45d679d6
AJ
2504 mprotect((void *)g2h(host_start), qemu_host_page_size,
2505 prot & PAGE_BITS);
2506
2507 mmap_unlock();
2508 return 1;
9fa3e853 2509 }
c8a706fe 2510 mmap_unlock();
9fa3e853
FB
2511 return 0;
2512}
2513
6a00d601
FB
2514static inline void tlb_set_dirty(CPUState *env,
2515 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2516{
2517}
9fa3e853
FB
2518#endif /* defined(CONFIG_USER_ONLY) */
2519
e2eef170 2520#if !defined(CONFIG_USER_ONLY)
8da3ff18 2521
c04b2b78
PB
2522#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2523typedef struct subpage_t {
2524 target_phys_addr_t base;
f6405247
RH
2525 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2526 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2527} subpage_t;
2528
c227f099
AL
2529static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2530 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2531static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2532 ram_addr_t orig_memory,
2533 ram_addr_t region_offset);
db7b5426
BS
2534#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2535 need_subpage) \
2536 do { \
2537 if (addr > start_addr) \
2538 start_addr2 = 0; \
2539 else { \
2540 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2541 if (start_addr2 > 0) \
2542 need_subpage = 1; \
2543 } \
2544 \
49e9fba2 2545 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2546 end_addr2 = TARGET_PAGE_SIZE - 1; \
2547 else { \
2548 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2549 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2550 need_subpage = 1; \
2551 } \
2552 } while (0)
2553
8f2498f9
MT
2554/* register physical memory.
2555 For RAM, 'size' must be a multiple of the target page size.
2556 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2557 io memory page. The address used when calling the IO function is
2558 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2559 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2560 before calculating this offset. This should not be a problem unless
2561 the low bits of start_addr and region_offset differ. */
c227f099
AL
2562void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2563 ram_addr_t size,
2564 ram_addr_t phys_offset,
2565 ram_addr_t region_offset)
33417e70 2566{
c227f099 2567 target_phys_addr_t addr, end_addr;
92e873b9 2568 PhysPageDesc *p;
9d42037b 2569 CPUState *env;
c227f099 2570 ram_addr_t orig_size = size;
f6405247 2571 subpage_t *subpage;
33417e70 2572
f6f3fbca
MT
2573 cpu_notify_set_memory(start_addr, size, phys_offset);
2574
67c4d23c
PB
2575 if (phys_offset == IO_MEM_UNASSIGNED) {
2576 region_offset = start_addr;
2577 }
8da3ff18 2578 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2579 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2580 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2581 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2582 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2583 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2584 ram_addr_t orig_memory = p->phys_offset;
2585 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2586 int need_subpage = 0;
2587
2588 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2589 need_subpage);
f6405247 2590 if (need_subpage) {
db7b5426
BS
2591 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2592 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2593 &p->phys_offset, orig_memory,
2594 p->region_offset);
db7b5426
BS
2595 } else {
2596 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2597 >> IO_MEM_SHIFT];
2598 }
8da3ff18
PB
2599 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2600 region_offset);
2601 p->region_offset = 0;
db7b5426
BS
2602 } else {
2603 p->phys_offset = phys_offset;
2604 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2605 (phys_offset & IO_MEM_ROMD))
2606 phys_offset += TARGET_PAGE_SIZE;
2607 }
2608 } else {
2609 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2610 p->phys_offset = phys_offset;
8da3ff18 2611 p->region_offset = region_offset;
db7b5426 2612 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2613 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2614 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2615 } else {
c227f099 2616 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2617 int need_subpage = 0;
2618
2619 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2620 end_addr2, need_subpage);
2621
f6405247 2622 if (need_subpage) {
db7b5426 2623 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2624 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2625 addr & TARGET_PAGE_MASK);
db7b5426 2626 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2627 phys_offset, region_offset);
2628 p->region_offset = 0;
db7b5426
BS
2629 }
2630 }
2631 }
8da3ff18 2632 region_offset += TARGET_PAGE_SIZE;
33417e70 2633 }
3b46e624 2634
9d42037b
FB
2635 /* since each CPU stores ram addresses in its TLB cache, we must
2636 reset the modified entries */
2637 /* XXX: slow ! */
2638 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2639 tlb_flush(env, 1);
2640 }
33417e70
FB
2641}
2642
ba863458 2643/* XXX: temporary until new memory mapping API */
c227f099 2644ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2645{
2646 PhysPageDesc *p;
2647
2648 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2649 if (!p)
2650 return IO_MEM_UNASSIGNED;
2651 return p->phys_offset;
2652}
2653
c227f099 2654void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2655{
2656 if (kvm_enabled())
2657 kvm_coalesce_mmio_region(addr, size);
2658}
2659
c227f099 2660void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2661{
2662 if (kvm_enabled())
2663 kvm_uncoalesce_mmio_region(addr, size);
2664}
2665
62a2744c
SY
2666void qemu_flush_coalesced_mmio_buffer(void)
2667{
2668 if (kvm_enabled())
2669 kvm_flush_coalesced_mmio_buffer();
2670}
2671
c902760f
MT
2672#if defined(__linux__) && !defined(TARGET_S390X)
2673
2674#include <sys/vfs.h>
2675
2676#define HUGETLBFS_MAGIC 0x958458f6
2677
2678static long gethugepagesize(const char *path)
2679{
2680 struct statfs fs;
2681 int ret;
2682
2683 do {
2684 ret = statfs(path, &fs);
2685 } while (ret != 0 && errno == EINTR);
2686
2687 if (ret != 0) {
6adc0549 2688 perror(path);
c902760f
MT
2689 return 0;
2690 }
2691
2692 if (fs.f_type != HUGETLBFS_MAGIC)
2693 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2694
2695 return fs.f_bsize;
2696}
2697
2698static void *file_ram_alloc(ram_addr_t memory, const char *path)
2699{
2700 char *filename;
2701 void *area;
2702 int fd;
2703#ifdef MAP_POPULATE
2704 int flags;
2705#endif
2706 unsigned long hpagesize;
2707
2708 hpagesize = gethugepagesize(path);
2709 if (!hpagesize) {
2710 return NULL;
2711 }
2712
2713 if (memory < hpagesize) {
2714 return NULL;
2715 }
2716
2717 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2718 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2719 return NULL;
2720 }
2721
2722 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2723 return NULL;
2724 }
2725
2726 fd = mkstemp(filename);
2727 if (fd < 0) {
6adc0549 2728 perror("unable to create backing store for hugepages");
c902760f
MT
2729 free(filename);
2730 return NULL;
2731 }
2732 unlink(filename);
2733 free(filename);
2734
2735 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2736
2737 /*
2738 * ftruncate is not supported by hugetlbfs in older
2739 * hosts, so don't bother bailing out on errors.
2740 * If anything goes wrong with it under other filesystems,
2741 * mmap will fail.
2742 */
2743 if (ftruncate(fd, memory))
2744 perror("ftruncate");
2745
2746#ifdef MAP_POPULATE
2747 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2748 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2749 * to sidestep this quirk.
2750 */
2751 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2752 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2753#else
2754 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2755#endif
2756 if (area == MAP_FAILED) {
2757 perror("file_ram_alloc: can't mmap RAM pages");
2758 close(fd);
2759 return (NULL);
2760 }
2761 return area;
2762}
2763#endif
2764
c227f099 2765ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2766{
2767 RAMBlock *new_block;
2768
94a6b54f
PB
2769 size = TARGET_PAGE_ALIGN(size);
2770 new_block = qemu_malloc(sizeof(*new_block));
2771
c902760f
MT
2772 if (mem_path) {
2773#if defined (__linux__) && !defined(TARGET_S390X)
2774 new_block->host = file_ram_alloc(size, mem_path);
2775 if (!new_block->host)
2776 exit(1);
2777#else
2778 fprintf(stderr, "-mem-path option unsupported\n");
2779 exit(1);
2780#endif
2781 } else {
6b02494d 2782#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2783 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2784 new_block->host = mmap((void*)0x1000000, size,
2785 PROT_EXEC|PROT_READ|PROT_WRITE,
2786 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2787#else
c902760f 2788 new_block->host = qemu_vmalloc(size);
6b02494d 2789#endif
ccb167e9 2790#ifdef MADV_MERGEABLE
c902760f 2791 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2792#endif
c902760f 2793 }
94a6b54f
PB
2794 new_block->offset = last_ram_offset;
2795 new_block->length = size;
2796
2797 new_block->next = ram_blocks;
2798 ram_blocks = new_block;
2799
2800 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2801 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2802 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2803 0xff, size >> TARGET_PAGE_BITS);
2804
2805 last_ram_offset += size;
2806
6f0437e8
JK
2807 if (kvm_enabled())
2808 kvm_setup_guest_memory(new_block->host, size);
2809
94a6b54f
PB
2810 return new_block->offset;
2811}
e9a1ab19 2812
c227f099 2813void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2814{
94a6b54f 2815 /* TODO: implement this. */
e9a1ab19
FB
2816}
2817
dc828ca1 2818/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2819 With the exception of the softmmu code in this file, this should
2820 only be used for local memory (e.g. video ram) that the device owns,
2821 and knows it isn't going to access beyond the end of the block.
2822
2823 It should not be used for general purpose DMA.
2824 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2825 */
c227f099 2826void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2827{
94a6b54f
PB
2828 RAMBlock *prev;
2829 RAMBlock **prevp;
2830 RAMBlock *block;
2831
94a6b54f
PB
2832 prev = NULL;
2833 prevp = &ram_blocks;
2834 block = ram_blocks;
2835 while (block && (block->offset > addr
2836 || block->offset + block->length <= addr)) {
2837 if (prev)
2838 prevp = &prev->next;
2839 prev = block;
2840 block = block->next;
2841 }
2842 if (!block) {
2843 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2844 abort();
2845 }
2846 /* Move this entry to to start of the list. */
2847 if (prev) {
2848 prev->next = block->next;
2849 block->next = *prevp;
2850 *prevp = block;
2851 }
2852 return block->host + (addr - block->offset);
dc828ca1
PB
2853}
2854
5579c7f3
PB
2855/* Some of the softmmu routines need to translate from a host pointer
2856 (typically a TLB entry) back to a ram offset. */
c227f099 2857ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2858{
94a6b54f
PB
2859 RAMBlock *block;
2860 uint8_t *host = ptr;
2861
94a6b54f
PB
2862 block = ram_blocks;
2863 while (block && (block->host > host
2864 || block->host + block->length <= host)) {
94a6b54f
PB
2865 block = block->next;
2866 }
2867 if (!block) {
2868 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2869 abort();
2870 }
2871 return block->offset + (host - block->host);
5579c7f3
PB
2872}
2873
c227f099 2874static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2875{
67d3b957 2876#ifdef DEBUG_UNASSIGNED
ab3d1727 2877 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2878#endif
faed1c2a 2879#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2880 do_unassigned_access(addr, 0, 0, 0, 1);
2881#endif
2882 return 0;
2883}
2884
c227f099 2885static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2886{
2887#ifdef DEBUG_UNASSIGNED
2888 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2889#endif
faed1c2a 2890#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2891 do_unassigned_access(addr, 0, 0, 0, 2);
2892#endif
2893 return 0;
2894}
2895
c227f099 2896static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2897{
2898#ifdef DEBUG_UNASSIGNED
2899 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2900#endif
faed1c2a 2901#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2902 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2903#endif
33417e70
FB
2904 return 0;
2905}
2906
c227f099 2907static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2908{
67d3b957 2909#ifdef DEBUG_UNASSIGNED
ab3d1727 2910 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2911#endif
faed1c2a 2912#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2913 do_unassigned_access(addr, 1, 0, 0, 1);
2914#endif
2915}
2916
c227f099 2917static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2918{
2919#ifdef DEBUG_UNASSIGNED
2920 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2921#endif
faed1c2a 2922#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2923 do_unassigned_access(addr, 1, 0, 0, 2);
2924#endif
2925}
2926
c227f099 2927static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2928{
2929#ifdef DEBUG_UNASSIGNED
2930 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2931#endif
faed1c2a 2932#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2933 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2934#endif
33417e70
FB
2935}
2936
d60efc6b 2937static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2938 unassigned_mem_readb,
e18231a3
BS
2939 unassigned_mem_readw,
2940 unassigned_mem_readl,
33417e70
FB
2941};
2942
d60efc6b 2943static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2944 unassigned_mem_writeb,
e18231a3
BS
2945 unassigned_mem_writew,
2946 unassigned_mem_writel,
33417e70
FB
2947};
2948
c227f099 2949static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2950 uint32_t val)
9fa3e853 2951{
3a7d929e 2952 int dirty_flags;
f7c11b53 2953 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2954 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2955#if !defined(CONFIG_USER_ONLY)
3a7d929e 2956 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 2957 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2958#endif
3a7d929e 2959 }
5579c7f3 2960 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2961 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2962 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2963 /* we remove the notdirty callback only if the code has been
2964 flushed */
2965 if (dirty_flags == 0xff)
2e70f6ef 2966 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2967}
2968
c227f099 2969static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2970 uint32_t val)
9fa3e853 2971{
3a7d929e 2972 int dirty_flags;
f7c11b53 2973 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2974 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2975#if !defined(CONFIG_USER_ONLY)
3a7d929e 2976 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 2977 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2978#endif
3a7d929e 2979 }
5579c7f3 2980 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2981 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2982 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2983 /* we remove the notdirty callback only if the code has been
2984 flushed */
2985 if (dirty_flags == 0xff)
2e70f6ef 2986 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2987}
2988
c227f099 2989static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2990 uint32_t val)
9fa3e853 2991{
3a7d929e 2992 int dirty_flags;
f7c11b53 2993 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2994 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2995#if !defined(CONFIG_USER_ONLY)
3a7d929e 2996 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 2997 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2998#endif
3a7d929e 2999 }
5579c7f3 3000 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3001 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3002 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3003 /* we remove the notdirty callback only if the code has been
3004 flushed */
3005 if (dirty_flags == 0xff)
2e70f6ef 3006 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3007}
3008
d60efc6b 3009static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3010 NULL, /* never used */
3011 NULL, /* never used */
3012 NULL, /* never used */
3013};
3014
d60efc6b 3015static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3016 notdirty_mem_writeb,
3017 notdirty_mem_writew,
3018 notdirty_mem_writel,
3019};
3020
0f459d16 3021/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3022static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3023{
3024 CPUState *env = cpu_single_env;
06d55cc1
AL
3025 target_ulong pc, cs_base;
3026 TranslationBlock *tb;
0f459d16 3027 target_ulong vaddr;
a1d1bb31 3028 CPUWatchpoint *wp;
06d55cc1 3029 int cpu_flags;
0f459d16 3030
06d55cc1
AL
3031 if (env->watchpoint_hit) {
3032 /* We re-entered the check after replacing the TB. Now raise
3033 * the debug interrupt so that is will trigger after the
3034 * current instruction. */
3035 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3036 return;
3037 }
2e70f6ef 3038 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3039 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3040 if ((vaddr == (wp->vaddr & len_mask) ||
3041 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3042 wp->flags |= BP_WATCHPOINT_HIT;
3043 if (!env->watchpoint_hit) {
3044 env->watchpoint_hit = wp;
3045 tb = tb_find_pc(env->mem_io_pc);
3046 if (!tb) {
3047 cpu_abort(env, "check_watchpoint: could not find TB for "
3048 "pc=%p", (void *)env->mem_io_pc);
3049 }
3050 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3051 tb_phys_invalidate(tb, -1);
3052 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3053 env->exception_index = EXCP_DEBUG;
3054 } else {
3055 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3056 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3057 }
3058 cpu_resume_from_signal(env, NULL);
06d55cc1 3059 }
6e140f28
AL
3060 } else {
3061 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3062 }
3063 }
3064}
3065
6658ffb8
PB
3066/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3067 so these check for a hit then pass through to the normal out-of-line
3068 phys routines. */
c227f099 3069static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3070{
b4051334 3071 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3072 return ldub_phys(addr);
3073}
3074
c227f099 3075static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3076{
b4051334 3077 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3078 return lduw_phys(addr);
3079}
3080
c227f099 3081static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3082{
b4051334 3083 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3084 return ldl_phys(addr);
3085}
3086
c227f099 3087static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3088 uint32_t val)
3089{
b4051334 3090 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3091 stb_phys(addr, val);
3092}
3093
c227f099 3094static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3095 uint32_t val)
3096{
b4051334 3097 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3098 stw_phys(addr, val);
3099}
3100
c227f099 3101static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3102 uint32_t val)
3103{
b4051334 3104 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3105 stl_phys(addr, val);
3106}
3107
d60efc6b 3108static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3109 watch_mem_readb,
3110 watch_mem_readw,
3111 watch_mem_readl,
3112};
3113
d60efc6b 3114static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3115 watch_mem_writeb,
3116 watch_mem_writew,
3117 watch_mem_writel,
3118};
6658ffb8 3119
f6405247
RH
3120static inline uint32_t subpage_readlen (subpage_t *mmio,
3121 target_phys_addr_t addr,
3122 unsigned int len)
db7b5426 3123{
f6405247 3124 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3125#if defined(DEBUG_SUBPAGE)
3126 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3127 mmio, len, addr, idx);
3128#endif
db7b5426 3129
f6405247
RH
3130 addr += mmio->region_offset[idx];
3131 idx = mmio->sub_io_index[idx];
3132 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3133}
3134
c227f099 3135static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3136 uint32_t value, unsigned int len)
db7b5426 3137{
f6405247 3138 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3139#if defined(DEBUG_SUBPAGE)
f6405247
RH
3140 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3141 __func__, mmio, len, addr, idx, value);
db7b5426 3142#endif
f6405247
RH
3143
3144 addr += mmio->region_offset[idx];
3145 idx = mmio->sub_io_index[idx];
3146 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3147}
3148
c227f099 3149static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3150{
db7b5426
BS
3151 return subpage_readlen(opaque, addr, 0);
3152}
3153
c227f099 3154static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3155 uint32_t value)
3156{
db7b5426
BS
3157 subpage_writelen(opaque, addr, value, 0);
3158}
3159
c227f099 3160static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3161{
db7b5426
BS
3162 return subpage_readlen(opaque, addr, 1);
3163}
3164
c227f099 3165static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3166 uint32_t value)
3167{
db7b5426
BS
3168 subpage_writelen(opaque, addr, value, 1);
3169}
3170
c227f099 3171static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3172{
db7b5426
BS
3173 return subpage_readlen(opaque, addr, 2);
3174}
3175
f6405247
RH
3176static void subpage_writel (void *opaque, target_phys_addr_t addr,
3177 uint32_t value)
db7b5426 3178{
db7b5426
BS
3179 subpage_writelen(opaque, addr, value, 2);
3180}
3181
d60efc6b 3182static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3183 &subpage_readb,
3184 &subpage_readw,
3185 &subpage_readl,
3186};
3187
d60efc6b 3188static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3189 &subpage_writeb,
3190 &subpage_writew,
3191 &subpage_writel,
3192};
3193
c227f099
AL
3194static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3195 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3196{
3197 int idx, eidx;
3198
3199 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3200 return -1;
3201 idx = SUBPAGE_IDX(start);
3202 eidx = SUBPAGE_IDX(end);
3203#if defined(DEBUG_SUBPAGE)
0bf9e31a 3204 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3205 mmio, start, end, idx, eidx, memory);
3206#endif
f6405247 3207 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3208 for (; idx <= eidx; idx++) {
f6405247
RH
3209 mmio->sub_io_index[idx] = memory;
3210 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3211 }
3212
3213 return 0;
3214}
3215
f6405247
RH
3216static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3217 ram_addr_t orig_memory,
3218 ram_addr_t region_offset)
db7b5426 3219{
c227f099 3220 subpage_t *mmio;
db7b5426
BS
3221 int subpage_memory;
3222
c227f099 3223 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3224
3225 mmio->base = base;
1eed09cb 3226 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3227#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3228 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3229 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3230#endif
1eec614b 3231 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3232 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3233
3234 return mmio;
3235}
3236
88715657
AL
3237static int get_free_io_mem_idx(void)
3238{
3239 int i;
3240
3241 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3242 if (!io_mem_used[i]) {
3243 io_mem_used[i] = 1;
3244 return i;
3245 }
c6703b47 3246 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3247 return -1;
3248}
3249
33417e70
FB
3250/* mem_read and mem_write are arrays of functions containing the
3251 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3252 2). Functions can be omitted with a NULL function pointer.
3ee89922 3253 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3254 modified. If it is zero, a new io zone is allocated. The return
3255 value can be used with cpu_register_physical_memory(). (-1) is
3256 returned if error. */
1eed09cb 3257static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3258 CPUReadMemoryFunc * const *mem_read,
3259 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3260 void *opaque)
33417e70 3261{
33417e70 3262 if (io_index <= 0) {
88715657
AL
3263 io_index = get_free_io_mem_idx();
3264 if (io_index == -1)
3265 return io_index;
33417e70 3266 } else {
1eed09cb 3267 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3268 if (io_index >= IO_MEM_NB_ENTRIES)
3269 return -1;
3270 }
b5ff1b31 3271
f6405247
RH
3272 memcpy(io_mem_read[io_index], mem_read, 3 * sizeof(CPUReadMemoryFunc*));
3273 memcpy(io_mem_write[io_index], mem_write, 3 * sizeof(CPUWriteMemoryFunc*));
a4193c8a 3274 io_mem_opaque[io_index] = opaque;
f6405247
RH
3275
3276 return (io_index << IO_MEM_SHIFT);
33417e70 3277}
61382a50 3278
d60efc6b
BS
3279int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3280 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3281 void *opaque)
3282{
3283 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3284}
3285
88715657
AL
3286void cpu_unregister_io_memory(int io_table_address)
3287{
3288 int i;
3289 int io_index = io_table_address >> IO_MEM_SHIFT;
3290
3291 for (i=0;i < 3; i++) {
3292 io_mem_read[io_index][i] = unassigned_mem_read[i];
3293 io_mem_write[io_index][i] = unassigned_mem_write[i];
3294 }
3295 io_mem_opaque[io_index] = NULL;
3296 io_mem_used[io_index] = 0;
3297}
3298
e9179ce1
AK
3299static void io_mem_init(void)
3300{
3301 int i;
3302
3303 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3304 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3305 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3306 for (i=0; i<5; i++)
3307 io_mem_used[i] = 1;
3308
3309 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3310 watch_mem_write, NULL);
e9179ce1
AK
3311}
3312
e2eef170
PB
3313#endif /* !defined(CONFIG_USER_ONLY) */
3314
13eb76e0
FB
3315/* physical memory access (slow version, mainly for debug) */
3316#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3317int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3318 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3319{
3320 int l, flags;
3321 target_ulong page;
53a5960a 3322 void * p;
13eb76e0
FB
3323
3324 while (len > 0) {
3325 page = addr & TARGET_PAGE_MASK;
3326 l = (page + TARGET_PAGE_SIZE) - addr;
3327 if (l > len)
3328 l = len;
3329 flags = page_get_flags(page);
3330 if (!(flags & PAGE_VALID))
a68fe89c 3331 return -1;
13eb76e0
FB
3332 if (is_write) {
3333 if (!(flags & PAGE_WRITE))
a68fe89c 3334 return -1;
579a97f7 3335 /* XXX: this code should not depend on lock_user */
72fb7daa 3336 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3337 return -1;
72fb7daa
AJ
3338 memcpy(p, buf, l);
3339 unlock_user(p, addr, l);
13eb76e0
FB
3340 } else {
3341 if (!(flags & PAGE_READ))
a68fe89c 3342 return -1;
579a97f7 3343 /* XXX: this code should not depend on lock_user */
72fb7daa 3344 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3345 return -1;
72fb7daa 3346 memcpy(buf, p, l);
5b257578 3347 unlock_user(p, addr, 0);
13eb76e0
FB
3348 }
3349 len -= l;
3350 buf += l;
3351 addr += l;
3352 }
a68fe89c 3353 return 0;
13eb76e0 3354}
8df1cd07 3355
13eb76e0 3356#else
c227f099 3357void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3358 int len, int is_write)
3359{
3360 int l, io_index;
3361 uint8_t *ptr;
3362 uint32_t val;
c227f099 3363 target_phys_addr_t page;
2e12669a 3364 unsigned long pd;
92e873b9 3365 PhysPageDesc *p;
3b46e624 3366
13eb76e0
FB
3367 while (len > 0) {
3368 page = addr & TARGET_PAGE_MASK;
3369 l = (page + TARGET_PAGE_SIZE) - addr;
3370 if (l > len)
3371 l = len;
92e873b9 3372 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3373 if (!p) {
3374 pd = IO_MEM_UNASSIGNED;
3375 } else {
3376 pd = p->phys_offset;
3377 }
3b46e624 3378
13eb76e0 3379 if (is_write) {
3a7d929e 3380 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3381 target_phys_addr_t addr1 = addr;
13eb76e0 3382 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3383 if (p)
6c2934db 3384 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3385 /* XXX: could force cpu_single_env to NULL to avoid
3386 potential bugs */
6c2934db 3387 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3388 /* 32 bit write access */
c27004ec 3389 val = ldl_p(buf);
6c2934db 3390 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3391 l = 4;
6c2934db 3392 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3393 /* 16 bit write access */
c27004ec 3394 val = lduw_p(buf);
6c2934db 3395 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3396 l = 2;
3397 } else {
1c213d19 3398 /* 8 bit write access */
c27004ec 3399 val = ldub_p(buf);
6c2934db 3400 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3401 l = 1;
3402 }
3403 } else {
b448f2f3
FB
3404 unsigned long addr1;
3405 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3406 /* RAM case */
5579c7f3 3407 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3408 memcpy(ptr, buf, l);
3a7d929e
FB
3409 if (!cpu_physical_memory_is_dirty(addr1)) {
3410 /* invalidate code */
3411 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3412 /* set dirty bit */
f7c11b53
YT
3413 cpu_physical_memory_set_dirty_flags(
3414 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3415 }
13eb76e0
FB
3416 }
3417 } else {
5fafdf24 3418 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3419 !(pd & IO_MEM_ROMD)) {
c227f099 3420 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3421 /* I/O case */
3422 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3423 if (p)
6c2934db
AJ
3424 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3425 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3426 /* 32 bit read access */
6c2934db 3427 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3428 stl_p(buf, val);
13eb76e0 3429 l = 4;
6c2934db 3430 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3431 /* 16 bit read access */
6c2934db 3432 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3433 stw_p(buf, val);
13eb76e0
FB
3434 l = 2;
3435 } else {
1c213d19 3436 /* 8 bit read access */
6c2934db 3437 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3438 stb_p(buf, val);
13eb76e0
FB
3439 l = 1;
3440 }
3441 } else {
3442 /* RAM case */
5579c7f3 3443 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3444 (addr & ~TARGET_PAGE_MASK);
3445 memcpy(buf, ptr, l);
3446 }
3447 }
3448 len -= l;
3449 buf += l;
3450 addr += l;
3451 }
3452}
8df1cd07 3453
d0ecd2aa 3454/* used for ROM loading : can write in RAM and ROM */
c227f099 3455void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3456 const uint8_t *buf, int len)
3457{
3458 int l;
3459 uint8_t *ptr;
c227f099 3460 target_phys_addr_t page;
d0ecd2aa
FB
3461 unsigned long pd;
3462 PhysPageDesc *p;
3b46e624 3463
d0ecd2aa
FB
3464 while (len > 0) {
3465 page = addr & TARGET_PAGE_MASK;
3466 l = (page + TARGET_PAGE_SIZE) - addr;
3467 if (l > len)
3468 l = len;
3469 p = phys_page_find(page >> TARGET_PAGE_BITS);
3470 if (!p) {
3471 pd = IO_MEM_UNASSIGNED;
3472 } else {
3473 pd = p->phys_offset;
3474 }
3b46e624 3475
d0ecd2aa 3476 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3477 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3478 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3479 /* do nothing */
3480 } else {
3481 unsigned long addr1;
3482 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3483 /* ROM/RAM case */
5579c7f3 3484 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3485 memcpy(ptr, buf, l);
3486 }
3487 len -= l;
3488 buf += l;
3489 addr += l;
3490 }
3491}
3492
6d16c2f8
AL
3493typedef struct {
3494 void *buffer;
c227f099
AL
3495 target_phys_addr_t addr;
3496 target_phys_addr_t len;
6d16c2f8
AL
3497} BounceBuffer;
3498
3499static BounceBuffer bounce;
3500
ba223c29
AL
3501typedef struct MapClient {
3502 void *opaque;
3503 void (*callback)(void *opaque);
72cf2d4f 3504 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3505} MapClient;
3506
72cf2d4f
BS
3507static QLIST_HEAD(map_client_list, MapClient) map_client_list
3508 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3509
3510void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3511{
3512 MapClient *client = qemu_malloc(sizeof(*client));
3513
3514 client->opaque = opaque;
3515 client->callback = callback;
72cf2d4f 3516 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3517 return client;
3518}
3519
3520void cpu_unregister_map_client(void *_client)
3521{
3522 MapClient *client = (MapClient *)_client;
3523
72cf2d4f 3524 QLIST_REMOVE(client, link);
34d5e948 3525 qemu_free(client);
ba223c29
AL
3526}
3527
3528static void cpu_notify_map_clients(void)
3529{
3530 MapClient *client;
3531
72cf2d4f
BS
3532 while (!QLIST_EMPTY(&map_client_list)) {
3533 client = QLIST_FIRST(&map_client_list);
ba223c29 3534 client->callback(client->opaque);
34d5e948 3535 cpu_unregister_map_client(client);
ba223c29
AL
3536 }
3537}
3538
6d16c2f8
AL
3539/* Map a physical memory region into a host virtual address.
3540 * May map a subset of the requested range, given by and returned in *plen.
3541 * May return NULL if resources needed to perform the mapping are exhausted.
3542 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3543 * Use cpu_register_map_client() to know when retrying the map operation is
3544 * likely to succeed.
6d16c2f8 3545 */
c227f099
AL
3546void *cpu_physical_memory_map(target_phys_addr_t addr,
3547 target_phys_addr_t *plen,
6d16c2f8
AL
3548 int is_write)
3549{
c227f099
AL
3550 target_phys_addr_t len = *plen;
3551 target_phys_addr_t done = 0;
6d16c2f8
AL
3552 int l;
3553 uint8_t *ret = NULL;
3554 uint8_t *ptr;
c227f099 3555 target_phys_addr_t page;
6d16c2f8
AL
3556 unsigned long pd;
3557 PhysPageDesc *p;
3558 unsigned long addr1;
3559
3560 while (len > 0) {
3561 page = addr & TARGET_PAGE_MASK;
3562 l = (page + TARGET_PAGE_SIZE) - addr;
3563 if (l > len)
3564 l = len;
3565 p = phys_page_find(page >> TARGET_PAGE_BITS);
3566 if (!p) {
3567 pd = IO_MEM_UNASSIGNED;
3568 } else {
3569 pd = p->phys_offset;
3570 }
3571
3572 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3573 if (done || bounce.buffer) {
3574 break;
3575 }
3576 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3577 bounce.addr = addr;
3578 bounce.len = l;
3579 if (!is_write) {
3580 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3581 }
3582 ptr = bounce.buffer;
3583 } else {
3584 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3585 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3586 }
3587 if (!done) {
3588 ret = ptr;
3589 } else if (ret + done != ptr) {
3590 break;
3591 }
3592
3593 len -= l;
3594 addr += l;
3595 done += l;
3596 }
3597 *plen = done;
3598 return ret;
3599}
3600
3601/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3602 * Will also mark the memory as dirty if is_write == 1. access_len gives
3603 * the amount of memory that was actually read or written by the caller.
3604 */
c227f099
AL
3605void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3606 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3607{
3608 if (buffer != bounce.buffer) {
3609 if (is_write) {
c227f099 3610 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3611 while (access_len) {
3612 unsigned l;
3613 l = TARGET_PAGE_SIZE;
3614 if (l > access_len)
3615 l = access_len;
3616 if (!cpu_physical_memory_is_dirty(addr1)) {
3617 /* invalidate code */
3618 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3619 /* set dirty bit */
f7c11b53
YT
3620 cpu_physical_memory_set_dirty_flags(
3621 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3622 }
3623 addr1 += l;
3624 access_len -= l;
3625 }
3626 }
3627 return;
3628 }
3629 if (is_write) {
3630 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3631 }
f8a83245 3632 qemu_vfree(bounce.buffer);
6d16c2f8 3633 bounce.buffer = NULL;
ba223c29 3634 cpu_notify_map_clients();
6d16c2f8 3635}
d0ecd2aa 3636
8df1cd07 3637/* warning: addr must be aligned */
c227f099 3638uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3639{
3640 int io_index;
3641 uint8_t *ptr;
3642 uint32_t val;
3643 unsigned long pd;
3644 PhysPageDesc *p;
3645
3646 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3647 if (!p) {
3648 pd = IO_MEM_UNASSIGNED;
3649 } else {
3650 pd = p->phys_offset;
3651 }
3b46e624 3652
5fafdf24 3653 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3654 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3655 /* I/O case */
3656 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3657 if (p)
3658 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3659 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3660 } else {
3661 /* RAM case */
5579c7f3 3662 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3663 (addr & ~TARGET_PAGE_MASK);
3664 val = ldl_p(ptr);
3665 }
3666 return val;
3667}
3668
84b7b8e7 3669/* warning: addr must be aligned */
c227f099 3670uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3671{
3672 int io_index;
3673 uint8_t *ptr;
3674 uint64_t val;
3675 unsigned long pd;
3676 PhysPageDesc *p;
3677
3678 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3679 if (!p) {
3680 pd = IO_MEM_UNASSIGNED;
3681 } else {
3682 pd = p->phys_offset;
3683 }
3b46e624 3684
2a4188a3
FB
3685 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3686 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3687 /* I/O case */
3688 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3689 if (p)
3690 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3691#ifdef TARGET_WORDS_BIGENDIAN
3692 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3693 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3694#else
3695 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3696 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3697#endif
3698 } else {
3699 /* RAM case */
5579c7f3 3700 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3701 (addr & ~TARGET_PAGE_MASK);
3702 val = ldq_p(ptr);
3703 }
3704 return val;
3705}
3706
aab33094 3707/* XXX: optimize */
c227f099 3708uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3709{
3710 uint8_t val;
3711 cpu_physical_memory_read(addr, &val, 1);
3712 return val;
3713}
3714
3715/* XXX: optimize */
c227f099 3716uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3717{
3718 uint16_t val;
3719 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3720 return tswap16(val);
3721}
3722
8df1cd07
FB
3723/* warning: addr must be aligned. The ram page is not masked as dirty
3724 and the code inside is not invalidated. It is useful if the dirty
3725 bits are used to track modified PTEs */
c227f099 3726void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3727{
3728 int io_index;
3729 uint8_t *ptr;
3730 unsigned long pd;
3731 PhysPageDesc *p;
3732
3733 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3734 if (!p) {
3735 pd = IO_MEM_UNASSIGNED;
3736 } else {
3737 pd = p->phys_offset;
3738 }
3b46e624 3739
3a7d929e 3740 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3741 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3742 if (p)
3743 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3744 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3745 } else {
74576198 3746 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3747 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3748 stl_p(ptr, val);
74576198
AL
3749
3750 if (unlikely(in_migration)) {
3751 if (!cpu_physical_memory_is_dirty(addr1)) {
3752 /* invalidate code */
3753 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3754 /* set dirty bit */
f7c11b53
YT
3755 cpu_physical_memory_set_dirty_flags(
3756 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3757 }
3758 }
8df1cd07
FB
3759 }
3760}
3761
c227f099 3762void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3763{
3764 int io_index;
3765 uint8_t *ptr;
3766 unsigned long pd;
3767 PhysPageDesc *p;
3768
3769 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3770 if (!p) {
3771 pd = IO_MEM_UNASSIGNED;
3772 } else {
3773 pd = p->phys_offset;
3774 }
3b46e624 3775
bc98a7ef
JM
3776 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3777 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3778 if (p)
3779 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3780#ifdef TARGET_WORDS_BIGENDIAN
3781 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3782 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3783#else
3784 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3785 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3786#endif
3787 } else {
5579c7f3 3788 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3789 (addr & ~TARGET_PAGE_MASK);
3790 stq_p(ptr, val);
3791 }
3792}
3793
8df1cd07 3794/* warning: addr must be aligned */
c227f099 3795void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3796{
3797 int io_index;
3798 uint8_t *ptr;
3799 unsigned long pd;
3800 PhysPageDesc *p;
3801
3802 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3803 if (!p) {
3804 pd = IO_MEM_UNASSIGNED;
3805 } else {
3806 pd = p->phys_offset;
3807 }
3b46e624 3808
3a7d929e 3809 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3810 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3811 if (p)
3812 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3813 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3814 } else {
3815 unsigned long addr1;
3816 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3817 /* RAM case */
5579c7f3 3818 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3819 stl_p(ptr, val);
3a7d929e
FB
3820 if (!cpu_physical_memory_is_dirty(addr1)) {
3821 /* invalidate code */
3822 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3823 /* set dirty bit */
f7c11b53
YT
3824 cpu_physical_memory_set_dirty_flags(addr1,
3825 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3826 }
8df1cd07
FB
3827 }
3828}
3829
aab33094 3830/* XXX: optimize */
c227f099 3831void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3832{
3833 uint8_t v = val;
3834 cpu_physical_memory_write(addr, &v, 1);
3835}
3836
3837/* XXX: optimize */
c227f099 3838void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3839{
3840 uint16_t v = tswap16(val);
3841 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3842}
3843
3844/* XXX: optimize */
c227f099 3845void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3846{
3847 val = tswap64(val);
3848 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3849}
3850
5e2972fd 3851/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3852int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3853 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3854{
3855 int l;
c227f099 3856 target_phys_addr_t phys_addr;
9b3c35e0 3857 target_ulong page;
13eb76e0
FB
3858
3859 while (len > 0) {
3860 page = addr & TARGET_PAGE_MASK;
3861 phys_addr = cpu_get_phys_page_debug(env, page);
3862 /* if no physical page mapped, return an error */
3863 if (phys_addr == -1)
3864 return -1;
3865 l = (page + TARGET_PAGE_SIZE) - addr;
3866 if (l > len)
3867 l = len;
5e2972fd 3868 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3869 if (is_write)
3870 cpu_physical_memory_write_rom(phys_addr, buf, l);
3871 else
5e2972fd 3872 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3873 len -= l;
3874 buf += l;
3875 addr += l;
3876 }
3877 return 0;
3878}
a68fe89c 3879#endif
13eb76e0 3880
2e70f6ef
PB
3881/* in deterministic execution mode, instructions doing device I/Os
3882 must be at the end of the TB */
3883void cpu_io_recompile(CPUState *env, void *retaddr)
3884{
3885 TranslationBlock *tb;
3886 uint32_t n, cflags;
3887 target_ulong pc, cs_base;
3888 uint64_t flags;
3889
3890 tb = tb_find_pc((unsigned long)retaddr);
3891 if (!tb) {
3892 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3893 retaddr);
3894 }
3895 n = env->icount_decr.u16.low + tb->icount;
3896 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3897 /* Calculate how many instructions had been executed before the fault
bf20dc07 3898 occurred. */
2e70f6ef
PB
3899 n = n - env->icount_decr.u16.low;
3900 /* Generate a new TB ending on the I/O insn. */
3901 n++;
3902 /* On MIPS and SH, delay slot instructions can only be restarted if
3903 they were already the first instruction in the TB. If this is not
bf20dc07 3904 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3905 branch. */
3906#if defined(TARGET_MIPS)
3907 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3908 env->active_tc.PC -= 4;
3909 env->icount_decr.u16.low++;
3910 env->hflags &= ~MIPS_HFLAG_BMASK;
3911 }
3912#elif defined(TARGET_SH4)
3913 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3914 && n > 1) {
3915 env->pc -= 2;
3916 env->icount_decr.u16.low++;
3917 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3918 }
3919#endif
3920 /* This should never happen. */
3921 if (n > CF_COUNT_MASK)
3922 cpu_abort(env, "TB too big during recompile");
3923
3924 cflags = n | CF_LAST_IO;
3925 pc = tb->pc;
3926 cs_base = tb->cs_base;
3927 flags = tb->flags;
3928 tb_phys_invalidate(tb, -1);
3929 /* FIXME: In theory this could raise an exception. In practice
3930 we have already translated the block once so it's probably ok. */
3931 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3932 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3933 the first in the TB) then we end up generating a whole new TB and
3934 repeating the fault, which is horribly inefficient.
3935 Better would be to execute just this insn uncached, or generate a
3936 second new TB. */
3937 cpu_resume_from_signal(env, NULL);
3938}
3939
b3755a91
PB
3940#if !defined(CONFIG_USER_ONLY)
3941
e3db7226
FB
3942void dump_exec_info(FILE *f,
3943 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3944{
3945 int i, target_code_size, max_target_code_size;
3946 int direct_jmp_count, direct_jmp2_count, cross_page;
3947 TranslationBlock *tb;
3b46e624 3948
e3db7226
FB
3949 target_code_size = 0;
3950 max_target_code_size = 0;
3951 cross_page = 0;
3952 direct_jmp_count = 0;
3953 direct_jmp2_count = 0;
3954 for(i = 0; i < nb_tbs; i++) {
3955 tb = &tbs[i];
3956 target_code_size += tb->size;
3957 if (tb->size > max_target_code_size)
3958 max_target_code_size = tb->size;
3959 if (tb->page_addr[1] != -1)
3960 cross_page++;
3961 if (tb->tb_next_offset[0] != 0xffff) {
3962 direct_jmp_count++;
3963 if (tb->tb_next_offset[1] != 0xffff) {
3964 direct_jmp2_count++;
3965 }
3966 }
3967 }
3968 /* XXX: avoid using doubles ? */
57fec1fe 3969 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3970 cpu_fprintf(f, "gen code size %ld/%ld\n",
3971 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3972 cpu_fprintf(f, "TB count %d/%d\n",
3973 nb_tbs, code_gen_max_blocks);
5fafdf24 3974 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3975 nb_tbs ? target_code_size / nb_tbs : 0,
3976 max_target_code_size);
5fafdf24 3977 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3978 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3979 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3980 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3981 cross_page,
e3db7226
FB
3982 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3983 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3984 direct_jmp_count,
e3db7226
FB
3985 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3986 direct_jmp2_count,
3987 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3988 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3989 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3990 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3991 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3992 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3993}
3994
61382a50
FB
3995#define MMUSUFFIX _cmmu
3996#define GETPC() NULL
3997#define env cpu_single_env
b769d8fe 3998#define SOFTMMU_CODE_ACCESS
61382a50
FB
3999
4000#define SHIFT 0
4001#include "softmmu_template.h"
4002
4003#define SHIFT 1
4004#include "softmmu_template.h"
4005
4006#define SHIFT 2
4007#include "softmmu_template.h"
4008
4009#define SHIFT 3
4010#include "softmmu_template.h"
4011
4012#undef env
4013
4014#endif