]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm/kvm.c
i386: move cpu dump out of helper.c into cpu-dump.c
[mirror_qemu.git] / target / i386 / kvm / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
8efc4e51 16#include "qapi/qapi-events-run-state.h"
da34e65c 17#include "qapi/error.h"
05330448 18#include <sys/ioctl.h>
25d2e361 19#include <sys/utsname.h>
05330448
AL
20
21#include <linux/kvm.h>
1814eab6 22#include "standard-headers/asm-x86/kvm_para.h"
05330448 23
33c11879 24#include "cpu.h"
9c17d615 25#include "sysemu/sysemu.h"
b3946626 26#include "sysemu/hw_accel.h"
6410848b 27#include "sysemu/kvm_int.h"
54d31236 28#include "sysemu/runstate.h"
1d31f66b 29#include "kvm_i386.h"
50efe82c 30#include "hyperv.h"
5e953812 31#include "hyperv-proto.h"
50efe82c 32
022c62cb 33#include "exec/gdbstub.h"
1de7afc9 34#include "qemu/host-utils.h"
db725815 35#include "qemu/main-loop.h"
1de7afc9 36#include "qemu/config-file.h"
1c4a55db 37#include "qemu/error-report.h"
89a289c7 38#include "hw/i386/x86.h"
0d09e41a 39#include "hw/i386/apic.h"
e0723c45
PB
40#include "hw/i386/apic_internal.h"
41#include "hw/i386/apic-msidef.h"
8b5ed7df 42#include "hw/i386/intel_iommu.h"
e1d4fb2d 43#include "hw/i386/x86-iommu.h"
d6d059ca 44#include "hw/i386/e820_memory_layout.h"
50efe82c 45
a2cb15b0 46#include "hw/pci/pci.h"
15eafc2e 47#include "hw/pci/msi.h"
fd563564 48#include "hw/pci/msix.h"
795c40b8 49#include "migration/blocker.h"
4c663752 50#include "exec/memattrs.h"
8b5ed7df 51#include "trace.h"
05330448
AL
52
53//#define DEBUG_KVM
54
55#ifdef DEBUG_KVM
8c0d577e 56#define DPRINTF(fmt, ...) \
05330448
AL
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58#else
8c0d577e 59#define DPRINTF(fmt, ...) \
05330448
AL
60 do { } while (0)
61#endif
62
73b994f6
LA
63/* From arch/x86/kvm/lapic.h */
64#define KVM_APIC_BUS_CYCLE_NS 1
65#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
66
1a03675d
GC
67#define MSR_KVM_WALL_CLOCK 0x11
68#define MSR_KVM_SYSTEM_TIME 0x12
69
d1138251
EH
70/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
71 * 255 kvm_msr_entry structs */
72#define MSR_BUF_SIZE 4096
d71b62a1 73
420ae1fc
PB
74static void kvm_init_msrs(X86CPU *cpu);
75
94a8d39a
JK
76const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
77 KVM_CAP_INFO(SET_TSS_ADDR),
78 KVM_CAP_INFO(EXT_CPUID),
79 KVM_CAP_INFO(MP_STATE),
80 KVM_CAP_LAST_INFO
81};
25d2e361 82
c3a3a7d3
JK
83static bool has_msr_star;
84static bool has_msr_hsave_pa;
c9b8f6b6 85static bool has_msr_tsc_aux;
f28558d3 86static bool has_msr_tsc_adjust;
aa82ba54 87static bool has_msr_tsc_deadline;
df67696e 88static bool has_msr_feature_control;
21e87c46 89static bool has_msr_misc_enable;
fc12d72e 90static bool has_msr_smbase;
79e9ebeb 91static bool has_msr_bndcfgs;
25d2e361 92static int lm_capable_kernel;
7bc3d711 93static bool has_msr_hv_hypercall;
f2a53c9e 94static bool has_msr_hv_crash;
744b8a94 95static bool has_msr_hv_reset;
8c145d7c 96static bool has_msr_hv_vpindex;
e9688fab 97static bool hv_vpindex_settable;
46eb8f98 98static bool has_msr_hv_runtime;
866eea9a 99static bool has_msr_hv_synic;
ff99aa64 100static bool has_msr_hv_stimer;
d72bc7f6 101static bool has_msr_hv_frequencies;
ba6a4fd9 102static bool has_msr_hv_reenlightenment;
18cd2c17 103static bool has_msr_xss;
65087997 104static bool has_msr_umwait;
a33a2cfe 105static bool has_msr_spec_ctrl;
2a9758c5 106static bool has_msr_tsx_ctrl;
cfeea0c0 107static bool has_msr_virt_ssbd;
e13713db 108static bool has_msr_smi_count;
aec5e9c3 109static bool has_msr_arch_capabs;
597360c0 110static bool has_msr_core_capabs;
20a78b02 111static bool has_msr_vmx_vmfunc;
67025148 112static bool has_msr_ucode_rev;
4a910e1f 113static bool has_msr_vmx_procbased_ctls2;
ea39f9b6 114static bool has_msr_perf_capabs;
b827df58 115
0b368a10
JD
116static uint32_t has_architectural_pmu_version;
117static uint32_t num_architectural_pmu_gp_counters;
118static uint32_t num_architectural_pmu_fixed_counters;
0d894367 119
28143b40
TH
120static int has_xsave;
121static int has_xcrs;
122static int has_pit_state2;
fd13f23b 123static int has_exception_payload;
28143b40 124
87f8b626
AR
125static bool has_msr_mcg_ext_ctl;
126
494e95e9 127static struct kvm_cpuid2 *cpuid_cache;
f57bceb6 128static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 129
28143b40
TH
130int kvm_has_pit_state2(void)
131{
132 return has_pit_state2;
133}
134
355023f2
PB
135bool kvm_has_smm(void)
136{
137 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
138}
139
6053a86f
MT
140bool kvm_has_adjust_clock_stable(void)
141{
142 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
143
144 return (ret == KVM_CLOCK_TSC_STABLE);
145}
146
8700a984
VK
147bool kvm_has_adjust_clock(void)
148{
149 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
150}
151
79a197ab
LA
152bool kvm_has_exception_payload(void)
153{
154 return has_exception_payload;
155}
156
fb506e70
RK
157static bool kvm_x2apic_api_set_flags(uint64_t flags)
158{
4f7f5893 159 KVMState *s = KVM_STATE(current_accel());
fb506e70
RK
160
161 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
162}
163
e391c009 164#define MEMORIZE(fn, _result) \
2a138ec3 165 ({ \
2a138ec3
RK
166 static bool _memorized; \
167 \
168 if (_memorized) { \
169 return _result; \
170 } \
171 _memorized = true; \
172 _result = fn; \
173 })
174
e391c009
IM
175static bool has_x2apic_api;
176
177bool kvm_has_x2apic_api(void)
178{
179 return has_x2apic_api;
180}
181
fb506e70
RK
182bool kvm_enable_x2apic(void)
183{
2a138ec3
RK
184 return MEMORIZE(
185 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
186 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
187 has_x2apic_api);
fb506e70
RK
188}
189
e9688fab
RK
190bool kvm_hv_vpindex_settable(void)
191{
192 return hv_vpindex_settable;
193}
194
0fd7e098
LL
195static int kvm_get_tsc(CPUState *cs)
196{
197 X86CPU *cpu = X86_CPU(cs);
198 CPUX86State *env = &cpu->env;
199 struct {
200 struct kvm_msrs info;
201 struct kvm_msr_entry entries[1];
a1834d97 202 } msr_data = {};
0fd7e098
LL
203 int ret;
204
205 if (env->tsc_valid) {
206 return 0;
207 }
208
1f670a95 209 memset(&msr_data, 0, sizeof(msr_data));
0fd7e098
LL
210 msr_data.info.nmsrs = 1;
211 msr_data.entries[0].index = MSR_IA32_TSC;
212 env->tsc_valid = !runstate_is_running();
213
214 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
215 if (ret < 0) {
216 return ret;
217 }
218
48e1a45c 219 assert(ret == 1);
0fd7e098
LL
220 env->tsc = msr_data.entries[0].data;
221 return 0;
222}
223
14e6fe12 224static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 225{
0fd7e098
LL
226 kvm_get_tsc(cpu);
227}
228
229void kvm_synchronize_all_tsc(void)
230{
231 CPUState *cpu;
232
233 if (kvm_enabled()) {
234 CPU_FOREACH(cpu) {
14e6fe12 235 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
236 }
237 }
238}
239
b827df58
AK
240static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
241{
242 struct kvm_cpuid2 *cpuid;
243 int r, size;
244
245 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 246 cpuid = g_malloc0(size);
b827df58
AK
247 cpuid->nent = max;
248 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
249 if (r == 0 && cpuid->nent >= max) {
250 r = -E2BIG;
251 }
b827df58
AK
252 if (r < 0) {
253 if (r == -E2BIG) {
7267c094 254 g_free(cpuid);
b827df58
AK
255 return NULL;
256 } else {
257 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
258 strerror(-r));
259 exit(1);
260 }
261 }
262 return cpuid;
263}
264
dd87f8a6
EH
265/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
266 * for all entries.
267 */
268static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
269{
270 struct kvm_cpuid2 *cpuid;
271 int max = 1;
494e95e9
CP
272
273 if (cpuid_cache != NULL) {
274 return cpuid_cache;
275 }
dd87f8a6
EH
276 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
277 max *= 2;
278 }
494e95e9 279 cpuid_cache = cpuid;
dd87f8a6
EH
280 return cpuid;
281}
282
b199c682 283static bool host_tsx_broken(void)
40e80ee4
EH
284{
285 int family, model, stepping;\
286 char vendor[CPUID_VENDOR_SZ + 1];
287
288 host_vendor_fms(vendor, &family, &model, &stepping);
289
290 /* Check if we are running on a Haswell host known to have broken TSX */
291 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
292 (family == 6) &&
293 ((model == 63 && stepping < 4) ||
294 model == 60 || model == 69 || model == 70);
295}
0c31b744 296
829ae2f9
EH
297/* Returns the value for a specific register on the cpuid entry
298 */
299static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
300{
301 uint32_t ret = 0;
302 switch (reg) {
303 case R_EAX:
304 ret = entry->eax;
305 break;
306 case R_EBX:
307 ret = entry->ebx;
308 break;
309 case R_ECX:
310 ret = entry->ecx;
311 break;
312 case R_EDX:
313 ret = entry->edx;
314 break;
315 }
316 return ret;
317}
318
4fb73f1d
EH
319/* Find matching entry for function/index on kvm_cpuid2 struct
320 */
321static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
322 uint32_t function,
323 uint32_t index)
324{
325 int i;
326 for (i = 0; i < cpuid->nent; ++i) {
327 if (cpuid->entries[i].function == function &&
328 cpuid->entries[i].index == index) {
329 return &cpuid->entries[i];
330 }
331 }
332 /* not found: */
333 return NULL;
334}
335
ba9bc59e 336uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 337 uint32_t index, int reg)
b827df58
AK
338{
339 struct kvm_cpuid2 *cpuid;
b827df58
AK
340 uint32_t ret = 0;
341 uint32_t cpuid_1_edx;
342
dd87f8a6 343 cpuid = get_supported_cpuid(s);
b827df58 344
4fb73f1d
EH
345 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
346 if (entry) {
4fb73f1d 347 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
348 }
349
7b46e5ce
EH
350 /* Fixups for the data returned by KVM, below */
351
c2acb022
EH
352 if (function == 1 && reg == R_EDX) {
353 /* KVM before 2.6.30 misreports the following features */
354 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
355 } else if (function == 1 && reg == R_ECX) {
356 /* We can set the hypervisor flag, even if KVM does not return it on
357 * GET_SUPPORTED_CPUID
358 */
359 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
360 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
361 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
362 * and the irqchip is in the kernel.
363 */
364 if (kvm_irqchip_in_kernel() &&
365 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
366 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
367 }
41e5e76d
EH
368
369 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
370 * without the in-kernel irqchip
371 */
372 if (!kvm_irqchip_in_kernel()) {
373 ret &= ~CPUID_EXT_X2APIC;
b827df58 374 }
2266d443
MT
375
376 if (enable_cpu_pm) {
377 int disable_exits = kvm_check_extension(s,
378 KVM_CAP_X86_DISABLE_EXITS);
379
380 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
381 ret |= CPUID_EXT_MONITOR;
382 }
383 }
28b8e4d0
JK
384 } else if (function == 6 && reg == R_EAX) {
385 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4 386 } else if (function == 7 && index == 0 && reg == R_EBX) {
b199c682 387 if (host_tsx_broken()) {
40e80ee4
EH
388 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
389 }
485b1d25
EH
390 } else if (function == 7 && index == 0 && reg == R_EDX) {
391 /*
392 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
393 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
394 * returned by KVM_GET_MSR_INDEX_LIST.
395 */
396 if (!has_msr_arch_capabs) {
397 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
398 }
f98bbd83
BM
399 } else if (function == 0x80000001 && reg == R_ECX) {
400 /*
401 * It's safe to enable TOPOEXT even if it's not returned by
402 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
403 * us to keep CPU models including TOPOEXT runnable on older kernels.
404 */
405 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
406 } else if (function == 0x80000001 && reg == R_EDX) {
407 /* On Intel, kvm returns cpuid according to the Intel spec,
408 * so add missing bits according to the AMD spec:
409 */
410 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
411 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
412 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
413 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
414 * be enabled without the in-kernel irqchip
415 */
416 if (!kvm_irqchip_in_kernel()) {
417 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
418 }
c1bb5418
DW
419 if (kvm_irqchip_is_split()) {
420 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
421 }
be777326 422 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 423 ret |= 1U << KVM_HINTS_REALTIME;
b9bec74b 424 }
0c31b744
GC
425
426 return ret;
bb0300dc 427}
bb0300dc 428
ede146c2 429uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
430{
431 struct {
432 struct kvm_msrs info;
433 struct kvm_msr_entry entries[1];
a1834d97 434 } msr_data = {};
20a78b02
PB
435 uint64_t value;
436 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
437
438 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
439 return 0;
440 }
441
442 /* Check if requested MSR is supported feature MSR */
443 int i;
444 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
445 if (kvm_feature_msrs->indices[i] == index) {
446 break;
447 }
448 if (i == kvm_feature_msrs->nmsrs) {
449 return 0; /* if the feature MSR is not supported, simply return 0 */
450 }
451
452 msr_data.info.nmsrs = 1;
453 msr_data.entries[0].index = index;
454
455 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
456 if (ret != 1) {
457 error_report("KVM get MSR (index=0x%x) feature failed, %s",
458 index, strerror(-ret));
459 exit(1);
460 }
461
20a78b02
PB
462 value = msr_data.entries[0].data;
463 switch (index) {
464 case MSR_IA32_VMX_PROCBASED_CTLS2:
4a910e1f
VK
465 if (!has_msr_vmx_procbased_ctls2) {
466 /* KVM forgot to add these bits for some time, do this ourselves. */
467 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
468 CPUID_XSAVE_XSAVES) {
469 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
470 }
471 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
472 CPUID_EXT_RDRAND) {
473 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
474 }
475 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
476 CPUID_7_0_EBX_INVPCID) {
477 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
478 }
479 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
480 CPUID_7_0_EBX_RDSEED) {
481 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
482 }
483 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
484 CPUID_EXT2_RDTSCP) {
485 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
486 }
048c9516
PB
487 }
488 /* fall through */
20a78b02
PB
489 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
490 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
491 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
492 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
493 /*
494 * Return true for bits that can be one, but do not have to be one.
495 * The SDM tells us which bits could have a "must be one" setting,
496 * so we can do the opposite transformation in make_vmx_msr_value.
497 */
498 must_be_one = (uint32_t)value;
499 can_be_one = (uint32_t)(value >> 32);
500 return can_be_one & ~must_be_one;
501
502 default:
503 return value;
504 }
f57bceb6
RH
505}
506
e7701825
MT
507static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
508 int *max_banks)
509{
510 int r;
511
14a09518 512 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
513 if (r > 0) {
514 *max_banks = r;
515 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
516 }
517 return -ENOSYS;
518}
519
bee615d4 520static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 521{
87f8b626 522 CPUState *cs = CPU(cpu);
bee615d4 523 CPUX86State *env = &cpu->env;
c34d440a
JK
524 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
525 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
526 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 527 int flags = 0;
e7701825 528
c34d440a
JK
529 if (code == BUS_MCEERR_AR) {
530 status |= MCI_STATUS_AR | 0x134;
531 mcg_status |= MCG_STATUS_EIPV;
532 } else {
533 status |= 0xc0;
534 mcg_status |= MCG_STATUS_RIPV;
419fb20a 535 }
87f8b626
AR
536
537 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
538 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
539 * guest kernel back into env->mcg_ext_ctl.
540 */
541 cpu_synchronize_state(cs);
542 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
543 mcg_status |= MCG_STATUS_LMCE;
544 flags = 0;
545 }
546
8c5cf3b6 547 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 548 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 549}
419fb20a 550
8efc4e51
ZP
551static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
552{
553 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
554
555 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
556 &mff);
557}
558
73284563 559static void hardware_memory_error(void *host_addr)
419fb20a 560{
8efc4e51 561 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
73284563 562 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
563 exit(1);
564}
565
2ae41db2 566void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 567{
20d695a9
AF
568 X86CPU *cpu = X86_CPU(c);
569 CPUX86State *env = &cpu->env;
419fb20a 570 ram_addr_t ram_addr;
a8170e5e 571 hwaddr paddr;
419fb20a 572
4d39892c
PB
573 /* If we get an action required MCE, it has been injected by KVM
574 * while the VM was running. An action optional MCE instead should
575 * be coming from the main thread, which qemu_init_sigbus identifies
576 * as the "early kill" thread.
577 */
a16fc07e 578 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 579
20e0ff59 580 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 581 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
582 if (ram_addr != RAM_ADDR_INVALID &&
583 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
584 kvm_hwpoison_page_add(ram_addr);
585 kvm_mce_inject(cpu, paddr, code);
73284563
MS
586
587 /*
588 * Use different logging severity based on error type.
589 * If there is additional MCE reporting on the hypervisor, QEMU VA
590 * could be another source to identify the PA and MCE details.
591 */
592 if (code == BUS_MCEERR_AR) {
593 error_report("Guest MCE Memory Error at QEMU addr %p and "
594 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
595 addr, paddr, "BUS_MCEERR_AR");
596 } else {
597 warn_report("Guest MCE Memory Error at QEMU addr %p and "
598 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
599 addr, paddr, "BUS_MCEERR_AO");
600 }
601
2ae41db2 602 return;
419fb20a 603 }
20e0ff59 604
73284563
MS
605 if (code == BUS_MCEERR_AO) {
606 warn_report("Hardware memory error at addr %p of type %s "
607 "for memory used by QEMU itself instead of guest system!",
608 addr, "BUS_MCEERR_AO");
609 }
419fb20a 610 }
20e0ff59
PB
611
612 if (code == BUS_MCEERR_AR) {
73284563 613 hardware_memory_error(addr);
20e0ff59
PB
614 }
615
8efc4e51
ZP
616 /* Hope we are lucky for AO MCE, just notify a event */
617 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
419fb20a
JK
618}
619
fd13f23b
LA
620static void kvm_reset_exception(CPUX86State *env)
621{
622 env->exception_nr = -1;
623 env->exception_pending = 0;
624 env->exception_injected = 0;
625 env->exception_has_payload = false;
626 env->exception_payload = 0;
627}
628
629static void kvm_queue_exception(CPUX86State *env,
630 int32_t exception_nr,
631 uint8_t exception_has_payload,
632 uint64_t exception_payload)
633{
634 assert(env->exception_nr == -1);
635 assert(!env->exception_pending);
636 assert(!env->exception_injected);
637 assert(!env->exception_has_payload);
638
639 env->exception_nr = exception_nr;
640
641 if (has_exception_payload) {
642 env->exception_pending = 1;
643
644 env->exception_has_payload = exception_has_payload;
645 env->exception_payload = exception_payload;
646 } else {
647 env->exception_injected = 1;
648
649 if (exception_nr == EXCP01_DB) {
650 assert(exception_has_payload);
651 env->dr[6] = exception_payload;
652 } else if (exception_nr == EXCP0E_PAGE) {
653 assert(exception_has_payload);
654 env->cr[2] = exception_payload;
655 } else {
656 assert(!exception_has_payload);
657 }
658 }
659}
660
1bc22652 661static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 662{
1bc22652
AF
663 CPUX86State *env = &cpu->env;
664
fd13f23b 665 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
666 unsigned int bank, bank_num = env->mcg_cap & 0xff;
667 struct kvm_x86_mce mce;
668
fd13f23b 669 kvm_reset_exception(env);
ab443475
JK
670
671 /*
672 * There must be at least one bank in use if an MCE is pending.
673 * Find it and use its values for the event injection.
674 */
675 for (bank = 0; bank < bank_num; bank++) {
676 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
677 break;
678 }
679 }
680 assert(bank < bank_num);
681
682 mce.bank = bank;
683 mce.status = env->mce_banks[bank * 4 + 1];
684 mce.mcg_status = env->mcg_status;
685 mce.addr = env->mce_banks[bank * 4 + 2];
686 mce.misc = env->mce_banks[bank * 4 + 3];
687
1bc22652 688 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 689 }
ab443475
JK
690 return 0;
691}
692
1dfb4dd9 693static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 694{
317ac620 695 CPUX86State *env = opaque;
b8cc45d6
GC
696
697 if (running) {
698 env->tsc_valid = false;
699 }
700}
701
83b17af5 702unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 703{
83b17af5 704 X86CPU *cpu = X86_CPU(cs);
7e72a45c 705 return cpu->apic_id;
b164e48e
EH
706}
707
92067bf4
IM
708#ifndef KVM_CPUID_SIGNATURE_NEXT
709#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
710#endif
711
92067bf4
IM
712static bool hyperv_enabled(X86CPU *cpu)
713{
7bc3d711
PB
714 CPUState *cs = CPU(cpu);
715 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
f701c082 716 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
e48ddcc6 717 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
718}
719
74aaddc6
MT
720/*
721 * Check whether target_freq is within conservative
722 * ntp correctable bounds (250ppm) of freq
723 */
724static inline bool freq_within_bounds(int freq, int target_freq)
725{
726 int max_freq = freq + (freq * 250 / 1000000);
727 int min_freq = freq - (freq * 250 / 1000000);
728
729 if (target_freq >= min_freq && target_freq <= max_freq) {
730 return true;
731 }
732
733 return false;
734}
735
5031283d
HZ
736static int kvm_arch_set_tsc_khz(CPUState *cs)
737{
738 X86CPU *cpu = X86_CPU(cs);
739 CPUX86State *env = &cpu->env;
74aaddc6
MT
740 int r, cur_freq;
741 bool set_ioctl = false;
5031283d
HZ
742
743 if (!env->tsc_khz) {
744 return 0;
745 }
746
74aaddc6
MT
747 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
748 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
749
750 /*
751 * If TSC scaling is supported, attempt to set TSC frequency.
752 */
753 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
754 set_ioctl = true;
755 }
756
757 /*
758 * If desired TSC frequency is within bounds of NTP correction,
759 * attempt to set TSC frequency.
760 */
761 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
762 set_ioctl = true;
763 }
764
765 r = set_ioctl ?
5031283d
HZ
766 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
767 -ENOTSUP;
74aaddc6 768
5031283d
HZ
769 if (r < 0) {
770 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
771 * TSC frequency doesn't match the one we want.
772 */
74aaddc6
MT
773 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
774 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
775 -ENOTSUP;
5031283d 776 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
777 warn_report("TSC frequency mismatch between "
778 "VM (%" PRId64 " kHz) and host (%d kHz), "
779 "and TSC scaling unavailable",
780 env->tsc_khz, cur_freq);
5031283d
HZ
781 return r;
782 }
783 }
784
785 return 0;
786}
787
4bb95b82
LP
788static bool tsc_is_stable_and_known(CPUX86State *env)
789{
790 if (!env->tsc_khz) {
791 return false;
792 }
793 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
794 || env->user_tsc_khz;
795}
796
6760bd20
VK
797static struct {
798 const char *desc;
799 struct {
800 uint32_t fw;
801 uint32_t bits;
802 } flags[2];
c6861930 803 uint64_t dependencies;
6760bd20
VK
804} kvm_hyperv_properties[] = {
805 [HYPERV_FEAT_RELAXED] = {
806 .desc = "relaxed timing (hv-relaxed)",
807 .flags = {
808 {.fw = FEAT_HYPERV_EAX,
809 .bits = HV_HYPERCALL_AVAILABLE},
810 {.fw = FEAT_HV_RECOMM_EAX,
811 .bits = HV_RELAXED_TIMING_RECOMMENDED}
812 }
813 },
814 [HYPERV_FEAT_VAPIC] = {
815 .desc = "virtual APIC (hv-vapic)",
816 .flags = {
817 {.fw = FEAT_HYPERV_EAX,
818 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
819 {.fw = FEAT_HV_RECOMM_EAX,
820 .bits = HV_APIC_ACCESS_RECOMMENDED}
821 }
822 },
823 [HYPERV_FEAT_TIME] = {
824 .desc = "clocksources (hv-time)",
825 .flags = {
826 {.fw = FEAT_HYPERV_EAX,
827 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
828 HV_REFERENCE_TSC_AVAILABLE}
829 }
830 },
831 [HYPERV_FEAT_CRASH] = {
832 .desc = "crash MSRs (hv-crash)",
833 .flags = {
834 {.fw = FEAT_HYPERV_EDX,
835 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
836 }
837 },
838 [HYPERV_FEAT_RESET] = {
839 .desc = "reset MSR (hv-reset)",
840 .flags = {
841 {.fw = FEAT_HYPERV_EAX,
842 .bits = HV_RESET_AVAILABLE}
843 }
844 },
845 [HYPERV_FEAT_VPINDEX] = {
846 .desc = "VP_INDEX MSR (hv-vpindex)",
847 .flags = {
848 {.fw = FEAT_HYPERV_EAX,
849 .bits = HV_VP_INDEX_AVAILABLE}
850 }
851 },
852 [HYPERV_FEAT_RUNTIME] = {
853 .desc = "VP_RUNTIME MSR (hv-runtime)",
854 .flags = {
855 {.fw = FEAT_HYPERV_EAX,
856 .bits = HV_VP_RUNTIME_AVAILABLE}
857 }
858 },
859 [HYPERV_FEAT_SYNIC] = {
860 .desc = "synthetic interrupt controller (hv-synic)",
861 .flags = {
862 {.fw = FEAT_HYPERV_EAX,
863 .bits = HV_SYNIC_AVAILABLE}
864 }
865 },
866 [HYPERV_FEAT_STIMER] = {
867 .desc = "synthetic timers (hv-stimer)",
868 .flags = {
869 {.fw = FEAT_HYPERV_EAX,
870 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
871 },
872 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
873 },
874 [HYPERV_FEAT_FREQUENCIES] = {
875 .desc = "frequency MSRs (hv-frequencies)",
876 .flags = {
877 {.fw = FEAT_HYPERV_EAX,
878 .bits = HV_ACCESS_FREQUENCY_MSRS},
879 {.fw = FEAT_HYPERV_EDX,
880 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
881 }
882 },
883 [HYPERV_FEAT_REENLIGHTENMENT] = {
884 .desc = "reenlightenment MSRs (hv-reenlightenment)",
885 .flags = {
886 {.fw = FEAT_HYPERV_EAX,
887 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
888 }
889 },
890 [HYPERV_FEAT_TLBFLUSH] = {
891 .desc = "paravirtualized TLB flush (hv-tlbflush)",
892 .flags = {
893 {.fw = FEAT_HV_RECOMM_EAX,
894 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
895 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
896 },
897 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
898 },
899 [HYPERV_FEAT_EVMCS] = {
900 .desc = "enlightened VMCS (hv-evmcs)",
901 .flags = {
902 {.fw = FEAT_HV_RECOMM_EAX,
903 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
904 },
905 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
906 },
907 [HYPERV_FEAT_IPI] = {
908 .desc = "paravirtualized IPI (hv-ipi)",
909 .flags = {
910 {.fw = FEAT_HV_RECOMM_EAX,
911 .bits = HV_CLUSTER_IPI_RECOMMENDED |
912 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
913 },
914 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 915 },
128531d9
VK
916 [HYPERV_FEAT_STIMER_DIRECT] = {
917 .desc = "direct mode synthetic timers (hv-stimer-direct)",
918 .flags = {
919 {.fw = FEAT_HYPERV_EDX,
920 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
921 },
922 .dependencies = BIT(HYPERV_FEAT_STIMER)
923 },
6760bd20
VK
924};
925
926static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
927{
928 struct kvm_cpuid2 *cpuid;
929 int r, size;
930
931 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
932 cpuid = g_malloc0(size);
933 cpuid->nent = max;
934
935 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
936 if (r == 0 && cpuid->nent >= max) {
937 r = -E2BIG;
938 }
939 if (r < 0) {
940 if (r == -E2BIG) {
941 g_free(cpuid);
942 return NULL;
943 } else {
944 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
945 strerror(-r));
946 exit(1);
947 }
948 }
949 return cpuid;
950}
951
952/*
953 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
954 * for all entries.
955 */
956static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
957{
958 struct kvm_cpuid2 *cpuid;
959 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
960
961 /*
962 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
963 * -E2BIG, however, it doesn't report back the right size. Keep increasing
964 * it and re-trying until we succeed.
965 */
966 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
967 max++;
968 }
969 return cpuid;
970}
971
972/*
973 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
974 * leaves from KVM_CAP_HYPERV* and present MSRs data.
975 */
976static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
977{
978 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
979 struct kvm_cpuid2 *cpuid;
980 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
981
982 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
983 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
984 cpuid->nent = 2;
985
986 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
987 entry_feat = &cpuid->entries[0];
988 entry_feat->function = HV_CPUID_FEATURES;
989
990 entry_recomm = &cpuid->entries[1];
991 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
992 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
993
994 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
995 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
996 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
997 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
998 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
999 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1000 }
c35bd19a 1001
6760bd20
VK
1002 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1003 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1004 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1005 }
6760bd20
VK
1006
1007 if (has_msr_hv_frequencies) {
1008 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1009 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1010 }
6760bd20
VK
1011
1012 if (has_msr_hv_crash) {
1013 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1014 }
6760bd20
VK
1015
1016 if (has_msr_hv_reenlightenment) {
1017 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1018 }
6760bd20
VK
1019
1020 if (has_msr_hv_reset) {
1021 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1022 }
6760bd20
VK
1023
1024 if (has_msr_hv_vpindex) {
1025 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1026 }
6760bd20
VK
1027
1028 if (has_msr_hv_runtime) {
1029 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1030 }
6760bd20
VK
1031
1032 if (has_msr_hv_synic) {
1033 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1034 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1035
1036 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1037 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1038 }
c35bd19a 1039 }
6760bd20
VK
1040
1041 if (has_msr_hv_stimer) {
1042 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1043 }
9b4cf107 1044
6760bd20
VK
1045 if (kvm_check_extension(cs->kvm_state,
1046 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1047 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1048 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1049 }
c35bd19a 1050
6760bd20
VK
1051 if (kvm_check_extension(cs->kvm_state,
1052 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1053 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1054 }
6760bd20
VK
1055
1056 if (kvm_check_extension(cs->kvm_state,
1057 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1058 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1059 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1060 }
6760bd20
VK
1061
1062 return cpuid;
1063}
1064
1065static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1066{
1067 struct kvm_cpuid_entry2 *entry;
1068 uint32_t func;
1069 int reg;
1070
1071 switch (fw) {
1072 case FEAT_HYPERV_EAX:
1073 reg = R_EAX;
1074 func = HV_CPUID_FEATURES;
1075 break;
1076 case FEAT_HYPERV_EDX:
1077 reg = R_EDX;
1078 func = HV_CPUID_FEATURES;
1079 break;
1080 case FEAT_HV_RECOMM_EAX:
1081 reg = R_EAX;
1082 func = HV_CPUID_ENLIGHTMENT_INFO;
1083 break;
1084 default:
1085 return -EINVAL;
a2b107db 1086 }
6760bd20
VK
1087
1088 entry = cpuid_find_entry(cpuid, func, 0);
1089 if (!entry) {
1090 return -ENOENT;
a2b107db 1091 }
6760bd20
VK
1092
1093 switch (reg) {
1094 case R_EAX:
1095 *r = entry->eax;
1096 break;
1097 case R_EDX:
1098 *r = entry->edx;
1099 break;
1100 default:
1101 return -EINVAL;
a2b107db 1102 }
6760bd20
VK
1103
1104 return 0;
1105}
1106
1107static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1108 int feature)
1109{
1110 X86CPU *cpu = X86_CPU(cs);
1111 CPUX86State *env = &cpu->env;
e48ddcc6 1112 uint32_t r, fw, bits;
c6861930 1113 uint64_t deps;
9dc83cd9 1114 int i, dep_feat;
6760bd20 1115
e48ddcc6 1116 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
6760bd20
VK
1117 return 0;
1118 }
1119
c6861930 1120 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1121 while (deps) {
1122 dep_feat = ctz64(deps);
c6861930
VK
1123 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1124 fprintf(stderr,
1125 "Hyper-V %s requires Hyper-V %s\n",
1126 kvm_hyperv_properties[feature].desc,
1127 kvm_hyperv_properties[dep_feat].desc);
1128 return 1;
1129 }
9dc83cd9 1130 deps &= ~(1ull << dep_feat);
c6861930
VK
1131 }
1132
6760bd20
VK
1133 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1134 fw = kvm_hyperv_properties[feature].flags[i].fw;
1135 bits = kvm_hyperv_properties[feature].flags[i].bits;
1136
1137 if (!fw) {
1138 continue;
a2b107db 1139 }
6760bd20
VK
1140
1141 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
e48ddcc6
VK
1142 if (hyperv_feat_enabled(cpu, feature)) {
1143 fprintf(stderr,
1144 "Hyper-V %s is not supported by kernel\n",
1145 kvm_hyperv_properties[feature].desc);
1146 return 1;
1147 } else {
1148 return 0;
1149 }
6760bd20
VK
1150 }
1151
1152 env->features[fw] |= bits;
a2b107db 1153 }
6760bd20 1154
e48ddcc6
VK
1155 if (cpu->hyperv_passthrough) {
1156 cpu->hyperv_features |= BIT(feature);
1157 }
1158
6760bd20
VK
1159 return 0;
1160}
1161
2344d22e
VK
1162/*
1163 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1164 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1165 * extentions are enabled.
1166 */
1167static int hyperv_handle_properties(CPUState *cs,
1168 struct kvm_cpuid_entry2 *cpuid_ent)
6760bd20
VK
1169{
1170 X86CPU *cpu = X86_CPU(cs);
1171 CPUX86State *env = &cpu->env;
1172 struct kvm_cpuid2 *cpuid;
2344d22e
VK
1173 struct kvm_cpuid_entry2 *c;
1174 uint32_t signature[3];
1175 uint32_t cpuid_i = 0;
e48ddcc6 1176 int r;
6760bd20 1177
2344d22e
VK
1178 if (!hyperv_enabled(cpu))
1179 return 0;
1180
e48ddcc6
VK
1181 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1182 cpu->hyperv_passthrough) {
a2b107db
VK
1183 uint16_t evmcs_version;
1184
e48ddcc6
VK
1185 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1186 (uintptr_t)&evmcs_version);
1187
1188 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
6760bd20
VK
1189 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1190 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
a2b107db
VK
1191 return -ENOSYS;
1192 }
e48ddcc6
VK
1193
1194 if (!r) {
1195 env->features[FEAT_HV_RECOMM_EAX] |=
1196 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1197 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1198 }
a2b107db
VK
1199 }
1200
6760bd20
VK
1201 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1202 cpuid = get_supported_hv_cpuid(cs);
1203 } else {
1204 cpuid = get_supported_hv_cpuid_legacy(cs);
1205 }
1206
e48ddcc6
VK
1207 if (cpu->hyperv_passthrough) {
1208 memcpy(cpuid_ent, &cpuid->entries[0],
1209 cpuid->nent * sizeof(cpuid->entries[0]));
1210
1211 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1212 if (c) {
1213 env->features[FEAT_HYPERV_EAX] = c->eax;
1214 env->features[FEAT_HYPERV_EBX] = c->ebx;
1a7655d5 1215 env->features[FEAT_HYPERV_EDX] = c->edx;
e48ddcc6
VK
1216 }
1217 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1218 if (c) {
1219 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1220
1221 /* hv-spinlocks may have been overriden */
f701c082 1222 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) {
e48ddcc6
VK
1223 c->ebx = cpu->hyperv_spinlock_attempts;
1224 }
1225 }
1226 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1227 if (c) {
1228 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1229 }
1230 }
1231
30d6ff66
VK
1232 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1233 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1234 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1235 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1236 if (c) {
1237 env->features[FEAT_HV_RECOMM_EAX] |=
1238 c->eax & HV_NO_NONARCH_CORESHARING;
1239 }
1240 }
1241
6760bd20 1242 /* Features */
e48ddcc6 1243 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
6760bd20
VK
1244 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1245 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1246 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1247 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1248 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1249 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1250 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1251 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1252 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1253 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1254 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1255 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1256 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
128531d9 1257 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
6760bd20 1258
c6861930 1259 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1260 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1261 !cpu->hyperv_synic_kvm_only &&
1262 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
c6861930 1263 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
6760bd20
VK
1264 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1265 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1266 r |= 1;
1267 }
1268
1269 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1270 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1271
2344d22e
VK
1272 if (r) {
1273 r = -ENOSYS;
1274 goto free;
1275 }
1276
e48ddcc6
VK
1277 if (cpu->hyperv_passthrough) {
1278 /* We already copied all feature words from KVM as is */
1279 r = cpuid->nent;
1280 goto free;
1281 }
1282
2344d22e
VK
1283 c = &cpuid_ent[cpuid_i++];
1284 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1285 if (!cpu->hyperv_vendor_id) {
1286 memcpy(signature, "Microsoft Hv", 12);
1287 } else {
1288 size_t len = strlen(cpu->hyperv_vendor_id);
1289
1290 if (len > 12) {
1291 error_report("hv-vendor-id truncated to 12 characters");
1292 len = 12;
1293 }
1294 memset(signature, 0, 12);
1295 memcpy(signature, cpu->hyperv_vendor_id, len);
1296 }
1297 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1298 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1299 c->ebx = signature[0];
1300 c->ecx = signature[1];
1301 c->edx = signature[2];
1302
1303 c = &cpuid_ent[cpuid_i++];
1304 c->function = HV_CPUID_INTERFACE;
1305 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1306 c->eax = signature[0];
1307 c->ebx = 0;
1308 c->ecx = 0;
1309 c->edx = 0;
1310
1311 c = &cpuid_ent[cpuid_i++];
1312 c->function = HV_CPUID_VERSION;
1313 c->eax = 0x00001bbc;
1314 c->ebx = 0x00060001;
1315
1316 c = &cpuid_ent[cpuid_i++];
1317 c->function = HV_CPUID_FEATURES;
1318 c->eax = env->features[FEAT_HYPERV_EAX];
1319 c->ebx = env->features[FEAT_HYPERV_EBX];
1320 c->edx = env->features[FEAT_HYPERV_EDX];
1321
1322 c = &cpuid_ent[cpuid_i++];
1323 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1324 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1325 c->ebx = cpu->hyperv_spinlock_attempts;
1326
1327 c = &cpuid_ent[cpuid_i++];
1328 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1329 c->eax = cpu->hv_max_vps;
1330 c->ebx = 0x40;
1331
1332 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1333 __u32 function;
1334
1335 /* Create zeroed 0x40000006..0x40000009 leaves */
1336 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1337 function < HV_CPUID_NESTED_FEATURES; function++) {
1338 c = &cpuid_ent[cpuid_i++];
1339 c->function = function;
1340 }
1341
1342 c = &cpuid_ent[cpuid_i++];
1343 c->function = HV_CPUID_NESTED_FEATURES;
1344 c->eax = env->features[FEAT_HV_NESTED_EAX];
1345 }
1346 r = cpuid_i;
1347
1348free:
6760bd20
VK
1349 g_free(cpuid);
1350
2344d22e 1351 return r;
c35bd19a
EY
1352}
1353
e48ddcc6 1354static Error *hv_passthrough_mig_blocker;
30d6ff66 1355static Error *hv_no_nonarch_cs_mig_blocker;
e48ddcc6 1356
e9688fab
RK
1357static int hyperv_init_vcpu(X86CPU *cpu)
1358{
729ce7e1 1359 CPUState *cs = CPU(cpu);
e48ddcc6 1360 Error *local_err = NULL;
729ce7e1
RK
1361 int ret;
1362
e48ddcc6
VK
1363 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1364 error_setg(&hv_passthrough_mig_blocker,
1365 "'hv-passthrough' CPU flag prevents migration, use explicit"
1366 " set of hv-* flags instead");
1367 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1368 if (local_err) {
1369 error_report_err(local_err);
1370 error_free(hv_passthrough_mig_blocker);
1371 return ret;
1372 }
1373 }
1374
30d6ff66
VK
1375 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1376 hv_no_nonarch_cs_mig_blocker == NULL) {
1377 error_setg(&hv_no_nonarch_cs_mig_blocker,
1378 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1379 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1380 " make sure SMT is disabled and/or that vCPUs are properly"
1381 " pinned)");
1382 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1383 if (local_err) {
1384 error_report_err(local_err);
1385 error_free(hv_no_nonarch_cs_mig_blocker);
1386 return ret;
1387 }
1388 }
1389
2d384d7c 1390 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1391 /*
1392 * the kernel doesn't support setting vp_index; assert that its value
1393 * is in sync
1394 */
e9688fab
RK
1395 struct {
1396 struct kvm_msrs info;
1397 struct kvm_msr_entry entries[1];
1398 } msr_data = {
1399 .info.nmsrs = 1,
1400 .entries[0].index = HV_X64_MSR_VP_INDEX,
1401 };
1402
729ce7e1 1403 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1404 if (ret < 0) {
1405 return ret;
1406 }
1407 assert(ret == 1);
1408
701189e3 1409 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1410 error_report("kernel's vp_index != QEMU's vp_index");
1411 return -ENXIO;
1412 }
1413 }
1414
2d384d7c 1415 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1416 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1417 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1418 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1419 if (ret < 0) {
1420 error_report("failed to turn on HyperV SynIC in KVM: %s",
1421 strerror(-ret));
1422 return ret;
1423 }
606c34bf 1424
9b4cf107
RK
1425 if (!cpu->hyperv_synic_kvm_only) {
1426 ret = hyperv_x86_synic_add(cpu);
1427 if (ret < 0) {
1428 error_report("failed to create HyperV SynIC: %s",
1429 strerror(-ret));
1430 return ret;
1431 }
606c34bf 1432 }
729ce7e1
RK
1433 }
1434
e9688fab
RK
1435 return 0;
1436}
1437
68bfd0ad
MT
1438static Error *invtsc_mig_blocker;
1439
f8bb0565 1440#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1441
20d695a9 1442int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1443{
1444 struct {
486bd5a2 1445 struct kvm_cpuid2 cpuid;
f8bb0565 1446 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1447 } cpuid_data;
1448 /*
1449 * The kernel defines these structs with padding fields so there
1450 * should be no extra padding in our cpuid_data struct.
1451 */
1452 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1453 sizeof(struct kvm_cpuid2) +
1454 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1455
20d695a9
AF
1456 X86CPU *cpu = X86_CPU(cs);
1457 CPUX86State *env = &cpu->env;
486bd5a2 1458 uint32_t limit, i, j, cpuid_i;
a33609ca 1459 uint32_t unused;
bb0300dc 1460 struct kvm_cpuid_entry2 *c;
bb0300dc 1461 uint32_t signature[3];
234cc647 1462 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1463 int max_nested_state_len;
e7429073 1464 int r;
fe44dc91 1465 Error *local_err = NULL;
05330448 1466
ef4cbe14
SW
1467 memset(&cpuid_data, 0, sizeof(cpuid_data));
1468
05330448
AL
1469 cpuid_i = 0;
1470
ddb98b5a
LP
1471 r = kvm_arch_set_tsc_khz(cs);
1472 if (r < 0) {
6b2341ee 1473 return r;
ddb98b5a
LP
1474 }
1475
1476 /* vcpu's TSC frequency is either specified by user, or following
1477 * the value used by KVM if the former is not present. In the
1478 * latter case, we query it from KVM and record in env->tsc_khz,
1479 * so that vcpu's TSC frequency can be migrated later via this field.
1480 */
1481 if (!env->tsc_khz) {
1482 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1483 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1484 -ENOTSUP;
1485 if (r > 0) {
1486 env->tsc_khz = r;
1487 }
1488 }
1489
73b994f6
LA
1490 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1491
bb0300dc 1492 /* Paravirtualization CPUIDs */
2344d22e
VK
1493 r = hyperv_handle_properties(cs, cpuid_data.entries);
1494 if (r < 0) {
1495 return r;
1496 } else if (r > 0) {
1497 cpuid_i = r;
234cc647 1498 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1499 has_msr_hv_hypercall = true;
eab70139
VR
1500 }
1501
f522d2ac
AW
1502 if (cpu->expose_kvm) {
1503 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1504 c = &cpuid_data.entries[cpuid_i++];
1505 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1506 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1507 c->ebx = signature[0];
1508 c->ecx = signature[1];
1509 c->edx = signature[2];
234cc647 1510
f522d2ac
AW
1511 c = &cpuid_data.entries[cpuid_i++];
1512 c->function = KVM_CPUID_FEATURES | kvm_base;
1513 c->eax = env->features[FEAT_KVM];
be777326 1514 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1515 }
917367aa 1516
a33609ca 1517 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
1518
1519 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1520 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1521 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1522 abort();
1523 }
bb0300dc 1524 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1525
1526 switch (i) {
a36b1029
AL
1527 case 2: {
1528 /* Keep reading function 2 till all the input is received */
1529 int times;
1530
a36b1029 1531 c->function = i;
a33609ca
AL
1532 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1533 KVM_CPUID_FLAG_STATE_READ_NEXT;
1534 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1535 times = c->eax & 0xff;
a36b1029
AL
1536
1537 for (j = 1; j < times; ++j) {
f8bb0565
IM
1538 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1539 fprintf(stderr, "cpuid_data is full, no space for "
1540 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1541 abort();
1542 }
a33609ca 1543 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1544 c->function = i;
a33609ca
AL
1545 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1546 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1547 }
1548 break;
1549 }
a94e1428
LX
1550 case 0x1f:
1551 if (env->nr_dies < 2) {
1552 break;
1553 }
8821e214 1554 /* fallthrough */
486bd5a2
AL
1555 case 4:
1556 case 0xb:
1557 case 0xd:
1558 for (j = 0; ; j++) {
31e8c696
AP
1559 if (i == 0xd && j == 64) {
1560 break;
1561 }
a94e1428
LX
1562
1563 if (i == 0x1f && j == 64) {
1564 break;
1565 }
1566
486bd5a2
AL
1567 c->function = i;
1568 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1569 c->index = j;
a33609ca 1570 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1571
b9bec74b 1572 if (i == 4 && c->eax == 0) {
486bd5a2 1573 break;
b9bec74b
JK
1574 }
1575 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1576 break;
b9bec74b 1577 }
a94e1428
LX
1578 if (i == 0x1f && !(c->ecx & 0xff00)) {
1579 break;
1580 }
b9bec74b 1581 if (i == 0xd && c->eax == 0) {
31e8c696 1582 continue;
b9bec74b 1583 }
f8bb0565
IM
1584 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1585 fprintf(stderr, "cpuid_data is full, no space for "
1586 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1587 abort();
1588 }
a33609ca 1589 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1590 }
1591 break;
80db491d 1592 case 0x7:
e37a5c7f
CP
1593 case 0x14: {
1594 uint32_t times;
1595
1596 c->function = i;
1597 c->index = 0;
1598 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1599 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1600 times = c->eax;
1601
1602 for (j = 1; j <= times; ++j) {
1603 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1604 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1605 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1606 abort();
1607 }
1608 c = &cpuid_data.entries[cpuid_i++];
1609 c->function = i;
1610 c->index = j;
1611 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1612 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1613 }
1614 break;
1615 }
486bd5a2 1616 default:
486bd5a2 1617 c->function = i;
a33609ca
AL
1618 c->flags = 0;
1619 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1620 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1621 /*
1622 * KVM already returns all zeroes if a CPUID entry is missing,
1623 * so we can omit it and avoid hitting KVM's 80-entry limit.
1624 */
1625 cpuid_i--;
1626 }
486bd5a2
AL
1627 break;
1628 }
05330448 1629 }
0d894367
PB
1630
1631 if (limit >= 0x0a) {
0b368a10 1632 uint32_t eax, edx;
0d894367 1633
0b368a10
JD
1634 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1635
1636 has_architectural_pmu_version = eax & 0xff;
1637 if (has_architectural_pmu_version > 0) {
1638 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1639
1640 /* Shouldn't be more than 32, since that's the number of bits
1641 * available in EBX to tell us _which_ counters are available.
1642 * Play it safe.
1643 */
0b368a10
JD
1644 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1645 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1646 }
1647
1648 if (has_architectural_pmu_version > 1) {
1649 num_architectural_pmu_fixed_counters = edx & 0x1f;
1650
1651 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1652 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1653 }
0d894367
PB
1654 }
1655 }
1656 }
1657
a33609ca 1658 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1659
1660 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1661 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1662 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1663 abort();
1664 }
bb0300dc 1665 c = &cpuid_data.entries[cpuid_i++];
05330448 1666
8f4202fb
BM
1667 switch (i) {
1668 case 0x8000001d:
1669 /* Query for all AMD cache information leaves */
1670 for (j = 0; ; j++) {
1671 c->function = i;
1672 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1673 c->index = j;
1674 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1675
1676 if (c->eax == 0) {
1677 break;
1678 }
1679 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1680 fprintf(stderr, "cpuid_data is full, no space for "
1681 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1682 abort();
1683 }
1684 c = &cpuid_data.entries[cpuid_i++];
1685 }
1686 break;
1687 default:
1688 c->function = i;
1689 c->flags = 0;
1690 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1691 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1692 /*
1693 * KVM already returns all zeroes if a CPUID entry is missing,
1694 * so we can omit it and avoid hitting KVM's 80-entry limit.
1695 */
1696 cpuid_i--;
1697 }
8f4202fb
BM
1698 break;
1699 }
05330448
AL
1700 }
1701
b3baa152
BW
1702 /* Call Centaur's CPUID instructions they are supported. */
1703 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1704 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1705
1706 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1707 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1708 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1709 abort();
1710 }
b3baa152
BW
1711 c = &cpuid_data.entries[cpuid_i++];
1712
1713 c->function = i;
1714 c->flags = 0;
1715 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1716 }
1717 }
1718
05330448
AL
1719 cpuid_data.cpuid.nent = cpuid_i;
1720
e7701825 1721 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1722 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1723 (CPUID_MCE | CPUID_MCA)
a60f24b5 1724 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1725 uint64_t mcg_cap, unsupported_caps;
e7701825 1726 int banks;
32a42024 1727 int ret;
e7701825 1728
a60f24b5 1729 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1730 if (ret < 0) {
1731 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1732 return ret;
e7701825 1733 }
75d49497 1734
2590f15b 1735 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1736 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1737 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1738 return -ENOTSUP;
75d49497 1739 }
49b69cbf 1740
5120901a
EH
1741 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1742 if (unsupported_caps) {
87f8b626
AR
1743 if (unsupported_caps & MCG_LMCE_P) {
1744 error_report("kvm: LMCE not supported");
1745 return -ENOTSUP;
1746 }
3dc6f869
AF
1747 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1748 unsupported_caps);
5120901a
EH
1749 }
1750
2590f15b
EH
1751 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1752 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1753 if (ret < 0) {
1754 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1755 return ret;
1756 }
e7701825 1757 }
e7701825 1758
2a693142 1759 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
b8cc45d6 1760
df67696e
LJ
1761 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1762 if (c) {
1763 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1764 !!(c->ecx & CPUID_EXT_SMX);
1765 }
1766
87f8b626
AR
1767 if (env->mcg_cap & MCG_LMCE_P) {
1768 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1769 }
1770
d99569d9
EH
1771 if (!env->user_tsc_khz) {
1772 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1773 invtsc_mig_blocker == NULL) {
d99569d9
EH
1774 error_setg(&invtsc_mig_blocker,
1775 "State blocked by non-migratable CPU device"
1776 " (invtsc flag)");
fe44dc91
AA
1777 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1778 if (local_err) {
1779 error_report_err(local_err);
1780 error_free(invtsc_mig_blocker);
79a197ab 1781 return r;
fe44dc91 1782 }
d99569d9 1783 }
68bfd0ad
MT
1784 }
1785
9954a158
PDJ
1786 if (cpu->vmware_cpuid_freq
1787 /* Guests depend on 0x40000000 to detect this feature, so only expose
1788 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1789 && cpu->expose_kvm
1790 && kvm_base == KVM_CPUID_SIGNATURE
1791 /* TSC clock must be stable and known for this feature. */
4bb95b82 1792 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1793
1794 c = &cpuid_data.entries[cpuid_i++];
1795 c->function = KVM_CPUID_SIGNATURE | 0x10;
1796 c->eax = env->tsc_khz;
73b994f6 1797 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
9954a158
PDJ
1798 c->ecx = c->edx = 0;
1799
1800 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1801 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1802 }
1803
1804 cpuid_data.cpuid.nent = cpuid_i;
1805
1806 cpuid_data.cpuid.padding = 0;
1807 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1808 if (r) {
1809 goto fail;
1810 }
1811
28143b40 1812 if (has_xsave) {
5b8063c4 1813 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1f670a95 1814 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
fabacc0f 1815 }
ebbfef2f
LA
1816
1817 max_nested_state_len = kvm_max_nested_state_length();
1818 if (max_nested_state_len > 0) {
1819 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 1820
b16c0e20 1821 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1e44f3ab 1822 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 1823
1e44f3ab
PB
1824 env->nested_state = g_malloc0(max_nested_state_len);
1825 env->nested_state->size = max_nested_state_len;
1e44f3ab 1826
b16c0e20 1827 if (cpu_has_vmx(env)) {
2654ace1
TL
1828 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1829 vmx_hdr = &env->nested_state->hdr.vmx;
1830 vmx_hdr->vmxon_pa = -1ull;
1831 vmx_hdr->vmcs12_pa = -1ull;
1832 } else {
1833 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
b16c0e20 1834 }
ebbfef2f
LA
1835 }
1836 }
1837
d71b62a1 1838 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1839
273c515c
PB
1840 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1841 has_msr_tsc_aux = false;
1842 }
d1ae67f6 1843
420ae1fc
PB
1844 kvm_init_msrs(cpu);
1845
e9688fab
RK
1846 r = hyperv_init_vcpu(cpu);
1847 if (r) {
1848 goto fail;
1849 }
1850
e7429073 1851 return 0;
fe44dc91
AA
1852
1853 fail:
1854 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 1855
fe44dc91 1856 return r;
05330448
AL
1857}
1858
b1115c99
LA
1859int kvm_arch_destroy_vcpu(CPUState *cs)
1860{
1861 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 1862 CPUX86State *env = &cpu->env;
b1115c99
LA
1863
1864 if (cpu->kvm_msr_buf) {
1865 g_free(cpu->kvm_msr_buf);
1866 cpu->kvm_msr_buf = NULL;
1867 }
1868
ebbfef2f
LA
1869 if (env->nested_state) {
1870 g_free(env->nested_state);
1871 env->nested_state = NULL;
1872 }
1873
2a693142
PN
1874 qemu_del_vm_change_state_handler(cpu->vmsentry);
1875
b1115c99
LA
1876 return 0;
1877}
1878
50a2c6e5 1879void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 1880{
20d695a9 1881 CPUX86State *env = &cpu->env;
dd673288 1882
1a5e9d2f 1883 env->xcr0 = 1;
ddced198 1884 if (kvm_irqchip_in_kernel()) {
dd673288 1885 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
1886 KVM_MP_STATE_UNINITIALIZED;
1887 } else {
1888 env->mp_state = KVM_MP_STATE_RUNNABLE;
1889 }
689141dd 1890
2d384d7c 1891 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
1892 int i;
1893 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1894 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1895 }
606c34bf
RK
1896
1897 hyperv_x86_synic_reset(cpu);
689141dd 1898 }
d645e132
MT
1899 /* enabled by default */
1900 env->poll_control_msr = 1;
caa5af0f
JK
1901}
1902
e0723c45
PB
1903void kvm_arch_do_init_vcpu(X86CPU *cpu)
1904{
1905 CPUX86State *env = &cpu->env;
1906
1907 /* APs get directly into wait-for-SIPI state. */
1908 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1909 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1910 }
1911}
1912
f57bceb6
RH
1913static int kvm_get_supported_feature_msrs(KVMState *s)
1914{
1915 int ret = 0;
1916
1917 if (kvm_feature_msrs != NULL) {
1918 return 0;
1919 }
1920
1921 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1922 return 0;
1923 }
1924
1925 struct kvm_msr_list msr_list;
1926
1927 msr_list.nmsrs = 0;
1928 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1929 if (ret < 0 && ret != -E2BIG) {
1930 error_report("Fetch KVM feature MSR list failed: %s",
1931 strerror(-ret));
1932 return ret;
1933 }
1934
1935 assert(msr_list.nmsrs > 0);
1936 kvm_feature_msrs = (struct kvm_msr_list *) \
1937 g_malloc0(sizeof(msr_list) +
1938 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1939
1940 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1941 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1942
1943 if (ret < 0) {
1944 error_report("Fetch KVM feature MSR list failed: %s",
1945 strerror(-ret));
1946 g_free(kvm_feature_msrs);
1947 kvm_feature_msrs = NULL;
1948 return ret;
1949 }
1950
1951 return 0;
1952}
1953
c3a3a7d3 1954static int kvm_get_supported_msrs(KVMState *s)
05330448 1955{
c3a3a7d3 1956 int ret = 0;
de428cea 1957 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 1958
de428cea
LQ
1959 /*
1960 * Obtain MSR list from KVM. These are the MSRs that we must
1961 * save/restore.
1962 */
1963 msr_list.nmsrs = 0;
1964 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1965 if (ret < 0 && ret != -E2BIG) {
1966 return ret;
1967 }
1968 /*
1969 * Old kernel modules had a bug and could write beyond the provided
1970 * memory. Allocate at least a safe amount of 1K.
1971 */
1972 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1973 msr_list.nmsrs *
1974 sizeof(msr_list.indices[0])));
05330448 1975
de428cea
LQ
1976 kvm_msr_list->nmsrs = msr_list.nmsrs;
1977 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1978 if (ret >= 0) {
1979 int i;
05330448 1980
de428cea
LQ
1981 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1982 switch (kvm_msr_list->indices[i]) {
1983 case MSR_STAR:
1984 has_msr_star = true;
1985 break;
1986 case MSR_VM_HSAVE_PA:
1987 has_msr_hsave_pa = true;
1988 break;
1989 case MSR_TSC_AUX:
1990 has_msr_tsc_aux = true;
1991 break;
1992 case MSR_TSC_ADJUST:
1993 has_msr_tsc_adjust = true;
1994 break;
1995 case MSR_IA32_TSCDEADLINE:
1996 has_msr_tsc_deadline = true;
1997 break;
1998 case MSR_IA32_SMBASE:
1999 has_msr_smbase = true;
2000 break;
2001 case MSR_SMI_COUNT:
2002 has_msr_smi_count = true;
2003 break;
2004 case MSR_IA32_MISC_ENABLE:
2005 has_msr_misc_enable = true;
2006 break;
2007 case MSR_IA32_BNDCFGS:
2008 has_msr_bndcfgs = true;
2009 break;
2010 case MSR_IA32_XSS:
2011 has_msr_xss = true;
2012 break;
65087997
TX
2013 case MSR_IA32_UMWAIT_CONTROL:
2014 has_msr_umwait = true;
2015 break;
de428cea
LQ
2016 case HV_X64_MSR_CRASH_CTL:
2017 has_msr_hv_crash = true;
2018 break;
2019 case HV_X64_MSR_RESET:
2020 has_msr_hv_reset = true;
2021 break;
2022 case HV_X64_MSR_VP_INDEX:
2023 has_msr_hv_vpindex = true;
2024 break;
2025 case HV_X64_MSR_VP_RUNTIME:
2026 has_msr_hv_runtime = true;
2027 break;
2028 case HV_X64_MSR_SCONTROL:
2029 has_msr_hv_synic = true;
2030 break;
2031 case HV_X64_MSR_STIMER0_CONFIG:
2032 has_msr_hv_stimer = true;
2033 break;
2034 case HV_X64_MSR_TSC_FREQUENCY:
2035 has_msr_hv_frequencies = true;
2036 break;
2037 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2038 has_msr_hv_reenlightenment = true;
2039 break;
2040 case MSR_IA32_SPEC_CTRL:
2041 has_msr_spec_ctrl = true;
2042 break;
2a9758c5
PB
2043 case MSR_IA32_TSX_CTRL:
2044 has_msr_tsx_ctrl = true;
2045 break;
de428cea
LQ
2046 case MSR_VIRT_SSBD:
2047 has_msr_virt_ssbd = true;
2048 break;
2049 case MSR_IA32_ARCH_CAPABILITIES:
2050 has_msr_arch_capabs = true;
2051 break;
2052 case MSR_IA32_CORE_CAPABILITY:
2053 has_msr_core_capabs = true;
2054 break;
ea39f9b6
LX
2055 case MSR_IA32_PERF_CAPABILITIES:
2056 has_msr_perf_capabs = true;
2057 break;
20a78b02
PB
2058 case MSR_IA32_VMX_VMFUNC:
2059 has_msr_vmx_vmfunc = true;
2060 break;
67025148
PB
2061 case MSR_IA32_UCODE_REV:
2062 has_msr_ucode_rev = true;
2063 break;
4a910e1f
VK
2064 case MSR_IA32_VMX_PROCBASED_CTLS2:
2065 has_msr_vmx_procbased_ctls2 = true;
2066 break;
05330448
AL
2067 }
2068 }
05330448
AL
2069 }
2070
de428cea
LQ
2071 g_free(kvm_msr_list);
2072
c3a3a7d3 2073 return ret;
05330448
AL
2074}
2075
6410848b
PB
2076static Notifier smram_machine_done;
2077static KVMMemoryListener smram_listener;
2078static AddressSpace smram_address_space;
2079static MemoryRegion smram_as_root;
2080static MemoryRegion smram_as_mem;
2081
2082static void register_smram_listener(Notifier *n, void *unused)
2083{
2084 MemoryRegion *smram =
2085 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2086
2087 /* Outer container... */
2088 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2089 memory_region_set_enabled(&smram_as_root, true);
2090
2091 /* ... with two regions inside: normal system memory with low
2092 * priority, and...
2093 */
2094 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2095 get_system_memory(), 0, ~0ull);
2096 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2097 memory_region_set_enabled(&smram_as_mem, true);
2098
2099 if (smram) {
2100 /* ... SMRAM with higher priority */
2101 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2102 memory_region_set_enabled(smram, true);
2103 }
2104
2105 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2106 kvm_memory_listener_register(kvm_state, &smram_listener,
2107 &smram_address_space, 1);
2108}
2109
b16565b3 2110int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2111{
11076198 2112 uint64_t identity_base = 0xfffbc000;
39d6960a 2113 uint64_t shadow_mem;
20420430 2114 int ret;
25d2e361 2115 struct utsname utsname;
20420430 2116
1a6dff5f
EH
2117 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2118 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2119 return -ENOTSUP;
2120 }
2121
28143b40 2122 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2123 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2124 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 2125
e9688fab
RK
2126 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2127
fd13f23b
LA
2128 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2129 if (has_exception_payload) {
2130 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2131 if (ret < 0) {
2132 error_report("kvm: Failed to enable exception payload cap: %s",
2133 strerror(-ret));
2134 return ret;
2135 }
2136 }
2137
c3a3a7d3 2138 ret = kvm_get_supported_msrs(s);
20420430 2139 if (ret < 0) {
20420430
SY
2140 return ret;
2141 }
25d2e361 2142
f57bceb6
RH
2143 kvm_get_supported_feature_msrs(s);
2144
25d2e361
MT
2145 uname(&utsname);
2146 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2147
4c5b10b7 2148 /*
11076198
JK
2149 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2150 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2151 * Since these must be part of guest physical memory, we need to allocate
2152 * them, both by setting their start addresses in the kernel and by
2153 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2154 *
2155 * Older KVM versions may not support setting the identity map base. In
2156 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2157 * size.
4c5b10b7 2158 */
11076198
JK
2159 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2160 /* Allows up to 16M BIOSes. */
2161 identity_base = 0xfeffc000;
2162
2163 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2164 if (ret < 0) {
2165 return ret;
2166 }
4c5b10b7 2167 }
e56ff191 2168
11076198
JK
2169 /* Set TSS base one page after EPT identity map. */
2170 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2171 if (ret < 0) {
2172 return ret;
2173 }
2174
11076198
JK
2175 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2176 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2177 if (ret < 0) {
11076198 2178 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2179 return ret;
2180 }
2181
23b0898e 2182 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
36ad0e94
MA
2183 if (shadow_mem != -1) {
2184 shadow_mem /= 4096;
2185 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2186 if (ret < 0) {
2187 return ret;
39d6960a
JK
2188 }
2189 }
6410848b 2190
d870cfde 2191 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
8f54bbd0 2192 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
ed9e923c 2193 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
6410848b
PB
2194 smram_machine_done.notify = register_smram_listener;
2195 qemu_add_machine_init_done_notifier(&smram_machine_done);
2196 }
6f131f13
MT
2197
2198 if (enable_cpu_pm) {
2199 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2200 int ret;
2201
2202/* Work around for kernel header with a typo. TODO: fix header and drop. */
2203#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2204#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2205#endif
2206 if (disable_exits) {
2207 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2208 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2209 KVM_X86_DISABLE_EXITS_PAUSE |
2210 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2211 }
2212
2213 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2214 disable_exits);
2215 if (ret < 0) {
2216 error_report("kvm: guest stopping CPU not supported: %s",
2217 strerror(-ret));
2218 }
2219 }
2220
11076198 2221 return 0;
05330448 2222}
b9bec74b 2223
05330448
AL
2224static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2225{
2226 lhs->selector = rhs->selector;
2227 lhs->base = rhs->base;
2228 lhs->limit = rhs->limit;
2229 lhs->type = 3;
2230 lhs->present = 1;
2231 lhs->dpl = 3;
2232 lhs->db = 0;
2233 lhs->s = 1;
2234 lhs->l = 0;
2235 lhs->g = 0;
2236 lhs->avl = 0;
2237 lhs->unusable = 0;
2238}
2239
2240static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2241{
2242 unsigned flags = rhs->flags;
2243 lhs->selector = rhs->selector;
2244 lhs->base = rhs->base;
2245 lhs->limit = rhs->limit;
2246 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2247 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2248 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2249 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2250 lhs->s = (flags & DESC_S_MASK) != 0;
2251 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2252 lhs->g = (flags & DESC_G_MASK) != 0;
2253 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2254 lhs->unusable = !lhs->present;
7e680753 2255 lhs->padding = 0;
05330448
AL
2256}
2257
2258static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2259{
2260 lhs->selector = rhs->selector;
2261 lhs->base = rhs->base;
2262 lhs->limit = rhs->limit;
d45fc087
RP
2263 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2264 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2265 (rhs->dpl << DESC_DPL_SHIFT) |
2266 (rhs->db << DESC_B_SHIFT) |
2267 (rhs->s * DESC_S_MASK) |
2268 (rhs->l << DESC_L_SHIFT) |
2269 (rhs->g * DESC_G_MASK) |
2270 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2271}
2272
2273static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2274{
b9bec74b 2275 if (set) {
05330448 2276 *kvm_reg = *qemu_reg;
b9bec74b 2277 } else {
05330448 2278 *qemu_reg = *kvm_reg;
b9bec74b 2279 }
05330448
AL
2280}
2281
1bc22652 2282static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2283{
1bc22652 2284 CPUX86State *env = &cpu->env;
05330448
AL
2285 struct kvm_regs regs;
2286 int ret = 0;
2287
2288 if (!set) {
1bc22652 2289 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2290 if (ret < 0) {
05330448 2291 return ret;
b9bec74b 2292 }
05330448
AL
2293 }
2294
2295 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2296 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2297 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2298 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2299 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2300 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2301 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2302 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2303#ifdef TARGET_X86_64
2304 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2305 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2306 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2307 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2308 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2309 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2310 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2311 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2312#endif
2313
2314 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2315 kvm_getput_reg(&regs.rip, &env->eip, set);
2316
b9bec74b 2317 if (set) {
1bc22652 2318 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2319 }
05330448
AL
2320
2321 return ret;
2322}
2323
1bc22652 2324static int kvm_put_fpu(X86CPU *cpu)
05330448 2325{
1bc22652 2326 CPUX86State *env = &cpu->env;
05330448
AL
2327 struct kvm_fpu fpu;
2328 int i;
2329
2330 memset(&fpu, 0, sizeof fpu);
2331 fpu.fsw = env->fpus & ~(7 << 11);
2332 fpu.fsw |= (env->fpstt & 7) << 11;
2333 fpu.fcw = env->fpuc;
42cc8fa6
JK
2334 fpu.last_opcode = env->fpop;
2335 fpu.last_ip = env->fpip;
2336 fpu.last_dp = env->fpdp;
b9bec74b
JK
2337 for (i = 0; i < 8; ++i) {
2338 fpu.ftwx |= (!env->fptags[i]) << i;
2339 }
05330448 2340 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2341 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2342 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2343 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2344 }
05330448
AL
2345 fpu.mxcsr = env->mxcsr;
2346
1bc22652 2347 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2348}
2349
6b42494b
JK
2350#define XSAVE_FCW_FSW 0
2351#define XSAVE_FTW_FOP 1
f1665b21
SY
2352#define XSAVE_CWD_RIP 2
2353#define XSAVE_CWD_RDP 4
2354#define XSAVE_MXCSR 6
2355#define XSAVE_ST_SPACE 8
2356#define XSAVE_XMM_SPACE 40
2357#define XSAVE_XSTATE_BV 128
2358#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
2359#define XSAVE_BNDREGS 240
2360#define XSAVE_BNDCSR 256
9aecd6f8
CP
2361#define XSAVE_OPMASK 272
2362#define XSAVE_ZMM_Hi256 288
2363#define XSAVE_Hi16_ZMM 416
f74eefe0 2364#define XSAVE_PKRU 672
f1665b21 2365
b503717d 2366#define XSAVE_BYTE_OFFSET(word_offset) \
f18793b0 2367 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
b503717d
EH
2368
2369#define ASSERT_OFFSET(word_offset, field) \
2370 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2371 offsetof(X86XSaveArea, field))
2372
2373ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2374ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2375ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2376ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2377ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2378ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2379ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2380ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2381ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2382ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2383ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2384ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2385ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2386ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2387ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2388
1bc22652 2389static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2390{
1bc22652 2391 CPUX86State *env = &cpu->env;
5b8063c4 2392 X86XSaveArea *xsave = env->xsave_buf;
f1665b21 2393
28143b40 2394 if (!has_xsave) {
1bc22652 2395 return kvm_put_fpu(cpu);
b9bec74b 2396 }
86a57621 2397 x86_cpu_xsave_all_areas(cpu, xsave);
f1665b21 2398
9be38598 2399 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2400}
2401
1bc22652 2402static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2403{
1bc22652 2404 CPUX86State *env = &cpu->env;
bdfc8480 2405 struct kvm_xcrs xcrs = {};
f1665b21 2406
28143b40 2407 if (!has_xcrs) {
f1665b21 2408 return 0;
b9bec74b 2409 }
f1665b21
SY
2410
2411 xcrs.nr_xcrs = 1;
2412 xcrs.flags = 0;
2413 xcrs.xcrs[0].xcr = 0;
2414 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2415 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2416}
2417
1bc22652 2418static int kvm_put_sregs(X86CPU *cpu)
05330448 2419{
1bc22652 2420 CPUX86State *env = &cpu->env;
05330448
AL
2421 struct kvm_sregs sregs;
2422
0e607a80
JK
2423 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2424 if (env->interrupt_injected >= 0) {
2425 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2426 (uint64_t)1 << (env->interrupt_injected % 64);
2427 }
05330448
AL
2428
2429 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2430 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2431 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2432 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2433 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2434 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2435 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2436 } else {
b9bec74b
JK
2437 set_seg(&sregs.cs, &env->segs[R_CS]);
2438 set_seg(&sregs.ds, &env->segs[R_DS]);
2439 set_seg(&sregs.es, &env->segs[R_ES]);
2440 set_seg(&sregs.fs, &env->segs[R_FS]);
2441 set_seg(&sregs.gs, &env->segs[R_GS]);
2442 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2443 }
2444
2445 set_seg(&sregs.tr, &env->tr);
2446 set_seg(&sregs.ldt, &env->ldt);
2447
2448 sregs.idt.limit = env->idt.limit;
2449 sregs.idt.base = env->idt.base;
7e680753 2450 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2451 sregs.gdt.limit = env->gdt.limit;
2452 sregs.gdt.base = env->gdt.base;
7e680753 2453 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2454
2455 sregs.cr0 = env->cr[0];
2456 sregs.cr2 = env->cr[2];
2457 sregs.cr3 = env->cr[3];
2458 sregs.cr4 = env->cr[4];
2459
02e51483
CF
2460 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2461 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2462
2463 sregs.efer = env->efer;
2464
1bc22652 2465 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2466}
2467
d71b62a1
EH
2468static void kvm_msr_buf_reset(X86CPU *cpu)
2469{
2470 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2471}
2472
9c600a84
EH
2473static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2474{
2475 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2476 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2477 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2478
2479 assert((void *)(entry + 1) <= limit);
2480
1abc2cae
EH
2481 entry->index = index;
2482 entry->reserved = 0;
2483 entry->data = value;
9c600a84
EH
2484 msrs->nmsrs++;
2485}
2486
73e1b8f2
PB
2487static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2488{
2489 kvm_msr_buf_reset(cpu);
2490 kvm_msr_entry_add(cpu, index, value);
2491
2492 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2493}
2494
f8d9ccf8
DDAG
2495void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2496{
2497 int ret;
2498
2499 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2500 assert(ret == 1);
2501}
2502
7477cd38
MT
2503static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2504{
2505 CPUX86State *env = &cpu->env;
48e1a45c 2506 int ret;
7477cd38
MT
2507
2508 if (!has_msr_tsc_deadline) {
2509 return 0;
2510 }
2511
73e1b8f2 2512 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2513 if (ret < 0) {
2514 return ret;
2515 }
2516
2517 assert(ret == 1);
2518 return 0;
7477cd38
MT
2519}
2520
6bdf863d
JK
2521/*
2522 * Provide a separate write service for the feature control MSR in order to
2523 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2524 * before writing any other state because forcibly leaving nested mode
2525 * invalidates the VCPU state.
2526 */
2527static int kvm_put_msr_feature_control(X86CPU *cpu)
2528{
48e1a45c
PB
2529 int ret;
2530
2531 if (!has_msr_feature_control) {
2532 return 0;
2533 }
6bdf863d 2534
73e1b8f2
PB
2535 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2536 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2537 if (ret < 0) {
2538 return ret;
2539 }
2540
2541 assert(ret == 1);
2542 return 0;
6bdf863d
JK
2543}
2544
20a78b02
PB
2545static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2546{
2547 uint32_t default1, can_be_one, can_be_zero;
2548 uint32_t must_be_one;
2549
2550 switch (index) {
2551 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2552 default1 = 0x00000016;
2553 break;
2554 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2555 default1 = 0x0401e172;
2556 break;
2557 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2558 default1 = 0x000011ff;
2559 break;
2560 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2561 default1 = 0x00036dff;
2562 break;
2563 case MSR_IA32_VMX_PROCBASED_CTLS2:
2564 default1 = 0;
2565 break;
2566 default:
2567 abort();
2568 }
2569
2570 /* If a feature bit is set, the control can be either set or clear.
2571 * Otherwise the value is limited to either 0 or 1 by default1.
2572 */
2573 can_be_one = features | default1;
2574 can_be_zero = features | ~default1;
2575 must_be_one = ~can_be_zero;
2576
2577 /*
2578 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2579 * Bit 32:63 -> 1 if the control bit can be one.
2580 */
2581 return must_be_one | (((uint64_t)can_be_one) << 32);
2582}
2583
2584#define VMCS12_MAX_FIELD_INDEX (0x17)
2585
2586static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2587{
2588 uint64_t kvm_vmx_basic =
2589 kvm_arch_get_supported_msr_feature(kvm_state,
2590 MSR_IA32_VMX_BASIC);
26051882
YZ
2591
2592 if (!kvm_vmx_basic) {
2593 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2594 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2595 */
2596 return;
2597 }
2598
20a78b02
PB
2599 uint64_t kvm_vmx_misc =
2600 kvm_arch_get_supported_msr_feature(kvm_state,
2601 MSR_IA32_VMX_MISC);
2602 uint64_t kvm_vmx_ept_vpid =
2603 kvm_arch_get_supported_msr_feature(kvm_state,
2604 MSR_IA32_VMX_EPT_VPID_CAP);
2605
2606 /*
2607 * If the guest is 64-bit, a value of 1 is allowed for the host address
2608 * space size vmexit control.
2609 */
2610 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2611 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2612
2613 /*
2614 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2615 * not change them for backwards compatibility.
2616 */
2617 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2618 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2619 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2620 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2621
2622 /*
2623 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2624 * change in the future but are always zero for now, clear them to be
2625 * future proof. Bits 32-63 in theory could change, though KVM does
2626 * not support dual-monitor treatment and probably never will; mask
2627 * them out as well.
2628 */
2629 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2630 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2631 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2632
2633 /*
2634 * EPT memory types should not change either, so we do not bother
2635 * adding features for them.
2636 */
2637 uint64_t fixed_vmx_ept_mask =
2638 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2639 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2640 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2641
2642 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2643 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2644 f[FEAT_VMX_PROCBASED_CTLS]));
2645 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2646 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2647 f[FEAT_VMX_PINBASED_CTLS]));
2648 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2649 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2650 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2651 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2652 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2653 f[FEAT_VMX_ENTRY_CTLS]));
2654 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2655 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2656 f[FEAT_VMX_SECONDARY_CTLS]));
2657 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2658 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2659 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2660 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2661 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2662 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2663 if (has_msr_vmx_vmfunc) {
2664 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2665 }
2666
2667 /*
2668 * Just to be safe, write these with constant values. The CRn_FIXED1
2669 * MSRs are generated by KVM based on the vCPU's CPUID.
2670 */
2671 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2672 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2673 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2674 CR4_VMXE_MASK);
2675 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2676 VMCS12_MAX_FIELD_INDEX << 1);
2677}
2678
ea39f9b6
LX
2679static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2680{
2681 uint64_t kvm_perf_cap =
2682 kvm_arch_get_supported_msr_feature(kvm_state,
2683 MSR_IA32_PERF_CAPABILITIES);
2684
2685 if (kvm_perf_cap) {
2686 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2687 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2688 }
2689}
2690
420ae1fc
PB
2691static int kvm_buf_set_msrs(X86CPU *cpu)
2692{
2693 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2694 if (ret < 0) {
2695 return ret;
2696 }
2697
2698 if (ret < cpu->kvm_msr_buf->nmsrs) {
2699 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2700 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2701 (uint32_t)e->index, (uint64_t)e->data);
2702 }
2703
2704 assert(ret == cpu->kvm_msr_buf->nmsrs);
2705 return 0;
2706}
2707
2708static void kvm_init_msrs(X86CPU *cpu)
2709{
2710 CPUX86State *env = &cpu->env;
2711
2712 kvm_msr_buf_reset(cpu);
2713 if (has_msr_arch_capabs) {
2714 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2715 env->features[FEAT_ARCH_CAPABILITIES]);
2716 }
2717
2718 if (has_msr_core_capabs) {
2719 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2720 env->features[FEAT_CORE_CAPABILITY]);
2721 }
2722
ea39f9b6
LX
2723 if (has_msr_perf_capabs && cpu->enable_pmu) {
2724 kvm_msr_entry_add_perf(cpu, env->features);
2725 }
2726
67025148 2727 if (has_msr_ucode_rev) {
32c87d70
PB
2728 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2729 }
2730
420ae1fc
PB
2731 /*
2732 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2733 * all kernels with MSR features should have them.
2734 */
2735 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2736 kvm_msr_entry_add_vmx(cpu, env->features);
2737 }
2738
2739 assert(kvm_buf_set_msrs(cpu) == 0);
2740}
2741
1bc22652 2742static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 2743{
1bc22652 2744 CPUX86State *env = &cpu->env;
9c600a84 2745 int i;
05330448 2746
d71b62a1
EH
2747 kvm_msr_buf_reset(cpu);
2748
9c600a84
EH
2749 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2750 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2751 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2752 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 2753 if (has_msr_star) {
9c600a84 2754 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 2755 }
c3a3a7d3 2756 if (has_msr_hsave_pa) {
9c600a84 2757 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2758 }
c9b8f6b6 2759 if (has_msr_tsc_aux) {
9c600a84 2760 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2761 }
f28558d3 2762 if (has_msr_tsc_adjust) {
9c600a84 2763 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2764 }
21e87c46 2765 if (has_msr_misc_enable) {
9c600a84 2766 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2767 env->msr_ia32_misc_enable);
2768 }
fc12d72e 2769 if (has_msr_smbase) {
9c600a84 2770 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2771 }
e13713db
LA
2772 if (has_msr_smi_count) {
2773 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2774 }
439d19f2 2775 if (has_msr_bndcfgs) {
9c600a84 2776 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2777 }
18cd2c17 2778 if (has_msr_xss) {
9c600a84 2779 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2780 }
65087997
TX
2781 if (has_msr_umwait) {
2782 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2783 }
a33a2cfe
PB
2784 if (has_msr_spec_ctrl) {
2785 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2786 }
2a9758c5
PB
2787 if (has_msr_tsx_ctrl) {
2788 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2789 }
cfeea0c0
KRW
2790 if (has_msr_virt_ssbd) {
2791 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2792 }
2793
05330448 2794#ifdef TARGET_X86_64
25d2e361 2795 if (lm_capable_kernel) {
9c600a84
EH
2796 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2797 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2798 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2799 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2800 }
05330448 2801#endif
a33a2cfe 2802
ff5c186b 2803 /*
0d894367
PB
2804 * The following MSRs have side effects on the guest or are too heavy
2805 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
2806 */
2807 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
2808 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2809 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2810 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
6615be07
VK
2811 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2812 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2813 }
55c911a5 2814 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2815 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 2816 }
55c911a5 2817 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2818 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 2819 }
55c911a5 2820 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2821 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 2822 }
d645e132
MT
2823
2824 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2825 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2826 }
2827
0b368a10
JD
2828 if (has_architectural_pmu_version > 0) {
2829 if (has_architectural_pmu_version > 1) {
2830 /* Stop the counter. */
2831 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2832 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2833 }
0d894367
PB
2834
2835 /* Set the counter values. */
0b368a10 2836 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2837 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
2838 env->msr_fixed_counters[i]);
2839 }
0b368a10 2840 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 2841 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 2842 env->msr_gp_counters[i]);
9c600a84 2843 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
2844 env->msr_gp_evtsel[i]);
2845 }
0b368a10
JD
2846 if (has_architectural_pmu_version > 1) {
2847 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2848 env->msr_global_status);
2849 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2850 env->msr_global_ovf_ctrl);
2851
2852 /* Now start the PMU. */
2853 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2854 env->msr_fixed_ctr_ctrl);
2855 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2856 env->msr_global_ctrl);
2857 }
0d894367 2858 }
da1cc323
EY
2859 /*
2860 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2861 * only sync them to KVM on the first cpu
2862 */
2863 if (current_cpu == first_cpu) {
2864 if (has_msr_hv_hypercall) {
2865 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2866 env->msr_hv_guest_os_id);
2867 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2868 env->msr_hv_hypercall);
2869 }
2d384d7c 2870 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
2871 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2872 env->msr_hv_tsc);
2873 }
2d384d7c 2874 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
2875 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2876 env->msr_hv_reenlightenment_control);
2877 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2878 env->msr_hv_tsc_emulation_control);
2879 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2880 env->msr_hv_tsc_emulation_status);
2881 }
eab70139 2882 }
2d384d7c 2883 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 2884 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 2885 env->msr_hv_vapic);
eab70139 2886 }
f2a53c9e
AS
2887 if (has_msr_hv_crash) {
2888 int j;
2889
5e953812 2890 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 2891 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
2892 env->msr_hv_crash_params[j]);
2893
5e953812 2894 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 2895 }
46eb8f98 2896 if (has_msr_hv_runtime) {
9c600a84 2897 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 2898 }
2d384d7c
VK
2899 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2900 && hv_vpindex_settable) {
701189e3
RK
2901 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2902 hyperv_vp_index(CPU(cpu)));
e9688fab 2903 }
2d384d7c 2904 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
2905 int j;
2906
09df29b6
RK
2907 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2908
9c600a84 2909 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 2910 env->msr_hv_synic_control);
9c600a84 2911 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 2912 env->msr_hv_synic_evt_page);
9c600a84 2913 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
2914 env->msr_hv_synic_msg_page);
2915
2916 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 2917 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
2918 env->msr_hv_synic_sint[j]);
2919 }
2920 }
ff99aa64
AS
2921 if (has_msr_hv_stimer) {
2922 int j;
2923
2924 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 2925 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
2926 env->msr_hv_stimer_config[j]);
2927 }
2928
2929 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 2930 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
2931 env->msr_hv_stimer_count[j]);
2932 }
2933 }
1eabfce6 2934 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
2935 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2936
9c600a84
EH
2937 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2938 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2939 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2940 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2941 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2942 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2943 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2944 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2945 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2946 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2947 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2948 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 2949 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
2950 /* The CPU GPs if we write to a bit above the physical limit of
2951 * the host CPU (and KVM emulates that)
2952 */
2953 uint64_t mask = env->mtrr_var[i].mask;
2954 mask &= phys_mask;
2955
9c600a84
EH
2956 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2957 env->mtrr_var[i].base);
112dad69 2958 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
2959 }
2960 }
b77146e9
CP
2961 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2962 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2963 0x14, 1, R_EAX) & 0x7;
2964
2965 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2966 env->msr_rtit_ctrl);
2967 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2968 env->msr_rtit_status);
2969 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2970 env->msr_rtit_output_base);
2971 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2972 env->msr_rtit_output_mask);
2973 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2974 env->msr_rtit_cr3_match);
2975 for (i = 0; i < addr_num; i++) {
2976 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2977 env->msr_rtit_addrs[i]);
2978 }
2979 }
6bdf863d
JK
2980
2981 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2982 * kvm_put_msr_feature_control. */
ea643051 2983 }
20a78b02 2984
57780495 2985 if (env->mcg_cap) {
d8da8574 2986 int i;
b9bec74b 2987
9c600a84
EH
2988 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2989 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
2990 if (has_msr_mcg_ext_ctl) {
2991 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2992 }
c34d440a 2993 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2994 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
2995 }
2996 }
1a03675d 2997
420ae1fc 2998 return kvm_buf_set_msrs(cpu);
05330448
AL
2999}
3000
3001
1bc22652 3002static int kvm_get_fpu(X86CPU *cpu)
05330448 3003{
1bc22652 3004 CPUX86State *env = &cpu->env;
05330448
AL
3005 struct kvm_fpu fpu;
3006 int i, ret;
3007
1bc22652 3008 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 3009 if (ret < 0) {
05330448 3010 return ret;
b9bec74b 3011 }
05330448
AL
3012
3013 env->fpstt = (fpu.fsw >> 11) & 7;
3014 env->fpus = fpu.fsw;
3015 env->fpuc = fpu.fcw;
42cc8fa6
JK
3016 env->fpop = fpu.last_opcode;
3017 env->fpip = fpu.last_ip;
3018 env->fpdp = fpu.last_dp;
b9bec74b
JK
3019 for (i = 0; i < 8; ++i) {
3020 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3021 }
05330448 3022 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 3023 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
3024 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3025 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 3026 }
05330448
AL
3027 env->mxcsr = fpu.mxcsr;
3028
3029 return 0;
3030}
3031
1bc22652 3032static int kvm_get_xsave(X86CPU *cpu)
f1665b21 3033{
1bc22652 3034 CPUX86State *env = &cpu->env;
5b8063c4 3035 X86XSaveArea *xsave = env->xsave_buf;
86a57621 3036 int ret;
f1665b21 3037
28143b40 3038 if (!has_xsave) {
1bc22652 3039 return kvm_get_fpu(cpu);
b9bec74b 3040 }
f1665b21 3041
1bc22652 3042 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 3043 if (ret < 0) {
f1665b21 3044 return ret;
0f53994f 3045 }
86a57621 3046 x86_cpu_xrstor_all_areas(cpu, xsave);
f1665b21 3047
f1665b21 3048 return 0;
f1665b21
SY
3049}
3050
1bc22652 3051static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 3052{
1bc22652 3053 CPUX86State *env = &cpu->env;
f1665b21
SY
3054 int i, ret;
3055 struct kvm_xcrs xcrs;
3056
28143b40 3057 if (!has_xcrs) {
f1665b21 3058 return 0;
b9bec74b 3059 }
f1665b21 3060
1bc22652 3061 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 3062 if (ret < 0) {
f1665b21 3063 return ret;
b9bec74b 3064 }
f1665b21 3065
b9bec74b 3066 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 3067 /* Only support xcr0 now */
0fd53fec
PB
3068 if (xcrs.xcrs[i].xcr == 0) {
3069 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
3070 break;
3071 }
b9bec74b 3072 }
f1665b21 3073 return 0;
f1665b21
SY
3074}
3075
1bc22652 3076static int kvm_get_sregs(X86CPU *cpu)
05330448 3077{
1bc22652 3078 CPUX86State *env = &cpu->env;
05330448 3079 struct kvm_sregs sregs;
0e607a80 3080 int bit, i, ret;
05330448 3081
1bc22652 3082 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 3083 if (ret < 0) {
05330448 3084 return ret;
b9bec74b 3085 }
05330448 3086
0e607a80
JK
3087 /* There can only be one pending IRQ set in the bitmap at a time, so try
3088 to find it and save its number instead (-1 for none). */
3089 env->interrupt_injected = -1;
3090 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3091 if (sregs.interrupt_bitmap[i]) {
3092 bit = ctz64(sregs.interrupt_bitmap[i]);
3093 env->interrupt_injected = i * 64 + bit;
3094 break;
3095 }
3096 }
05330448
AL
3097
3098 get_seg(&env->segs[R_CS], &sregs.cs);
3099 get_seg(&env->segs[R_DS], &sregs.ds);
3100 get_seg(&env->segs[R_ES], &sregs.es);
3101 get_seg(&env->segs[R_FS], &sregs.fs);
3102 get_seg(&env->segs[R_GS], &sregs.gs);
3103 get_seg(&env->segs[R_SS], &sregs.ss);
3104
3105 get_seg(&env->tr, &sregs.tr);
3106 get_seg(&env->ldt, &sregs.ldt);
3107
3108 env->idt.limit = sregs.idt.limit;
3109 env->idt.base = sregs.idt.base;
3110 env->gdt.limit = sregs.gdt.limit;
3111 env->gdt.base = sregs.gdt.base;
3112
3113 env->cr[0] = sregs.cr0;
3114 env->cr[2] = sregs.cr2;
3115 env->cr[3] = sregs.cr3;
3116 env->cr[4] = sregs.cr4;
3117
05330448 3118 env->efer = sregs.efer;
cce47516
JK
3119
3120 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3121 x86_update_hflags(env);
05330448
AL
3122
3123 return 0;
3124}
3125
1bc22652 3126static int kvm_get_msrs(X86CPU *cpu)
05330448 3127{
1bc22652 3128 CPUX86State *env = &cpu->env;
d71b62a1 3129 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3130 int ret, i;
fcc35e7c 3131 uint64_t mtrr_top_bits;
05330448 3132
d71b62a1
EH
3133 kvm_msr_buf_reset(cpu);
3134
9c600a84
EH
3135 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3136 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3137 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3138 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3139 if (has_msr_star) {
9c600a84 3140 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3141 }
c3a3a7d3 3142 if (has_msr_hsave_pa) {
9c600a84 3143 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3144 }
c9b8f6b6 3145 if (has_msr_tsc_aux) {
9c600a84 3146 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3147 }
f28558d3 3148 if (has_msr_tsc_adjust) {
9c600a84 3149 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3150 }
aa82ba54 3151 if (has_msr_tsc_deadline) {
9c600a84 3152 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3153 }
21e87c46 3154 if (has_msr_misc_enable) {
9c600a84 3155 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3156 }
fc12d72e 3157 if (has_msr_smbase) {
9c600a84 3158 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3159 }
e13713db
LA
3160 if (has_msr_smi_count) {
3161 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3162 }
df67696e 3163 if (has_msr_feature_control) {
9c600a84 3164 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3165 }
79e9ebeb 3166 if (has_msr_bndcfgs) {
9c600a84 3167 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3168 }
18cd2c17 3169 if (has_msr_xss) {
9c600a84 3170 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3171 }
65087997
TX
3172 if (has_msr_umwait) {
3173 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3174 }
a33a2cfe
PB
3175 if (has_msr_spec_ctrl) {
3176 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3177 }
2a9758c5
PB
3178 if (has_msr_tsx_ctrl) {
3179 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3180 }
cfeea0c0
KRW
3181 if (has_msr_virt_ssbd) {
3182 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3183 }
b8cc45d6 3184 if (!env->tsc_valid) {
9c600a84 3185 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3186 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3187 }
3188
05330448 3189#ifdef TARGET_X86_64
25d2e361 3190 if (lm_capable_kernel) {
9c600a84
EH
3191 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3192 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3193 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3194 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3195 }
05330448 3196#endif
9c600a84
EH
3197 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3198 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
db5daafa
VK
3199 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3200 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3201 }
6615be07
VK
3202 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3203 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3204 }
55c911a5 3205 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3206 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3207 }
55c911a5 3208 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3209 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3210 }
d645e132
MT
3211 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3212 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3213 }
0b368a10
JD
3214 if (has_architectural_pmu_version > 0) {
3215 if (has_architectural_pmu_version > 1) {
3216 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3217 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3218 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3219 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3220 }
3221 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3222 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3223 }
0b368a10 3224 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3225 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3226 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3227 }
3228 }
1a03675d 3229
57780495 3230 if (env->mcg_cap) {
9c600a84
EH
3231 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3232 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3233 if (has_msr_mcg_ext_ctl) {
3234 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3235 }
b9bec74b 3236 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3237 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3238 }
57780495 3239 }
57780495 3240
1c90ef26 3241 if (has_msr_hv_hypercall) {
9c600a84
EH
3242 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3243 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3244 }
2d384d7c 3245 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3246 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3247 }
2d384d7c 3248 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3249 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3250 }
2d384d7c 3251 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3252 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3253 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3254 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3255 }
f2a53c9e
AS
3256 if (has_msr_hv_crash) {
3257 int j;
3258
5e953812 3259 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3260 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3261 }
3262 }
46eb8f98 3263 if (has_msr_hv_runtime) {
9c600a84 3264 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3265 }
2d384d7c 3266 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3267 uint32_t msr;
3268
9c600a84 3269 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3270 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3271 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3272 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3273 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3274 }
3275 }
ff99aa64
AS
3276 if (has_msr_hv_stimer) {
3277 uint32_t msr;
3278
3279 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3280 msr++) {
9c600a84 3281 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3282 }
3283 }
1eabfce6 3284 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3285 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3286 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3287 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3288 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3289 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3290 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3291 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3292 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3293 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3294 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3295 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3296 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3297 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3298 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3299 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3300 }
3301 }
5ef68987 3302
b77146e9
CP
3303 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3304 int addr_num =
3305 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3306
3307 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3308 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3309 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3310 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3311 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3312 for (i = 0; i < addr_num; i++) {
3313 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3314 }
3315 }
3316
d71b62a1 3317 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3318 if (ret < 0) {
05330448 3319 return ret;
b9bec74b 3320 }
05330448 3321
c70b11d1
EH
3322 if (ret < cpu->kvm_msr_buf->nmsrs) {
3323 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3324 error_report("error: failed to get MSR 0x%" PRIx32,
3325 (uint32_t)e->index);
3326 }
3327
9c600a84 3328 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3329 /*
3330 * MTRR masks: Each mask consists of 5 parts
3331 * a 10..0: must be zero
3332 * b 11 : valid bit
3333 * c n-1.12: actual mask bits
3334 * d 51..n: reserved must be zero
3335 * e 63.52: reserved must be zero
3336 *
3337 * 'n' is the number of physical bits supported by the CPU and is
3338 * apparently always <= 52. We know our 'n' but don't know what
3339 * the destinations 'n' is; it might be smaller, in which case
3340 * it masks (c) on loading. It might be larger, in which case
3341 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3342 * we're migrating to.
3343 */
3344
3345 if (cpu->fill_mtrr_mask) {
3346 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3347 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3348 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3349 } else {
3350 mtrr_top_bits = 0;
3351 }
3352
05330448 3353 for (i = 0; i < ret; i++) {
0d894367
PB
3354 uint32_t index = msrs[i].index;
3355 switch (index) {
05330448
AL
3356 case MSR_IA32_SYSENTER_CS:
3357 env->sysenter_cs = msrs[i].data;
3358 break;
3359 case MSR_IA32_SYSENTER_ESP:
3360 env->sysenter_esp = msrs[i].data;
3361 break;
3362 case MSR_IA32_SYSENTER_EIP:
3363 env->sysenter_eip = msrs[i].data;
3364 break;
0c03266a
JK
3365 case MSR_PAT:
3366 env->pat = msrs[i].data;
3367 break;
05330448
AL
3368 case MSR_STAR:
3369 env->star = msrs[i].data;
3370 break;
3371#ifdef TARGET_X86_64
3372 case MSR_CSTAR:
3373 env->cstar = msrs[i].data;
3374 break;
3375 case MSR_KERNELGSBASE:
3376 env->kernelgsbase = msrs[i].data;
3377 break;
3378 case MSR_FMASK:
3379 env->fmask = msrs[i].data;
3380 break;
3381 case MSR_LSTAR:
3382 env->lstar = msrs[i].data;
3383 break;
3384#endif
3385 case MSR_IA32_TSC:
3386 env->tsc = msrs[i].data;
3387 break;
c9b8f6b6
AS
3388 case MSR_TSC_AUX:
3389 env->tsc_aux = msrs[i].data;
3390 break;
f28558d3
WA
3391 case MSR_TSC_ADJUST:
3392 env->tsc_adjust = msrs[i].data;
3393 break;
aa82ba54
LJ
3394 case MSR_IA32_TSCDEADLINE:
3395 env->tsc_deadline = msrs[i].data;
3396 break;
aa851e36
MT
3397 case MSR_VM_HSAVE_PA:
3398 env->vm_hsave = msrs[i].data;
3399 break;
1a03675d
GC
3400 case MSR_KVM_SYSTEM_TIME:
3401 env->system_time_msr = msrs[i].data;
3402 break;
3403 case MSR_KVM_WALL_CLOCK:
3404 env->wall_clock_msr = msrs[i].data;
3405 break;
57780495
MT
3406 case MSR_MCG_STATUS:
3407 env->mcg_status = msrs[i].data;
3408 break;
3409 case MSR_MCG_CTL:
3410 env->mcg_ctl = msrs[i].data;
3411 break;
87f8b626
AR
3412 case MSR_MCG_EXT_CTL:
3413 env->mcg_ext_ctl = msrs[i].data;
3414 break;
21e87c46
AK
3415 case MSR_IA32_MISC_ENABLE:
3416 env->msr_ia32_misc_enable = msrs[i].data;
3417 break;
fc12d72e
PB
3418 case MSR_IA32_SMBASE:
3419 env->smbase = msrs[i].data;
3420 break;
e13713db
LA
3421 case MSR_SMI_COUNT:
3422 env->msr_smi_count = msrs[i].data;
3423 break;
0779caeb
ACL
3424 case MSR_IA32_FEATURE_CONTROL:
3425 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3426 break;
79e9ebeb
LJ
3427 case MSR_IA32_BNDCFGS:
3428 env->msr_bndcfgs = msrs[i].data;
3429 break;
18cd2c17
WL
3430 case MSR_IA32_XSS:
3431 env->xss = msrs[i].data;
3432 break;
65087997
TX
3433 case MSR_IA32_UMWAIT_CONTROL:
3434 env->umwait = msrs[i].data;
3435 break;
57780495 3436 default:
57780495
MT
3437 if (msrs[i].index >= MSR_MC0_CTL &&
3438 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3439 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3440 }
d8da8574 3441 break;
f6584ee2
GN
3442 case MSR_KVM_ASYNC_PF_EN:
3443 env->async_pf_en_msr = msrs[i].data;
3444 break;
db5daafa
VK
3445 case MSR_KVM_ASYNC_PF_INT:
3446 env->async_pf_int_msr = msrs[i].data;
3447 break;
bc9a839d
MT
3448 case MSR_KVM_PV_EOI_EN:
3449 env->pv_eoi_en_msr = msrs[i].data;
3450 break;
917367aa
MT
3451 case MSR_KVM_STEAL_TIME:
3452 env->steal_time_msr = msrs[i].data;
3453 break;
d645e132
MT
3454 case MSR_KVM_POLL_CONTROL: {
3455 env->poll_control_msr = msrs[i].data;
3456 break;
3457 }
0d894367
PB
3458 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3459 env->msr_fixed_ctr_ctrl = msrs[i].data;
3460 break;
3461 case MSR_CORE_PERF_GLOBAL_CTRL:
3462 env->msr_global_ctrl = msrs[i].data;
3463 break;
3464 case MSR_CORE_PERF_GLOBAL_STATUS:
3465 env->msr_global_status = msrs[i].data;
3466 break;
3467 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3468 env->msr_global_ovf_ctrl = msrs[i].data;
3469 break;
3470 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3471 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3472 break;
3473 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3474 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3475 break;
3476 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3477 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3478 break;
1c90ef26
VR
3479 case HV_X64_MSR_HYPERCALL:
3480 env->msr_hv_hypercall = msrs[i].data;
3481 break;
3482 case HV_X64_MSR_GUEST_OS_ID:
3483 env->msr_hv_guest_os_id = msrs[i].data;
3484 break;
5ef68987
VR
3485 case HV_X64_MSR_APIC_ASSIST_PAGE:
3486 env->msr_hv_vapic = msrs[i].data;
3487 break;
48a5f3bc
VR
3488 case HV_X64_MSR_REFERENCE_TSC:
3489 env->msr_hv_tsc = msrs[i].data;
3490 break;
f2a53c9e
AS
3491 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3492 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3493 break;
46eb8f98
AS
3494 case HV_X64_MSR_VP_RUNTIME:
3495 env->msr_hv_runtime = msrs[i].data;
3496 break;
866eea9a
AS
3497 case HV_X64_MSR_SCONTROL:
3498 env->msr_hv_synic_control = msrs[i].data;
3499 break;
866eea9a
AS
3500 case HV_X64_MSR_SIEFP:
3501 env->msr_hv_synic_evt_page = msrs[i].data;
3502 break;
3503 case HV_X64_MSR_SIMP:
3504 env->msr_hv_synic_msg_page = msrs[i].data;
3505 break;
3506 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3507 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3508 break;
3509 case HV_X64_MSR_STIMER0_CONFIG:
3510 case HV_X64_MSR_STIMER1_CONFIG:
3511 case HV_X64_MSR_STIMER2_CONFIG:
3512 case HV_X64_MSR_STIMER3_CONFIG:
3513 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3514 msrs[i].data;
3515 break;
3516 case HV_X64_MSR_STIMER0_COUNT:
3517 case HV_X64_MSR_STIMER1_COUNT:
3518 case HV_X64_MSR_STIMER2_COUNT:
3519 case HV_X64_MSR_STIMER3_COUNT:
3520 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3521 msrs[i].data;
866eea9a 3522 break;
ba6a4fd9
VK
3523 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3524 env->msr_hv_reenlightenment_control = msrs[i].data;
3525 break;
3526 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3527 env->msr_hv_tsc_emulation_control = msrs[i].data;
3528 break;
3529 case HV_X64_MSR_TSC_EMULATION_STATUS:
3530 env->msr_hv_tsc_emulation_status = msrs[i].data;
3531 break;
d1ae67f6
AW
3532 case MSR_MTRRdefType:
3533 env->mtrr_deftype = msrs[i].data;
3534 break;
3535 case MSR_MTRRfix64K_00000:
3536 env->mtrr_fixed[0] = msrs[i].data;
3537 break;
3538 case MSR_MTRRfix16K_80000:
3539 env->mtrr_fixed[1] = msrs[i].data;
3540 break;
3541 case MSR_MTRRfix16K_A0000:
3542 env->mtrr_fixed[2] = msrs[i].data;
3543 break;
3544 case MSR_MTRRfix4K_C0000:
3545 env->mtrr_fixed[3] = msrs[i].data;
3546 break;
3547 case MSR_MTRRfix4K_C8000:
3548 env->mtrr_fixed[4] = msrs[i].data;
3549 break;
3550 case MSR_MTRRfix4K_D0000:
3551 env->mtrr_fixed[5] = msrs[i].data;
3552 break;
3553 case MSR_MTRRfix4K_D8000:
3554 env->mtrr_fixed[6] = msrs[i].data;
3555 break;
3556 case MSR_MTRRfix4K_E0000:
3557 env->mtrr_fixed[7] = msrs[i].data;
3558 break;
3559 case MSR_MTRRfix4K_E8000:
3560 env->mtrr_fixed[8] = msrs[i].data;
3561 break;
3562 case MSR_MTRRfix4K_F0000:
3563 env->mtrr_fixed[9] = msrs[i].data;
3564 break;
3565 case MSR_MTRRfix4K_F8000:
3566 env->mtrr_fixed[10] = msrs[i].data;
3567 break;
3568 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3569 if (index & 1) {
fcc35e7c
DDAG
3570 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3571 mtrr_top_bits;
d1ae67f6
AW
3572 } else {
3573 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3574 }
3575 break;
a33a2cfe
PB
3576 case MSR_IA32_SPEC_CTRL:
3577 env->spec_ctrl = msrs[i].data;
3578 break;
2a9758c5
PB
3579 case MSR_IA32_TSX_CTRL:
3580 env->tsx_ctrl = msrs[i].data;
3581 break;
cfeea0c0
KRW
3582 case MSR_VIRT_SSBD:
3583 env->virt_ssbd = msrs[i].data;
3584 break;
b77146e9
CP
3585 case MSR_IA32_RTIT_CTL:
3586 env->msr_rtit_ctrl = msrs[i].data;
3587 break;
3588 case MSR_IA32_RTIT_STATUS:
3589 env->msr_rtit_status = msrs[i].data;
3590 break;
3591 case MSR_IA32_RTIT_OUTPUT_BASE:
3592 env->msr_rtit_output_base = msrs[i].data;
3593 break;
3594 case MSR_IA32_RTIT_OUTPUT_MASK:
3595 env->msr_rtit_output_mask = msrs[i].data;
3596 break;
3597 case MSR_IA32_RTIT_CR3_MATCH:
3598 env->msr_rtit_cr3_match = msrs[i].data;
3599 break;
3600 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3601 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3602 break;
05330448
AL
3603 }
3604 }
3605
3606 return 0;
3607}
3608
1bc22652 3609static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3610{
1bc22652 3611 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3612
1bc22652 3613 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3614}
3615
23d02d9b 3616static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3617{
259186a7 3618 CPUState *cs = CPU(cpu);
23d02d9b 3619 CPUX86State *env = &cpu->env;
9bdbe550
HB
3620 struct kvm_mp_state mp_state;
3621 int ret;
3622
259186a7 3623 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3624 if (ret < 0) {
3625 return ret;
3626 }
3627 env->mp_state = mp_state.mp_state;
c14750e8 3628 if (kvm_irqchip_in_kernel()) {
259186a7 3629 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3630 }
9bdbe550
HB
3631 return 0;
3632}
3633
1bc22652 3634static int kvm_get_apic(X86CPU *cpu)
680c1c6f 3635{
02e51483 3636 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
3637 struct kvm_lapic_state kapic;
3638 int ret;
3639
3d4b2649 3640 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 3641 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
3642 if (ret < 0) {
3643 return ret;
3644 }
3645
3646 kvm_get_apic_state(apic, &kapic);
3647 }
3648 return 0;
3649}
3650
1bc22652 3651static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 3652{
fc12d72e 3653 CPUState *cs = CPU(cpu);
1bc22652 3654 CPUX86State *env = &cpu->env;
076796f8 3655 struct kvm_vcpu_events events = {};
a0fb002c
JK
3656
3657 if (!kvm_has_vcpu_events()) {
3658 return 0;
3659 }
3660
fd13f23b
LA
3661 events.flags = 0;
3662
3663 if (has_exception_payload) {
3664 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3665 events.exception.pending = env->exception_pending;
3666 events.exception_has_payload = env->exception_has_payload;
3667 events.exception_payload = env->exception_payload;
3668 }
3669 events.exception.nr = env->exception_nr;
3670 events.exception.injected = env->exception_injected;
a0fb002c
JK
3671 events.exception.has_error_code = env->has_error_code;
3672 events.exception.error_code = env->error_code;
3673
3674 events.interrupt.injected = (env->interrupt_injected >= 0);
3675 events.interrupt.nr = env->interrupt_injected;
3676 events.interrupt.soft = env->soft_interrupt;
3677
3678 events.nmi.injected = env->nmi_injected;
3679 events.nmi.pending = env->nmi_pending;
3680 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3681
3682 events.sipi_vector = env->sipi_vector;
3683
fc12d72e
PB
3684 if (has_msr_smbase) {
3685 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3686 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3687 if (kvm_irqchip_in_kernel()) {
3688 /* As soon as these are moved to the kernel, remove them
3689 * from cs->interrupt_request.
3690 */
3691 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3692 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3693 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3694 } else {
3695 /* Keep these in cs->interrupt_request. */
3696 events.smi.pending = 0;
3697 events.smi.latched_init = 0;
3698 }
fc3a1fd7
DDAG
3699 /* Stop SMI delivery on old machine types to avoid a reboot
3700 * on an inward migration of an old VM.
3701 */
3702 if (!cpu->kvm_no_smi_migration) {
3703 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3704 }
fc12d72e
PB
3705 }
3706
ea643051 3707 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
3708 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3709 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3710 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3711 }
ea643051 3712 }
aee028b9 3713
1bc22652 3714 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
3715}
3716
1bc22652 3717static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 3718{
1bc22652 3719 CPUX86State *env = &cpu->env;
a0fb002c
JK
3720 struct kvm_vcpu_events events;
3721 int ret;
3722
3723 if (!kvm_has_vcpu_events()) {
3724 return 0;
3725 }
3726
fc12d72e 3727 memset(&events, 0, sizeof(events));
1bc22652 3728 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
3729 if (ret < 0) {
3730 return ret;
3731 }
fd13f23b
LA
3732
3733 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3734 env->exception_pending = events.exception.pending;
3735 env->exception_has_payload = events.exception_has_payload;
3736 env->exception_payload = events.exception_payload;
3737 } else {
3738 env->exception_pending = 0;
3739 env->exception_has_payload = false;
3740 }
3741 env->exception_injected = events.exception.injected;
3742 env->exception_nr =
3743 (env->exception_pending || env->exception_injected) ?
3744 events.exception.nr : -1;
a0fb002c
JK
3745 env->has_error_code = events.exception.has_error_code;
3746 env->error_code = events.exception.error_code;
3747
3748 env->interrupt_injected =
3749 events.interrupt.injected ? events.interrupt.nr : -1;
3750 env->soft_interrupt = events.interrupt.soft;
3751
3752 env->nmi_injected = events.nmi.injected;
3753 env->nmi_pending = events.nmi.pending;
3754 if (events.nmi.masked) {
3755 env->hflags2 |= HF2_NMI_MASK;
3756 } else {
3757 env->hflags2 &= ~HF2_NMI_MASK;
3758 }
3759
fc12d72e
PB
3760 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3761 if (events.smi.smm) {
3762 env->hflags |= HF_SMM_MASK;
3763 } else {
3764 env->hflags &= ~HF_SMM_MASK;
3765 }
3766 if (events.smi.pending) {
3767 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3768 } else {
3769 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3770 }
3771 if (events.smi.smm_inside_nmi) {
3772 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3773 } else {
3774 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3775 }
3776 if (events.smi.latched_init) {
3777 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3778 } else {
3779 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3780 }
3781 }
3782
a0fb002c 3783 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
3784
3785 return 0;
3786}
3787
1bc22652 3788static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 3789{
ed2803da 3790 CPUState *cs = CPU(cpu);
1bc22652 3791 CPUX86State *env = &cpu->env;
b0b1d690 3792 int ret = 0;
b0b1d690
JK
3793 unsigned long reinject_trap = 0;
3794
3795 if (!kvm_has_vcpu_events()) {
fd13f23b 3796 if (env->exception_nr == EXCP01_DB) {
b0b1d690 3797 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 3798 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
3799 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3800 }
fd13f23b 3801 kvm_reset_exception(env);
b0b1d690
JK
3802 }
3803
3804 /*
3805 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3806 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3807 * by updating the debug state once again if single-stepping is on.
3808 * Another reason to call kvm_update_guest_debug here is a pending debug
3809 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3810 * reinject them via SET_GUEST_DEBUG.
3811 */
3812 if (reinject_trap ||
ed2803da 3813 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 3814 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 3815 }
b0b1d690
JK
3816 return ret;
3817}
3818
1bc22652 3819static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 3820{
1bc22652 3821 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3822 struct kvm_debugregs dbgregs;
3823 int i;
3824
3825 if (!kvm_has_debugregs()) {
3826 return 0;
3827 }
3828
1f670a95 3829 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
3830 for (i = 0; i < 4; i++) {
3831 dbgregs.db[i] = env->dr[i];
3832 }
3833 dbgregs.dr6 = env->dr[6];
3834 dbgregs.dr7 = env->dr[7];
3835 dbgregs.flags = 0;
3836
1bc22652 3837 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
3838}
3839
1bc22652 3840static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 3841{
1bc22652 3842 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3843 struct kvm_debugregs dbgregs;
3844 int i, ret;
3845
3846 if (!kvm_has_debugregs()) {
3847 return 0;
3848 }
3849
1bc22652 3850 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 3851 if (ret < 0) {
b9bec74b 3852 return ret;
ff44f1a3
JK
3853 }
3854 for (i = 0; i < 4; i++) {
3855 env->dr[i] = dbgregs.db[i];
3856 }
3857 env->dr[4] = env->dr[6] = dbgregs.dr6;
3858 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
3859
3860 return 0;
3861}
3862
ebbfef2f
LA
3863static int kvm_put_nested_state(X86CPU *cpu)
3864{
3865 CPUX86State *env = &cpu->env;
3866 int max_nested_state_len = kvm_max_nested_state_length();
3867
1e44f3ab 3868 if (!env->nested_state) {
ebbfef2f
LA
3869 return 0;
3870 }
3871
b16c0e20
PB
3872 /*
3873 * Copy flags that are affected by reset from env->hflags and env->hflags2.
3874 */
3875 if (env->hflags & HF_GUEST_MASK) {
3876 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
3877 } else {
3878 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
3879 }
0baa4b44
VK
3880
3881 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
3882 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
b16c0e20
PB
3883 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
3884 } else {
3885 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
3886 }
3887
ebbfef2f
LA
3888 assert(env->nested_state->size <= max_nested_state_len);
3889 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3890}
3891
3892static int kvm_get_nested_state(X86CPU *cpu)
3893{
3894 CPUX86State *env = &cpu->env;
3895 int max_nested_state_len = kvm_max_nested_state_length();
3896 int ret;
3897
1e44f3ab 3898 if (!env->nested_state) {
ebbfef2f
LA
3899 return 0;
3900 }
3901
3902 /*
3903 * It is possible that migration restored a smaller size into
3904 * nested_state->hdr.size than what our kernel support.
3905 * We preserve migration origin nested_state->hdr.size for
3906 * call to KVM_SET_NESTED_STATE but wish that our next call
3907 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3908 */
3909 env->nested_state->size = max_nested_state_len;
3910
3911 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3912 if (ret < 0) {
3913 return ret;
3914 }
3915
b16c0e20
PB
3916 /*
3917 * Copy flags that are affected by reset to env->hflags and env->hflags2.
3918 */
ebbfef2f
LA
3919 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3920 env->hflags |= HF_GUEST_MASK;
3921 } else {
3922 env->hflags &= ~HF_GUEST_MASK;
3923 }
0baa4b44
VK
3924
3925 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
3926 if (cpu_has_svm(env)) {
3927 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
3928 env->hflags2 |= HF2_GIF_MASK;
3929 } else {
3930 env->hflags2 &= ~HF2_GIF_MASK;
3931 }
b16c0e20 3932 }
ebbfef2f
LA
3933
3934 return ret;
3935}
3936
20d695a9 3937int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 3938{
20d695a9 3939 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
3940 int ret;
3941
2fa45344 3942 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 3943
b16c0e20
PB
3944 /* must be before kvm_put_nested_state so that EFER.SVME is set */
3945 ret = kvm_put_sregs(x86_cpu);
3946 if (ret < 0) {
3947 return ret;
3948 }
3949
48e1a45c 3950 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
3951 ret = kvm_put_nested_state(x86_cpu);
3952 if (ret < 0) {
3953 return ret;
3954 }
3955
6bdf863d
JK
3956 ret = kvm_put_msr_feature_control(x86_cpu);
3957 if (ret < 0) {
3958 return ret;
3959 }
3960 }
3961
36f96c4b
HZ
3962 if (level == KVM_PUT_FULL_STATE) {
3963 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3964 * because TSC frequency mismatch shouldn't abort migration,
3965 * unless the user explicitly asked for a more strict TSC
3966 * setting (e.g. using an explicit "tsc-freq" option).
3967 */
3968 kvm_arch_set_tsc_khz(cpu);
3969 }
3970
1bc22652 3971 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 3972 if (ret < 0) {
05330448 3973 return ret;
b9bec74b 3974 }
1bc22652 3975 ret = kvm_put_xsave(x86_cpu);
b9bec74b 3976 if (ret < 0) {
f1665b21 3977 return ret;
b9bec74b 3978 }
1bc22652 3979 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 3980 if (ret < 0) {
05330448 3981 return ret;
b9bec74b 3982 }
ab443475 3983 /* must be before kvm_put_msrs */
1bc22652 3984 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
3985 if (ret < 0) {
3986 return ret;
3987 }
1bc22652 3988 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 3989 if (ret < 0) {
05330448 3990 return ret;
b9bec74b 3991 }
4fadfa00
PH
3992 ret = kvm_put_vcpu_events(x86_cpu, level);
3993 if (ret < 0) {
3994 return ret;
3995 }
ea643051 3996 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 3997 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 3998 if (ret < 0) {
680c1c6f
JK
3999 return ret;
4000 }
ea643051 4001 }
7477cd38
MT
4002
4003 ret = kvm_put_tscdeadline_msr(x86_cpu);
4004 if (ret < 0) {
4005 return ret;
4006 }
1bc22652 4007 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 4008 if (ret < 0) {
b0b1d690 4009 return ret;
b9bec74b 4010 }
b0b1d690 4011 /* must be last */
1bc22652 4012 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 4013 if (ret < 0) {
ff44f1a3 4014 return ret;
b9bec74b 4015 }
05330448
AL
4016 return 0;
4017}
4018
20d695a9 4019int kvm_arch_get_registers(CPUState *cs)
05330448 4020{
20d695a9 4021 X86CPU *cpu = X86_CPU(cs);
05330448
AL
4022 int ret;
4023
20d695a9 4024 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 4025
4fadfa00 4026 ret = kvm_get_vcpu_events(cpu);
b9bec74b 4027 if (ret < 0) {
f4f1110e 4028 goto out;
b9bec74b 4029 }
4fadfa00
PH
4030 /*
4031 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4032 * KVM_GET_REGS and KVM_GET_SREGS.
4033 */
4034 ret = kvm_get_mp_state(cpu);
b9bec74b 4035 if (ret < 0) {
f4f1110e 4036 goto out;
b9bec74b 4037 }
4fadfa00 4038 ret = kvm_getput_regs(cpu, 0);
b9bec74b 4039 if (ret < 0) {
f4f1110e 4040 goto out;
b9bec74b 4041 }
4fadfa00 4042 ret = kvm_get_xsave(cpu);
b9bec74b 4043 if (ret < 0) {
f4f1110e 4044 goto out;
b9bec74b 4045 }
4fadfa00 4046 ret = kvm_get_xcrs(cpu);
b9bec74b 4047 if (ret < 0) {
f4f1110e 4048 goto out;
b9bec74b 4049 }
4fadfa00 4050 ret = kvm_get_sregs(cpu);
b9bec74b 4051 if (ret < 0) {
f4f1110e 4052 goto out;
b9bec74b 4053 }
4fadfa00 4054 ret = kvm_get_msrs(cpu);
680c1c6f 4055 if (ret < 0) {
f4f1110e 4056 goto out;
680c1c6f 4057 }
4fadfa00 4058 ret = kvm_get_apic(cpu);
b9bec74b 4059 if (ret < 0) {
f4f1110e 4060 goto out;
b9bec74b 4061 }
1bc22652 4062 ret = kvm_get_debugregs(cpu);
b9bec74b 4063 if (ret < 0) {
f4f1110e 4064 goto out;
b9bec74b 4065 }
ebbfef2f
LA
4066 ret = kvm_get_nested_state(cpu);
4067 if (ret < 0) {
4068 goto out;
4069 }
f4f1110e
RH
4070 ret = 0;
4071 out:
4072 cpu_sync_bndcs_hflags(&cpu->env);
4073 return ret;
05330448
AL
4074}
4075
20d695a9 4076void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 4077{
20d695a9
AF
4078 X86CPU *x86_cpu = X86_CPU(cpu);
4079 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
4080 int ret;
4081
276ce815 4082 /* Inject NMI */
fc12d72e
PB
4083 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4084 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4085 qemu_mutex_lock_iothread();
4086 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4087 qemu_mutex_unlock_iothread();
4088 DPRINTF("injected NMI\n");
4089 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4090 if (ret < 0) {
4091 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4092 strerror(-ret));
4093 }
4094 }
4095 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4096 qemu_mutex_lock_iothread();
4097 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4098 qemu_mutex_unlock_iothread();
4099 DPRINTF("injected SMI\n");
4100 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4101 if (ret < 0) {
4102 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4103 strerror(-ret));
4104 }
ce377af3 4105 }
276ce815
LJ
4106 }
4107
15eafc2e 4108 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
4109 qemu_mutex_lock_iothread();
4110 }
4111
e0723c45
PB
4112 /* Force the VCPU out of its inner loop to process any INIT requests
4113 * or (for userspace APIC, but it is cheap to combine the checks here)
4114 * pending TPR access reports.
4115 */
4116 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
4117 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4118 !(env->hflags & HF_SMM_MASK)) {
4119 cpu->exit_request = 1;
4120 }
4121 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4122 cpu->exit_request = 1;
4123 }
e0723c45 4124 }
05330448 4125
15eafc2e 4126 if (!kvm_pic_in_kernel()) {
db1669bc
JK
4127 /* Try to inject an interrupt if the guest can accept it */
4128 if (run->ready_for_interrupt_injection &&
259186a7 4129 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
4130 (env->eflags & IF_MASK)) {
4131 int irq;
4132
259186a7 4133 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
4134 irq = cpu_get_pic_interrupt(env);
4135 if (irq >= 0) {
4136 struct kvm_interrupt intr;
4137
4138 intr.irq = irq;
db1669bc 4139 DPRINTF("injected interrupt %d\n", irq);
1bc22652 4140 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
4141 if (ret < 0) {
4142 fprintf(stderr,
4143 "KVM: injection failed, interrupt lost (%s)\n",
4144 strerror(-ret));
4145 }
db1669bc
JK
4146 }
4147 }
05330448 4148
db1669bc
JK
4149 /* If we have an interrupt but the guest is not ready to receive an
4150 * interrupt, request an interrupt window exit. This will
4151 * cause a return to userspace as soon as the guest is ready to
4152 * receive interrupts. */
259186a7 4153 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4154 run->request_interrupt_window = 1;
4155 } else {
4156 run->request_interrupt_window = 0;
4157 }
4158
4159 DPRINTF("setting tpr\n");
02e51483 4160 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4161
4162 qemu_mutex_unlock_iothread();
db1669bc 4163 }
05330448
AL
4164}
4165
4c663752 4166MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4167{
20d695a9
AF
4168 X86CPU *x86_cpu = X86_CPU(cpu);
4169 CPUX86State *env = &x86_cpu->env;
4170
fc12d72e
PB
4171 if (run->flags & KVM_RUN_X86_SMM) {
4172 env->hflags |= HF_SMM_MASK;
4173 } else {
f5c052b9 4174 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4175 }
b9bec74b 4176 if (run->if_flag) {
05330448 4177 env->eflags |= IF_MASK;
b9bec74b 4178 } else {
05330448 4179 env->eflags &= ~IF_MASK;
b9bec74b 4180 }
4b8523ee
JK
4181
4182 /* We need to protect the apic state against concurrent accesses from
4183 * different threads in case the userspace irqchip is used. */
4184 if (!kvm_irqchip_in_kernel()) {
4185 qemu_mutex_lock_iothread();
4186 }
02e51483
CF
4187 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4188 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4189 if (!kvm_irqchip_in_kernel()) {
4190 qemu_mutex_unlock_iothread();
4191 }
f794aa4a 4192 return cpu_get_mem_attrs(env);
05330448
AL
4193}
4194
20d695a9 4195int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4196{
20d695a9
AF
4197 X86CPU *cpu = X86_CPU(cs);
4198 CPUX86State *env = &cpu->env;
232fc23b 4199
259186a7 4200 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4201 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4202 assert(env->mcg_cap);
4203
259186a7 4204 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4205
dd1750d7 4206 kvm_cpu_synchronize_state(cs);
ab443475 4207
fd13f23b 4208 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4209 /* this means triple fault */
cf83f140 4210 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4211 cs->exit_request = 1;
ab443475
JK
4212 return 0;
4213 }
fd13f23b 4214 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4215 env->has_error_code = 0;
4216
259186a7 4217 cs->halted = 0;
ab443475
JK
4218 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4219 env->mp_state = KVM_MP_STATE_RUNNABLE;
4220 }
4221 }
4222
fc12d72e
PB
4223 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4224 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4225 kvm_cpu_synchronize_state(cs);
4226 do_cpu_init(cpu);
4227 }
4228
db1669bc
JK
4229 if (kvm_irqchip_in_kernel()) {
4230 return 0;
4231 }
4232
259186a7
AF
4233 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4234 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4235 apic_poll_irq(cpu->apic_state);
5d62c43a 4236 }
259186a7 4237 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4238 (env->eflags & IF_MASK)) ||
259186a7
AF
4239 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4240 cs->halted = 0;
6792a57b 4241 }
259186a7 4242 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4243 kvm_cpu_synchronize_state(cs);
232fc23b 4244 do_cpu_sipi(cpu);
0af691d7 4245 }
259186a7
AF
4246 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4247 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4248 kvm_cpu_synchronize_state(cs);
02e51483 4249 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4250 env->tpr_access_type);
4251 }
0af691d7 4252
259186a7 4253 return cs->halted;
0af691d7
MT
4254}
4255
839b5630 4256static int kvm_handle_halt(X86CPU *cpu)
05330448 4257{
259186a7 4258 CPUState *cs = CPU(cpu);
839b5630
AF
4259 CPUX86State *env = &cpu->env;
4260
259186a7 4261 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4262 (env->eflags & IF_MASK)) &&
259186a7
AF
4263 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4264 cs->halted = 1;
bb4ea393 4265 return EXCP_HLT;
05330448
AL
4266 }
4267
bb4ea393 4268 return 0;
05330448
AL
4269}
4270
f7575c96 4271static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4272{
f7575c96
AF
4273 CPUState *cs = CPU(cpu);
4274 struct kvm_run *run = cs->kvm_run;
d362e757 4275
02e51483 4276 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4277 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4278 : TPR_ACCESS_READ);
4279 return 1;
4280}
4281
f17ec444 4282int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4283{
38972938 4284 static const uint8_t int3 = 0xcc;
64bf3f4e 4285
f17ec444
AF
4286 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4287 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4288 return -EINVAL;
b9bec74b 4289 }
e22a25c9
AL
4290 return 0;
4291}
4292
f17ec444 4293int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4294{
4295 uint8_t int3;
4296
f17ec444
AF
4297 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4298 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4299 return -EINVAL;
b9bec74b 4300 }
e22a25c9
AL
4301 return 0;
4302}
4303
4304static struct {
4305 target_ulong addr;
4306 int len;
4307 int type;
4308} hw_breakpoint[4];
4309
4310static int nb_hw_breakpoint;
4311
4312static int find_hw_breakpoint(target_ulong addr, int len, int type)
4313{
4314 int n;
4315
b9bec74b 4316 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4317 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4318 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4319 return n;
b9bec74b
JK
4320 }
4321 }
e22a25c9
AL
4322 return -1;
4323}
4324
4325int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4326 target_ulong len, int type)
4327{
4328 switch (type) {
4329 case GDB_BREAKPOINT_HW:
4330 len = 1;
4331 break;
4332 case GDB_WATCHPOINT_WRITE:
4333 case GDB_WATCHPOINT_ACCESS:
4334 switch (len) {
4335 case 1:
4336 break;
4337 case 2:
4338 case 4:
4339 case 8:
b9bec74b 4340 if (addr & (len - 1)) {
e22a25c9 4341 return -EINVAL;
b9bec74b 4342 }
e22a25c9
AL
4343 break;
4344 default:
4345 return -EINVAL;
4346 }
4347 break;
4348 default:
4349 return -ENOSYS;
4350 }
4351
b9bec74b 4352 if (nb_hw_breakpoint == 4) {
e22a25c9 4353 return -ENOBUFS;
b9bec74b
JK
4354 }
4355 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4356 return -EEXIST;
b9bec74b 4357 }
e22a25c9
AL
4358 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4359 hw_breakpoint[nb_hw_breakpoint].len = len;
4360 hw_breakpoint[nb_hw_breakpoint].type = type;
4361 nb_hw_breakpoint++;
4362
4363 return 0;
4364}
4365
4366int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4367 target_ulong len, int type)
4368{
4369 int n;
4370
4371 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4372 if (n < 0) {
e22a25c9 4373 return -ENOENT;
b9bec74b 4374 }
e22a25c9
AL
4375 nb_hw_breakpoint--;
4376 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4377
4378 return 0;
4379}
4380
4381void kvm_arch_remove_all_hw_breakpoints(void)
4382{
4383 nb_hw_breakpoint = 0;
4384}
4385
4386static CPUWatchpoint hw_watchpoint;
4387
a60f24b5 4388static int kvm_handle_debug(X86CPU *cpu,
48405526 4389 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4390{
ed2803da 4391 CPUState *cs = CPU(cpu);
a60f24b5 4392 CPUX86State *env = &cpu->env;
f2574737 4393 int ret = 0;
e22a25c9
AL
4394 int n;
4395
37936ac7
LA
4396 if (arch_info->exception == EXCP01_DB) {
4397 if (arch_info->dr6 & DR6_BS) {
ed2803da 4398 if (cs->singlestep_enabled) {
f2574737 4399 ret = EXCP_DEBUG;
b9bec74b 4400 }
e22a25c9 4401 } else {
b9bec74b
JK
4402 for (n = 0; n < 4; n++) {
4403 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4404 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4405 case 0x0:
f2574737 4406 ret = EXCP_DEBUG;
e22a25c9
AL
4407 break;
4408 case 0x1:
f2574737 4409 ret = EXCP_DEBUG;
ff4700b0 4410 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4411 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4412 hw_watchpoint.flags = BP_MEM_WRITE;
4413 break;
4414 case 0x3:
f2574737 4415 ret = EXCP_DEBUG;
ff4700b0 4416 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4417 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4418 hw_watchpoint.flags = BP_MEM_ACCESS;
4419 break;
4420 }
b9bec74b
JK
4421 }
4422 }
e22a25c9 4423 }
ff4700b0 4424 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4425 ret = EXCP_DEBUG;
b9bec74b 4426 }
f2574737 4427 if (ret == 0) {
ff4700b0 4428 cpu_synchronize_state(cs);
fd13f23b 4429 assert(env->exception_nr == -1);
b0b1d690 4430
f2574737 4431 /* pass to guest */
fd13f23b
LA
4432 kvm_queue_exception(env, arch_info->exception,
4433 arch_info->exception == EXCP01_DB,
4434 arch_info->dr6);
48405526 4435 env->has_error_code = 0;
b0b1d690 4436 }
e22a25c9 4437
f2574737 4438 return ret;
e22a25c9
AL
4439}
4440
20d695a9 4441void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4442{
4443 const uint8_t type_code[] = {
4444 [GDB_BREAKPOINT_HW] = 0x0,
4445 [GDB_WATCHPOINT_WRITE] = 0x1,
4446 [GDB_WATCHPOINT_ACCESS] = 0x3
4447 };
4448 const uint8_t len_code[] = {
4449 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4450 };
4451 int n;
4452
a60f24b5 4453 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4454 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4455 }
e22a25c9
AL
4456 if (nb_hw_breakpoint > 0) {
4457 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4458 dbg->arch.debugreg[7] = 0x0600;
4459 for (n = 0; n < nb_hw_breakpoint; n++) {
4460 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4461 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4462 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4463 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4464 }
4465 }
4466}
4513d923 4467
2a4dac83
JK
4468static bool host_supports_vmx(void)
4469{
4470 uint32_t ecx, unused;
4471
4472 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4473 return ecx & CPUID_EXT_VMX;
4474}
4475
4476#define VMX_INVALID_GUEST_STATE 0x80000021
4477
20d695a9 4478int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4479{
20d695a9 4480 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4481 uint64_t code;
4482 int ret;
4483
4484 switch (run->exit_reason) {
4485 case KVM_EXIT_HLT:
4486 DPRINTF("handle_hlt\n");
4b8523ee 4487 qemu_mutex_lock_iothread();
839b5630 4488 ret = kvm_handle_halt(cpu);
4b8523ee 4489 qemu_mutex_unlock_iothread();
2a4dac83
JK
4490 break;
4491 case KVM_EXIT_SET_TPR:
4492 ret = 0;
4493 break;
d362e757 4494 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4495 qemu_mutex_lock_iothread();
f7575c96 4496 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4497 qemu_mutex_unlock_iothread();
d362e757 4498 break;
2a4dac83
JK
4499 case KVM_EXIT_FAIL_ENTRY:
4500 code = run->fail_entry.hardware_entry_failure_reason;
4501 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4502 code);
4503 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4504 fprintf(stderr,
12619721 4505 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4506 "unrestricted mode\n"
4507 "support, the failure can be most likely due to the guest "
4508 "entering an invalid\n"
4509 "state for Intel VT. For example, the guest maybe running "
4510 "in big real mode\n"
4511 "which is not supported on less recent Intel processors."
4512 "\n\n");
4513 }
4514 ret = -1;
4515 break;
4516 case KVM_EXIT_EXCEPTION:
4517 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4518 run->ex.exception, run->ex.error_code);
4519 ret = -1;
4520 break;
f2574737
JK
4521 case KVM_EXIT_DEBUG:
4522 DPRINTF("kvm_exit_debug\n");
4b8523ee 4523 qemu_mutex_lock_iothread();
a60f24b5 4524 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4525 qemu_mutex_unlock_iothread();
f2574737 4526 break;
50efe82c
AS
4527 case KVM_EXIT_HYPERV:
4528 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4529 break;
15eafc2e
PB
4530 case KVM_EXIT_IOAPIC_EOI:
4531 ioapic_eoi_broadcast(run->eoi.vector);
4532 ret = 0;
4533 break;
2a4dac83
JK
4534 default:
4535 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4536 ret = -1;
4537 break;
4538 }
4539
4540 return ret;
4541}
4542
20d695a9 4543bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4544{
20d695a9
AF
4545 X86CPU *cpu = X86_CPU(cs);
4546 CPUX86State *env = &cpu->env;
4547
dd1750d7 4548 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4549 return !(env->cr[0] & CR0_PE_MASK) ||
4550 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4551}
84b058d7
JK
4552
4553void kvm_arch_init_irq_routing(KVMState *s)
4554{
cc7e0ddf 4555 /* We know at this point that we're using the in-kernel
614e41bc 4556 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4557 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4558 */
614e41bc 4559 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4560 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4561
4562 if (kvm_irqchip_is_split()) {
4563 int i;
4564
4565 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4566 MSI routes for signaling interrupts to the local apics. */
4567 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 4568 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
4569 error_report("Could not enable split IRQ mode.");
4570 exit(1);
4571 }
4572 }
4573 }
4574}
4575
4376c40d 4576int kvm_arch_irqchip_create(KVMState *s)
15eafc2e
PB
4577{
4578 int ret;
4376c40d 4579 if (kvm_kernel_irqchip_split()) {
15eafc2e
PB
4580 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4581 if (ret) {
df3c286c 4582 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
4583 strerror(-ret));
4584 exit(1);
4585 } else {
4586 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4587 kvm_split_irqchip = true;
4588 return 1;
4589 }
4590 } else {
4591 return 0;
4592 }
84b058d7 4593}
b139bd30 4594
c1bb5418
DW
4595uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4596{
4597 CPUX86State *env;
4598 uint64_t ext_id;
4599
4600 if (!first_cpu) {
4601 return address;
4602 }
4603 env = &X86_CPU(first_cpu)->env;
4604 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4605 return address;
4606 }
4607
4608 /*
4609 * If the remappable format bit is set, or the upper bits are
4610 * already set in address_hi, or the low extended bits aren't
4611 * there anyway, do nothing.
4612 */
4613 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4614 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4615 return address;
4616 }
4617
4618 address &= ~ext_id;
4619 address |= ext_id << 35;
4620 return address;
4621}
4622
9e03a040 4623int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 4624 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 4625{
8b5ed7df
PX
4626 X86IOMMUState *iommu = x86_iommu_get_default();
4627
4628 if (iommu) {
30c60f77 4629 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
8b5ed7df 4630
c1bb5418
DW
4631 if (class->int_remap) {
4632 int ret;
4633 MSIMessage src, dst;
0ea1472d 4634
c1bb5418
DW
4635 src.address = route->u.msi.address_hi;
4636 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4637 src.address |= route->u.msi.address_lo;
4638 src.data = route->u.msi.data;
8b5ed7df 4639
c1bb5418
DW
4640 ret = class->int_remap(iommu, &src, &dst, dev ? \
4641 pci_requester_id(dev) : \
4642 X86_IOMMU_SID_INVALID);
4643 if (ret) {
4644 trace_kvm_x86_fixup_msi_error(route->gsi);
4645 return 1;
4646 }
4647
4648 /*
4649 * Handled untranslated compatibilty format interrupt with
4650 * extended destination ID in the low bits 11-5. */
4651 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
8b5ed7df 4652
c1bb5418
DW
4653 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4654 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4655 route->u.msi.data = dst.data;
4656 return 0;
4657 }
8b5ed7df
PX
4658 }
4659
c1bb5418
DW
4660 address = kvm_swizzle_msi_ext_dest_id(address);
4661 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4662 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
9e03a040
FB
4663 return 0;
4664}
1850b6b7 4665
38d87493
PX
4666typedef struct MSIRouteEntry MSIRouteEntry;
4667
4668struct MSIRouteEntry {
4669 PCIDevice *dev; /* Device pointer */
4670 int vector; /* MSI/MSIX vector index */
4671 int virq; /* Virtual IRQ index */
4672 QLIST_ENTRY(MSIRouteEntry) list;
4673};
4674
4675/* List of used GSI routes */
4676static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4677 QLIST_HEAD_INITIALIZER(msi_route_list);
4678
e1d4fb2d
PX
4679static void kvm_update_msi_routes_all(void *private, bool global,
4680 uint32_t index, uint32_t mask)
4681{
a56de056 4682 int cnt = 0, vector;
e1d4fb2d
PX
4683 MSIRouteEntry *entry;
4684 MSIMessage msg;
fd563564
PX
4685 PCIDevice *dev;
4686
e1d4fb2d
PX
4687 /* TODO: explicit route update */
4688 QLIST_FOREACH(entry, &msi_route_list, list) {
4689 cnt++;
a56de056 4690 vector = entry->vector;
fd563564 4691 dev = entry->dev;
a56de056
PX
4692 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4693 msg = msix_get_message(dev, vector);
4694 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4695 msg = msi_get_message(dev, vector);
4696 } else {
4697 /*
4698 * Either MSI/MSIX is disabled for the device, or the
4699 * specific message was masked out. Skip this one.
4700 */
fd563564
PX
4701 continue;
4702 }
fd563564 4703 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 4704 }
3f1fea0f 4705 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
4706 trace_kvm_x86_update_msi_routes(cnt);
4707}
4708
38d87493
PX
4709int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4710 int vector, PCIDevice *dev)
4711{
e1d4fb2d 4712 static bool notify_list_inited = false;
38d87493
PX
4713 MSIRouteEntry *entry;
4714
4715 if (!dev) {
4716 /* These are (possibly) IOAPIC routes only used for split
4717 * kernel irqchip mode, while what we are housekeeping are
4718 * PCI devices only. */
4719 return 0;
4720 }
4721
4722 entry = g_new0(MSIRouteEntry, 1);
4723 entry->dev = dev;
4724 entry->vector = vector;
4725 entry->virq = route->gsi;
4726 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4727
4728 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
4729
4730 if (!notify_list_inited) {
4731 /* For the first time we do add route, add ourselves into
4732 * IOMMU's IEC notify list if needed. */
4733 X86IOMMUState *iommu = x86_iommu_get_default();
4734 if (iommu) {
4735 x86_iommu_iec_register_notifier(iommu,
4736 kvm_update_msi_routes_all,
4737 NULL);
4738 }
4739 notify_list_inited = true;
4740 }
38d87493
PX
4741 return 0;
4742}
4743
4744int kvm_arch_release_virq_post(int virq)
4745{
4746 MSIRouteEntry *entry, *next;
4747 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4748 if (entry->virq == virq) {
4749 trace_kvm_x86_remove_msi_route(virq);
4750 QLIST_REMOVE(entry, list);
01960e6d 4751 g_free(entry);
38d87493
PX
4752 break;
4753 }
4754 }
9e03a040
FB
4755 return 0;
4756}
1850b6b7
EA
4757
4758int kvm_arch_msi_data_to_gsi(uint32_t data)
4759{
4760 abort();
4761}
e1e43813
PB
4762
4763bool kvm_has_waitpkg(void)
4764{
4765 return has_msr_umwait;
4766}