]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
[TCP]: "Annotate" another fackets_out state reset
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 88int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
1da177e4
LT
108
109#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 113#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 114
4dc2665e
IJ
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
1da177e4 117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 119
e905a9ed 120/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 121 * real world.
e905a9ed 122 */
40efc6fa
SH
123static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
1da177e4 125{
463c84b9 126 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 128 unsigned int len;
1da177e4 129
e905a9ed 130 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
ff9b5e0f 135 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
9c70220b 144 len += skb->data - skb_transport_header(skb);
1da177e4
LT
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
463c84b9
ACM
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
1da177e4 159 if (len == lss) {
463c84b9 160 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
161 return;
162 }
163 }
1ef9696c
AK
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
167 }
168}
169
463c84b9 170static void tcp_incr_quickack(struct sock *sk)
1da177e4 171{
463c84b9
ACM
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
174
175 if (quickacks==0)
176 quickacks=2;
463c84b9
ACM
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
179}
180
463c84b9 181void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 182{
463c84b9
ACM
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
463c84b9 193static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 194{
463c84b9
ACM
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
197}
198
bdf1ee5d
IJ
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246}
247
1da177e4
LT
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
caa20d9a 283 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
9e412ba7 288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 289{
9e412ba7 290 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
463c84b9 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303}
304
9e412ba7 305static void tcp_grow_window(struct sock *sk,
40efc6fa 306 struct sk_buff *skb)
1da177e4 307{
9e412ba7
IJ
308 struct tcp_sock *tp = tcp_sk(sk);
309
1da177e4
LT
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
9e412ba7 322 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 326 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
327 }
328 }
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 339 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
caa20d9a 348/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
349 * established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
1da177e4 384/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 385static void tcp_clamp_window(struct sock *sk)
1da177e4 386{
9e412ba7 387 struct tcp_sock *tp = tcp_sk(sk);
6687e988 388 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 389
6687e988 390 icsk->icsk_ack.quick = 0;
1da177e4 391
326f36e9
JH
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
1da177e4 398 }
326f36e9 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
401}
402
40efc6fa
SH
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
1da177e4
LT
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
31f34269 449 * non-timestamp case, we do not smooth things out
caa20d9a 450 * else with timestamps disabled convergence takes too
1da177e4
LT
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
caa20d9a 459 /* No previous measure. */
1da177e4
LT
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
463c84b9 482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 483{
463c84b9 484 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
463c84b9 487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
e905a9ed 500
1da177e4
LT
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
e905a9ed 503
1da177e4
LT
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
e905a9ed 508
1da177e4
LT
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
6fcf9412
JH
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
e905a9ed 543
1da177e4
LT
544new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
9e412ba7 559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 560{
9e412ba7 561 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 562 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
563 u32 now;
564
463c84b9 565 inet_csk_schedule_ack(sk);
1da177e4 566
463c84b9 567 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
568
569 tcp_rcv_rtt_measure(tp);
e905a9ed 570
1da177e4
LT
571 now = tcp_time_stamp;
572
463c84b9 573 if (!icsk->icsk_ack.ato) {
1da177e4
LT
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
463c84b9
ACM
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 579 } else {
463c84b9 580 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
463c84b9
ACM
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
caa20d9a 590 /* Too long gap. Apparently sender failed to
1da177e4
LT
591 * restart window, so that we send ACKs quickly.
592 */
463c84b9 593 tcp_incr_quickack(sk);
1da177e4
LT
594 sk_stream_mem_reclaim(sk);
595 }
596 }
463c84b9 597 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
9e412ba7 602 tcp_grow_window(sk, skb);
1da177e4
LT
603}
604
05bb1fad
DM
605static u32 tcp_rto_min(struct sock *sk)
606{
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
5c127c58 610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613}
614
1da177e4
LT
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
2d2abbab 624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 625{
6687e988 626 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
627 long m = mrtt; /* RTT */
628
1da177e4
LT
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
e905a9ed 632 * This is designed to be as fast as possible
1da177e4
LT
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
31f34269 640 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
2de979bd 645 if (m == 0)
1da177e4
LT
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
05bb1fad 676 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
683 tp->rtt_seq = tp->snd_nxt;
684 }
1da177e4
LT
685}
686
687/* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
463c84b9 690static inline void tcp_set_rto(struct sock *sk)
1da177e4 691{
463c84b9 692 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 701 * ACKs in some circumstances.
1da177e4 702 */
463c84b9 703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
caa20d9a 708 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
709 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
463c84b9 715static inline void tcp_bound_rto(struct sock *sk)
1da177e4 716{
463c84b9
ACM
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
719}
720
721/* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
6687e988 736 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
737 int m;
738
6687e988 739 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 788 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813}
814
26722873
DM
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
1da177e4
LT
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
c1b4a7e6 829 if (tp->mss_cache > 1460)
1da177e4
LT
830 cwnd = 2;
831 else
c1b4a7e6 832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
40efc6fa 837/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
839{
840 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 841 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
e01f9d77 845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 846 tp->undo_marker = 0;
3cfe3baa
IJ
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858}
859
e60402d0
IJ
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866 tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending DSACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872 tp->rx_opt.sack_ok |= 4;
873}
874
1da177e4
LT
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 896 tcp_disable_fack(tp);
1da177e4
LT
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 912 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
463c84b9
ACM
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
945 }
946}
947
6687e988
ACM
948static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
1da177e4 950{
6687e988 951 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
e60402d0 958 else if (tcp_is_reno(tp))
1da177e4 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
e60402d0 960 else if (tcp_is_fack(tp))
1da177e4
LT
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971#endif
e60402d0 972 tcp_disable_fack(tp);
1da177e4
LT
973 }
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
5b3c9882
IJ
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, DSACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1da177e4 1071 */
5b3c9882
IJ
1072static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074{
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for DSACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107}
1108
1109
d06e021d
DM
1110static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1111 struct tcp_sack_block_wire *sp, int num_sacks,
1112 u32 prior_snd_una)
1113{
1114 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1115 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1116 int dup_sack = 0;
1117
1118 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1119 dup_sack = 1;
e60402d0 1120 tcp_dsack_seen(tp);
d06e021d
DM
1121 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1122 } else if (num_sacks > 1) {
1123 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1124 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1125
1126 if (!after(end_seq_0, end_seq_1) &&
1127 !before(start_seq_0, start_seq_1)) {
1128 dup_sack = 1;
e60402d0 1129 tcp_dsack_seen(tp);
d06e021d
DM
1130 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1131 }
1132 }
1133
1134 /* D-SACK for already forgotten data... Do dumb counting. */
1135 if (dup_sack &&
1136 !after(end_seq_0, prior_snd_una) &&
1137 after(end_seq_0, tp->undo_marker))
1138 tp->undo_retrans--;
1139
1140 return dup_sack;
1141}
1142
1da177e4
LT
1143static int
1144tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1145{
6687e988 1146 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1147 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1148 unsigned char *ptr = (skb_transport_header(ack_skb) +
1149 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1150 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1151 struct sk_buff *cached_skb;
1da177e4
LT
1152 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1153 int reord = tp->packets_out;
1154 int prior_fackets;
1155 u32 lost_retrans = 0;
1156 int flag = 0;
7769f406 1157 int found_dup_sack = 0;
fda03fbb 1158 int cached_fack_count;
1da177e4 1159 int i;
fda03fbb 1160 int first_sack_index;
1da177e4 1161
d738cd8f 1162 if (!tp->sacked_out) {
de83c058
IJ
1163 if (WARN_ON(tp->fackets_out))
1164 tp->fackets_out = 0;
d738cd8f
IJ
1165 tp->highest_sack = tp->snd_una;
1166 }
1da177e4
LT
1167 prior_fackets = tp->fackets_out;
1168
d06e021d
DM
1169 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1170 num_sacks, prior_snd_una);
1171 if (found_dup_sack)
49ff4bb4 1172 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1173
1174 /* Eliminate too old ACKs, but take into
1175 * account more or less fresh ones, they can
1176 * contain valid SACK info.
1177 */
1178 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1179 return 0;
1180
6a438bbe
SH
1181 /* SACK fastpath:
1182 * if the only SACK change is the increase of the end_seq of
1183 * the first block then only apply that SACK block
1184 * and use retrans queue hinting otherwise slowpath */
1185 flag = 1;
6f74651a
BE
1186 for (i = 0; i < num_sacks; i++) {
1187 __be32 start_seq = sp[i].start_seq;
1188 __be32 end_seq = sp[i].end_seq;
6a438bbe 1189
6f74651a 1190 if (i == 0) {
6a438bbe
SH
1191 if (tp->recv_sack_cache[i].start_seq != start_seq)
1192 flag = 0;
1193 } else {
1194 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1195 (tp->recv_sack_cache[i].end_seq != end_seq))
1196 flag = 0;
1197 }
1198 tp->recv_sack_cache[i].start_seq = start_seq;
1199 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1200 }
8a3c3a97
BE
1201 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1202 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1203 tp->recv_sack_cache[i].start_seq = 0;
1204 tp->recv_sack_cache[i].end_seq = 0;
1205 }
6a438bbe 1206
fda03fbb 1207 first_sack_index = 0;
6a438bbe
SH
1208 if (flag)
1209 num_sacks = 1;
1210 else {
1211 int j;
1212 tp->fastpath_skb_hint = NULL;
1213
1214 /* order SACK blocks to allow in order walk of the retrans queue */
1215 for (i = num_sacks-1; i > 0; i--) {
1216 for (j = 0; j < i; j++){
1217 if (after(ntohl(sp[j].start_seq),
1218 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1219 struct tcp_sack_block_wire tmp;
1220
1221 tmp = sp[j];
1222 sp[j] = sp[j+1];
1223 sp[j+1] = tmp;
fda03fbb
BE
1224
1225 /* Track where the first SACK block goes to */
1226 if (j == first_sack_index)
1227 first_sack_index = j+1;
6a438bbe
SH
1228 }
1229
1230 }
1231 }
1232 }
1233
1234 /* clear flag as used for different purpose in following code */
1235 flag = 0;
1236
fda03fbb
BE
1237 /* Use SACK fastpath hint if valid */
1238 cached_skb = tp->fastpath_skb_hint;
1239 cached_fack_count = tp->fastpath_cnt_hint;
1240 if (!cached_skb) {
fe067e8a 1241 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1242 cached_fack_count = 0;
1243 }
1244
6a438bbe
SH
1245 for (i=0; i<num_sacks; i++, sp++) {
1246 struct sk_buff *skb;
1247 __u32 start_seq = ntohl(sp->start_seq);
1248 __u32 end_seq = ntohl(sp->end_seq);
1249 int fack_count;
7769f406 1250 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1251
18f02545
IJ
1252 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1253 if (dup_sack) {
1254 if (!tp->undo_marker)
1255 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1256 else
1257 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
93e68020
IJ
1258 } else {
1259 /* Don't count olds caused by ACK reordering */
1260 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1261 !after(end_seq, tp->snd_una))
1262 continue;
18f02545 1263 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
93e68020 1264 }
5b3c9882 1265 continue;
18f02545 1266 }
5b3c9882 1267
fda03fbb
BE
1268 skb = cached_skb;
1269 fack_count = cached_fack_count;
1da177e4
LT
1270
1271 /* Event "B" in the comment above. */
1272 if (after(end_seq, tp->high_seq))
1273 flag |= FLAG_DATA_LOST;
1274
fe067e8a 1275 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1276 int in_sack, pcount;
1277 u8 sacked;
1da177e4 1278
fe067e8a
DM
1279 if (skb == tcp_send_head(sk))
1280 break;
1281
fda03fbb
BE
1282 cached_skb = skb;
1283 cached_fack_count = fack_count;
1284 if (i == first_sack_index) {
1285 tp->fastpath_skb_hint = skb;
1286 tp->fastpath_cnt_hint = fack_count;
1287 }
6a438bbe 1288
1da177e4
LT
1289 /* The retransmission queue is always in order, so
1290 * we can short-circuit the walk early.
1291 */
6475be16 1292 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1293 break;
1294
3c05d92e
HX
1295 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1296 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1297
6475be16
DM
1298 pcount = tcp_skb_pcount(skb);
1299
3c05d92e
HX
1300 if (pcount > 1 && !in_sack &&
1301 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1302 unsigned int pkt_len;
1303
3c05d92e
HX
1304 in_sack = !after(start_seq,
1305 TCP_SKB_CB(skb)->seq);
1306
1307 if (!in_sack)
6475be16
DM
1308 pkt_len = (start_seq -
1309 TCP_SKB_CB(skb)->seq);
1310 else
1311 pkt_len = (end_seq -
1312 TCP_SKB_CB(skb)->seq);
7967168c 1313 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1314 break;
1315 pcount = tcp_skb_pcount(skb);
1316 }
1317
1318 fack_count += pcount;
1da177e4 1319
6475be16
DM
1320 sacked = TCP_SKB_CB(skb)->sacked;
1321
1da177e4
LT
1322 /* Account D-SACK for retransmitted packet. */
1323 if ((dup_sack && in_sack) &&
1324 (sacked & TCPCB_RETRANS) &&
1325 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1326 tp->undo_retrans--;
1327
1328 /* The frame is ACKed. */
1329 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1330 if (sacked&TCPCB_RETRANS) {
1331 if ((dup_sack && in_sack) &&
1332 (sacked&TCPCB_SACKED_ACKED))
1333 reord = min(fack_count, reord);
1334 } else {
1335 /* If it was in a hole, we detected reordering. */
1336 if (fack_count < prior_fackets &&
1337 !(sacked&TCPCB_SACKED_ACKED))
1338 reord = min(fack_count, reord);
1339 }
1340
1341 /* Nothing to do; acked frame is about to be dropped. */
1342 continue;
1343 }
1344
1345 if ((sacked&TCPCB_SACKED_RETRANS) &&
1346 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1347 (!lost_retrans || after(end_seq, lost_retrans)))
1348 lost_retrans = end_seq;
1349
1350 if (!in_sack)
1351 continue;
1352
1353 if (!(sacked&TCPCB_SACKED_ACKED)) {
1354 if (sacked & TCPCB_SACKED_RETRANS) {
1355 /* If the segment is not tagged as lost,
1356 * we do not clear RETRANS, believing
1357 * that retransmission is still in flight.
1358 */
1359 if (sacked & TCPCB_LOST) {
1360 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1361 tp->lost_out -= tcp_skb_pcount(skb);
1362 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1363
1364 /* clear lost hint */
1365 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1366 }
1367 } else {
1368 /* New sack for not retransmitted frame,
1369 * which was in hole. It is reordering.
1370 */
1371 if (!(sacked & TCPCB_RETRANS) &&
1372 fack_count < prior_fackets)
1373 reord = min(fack_count, reord);
1374
1375 if (sacked & TCPCB_LOST) {
1376 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1377 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1378
1379 /* clear lost hint */
1380 tp->retransmit_skb_hint = NULL;
1da177e4 1381 }
4dc2665e
IJ
1382 /* SACK enhanced F-RTO detection.
1383 * Set flag if and only if non-rexmitted
1384 * segments below frto_highmark are
1385 * SACKed (RFC4138; Appendix B).
1386 * Clearing correct due to in-order walk
1387 */
1388 if (after(end_seq, tp->frto_highmark)) {
1389 flag &= ~FLAG_ONLY_ORIG_SACKED;
1390 } else {
1391 if (!(sacked & TCPCB_RETRANS))
1392 flag |= FLAG_ONLY_ORIG_SACKED;
1393 }
1da177e4
LT
1394 }
1395
1396 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1397 flag |= FLAG_DATA_SACKED;
1398 tp->sacked_out += tcp_skb_pcount(skb);
1399
1400 if (fack_count > tp->fackets_out)
1401 tp->fackets_out = fack_count;
d738cd8f
IJ
1402
1403 if (after(TCP_SKB_CB(skb)->seq,
1404 tp->highest_sack))
1405 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1406 } else {
1407 if (dup_sack && (sacked&TCPCB_RETRANS))
1408 reord = min(fack_count, reord);
1409 }
1410
1411 /* D-SACK. We can detect redundant retransmission
1412 * in S|R and plain R frames and clear it.
1413 * undo_retrans is decreased above, L|R frames
1414 * are accounted above as well.
1415 */
1416 if (dup_sack &&
1417 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1418 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1419 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1420 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1421 }
1422 }
1423 }
1424
1425 /* Check for lost retransmit. This superb idea is
1426 * borrowed from "ratehalving". Event "C".
1427 * Later note: FACK people cheated me again 8),
1428 * we have to account for reordering! Ugly,
1429 * but should help.
1430 */
6687e988 1431 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1432 struct sk_buff *skb;
1433
fe067e8a
DM
1434 tcp_for_write_queue(skb, sk) {
1435 if (skb == tcp_send_head(sk))
1436 break;
1da177e4
LT
1437 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1438 break;
1439 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1440 continue;
1441 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1442 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
e60402d0 1443 (tcp_is_fack(tp) ||
1da177e4
LT
1444 !before(lost_retrans,
1445 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1446 tp->mss_cache))) {
1da177e4
LT
1447 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1448 tp->retrans_out -= tcp_skb_pcount(skb);
1449
6a438bbe
SH
1450 /* clear lost hint */
1451 tp->retransmit_skb_hint = NULL;
1452
1da177e4
LT
1453 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1454 tp->lost_out += tcp_skb_pcount(skb);
1455 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1456 flag |= FLAG_DATA_SACKED;
1457 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1458 }
1459 }
1460 }
1461 }
1462
86426c22
IJ
1463 tcp_verify_left_out(tp);
1464
288035f9 1465 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1466 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1467 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1468
1469#if FASTRETRANS_DEBUG > 0
1470 BUG_TRAP((int)tp->sacked_out >= 0);
1471 BUG_TRAP((int)tp->lost_out >= 0);
1472 BUG_TRAP((int)tp->retrans_out >= 0);
1473 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1474#endif
1475 return flag;
1476}
1477
95eacd27
IJ
1478/* If we receive more dupacks than we expected counting segments
1479 * in assumption of absent reordering, interpret this as reordering.
1480 * The only another reason could be bug in receiver TCP.
30935cf4 1481 */
4ddf6676
IJ
1482static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1483{
1484 struct tcp_sock *tp = tcp_sk(sk);
1485 u32 holes;
1486
1487 holes = max(tp->lost_out, 1U);
1488 holes = min(holes, tp->packets_out);
1489
1490 if ((tp->sacked_out + holes) > tp->packets_out) {
1491 tp->sacked_out = tp->packets_out - holes;
1492 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1493 }
1494}
1495
1496/* Emulate SACKs for SACKless connection: account for a new dupack. */
1497
1498static void tcp_add_reno_sack(struct sock *sk)
1499{
1500 struct tcp_sock *tp = tcp_sk(sk);
1501 tp->sacked_out++;
1502 tcp_check_reno_reordering(sk, 0);
005903bc 1503 tcp_verify_left_out(tp);
4ddf6676
IJ
1504}
1505
1506/* Account for ACK, ACKing some data in Reno Recovery phase. */
1507
1508static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1509{
1510 struct tcp_sock *tp = tcp_sk(sk);
1511
1512 if (acked > 0) {
1513 /* One ACK acked hole. The rest eat duplicate ACKs. */
1514 if (acked-1 >= tp->sacked_out)
1515 tp->sacked_out = 0;
1516 else
1517 tp->sacked_out -= acked-1;
1518 }
1519 tcp_check_reno_reordering(sk, acked);
005903bc 1520 tcp_verify_left_out(tp);
4ddf6676
IJ
1521}
1522
1523static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1524{
1525 tp->sacked_out = 0;
4ddf6676
IJ
1526}
1527
95eacd27
IJ
1528/* F-RTO can only be used if TCP has never retransmitted anything other than
1529 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1530 */
46d0de4e 1531int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1532{
1533 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1534 struct sk_buff *skb;
1535
575ee714 1536 if (!sysctl_tcp_frto)
46d0de4e 1537 return 0;
bdaae17d 1538
4dc2665e
IJ
1539 if (IsSackFrto())
1540 return 1;
1541
46d0de4e
IJ
1542 /* Avoid expensive walking of rexmit queue if possible */
1543 if (tp->retrans_out > 1)
1544 return 0;
1545
fe067e8a
DM
1546 skb = tcp_write_queue_head(sk);
1547 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1548 tcp_for_write_queue_from(skb, sk) {
1549 if (skb == tcp_send_head(sk))
1550 break;
46d0de4e
IJ
1551 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1552 return 0;
1553 /* Short-circuit when first non-SACKed skb has been checked */
1554 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1555 break;
1556 }
1557 return 1;
bdaae17d
IJ
1558}
1559
30935cf4
IJ
1560/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1561 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1562 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1563 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1564 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1565 * bits are handled if the Loss state is really to be entered (in
1566 * tcp_enter_frto_loss).
7487c48c
IJ
1567 *
1568 * Do like tcp_enter_loss() would; when RTO expires the second time it
1569 * does:
1570 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1571 */
1572void tcp_enter_frto(struct sock *sk)
1573{
6687e988 1574 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1575 struct tcp_sock *tp = tcp_sk(sk);
1576 struct sk_buff *skb;
1577
7487c48c 1578 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1579 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1580 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1581 !icsk->icsk_retransmits)) {
6687e988 1582 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1583 /* Our state is too optimistic in ssthresh() call because cwnd
1584 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1585 * recovery has not yet completed. Pattern would be this: RTO,
1586 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1587 * up here twice).
1588 * RFC4138 should be more specific on what to do, even though
1589 * RTO is quite unlikely to occur after the first Cumulative ACK
1590 * due to back-off and complexity of triggering events ...
1591 */
1592 if (tp->frto_counter) {
1593 u32 stored_cwnd;
1594 stored_cwnd = tp->snd_cwnd;
1595 tp->snd_cwnd = 2;
1596 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1597 tp->snd_cwnd = stored_cwnd;
1598 } else {
1599 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1600 }
1601 /* ... in theory, cong.control module could do "any tricks" in
1602 * ssthresh(), which means that ca_state, lost bits and lost_out
1603 * counter would have to be faked before the call occurs. We
1604 * consider that too expensive, unlikely and hacky, so modules
1605 * using these in ssthresh() must deal these incompatibility
1606 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1607 */
6687e988 1608 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1609 }
1610
1da177e4
LT
1611 tp->undo_marker = tp->snd_una;
1612 tp->undo_retrans = 0;
1613
fe067e8a 1614 skb = tcp_write_queue_head(sk);
009a2e3e
IJ
1615 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1616 tp->undo_marker = 0;
d1a54c6a 1617 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1618 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1619 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1620 }
005903bc 1621 tcp_verify_left_out(tp);
1da177e4 1622
4dc2665e
IJ
1623 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1624 * The last condition is necessary at least in tp->frto_counter case.
1625 */
1626 if (IsSackFrto() && (tp->frto_counter ||
1627 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1628 after(tp->high_seq, tp->snd_una)) {
1629 tp->frto_highmark = tp->high_seq;
1630 } else {
1631 tp->frto_highmark = tp->snd_nxt;
1632 }
7b0eb22b
IJ
1633 tcp_set_ca_state(sk, TCP_CA_Disorder);
1634 tp->high_seq = tp->snd_nxt;
7487c48c 1635 tp->frto_counter = 1;
1da177e4
LT
1636}
1637
1638/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1639 * which indicates that we should follow the traditional RTO recovery,
1640 * i.e. mark everything lost and do go-back-N retransmission.
1641 */
d1a54c6a 1642static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1643{
1644 struct tcp_sock *tp = tcp_sk(sk);
1645 struct sk_buff *skb;
1da177e4 1646
1da177e4 1647 tp->lost_out = 0;
d1a54c6a 1648 tp->retrans_out = 0;
e60402d0 1649 if (tcp_is_reno(tp))
9bff40fd 1650 tcp_reset_reno_sack(tp);
1da177e4 1651
fe067e8a
DM
1652 tcp_for_write_queue(skb, sk) {
1653 if (skb == tcp_send_head(sk))
1654 break;
d1a54c6a
IJ
1655 /*
1656 * Count the retransmission made on RTO correctly (only when
1657 * waiting for the first ACK and did not get it)...
1658 */
1659 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1660 /* For some reason this R-bit might get cleared? */
1661 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1662 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1663 /* ...enter this if branch just for the first segment */
1664 flag |= FLAG_DATA_ACKED;
1665 } else {
009a2e3e
IJ
1666 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1667 tp->undo_marker = 0;
d1a54c6a
IJ
1668 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1669 }
1da177e4 1670
9bff40fd
IJ
1671 /* Don't lost mark skbs that were fwd transmitted after RTO */
1672 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1673 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1674 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1675 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1676 }
1677 }
005903bc 1678 tcp_verify_left_out(tp);
1da177e4 1679
95c4922b 1680 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1681 tp->snd_cwnd_cnt = 0;
1682 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
1683 tp->frto_counter = 0;
1684
1685 tp->reordering = min_t(unsigned int, tp->reordering,
1686 sysctl_tcp_reordering);
6687e988 1687 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1688 tp->high_seq = tp->frto_highmark;
1689 TCP_ECN_queue_cwr(tp);
6a438bbe 1690
b7689205 1691 tcp_clear_retrans_hints_partial(tp);
1da177e4
LT
1692}
1693
1694void tcp_clear_retrans(struct tcp_sock *tp)
1695{
1da177e4
LT
1696 tp->retrans_out = 0;
1697
1698 tp->fackets_out = 0;
1699 tp->sacked_out = 0;
1700 tp->lost_out = 0;
1701
1702 tp->undo_marker = 0;
1703 tp->undo_retrans = 0;
1704}
1705
1706/* Enter Loss state. If "how" is not zero, forget all SACK information
1707 * and reset tags completely, otherwise preserve SACKs. If receiver
1708 * dropped its ofo queue, we will know this due to reneging detection.
1709 */
1710void tcp_enter_loss(struct sock *sk, int how)
1711{
6687e988 1712 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1713 struct tcp_sock *tp = tcp_sk(sk);
1714 struct sk_buff *skb;
1715 int cnt = 0;
1716
1717 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1718 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1719 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1720 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1721 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1722 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1723 }
1724 tp->snd_cwnd = 1;
1725 tp->snd_cwnd_cnt = 0;
1726 tp->snd_cwnd_stamp = tcp_time_stamp;
1727
9772efb9 1728 tp->bytes_acked = 0;
1da177e4
LT
1729 tcp_clear_retrans(tp);
1730
b7689205
IJ
1731 if (!how) {
1732 /* Push undo marker, if it was plain RTO and nothing
1733 * was retransmitted. */
1da177e4 1734 tp->undo_marker = tp->snd_una;
b7689205
IJ
1735 tcp_clear_retrans_hints_partial(tp);
1736 } else {
1737 tcp_clear_all_retrans_hints(tp);
1738 }
1da177e4 1739
fe067e8a
DM
1740 tcp_for_write_queue(skb, sk) {
1741 if (skb == tcp_send_head(sk))
1742 break;
1da177e4
LT
1743 cnt += tcp_skb_pcount(skb);
1744 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1745 tp->undo_marker = 0;
1746 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1747 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1748 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1749 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1750 tp->lost_out += tcp_skb_pcount(skb);
1751 } else {
1752 tp->sacked_out += tcp_skb_pcount(skb);
1753 tp->fackets_out = cnt;
1754 }
1755 }
005903bc 1756 tcp_verify_left_out(tp);
1da177e4
LT
1757
1758 tp->reordering = min_t(unsigned int, tp->reordering,
1759 sysctl_tcp_reordering);
6687e988 1760 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1761 tp->high_seq = tp->snd_nxt;
1762 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1763 /* Abort FRTO algorithm if one is in progress */
1764 tp->frto_counter = 0;
1da177e4
LT
1765}
1766
463c84b9 1767static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1768{
1769 struct sk_buff *skb;
1770
1771 /* If ACK arrived pointing to a remembered SACK,
1772 * it means that our remembered SACKs do not reflect
1773 * real state of receiver i.e.
1774 * receiver _host_ is heavily congested (or buggy).
1775 * Do processing similar to RTO timeout.
1776 */
fe067e8a 1777 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1778 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1779 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1780 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1781
1782 tcp_enter_loss(sk, 1);
6687e988 1783 icsk->icsk_retransmits++;
fe067e8a 1784 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1785 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1786 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1787 return 1;
1788 }
1789 return 0;
1790}
1791
1792static inline int tcp_fackets_out(struct tcp_sock *tp)
1793{
e60402d0 1794 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1da177e4
LT
1795}
1796
463c84b9 1797static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1798{
463c84b9 1799 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1800}
1801
9e412ba7 1802static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1803{
9e412ba7
IJ
1804 struct tcp_sock *tp = tcp_sk(sk);
1805
1da177e4 1806 return tp->packets_out &&
fe067e8a 1807 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1808}
1809
1810/* Linux NewReno/SACK/FACK/ECN state machine.
1811 * --------------------------------------
1812 *
1813 * "Open" Normal state, no dubious events, fast path.
1814 * "Disorder" In all the respects it is "Open",
1815 * but requires a bit more attention. It is entered when
1816 * we see some SACKs or dupacks. It is split of "Open"
1817 * mainly to move some processing from fast path to slow one.
1818 * "CWR" CWND was reduced due to some Congestion Notification event.
1819 * It can be ECN, ICMP source quench, local device congestion.
1820 * "Recovery" CWND was reduced, we are fast-retransmitting.
1821 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1822 *
1823 * tcp_fastretrans_alert() is entered:
1824 * - each incoming ACK, if state is not "Open"
1825 * - when arrived ACK is unusual, namely:
1826 * * SACK
1827 * * Duplicate ACK.
1828 * * ECN ECE.
1829 *
1830 * Counting packets in flight is pretty simple.
1831 *
1832 * in_flight = packets_out - left_out + retrans_out
1833 *
1834 * packets_out is SND.NXT-SND.UNA counted in packets.
1835 *
1836 * retrans_out is number of retransmitted segments.
1837 *
1838 * left_out is number of segments left network, but not ACKed yet.
1839 *
1840 * left_out = sacked_out + lost_out
1841 *
1842 * sacked_out: Packets, which arrived to receiver out of order
1843 * and hence not ACKed. With SACKs this number is simply
1844 * amount of SACKed data. Even without SACKs
1845 * it is easy to give pretty reliable estimate of this number,
1846 * counting duplicate ACKs.
1847 *
1848 * lost_out: Packets lost by network. TCP has no explicit
1849 * "loss notification" feedback from network (for now).
1850 * It means that this number can be only _guessed_.
1851 * Actually, it is the heuristics to predict lossage that
1852 * distinguishes different algorithms.
1853 *
1854 * F.e. after RTO, when all the queue is considered as lost,
1855 * lost_out = packets_out and in_flight = retrans_out.
1856 *
1857 * Essentially, we have now two algorithms counting
1858 * lost packets.
1859 *
1860 * FACK: It is the simplest heuristics. As soon as we decided
1861 * that something is lost, we decide that _all_ not SACKed
1862 * packets until the most forward SACK are lost. I.e.
1863 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1864 * It is absolutely correct estimate, if network does not reorder
1865 * packets. And it loses any connection to reality when reordering
1866 * takes place. We use FACK by default until reordering
1867 * is suspected on the path to this destination.
1868 *
1869 * NewReno: when Recovery is entered, we assume that one segment
1870 * is lost (classic Reno). While we are in Recovery and
1871 * a partial ACK arrives, we assume that one more packet
1872 * is lost (NewReno). This heuristics are the same in NewReno
1873 * and SACK.
1874 *
1875 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1876 * deflation etc. CWND is real congestion window, never inflated, changes
1877 * only according to classic VJ rules.
1878 *
1879 * Really tricky (and requiring careful tuning) part of algorithm
1880 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1881 * The first determines the moment _when_ we should reduce CWND and,
1882 * hence, slow down forward transmission. In fact, it determines the moment
1883 * when we decide that hole is caused by loss, rather than by a reorder.
1884 *
1885 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1886 * holes, caused by lost packets.
1887 *
1888 * And the most logically complicated part of algorithm is undo
1889 * heuristics. We detect false retransmits due to both too early
1890 * fast retransmit (reordering) and underestimated RTO, analyzing
1891 * timestamps and D-SACKs. When we detect that some segments were
1892 * retransmitted by mistake and CWND reduction was wrong, we undo
1893 * window reduction and abort recovery phase. This logic is hidden
1894 * inside several functions named tcp_try_undo_<something>.
1895 */
1896
1897/* This function decides, when we should leave Disordered state
1898 * and enter Recovery phase, reducing congestion window.
1899 *
1900 * Main question: may we further continue forward transmission
1901 * with the same cwnd?
1902 */
9e412ba7 1903static int tcp_time_to_recover(struct sock *sk)
1da177e4 1904{
9e412ba7 1905 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1906 __u32 packets_out;
1907
52c63f1e
IJ
1908 /* Do not perform any recovery during FRTO algorithm */
1909 if (tp->frto_counter)
1910 return 0;
1911
1da177e4
LT
1912 /* Trick#1: The loss is proven. */
1913 if (tp->lost_out)
1914 return 1;
1915
1916 /* Not-A-Trick#2 : Classic rule... */
1917 if (tcp_fackets_out(tp) > tp->reordering)
1918 return 1;
1919
1920 /* Trick#3 : when we use RFC2988 timer restart, fast
1921 * retransmit can be triggered by timeout of queue head.
1922 */
9e412ba7 1923 if (tcp_head_timedout(sk))
1da177e4
LT
1924 return 1;
1925
1926 /* Trick#4: It is still not OK... But will it be useful to delay
1927 * recovery more?
1928 */
1929 packets_out = tp->packets_out;
1930 if (packets_out <= tp->reordering &&
1931 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1932 !tcp_may_send_now(sk)) {
1da177e4
LT
1933 /* We have nothing to send. This connection is limited
1934 * either by receiver window or by application.
1935 */
1936 return 1;
1937 }
1938
1939 return 0;
1940}
1941
d8f4f223
IJ
1942/* RFC: This is from the original, I doubt that this is necessary at all:
1943 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1944 * retransmitted past LOST markings in the first place? I'm not fully sure
1945 * about undo and end of connection cases, which can cause R without L?
1946 */
1947static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1948 struct sk_buff *skb)
1949{
1950 if ((tp->retransmit_skb_hint != NULL) &&
1951 before(TCP_SKB_CB(skb)->seq,
1952 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1953 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1954}
1955
1da177e4 1956/* Mark head of queue up as lost. */
9e412ba7 1957static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1958 int packets, u32 high_seq)
1959{
9e412ba7 1960 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1961 struct sk_buff *skb;
6a438bbe 1962 int cnt;
1da177e4 1963
6a438bbe
SH
1964 BUG_TRAP(packets <= tp->packets_out);
1965 if (tp->lost_skb_hint) {
1966 skb = tp->lost_skb_hint;
1967 cnt = tp->lost_cnt_hint;
1968 } else {
fe067e8a 1969 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1970 cnt = 0;
1971 }
1da177e4 1972
fe067e8a
DM
1973 tcp_for_write_queue_from(skb, sk) {
1974 if (skb == tcp_send_head(sk))
1975 break;
6a438bbe
SH
1976 /* TODO: do this better */
1977 /* this is not the most efficient way to do this... */
1978 tp->lost_skb_hint = skb;
1979 tp->lost_cnt_hint = cnt;
1980 cnt += tcp_skb_pcount(skb);
1981 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1982 break;
1983 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1984 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1985 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1986 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1987 }
1988 }
005903bc 1989 tcp_verify_left_out(tp);
1da177e4
LT
1990}
1991
1992/* Account newly detected lost packet(s) */
1993
9e412ba7 1994static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1995{
9e412ba7
IJ
1996 struct tcp_sock *tp = tcp_sk(sk);
1997
e60402d0 1998 if (tcp_is_fack(tp)) {
1da177e4
LT
1999 int lost = tp->fackets_out - tp->reordering;
2000 if (lost <= 0)
2001 lost = 1;
9e412ba7 2002 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 2003 } else {
9e412ba7 2004 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
2005 }
2006
2007 /* New heuristics: it is possible only after we switched
2008 * to restart timer each time when something is ACKed.
2009 * Hence, we can detect timed out packets during fast
2010 * retransmit without falling to slow start.
2011 */
e60402d0 2012 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
2013 struct sk_buff *skb;
2014
6a438bbe 2015 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 2016 : tcp_write_queue_head(sk);
6a438bbe 2017
fe067e8a
DM
2018 tcp_for_write_queue_from(skb, sk) {
2019 if (skb == tcp_send_head(sk))
2020 break;
6a438bbe
SH
2021 if (!tcp_skb_timedout(sk, skb))
2022 break;
2023
2024 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
2025 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2026 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 2027 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
2028 }
2029 }
6a438bbe
SH
2030
2031 tp->scoreboard_skb_hint = skb;
2032
005903bc 2033 tcp_verify_left_out(tp);
1da177e4
LT
2034 }
2035}
2036
2037/* CWND moderation, preventing bursts due to too big ACKs
2038 * in dubious situations.
2039 */
2040static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2041{
2042 tp->snd_cwnd = min(tp->snd_cwnd,
2043 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2044 tp->snd_cwnd_stamp = tcp_time_stamp;
2045}
2046
72dc5b92
SH
2047/* Lower bound on congestion window is slow start threshold
2048 * unless congestion avoidance choice decides to overide it.
2049 */
2050static inline u32 tcp_cwnd_min(const struct sock *sk)
2051{
2052 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2053
2054 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2055}
2056
1da177e4 2057/* Decrease cwnd each second ack. */
1e757f99 2058static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 2059{
6687e988 2060 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2061 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 2062
49ff4bb4 2063 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
e60402d0 2064 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
1e757f99
IJ
2065 tp->snd_cwnd_cnt = decr&1;
2066 decr >>= 1;
1da177e4 2067
1e757f99
IJ
2068 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2069 tp->snd_cwnd -= decr;
1da177e4 2070
1e757f99
IJ
2071 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2072 tp->snd_cwnd_stamp = tcp_time_stamp;
2073 }
1da177e4
LT
2074}
2075
2076/* Nothing was retransmitted or returned timestamp is less
2077 * than timestamp of the first retransmission.
2078 */
2079static inline int tcp_packet_delayed(struct tcp_sock *tp)
2080{
2081 return !tp->retrans_stamp ||
2082 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2083 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2084}
2085
2086/* Undo procedures. */
2087
2088#if FASTRETRANS_DEBUG > 1
9e412ba7 2089static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 2090{
9e412ba7 2091 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2092 struct inet_sock *inet = inet_sk(sk);
9e412ba7 2093
1da177e4
LT
2094 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2095 msg,
2096 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 2097 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
2098 tp->snd_ssthresh, tp->prior_ssthresh,
2099 tp->packets_out);
2100}
2101#else
2102#define DBGUNDO(x...) do { } while (0)
2103#endif
2104
6687e988 2105static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 2106{
6687e988
ACM
2107 struct tcp_sock *tp = tcp_sk(sk);
2108
1da177e4 2109 if (tp->prior_ssthresh) {
6687e988
ACM
2110 const struct inet_connection_sock *icsk = inet_csk(sk);
2111
2112 if (icsk->icsk_ca_ops->undo_cwnd)
2113 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
2114 else
2115 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2116
2117 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2118 tp->snd_ssthresh = tp->prior_ssthresh;
2119 TCP_ECN_withdraw_cwr(tp);
2120 }
2121 } else {
2122 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2123 }
2124 tcp_moderate_cwnd(tp);
2125 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2126
2127 /* There is something screwy going on with the retrans hints after
2128 an undo */
5af4ec23 2129 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2130}
2131
2132static inline int tcp_may_undo(struct tcp_sock *tp)
2133{
2134 return tp->undo_marker &&
2135 (!tp->undo_retrans || tcp_packet_delayed(tp));
2136}
2137
2138/* People celebrate: "We love our President!" */
9e412ba7 2139static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2140{
9e412ba7
IJ
2141 struct tcp_sock *tp = tcp_sk(sk);
2142
1da177e4
LT
2143 if (tcp_may_undo(tp)) {
2144 /* Happy end! We did not retransmit anything
2145 * or our original transmission succeeded.
2146 */
9e412ba7 2147 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2148 tcp_undo_cwr(sk, 1);
2149 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2150 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2151 else
2152 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2153 tp->undo_marker = 0;
2154 }
e60402d0 2155 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
1da177e4
LT
2156 /* Hold old state until something *above* high_seq
2157 * is ACKed. For Reno it is MUST to prevent false
2158 * fast retransmits (RFC2582). SACK TCP is safe. */
2159 tcp_moderate_cwnd(tp);
2160 return 1;
2161 }
6687e988 2162 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2163 return 0;
2164}
2165
2166/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2167static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2168{
9e412ba7
IJ
2169 struct tcp_sock *tp = tcp_sk(sk);
2170
1da177e4 2171 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2172 DBGUNDO(sk, "D-SACK");
6687e988 2173 tcp_undo_cwr(sk, 1);
1da177e4
LT
2174 tp->undo_marker = 0;
2175 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2176 }
2177}
2178
2179/* Undo during fast recovery after partial ACK. */
2180
9e412ba7 2181static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2182{
9e412ba7 2183 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2184 /* Partial ACK arrived. Force Hoe's retransmit. */
e60402d0 2185 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
1da177e4
LT
2186
2187 if (tcp_may_undo(tp)) {
2188 /* Plain luck! Hole if filled with delayed
2189 * packet, rather than with a retransmit.
2190 */
2191 if (tp->retrans_out == 0)
2192 tp->retrans_stamp = 0;
2193
6687e988 2194 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2195
9e412ba7 2196 DBGUNDO(sk, "Hoe");
6687e988 2197 tcp_undo_cwr(sk, 0);
1da177e4
LT
2198 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2199
2200 /* So... Do not make Hoe's retransmit yet.
2201 * If the first packet was delayed, the rest
2202 * ones are most probably delayed as well.
2203 */
2204 failed = 0;
2205 }
2206 return failed;
2207}
2208
2209/* Undo during loss recovery after partial ACK. */
9e412ba7 2210static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2211{
9e412ba7
IJ
2212 struct tcp_sock *tp = tcp_sk(sk);
2213
1da177e4
LT
2214 if (tcp_may_undo(tp)) {
2215 struct sk_buff *skb;
fe067e8a
DM
2216 tcp_for_write_queue(skb, sk) {
2217 if (skb == tcp_send_head(sk))
2218 break;
1da177e4
LT
2219 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2220 }
6a438bbe 2221
5af4ec23 2222 tcp_clear_all_retrans_hints(tp);
6a438bbe 2223
9e412ba7 2224 DBGUNDO(sk, "partial loss");
1da177e4 2225 tp->lost_out = 0;
6687e988 2226 tcp_undo_cwr(sk, 1);
1da177e4 2227 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2228 inet_csk(sk)->icsk_retransmits = 0;
1da177e4 2229 tp->undo_marker = 0;
e60402d0 2230 if (tcp_is_sack(tp))
6687e988 2231 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2232 return 1;
2233 }
2234 return 0;
2235}
2236
6687e988 2237static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2238{
6687e988 2239 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2240 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2241 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2242 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2243}
2244
9e412ba7 2245static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2246{
9e412ba7
IJ
2247 struct tcp_sock *tp = tcp_sk(sk);
2248
86426c22
IJ
2249 tcp_verify_left_out(tp);
2250
1da177e4
LT
2251 if (tp->retrans_out == 0)
2252 tp->retrans_stamp = 0;
2253
2254 if (flag&FLAG_ECE)
3cfe3baa 2255 tcp_enter_cwr(sk, 1);
1da177e4 2256
6687e988 2257 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2258 int state = TCP_CA_Open;
2259
d02596e3 2260 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2261 state = TCP_CA_Disorder;
2262
6687e988
ACM
2263 if (inet_csk(sk)->icsk_ca_state != state) {
2264 tcp_set_ca_state(sk, state);
1da177e4
LT
2265 tp->high_seq = tp->snd_nxt;
2266 }
2267 tcp_moderate_cwnd(tp);
2268 } else {
1e757f99 2269 tcp_cwnd_down(sk, flag);
1da177e4
LT
2270 }
2271}
2272
5d424d5a
JH
2273static void tcp_mtup_probe_failed(struct sock *sk)
2274{
2275 struct inet_connection_sock *icsk = inet_csk(sk);
2276
2277 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2278 icsk->icsk_mtup.probe_size = 0;
2279}
2280
2281static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2282{
2283 struct tcp_sock *tp = tcp_sk(sk);
2284 struct inet_connection_sock *icsk = inet_csk(sk);
2285
2286 /* FIXME: breaks with very large cwnd */
2287 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2288 tp->snd_cwnd = tp->snd_cwnd *
2289 tcp_mss_to_mtu(sk, tp->mss_cache) /
2290 icsk->icsk_mtup.probe_size;
2291 tp->snd_cwnd_cnt = 0;
2292 tp->snd_cwnd_stamp = tcp_time_stamp;
2293 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2294
2295 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2296 icsk->icsk_mtup.probe_size = 0;
2297 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2298}
2299
2300
1da177e4
LT
2301/* Process an event, which can update packets-in-flight not trivially.
2302 * Main goal of this function is to calculate new estimate for left_out,
2303 * taking into account both packets sitting in receiver's buffer and
2304 * packets lost by network.
2305 *
2306 * Besides that it does CWND reduction, when packet loss is detected
2307 * and changes state of machine.
2308 *
2309 * It does _not_ decide what to send, it is made in function
2310 * tcp_xmit_retransmit_queue().
2311 */
2312static void
1b6d427b 2313tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2314{
6687e988 2315 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2316 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2317 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2318 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2319 (tp->fackets_out > tp->reordering));
1da177e4
LT
2320
2321 /* Some technical things:
2322 * 1. Reno does not count dupacks (sacked_out) automatically. */
2323 if (!tp->packets_out)
2324 tp->sacked_out = 0;
91fed7a1
IJ
2325
2326 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
1da177e4
LT
2327 tp->fackets_out = 0;
2328
e905a9ed 2329 /* Now state machine starts.
1da177e4
LT
2330 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2331 if (flag&FLAG_ECE)
2332 tp->prior_ssthresh = 0;
2333
2334 /* B. In all the states check for reneging SACKs. */
463c84b9 2335 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2336 return;
2337
2338 /* C. Process data loss notification, provided it is valid. */
2339 if ((flag&FLAG_DATA_LOST) &&
2340 before(tp->snd_una, tp->high_seq) &&
6687e988 2341 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2342 tp->fackets_out > tp->reordering) {
9e412ba7 2343 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2344 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2345 }
2346
005903bc
IJ
2347 /* D. Check consistency of the current state. */
2348 tcp_verify_left_out(tp);
1da177e4
LT
2349
2350 /* E. Check state exit conditions. State can be terminated
2351 * when high_seq is ACKed. */
6687e988 2352 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2353 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2354 tp->retrans_stamp = 0;
2355 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2356 switch (icsk->icsk_ca_state) {
1da177e4 2357 case TCP_CA_Loss:
6687e988 2358 icsk->icsk_retransmits = 0;
9e412ba7 2359 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2360 return;
2361 break;
2362
2363 case TCP_CA_CWR:
2364 /* CWR is to be held something *above* high_seq
2365 * is ACKed for CWR bit to reach receiver. */
2366 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2367 tcp_complete_cwr(sk);
2368 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2369 }
2370 break;
2371
2372 case TCP_CA_Disorder:
9e412ba7 2373 tcp_try_undo_dsack(sk);
1da177e4
LT
2374 if (!tp->undo_marker ||
2375 /* For SACK case do not Open to allow to undo
2376 * catching for all duplicate ACKs. */
e60402d0 2377 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
1da177e4 2378 tp->undo_marker = 0;
6687e988 2379 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2380 }
2381 break;
2382
2383 case TCP_CA_Recovery:
e60402d0 2384 if (tcp_is_reno(tp))
1da177e4 2385 tcp_reset_reno_sack(tp);
9e412ba7 2386 if (tcp_try_undo_recovery(sk))
1da177e4 2387 return;
6687e988 2388 tcp_complete_cwr(sk);
1da177e4
LT
2389 break;
2390 }
2391 }
2392
2393 /* F. Process state. */
6687e988 2394 switch (icsk->icsk_ca_state) {
1da177e4 2395 case TCP_CA_Recovery:
2e605294 2396 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
e60402d0 2397 if (tcp_is_reno(tp) && is_dupack)
6687e988 2398 tcp_add_reno_sack(sk);
1b6d427b
IJ
2399 } else
2400 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2401 break;
2402 case TCP_CA_Loss:
2403 if (flag&FLAG_DATA_ACKED)
6687e988 2404 icsk->icsk_retransmits = 0;
9e412ba7 2405 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2406 tcp_moderate_cwnd(tp);
2407 tcp_xmit_retransmit_queue(sk);
2408 return;
2409 }
6687e988 2410 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2411 return;
2412 /* Loss is undone; fall through to processing in Open state. */
2413 default:
e60402d0 2414 if (tcp_is_reno(tp)) {
2e605294 2415 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2416 tcp_reset_reno_sack(tp);
2417 if (is_dupack)
6687e988 2418 tcp_add_reno_sack(sk);
1da177e4
LT
2419 }
2420
6687e988 2421 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2422 tcp_try_undo_dsack(sk);
1da177e4 2423
9e412ba7
IJ
2424 if (!tcp_time_to_recover(sk)) {
2425 tcp_try_to_open(sk, flag);
1da177e4
LT
2426 return;
2427 }
2428
5d424d5a
JH
2429 /* MTU probe failure: don't reduce cwnd */
2430 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2431 icsk->icsk_mtup.probe_size &&
0e7b1368 2432 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2433 tcp_mtup_probe_failed(sk);
2434 /* Restores the reduction we did in tcp_mtup_probe() */
2435 tp->snd_cwnd++;
2436 tcp_simple_retransmit(sk);
2437 return;
2438 }
2439
1da177e4
LT
2440 /* Otherwise enter Recovery state */
2441
e60402d0 2442 if (tcp_is_reno(tp))
1da177e4
LT
2443 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2444 else
2445 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2446
2447 tp->high_seq = tp->snd_nxt;
2448 tp->prior_ssthresh = 0;
2449 tp->undo_marker = tp->snd_una;
2450 tp->undo_retrans = tp->retrans_out;
2451
6687e988 2452 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2453 if (!(flag&FLAG_ECE))
6687e988
ACM
2454 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2455 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2456 TCP_ECN_queue_cwr(tp);
2457 }
2458
9772efb9 2459 tp->bytes_acked = 0;
1da177e4 2460 tp->snd_cwnd_cnt = 0;
6687e988 2461 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2462 }
2463
2e605294 2464 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2465 tcp_update_scoreboard(sk);
1e757f99 2466 tcp_cwnd_down(sk, flag);
1da177e4
LT
2467 tcp_xmit_retransmit_queue(sk);
2468}
2469
2470/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2471 * with this code. (Supersedes RFC1323)
1da177e4 2472 */
2d2abbab 2473static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2474{
1da177e4
LT
2475 /* RTTM Rule: A TSecr value received in a segment is used to
2476 * update the averaged RTT measurement only if the segment
2477 * acknowledges some new data, i.e., only if it advances the
2478 * left edge of the send window.
2479 *
2480 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2481 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2482 *
2483 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2484 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2485 * samples are accepted even from very old segments: f.e., when rtt=1
2486 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2487 * answer arrives rto becomes 120 seconds! If at least one of segments
2488 * in window is lost... Voila. --ANK (010210)
2489 */
463c84b9
ACM
2490 struct tcp_sock *tp = tcp_sk(sk);
2491 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2492 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2493 tcp_set_rto(sk);
2494 inet_csk(sk)->icsk_backoff = 0;
2495 tcp_bound_rto(sk);
1da177e4
LT
2496}
2497
2d2abbab 2498static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2499{
2500 /* We don't have a timestamp. Can only use
2501 * packets that are not retransmitted to determine
2502 * rtt estimates. Also, we must not reset the
2503 * backoff for rto until we get a non-retransmitted
2504 * packet. This allows us to deal with a situation
2505 * where the network delay has increased suddenly.
2506 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2507 */
2508
2509 if (flag & FLAG_RETRANS_DATA_ACKED)
2510 return;
2511
2d2abbab 2512 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2513 tcp_set_rto(sk);
2514 inet_csk(sk)->icsk_backoff = 0;
2515 tcp_bound_rto(sk);
1da177e4
LT
2516}
2517
463c84b9 2518static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2519 const s32 seq_rtt)
1da177e4 2520{
463c84b9 2521 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2522 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2523 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2524 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2525 else if (seq_rtt >= 0)
2d2abbab 2526 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2527}
2528
16751347 2529static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2530 u32 in_flight, int good)
1da177e4 2531{
6687e988 2532 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2533 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2534 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2535}
2536
1da177e4
LT
2537/* Restart timer after forward progress on connection.
2538 * RFC2988 recommends to restart timer to now+rto.
2539 */
6728e7dc 2540static void tcp_rearm_rto(struct sock *sk)
1da177e4 2541{
9e412ba7
IJ
2542 struct tcp_sock *tp = tcp_sk(sk);
2543
1da177e4 2544 if (!tp->packets_out) {
463c84b9 2545 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2546 } else {
3f421baa 2547 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2548 }
2549}
2550
7c46a03e 2551/* If we get here, the whole TSO packet has not been acked. */
13fcf850 2552static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
2553{
2554 struct tcp_sock *tp = tcp_sk(sk);
7c46a03e 2555 u32 packets_acked;
1da177e4 2556
7c46a03e 2557 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
1da177e4
LT
2558
2559 packets_acked = tcp_skb_pcount(skb);
7c46a03e 2560 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1da177e4
LT
2561 return 0;
2562 packets_acked -= tcp_skb_pcount(skb);
2563
2564 if (packets_acked) {
1da177e4 2565 BUG_ON(tcp_skb_pcount(skb) == 0);
7c46a03e 2566 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
1da177e4
LT
2567 }
2568
13fcf850 2569 return packets_acked;
1da177e4
LT
2570}
2571
7c46a03e
IJ
2572/* Remove acknowledged frames from the retransmission queue. If our packet
2573 * is before the ack sequence we can discard it as it's confirmed to have
2574 * arrived at the other end.
2575 */
2576static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
1da177e4
LT
2577{
2578 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2579 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2580 struct sk_buff *skb;
7c46a03e 2581 u32 now = tcp_time_stamp;
13fcf850 2582 int fully_acked = 1;
7c46a03e 2583 int flag = 0;
6418204f 2584 int prior_packets = tp->packets_out;
7c46a03e 2585 s32 seq_rtt = -1;
b9ce204f 2586 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2587
7c46a03e 2588 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
e905a9ed 2589 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
13fcf850
IJ
2590 u32 end_seq;
2591 u32 packets_acked;
7c46a03e 2592 u8 sacked = scb->sacked;
1da177e4 2593
1da177e4 2594 if (after(scb->end_seq, tp->snd_una)) {
13fcf850
IJ
2595 if (tcp_skb_pcount(skb) == 1 ||
2596 !after(tp->snd_una, scb->seq))
2597 break;
2598
2599 packets_acked = tcp_tso_acked(sk, skb);
2600 if (!packets_acked)
2601 break;
2602
2603 fully_acked = 0;
2604 end_seq = tp->snd_una;
2605 } else {
2606 packets_acked = tcp_skb_pcount(skb);
2607 end_seq = scb->end_seq;
1da177e4
LT
2608 }
2609
5d424d5a 2610 /* MTU probing checks */
7c46a03e
IJ
2611 if (fully_acked && icsk->icsk_mtup.probe_size &&
2612 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2613 tcp_mtup_probe_success(sk, skb);
5d424d5a
JH
2614 }
2615
1da177e4
LT
2616 if (sacked) {
2617 if (sacked & TCPCB_RETRANS) {
2de979bd 2618 if (sacked & TCPCB_SACKED_RETRANS)
13fcf850 2619 tp->retrans_out -= packets_acked;
7c46a03e 2620 flag |= FLAG_RETRANS_DATA_ACKED;
1da177e4 2621 seq_rtt = -1;
009a2e3e
IJ
2622 if ((flag & FLAG_DATA_ACKED) ||
2623 (packets_acked > 1))
2624 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2d2abbab 2625 } else if (seq_rtt < 0) {
1da177e4 2626 seq_rtt = now - scb->when;
13fcf850
IJ
2627 if (fully_acked)
2628 last_ackt = skb->tstamp;
a61bbcf2 2629 }
7c46a03e 2630
1da177e4 2631 if (sacked & TCPCB_SACKED_ACKED)
13fcf850 2632 tp->sacked_out -= packets_acked;
1da177e4 2633 if (sacked & TCPCB_LOST)
13fcf850 2634 tp->lost_out -= packets_acked;
7c46a03e
IJ
2635
2636 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2637 !before(end_seq, tp->snd_up))
2638 tp->urg_mode = 0;
2d2abbab 2639 } else if (seq_rtt < 0) {
1da177e4 2640 seq_rtt = now - scb->when;
13fcf850
IJ
2641 if (fully_acked)
2642 last_ackt = skb->tstamp;
2d2abbab 2643 }
13fcf850
IJ
2644 tp->packets_out -= packets_acked;
2645
009a2e3e
IJ
2646 /* Initial outgoing SYN's get put onto the write_queue
2647 * just like anything else we transmit. It is not
2648 * true data, and if we misinform our callers that
2649 * this ACK acks real data, we will erroneously exit
2650 * connection startup slow start one packet too
2651 * quickly. This is severely frowned upon behavior.
2652 */
2653 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2654 flag |= FLAG_DATA_ACKED;
2655 } else {
2656 flag |= FLAG_SYN_ACKED;
2657 tp->retrans_stamp = 0;
2658 }
2659
13fcf850
IJ
2660 if (!fully_acked)
2661 break;
2662
fe067e8a 2663 tcp_unlink_write_queue(skb, sk);
1da177e4 2664 sk_stream_free_skb(sk, skb);
5af4ec23 2665 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2666 }
2667
7c46a03e 2668 if (flag & FLAG_ACKED) {
6418204f 2669 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2670 const struct tcp_congestion_ops *ca_ops
2671 = inet_csk(sk)->icsk_ca_ops;
2672
7c46a03e 2673 tcp_ack_update_rtt(sk, flag, seq_rtt);
6728e7dc 2674 tcp_rearm_rto(sk);
317a76f9 2675
91fed7a1 2676 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
13fcf850
IJ
2677 /* hint's skb might be NULL but we don't need to care */
2678 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2679 tp->fastpath_cnt_hint);
e60402d0 2680 if (tcp_is_reno(tp))
1b6d427b
IJ
2681 tcp_remove_reno_sacks(sk, pkts_acked);
2682
30cfd0ba
SH
2683 if (ca_ops->pkts_acked) {
2684 s32 rtt_us = -1;
2685
2686 /* Is the ACK triggering packet unambiguous? */
7c46a03e 2687 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
30cfd0ba
SH
2688 /* High resolution needed and available? */
2689 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2690 !ktime_equal(last_ackt,
2691 net_invalid_timestamp()))
2692 rtt_us = ktime_us_delta(ktime_get_real(),
2693 last_ackt);
2694 else if (seq_rtt > 0)
2695 rtt_us = jiffies_to_usecs(seq_rtt);
2696 }
b9ce204f 2697
30cfd0ba
SH
2698 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2699 }
1da177e4
LT
2700 }
2701
2702#if FASTRETRANS_DEBUG > 0
2703 BUG_TRAP((int)tp->sacked_out >= 0);
2704 BUG_TRAP((int)tp->lost_out >= 0);
2705 BUG_TRAP((int)tp->retrans_out >= 0);
e60402d0 2706 if (!tp->packets_out && tcp_is_sack(tp)) {
6687e988 2707 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2708 if (tp->lost_out) {
2709 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2710 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2711 tp->lost_out = 0;
2712 }
2713 if (tp->sacked_out) {
2714 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2715 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2716 tp->sacked_out = 0;
2717 }
2718 if (tp->retrans_out) {
2719 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2720 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2721 tp->retrans_out = 0;
2722 }
2723 }
2724#endif
2725 *seq_rtt_p = seq_rtt;
7c46a03e 2726 return flag;
1da177e4
LT
2727}
2728
2729static void tcp_ack_probe(struct sock *sk)
2730{
463c84b9
ACM
2731 const struct tcp_sock *tp = tcp_sk(sk);
2732 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2733
2734 /* Was it a usable window open? */
2735
fe067e8a 2736 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2737 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2738 icsk->icsk_backoff = 0;
2739 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2740 /* Socket must be waked up by subsequent tcp_data_snd_check().
2741 * This function is not for random using!
2742 */
2743 } else {
463c84b9 2744 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2745 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2746 TCP_RTO_MAX);
1da177e4
LT
2747 }
2748}
2749
6687e988 2750static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2751{
2752 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2753 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2754}
2755
6687e988 2756static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2757{
6687e988 2758 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2759 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2760 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2761}
2762
2763/* Check that window update is acceptable.
2764 * The function assumes that snd_una<=ack<=snd_next.
2765 */
463c84b9
ACM
2766static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2767 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2768{
2769 return (after(ack, tp->snd_una) ||
2770 after(ack_seq, tp->snd_wl1) ||
2771 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2772}
2773
2774/* Update our send window.
2775 *
2776 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2777 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2778 */
9e412ba7
IJ
2779static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2780 u32 ack_seq)
1da177e4 2781{
9e412ba7 2782 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2783 int flag = 0;
aa8223c7 2784 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2785
aa8223c7 2786 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2787 nwin <<= tp->rx_opt.snd_wscale;
2788
2789 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2790 flag |= FLAG_WIN_UPDATE;
2791 tcp_update_wl(tp, ack, ack_seq);
2792
2793 if (tp->snd_wnd != nwin) {
2794 tp->snd_wnd = nwin;
2795
2796 /* Note, it is the only place, where
2797 * fast path is recovered for sending TCP.
2798 */
2ad41065 2799 tp->pred_flags = 0;
9e412ba7 2800 tcp_fast_path_check(sk);
1da177e4
LT
2801
2802 if (nwin > tp->max_window) {
2803 tp->max_window = nwin;
d83d8461 2804 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2805 }
2806 }
2807 }
2808
2809 tp->snd_una = ack;
2810
2811 return flag;
2812}
2813
9ead9a1d
IJ
2814/* A very conservative spurious RTO response algorithm: reduce cwnd and
2815 * continue in congestion avoidance.
2816 */
2817static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2818{
2819 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2820 tp->snd_cwnd_cnt = 0;
46323655 2821 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2822 tcp_moderate_cwnd(tp);
2823}
2824
3cfe3baa
IJ
2825/* A conservative spurious RTO response algorithm: reduce cwnd using
2826 * rate halving and continue in congestion avoidance.
2827 */
2828static void tcp_ratehalving_spur_to_response(struct sock *sk)
2829{
3cfe3baa 2830 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2831}
2832
e317f6f6 2833static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2834{
e317f6f6
IJ
2835 if (flag&FLAG_ECE)
2836 tcp_ratehalving_spur_to_response(sk);
2837 else
2838 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2839}
2840
30935cf4
IJ
2841/* F-RTO spurious RTO detection algorithm (RFC4138)
2842 *
6408d206
IJ
2843 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2844 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2845 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2846 * On First ACK, send two new segments out.
2847 * On Second ACK, RTO was likely spurious. Do spurious response (response
2848 * algorithm is not part of the F-RTO detection algorithm
2849 * given in RFC4138 but can be selected separately).
2850 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2851 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2852 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2853 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2854 *
2855 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2856 * original window even after we transmit two new data segments.
2857 *
4dc2665e
IJ
2858 * SACK version:
2859 * on first step, wait until first cumulative ACK arrives, then move to
2860 * the second step. In second step, the next ACK decides.
2861 *
30935cf4
IJ
2862 * F-RTO is implemented (mainly) in four functions:
2863 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2864 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2865 * called when tcp_use_frto() showed green light
2866 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2867 * - tcp_enter_frto_loss() is called if there is not enough evidence
2868 * to prove that the RTO is indeed spurious. It transfers the control
2869 * from F-RTO to the conventional RTO recovery
2870 */
2e605294 2871static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2872{
2873 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2874
005903bc 2875 tcp_verify_left_out(tp);
e905a9ed 2876
7487c48c
IJ
2877 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2878 if (flag&FLAG_DATA_ACKED)
2879 inet_csk(sk)->icsk_retransmits = 0;
2880
009a2e3e
IJ
2881 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2882 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2883 tp->undo_marker = 0;
2884
95c4922b 2885 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2886 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2887 return 1;
95c4922b
IJ
2888 }
2889
e60402d0 2890 if (!IsSackFrto() || tcp_is_reno(tp)) {
4dc2665e
IJ
2891 /* RFC4138 shortcoming in step 2; should also have case c):
2892 * ACK isn't duplicate nor advances window, e.g., opposite dir
2893 * data, winupdate
2894 */
2e605294 2895 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2896 return 1;
2897
2898 if (!(flag&FLAG_DATA_ACKED)) {
2899 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2900 flag);
2901 return 1;
2902 }
2903 } else {
2904 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2905 /* Prevent sending of new data. */
2906 tp->snd_cwnd = min(tp->snd_cwnd,
2907 tcp_packets_in_flight(tp));
2908 return 1;
2909 }
6408d206 2910
d551e454 2911 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2912 (!(flag&FLAG_FORWARD_PROGRESS) ||
2913 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2914 /* RFC4138 shortcoming (see comment above) */
2915 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2916 return 1;
2917
2918 tcp_enter_frto_loss(sk, 3, flag);
2919 return 1;
2920 }
1da177e4
LT
2921 }
2922
2923 if (tp->frto_counter == 1) {
575ee714
IJ
2924 /* Sending of the next skb must be allowed or no FRTO */
2925 if (!tcp_send_head(sk) ||
2926 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2927 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2928 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2929 flag);
575ee714
IJ
2930 return 1;
2931 }
2932
1da177e4 2933 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2934 tp->frto_counter = 2;
7c9a4a5b 2935 return 1;
d551e454 2936 } else {
3cfe3baa
IJ
2937 switch (sysctl_tcp_frto_response) {
2938 case 2:
e317f6f6 2939 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2940 break;
2941 case 1:
2942 tcp_conservative_spur_to_response(tp);
2943 break;
2944 default:
2945 tcp_ratehalving_spur_to_response(sk);
2946 break;
3ff50b79 2947 }
94d0ea77 2948 tp->frto_counter = 0;
009a2e3e 2949 tp->undo_marker = 0;
912d8f0b 2950 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
1da177e4 2951 }
7c9a4a5b 2952 return 0;
1da177e4
LT
2953}
2954
1da177e4
LT
2955/* This routine deals with incoming acks, but not outgoing ones. */
2956static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2957{
6687e988 2958 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2959 struct tcp_sock *tp = tcp_sk(sk);
2960 u32 prior_snd_una = tp->snd_una;
2961 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2962 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2963 u32 prior_in_flight;
2964 s32 seq_rtt;
2965 int prior_packets;
7c9a4a5b 2966 int frto_cwnd = 0;
1da177e4
LT
2967
2968 /* If the ack is newer than sent or older than previous acks
2969 * then we can probably ignore it.
2970 */
2971 if (after(ack, tp->snd_nxt))
2972 goto uninteresting_ack;
2973
2974 if (before(ack, prior_snd_una))
2975 goto old_ack;
2976
2e605294
IJ
2977 if (after(ack, prior_snd_una))
2978 flag |= FLAG_SND_UNA_ADVANCED;
2979
3fdf3f0c
DO
2980 if (sysctl_tcp_abc) {
2981 if (icsk->icsk_ca_state < TCP_CA_CWR)
2982 tp->bytes_acked += ack - prior_snd_una;
2983 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2984 /* we assume just one segment left network */
2985 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2986 }
9772efb9 2987
1da177e4
LT
2988 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2989 /* Window is constant, pure forward advance.
2990 * No more checks are required.
2991 * Note, we use the fact that SND.UNA>=SND.WL2.
2992 */
2993 tcp_update_wl(tp, ack, ack_seq);
2994 tp->snd_una = ack;
1da177e4
LT
2995 flag |= FLAG_WIN_UPDATE;
2996
6687e988 2997 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2998
1da177e4
LT
2999 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3000 } else {
3001 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3002 flag |= FLAG_DATA;
3003 else
3004 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3005
9e412ba7 3006 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
3007
3008 if (TCP_SKB_CB(skb)->sacked)
3009 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3010
aa8223c7 3011 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
3012 flag |= FLAG_ECE;
3013
6687e988 3014 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
3015 }
3016
3017 /* We passed data and got it acked, remove any soft error
3018 * log. Something worked...
3019 */
3020 sk->sk_err_soft = 0;
3021 tp->rcv_tstamp = tcp_time_stamp;
3022 prior_packets = tp->packets_out;
3023 if (!prior_packets)
3024 goto no_queue;
3025
3026 prior_in_flight = tcp_packets_in_flight(tp);
3027
3028 /* See if we can take anything off of the retransmit queue. */
2d2abbab 3029 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4 3030
3de96471
IJ
3031 /* Guarantee sacktag reordering detection against wrap-arounds */
3032 if (before(tp->frto_highmark, tp->snd_una))
3033 tp->frto_highmark = 0;
1da177e4 3034 if (tp->frto_counter)
2e605294 3035 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 3036
6687e988 3037 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 3038 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
3039 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3040 tcp_may_raise_cwnd(sk, flag))
16751347 3041 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 3042 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 3043 } else {
7c9a4a5b 3044 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 3045 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
3046 }
3047
3048 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3049 dst_confirm(sk->sk_dst_cache);
3050
3051 return 1;
3052
3053no_queue:
6687e988 3054 icsk->icsk_probes_out = 0;
1da177e4
LT
3055
3056 /* If this ack opens up a zero window, clear backoff. It was
3057 * being used to time the probes, and is probably far higher than
3058 * it needs to be for normal retransmission.
3059 */
fe067e8a 3060 if (tcp_send_head(sk))
1da177e4
LT
3061 tcp_ack_probe(sk);
3062 return 1;
3063
3064old_ack:
3065 if (TCP_SKB_CB(skb)->sacked)
3066 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3067
3068uninteresting_ack:
3069 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3070 return 0;
3071}
3072
3073
3074/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3075 * But, this can also be called on packets in the established flow when
3076 * the fast version below fails.
3077 */
3078void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3079{
3080 unsigned char *ptr;
aa8223c7 3081 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3082 int length=(th->doff*4)-sizeof(struct tcphdr);
3083
3084 ptr = (unsigned char *)(th + 1);
3085 opt_rx->saw_tstamp = 0;
3086
2de979bd 3087 while (length > 0) {
e905a9ed 3088 int opcode=*ptr++;
1da177e4
LT
3089 int opsize;
3090
3091 switch (opcode) {
3092 case TCPOPT_EOL:
3093 return;
3094 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3095 length--;
3096 continue;
3097 default:
3098 opsize=*ptr++;
3099 if (opsize < 2) /* "silly options" */
3100 return;
3101 if (opsize > length)
3102 return; /* don't parse partial options */
2de979bd 3103 switch (opcode) {
1da177e4 3104 case TCPOPT_MSS:
2de979bd 3105 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 3106 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
3107 if (in_mss) {
3108 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3109 in_mss = opt_rx->user_mss;
3110 opt_rx->mss_clamp = in_mss;
3111 }
3112 }
3113 break;
3114 case TCPOPT_WINDOW:
2de979bd 3115 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3116 if (sysctl_tcp_window_scaling) {
3117 __u8 snd_wscale = *(__u8 *) ptr;
3118 opt_rx->wscale_ok = 1;
3119 if (snd_wscale > 14) {
2de979bd 3120 if (net_ratelimit())
1da177e4
LT
3121 printk(KERN_INFO "tcp_parse_options: Illegal window "
3122 "scaling value %d >14 received.\n",
3123 snd_wscale);
3124 snd_wscale = 14;
3125 }
3126 opt_rx->snd_wscale = snd_wscale;
3127 }
3128 break;
3129 case TCPOPT_TIMESTAMP:
2de979bd 3130 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3131 if ((estab && opt_rx->tstamp_ok) ||
3132 (!estab && sysctl_tcp_timestamps)) {
3133 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3134 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3135 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3136 }
3137 }
3138 break;
3139 case TCPOPT_SACK_PERM:
2de979bd 3140 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3141 if (sysctl_tcp_sack) {
3142 opt_rx->sack_ok = 1;
3143 tcp_sack_reset(opt_rx);
3144 }
3145 }
3146 break;
3147
3148 case TCPOPT_SACK:
2de979bd 3149 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3150 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3151 opt_rx->sack_ok) {
3152 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3153 }
d7ea5b91 3154 break;
cfb6eeb4
YH
3155#ifdef CONFIG_TCP_MD5SIG
3156 case TCPOPT_MD5SIG:
3157 /*
3158 * The MD5 Hash has already been
3159 * checked (see tcp_v{4,6}_do_rcv()).
3160 */
3161 break;
3162#endif
3ff50b79
SH
3163 }
3164
e905a9ed
YH
3165 ptr+=opsize-2;
3166 length-=opsize;
3ff50b79 3167 }
1da177e4
LT
3168 }
3169}
3170
3171/* Fast parse options. This hopes to only see timestamps.
3172 * If it is wrong it falls back on tcp_parse_options().
3173 */
40efc6fa
SH
3174static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3175 struct tcp_sock *tp)
1da177e4
LT
3176{
3177 if (th->doff == sizeof(struct tcphdr)>>2) {
3178 tp->rx_opt.saw_tstamp = 0;
3179 return 0;
3180 } else if (tp->rx_opt.tstamp_ok &&
3181 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3182 __be32 *ptr = (__be32 *)(th + 1);
3183 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3184 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3185 tp->rx_opt.saw_tstamp = 1;
3186 ++ptr;
3187 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3188 ++ptr;
3189 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3190 return 1;
3191 }
3192 }
3193 tcp_parse_options(skb, &tp->rx_opt, 1);
3194 return 1;
3195}
3196
3197static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3198{
3199 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3200 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3201}
3202
3203static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3204{
3205 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3206 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3207 * extra check below makes sure this can only happen
3208 * for pure ACK frames. -DaveM
3209 *
3210 * Not only, also it occurs for expired timestamps.
3211 */
3212
2de979bd 3213 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3214 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3215 tcp_store_ts_recent(tp);
3216 }
3217}
3218
3219/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3220 *
3221 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3222 * it can pass through stack. So, the following predicate verifies that
3223 * this segment is not used for anything but congestion avoidance or
3224 * fast retransmit. Moreover, we even are able to eliminate most of such
3225 * second order effects, if we apply some small "replay" window (~RTO)
3226 * to timestamp space.
3227 *
3228 * All these measures still do not guarantee that we reject wrapped ACKs
3229 * on networks with high bandwidth, when sequence space is recycled fastly,
3230 * but it guarantees that such events will be very rare and do not affect
3231 * connection seriously. This doesn't look nice, but alas, PAWS is really
3232 * buggy extension.
3233 *
3234 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3235 * states that events when retransmit arrives after original data are rare.
3236 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3237 * the biggest problem on large power networks even with minor reordering.
3238 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3239 * up to bandwidth of 18Gigabit/sec. 8) ]
3240 */
3241
463c84b9 3242static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3243{
463c84b9 3244 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3245 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3246 u32 seq = TCP_SKB_CB(skb)->seq;
3247 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3248
3249 return (/* 1. Pure ACK with correct sequence number. */
3250 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3251
3252 /* 2. ... and duplicate ACK. */
3253 ack == tp->snd_una &&
3254
3255 /* 3. ... and does not update window. */
3256 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3257
3258 /* 4. ... and sits in replay window. */
463c84b9 3259 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3260}
3261
463c84b9 3262static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3263{
463c84b9 3264 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3265 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3266 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3267 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3268}
3269
3270/* Check segment sequence number for validity.
3271 *
3272 * Segment controls are considered valid, if the segment
3273 * fits to the window after truncation to the window. Acceptability
3274 * of data (and SYN, FIN, of course) is checked separately.
3275 * See tcp_data_queue(), for example.
3276 *
3277 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3278 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3279 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3280 * (borrowed from freebsd)
3281 */
3282
3283static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3284{
3285 return !before(end_seq, tp->rcv_wup) &&
3286 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3287}
3288
3289/* When we get a reset we do this. */
3290static void tcp_reset(struct sock *sk)
3291{
3292 /* We want the right error as BSD sees it (and indeed as we do). */
3293 switch (sk->sk_state) {
3294 case TCP_SYN_SENT:
3295 sk->sk_err = ECONNREFUSED;
3296 break;
3297 case TCP_CLOSE_WAIT:
3298 sk->sk_err = EPIPE;
3299 break;
3300 case TCP_CLOSE:
3301 return;
3302 default:
3303 sk->sk_err = ECONNRESET;
3304 }
3305
3306 if (!sock_flag(sk, SOCK_DEAD))
3307 sk->sk_error_report(sk);
3308
3309 tcp_done(sk);
3310}
3311
3312/*
3313 * Process the FIN bit. This now behaves as it is supposed to work
3314 * and the FIN takes effect when it is validly part of sequence
3315 * space. Not before when we get holes.
3316 *
3317 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3318 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3319 * TIME-WAIT)
3320 *
3321 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3322 * close and we go into CLOSING (and later onto TIME-WAIT)
3323 *
3324 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3325 */
3326static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3327{
3328 struct tcp_sock *tp = tcp_sk(sk);
3329
463c84b9 3330 inet_csk_schedule_ack(sk);
1da177e4
LT
3331
3332 sk->sk_shutdown |= RCV_SHUTDOWN;
3333 sock_set_flag(sk, SOCK_DONE);
3334
3335 switch (sk->sk_state) {
3336 case TCP_SYN_RECV:
3337 case TCP_ESTABLISHED:
3338 /* Move to CLOSE_WAIT */
3339 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3340 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3341 break;
3342
3343 case TCP_CLOSE_WAIT:
3344 case TCP_CLOSING:
3345 /* Received a retransmission of the FIN, do
3346 * nothing.
3347 */
3348 break;
3349 case TCP_LAST_ACK:
3350 /* RFC793: Remain in the LAST-ACK state. */
3351 break;
3352
3353 case TCP_FIN_WAIT1:
3354 /* This case occurs when a simultaneous close
3355 * happens, we must ack the received FIN and
3356 * enter the CLOSING state.
3357 */
3358 tcp_send_ack(sk);
3359 tcp_set_state(sk, TCP_CLOSING);
3360 break;
3361 case TCP_FIN_WAIT2:
3362 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3363 tcp_send_ack(sk);
3364 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3365 break;
3366 default:
3367 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3368 * cases we should never reach this piece of code.
3369 */
3370 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3371 __FUNCTION__, sk->sk_state);
3372 break;
3ff50b79 3373 }
1da177e4
LT
3374
3375 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3376 * Probably, we should reset in this case. For now drop them.
3377 */
3378 __skb_queue_purge(&tp->out_of_order_queue);
e60402d0 3379 if (tcp_is_sack(tp))
1da177e4
LT
3380 tcp_sack_reset(&tp->rx_opt);
3381 sk_stream_mem_reclaim(sk);
3382
3383 if (!sock_flag(sk, SOCK_DEAD)) {
3384 sk->sk_state_change(sk);
3385
3386 /* Do not send POLL_HUP for half duplex close. */
3387 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3388 sk->sk_state == TCP_CLOSE)
3389 sk_wake_async(sk, 1, POLL_HUP);
3390 else
3391 sk_wake_async(sk, 1, POLL_IN);
3392 }
3393}
3394
40efc6fa 3395static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3396{
3397 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3398 if (before(seq, sp->start_seq))
3399 sp->start_seq = seq;
3400 if (after(end_seq, sp->end_seq))
3401 sp->end_seq = end_seq;
3402 return 1;
3403 }
3404 return 0;
3405}
3406
40efc6fa 3407static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4 3408{
e60402d0 3409 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3410 if (before(seq, tp->rcv_nxt))
3411 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3412 else
3413 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3414
3415 tp->rx_opt.dsack = 1;
3416 tp->duplicate_sack[0].start_seq = seq;
3417 tp->duplicate_sack[0].end_seq = end_seq;
3418 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3419 }
3420}
3421
40efc6fa 3422static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3423{
3424 if (!tp->rx_opt.dsack)
3425 tcp_dsack_set(tp, seq, end_seq);
3426 else
3427 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3428}
3429
3430static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3431{
3432 struct tcp_sock *tp = tcp_sk(sk);
3433
3434 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3435 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3436 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3437 tcp_enter_quickack_mode(sk);
1da177e4 3438
e60402d0 3439 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3440 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3441
3442 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3443 end_seq = tp->rcv_nxt;
3444 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3445 }
3446 }
3447
3448 tcp_send_ack(sk);
3449}
3450
3451/* These routines update the SACK block as out-of-order packets arrive or
3452 * in-order packets close up the sequence space.
3453 */
3454static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3455{
3456 int this_sack;
3457 struct tcp_sack_block *sp = &tp->selective_acks[0];
3458 struct tcp_sack_block *swalk = sp+1;
3459
3460 /* See if the recent change to the first SACK eats into
3461 * or hits the sequence space of other SACK blocks, if so coalesce.
3462 */
3463 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3464 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3465 int i;
3466
3467 /* Zap SWALK, by moving every further SACK up by one slot.
3468 * Decrease num_sacks.
3469 */
3470 tp->rx_opt.num_sacks--;
3471 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3472 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3473 sp[i] = sp[i+1];
3474 continue;
3475 }
3476 this_sack++, swalk++;
3477 }
3478}
3479
40efc6fa 3480static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3481{
3482 __u32 tmp;
3483
3484 tmp = sack1->start_seq;
3485 sack1->start_seq = sack2->start_seq;
3486 sack2->start_seq = tmp;
3487
3488 tmp = sack1->end_seq;
3489 sack1->end_seq = sack2->end_seq;
3490 sack2->end_seq = tmp;
3491}
3492
3493static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3494{
3495 struct tcp_sock *tp = tcp_sk(sk);
3496 struct tcp_sack_block *sp = &tp->selective_acks[0];
3497 int cur_sacks = tp->rx_opt.num_sacks;
3498 int this_sack;
3499
3500 if (!cur_sacks)
3501 goto new_sack;
3502
3503 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3504 if (tcp_sack_extend(sp, seq, end_seq)) {
3505 /* Rotate this_sack to the first one. */
3506 for (; this_sack>0; this_sack--, sp--)
3507 tcp_sack_swap(sp, sp-1);
3508 if (cur_sacks > 1)
3509 tcp_sack_maybe_coalesce(tp);
3510 return;
3511 }
3512 }
3513
3514 /* Could not find an adjacent existing SACK, build a new one,
3515 * put it at the front, and shift everyone else down. We
3516 * always know there is at least one SACK present already here.
3517 *
3518 * If the sack array is full, forget about the last one.
3519 */
3520 if (this_sack >= 4) {
3521 this_sack--;
3522 tp->rx_opt.num_sacks--;
3523 sp--;
3524 }
2de979bd 3525 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3526 *sp = *(sp-1);
3527
3528new_sack:
3529 /* Build the new head SACK, and we're done. */
3530 sp->start_seq = seq;
3531 sp->end_seq = end_seq;
3532 tp->rx_opt.num_sacks++;
3533 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3534}
3535
3536/* RCV.NXT advances, some SACKs should be eaten. */
3537
3538static void tcp_sack_remove(struct tcp_sock *tp)
3539{
3540 struct tcp_sack_block *sp = &tp->selective_acks[0];
3541 int num_sacks = tp->rx_opt.num_sacks;
3542 int this_sack;
3543
3544 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3545 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3546 tp->rx_opt.num_sacks = 0;
3547 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3548 return;
3549 }
3550
2de979bd 3551 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3552 /* Check if the start of the sack is covered by RCV.NXT. */
3553 if (!before(tp->rcv_nxt, sp->start_seq)) {
3554 int i;
3555
3556 /* RCV.NXT must cover all the block! */
3557 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3558
3559 /* Zap this SACK, by moving forward any other SACKS. */
3560 for (i=this_sack+1; i < num_sacks; i++)
3561 tp->selective_acks[i-1] = tp->selective_acks[i];
3562 num_sacks--;
3563 continue;
3564 }
3565 this_sack++;
3566 sp++;
3567 }
3568 if (num_sacks != tp->rx_opt.num_sacks) {
3569 tp->rx_opt.num_sacks = num_sacks;
3570 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3571 }
3572}
3573
3574/* This one checks to see if we can put data from the
3575 * out_of_order queue into the receive_queue.
3576 */
3577static void tcp_ofo_queue(struct sock *sk)
3578{
3579 struct tcp_sock *tp = tcp_sk(sk);
3580 __u32 dsack_high = tp->rcv_nxt;
3581 struct sk_buff *skb;
3582
3583 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3584 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3585 break;
3586
3587 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3588 __u32 dsack = dsack_high;
3589 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3590 dsack_high = TCP_SKB_CB(skb)->end_seq;
3591 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3592 }
3593
3594 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3595 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3596 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3597 __kfree_skb(skb);
3598 continue;
3599 }
3600 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3601 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3602 TCP_SKB_CB(skb)->end_seq);
3603
8728b834 3604 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3605 __skb_queue_tail(&sk->sk_receive_queue, skb);
3606 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3607 if (tcp_hdr(skb)->fin)
3608 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3609 }
3610}
3611
3612static int tcp_prune_queue(struct sock *sk);
3613
3614static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3615{
aa8223c7 3616 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3617 struct tcp_sock *tp = tcp_sk(sk);
3618 int eaten = -1;
3619
3620 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3621 goto drop;
3622
1da177e4
LT
3623 __skb_pull(skb, th->doff*4);
3624
3625 TCP_ECN_accept_cwr(tp, skb);
3626
3627 if (tp->rx_opt.dsack) {
3628 tp->rx_opt.dsack = 0;
3629 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3630 4 - tp->rx_opt.tstamp_ok);
3631 }
3632
3633 /* Queue data for delivery to the user.
3634 * Packets in sequence go to the receive queue.
3635 * Out of sequence packets to the out_of_order_queue.
3636 */
3637 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3638 if (tcp_receive_window(tp) == 0)
3639 goto out_of_window;
3640
3641 /* Ok. In sequence. In window. */
3642 if (tp->ucopy.task == current &&
3643 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3644 sock_owned_by_user(sk) && !tp->urg_data) {
3645 int chunk = min_t(unsigned int, skb->len,
3646 tp->ucopy.len);
3647
3648 __set_current_state(TASK_RUNNING);
3649
3650 local_bh_enable();
3651 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3652 tp->ucopy.len -= chunk;
3653 tp->copied_seq += chunk;
3654 eaten = (chunk == skb->len && !th->fin);
3655 tcp_rcv_space_adjust(sk);
3656 }
3657 local_bh_disable();
3658 }
3659
3660 if (eaten <= 0) {
3661queue_and_out:
3662 if (eaten < 0 &&
3663 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3664 !sk_stream_rmem_schedule(sk, skb))) {
3665 if (tcp_prune_queue(sk) < 0 ||
3666 !sk_stream_rmem_schedule(sk, skb))
3667 goto drop;
3668 }
3669 sk_stream_set_owner_r(skb, sk);
3670 __skb_queue_tail(&sk->sk_receive_queue, skb);
3671 }
3672 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3673 if (skb->len)
9e412ba7 3674 tcp_event_data_recv(sk, skb);
2de979bd 3675 if (th->fin)
1da177e4
LT
3676 tcp_fin(skb, sk, th);
3677
b03efcfb 3678 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3679 tcp_ofo_queue(sk);
3680
3681 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3682 * gap in queue is filled.
3683 */
b03efcfb 3684 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3685 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3686 }
3687
3688 if (tp->rx_opt.num_sacks)
3689 tcp_sack_remove(tp);
3690
9e412ba7 3691 tcp_fast_path_check(sk);
1da177e4
LT
3692
3693 if (eaten > 0)
3694 __kfree_skb(skb);
3695 else if (!sock_flag(sk, SOCK_DEAD))
3696 sk->sk_data_ready(sk, 0);
3697 return;
3698 }
3699
3700 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3701 /* A retransmit, 2nd most common case. Force an immediate ack. */
3702 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3703 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3704
3705out_of_window:
463c84b9
ACM
3706 tcp_enter_quickack_mode(sk);
3707 inet_csk_schedule_ack(sk);
1da177e4
LT
3708drop:
3709 __kfree_skb(skb);
3710 return;
3711 }
3712
3713 /* Out of window. F.e. zero window probe. */
3714 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3715 goto out_of_window;
3716
463c84b9 3717 tcp_enter_quickack_mode(sk);
1da177e4
LT
3718
3719 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3720 /* Partial packet, seq < rcv_next < end_seq */
3721 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3722 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3723 TCP_SKB_CB(skb)->end_seq);
3724
3725 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3726
1da177e4
LT
3727 /* If window is closed, drop tail of packet. But after
3728 * remembering D-SACK for its head made in previous line.
3729 */
3730 if (!tcp_receive_window(tp))
3731 goto out_of_window;
3732 goto queue_and_out;
3733 }
3734
3735 TCP_ECN_check_ce(tp, skb);
3736
3737 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3738 !sk_stream_rmem_schedule(sk, skb)) {
3739 if (tcp_prune_queue(sk) < 0 ||
3740 !sk_stream_rmem_schedule(sk, skb))
3741 goto drop;
3742 }
3743
3744 /* Disable header prediction. */
3745 tp->pred_flags = 0;
463c84b9 3746 inet_csk_schedule_ack(sk);
1da177e4
LT
3747
3748 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3749 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3750
3751 sk_stream_set_owner_r(skb, sk);
3752
3753 if (!skb_peek(&tp->out_of_order_queue)) {
3754 /* Initial out of order segment, build 1 SACK. */
e60402d0 3755 if (tcp_is_sack(tp)) {
1da177e4
LT
3756 tp->rx_opt.num_sacks = 1;
3757 tp->rx_opt.dsack = 0;
3758 tp->rx_opt.eff_sacks = 1;
3759 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3760 tp->selective_acks[0].end_seq =
3761 TCP_SKB_CB(skb)->end_seq;
3762 }
3763 __skb_queue_head(&tp->out_of_order_queue,skb);
3764 } else {
3765 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3766 u32 seq = TCP_SKB_CB(skb)->seq;
3767 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3768
3769 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3770 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3771
3772 if (!tp->rx_opt.num_sacks ||
3773 tp->selective_acks[0].end_seq != seq)
3774 goto add_sack;
3775
3776 /* Common case: data arrive in order after hole. */
3777 tp->selective_acks[0].end_seq = end_seq;
3778 return;
3779 }
3780
3781 /* Find place to insert this segment. */
3782 do {
3783 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3784 break;
3785 } while ((skb1 = skb1->prev) !=
3786 (struct sk_buff*)&tp->out_of_order_queue);
3787
3788 /* Do skb overlap to previous one? */
3789 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3790 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3791 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3792 /* All the bits are present. Drop. */
3793 __kfree_skb(skb);
3794 tcp_dsack_set(tp, seq, end_seq);
3795 goto add_sack;
3796 }
3797 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3798 /* Partial overlap. */
3799 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3800 } else {
3801 skb1 = skb1->prev;
3802 }
3803 }
3804 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3805
1da177e4
LT
3806 /* And clean segments covered by new one as whole. */
3807 while ((skb1 = skb->next) !=
3808 (struct sk_buff*)&tp->out_of_order_queue &&
3809 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3810 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3811 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3812 break;
3813 }
8728b834 3814 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3815 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3816 __kfree_skb(skb1);
3817 }
3818
3819add_sack:
e60402d0 3820 if (tcp_is_sack(tp))
1da177e4
LT
3821 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3822 }
3823}
3824
3825/* Collapse contiguous sequence of skbs head..tail with
3826 * sequence numbers start..end.
3827 * Segments with FIN/SYN are not collapsed (only because this
3828 * simplifies code)
3829 */
3830static void
8728b834
DM
3831tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3832 struct sk_buff *head, struct sk_buff *tail,
3833 u32 start, u32 end)
1da177e4
LT
3834{
3835 struct sk_buff *skb;
3836
caa20d9a 3837 /* First, check that queue is collapsible and find
1da177e4
LT
3838 * the point where collapsing can be useful. */
3839 for (skb = head; skb != tail; ) {
3840 /* No new bits? It is possible on ofo queue. */
3841 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3842 struct sk_buff *next = skb->next;
8728b834 3843 __skb_unlink(skb, list);
1da177e4
LT
3844 __kfree_skb(skb);
3845 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3846 skb = next;
3847 continue;
3848 }
3849
3850 /* The first skb to collapse is:
3851 * - not SYN/FIN and
3852 * - bloated or contains data before "start" or
3853 * overlaps to the next one.
3854 */
aa8223c7 3855 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3856 (tcp_win_from_space(skb->truesize) > skb->len ||
3857 before(TCP_SKB_CB(skb)->seq, start) ||
3858 (skb->next != tail &&
3859 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3860 break;
3861
3862 /* Decided to skip this, advance start seq. */
3863 start = TCP_SKB_CB(skb)->end_seq;
3864 skb = skb->next;
3865 }
aa8223c7 3866 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3867 return;
3868
3869 while (before(start, end)) {
3870 struct sk_buff *nskb;
3871 int header = skb_headroom(skb);
3872 int copy = SKB_MAX_ORDER(header, 0);
3873
3874 /* Too big header? This can happen with IPv6. */
3875 if (copy < 0)
3876 return;
3877 if (end-start < copy)
3878 copy = end-start;
3879 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3880 if (!nskb)
3881 return;
c51957da 3882
98e399f8 3883 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3884 skb_set_network_header(nskb, (skb_network_header(skb) -
3885 skb->head));
3886 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3887 skb->head));
1da177e4
LT
3888 skb_reserve(nskb, header);
3889 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3890 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3891 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3892 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3893 sk_stream_set_owner_r(nskb, sk);
3894
3895 /* Copy data, releasing collapsed skbs. */
3896 while (copy > 0) {
3897 int offset = start - TCP_SKB_CB(skb)->seq;
3898 int size = TCP_SKB_CB(skb)->end_seq - start;
3899
09a62660 3900 BUG_ON(offset < 0);
1da177e4
LT
3901 if (size > 0) {
3902 size = min(copy, size);
3903 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3904 BUG();
3905 TCP_SKB_CB(nskb)->end_seq += size;
3906 copy -= size;
3907 start += size;
3908 }
3909 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3910 struct sk_buff *next = skb->next;
8728b834 3911 __skb_unlink(skb, list);
1da177e4
LT
3912 __kfree_skb(skb);
3913 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3914 skb = next;
aa8223c7
ACM
3915 if (skb == tail ||
3916 tcp_hdr(skb)->syn ||
3917 tcp_hdr(skb)->fin)
1da177e4
LT
3918 return;
3919 }
3920 }
3921 }
3922}
3923
3924/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3925 * and tcp_collapse() them until all the queue is collapsed.
3926 */
3927static void tcp_collapse_ofo_queue(struct sock *sk)
3928{
3929 struct tcp_sock *tp = tcp_sk(sk);
3930 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3931 struct sk_buff *head;
3932 u32 start, end;
3933
3934 if (skb == NULL)
3935 return;
3936
3937 start = TCP_SKB_CB(skb)->seq;
3938 end = TCP_SKB_CB(skb)->end_seq;
3939 head = skb;
3940
3941 for (;;) {
3942 skb = skb->next;
3943
3944 /* Segment is terminated when we see gap or when
3945 * we are at the end of all the queue. */
3946 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3947 after(TCP_SKB_CB(skb)->seq, end) ||
3948 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3949 tcp_collapse(sk, &tp->out_of_order_queue,
3950 head, skb, start, end);
1da177e4
LT
3951 head = skb;
3952 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3953 break;
3954 /* Start new segment */
3955 start = TCP_SKB_CB(skb)->seq;
3956 end = TCP_SKB_CB(skb)->end_seq;
3957 } else {
3958 if (before(TCP_SKB_CB(skb)->seq, start))
3959 start = TCP_SKB_CB(skb)->seq;
3960 if (after(TCP_SKB_CB(skb)->end_seq, end))
3961 end = TCP_SKB_CB(skb)->end_seq;
3962 }
3963 }
3964}
3965
3966/* Reduce allocated memory if we can, trying to get
3967 * the socket within its memory limits again.
3968 *
3969 * Return less than zero if we should start dropping frames
3970 * until the socket owning process reads some of the data
3971 * to stabilize the situation.
3972 */
3973static int tcp_prune_queue(struct sock *sk)
3974{
e905a9ed 3975 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3976
3977 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3978
3979 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3980
3981 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3982 tcp_clamp_window(sk);
1da177e4
LT
3983 else if (tcp_memory_pressure)
3984 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3985
3986 tcp_collapse_ofo_queue(sk);
8728b834
DM
3987 tcp_collapse(sk, &sk->sk_receive_queue,
3988 sk->sk_receive_queue.next,
1da177e4
LT
3989 (struct sk_buff*)&sk->sk_receive_queue,
3990 tp->copied_seq, tp->rcv_nxt);
3991 sk_stream_mem_reclaim(sk);
3992
3993 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3994 return 0;
3995
3996 /* Collapsing did not help, destructive actions follow.
3997 * This must not ever occur. */
3998
3999 /* First, purge the out_of_order queue. */
b03efcfb
DM
4000 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4001 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
4002 __skb_queue_purge(&tp->out_of_order_queue);
4003
4004 /* Reset SACK state. A conforming SACK implementation will
4005 * do the same at a timeout based retransmit. When a connection
4006 * is in a sad state like this, we care only about integrity
4007 * of the connection not performance.
4008 */
e60402d0 4009 if (tcp_is_sack(tp))
1da177e4
LT
4010 tcp_sack_reset(&tp->rx_opt);
4011 sk_stream_mem_reclaim(sk);
4012 }
4013
4014 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4015 return 0;
4016
4017 /* If we are really being abused, tell the caller to silently
4018 * drop receive data on the floor. It will get retransmitted
4019 * and hopefully then we'll have sufficient space.
4020 */
4021 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4022
4023 /* Massive buffer overcommit. */
4024 tp->pred_flags = 0;
4025 return -1;
4026}
4027
4028
4029/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4030 * As additional protections, we do not touch cwnd in retransmission phases,
4031 * and if application hit its sndbuf limit recently.
4032 */
4033void tcp_cwnd_application_limited(struct sock *sk)
4034{
4035 struct tcp_sock *tp = tcp_sk(sk);
4036
6687e988 4037 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
4038 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4039 /* Limited by application or receiver window. */
d254bcdb
IJ
4040 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4041 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 4042 if (win_used < tp->snd_cwnd) {
6687e988 4043 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
4044 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4045 }
4046 tp->snd_cwnd_used = 0;
4047 }
4048 tp->snd_cwnd_stamp = tcp_time_stamp;
4049}
4050
9e412ba7 4051static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 4052{
9e412ba7
IJ
4053 struct tcp_sock *tp = tcp_sk(sk);
4054
0d9901df
DM
4055 /* If the user specified a specific send buffer setting, do
4056 * not modify it.
4057 */
4058 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4059 return 0;
4060
4061 /* If we are under global TCP memory pressure, do not expand. */
4062 if (tcp_memory_pressure)
4063 return 0;
4064
4065 /* If we are under soft global TCP memory pressure, do not expand. */
4066 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4067 return 0;
4068
4069 /* If we filled the congestion window, do not expand. */
4070 if (tp->packets_out >= tp->snd_cwnd)
4071 return 0;
4072
4073 return 1;
4074}
1da177e4
LT
4075
4076/* When incoming ACK allowed to free some skb from write_queue,
4077 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4078 * on the exit from tcp input handler.
4079 *
4080 * PROBLEM: sndbuf expansion does not work well with largesend.
4081 */
4082static void tcp_new_space(struct sock *sk)
4083{
4084 struct tcp_sock *tp = tcp_sk(sk);
4085
9e412ba7 4086 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 4087 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
4088 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4089 demanded = max_t(unsigned int, tp->snd_cwnd,
4090 tp->reordering + 1);
4091 sndmem *= 2*demanded;
4092 if (sndmem > sk->sk_sndbuf)
4093 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4094 tp->snd_cwnd_stamp = tcp_time_stamp;
4095 }
4096
4097 sk->sk_write_space(sk);
4098}
4099
40efc6fa 4100static void tcp_check_space(struct sock *sk)
1da177e4
LT
4101{
4102 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4103 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4104 if (sk->sk_socket &&
4105 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4106 tcp_new_space(sk);
4107 }
4108}
4109
9e412ba7 4110static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 4111{
9e412ba7 4112 tcp_push_pending_frames(sk);
1da177e4
LT
4113 tcp_check_space(sk);
4114}
4115
4116/*
4117 * Check if sending an ack is needed.
4118 */
4119static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4120{
4121 struct tcp_sock *tp = tcp_sk(sk);
4122
4123 /* More than one full frame received... */
463c84b9 4124 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4125 /* ... and right edge of window advances far enough.
4126 * (tcp_recvmsg() will send ACK otherwise). Or...
4127 */
4128 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4129 /* We ACK each frame or... */
463c84b9 4130 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4131 /* We have out of order data. */
4132 (ofo_possible &&
4133 skb_peek(&tp->out_of_order_queue))) {
4134 /* Then ack it now */
4135 tcp_send_ack(sk);
4136 } else {
4137 /* Else, send delayed ack. */
4138 tcp_send_delayed_ack(sk);
4139 }
4140}
4141
40efc6fa 4142static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4143{
463c84b9 4144 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4145 /* We sent a data segment already. */
4146 return;
4147 }
4148 __tcp_ack_snd_check(sk, 1);
4149}
4150
4151/*
4152 * This routine is only called when we have urgent data
caa20d9a 4153 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4154 * moved inline now as tcp_urg is only called from one
4155 * place. We handle URGent data wrong. We have to - as
4156 * BSD still doesn't use the correction from RFC961.
4157 * For 1003.1g we should support a new option TCP_STDURG to permit
4158 * either form (or just set the sysctl tcp_stdurg).
4159 */
e905a9ed 4160
1da177e4
LT
4161static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4162{
4163 struct tcp_sock *tp = tcp_sk(sk);
4164 u32 ptr = ntohs(th->urg_ptr);
4165
4166 if (ptr && !sysctl_tcp_stdurg)
4167 ptr--;
4168 ptr += ntohl(th->seq);
4169
4170 /* Ignore urgent data that we've already seen and read. */
4171 if (after(tp->copied_seq, ptr))
4172 return;
4173
4174 /* Do not replay urg ptr.
4175 *
4176 * NOTE: interesting situation not covered by specs.
4177 * Misbehaving sender may send urg ptr, pointing to segment,
4178 * which we already have in ofo queue. We are not able to fetch
4179 * such data and will stay in TCP_URG_NOTYET until will be eaten
4180 * by recvmsg(). Seems, we are not obliged to handle such wicked
4181 * situations. But it is worth to think about possibility of some
4182 * DoSes using some hypothetical application level deadlock.
4183 */
4184 if (before(ptr, tp->rcv_nxt))
4185 return;
4186
4187 /* Do we already have a newer (or duplicate) urgent pointer? */
4188 if (tp->urg_data && !after(ptr, tp->urg_seq))
4189 return;
4190
4191 /* Tell the world about our new urgent pointer. */
4192 sk_send_sigurg(sk);
4193
4194 /* We may be adding urgent data when the last byte read was
4195 * urgent. To do this requires some care. We cannot just ignore
4196 * tp->copied_seq since we would read the last urgent byte again
4197 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4198 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4199 *
4200 * NOTE. Double Dutch. Rendering to plain English: author of comment
4201 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4202 * and expect that both A and B disappear from stream. This is _wrong_.
4203 * Though this happens in BSD with high probability, this is occasional.
4204 * Any application relying on this is buggy. Note also, that fix "works"
4205 * only in this artificial test. Insert some normal data between A and B and we will
4206 * decline of BSD again. Verdict: it is better to remove to trap
4207 * buggy users.
4208 */
4209 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4210 !sock_flag(sk, SOCK_URGINLINE) &&
4211 tp->copied_seq != tp->rcv_nxt) {
4212 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4213 tp->copied_seq++;
4214 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4215 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4216 __kfree_skb(skb);
4217 }
4218 }
4219
4220 tp->urg_data = TCP_URG_NOTYET;
4221 tp->urg_seq = ptr;
4222
4223 /* Disable header prediction. */
4224 tp->pred_flags = 0;
4225}
4226
4227/* This is the 'fast' part of urgent handling. */
4228static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4229{
4230 struct tcp_sock *tp = tcp_sk(sk);
4231
4232 /* Check if we get a new urgent pointer - normally not. */
4233 if (th->urg)
4234 tcp_check_urg(sk,th);
4235
4236 /* Do we wait for any urgent data? - normally not... */
4237 if (tp->urg_data == TCP_URG_NOTYET) {
4238 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4239 th->syn;
4240
e905a9ed 4241 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4242 if (ptr < skb->len) {
4243 u8 tmp;
4244 if (skb_copy_bits(skb, ptr, &tmp, 1))
4245 BUG();
4246 tp->urg_data = TCP_URG_VALID | tmp;
4247 if (!sock_flag(sk, SOCK_DEAD))
4248 sk->sk_data_ready(sk, 0);
4249 }
4250 }
4251}
4252
4253static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4254{
4255 struct tcp_sock *tp = tcp_sk(sk);
4256 int chunk = skb->len - hlen;
4257 int err;
4258
4259 local_bh_enable();
60476372 4260 if (skb_csum_unnecessary(skb))
1da177e4
LT
4261 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4262 else
4263 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4264 tp->ucopy.iov);
4265
4266 if (!err) {
4267 tp->ucopy.len -= chunk;
4268 tp->copied_seq += chunk;
4269 tcp_rcv_space_adjust(sk);
4270 }
4271
4272 local_bh_disable();
4273 return err;
4274}
4275
b51655b9 4276static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4277{
b51655b9 4278 __sum16 result;
1da177e4
LT
4279
4280 if (sock_owned_by_user(sk)) {
4281 local_bh_enable();
4282 result = __tcp_checksum_complete(skb);
4283 local_bh_disable();
4284 } else {
4285 result = __tcp_checksum_complete(skb);
4286 }
4287 return result;
4288}
4289
40efc6fa 4290static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4291{
60476372 4292 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4293 __tcp_checksum_complete_user(sk, skb);
4294}
4295
1a2449a8
CL
4296#ifdef CONFIG_NET_DMA
4297static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4298{
4299 struct tcp_sock *tp = tcp_sk(sk);
4300 int chunk = skb->len - hlen;
4301 int dma_cookie;
4302 int copied_early = 0;
4303
4304 if (tp->ucopy.wakeup)
e905a9ed 4305 return 0;
1a2449a8
CL
4306
4307 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4308 tp->ucopy.dma_chan = get_softnet_dma();
4309
60476372 4310 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4311
4312 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4313 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4314
4315 if (dma_cookie < 0)
4316 goto out;
4317
4318 tp->ucopy.dma_cookie = dma_cookie;
4319 copied_early = 1;
4320
4321 tp->ucopy.len -= chunk;
4322 tp->copied_seq += chunk;
4323 tcp_rcv_space_adjust(sk);
4324
4325 if ((tp->ucopy.len == 0) ||
aa8223c7 4326 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4327 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4328 tp->ucopy.wakeup = 1;
4329 sk->sk_data_ready(sk, 0);
4330 }
4331 } else if (chunk > 0) {
4332 tp->ucopy.wakeup = 1;
4333 sk->sk_data_ready(sk, 0);
4334 }
4335out:
4336 return copied_early;
4337}
4338#endif /* CONFIG_NET_DMA */
4339
1da177e4 4340/*
e905a9ed 4341 * TCP receive function for the ESTABLISHED state.
1da177e4 4342 *
e905a9ed 4343 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4344 * disabled when:
4345 * - A zero window was announced from us - zero window probing
e905a9ed 4346 * is only handled properly in the slow path.
1da177e4
LT
4347 * - Out of order segments arrived.
4348 * - Urgent data is expected.
4349 * - There is no buffer space left
4350 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4351 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4352 * - Data is sent in both directions. Fast path only supports pure senders
4353 * or pure receivers (this means either the sequence number or the ack
4354 * value must stay constant)
4355 * - Unexpected TCP option.
4356 *
e905a9ed 4357 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4358 * receive procedure patterned after RFC793 to handle all cases.
4359 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4360 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4361 * tcp_data_queue when everything is OK.
4362 */
4363int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4364 struct tcphdr *th, unsigned len)
4365{
4366 struct tcp_sock *tp = tcp_sk(sk);
4367
4368 /*
4369 * Header prediction.
e905a9ed 4370 * The code loosely follows the one in the famous
1da177e4 4371 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4372 *
4373 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4374 * on a device interrupt, to call tcp_recv function
4375 * on the receive process context and checksum and copy
4376 * the buffer to user space. smart...
4377 *
e905a9ed 4378 * Our current scheme is not silly either but we take the
1da177e4
LT
4379 * extra cost of the net_bh soft interrupt processing...
4380 * We do checksum and copy also but from device to kernel.
4381 */
4382
4383 tp->rx_opt.saw_tstamp = 0;
4384
4385 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4386 * if header_prediction is to be made
1da177e4
LT
4387 * 'S' will always be tp->tcp_header_len >> 2
4388 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4389 * turn it off (when there are holes in the receive
1da177e4
LT
4390 * space for instance)
4391 * PSH flag is ignored.
4392 */
4393
4394 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4395 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4396 int tcp_header_len = tp->tcp_header_len;
4397
4398 /* Timestamp header prediction: tcp_header_len
4399 * is automatically equal to th->doff*4 due to pred_flags
4400 * match.
4401 */
4402
4403 /* Check timestamp */
4404 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4405 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4406
4407 /* No? Slow path! */
4f3608b7 4408 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4409 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4410 goto slow_path;
4411
4412 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4413 ++ptr;
1da177e4
LT
4414 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4415 ++ptr;
4416 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4417
4418 /* If PAWS failed, check it more carefully in slow path */
4419 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4420 goto slow_path;
4421
4422 /* DO NOT update ts_recent here, if checksum fails
4423 * and timestamp was corrupted part, it will result
4424 * in a hung connection since we will drop all
4425 * future packets due to the PAWS test.
4426 */
4427 }
4428
4429 if (len <= tcp_header_len) {
4430 /* Bulk data transfer: sender */
4431 if (len == tcp_header_len) {
4432 /* Predicted packet is in window by definition.
4433 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4434 * Hence, check seq<=rcv_wup reduces to:
4435 */
4436 if (tcp_header_len ==
4437 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4438 tp->rcv_nxt == tp->rcv_wup)
4439 tcp_store_ts_recent(tp);
4440
1da177e4
LT
4441 /* We know that such packets are checksummed
4442 * on entry.
4443 */
4444 tcp_ack(sk, skb, 0);
e905a9ed 4445 __kfree_skb(skb);
9e412ba7 4446 tcp_data_snd_check(sk);
1da177e4
LT
4447 return 0;
4448 } else { /* Header too small */
4449 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4450 goto discard;
4451 }
4452 } else {
4453 int eaten = 0;
1a2449a8 4454 int copied_early = 0;
1da177e4 4455
1a2449a8
CL
4456 if (tp->copied_seq == tp->rcv_nxt &&
4457 len - tcp_header_len <= tp->ucopy.len) {
4458#ifdef CONFIG_NET_DMA
4459 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4460 copied_early = 1;
4461 eaten = 1;
4462 }
4463#endif
4464 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4465 __set_current_state(TASK_RUNNING);
1da177e4 4466
1a2449a8
CL
4467 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4468 eaten = 1;
4469 }
4470 if (eaten) {
1da177e4
LT
4471 /* Predicted packet is in window by definition.
4472 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4473 * Hence, check seq<=rcv_wup reduces to:
4474 */
4475 if (tcp_header_len ==
4476 (sizeof(struct tcphdr) +
4477 TCPOLEN_TSTAMP_ALIGNED) &&
4478 tp->rcv_nxt == tp->rcv_wup)
4479 tcp_store_ts_recent(tp);
4480
463c84b9 4481 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4482
4483 __skb_pull(skb, tcp_header_len);
4484 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4485 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4486 }
1a2449a8
CL
4487 if (copied_early)
4488 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4489 }
4490 if (!eaten) {
4491 if (tcp_checksum_complete_user(sk, skb))
4492 goto csum_error;
4493
4494 /* Predicted packet is in window by definition.
4495 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4496 * Hence, check seq<=rcv_wup reduces to:
4497 */
4498 if (tcp_header_len ==
4499 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4500 tp->rcv_nxt == tp->rcv_wup)
4501 tcp_store_ts_recent(tp);
4502
463c84b9 4503 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4504
4505 if ((int)skb->truesize > sk->sk_forward_alloc)
4506 goto step5;
4507
4508 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4509
4510 /* Bulk data transfer: receiver */
4511 __skb_pull(skb,tcp_header_len);
4512 __skb_queue_tail(&sk->sk_receive_queue, skb);
4513 sk_stream_set_owner_r(skb, sk);
4514 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4515 }
4516
9e412ba7 4517 tcp_event_data_recv(sk, skb);
1da177e4
LT
4518
4519 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4520 /* Well, only one small jumplet in fast path... */
4521 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4522 tcp_data_snd_check(sk);
463c84b9 4523 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4524 goto no_ack;
4525 }
4526
31432412 4527 __tcp_ack_snd_check(sk, 0);
1da177e4 4528no_ack:
1a2449a8
CL
4529#ifdef CONFIG_NET_DMA
4530 if (copied_early)
4531 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4532 else
4533#endif
1da177e4
LT
4534 if (eaten)
4535 __kfree_skb(skb);
4536 else
4537 sk->sk_data_ready(sk, 0);
4538 return 0;
4539 }
4540 }
4541
4542slow_path:
4543 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4544 goto csum_error;
4545
4546 /*
4547 * RFC1323: H1. Apply PAWS check first.
4548 */
4549 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4550 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4551 if (!th->rst) {
4552 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4553 tcp_send_dupack(sk, skb);
4554 goto discard;
4555 }
4556 /* Resets are accepted even if PAWS failed.
4557
4558 ts_recent update must be made after we are sure
4559 that the packet is in window.
4560 */
4561 }
4562
4563 /*
4564 * Standard slow path.
4565 */
4566
4567 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4568 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4569 * (RST) segments are validated by checking their SEQ-fields."
4570 * And page 69: "If an incoming segment is not acceptable,
4571 * an acknowledgment should be sent in reply (unless the RST bit
4572 * is set, if so drop the segment and return)".
4573 */
4574 if (!th->rst)
4575 tcp_send_dupack(sk, skb);
4576 goto discard;
4577 }
4578
2de979bd 4579 if (th->rst) {
1da177e4
LT
4580 tcp_reset(sk);
4581 goto discard;
4582 }
4583
4584 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4585
4586 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4587 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4588 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4589 tcp_reset(sk);
4590 return 1;
4591 }
4592
4593step5:
2de979bd 4594 if (th->ack)
1da177e4
LT
4595 tcp_ack(sk, skb, FLAG_SLOWPATH);
4596
463c84b9 4597 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4598
4599 /* Process urgent data. */
4600 tcp_urg(sk, skb, th);
4601
4602 /* step 7: process the segment text */
4603 tcp_data_queue(sk, skb);
4604
9e412ba7 4605 tcp_data_snd_check(sk);
1da177e4
LT
4606 tcp_ack_snd_check(sk);
4607 return 0;
4608
4609csum_error:
4610 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4611
4612discard:
4613 __kfree_skb(skb);
4614 return 0;
4615}
4616
4617static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4618 struct tcphdr *th, unsigned len)
4619{
4620 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4621 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4622 int saved_clamp = tp->rx_opt.mss_clamp;
4623
4624 tcp_parse_options(skb, &tp->rx_opt, 0);
4625
4626 if (th->ack) {
4627 /* rfc793:
4628 * "If the state is SYN-SENT then
4629 * first check the ACK bit
4630 * If the ACK bit is set
4631 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4632 * a reset (unless the RST bit is set, if so drop
4633 * the segment and return)"
4634 *
4635 * We do not send data with SYN, so that RFC-correct
4636 * test reduces to:
4637 */
4638 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4639 goto reset_and_undo;
4640
4641 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4642 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4643 tcp_time_stamp)) {
4644 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4645 goto reset_and_undo;
4646 }
4647
4648 /* Now ACK is acceptable.
4649 *
4650 * "If the RST bit is set
4651 * If the ACK was acceptable then signal the user "error:
4652 * connection reset", drop the segment, enter CLOSED state,
4653 * delete TCB, and return."
4654 */
4655
4656 if (th->rst) {
4657 tcp_reset(sk);
4658 goto discard;
4659 }
4660
4661 /* rfc793:
4662 * "fifth, if neither of the SYN or RST bits is set then
4663 * drop the segment and return."
4664 *
4665 * See note below!
4666 * --ANK(990513)
4667 */
4668 if (!th->syn)
4669 goto discard_and_undo;
4670
4671 /* rfc793:
4672 * "If the SYN bit is on ...
4673 * are acceptable then ...
4674 * (our SYN has been ACKed), change the connection
4675 * state to ESTABLISHED..."
4676 */
4677
4678 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4679
4680 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4681 tcp_ack(sk, skb, FLAG_SLOWPATH);
4682
4683 /* Ok.. it's good. Set up sequence numbers and
4684 * move to established.
4685 */
4686 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4687 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4688
4689 /* RFC1323: The window in SYN & SYN/ACK segments is
4690 * never scaled.
4691 */
4692 tp->snd_wnd = ntohs(th->window);
4693 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4694
4695 if (!tp->rx_opt.wscale_ok) {
4696 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4697 tp->window_clamp = min(tp->window_clamp, 65535U);
4698 }
4699
4700 if (tp->rx_opt.saw_tstamp) {
4701 tp->rx_opt.tstamp_ok = 1;
4702 tp->tcp_header_len =
4703 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4704 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4705 tcp_store_ts_recent(tp);
4706 } else {
4707 tp->tcp_header_len = sizeof(struct tcphdr);
4708 }
4709
e60402d0
IJ
4710 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4711 tcp_enable_fack(tp);
1da177e4 4712
5d424d5a 4713 tcp_mtup_init(sk);
d83d8461 4714 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4715 tcp_initialize_rcv_mss(sk);
4716
4717 /* Remember, tcp_poll() does not lock socket!
4718 * Change state from SYN-SENT only after copied_seq
4719 * is initialized. */
4720 tp->copied_seq = tp->rcv_nxt;
e16aa207 4721 smp_mb();
1da177e4
LT
4722 tcp_set_state(sk, TCP_ESTABLISHED);
4723
6b877699
VY
4724 security_inet_conn_established(sk, skb);
4725
1da177e4 4726 /* Make sure socket is routed, for correct metrics. */
8292a17a 4727 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4728
4729 tcp_init_metrics(sk);
4730
6687e988 4731 tcp_init_congestion_control(sk);
317a76f9 4732
1da177e4
LT
4733 /* Prevent spurious tcp_cwnd_restart() on first data
4734 * packet.
4735 */
4736 tp->lsndtime = tcp_time_stamp;
4737
4738 tcp_init_buffer_space(sk);
4739
4740 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4741 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4742
4743 if (!tp->rx_opt.snd_wscale)
4744 __tcp_fast_path_on(tp, tp->snd_wnd);
4745 else
4746 tp->pred_flags = 0;
4747
4748 if (!sock_flag(sk, SOCK_DEAD)) {
4749 sk->sk_state_change(sk);
4750 sk_wake_async(sk, 0, POLL_OUT);
4751 }
4752
295f7324
ACM
4753 if (sk->sk_write_pending ||
4754 icsk->icsk_accept_queue.rskq_defer_accept ||
4755 icsk->icsk_ack.pingpong) {
1da177e4
LT
4756 /* Save one ACK. Data will be ready after
4757 * several ticks, if write_pending is set.
4758 *
4759 * It may be deleted, but with this feature tcpdumps
4760 * look so _wonderfully_ clever, that I was not able
4761 * to stand against the temptation 8) --ANK
4762 */
463c84b9 4763 inet_csk_schedule_ack(sk);
295f7324
ACM
4764 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4765 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4766 tcp_incr_quickack(sk);
4767 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4768 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4769 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4770
4771discard:
4772 __kfree_skb(skb);
4773 return 0;
4774 } else {
4775 tcp_send_ack(sk);
4776 }
4777 return -1;
4778 }
4779
4780 /* No ACK in the segment */
4781
4782 if (th->rst) {
4783 /* rfc793:
4784 * "If the RST bit is set
4785 *
4786 * Otherwise (no ACK) drop the segment and return."
4787 */
4788
4789 goto discard_and_undo;
4790 }
4791
4792 /* PAWS check. */
4793 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4794 goto discard_and_undo;
4795
4796 if (th->syn) {
4797 /* We see SYN without ACK. It is attempt of
4798 * simultaneous connect with crossed SYNs.
4799 * Particularly, it can be connect to self.
4800 */
4801 tcp_set_state(sk, TCP_SYN_RECV);
4802
4803 if (tp->rx_opt.saw_tstamp) {
4804 tp->rx_opt.tstamp_ok = 1;
4805 tcp_store_ts_recent(tp);
4806 tp->tcp_header_len =
4807 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4808 } else {
4809 tp->tcp_header_len = sizeof(struct tcphdr);
4810 }
4811
4812 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4813 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4814
4815 /* RFC1323: The window in SYN & SYN/ACK segments is
4816 * never scaled.
4817 */
4818 tp->snd_wnd = ntohs(th->window);
4819 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4820 tp->max_window = tp->snd_wnd;
4821
4822 TCP_ECN_rcv_syn(tp, th);
1da177e4 4823
5d424d5a 4824 tcp_mtup_init(sk);
d83d8461 4825 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4826 tcp_initialize_rcv_mss(sk);
4827
4828
4829 tcp_send_synack(sk);
4830#if 0
4831 /* Note, we could accept data and URG from this segment.
4832 * There are no obstacles to make this.
4833 *
4834 * However, if we ignore data in ACKless segments sometimes,
4835 * we have no reasons to accept it sometimes.
4836 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4837 * is not flawless. So, discard packet for sanity.
4838 * Uncomment this return to process the data.
4839 */
4840 return -1;
4841#else
4842 goto discard;
4843#endif
4844 }
4845 /* "fifth, if neither of the SYN or RST bits is set then
4846 * drop the segment and return."
4847 */
4848
4849discard_and_undo:
4850 tcp_clear_options(&tp->rx_opt);
4851 tp->rx_opt.mss_clamp = saved_clamp;
4852 goto discard;
4853
4854reset_and_undo:
4855 tcp_clear_options(&tp->rx_opt);
4856 tp->rx_opt.mss_clamp = saved_clamp;
4857 return 1;
4858}
4859
4860
4861/*
4862 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4863 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4864 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4865 * address independent.
4866 */
e905a9ed 4867
1da177e4
LT
4868int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4869 struct tcphdr *th, unsigned len)
4870{
4871 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4872 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4873 int queued = 0;
4874
4875 tp->rx_opt.saw_tstamp = 0;
4876
4877 switch (sk->sk_state) {
4878 case TCP_CLOSE:
4879 goto discard;
4880
4881 case TCP_LISTEN:
2de979bd 4882 if (th->ack)
1da177e4
LT
4883 return 1;
4884
2de979bd 4885 if (th->rst)
1da177e4
LT
4886 goto discard;
4887
2de979bd 4888 if (th->syn) {
8292a17a 4889 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4890 return 1;
4891
e905a9ed
YH
4892 /* Now we have several options: In theory there is
4893 * nothing else in the frame. KA9Q has an option to
1da177e4 4894 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4895 * syn up to the [to be] advertised window and
4896 * Solaris 2.1 gives you a protocol error. For now
4897 * we just ignore it, that fits the spec precisely
1da177e4
LT
4898 * and avoids incompatibilities. It would be nice in
4899 * future to drop through and process the data.
4900 *
e905a9ed 4901 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4902 * queue this data.
4903 * But, this leaves one open to an easy denial of
e905a9ed 4904 * service attack, and SYN cookies can't defend
1da177e4 4905 * against this problem. So, we drop the data
fb7e2399
MN
4906 * in the interest of security over speed unless
4907 * it's still in use.
1da177e4 4908 */
fb7e2399
MN
4909 kfree_skb(skb);
4910 return 0;
1da177e4
LT
4911 }
4912 goto discard;
4913
4914 case TCP_SYN_SENT:
1da177e4
LT
4915 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4916 if (queued >= 0)
4917 return queued;
4918
4919 /* Do step6 onward by hand. */
4920 tcp_urg(sk, skb, th);
4921 __kfree_skb(skb);
9e412ba7 4922 tcp_data_snd_check(sk);
1da177e4
LT
4923 return 0;
4924 }
4925
4926 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4927 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4928 if (!th->rst) {
4929 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4930 tcp_send_dupack(sk, skb);
4931 goto discard;
4932 }
4933 /* Reset is accepted even if it did not pass PAWS. */
4934 }
4935
4936 /* step 1: check sequence number */
4937 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4938 if (!th->rst)
4939 tcp_send_dupack(sk, skb);
4940 goto discard;
4941 }
4942
4943 /* step 2: check RST bit */
2de979bd 4944 if (th->rst) {
1da177e4
LT
4945 tcp_reset(sk);
4946 goto discard;
4947 }
4948
4949 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4950
4951 /* step 3: check security and precedence [ignored] */
4952
4953 /* step 4:
4954 *
4955 * Check for a SYN in window.
4956 */
4957 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4958 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4959 tcp_reset(sk);
4960 return 1;
4961 }
4962
4963 /* step 5: check the ACK field */
4964 if (th->ack) {
4965 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4966
2de979bd 4967 switch (sk->sk_state) {
1da177e4
LT
4968 case TCP_SYN_RECV:
4969 if (acceptable) {
4970 tp->copied_seq = tp->rcv_nxt;
e16aa207 4971 smp_mb();
1da177e4
LT
4972 tcp_set_state(sk, TCP_ESTABLISHED);
4973 sk->sk_state_change(sk);
4974
4975 /* Note, that this wakeup is only for marginal
4976 * crossed SYN case. Passively open sockets
4977 * are not waked up, because sk->sk_sleep ==
4978 * NULL and sk->sk_socket == NULL.
4979 */
4980 if (sk->sk_socket) {
4981 sk_wake_async(sk,0,POLL_OUT);
4982 }
4983
4984 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4985 tp->snd_wnd = ntohs(th->window) <<
4986 tp->rx_opt.snd_wscale;
4987 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4988 TCP_SKB_CB(skb)->seq);
4989
4990 /* tcp_ack considers this ACK as duplicate
4991 * and does not calculate rtt.
4992 * Fix it at least with timestamps.
4993 */
4994 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4995 !tp->srtt)
2d2abbab 4996 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4997
4998 if (tp->rx_opt.tstamp_ok)
4999 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5000
5001 /* Make sure socket is routed, for
5002 * correct metrics.
5003 */
8292a17a 5004 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
5005
5006 tcp_init_metrics(sk);
5007
6687e988 5008 tcp_init_congestion_control(sk);
317a76f9 5009
1da177e4
LT
5010 /* Prevent spurious tcp_cwnd_restart() on
5011 * first data packet.
5012 */
5013 tp->lsndtime = tcp_time_stamp;
5014
5d424d5a 5015 tcp_mtup_init(sk);
1da177e4
LT
5016 tcp_initialize_rcv_mss(sk);
5017 tcp_init_buffer_space(sk);
5018 tcp_fast_path_on(tp);
5019 } else {
5020 return 1;
5021 }
5022 break;
5023
5024 case TCP_FIN_WAIT1:
5025 if (tp->snd_una == tp->write_seq) {
5026 tcp_set_state(sk, TCP_FIN_WAIT2);
5027 sk->sk_shutdown |= SEND_SHUTDOWN;
5028 dst_confirm(sk->sk_dst_cache);
5029
5030 if (!sock_flag(sk, SOCK_DEAD))
5031 /* Wake up lingering close() */
5032 sk->sk_state_change(sk);
5033 else {
5034 int tmo;
5035
5036 if (tp->linger2 < 0 ||
5037 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5038 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5039 tcp_done(sk);
5040 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5041 return 1;
5042 }
5043
463c84b9 5044 tmo = tcp_fin_time(sk);
1da177e4 5045 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 5046 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
5047 } else if (th->fin || sock_owned_by_user(sk)) {
5048 /* Bad case. We could lose such FIN otherwise.
5049 * It is not a big problem, but it looks confusing
5050 * and not so rare event. We still can lose it now,
5051 * if it spins in bh_lock_sock(), but it is really
5052 * marginal case.
5053 */
463c84b9 5054 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
5055 } else {
5056 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5057 goto discard;
5058 }
5059 }
5060 }
5061 break;
5062
5063 case TCP_CLOSING:
5064 if (tp->snd_una == tp->write_seq) {
5065 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5066 goto discard;
5067 }
5068 break;
5069
5070 case TCP_LAST_ACK:
5071 if (tp->snd_una == tp->write_seq) {
5072 tcp_update_metrics(sk);
5073 tcp_done(sk);
5074 goto discard;
5075 }
5076 break;
5077 }
5078 } else
5079 goto discard;
5080
5081 /* step 6: check the URG bit */
5082 tcp_urg(sk, skb, th);
5083
5084 /* step 7: process the segment text */
5085 switch (sk->sk_state) {
5086 case TCP_CLOSE_WAIT:
5087 case TCP_CLOSING:
5088 case TCP_LAST_ACK:
5089 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5090 break;
5091 case TCP_FIN_WAIT1:
5092 case TCP_FIN_WAIT2:
5093 /* RFC 793 says to queue data in these states,
e905a9ed 5094 * RFC 1122 says we MUST send a reset.
1da177e4
LT
5095 * BSD 4.4 also does reset.
5096 */
5097 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5098 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5099 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5100 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5101 tcp_reset(sk);
5102 return 1;
5103 }
5104 }
5105 /* Fall through */
e905a9ed 5106 case TCP_ESTABLISHED:
1da177e4
LT
5107 tcp_data_queue(sk, skb);
5108 queued = 1;
5109 break;
5110 }
5111
5112 /* tcp_data could move socket to TIME-WAIT */
5113 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5114 tcp_data_snd_check(sk);
1da177e4
LT
5115 tcp_ack_snd_check(sk);
5116 }
5117
e905a9ed 5118 if (!queued) {
1da177e4
LT
5119discard:
5120 __kfree_skb(skb);
5121 }
5122 return 0;
5123}
5124
5125EXPORT_SYMBOL(sysctl_tcp_ecn);
5126EXPORT_SYMBOL(sysctl_tcp_reordering);
5127EXPORT_SYMBOL(tcp_parse_options);
5128EXPORT_SYMBOL(tcp_rcv_established);
5129EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5130EXPORT_SYMBOL(tcp_initialize_rcv_mss);