]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm/kvm.c
configure: Symlink binaries using .exe suffix with MinGW
[mirror_qemu.git] / target / i386 / kvm / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
8efc4e51 16#include "qapi/qapi-events-run-state.h"
da34e65c 17#include "qapi/error.h"
05330448 18#include <sys/ioctl.h>
25d2e361 19#include <sys/utsname.h>
05330448
AL
20
21#include <linux/kvm.h>
1814eab6 22#include "standard-headers/asm-x86/kvm_para.h"
05330448 23
33c11879 24#include "cpu.h"
f5cc5a5c 25#include "host-cpu.h"
9c17d615 26#include "sysemu/sysemu.h"
b3946626 27#include "sysemu/hw_accel.h"
6410848b 28#include "sysemu/kvm_int.h"
54d31236 29#include "sysemu/runstate.h"
1d31f66b 30#include "kvm_i386.h"
93777de3 31#include "sev.h"
50efe82c 32#include "hyperv.h"
5e953812 33#include "hyperv-proto.h"
50efe82c 34
022c62cb 35#include "exec/gdbstub.h"
1de7afc9 36#include "qemu/host-utils.h"
db725815 37#include "qemu/main-loop.h"
1de7afc9 38#include "qemu/config-file.h"
1c4a55db 39#include "qemu/error-report.h"
89a289c7 40#include "hw/i386/x86.h"
0d09e41a 41#include "hw/i386/apic.h"
e0723c45
PB
42#include "hw/i386/apic_internal.h"
43#include "hw/i386/apic-msidef.h"
8b5ed7df 44#include "hw/i386/intel_iommu.h"
e1d4fb2d 45#include "hw/i386/x86-iommu.h"
d6d059ca 46#include "hw/i386/e820_memory_layout.h"
50efe82c 47
a2cb15b0 48#include "hw/pci/pci.h"
15eafc2e 49#include "hw/pci/msi.h"
fd563564 50#include "hw/pci/msix.h"
795c40b8 51#include "migration/blocker.h"
4c663752 52#include "exec/memattrs.h"
8b5ed7df 53#include "trace.h"
05330448
AL
54
55//#define DEBUG_KVM
56
57#ifdef DEBUG_KVM
8c0d577e 58#define DPRINTF(fmt, ...) \
05330448
AL
59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
60#else
8c0d577e 61#define DPRINTF(fmt, ...) \
05330448
AL
62 do { } while (0)
63#endif
64
73b994f6
LA
65/* From arch/x86/kvm/lapic.h */
66#define KVM_APIC_BUS_CYCLE_NS 1
67#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
68
1a03675d
GC
69#define MSR_KVM_WALL_CLOCK 0x11
70#define MSR_KVM_SYSTEM_TIME 0x12
71
d1138251
EH
72/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
73 * 255 kvm_msr_entry structs */
74#define MSR_BUF_SIZE 4096
d71b62a1 75
420ae1fc
PB
76static void kvm_init_msrs(X86CPU *cpu);
77
94a8d39a
JK
78const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
79 KVM_CAP_INFO(SET_TSS_ADDR),
80 KVM_CAP_INFO(EXT_CPUID),
81 KVM_CAP_INFO(MP_STATE),
82 KVM_CAP_LAST_INFO
83};
25d2e361 84
c3a3a7d3
JK
85static bool has_msr_star;
86static bool has_msr_hsave_pa;
c9b8f6b6 87static bool has_msr_tsc_aux;
f28558d3 88static bool has_msr_tsc_adjust;
aa82ba54 89static bool has_msr_tsc_deadline;
df67696e 90static bool has_msr_feature_control;
21e87c46 91static bool has_msr_misc_enable;
fc12d72e 92static bool has_msr_smbase;
79e9ebeb 93static bool has_msr_bndcfgs;
25d2e361 94static int lm_capable_kernel;
7bc3d711 95static bool has_msr_hv_hypercall;
f2a53c9e 96static bool has_msr_hv_crash;
744b8a94 97static bool has_msr_hv_reset;
8c145d7c 98static bool has_msr_hv_vpindex;
e9688fab 99static bool hv_vpindex_settable;
46eb8f98 100static bool has_msr_hv_runtime;
866eea9a 101static bool has_msr_hv_synic;
ff99aa64 102static bool has_msr_hv_stimer;
d72bc7f6 103static bool has_msr_hv_frequencies;
ba6a4fd9 104static bool has_msr_hv_reenlightenment;
18cd2c17 105static bool has_msr_xss;
65087997 106static bool has_msr_umwait;
a33a2cfe 107static bool has_msr_spec_ctrl;
cabf9862 108static bool has_tsc_scale_msr;
2a9758c5 109static bool has_msr_tsx_ctrl;
cfeea0c0 110static bool has_msr_virt_ssbd;
e13713db 111static bool has_msr_smi_count;
aec5e9c3 112static bool has_msr_arch_capabs;
597360c0 113static bool has_msr_core_capabs;
20a78b02 114static bool has_msr_vmx_vmfunc;
67025148 115static bool has_msr_ucode_rev;
4a910e1f 116static bool has_msr_vmx_procbased_ctls2;
ea39f9b6 117static bool has_msr_perf_capabs;
6aa4228b 118static bool has_msr_pkrs;
b827df58 119
0b368a10
JD
120static uint32_t has_architectural_pmu_version;
121static uint32_t num_architectural_pmu_gp_counters;
122static uint32_t num_architectural_pmu_fixed_counters;
0d894367 123
28143b40
TH
124static int has_xsave;
125static int has_xcrs;
126static int has_pit_state2;
fd13f23b 127static int has_exception_payload;
28143b40 128
87f8b626
AR
129static bool has_msr_mcg_ext_ctl;
130
494e95e9 131static struct kvm_cpuid2 *cpuid_cache;
a8439be6 132static struct kvm_cpuid2 *hv_cpuid_cache;
f57bceb6 133static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 134
035d1ef2
CQ
135#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
136static RateLimit bus_lock_ratelimit_ctrl;
137
28143b40
TH
138int kvm_has_pit_state2(void)
139{
140 return has_pit_state2;
141}
142
355023f2
PB
143bool kvm_has_smm(void)
144{
23edf8b5 145 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
355023f2
PB
146}
147
6053a86f
MT
148bool kvm_has_adjust_clock_stable(void)
149{
150 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
151
152 return (ret == KVM_CLOCK_TSC_STABLE);
153}
154
8700a984
VK
155bool kvm_has_adjust_clock(void)
156{
157 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
158}
159
79a197ab
LA
160bool kvm_has_exception_payload(void)
161{
162 return has_exception_payload;
163}
164
fb506e70
RK
165static bool kvm_x2apic_api_set_flags(uint64_t flags)
166{
4f7f5893 167 KVMState *s = KVM_STATE(current_accel());
fb506e70
RK
168
169 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
170}
171
e391c009 172#define MEMORIZE(fn, _result) \
2a138ec3 173 ({ \
2a138ec3
RK
174 static bool _memorized; \
175 \
176 if (_memorized) { \
177 return _result; \
178 } \
179 _memorized = true; \
180 _result = fn; \
181 })
182
e391c009
IM
183static bool has_x2apic_api;
184
185bool kvm_has_x2apic_api(void)
186{
187 return has_x2apic_api;
188}
189
fb506e70
RK
190bool kvm_enable_x2apic(void)
191{
2a138ec3
RK
192 return MEMORIZE(
193 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
194 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
195 has_x2apic_api);
fb506e70
RK
196}
197
e9688fab
RK
198bool kvm_hv_vpindex_settable(void)
199{
200 return hv_vpindex_settable;
201}
202
0fd7e098
LL
203static int kvm_get_tsc(CPUState *cs)
204{
205 X86CPU *cpu = X86_CPU(cs);
206 CPUX86State *env = &cpu->env;
207 struct {
208 struct kvm_msrs info;
209 struct kvm_msr_entry entries[1];
a1834d97 210 } msr_data = {};
0fd7e098
LL
211 int ret;
212
213 if (env->tsc_valid) {
214 return 0;
215 }
216
1f670a95 217 memset(&msr_data, 0, sizeof(msr_data));
0fd7e098
LL
218 msr_data.info.nmsrs = 1;
219 msr_data.entries[0].index = MSR_IA32_TSC;
220 env->tsc_valid = !runstate_is_running();
221
222 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
223 if (ret < 0) {
224 return ret;
225 }
226
48e1a45c 227 assert(ret == 1);
0fd7e098
LL
228 env->tsc = msr_data.entries[0].data;
229 return 0;
230}
231
14e6fe12 232static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 233{
0fd7e098
LL
234 kvm_get_tsc(cpu);
235}
236
237void kvm_synchronize_all_tsc(void)
238{
239 CPUState *cpu;
240
241 if (kvm_enabled()) {
242 CPU_FOREACH(cpu) {
14e6fe12 243 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
244 }
245 }
246}
247
b827df58
AK
248static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
249{
250 struct kvm_cpuid2 *cpuid;
251 int r, size;
252
253 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 254 cpuid = g_malloc0(size);
b827df58
AK
255 cpuid->nent = max;
256 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
257 if (r == 0 && cpuid->nent >= max) {
258 r = -E2BIG;
259 }
b827df58
AK
260 if (r < 0) {
261 if (r == -E2BIG) {
7267c094 262 g_free(cpuid);
b827df58
AK
263 return NULL;
264 } else {
265 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
266 strerror(-r));
267 exit(1);
268 }
269 }
270 return cpuid;
271}
272
dd87f8a6
EH
273/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
274 * for all entries.
275 */
276static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
277{
278 struct kvm_cpuid2 *cpuid;
279 int max = 1;
494e95e9
CP
280
281 if (cpuid_cache != NULL) {
282 return cpuid_cache;
283 }
dd87f8a6
EH
284 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
285 max *= 2;
286 }
494e95e9 287 cpuid_cache = cpuid;
dd87f8a6
EH
288 return cpuid;
289}
290
b199c682 291static bool host_tsx_broken(void)
40e80ee4
EH
292{
293 int family, model, stepping;\
294 char vendor[CPUID_VENDOR_SZ + 1];
295
f5cc5a5c 296 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
40e80ee4
EH
297
298 /* Check if we are running on a Haswell host known to have broken TSX */
299 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
300 (family == 6) &&
301 ((model == 63 && stepping < 4) ||
302 model == 60 || model == 69 || model == 70);
303}
0c31b744 304
829ae2f9
EH
305/* Returns the value for a specific register on the cpuid entry
306 */
307static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
308{
309 uint32_t ret = 0;
310 switch (reg) {
311 case R_EAX:
312 ret = entry->eax;
313 break;
314 case R_EBX:
315 ret = entry->ebx;
316 break;
317 case R_ECX:
318 ret = entry->ecx;
319 break;
320 case R_EDX:
321 ret = entry->edx;
322 break;
323 }
324 return ret;
325}
326
4fb73f1d
EH
327/* Find matching entry for function/index on kvm_cpuid2 struct
328 */
329static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
330 uint32_t function,
331 uint32_t index)
332{
333 int i;
334 for (i = 0; i < cpuid->nent; ++i) {
335 if (cpuid->entries[i].function == function &&
336 cpuid->entries[i].index == index) {
337 return &cpuid->entries[i];
338 }
339 }
340 /* not found: */
341 return NULL;
342}
343
ba9bc59e 344uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 345 uint32_t index, int reg)
b827df58
AK
346{
347 struct kvm_cpuid2 *cpuid;
b827df58
AK
348 uint32_t ret = 0;
349 uint32_t cpuid_1_edx;
350
dd87f8a6 351 cpuid = get_supported_cpuid(s);
b827df58 352
4fb73f1d
EH
353 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
354 if (entry) {
4fb73f1d 355 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
356 }
357
7b46e5ce
EH
358 /* Fixups for the data returned by KVM, below */
359
c2acb022
EH
360 if (function == 1 && reg == R_EDX) {
361 /* KVM before 2.6.30 misreports the following features */
362 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
363 } else if (function == 1 && reg == R_ECX) {
364 /* We can set the hypervisor flag, even if KVM does not return it on
365 * GET_SUPPORTED_CPUID
366 */
367 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
368 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
369 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
370 * and the irqchip is in the kernel.
371 */
372 if (kvm_irqchip_in_kernel() &&
373 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
374 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
375 }
41e5e76d
EH
376
377 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
378 * without the in-kernel irqchip
379 */
380 if (!kvm_irqchip_in_kernel()) {
381 ret &= ~CPUID_EXT_X2APIC;
b827df58 382 }
2266d443
MT
383
384 if (enable_cpu_pm) {
385 int disable_exits = kvm_check_extension(s,
386 KVM_CAP_X86_DISABLE_EXITS);
387
388 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
389 ret |= CPUID_EXT_MONITOR;
390 }
391 }
28b8e4d0
JK
392 } else if (function == 6 && reg == R_EAX) {
393 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4 394 } else if (function == 7 && index == 0 && reg == R_EBX) {
b199c682 395 if (host_tsx_broken()) {
40e80ee4
EH
396 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
397 }
485b1d25
EH
398 } else if (function == 7 && index == 0 && reg == R_EDX) {
399 /*
400 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
401 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
402 * returned by KVM_GET_MSR_INDEX_LIST.
403 */
404 if (!has_msr_arch_capabs) {
405 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
406 }
f98bbd83
BM
407 } else if (function == 0x80000001 && reg == R_ECX) {
408 /*
409 * It's safe to enable TOPOEXT even if it's not returned by
410 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
411 * us to keep CPU models including TOPOEXT runnable on older kernels.
412 */
413 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
414 } else if (function == 0x80000001 && reg == R_EDX) {
415 /* On Intel, kvm returns cpuid according to the Intel spec,
416 * so add missing bits according to the AMD spec:
417 */
418 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
419 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
420 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
421 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
422 * be enabled without the in-kernel irqchip
423 */
424 if (!kvm_irqchip_in_kernel()) {
425 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
426 }
c1bb5418
DW
427 if (kvm_irqchip_is_split()) {
428 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
429 }
be777326 430 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 431 ret |= 1U << KVM_HINTS_REALTIME;
b9bec74b 432 }
0c31b744
GC
433
434 return ret;
bb0300dc 435}
bb0300dc 436
ede146c2 437uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
438{
439 struct {
440 struct kvm_msrs info;
441 struct kvm_msr_entry entries[1];
a1834d97 442 } msr_data = {};
20a78b02
PB
443 uint64_t value;
444 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
445
446 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
447 return 0;
448 }
449
450 /* Check if requested MSR is supported feature MSR */
451 int i;
452 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
453 if (kvm_feature_msrs->indices[i] == index) {
454 break;
455 }
456 if (i == kvm_feature_msrs->nmsrs) {
457 return 0; /* if the feature MSR is not supported, simply return 0 */
458 }
459
460 msr_data.info.nmsrs = 1;
461 msr_data.entries[0].index = index;
462
463 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
464 if (ret != 1) {
465 error_report("KVM get MSR (index=0x%x) feature failed, %s",
466 index, strerror(-ret));
467 exit(1);
468 }
469
20a78b02
PB
470 value = msr_data.entries[0].data;
471 switch (index) {
472 case MSR_IA32_VMX_PROCBASED_CTLS2:
4a910e1f
VK
473 if (!has_msr_vmx_procbased_ctls2) {
474 /* KVM forgot to add these bits for some time, do this ourselves. */
475 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
476 CPUID_XSAVE_XSAVES) {
477 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
478 }
479 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
480 CPUID_EXT_RDRAND) {
481 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
482 }
483 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
484 CPUID_7_0_EBX_INVPCID) {
485 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
486 }
487 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
488 CPUID_7_0_EBX_RDSEED) {
489 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
490 }
491 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
492 CPUID_EXT2_RDTSCP) {
493 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
494 }
048c9516
PB
495 }
496 /* fall through */
20a78b02
PB
497 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
498 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
499 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
500 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
501 /*
502 * Return true for bits that can be one, but do not have to be one.
503 * The SDM tells us which bits could have a "must be one" setting,
504 * so we can do the opposite transformation in make_vmx_msr_value.
505 */
506 must_be_one = (uint32_t)value;
507 can_be_one = (uint32_t)(value >> 32);
508 return can_be_one & ~must_be_one;
509
510 default:
511 return value;
512 }
f57bceb6
RH
513}
514
e7701825
MT
515static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
516 int *max_banks)
517{
518 int r;
519
14a09518 520 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
521 if (r > 0) {
522 *max_banks = r;
523 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
524 }
525 return -ENOSYS;
526}
527
bee615d4 528static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 529{
87f8b626 530 CPUState *cs = CPU(cpu);
bee615d4 531 CPUX86State *env = &cpu->env;
c34d440a
JK
532 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
533 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
534 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 535 int flags = 0;
e7701825 536
c34d440a
JK
537 if (code == BUS_MCEERR_AR) {
538 status |= MCI_STATUS_AR | 0x134;
539 mcg_status |= MCG_STATUS_EIPV;
540 } else {
541 status |= 0xc0;
542 mcg_status |= MCG_STATUS_RIPV;
419fb20a 543 }
87f8b626
AR
544
545 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
546 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
547 * guest kernel back into env->mcg_ext_ctl.
548 */
549 cpu_synchronize_state(cs);
550 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
551 mcg_status |= MCG_STATUS_LMCE;
552 flags = 0;
553 }
554
8c5cf3b6 555 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 556 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 557}
419fb20a 558
8efc4e51
ZP
559static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
560{
561 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
562
563 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
564 &mff);
565}
566
73284563 567static void hardware_memory_error(void *host_addr)
419fb20a 568{
8efc4e51 569 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
73284563 570 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
571 exit(1);
572}
573
2ae41db2 574void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 575{
20d695a9
AF
576 X86CPU *cpu = X86_CPU(c);
577 CPUX86State *env = &cpu->env;
419fb20a 578 ram_addr_t ram_addr;
a8170e5e 579 hwaddr paddr;
419fb20a 580
4d39892c
PB
581 /* If we get an action required MCE, it has been injected by KVM
582 * while the VM was running. An action optional MCE instead should
583 * be coming from the main thread, which qemu_init_sigbus identifies
584 * as the "early kill" thread.
585 */
a16fc07e 586 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 587
20e0ff59 588 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 589 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
590 if (ram_addr != RAM_ADDR_INVALID &&
591 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
592 kvm_hwpoison_page_add(ram_addr);
593 kvm_mce_inject(cpu, paddr, code);
73284563
MS
594
595 /*
596 * Use different logging severity based on error type.
597 * If there is additional MCE reporting on the hypervisor, QEMU VA
598 * could be another source to identify the PA and MCE details.
599 */
600 if (code == BUS_MCEERR_AR) {
601 error_report("Guest MCE Memory Error at QEMU addr %p and "
602 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
603 addr, paddr, "BUS_MCEERR_AR");
604 } else {
605 warn_report("Guest MCE Memory Error at QEMU addr %p and "
606 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
607 addr, paddr, "BUS_MCEERR_AO");
608 }
609
2ae41db2 610 return;
419fb20a 611 }
20e0ff59 612
73284563
MS
613 if (code == BUS_MCEERR_AO) {
614 warn_report("Hardware memory error at addr %p of type %s "
615 "for memory used by QEMU itself instead of guest system!",
616 addr, "BUS_MCEERR_AO");
617 }
419fb20a 618 }
20e0ff59
PB
619
620 if (code == BUS_MCEERR_AR) {
73284563 621 hardware_memory_error(addr);
20e0ff59
PB
622 }
623
8efc4e51
ZP
624 /* Hope we are lucky for AO MCE, just notify a event */
625 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
419fb20a
JK
626}
627
fd13f23b
LA
628static void kvm_reset_exception(CPUX86State *env)
629{
630 env->exception_nr = -1;
631 env->exception_pending = 0;
632 env->exception_injected = 0;
633 env->exception_has_payload = false;
634 env->exception_payload = 0;
635}
636
637static void kvm_queue_exception(CPUX86State *env,
638 int32_t exception_nr,
639 uint8_t exception_has_payload,
640 uint64_t exception_payload)
641{
642 assert(env->exception_nr == -1);
643 assert(!env->exception_pending);
644 assert(!env->exception_injected);
645 assert(!env->exception_has_payload);
646
647 env->exception_nr = exception_nr;
648
649 if (has_exception_payload) {
650 env->exception_pending = 1;
651
652 env->exception_has_payload = exception_has_payload;
653 env->exception_payload = exception_payload;
654 } else {
655 env->exception_injected = 1;
656
657 if (exception_nr == EXCP01_DB) {
658 assert(exception_has_payload);
659 env->dr[6] = exception_payload;
660 } else if (exception_nr == EXCP0E_PAGE) {
661 assert(exception_has_payload);
662 env->cr[2] = exception_payload;
663 } else {
664 assert(!exception_has_payload);
665 }
666 }
667}
668
1bc22652 669static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 670{
1bc22652
AF
671 CPUX86State *env = &cpu->env;
672
fd13f23b 673 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
674 unsigned int bank, bank_num = env->mcg_cap & 0xff;
675 struct kvm_x86_mce mce;
676
fd13f23b 677 kvm_reset_exception(env);
ab443475
JK
678
679 /*
680 * There must be at least one bank in use if an MCE is pending.
681 * Find it and use its values for the event injection.
682 */
683 for (bank = 0; bank < bank_num; bank++) {
684 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
685 break;
686 }
687 }
688 assert(bank < bank_num);
689
690 mce.bank = bank;
691 mce.status = env->mce_banks[bank * 4 + 1];
692 mce.mcg_status = env->mcg_status;
693 mce.addr = env->mce_banks[bank * 4 + 2];
694 mce.misc = env->mce_banks[bank * 4 + 3];
695
1bc22652 696 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 697 }
ab443475
JK
698 return 0;
699}
700
538f0497 701static void cpu_update_state(void *opaque, bool running, RunState state)
b8cc45d6 702{
317ac620 703 CPUX86State *env = opaque;
b8cc45d6
GC
704
705 if (running) {
706 env->tsc_valid = false;
707 }
708}
709
83b17af5 710unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 711{
83b17af5 712 X86CPU *cpu = X86_CPU(cs);
7e72a45c 713 return cpu->apic_id;
b164e48e
EH
714}
715
92067bf4
IM
716#ifndef KVM_CPUID_SIGNATURE_NEXT
717#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
718#endif
719
92067bf4
IM
720static bool hyperv_enabled(X86CPU *cpu)
721{
5aa9ef5e 722 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
f701c082 723 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
e48ddcc6 724 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
725}
726
74aaddc6
MT
727/*
728 * Check whether target_freq is within conservative
729 * ntp correctable bounds (250ppm) of freq
730 */
731static inline bool freq_within_bounds(int freq, int target_freq)
732{
733 int max_freq = freq + (freq * 250 / 1000000);
734 int min_freq = freq - (freq * 250 / 1000000);
735
736 if (target_freq >= min_freq && target_freq <= max_freq) {
737 return true;
738 }
739
740 return false;
741}
742
5031283d
HZ
743static int kvm_arch_set_tsc_khz(CPUState *cs)
744{
745 X86CPU *cpu = X86_CPU(cs);
746 CPUX86State *env = &cpu->env;
74aaddc6
MT
747 int r, cur_freq;
748 bool set_ioctl = false;
5031283d
HZ
749
750 if (!env->tsc_khz) {
751 return 0;
752 }
753
74aaddc6
MT
754 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
755 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
756
757 /*
758 * If TSC scaling is supported, attempt to set TSC frequency.
759 */
760 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
761 set_ioctl = true;
762 }
763
764 /*
765 * If desired TSC frequency is within bounds of NTP correction,
766 * attempt to set TSC frequency.
767 */
768 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
769 set_ioctl = true;
770 }
771
772 r = set_ioctl ?
5031283d
HZ
773 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
774 -ENOTSUP;
74aaddc6 775
5031283d
HZ
776 if (r < 0) {
777 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
778 * TSC frequency doesn't match the one we want.
779 */
74aaddc6
MT
780 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
781 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
782 -ENOTSUP;
5031283d 783 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
784 warn_report("TSC frequency mismatch between "
785 "VM (%" PRId64 " kHz) and host (%d kHz), "
786 "and TSC scaling unavailable",
787 env->tsc_khz, cur_freq);
5031283d
HZ
788 return r;
789 }
790 }
791
792 return 0;
793}
794
4bb95b82
LP
795static bool tsc_is_stable_and_known(CPUX86State *env)
796{
797 if (!env->tsc_khz) {
798 return false;
799 }
800 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
801 || env->user_tsc_khz;
802}
803
6760bd20
VK
804static struct {
805 const char *desc;
806 struct {
061817a7
VK
807 uint32_t func;
808 int reg;
6760bd20
VK
809 uint32_t bits;
810 } flags[2];
c6861930 811 uint64_t dependencies;
6760bd20
VK
812} kvm_hyperv_properties[] = {
813 [HYPERV_FEAT_RELAXED] = {
814 .desc = "relaxed timing (hv-relaxed)",
815 .flags = {
061817a7 816 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
817 .bits = HV_RELAXED_TIMING_RECOMMENDED}
818 }
819 },
820 [HYPERV_FEAT_VAPIC] = {
821 .desc = "virtual APIC (hv-vapic)",
822 .flags = {
061817a7 823 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
05071629 824 .bits = HV_APIC_ACCESS_AVAILABLE}
6760bd20
VK
825 }
826 },
827 [HYPERV_FEAT_TIME] = {
828 .desc = "clocksources (hv-time)",
829 .flags = {
061817a7 830 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
b26f68c3 831 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
6760bd20
VK
832 }
833 },
834 [HYPERV_FEAT_CRASH] = {
835 .desc = "crash MSRs (hv-crash)",
836 .flags = {
061817a7 837 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
838 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
839 }
840 },
841 [HYPERV_FEAT_RESET] = {
842 .desc = "reset MSR (hv-reset)",
843 .flags = {
061817a7 844 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
845 .bits = HV_RESET_AVAILABLE}
846 }
847 },
848 [HYPERV_FEAT_VPINDEX] = {
849 .desc = "VP_INDEX MSR (hv-vpindex)",
850 .flags = {
061817a7 851 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
852 .bits = HV_VP_INDEX_AVAILABLE}
853 }
854 },
855 [HYPERV_FEAT_RUNTIME] = {
856 .desc = "VP_RUNTIME MSR (hv-runtime)",
857 .flags = {
061817a7 858 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
859 .bits = HV_VP_RUNTIME_AVAILABLE}
860 }
861 },
862 [HYPERV_FEAT_SYNIC] = {
863 .desc = "synthetic interrupt controller (hv-synic)",
864 .flags = {
061817a7 865 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
866 .bits = HV_SYNIC_AVAILABLE}
867 }
868 },
869 [HYPERV_FEAT_STIMER] = {
870 .desc = "synthetic timers (hv-stimer)",
871 .flags = {
061817a7 872 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 873 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
874 },
875 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
876 },
877 [HYPERV_FEAT_FREQUENCIES] = {
878 .desc = "frequency MSRs (hv-frequencies)",
879 .flags = {
061817a7 880 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 881 .bits = HV_ACCESS_FREQUENCY_MSRS},
061817a7 882 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
883 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
884 }
885 },
886 [HYPERV_FEAT_REENLIGHTENMENT] = {
887 .desc = "reenlightenment MSRs (hv-reenlightenment)",
888 .flags = {
061817a7 889 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
890 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
891 }
892 },
893 [HYPERV_FEAT_TLBFLUSH] = {
894 .desc = "paravirtualized TLB flush (hv-tlbflush)",
895 .flags = {
061817a7 896 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
897 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
898 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
899 },
900 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
901 },
902 [HYPERV_FEAT_EVMCS] = {
903 .desc = "enlightened VMCS (hv-evmcs)",
904 .flags = {
061817a7 905 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20 906 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
907 },
908 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
909 },
910 [HYPERV_FEAT_IPI] = {
911 .desc = "paravirtualized IPI (hv-ipi)",
912 .flags = {
061817a7 913 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
914 .bits = HV_CLUSTER_IPI_RECOMMENDED |
915 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
916 },
917 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 918 },
128531d9
VK
919 [HYPERV_FEAT_STIMER_DIRECT] = {
920 .desc = "direct mode synthetic timers (hv-stimer-direct)",
921 .flags = {
061817a7 922 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
128531d9
VK
923 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
924 },
925 .dependencies = BIT(HYPERV_FEAT_STIMER)
926 },
e1f9a8e8
VK
927 [HYPERV_FEAT_AVIC] = {
928 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
929 .flags = {
930 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
931 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
932 }
933 },
6760bd20
VK
934};
935
2e905438
VK
936static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
937 bool do_sys_ioctl)
6760bd20
VK
938{
939 struct kvm_cpuid2 *cpuid;
940 int r, size;
941
942 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
943 cpuid = g_malloc0(size);
944 cpuid->nent = max;
945
2e905438
VK
946 if (do_sys_ioctl) {
947 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
948 } else {
949 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
950 }
6760bd20
VK
951 if (r == 0 && cpuid->nent >= max) {
952 r = -E2BIG;
953 }
954 if (r < 0) {
955 if (r == -E2BIG) {
956 g_free(cpuid);
957 return NULL;
958 } else {
959 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
960 strerror(-r));
961 exit(1);
962 }
963 }
964 return cpuid;
965}
966
967/*
968 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
969 * for all entries.
970 */
971static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
972{
973 struct kvm_cpuid2 *cpuid;
05c900ce
VK
974 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
975 int max = 10;
decb4f20 976 int i;
2e905438
VK
977 bool do_sys_ioctl;
978
979 do_sys_ioctl =
980 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
6760bd20 981
e4adb09f
VK
982 /*
983 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
984 * unsupported, kvm_hyperv_expand_features() checks for that.
985 */
986 assert(do_sys_ioctl || cs->kvm_state);
987
6760bd20
VK
988 /*
989 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
990 * -E2BIG, however, it doesn't report back the right size. Keep increasing
991 * it and re-trying until we succeed.
992 */
2e905438 993 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
6760bd20
VK
994 max++;
995 }
decb4f20
VK
996
997 /*
998 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
999 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1000 * information early, just check for the capability and set the bit
1001 * manually.
1002 */
2e905438 1003 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
decb4f20
VK
1004 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1005 for (i = 0; i < cpuid->nent; i++) {
1006 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1007 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1008 }
1009 }
1010 }
1011
6760bd20
VK
1012 return cpuid;
1013}
1014
1015/*
1016 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1017 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1018 */
1019static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
1020{
1021 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
1022 struct kvm_cpuid2 *cpuid;
1023 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1024
1025 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1026 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1027 cpuid->nent = 2;
1028
1029 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1030 entry_feat = &cpuid->entries[0];
1031 entry_feat->function = HV_CPUID_FEATURES;
1032
1033 entry_recomm = &cpuid->entries[1];
1034 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1035 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1036
1037 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1038 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1039 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1040 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1041 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1042 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1043 }
c35bd19a 1044
6760bd20
VK
1045 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1046 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1047 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1048 }
6760bd20
VK
1049
1050 if (has_msr_hv_frequencies) {
1051 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1052 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1053 }
6760bd20
VK
1054
1055 if (has_msr_hv_crash) {
1056 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1057 }
6760bd20
VK
1058
1059 if (has_msr_hv_reenlightenment) {
1060 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1061 }
6760bd20
VK
1062
1063 if (has_msr_hv_reset) {
1064 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1065 }
6760bd20
VK
1066
1067 if (has_msr_hv_vpindex) {
1068 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1069 }
6760bd20
VK
1070
1071 if (has_msr_hv_runtime) {
1072 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1073 }
6760bd20
VK
1074
1075 if (has_msr_hv_synic) {
1076 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1077 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1078
1079 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1080 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1081 }
c35bd19a 1082 }
6760bd20
VK
1083
1084 if (has_msr_hv_stimer) {
1085 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1086 }
9b4cf107 1087
6760bd20
VK
1088 if (kvm_check_extension(cs->kvm_state,
1089 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1090 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1091 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1092 }
c35bd19a 1093
6760bd20
VK
1094 if (kvm_check_extension(cs->kvm_state,
1095 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1096 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1097 }
6760bd20
VK
1098
1099 if (kvm_check_extension(cs->kvm_state,
1100 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1101 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1102 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1103 }
6760bd20
VK
1104
1105 return cpuid;
1106}
1107
a8439be6 1108static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
e1a66a1e
VK
1109{
1110 struct kvm_cpuid_entry2 *entry;
a8439be6
VK
1111 struct kvm_cpuid2 *cpuid;
1112
1113 if (hv_cpuid_cache) {
1114 cpuid = hv_cpuid_cache;
1115 } else {
1116 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1117 cpuid = get_supported_hv_cpuid(cs);
1118 } else {
e4adb09f
VK
1119 /*
1120 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1121 * before KVM context is created but this is only done when
1122 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1123 * KVM_CAP_HYPERV_CPUID.
1124 */
1125 assert(cs->kvm_state);
1126
a8439be6
VK
1127 cpuid = get_supported_hv_cpuid_legacy(cs);
1128 }
1129 hv_cpuid_cache = cpuid;
1130 }
1131
1132 if (!cpuid) {
1133 return 0;
1134 }
e1a66a1e
VK
1135
1136 entry = cpuid_find_entry(cpuid, func, 0);
1137 if (!entry) {
1138 return 0;
1139 }
1140
1141 return cpuid_entry_get_reg(entry, reg);
1142}
1143
a8439be6 1144static bool hyperv_feature_supported(CPUState *cs, int feature)
7682f857 1145{
061817a7
VK
1146 uint32_t func, bits;
1147 int i, reg;
7682f857
VK
1148
1149 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
061817a7
VK
1150
1151 func = kvm_hyperv_properties[feature].flags[i].func;
1152 reg = kvm_hyperv_properties[feature].flags[i].reg;
7682f857
VK
1153 bits = kvm_hyperv_properties[feature].flags[i].bits;
1154
061817a7 1155 if (!func) {
7682f857
VK
1156 continue;
1157 }
1158
a8439be6 1159 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
7682f857
VK
1160 return false;
1161 }
1162 }
1163
1164 return true;
1165}
1166
5ce48fa3
VK
1167/* Checks that all feature dependencies are enabled */
1168static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
6760bd20 1169{
c6861930 1170 uint64_t deps;
7682f857 1171 int dep_feat;
6760bd20 1172
c6861930 1173 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1174 while (deps) {
1175 dep_feat = ctz64(deps);
c6861930 1176 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
f4a62495
VK
1177 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1178 kvm_hyperv_properties[feature].desc,
1179 kvm_hyperv_properties[dep_feat].desc);
5ce48fa3 1180 return false;
c6861930 1181 }
9dc83cd9 1182 deps &= ~(1ull << dep_feat);
c6861930
VK
1183 }
1184
5ce48fa3 1185 return true;
6760bd20
VK
1186}
1187
061817a7 1188static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
c830015e
VK
1189{
1190 X86CPU *cpu = X86_CPU(cs);
1191 uint32_t r = 0;
1192 int i, j;
1193
1194 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1195 if (!hyperv_feat_enabled(cpu, i)) {
1196 continue;
1197 }
1198
1199 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
061817a7
VK
1200 if (kvm_hyperv_properties[i].flags[j].func != func) {
1201 continue;
1202 }
1203 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
c830015e
VK
1204 continue;
1205 }
1206
1207 r |= kvm_hyperv_properties[i].flags[j].bits;
1208 }
1209 }
1210
1211 return r;
1212}
1213
2344d22e 1214/*
f6e01ab5
VK
1215 * Expand Hyper-V CPU features. In partucular, check that all the requested
1216 * features are supported by the host and the sanity of the configuration
1217 * (that all the required dependencies are included). Also, this takes care
1218 * of 'hv_passthrough' mode and fills the environment with all supported
1219 * Hyper-V features.
2344d22e 1220 */
071ce4b0 1221bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
6760bd20 1222{
071ce4b0 1223 CPUState *cs = CPU(cpu);
5ce48fa3
VK
1224 Error *local_err = NULL;
1225 int feat;
6760bd20 1226
2344d22e 1227 if (!hyperv_enabled(cpu))
d7652b77 1228 return true;
2344d22e 1229
071ce4b0
VK
1230 /*
1231 * When kvm_hyperv_expand_features is called at CPU feature expansion
1232 * time per-CPU kvm_state is not available yet so we can only proceed
1233 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1234 */
1235 if (!cs->kvm_state &&
1236 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1237 return true;
1238
e48ddcc6 1239 if (cpu->hyperv_passthrough) {
e1a66a1e 1240 cpu->hyperv_vendor_id[0] =
a8439be6 1241 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
e1a66a1e 1242 cpu->hyperv_vendor_id[1] =
a8439be6 1243 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
e1a66a1e 1244 cpu->hyperv_vendor_id[2] =
a8439be6 1245 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
e1a66a1e
VK
1246 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1247 sizeof(cpu->hyperv_vendor_id) + 1);
1248 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1249 sizeof(cpu->hyperv_vendor_id));
1250 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1251
1252 cpu->hyperv_interface_id[0] =
a8439be6 1253 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
e1a66a1e 1254 cpu->hyperv_interface_id[1] =
a8439be6 1255 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
e1a66a1e 1256 cpu->hyperv_interface_id[2] =
a8439be6 1257 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
e1a66a1e 1258 cpu->hyperv_interface_id[3] =
a8439be6 1259 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
e1a66a1e 1260
af7228b8 1261 cpu->hyperv_ver_id_build =
a8439be6 1262 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
af7228b8
VK
1263 cpu->hyperv_ver_id_major =
1264 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1265 cpu->hyperv_ver_id_minor =
1266 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1267 cpu->hyperv_ver_id_sp =
a8439be6 1268 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
af7228b8
VK
1269 cpu->hyperv_ver_id_sb =
1270 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1271 cpu->hyperv_ver_id_sn =
1272 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
e1a66a1e 1273
a8439be6 1274 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
e1a66a1e
VK
1275 R_EAX);
1276 cpu->hyperv_limits[0] =
a8439be6 1277 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
e1a66a1e 1278 cpu->hyperv_limits[1] =
a8439be6 1279 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
e1a66a1e 1280 cpu->hyperv_limits[2] =
a8439be6 1281 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
e1a66a1e
VK
1282
1283 cpu->hyperv_spinlock_attempts =
a8439be6 1284 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
30d6ff66 1285
5ce48fa3
VK
1286 /*
1287 * Mark feature as enabled in 'cpu->hyperv_features' as
1288 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1289 */
1290 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1291 if (hyperv_feature_supported(cs, feat)) {
1292 cpu->hyperv_features |= BIT(feat);
1293 }
1294 }
1295 } else {
1296 /* Check features availability and dependencies */
1297 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1298 /* If the feature was not requested skip it. */
1299 if (!hyperv_feat_enabled(cpu, feat)) {
1300 continue;
1301 }
1302
1303 /* Check if the feature is supported by KVM */
1304 if (!hyperv_feature_supported(cs, feat)) {
1305 error_setg(errp, "Hyper-V %s is not supported by kernel",
1306 kvm_hyperv_properties[feat].desc);
1307 return false;
1308 }
1309
1310 /* Check dependencies */
1311 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1312 error_propagate(errp, local_err);
1313 return false;
1314 }
1315 }
f4a62495 1316 }
6760bd20 1317
c6861930 1318 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1319 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1320 !cpu->hyperv_synic_kvm_only &&
1321 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
f4a62495
VK
1322 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1323 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1324 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
d7652b77 1325 return false;
6760bd20 1326 }
d7652b77
VK
1327
1328 return true;
f6e01ab5
VK
1329}
1330
1331/*
1332 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1333 */
1334static int hyperv_fill_cpuids(CPUState *cs,
1335 struct kvm_cpuid_entry2 *cpuid_ent)
1336{
1337 X86CPU *cpu = X86_CPU(cs);
1338 struct kvm_cpuid_entry2 *c;
1339 uint32_t cpuid_i = 0;
1340
2344d22e
VK
1341 c = &cpuid_ent[cpuid_i++];
1342 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
2344d22e
VK
1343 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1344 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
08856771
VK
1345 c->ebx = cpu->hyperv_vendor_id[0];
1346 c->ecx = cpu->hyperv_vendor_id[1];
1347 c->edx = cpu->hyperv_vendor_id[2];
2344d22e
VK
1348
1349 c = &cpuid_ent[cpuid_i++];
1350 c->function = HV_CPUID_INTERFACE;
735db465
VK
1351 c->eax = cpu->hyperv_interface_id[0];
1352 c->ebx = cpu->hyperv_interface_id[1];
1353 c->ecx = cpu->hyperv_interface_id[2];
1354 c->edx = cpu->hyperv_interface_id[3];
2344d22e
VK
1355
1356 c = &cpuid_ent[cpuid_i++];
1357 c->function = HV_CPUID_VERSION;
af7228b8
VK
1358 c->eax = cpu->hyperv_ver_id_build;
1359 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1360 cpu->hyperv_ver_id_minor;
1361 c->ecx = cpu->hyperv_ver_id_sp;
1362 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1363 (cpu->hyperv_ver_id_sn & 0xffffff);
2344d22e
VK
1364
1365 c = &cpuid_ent[cpuid_i++];
1366 c->function = HV_CPUID_FEATURES;
061817a7
VK
1367 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1368 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1369 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
c830015e 1370
b26f68c3
VK
1371 /* Unconditionally required with any Hyper-V enlightenment */
1372 c->eax |= HV_HYPERCALL_AVAILABLE;
1373
cce087f6
VK
1374 /* SynIC and Vmbus devices require messages/signals hypercalls */
1375 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1376 !cpu->hyperv_synic_kvm_only) {
1377 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1378 }
1379
05071629 1380
c830015e
VK
1381 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1382 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
2344d22e
VK
1383
1384 c = &cpuid_ent[cpuid_i++];
1385 c->function = HV_CPUID_ENLIGHTMENT_INFO;
061817a7 1386 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
2344d22e
VK
1387 c->ebx = cpu->hyperv_spinlock_attempts;
1388
e1f9a8e8
VK
1389 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1390 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
05071629
VK
1391 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1392 }
1393
c830015e
VK
1394 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1395 c->eax |= HV_NO_NONARCH_CORESHARING;
1396 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
a8439be6 1397 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
e1a66a1e 1398 HV_NO_NONARCH_CORESHARING;
c830015e
VK
1399 }
1400
2344d22e
VK
1401 c = &cpuid_ent[cpuid_i++];
1402 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1403 c->eax = cpu->hv_max_vps;
23eb5d03
VK
1404 c->ebx = cpu->hyperv_limits[0];
1405 c->ecx = cpu->hyperv_limits[1];
1406 c->edx = cpu->hyperv_limits[2];
2344d22e
VK
1407
1408 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1409 __u32 function;
1410
1411 /* Create zeroed 0x40000006..0x40000009 leaves */
1412 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1413 function < HV_CPUID_NESTED_FEATURES; function++) {
1414 c = &cpuid_ent[cpuid_i++];
1415 c->function = function;
1416 }
1417
1418 c = &cpuid_ent[cpuid_i++];
1419 c->function = HV_CPUID_NESTED_FEATURES;
c830015e 1420 c->eax = cpu->hyperv_nested[0];
2344d22e 1421 }
6760bd20 1422
a8439be6 1423 return cpuid_i;
c35bd19a
EY
1424}
1425
e48ddcc6 1426static Error *hv_passthrough_mig_blocker;
30d6ff66 1427static Error *hv_no_nonarch_cs_mig_blocker;
e48ddcc6 1428
07454e2e
VK
1429/* Checks that the exposed eVMCS version range is supported by KVM */
1430static bool evmcs_version_supported(uint16_t evmcs_version,
1431 uint16_t supported_evmcs_version)
1432{
1433 uint8_t min_version = evmcs_version & 0xff;
1434 uint8_t max_version = evmcs_version >> 8;
1435 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1436 uint8_t max_supported_version = supported_evmcs_version >> 8;
1437
1438 return (min_version >= min_supported_version) &&
1439 (max_version <= max_supported_version);
1440}
1441
1442#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1443
e9688fab
RK
1444static int hyperv_init_vcpu(X86CPU *cpu)
1445{
729ce7e1 1446 CPUState *cs = CPU(cpu);
e48ddcc6 1447 Error *local_err = NULL;
729ce7e1
RK
1448 int ret;
1449
e48ddcc6
VK
1450 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1451 error_setg(&hv_passthrough_mig_blocker,
1452 "'hv-passthrough' CPU flag prevents migration, use explicit"
1453 " set of hv-* flags instead");
1454 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
436c831a 1455 if (ret < 0) {
e48ddcc6 1456 error_report_err(local_err);
e48ddcc6
VK
1457 return ret;
1458 }
1459 }
1460
30d6ff66
VK
1461 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1462 hv_no_nonarch_cs_mig_blocker == NULL) {
1463 error_setg(&hv_no_nonarch_cs_mig_blocker,
1464 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1465 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1466 " make sure SMT is disabled and/or that vCPUs are properly"
1467 " pinned)");
1468 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
436c831a 1469 if (ret < 0) {
30d6ff66 1470 error_report_err(local_err);
30d6ff66
VK
1471 return ret;
1472 }
1473 }
1474
2d384d7c 1475 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1476 /*
1477 * the kernel doesn't support setting vp_index; assert that its value
1478 * is in sync
1479 */
e9688fab
RK
1480 struct {
1481 struct kvm_msrs info;
1482 struct kvm_msr_entry entries[1];
1483 } msr_data = {
1484 .info.nmsrs = 1,
1485 .entries[0].index = HV_X64_MSR_VP_INDEX,
1486 };
1487
729ce7e1 1488 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1489 if (ret < 0) {
1490 return ret;
1491 }
1492 assert(ret == 1);
1493
701189e3 1494 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1495 error_report("kernel's vp_index != QEMU's vp_index");
1496 return -ENXIO;
1497 }
1498 }
1499
2d384d7c 1500 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1501 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1502 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1503 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1504 if (ret < 0) {
1505 error_report("failed to turn on HyperV SynIC in KVM: %s",
1506 strerror(-ret));
1507 return ret;
1508 }
606c34bf 1509
9b4cf107
RK
1510 if (!cpu->hyperv_synic_kvm_only) {
1511 ret = hyperv_x86_synic_add(cpu);
1512 if (ret < 0) {
1513 error_report("failed to create HyperV SynIC: %s",
1514 strerror(-ret));
1515 return ret;
1516 }
606c34bf 1517 }
729ce7e1
RK
1518 }
1519
decb4f20 1520 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
07454e2e
VK
1521 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1522 uint16_t supported_evmcs_version;
decb4f20
VK
1523
1524 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
07454e2e 1525 (uintptr_t)&supported_evmcs_version);
decb4f20 1526
07454e2e
VK
1527 /*
1528 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1529 * option sets. Note: we hardcode the maximum supported eVMCS version
1530 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1531 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1532 * to be added.
1533 */
decb4f20 1534 if (ret < 0) {
07454e2e
VK
1535 error_report("Hyper-V %s is not supported by kernel",
1536 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
decb4f20
VK
1537 return ret;
1538 }
1539
07454e2e
VK
1540 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1541 error_report("eVMCS version range [%d..%d] is not supported by "
1542 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1543 evmcs_version >> 8, supported_evmcs_version & 0xff,
1544 supported_evmcs_version >> 8);
1545 return -ENOTSUP;
1546 }
1547
decb4f20
VK
1548 cpu->hyperv_nested[0] = evmcs_version;
1549 }
1550
70367f09
VK
1551 if (cpu->hyperv_enforce_cpuid) {
1552 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1553 if (ret < 0) {
1554 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1555 strerror(-ret));
1556 return ret;
1557 }
1558 }
1559
e9688fab
RK
1560 return 0;
1561}
1562
68bfd0ad
MT
1563static Error *invtsc_mig_blocker;
1564
f8bb0565 1565#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1566
20d695a9 1567int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1568{
1569 struct {
486bd5a2 1570 struct kvm_cpuid2 cpuid;
f8bb0565 1571 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1572 } cpuid_data;
1573 /*
1574 * The kernel defines these structs with padding fields so there
1575 * should be no extra padding in our cpuid_data struct.
1576 */
1577 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1578 sizeof(struct kvm_cpuid2) +
1579 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1580
20d695a9
AF
1581 X86CPU *cpu = X86_CPU(cs);
1582 CPUX86State *env = &cpu->env;
486bd5a2 1583 uint32_t limit, i, j, cpuid_i;
a33609ca 1584 uint32_t unused;
bb0300dc 1585 struct kvm_cpuid_entry2 *c;
bb0300dc 1586 uint32_t signature[3];
234cc647 1587 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1588 int max_nested_state_len;
e7429073 1589 int r;
fe44dc91 1590 Error *local_err = NULL;
05330448 1591
ef4cbe14
SW
1592 memset(&cpuid_data, 0, sizeof(cpuid_data));
1593
05330448
AL
1594 cpuid_i = 0;
1595
ddb98b5a
LP
1596 r = kvm_arch_set_tsc_khz(cs);
1597 if (r < 0) {
6b2341ee 1598 return r;
ddb98b5a
LP
1599 }
1600
1601 /* vcpu's TSC frequency is either specified by user, or following
1602 * the value used by KVM if the former is not present. In the
1603 * latter case, we query it from KVM and record in env->tsc_khz,
1604 * so that vcpu's TSC frequency can be migrated later via this field.
1605 */
1606 if (!env->tsc_khz) {
1607 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1608 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1609 -ENOTSUP;
1610 if (r > 0) {
1611 env->tsc_khz = r;
1612 }
1613 }
1614
73b994f6
LA
1615 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1616
071ce4b0
VK
1617 /*
1618 * kvm_hyperv_expand_features() is called here for the second time in case
1619 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1620 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1621 * check which Hyper-V enlightenments are supported and which are not, we
1622 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1623 * behavior is preserved.
1624 */
1625 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
f4a62495
VK
1626 error_report_err(local_err);
1627 return -ENOSYS;
f6e01ab5
VK
1628 }
1629
1630 if (hyperv_enabled(cpu)) {
decb4f20
VK
1631 r = hyperv_init_vcpu(cpu);
1632 if (r) {
1633 return r;
1634 }
1635
f6e01ab5 1636 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
234cc647 1637 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1638 has_msr_hv_hypercall = true;
eab70139
VR
1639 }
1640
f522d2ac
AW
1641 if (cpu->expose_kvm) {
1642 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1643 c = &cpuid_data.entries[cpuid_i++];
1644 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1645 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1646 c->ebx = signature[0];
1647 c->ecx = signature[1];
1648 c->edx = signature[2];
234cc647 1649
f522d2ac
AW
1650 c = &cpuid_data.entries[cpuid_i++];
1651 c->function = KVM_CPUID_FEATURES | kvm_base;
1652 c->eax = env->features[FEAT_KVM];
be777326 1653 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1654 }
917367aa 1655
a33609ca 1656 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448 1657
988f7b8b
VK
1658 if (cpu->kvm_pv_enforce_cpuid) {
1659 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1660 if (r < 0) {
1661 fprintf(stderr,
1662 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1663 strerror(-r));
1664 abort();
1665 }
1666 }
1667
05330448 1668 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1669 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1670 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1671 abort();
1672 }
bb0300dc 1673 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1674
1675 switch (i) {
a36b1029
AL
1676 case 2: {
1677 /* Keep reading function 2 till all the input is received */
1678 int times;
1679
a36b1029 1680 c->function = i;
a33609ca
AL
1681 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1682 KVM_CPUID_FLAG_STATE_READ_NEXT;
1683 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1684 times = c->eax & 0xff;
a36b1029
AL
1685
1686 for (j = 1; j < times; ++j) {
f8bb0565
IM
1687 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1688 fprintf(stderr, "cpuid_data is full, no space for "
1689 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1690 abort();
1691 }
a33609ca 1692 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1693 c->function = i;
a33609ca
AL
1694 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1695 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1696 }
1697 break;
1698 }
a94e1428
LX
1699 case 0x1f:
1700 if (env->nr_dies < 2) {
1701 break;
1702 }
8821e214 1703 /* fallthrough */
486bd5a2
AL
1704 case 4:
1705 case 0xb:
1706 case 0xd:
1707 for (j = 0; ; j++) {
31e8c696
AP
1708 if (i == 0xd && j == 64) {
1709 break;
1710 }
a94e1428
LX
1711
1712 if (i == 0x1f && j == 64) {
1713 break;
1714 }
1715
486bd5a2
AL
1716 c->function = i;
1717 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1718 c->index = j;
a33609ca 1719 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1720
b9bec74b 1721 if (i == 4 && c->eax == 0) {
486bd5a2 1722 break;
b9bec74b
JK
1723 }
1724 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1725 break;
b9bec74b 1726 }
a94e1428
LX
1727 if (i == 0x1f && !(c->ecx & 0xff00)) {
1728 break;
1729 }
b9bec74b 1730 if (i == 0xd && c->eax == 0) {
31e8c696 1731 continue;
b9bec74b 1732 }
f8bb0565
IM
1733 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1734 fprintf(stderr, "cpuid_data is full, no space for "
1735 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1736 abort();
1737 }
a33609ca 1738 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1739 }
1740 break;
80db491d 1741 case 0x7:
b9edbade
SC
1742 case 0x12:
1743 for (j = 0; ; j++) {
1744 c->function = i;
1745 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1746 c->index = j;
1747 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1748
1749 if (j > 1 && (c->eax & 0xf) != 1) {
1750 break;
1751 }
1752
1753 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1754 fprintf(stderr, "cpuid_data is full, no space for "
1755 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1756 abort();
1757 }
1758 c = &cpuid_data.entries[cpuid_i++];
1759 }
1760 break;
e37a5c7f
CP
1761 case 0x14: {
1762 uint32_t times;
1763
1764 c->function = i;
1765 c->index = 0;
1766 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1767 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1768 times = c->eax;
1769
1770 for (j = 1; j <= times; ++j) {
1771 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1772 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1773 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1774 abort();
1775 }
1776 c = &cpuid_data.entries[cpuid_i++];
1777 c->function = i;
1778 c->index = j;
1779 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1780 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1781 }
1782 break;
1783 }
486bd5a2 1784 default:
486bd5a2 1785 c->function = i;
a33609ca
AL
1786 c->flags = 0;
1787 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1788 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1789 /*
1790 * KVM already returns all zeroes if a CPUID entry is missing,
1791 * so we can omit it and avoid hitting KVM's 80-entry limit.
1792 */
1793 cpuid_i--;
1794 }
486bd5a2
AL
1795 break;
1796 }
05330448 1797 }
0d894367
PB
1798
1799 if (limit >= 0x0a) {
0b368a10 1800 uint32_t eax, edx;
0d894367 1801
0b368a10
JD
1802 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1803
1804 has_architectural_pmu_version = eax & 0xff;
1805 if (has_architectural_pmu_version > 0) {
1806 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1807
1808 /* Shouldn't be more than 32, since that's the number of bits
1809 * available in EBX to tell us _which_ counters are available.
1810 * Play it safe.
1811 */
0b368a10
JD
1812 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1813 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1814 }
1815
1816 if (has_architectural_pmu_version > 1) {
1817 num_architectural_pmu_fixed_counters = edx & 0x1f;
1818
1819 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1820 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1821 }
0d894367
PB
1822 }
1823 }
1824 }
1825
a33609ca 1826 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1827
1828 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1829 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1830 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1831 abort();
1832 }
bb0300dc 1833 c = &cpuid_data.entries[cpuid_i++];
05330448 1834
8f4202fb
BM
1835 switch (i) {
1836 case 0x8000001d:
1837 /* Query for all AMD cache information leaves */
1838 for (j = 0; ; j++) {
1839 c->function = i;
1840 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1841 c->index = j;
1842 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1843
1844 if (c->eax == 0) {
1845 break;
1846 }
1847 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1848 fprintf(stderr, "cpuid_data is full, no space for "
1849 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1850 abort();
1851 }
1852 c = &cpuid_data.entries[cpuid_i++];
1853 }
1854 break;
1855 default:
1856 c->function = i;
1857 c->flags = 0;
1858 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1859 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1860 /*
1861 * KVM already returns all zeroes if a CPUID entry is missing,
1862 * so we can omit it and avoid hitting KVM's 80-entry limit.
1863 */
1864 cpuid_i--;
1865 }
8f4202fb
BM
1866 break;
1867 }
05330448
AL
1868 }
1869
b3baa152
BW
1870 /* Call Centaur's CPUID instructions they are supported. */
1871 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1872 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1873
1874 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1875 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1876 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1877 abort();
1878 }
b3baa152
BW
1879 c = &cpuid_data.entries[cpuid_i++];
1880
1881 c->function = i;
1882 c->flags = 0;
1883 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1884 }
1885 }
1886
05330448
AL
1887 cpuid_data.cpuid.nent = cpuid_i;
1888
e7701825 1889 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1890 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1891 (CPUID_MCE | CPUID_MCA)
a60f24b5 1892 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1893 uint64_t mcg_cap, unsupported_caps;
e7701825 1894 int banks;
32a42024 1895 int ret;
e7701825 1896
a60f24b5 1897 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1898 if (ret < 0) {
1899 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1900 return ret;
e7701825 1901 }
75d49497 1902
2590f15b 1903 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1904 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1905 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1906 return -ENOTSUP;
75d49497 1907 }
49b69cbf 1908
5120901a
EH
1909 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1910 if (unsupported_caps) {
87f8b626
AR
1911 if (unsupported_caps & MCG_LMCE_P) {
1912 error_report("kvm: LMCE not supported");
1913 return -ENOTSUP;
1914 }
3dc6f869
AF
1915 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1916 unsupported_caps);
5120901a
EH
1917 }
1918
2590f15b
EH
1919 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1920 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1921 if (ret < 0) {
1922 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1923 return ret;
1924 }
e7701825 1925 }
e7701825 1926
2a693142 1927 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
b8cc45d6 1928
df67696e
LJ
1929 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1930 if (c) {
1931 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1932 !!(c->ecx & CPUID_EXT_SMX);
1933 }
1934
a0483541
SC
1935 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1936 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1937 has_msr_feature_control = true;
1938 }
1939
87f8b626
AR
1940 if (env->mcg_cap & MCG_LMCE_P) {
1941 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1942 }
1943
d99569d9
EH
1944 if (!env->user_tsc_khz) {
1945 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1946 invtsc_mig_blocker == NULL) {
d99569d9
EH
1947 error_setg(&invtsc_mig_blocker,
1948 "State blocked by non-migratable CPU device"
1949 " (invtsc flag)");
fe44dc91 1950 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
436c831a 1951 if (r < 0) {
fe44dc91 1952 error_report_err(local_err);
79a197ab 1953 return r;
fe44dc91 1954 }
d99569d9 1955 }
68bfd0ad
MT
1956 }
1957
9954a158
PDJ
1958 if (cpu->vmware_cpuid_freq
1959 /* Guests depend on 0x40000000 to detect this feature, so only expose
1960 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1961 && cpu->expose_kvm
1962 && kvm_base == KVM_CPUID_SIGNATURE
1963 /* TSC clock must be stable and known for this feature. */
4bb95b82 1964 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1965
1966 c = &cpuid_data.entries[cpuid_i++];
1967 c->function = KVM_CPUID_SIGNATURE | 0x10;
1968 c->eax = env->tsc_khz;
73b994f6 1969 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
9954a158
PDJ
1970 c->ecx = c->edx = 0;
1971
1972 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1973 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1974 }
1975
1976 cpuid_data.cpuid.nent = cpuid_i;
1977
1978 cpuid_data.cpuid.padding = 0;
1979 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1980 if (r) {
1981 goto fail;
1982 }
1983
28143b40 1984 if (has_xsave) {
c0198c5f
DE
1985 env->xsave_buf_len = sizeof(struct kvm_xsave);
1986 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1987 memset(env->xsave_buf, 0, env->xsave_buf_len);
fea45008
DE
1988
1989 /*
1990 * The allocated storage must be large enough for all of the
1991 * possible XSAVE state components.
1992 */
1993 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX)
1994 <= env->xsave_buf_len);
fabacc0f 1995 }
ebbfef2f
LA
1996
1997 max_nested_state_len = kvm_max_nested_state_length();
1998 if (max_nested_state_len > 0) {
1999 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 2000
b16c0e20 2001 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1e44f3ab 2002 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 2003
1e44f3ab
PB
2004 env->nested_state = g_malloc0(max_nested_state_len);
2005 env->nested_state->size = max_nested_state_len;
1e44f3ab 2006
b16c0e20 2007 if (cpu_has_vmx(env)) {
2654ace1
TL
2008 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2009 vmx_hdr = &env->nested_state->hdr.vmx;
2010 vmx_hdr->vmxon_pa = -1ull;
2011 vmx_hdr->vmcs12_pa = -1ull;
2012 } else {
2013 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
b16c0e20 2014 }
ebbfef2f
LA
2015 }
2016 }
2017
d71b62a1 2018 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 2019
273c515c
PB
2020 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2021 has_msr_tsc_aux = false;
2022 }
d1ae67f6 2023
420ae1fc
PB
2024 kvm_init_msrs(cpu);
2025
e7429073 2026 return 0;
fe44dc91
AA
2027
2028 fail:
2029 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 2030
fe44dc91 2031 return r;
05330448
AL
2032}
2033
b1115c99
LA
2034int kvm_arch_destroy_vcpu(CPUState *cs)
2035{
2036 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 2037 CPUX86State *env = &cpu->env;
b1115c99
LA
2038
2039 if (cpu->kvm_msr_buf) {
2040 g_free(cpu->kvm_msr_buf);
2041 cpu->kvm_msr_buf = NULL;
2042 }
2043
ebbfef2f
LA
2044 if (env->nested_state) {
2045 g_free(env->nested_state);
2046 env->nested_state = NULL;
2047 }
2048
2a693142
PN
2049 qemu_del_vm_change_state_handler(cpu->vmsentry);
2050
b1115c99
LA
2051 return 0;
2052}
2053
50a2c6e5 2054void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 2055{
20d695a9 2056 CPUX86State *env = &cpu->env;
dd673288 2057
1a5e9d2f 2058 env->xcr0 = 1;
ddced198 2059 if (kvm_irqchip_in_kernel()) {
dd673288 2060 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
2061 KVM_MP_STATE_UNINITIALIZED;
2062 } else {
2063 env->mp_state = KVM_MP_STATE_RUNNABLE;
2064 }
689141dd 2065
2d384d7c 2066 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
2067 int i;
2068 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2069 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2070 }
606c34bf
RK
2071
2072 hyperv_x86_synic_reset(cpu);
689141dd 2073 }
d645e132
MT
2074 /* enabled by default */
2075 env->poll_control_msr = 1;
b2f73a07
PB
2076
2077 sev_es_set_reset_vector(CPU(cpu));
caa5af0f
JK
2078}
2079
e0723c45
PB
2080void kvm_arch_do_init_vcpu(X86CPU *cpu)
2081{
2082 CPUX86State *env = &cpu->env;
2083
2084 /* APs get directly into wait-for-SIPI state. */
2085 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2086 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2087 }
2088}
2089
f57bceb6
RH
2090static int kvm_get_supported_feature_msrs(KVMState *s)
2091{
2092 int ret = 0;
2093
2094 if (kvm_feature_msrs != NULL) {
2095 return 0;
2096 }
2097
2098 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2099 return 0;
2100 }
2101
2102 struct kvm_msr_list msr_list;
2103
2104 msr_list.nmsrs = 0;
2105 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2106 if (ret < 0 && ret != -E2BIG) {
2107 error_report("Fetch KVM feature MSR list failed: %s",
2108 strerror(-ret));
2109 return ret;
2110 }
2111
2112 assert(msr_list.nmsrs > 0);
2113 kvm_feature_msrs = (struct kvm_msr_list *) \
2114 g_malloc0(sizeof(msr_list) +
2115 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2116
2117 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2118 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2119
2120 if (ret < 0) {
2121 error_report("Fetch KVM feature MSR list failed: %s",
2122 strerror(-ret));
2123 g_free(kvm_feature_msrs);
2124 kvm_feature_msrs = NULL;
2125 return ret;
2126 }
2127
2128 return 0;
2129}
2130
c3a3a7d3 2131static int kvm_get_supported_msrs(KVMState *s)
05330448 2132{
c3a3a7d3 2133 int ret = 0;
de428cea 2134 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 2135
de428cea
LQ
2136 /*
2137 * Obtain MSR list from KVM. These are the MSRs that we must
2138 * save/restore.
2139 */
2140 msr_list.nmsrs = 0;
2141 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2142 if (ret < 0 && ret != -E2BIG) {
2143 return ret;
2144 }
2145 /*
2146 * Old kernel modules had a bug and could write beyond the provided
2147 * memory. Allocate at least a safe amount of 1K.
2148 */
2149 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2150 msr_list.nmsrs *
2151 sizeof(msr_list.indices[0])));
05330448 2152
de428cea
LQ
2153 kvm_msr_list->nmsrs = msr_list.nmsrs;
2154 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2155 if (ret >= 0) {
2156 int i;
05330448 2157
de428cea
LQ
2158 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2159 switch (kvm_msr_list->indices[i]) {
2160 case MSR_STAR:
2161 has_msr_star = true;
2162 break;
2163 case MSR_VM_HSAVE_PA:
2164 has_msr_hsave_pa = true;
2165 break;
2166 case MSR_TSC_AUX:
2167 has_msr_tsc_aux = true;
2168 break;
2169 case MSR_TSC_ADJUST:
2170 has_msr_tsc_adjust = true;
2171 break;
2172 case MSR_IA32_TSCDEADLINE:
2173 has_msr_tsc_deadline = true;
2174 break;
2175 case MSR_IA32_SMBASE:
2176 has_msr_smbase = true;
2177 break;
2178 case MSR_SMI_COUNT:
2179 has_msr_smi_count = true;
2180 break;
2181 case MSR_IA32_MISC_ENABLE:
2182 has_msr_misc_enable = true;
2183 break;
2184 case MSR_IA32_BNDCFGS:
2185 has_msr_bndcfgs = true;
2186 break;
2187 case MSR_IA32_XSS:
2188 has_msr_xss = true;
2189 break;
65087997
TX
2190 case MSR_IA32_UMWAIT_CONTROL:
2191 has_msr_umwait = true;
2192 break;
de428cea
LQ
2193 case HV_X64_MSR_CRASH_CTL:
2194 has_msr_hv_crash = true;
2195 break;
2196 case HV_X64_MSR_RESET:
2197 has_msr_hv_reset = true;
2198 break;
2199 case HV_X64_MSR_VP_INDEX:
2200 has_msr_hv_vpindex = true;
2201 break;
2202 case HV_X64_MSR_VP_RUNTIME:
2203 has_msr_hv_runtime = true;
2204 break;
2205 case HV_X64_MSR_SCONTROL:
2206 has_msr_hv_synic = true;
2207 break;
2208 case HV_X64_MSR_STIMER0_CONFIG:
2209 has_msr_hv_stimer = true;
2210 break;
2211 case HV_X64_MSR_TSC_FREQUENCY:
2212 has_msr_hv_frequencies = true;
2213 break;
2214 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2215 has_msr_hv_reenlightenment = true;
2216 break;
2217 case MSR_IA32_SPEC_CTRL:
2218 has_msr_spec_ctrl = true;
2219 break;
cabf9862
ML
2220 case MSR_AMD64_TSC_RATIO:
2221 has_tsc_scale_msr = true;
2222 break;
2a9758c5
PB
2223 case MSR_IA32_TSX_CTRL:
2224 has_msr_tsx_ctrl = true;
2225 break;
de428cea
LQ
2226 case MSR_VIRT_SSBD:
2227 has_msr_virt_ssbd = true;
2228 break;
2229 case MSR_IA32_ARCH_CAPABILITIES:
2230 has_msr_arch_capabs = true;
2231 break;
2232 case MSR_IA32_CORE_CAPABILITY:
2233 has_msr_core_capabs = true;
2234 break;
ea39f9b6
LX
2235 case MSR_IA32_PERF_CAPABILITIES:
2236 has_msr_perf_capabs = true;
2237 break;
20a78b02
PB
2238 case MSR_IA32_VMX_VMFUNC:
2239 has_msr_vmx_vmfunc = true;
2240 break;
67025148
PB
2241 case MSR_IA32_UCODE_REV:
2242 has_msr_ucode_rev = true;
2243 break;
4a910e1f
VK
2244 case MSR_IA32_VMX_PROCBASED_CTLS2:
2245 has_msr_vmx_procbased_ctls2 = true;
2246 break;
6aa4228b
CQ
2247 case MSR_IA32_PKRS:
2248 has_msr_pkrs = true;
2249 break;
05330448
AL
2250 }
2251 }
05330448
AL
2252 }
2253
de428cea
LQ
2254 g_free(kvm_msr_list);
2255
c3a3a7d3 2256 return ret;
05330448
AL
2257}
2258
6410848b
PB
2259static Notifier smram_machine_done;
2260static KVMMemoryListener smram_listener;
2261static AddressSpace smram_address_space;
2262static MemoryRegion smram_as_root;
2263static MemoryRegion smram_as_mem;
2264
2265static void register_smram_listener(Notifier *n, void *unused)
2266{
2267 MemoryRegion *smram =
2268 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2269
2270 /* Outer container... */
2271 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2272 memory_region_set_enabled(&smram_as_root, true);
2273
2274 /* ... with two regions inside: normal system memory with low
2275 * priority, and...
2276 */
2277 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2278 get_system_memory(), 0, ~0ull);
2279 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2280 memory_region_set_enabled(&smram_as_mem, true);
2281
2282 if (smram) {
2283 /* ... SMRAM with higher priority */
2284 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2285 memory_region_set_enabled(smram, true);
2286 }
2287
2288 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2289 kvm_memory_listener_register(kvm_state, &smram_listener,
142518bd 2290 &smram_address_space, 1, "kvm-smram");
6410848b
PB
2291}
2292
b16565b3 2293int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2294{
11076198 2295 uint64_t identity_base = 0xfffbc000;
39d6960a 2296 uint64_t shadow_mem;
20420430 2297 int ret;
25d2e361 2298 struct utsname utsname;
ec78e2cd
DG
2299 Error *local_err = NULL;
2300
2301 /*
2302 * Initialize SEV context, if required
2303 *
2304 * If no memory encryption is requested (ms->cgs == NULL) this is
2305 * a no-op.
2306 *
2307 * It's also a no-op if a non-SEV confidential guest support
2308 * mechanism is selected. SEV is the only mechanism available to
2309 * select on x86 at present, so this doesn't arise, but if new
2310 * mechanisms are supported in future (e.g. TDX), they'll need
2311 * their own initialization either here or elsewhere.
2312 */
2313 ret = sev_kvm_init(ms->cgs, &local_err);
2314 if (ret < 0) {
2315 error_report_err(local_err);
2316 return ret;
2317 }
20420430 2318
1a6dff5f
EH
2319 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2320 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2321 return -ENOTSUP;
2322 }
2323
28143b40 2324 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2325 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2326 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 2327
e9688fab
RK
2328 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2329
fd13f23b
LA
2330 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2331 if (has_exception_payload) {
2332 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2333 if (ret < 0) {
2334 error_report("kvm: Failed to enable exception payload cap: %s",
2335 strerror(-ret));
2336 return ret;
2337 }
2338 }
2339
c3a3a7d3 2340 ret = kvm_get_supported_msrs(s);
20420430 2341 if (ret < 0) {
20420430
SY
2342 return ret;
2343 }
25d2e361 2344
f57bceb6
RH
2345 kvm_get_supported_feature_msrs(s);
2346
25d2e361
MT
2347 uname(&utsname);
2348 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2349
4c5b10b7 2350 /*
11076198
JK
2351 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2352 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2353 * Since these must be part of guest physical memory, we need to allocate
2354 * them, both by setting their start addresses in the kernel and by
2355 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2356 *
2357 * Older KVM versions may not support setting the identity map base. In
2358 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2359 * size.
4c5b10b7 2360 */
11076198
JK
2361 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2362 /* Allows up to 16M BIOSes. */
2363 identity_base = 0xfeffc000;
2364
2365 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2366 if (ret < 0) {
2367 return ret;
2368 }
4c5b10b7 2369 }
e56ff191 2370
11076198
JK
2371 /* Set TSS base one page after EPT identity map. */
2372 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2373 if (ret < 0) {
2374 return ret;
2375 }
2376
11076198
JK
2377 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2378 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2379 if (ret < 0) {
11076198 2380 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2381 return ret;
2382 }
2383
23b0898e 2384 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
36ad0e94
MA
2385 if (shadow_mem != -1) {
2386 shadow_mem /= 4096;
2387 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2388 if (ret < 0) {
2389 return ret;
39d6960a
JK
2390 }
2391 }
6410848b 2392
d870cfde 2393 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
8f54bbd0 2394 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
ed9e923c 2395 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
6410848b
PB
2396 smram_machine_done.notify = register_smram_listener;
2397 qemu_add_machine_init_done_notifier(&smram_machine_done);
2398 }
6f131f13
MT
2399
2400 if (enable_cpu_pm) {
2401 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2402 int ret;
2403
2404/* Work around for kernel header with a typo. TODO: fix header and drop. */
2405#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2406#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2407#endif
2408 if (disable_exits) {
2409 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2410 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2411 KVM_X86_DISABLE_EXITS_PAUSE |
2412 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2413 }
2414
2415 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2416 disable_exits);
2417 if (ret < 0) {
2418 error_report("kvm: guest stopping CPU not supported: %s",
2419 strerror(-ret));
2420 }
2421 }
2422
035d1ef2
CQ
2423 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2424 X86MachineState *x86ms = X86_MACHINE(ms);
2425
2426 if (x86ms->bus_lock_ratelimit > 0) {
2427 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2428 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2429 error_report("kvm: bus lock detection unsupported");
2430 return -ENOTSUP;
2431 }
2432 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2433 KVM_BUS_LOCK_DETECTION_EXIT);
2434 if (ret < 0) {
2435 error_report("kvm: Failed to enable bus lock detection cap: %s",
2436 strerror(-ret));
2437 return ret;
2438 }
2439 ratelimit_init(&bus_lock_ratelimit_ctrl);
2440 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2441 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2442 }
2443 }
2444
11076198 2445 return 0;
05330448 2446}
b9bec74b 2447
05330448
AL
2448static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2449{
2450 lhs->selector = rhs->selector;
2451 lhs->base = rhs->base;
2452 lhs->limit = rhs->limit;
2453 lhs->type = 3;
2454 lhs->present = 1;
2455 lhs->dpl = 3;
2456 lhs->db = 0;
2457 lhs->s = 1;
2458 lhs->l = 0;
2459 lhs->g = 0;
2460 lhs->avl = 0;
2461 lhs->unusable = 0;
2462}
2463
2464static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2465{
2466 unsigned flags = rhs->flags;
2467 lhs->selector = rhs->selector;
2468 lhs->base = rhs->base;
2469 lhs->limit = rhs->limit;
2470 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2471 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2472 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2473 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2474 lhs->s = (flags & DESC_S_MASK) != 0;
2475 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2476 lhs->g = (flags & DESC_G_MASK) != 0;
2477 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2478 lhs->unusable = !lhs->present;
7e680753 2479 lhs->padding = 0;
05330448
AL
2480}
2481
2482static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2483{
2484 lhs->selector = rhs->selector;
2485 lhs->base = rhs->base;
2486 lhs->limit = rhs->limit;
d45fc087
RP
2487 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2488 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2489 (rhs->dpl << DESC_DPL_SHIFT) |
2490 (rhs->db << DESC_B_SHIFT) |
2491 (rhs->s * DESC_S_MASK) |
2492 (rhs->l << DESC_L_SHIFT) |
2493 (rhs->g * DESC_G_MASK) |
2494 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2495}
2496
2497static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2498{
b9bec74b 2499 if (set) {
05330448 2500 *kvm_reg = *qemu_reg;
b9bec74b 2501 } else {
05330448 2502 *qemu_reg = *kvm_reg;
b9bec74b 2503 }
05330448
AL
2504}
2505
1bc22652 2506static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2507{
1bc22652 2508 CPUX86State *env = &cpu->env;
05330448
AL
2509 struct kvm_regs regs;
2510 int ret = 0;
2511
2512 if (!set) {
1bc22652 2513 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2514 if (ret < 0) {
05330448 2515 return ret;
b9bec74b 2516 }
05330448
AL
2517 }
2518
2519 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2520 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2521 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2522 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2523 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2524 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2525 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2526 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2527#ifdef TARGET_X86_64
2528 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2529 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2530 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2531 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2532 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2533 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2534 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2535 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2536#endif
2537
2538 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2539 kvm_getput_reg(&regs.rip, &env->eip, set);
2540
b9bec74b 2541 if (set) {
1bc22652 2542 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2543 }
05330448
AL
2544
2545 return ret;
2546}
2547
1bc22652 2548static int kvm_put_fpu(X86CPU *cpu)
05330448 2549{
1bc22652 2550 CPUX86State *env = &cpu->env;
05330448
AL
2551 struct kvm_fpu fpu;
2552 int i;
2553
2554 memset(&fpu, 0, sizeof fpu);
2555 fpu.fsw = env->fpus & ~(7 << 11);
2556 fpu.fsw |= (env->fpstt & 7) << 11;
2557 fpu.fcw = env->fpuc;
42cc8fa6
JK
2558 fpu.last_opcode = env->fpop;
2559 fpu.last_ip = env->fpip;
2560 fpu.last_dp = env->fpdp;
b9bec74b
JK
2561 for (i = 0; i < 8; ++i) {
2562 fpu.ftwx |= (!env->fptags[i]) << i;
2563 }
05330448 2564 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2565 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2566 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2567 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2568 }
05330448
AL
2569 fpu.mxcsr = env->mxcsr;
2570
1bc22652 2571 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2572}
2573
1bc22652 2574static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2575{
1bc22652 2576 CPUX86State *env = &cpu->env;
c0198c5f 2577 void *xsave = env->xsave_buf;
f1665b21 2578
28143b40 2579 if (!has_xsave) {
1bc22652 2580 return kvm_put_fpu(cpu);
b9bec74b 2581 }
c0198c5f 2582 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 2583
9be38598 2584 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2585}
2586
1bc22652 2587static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2588{
1bc22652 2589 CPUX86State *env = &cpu->env;
bdfc8480 2590 struct kvm_xcrs xcrs = {};
f1665b21 2591
28143b40 2592 if (!has_xcrs) {
f1665b21 2593 return 0;
b9bec74b 2594 }
f1665b21
SY
2595
2596 xcrs.nr_xcrs = 1;
2597 xcrs.flags = 0;
2598 xcrs.xcrs[0].xcr = 0;
2599 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2600 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2601}
2602
1bc22652 2603static int kvm_put_sregs(X86CPU *cpu)
05330448 2604{
1bc22652 2605 CPUX86State *env = &cpu->env;
05330448
AL
2606 struct kvm_sregs sregs;
2607
0e607a80
JK
2608 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2609 if (env->interrupt_injected >= 0) {
2610 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2611 (uint64_t)1 << (env->interrupt_injected % 64);
2612 }
05330448
AL
2613
2614 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2615 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2616 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2617 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2618 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2619 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2620 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2621 } else {
b9bec74b
JK
2622 set_seg(&sregs.cs, &env->segs[R_CS]);
2623 set_seg(&sregs.ds, &env->segs[R_DS]);
2624 set_seg(&sregs.es, &env->segs[R_ES]);
2625 set_seg(&sregs.fs, &env->segs[R_FS]);
2626 set_seg(&sregs.gs, &env->segs[R_GS]);
2627 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2628 }
2629
2630 set_seg(&sregs.tr, &env->tr);
2631 set_seg(&sregs.ldt, &env->ldt);
2632
2633 sregs.idt.limit = env->idt.limit;
2634 sregs.idt.base = env->idt.base;
7e680753 2635 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2636 sregs.gdt.limit = env->gdt.limit;
2637 sregs.gdt.base = env->gdt.base;
7e680753 2638 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2639
2640 sregs.cr0 = env->cr[0];
2641 sregs.cr2 = env->cr[2];
2642 sregs.cr3 = env->cr[3];
2643 sregs.cr4 = env->cr[4];
2644
02e51483
CF
2645 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2646 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2647
2648 sregs.efer = env->efer;
2649
1bc22652 2650 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2651}
2652
d71b62a1
EH
2653static void kvm_msr_buf_reset(X86CPU *cpu)
2654{
2655 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2656}
2657
9c600a84
EH
2658static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2659{
2660 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2661 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2662 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2663
2664 assert((void *)(entry + 1) <= limit);
2665
1abc2cae
EH
2666 entry->index = index;
2667 entry->reserved = 0;
2668 entry->data = value;
9c600a84
EH
2669 msrs->nmsrs++;
2670}
2671
73e1b8f2
PB
2672static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2673{
2674 kvm_msr_buf_reset(cpu);
2675 kvm_msr_entry_add(cpu, index, value);
2676
2677 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2678}
2679
f8d9ccf8
DDAG
2680void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2681{
2682 int ret;
2683
2684 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2685 assert(ret == 1);
2686}
2687
7477cd38
MT
2688static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2689{
2690 CPUX86State *env = &cpu->env;
48e1a45c 2691 int ret;
7477cd38
MT
2692
2693 if (!has_msr_tsc_deadline) {
2694 return 0;
2695 }
2696
73e1b8f2 2697 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2698 if (ret < 0) {
2699 return ret;
2700 }
2701
2702 assert(ret == 1);
2703 return 0;
7477cd38
MT
2704}
2705
6bdf863d
JK
2706/*
2707 * Provide a separate write service for the feature control MSR in order to
2708 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2709 * before writing any other state because forcibly leaving nested mode
2710 * invalidates the VCPU state.
2711 */
2712static int kvm_put_msr_feature_control(X86CPU *cpu)
2713{
48e1a45c
PB
2714 int ret;
2715
2716 if (!has_msr_feature_control) {
2717 return 0;
2718 }
6bdf863d 2719
73e1b8f2
PB
2720 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2721 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2722 if (ret < 0) {
2723 return ret;
2724 }
2725
2726 assert(ret == 1);
2727 return 0;
6bdf863d
JK
2728}
2729
20a78b02
PB
2730static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2731{
2732 uint32_t default1, can_be_one, can_be_zero;
2733 uint32_t must_be_one;
2734
2735 switch (index) {
2736 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2737 default1 = 0x00000016;
2738 break;
2739 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2740 default1 = 0x0401e172;
2741 break;
2742 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2743 default1 = 0x000011ff;
2744 break;
2745 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2746 default1 = 0x00036dff;
2747 break;
2748 case MSR_IA32_VMX_PROCBASED_CTLS2:
2749 default1 = 0;
2750 break;
2751 default:
2752 abort();
2753 }
2754
2755 /* If a feature bit is set, the control can be either set or clear.
2756 * Otherwise the value is limited to either 0 or 1 by default1.
2757 */
2758 can_be_one = features | default1;
2759 can_be_zero = features | ~default1;
2760 must_be_one = ~can_be_zero;
2761
2762 /*
2763 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2764 * Bit 32:63 -> 1 if the control bit can be one.
2765 */
2766 return must_be_one | (((uint64_t)can_be_one) << 32);
2767}
2768
20a78b02
PB
2769static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2770{
2771 uint64_t kvm_vmx_basic =
2772 kvm_arch_get_supported_msr_feature(kvm_state,
2773 MSR_IA32_VMX_BASIC);
26051882
YZ
2774
2775 if (!kvm_vmx_basic) {
2776 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2777 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2778 */
2779 return;
2780 }
2781
20a78b02
PB
2782 uint64_t kvm_vmx_misc =
2783 kvm_arch_get_supported_msr_feature(kvm_state,
2784 MSR_IA32_VMX_MISC);
2785 uint64_t kvm_vmx_ept_vpid =
2786 kvm_arch_get_supported_msr_feature(kvm_state,
2787 MSR_IA32_VMX_EPT_VPID_CAP);
2788
2789 /*
2790 * If the guest is 64-bit, a value of 1 is allowed for the host address
2791 * space size vmexit control.
2792 */
2793 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2794 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2795
2796 /*
2797 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2798 * not change them for backwards compatibility.
2799 */
2800 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2801 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2802 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2803 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2804
2805 /*
2806 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2807 * change in the future but are always zero for now, clear them to be
2808 * future proof. Bits 32-63 in theory could change, though KVM does
2809 * not support dual-monitor treatment and probably never will; mask
2810 * them out as well.
2811 */
2812 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2813 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2814 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2815
2816 /*
2817 * EPT memory types should not change either, so we do not bother
2818 * adding features for them.
2819 */
2820 uint64_t fixed_vmx_ept_mask =
2821 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2822 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2823 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2824
2825 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2826 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2827 f[FEAT_VMX_PROCBASED_CTLS]));
2828 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2829 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2830 f[FEAT_VMX_PINBASED_CTLS]));
2831 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2832 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2833 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2834 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2835 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2836 f[FEAT_VMX_ENTRY_CTLS]));
2837 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2838 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2839 f[FEAT_VMX_SECONDARY_CTLS]));
2840 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2841 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2842 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2843 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2844 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2845 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2846 if (has_msr_vmx_vmfunc) {
2847 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2848 }
2849
2850 /*
2851 * Just to be safe, write these with constant values. The CRn_FIXED1
2852 * MSRs are generated by KVM based on the vCPU's CPUID.
2853 */
2854 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2855 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2856 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2857 CR4_VMXE_MASK);
9ce8af4d
PB
2858
2859 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2860 /* TSC multiplier (0x2032). */
2861 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2862 } else {
2863 /* Preemption timer (0x482E). */
2864 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2865 }
20a78b02
PB
2866}
2867
ea39f9b6
LX
2868static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2869{
2870 uint64_t kvm_perf_cap =
2871 kvm_arch_get_supported_msr_feature(kvm_state,
2872 MSR_IA32_PERF_CAPABILITIES);
2873
2874 if (kvm_perf_cap) {
2875 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2876 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2877 }
2878}
2879
420ae1fc
PB
2880static int kvm_buf_set_msrs(X86CPU *cpu)
2881{
2882 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2883 if (ret < 0) {
2884 return ret;
2885 }
2886
2887 if (ret < cpu->kvm_msr_buf->nmsrs) {
2888 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2889 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2890 (uint32_t)e->index, (uint64_t)e->data);
2891 }
2892
2893 assert(ret == cpu->kvm_msr_buf->nmsrs);
2894 return 0;
2895}
2896
2897static void kvm_init_msrs(X86CPU *cpu)
2898{
2899 CPUX86State *env = &cpu->env;
2900
2901 kvm_msr_buf_reset(cpu);
2902 if (has_msr_arch_capabs) {
2903 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2904 env->features[FEAT_ARCH_CAPABILITIES]);
2905 }
2906
2907 if (has_msr_core_capabs) {
2908 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2909 env->features[FEAT_CORE_CAPABILITY]);
2910 }
2911
ea39f9b6
LX
2912 if (has_msr_perf_capabs && cpu->enable_pmu) {
2913 kvm_msr_entry_add_perf(cpu, env->features);
2914 }
2915
67025148 2916 if (has_msr_ucode_rev) {
32c87d70
PB
2917 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2918 }
2919
420ae1fc
PB
2920 /*
2921 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2922 * all kernels with MSR features should have them.
2923 */
2924 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2925 kvm_msr_entry_add_vmx(cpu, env->features);
2926 }
2927
2928 assert(kvm_buf_set_msrs(cpu) == 0);
2929}
2930
1bc22652 2931static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 2932{
1bc22652 2933 CPUX86State *env = &cpu->env;
9c600a84 2934 int i;
05330448 2935
d71b62a1
EH
2936 kvm_msr_buf_reset(cpu);
2937
9c600a84
EH
2938 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2939 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2940 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2941 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 2942 if (has_msr_star) {
9c600a84 2943 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 2944 }
c3a3a7d3 2945 if (has_msr_hsave_pa) {
9c600a84 2946 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2947 }
c9b8f6b6 2948 if (has_msr_tsc_aux) {
9c600a84 2949 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2950 }
f28558d3 2951 if (has_msr_tsc_adjust) {
9c600a84 2952 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2953 }
21e87c46 2954 if (has_msr_misc_enable) {
9c600a84 2955 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2956 env->msr_ia32_misc_enable);
2957 }
fc12d72e 2958 if (has_msr_smbase) {
9c600a84 2959 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2960 }
e13713db
LA
2961 if (has_msr_smi_count) {
2962 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2963 }
6aa4228b
CQ
2964 if (has_msr_pkrs) {
2965 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
2966 }
439d19f2 2967 if (has_msr_bndcfgs) {
9c600a84 2968 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2969 }
18cd2c17 2970 if (has_msr_xss) {
9c600a84 2971 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2972 }
65087997
TX
2973 if (has_msr_umwait) {
2974 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2975 }
a33a2cfe
PB
2976 if (has_msr_spec_ctrl) {
2977 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2978 }
cabf9862
ML
2979 if (has_tsc_scale_msr) {
2980 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
2981 }
2982
2a9758c5
PB
2983 if (has_msr_tsx_ctrl) {
2984 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2985 }
cfeea0c0
KRW
2986 if (has_msr_virt_ssbd) {
2987 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2988 }
2989
05330448 2990#ifdef TARGET_X86_64
25d2e361 2991 if (lm_capable_kernel) {
9c600a84
EH
2992 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2993 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2994 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2995 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2996 }
05330448 2997#endif
a33a2cfe 2998
ff5c186b 2999 /*
0d894367
PB
3000 * The following MSRs have side effects on the guest or are too heavy
3001 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
3002 */
3003 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
3004 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3005 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3006 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
6615be07
VK
3007 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3008 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3009 }
55c911a5 3010 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 3011 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 3012 }
55c911a5 3013 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3014 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 3015 }
55c911a5 3016 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3017 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 3018 }
d645e132
MT
3019
3020 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3021 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3022 }
3023
0b368a10
JD
3024 if (has_architectural_pmu_version > 0) {
3025 if (has_architectural_pmu_version > 1) {
3026 /* Stop the counter. */
3027 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3028 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3029 }
0d894367
PB
3030
3031 /* Set the counter values. */
0b368a10 3032 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3033 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
3034 env->msr_fixed_counters[i]);
3035 }
0b368a10 3036 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 3037 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 3038 env->msr_gp_counters[i]);
9c600a84 3039 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
3040 env->msr_gp_evtsel[i]);
3041 }
0b368a10
JD
3042 if (has_architectural_pmu_version > 1) {
3043 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3044 env->msr_global_status);
3045 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3046 env->msr_global_ovf_ctrl);
3047
3048 /* Now start the PMU. */
3049 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3050 env->msr_fixed_ctr_ctrl);
3051 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3052 env->msr_global_ctrl);
3053 }
0d894367 3054 }
da1cc323
EY
3055 /*
3056 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3057 * only sync them to KVM on the first cpu
3058 */
3059 if (current_cpu == first_cpu) {
3060 if (has_msr_hv_hypercall) {
3061 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3062 env->msr_hv_guest_os_id);
3063 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3064 env->msr_hv_hypercall);
3065 }
2d384d7c 3066 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
3067 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3068 env->msr_hv_tsc);
3069 }
2d384d7c 3070 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3071 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3072 env->msr_hv_reenlightenment_control);
3073 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3074 env->msr_hv_tsc_emulation_control);
3075 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3076 env->msr_hv_tsc_emulation_status);
3077 }
eab70139 3078 }
2d384d7c 3079 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3080 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 3081 env->msr_hv_vapic);
eab70139 3082 }
f2a53c9e
AS
3083 if (has_msr_hv_crash) {
3084 int j;
3085
5e953812 3086 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 3087 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
3088 env->msr_hv_crash_params[j]);
3089
5e953812 3090 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 3091 }
46eb8f98 3092 if (has_msr_hv_runtime) {
9c600a84 3093 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 3094 }
2d384d7c
VK
3095 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3096 && hv_vpindex_settable) {
701189e3
RK
3097 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3098 hyperv_vp_index(CPU(cpu)));
e9688fab 3099 }
2d384d7c 3100 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3101 int j;
3102
09df29b6
RK
3103 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3104
9c600a84 3105 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 3106 env->msr_hv_synic_control);
9c600a84 3107 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 3108 env->msr_hv_synic_evt_page);
9c600a84 3109 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
3110 env->msr_hv_synic_msg_page);
3111
3112 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 3113 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
3114 env->msr_hv_synic_sint[j]);
3115 }
3116 }
ff99aa64
AS
3117 if (has_msr_hv_stimer) {
3118 int j;
3119
3120 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 3121 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
3122 env->msr_hv_stimer_config[j]);
3123 }
3124
3125 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 3126 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
3127 env->msr_hv_stimer_count[j]);
3128 }
3129 }
1eabfce6 3130 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
3131 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3132
9c600a84
EH
3133 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3134 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3135 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3136 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3137 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3138 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3139 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3140 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3141 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3142 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3143 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3144 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 3145 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
3146 /* The CPU GPs if we write to a bit above the physical limit of
3147 * the host CPU (and KVM emulates that)
3148 */
3149 uint64_t mask = env->mtrr_var[i].mask;
3150 mask &= phys_mask;
3151
9c600a84
EH
3152 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3153 env->mtrr_var[i].base);
112dad69 3154 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
3155 }
3156 }
b77146e9
CP
3157 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3158 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3159 0x14, 1, R_EAX) & 0x7;
3160
3161 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3162 env->msr_rtit_ctrl);
3163 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3164 env->msr_rtit_status);
3165 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3166 env->msr_rtit_output_base);
3167 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3168 env->msr_rtit_output_mask);
3169 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3170 env->msr_rtit_cr3_match);
3171 for (i = 0; i < addr_num; i++) {
3172 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3173 env->msr_rtit_addrs[i]);
3174 }
3175 }
6bdf863d 3176
db888065
SC
3177 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3178 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3179 env->msr_ia32_sgxlepubkeyhash[0]);
3180 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3181 env->msr_ia32_sgxlepubkeyhash[1]);
3182 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3183 env->msr_ia32_sgxlepubkeyhash[2]);
3184 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3185 env->msr_ia32_sgxlepubkeyhash[3]);
3186 }
3187
6bdf863d
JK
3188 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3189 * kvm_put_msr_feature_control. */
ea643051 3190 }
20a78b02 3191
57780495 3192 if (env->mcg_cap) {
d8da8574 3193 int i;
b9bec74b 3194
9c600a84
EH
3195 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3196 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
3197 if (has_msr_mcg_ext_ctl) {
3198 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3199 }
c34d440a 3200 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3201 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
3202 }
3203 }
1a03675d 3204
420ae1fc 3205 return kvm_buf_set_msrs(cpu);
05330448
AL
3206}
3207
3208
1bc22652 3209static int kvm_get_fpu(X86CPU *cpu)
05330448 3210{
1bc22652 3211 CPUX86State *env = &cpu->env;
05330448
AL
3212 struct kvm_fpu fpu;
3213 int i, ret;
3214
1bc22652 3215 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 3216 if (ret < 0) {
05330448 3217 return ret;
b9bec74b 3218 }
05330448
AL
3219
3220 env->fpstt = (fpu.fsw >> 11) & 7;
3221 env->fpus = fpu.fsw;
3222 env->fpuc = fpu.fcw;
42cc8fa6
JK
3223 env->fpop = fpu.last_opcode;
3224 env->fpip = fpu.last_ip;
3225 env->fpdp = fpu.last_dp;
b9bec74b
JK
3226 for (i = 0; i < 8; ++i) {
3227 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3228 }
05330448 3229 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 3230 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
3231 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3232 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 3233 }
05330448
AL
3234 env->mxcsr = fpu.mxcsr;
3235
3236 return 0;
3237}
3238
1bc22652 3239static int kvm_get_xsave(X86CPU *cpu)
f1665b21 3240{
1bc22652 3241 CPUX86State *env = &cpu->env;
c0198c5f 3242 void *xsave = env->xsave_buf;
86a57621 3243 int ret;
f1665b21 3244
28143b40 3245 if (!has_xsave) {
1bc22652 3246 return kvm_get_fpu(cpu);
b9bec74b 3247 }
f1665b21 3248
1bc22652 3249 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 3250 if (ret < 0) {
f1665b21 3251 return ret;
0f53994f 3252 }
c0198c5f 3253 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 3254
f1665b21 3255 return 0;
f1665b21
SY
3256}
3257
1bc22652 3258static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 3259{
1bc22652 3260 CPUX86State *env = &cpu->env;
f1665b21
SY
3261 int i, ret;
3262 struct kvm_xcrs xcrs;
3263
28143b40 3264 if (!has_xcrs) {
f1665b21 3265 return 0;
b9bec74b 3266 }
f1665b21 3267
1bc22652 3268 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 3269 if (ret < 0) {
f1665b21 3270 return ret;
b9bec74b 3271 }
f1665b21 3272
b9bec74b 3273 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 3274 /* Only support xcr0 now */
0fd53fec
PB
3275 if (xcrs.xcrs[i].xcr == 0) {
3276 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
3277 break;
3278 }
b9bec74b 3279 }
f1665b21 3280 return 0;
f1665b21
SY
3281}
3282
1bc22652 3283static int kvm_get_sregs(X86CPU *cpu)
05330448 3284{
1bc22652 3285 CPUX86State *env = &cpu->env;
05330448 3286 struct kvm_sregs sregs;
0e607a80 3287 int bit, i, ret;
05330448 3288
1bc22652 3289 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 3290 if (ret < 0) {
05330448 3291 return ret;
b9bec74b 3292 }
05330448 3293
0e607a80
JK
3294 /* There can only be one pending IRQ set in the bitmap at a time, so try
3295 to find it and save its number instead (-1 for none). */
3296 env->interrupt_injected = -1;
3297 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3298 if (sregs.interrupt_bitmap[i]) {
3299 bit = ctz64(sregs.interrupt_bitmap[i]);
3300 env->interrupt_injected = i * 64 + bit;
3301 break;
3302 }
3303 }
05330448
AL
3304
3305 get_seg(&env->segs[R_CS], &sregs.cs);
3306 get_seg(&env->segs[R_DS], &sregs.ds);
3307 get_seg(&env->segs[R_ES], &sregs.es);
3308 get_seg(&env->segs[R_FS], &sregs.fs);
3309 get_seg(&env->segs[R_GS], &sregs.gs);
3310 get_seg(&env->segs[R_SS], &sregs.ss);
3311
3312 get_seg(&env->tr, &sregs.tr);
3313 get_seg(&env->ldt, &sregs.ldt);
3314
3315 env->idt.limit = sregs.idt.limit;
3316 env->idt.base = sregs.idt.base;
3317 env->gdt.limit = sregs.gdt.limit;
3318 env->gdt.base = sregs.gdt.base;
3319
3320 env->cr[0] = sregs.cr0;
3321 env->cr[2] = sregs.cr2;
3322 env->cr[3] = sregs.cr3;
3323 env->cr[4] = sregs.cr4;
3324
05330448 3325 env->efer = sregs.efer;
cce47516
JK
3326
3327 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3328 x86_update_hflags(env);
05330448
AL
3329
3330 return 0;
3331}
3332
1bc22652 3333static int kvm_get_msrs(X86CPU *cpu)
05330448 3334{
1bc22652 3335 CPUX86State *env = &cpu->env;
d71b62a1 3336 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3337 int ret, i;
fcc35e7c 3338 uint64_t mtrr_top_bits;
05330448 3339
d71b62a1
EH
3340 kvm_msr_buf_reset(cpu);
3341
9c600a84
EH
3342 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3343 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3344 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3345 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3346 if (has_msr_star) {
9c600a84 3347 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3348 }
c3a3a7d3 3349 if (has_msr_hsave_pa) {
9c600a84 3350 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3351 }
c9b8f6b6 3352 if (has_msr_tsc_aux) {
9c600a84 3353 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3354 }
f28558d3 3355 if (has_msr_tsc_adjust) {
9c600a84 3356 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3357 }
aa82ba54 3358 if (has_msr_tsc_deadline) {
9c600a84 3359 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3360 }
21e87c46 3361 if (has_msr_misc_enable) {
9c600a84 3362 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3363 }
fc12d72e 3364 if (has_msr_smbase) {
9c600a84 3365 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3366 }
e13713db
LA
3367 if (has_msr_smi_count) {
3368 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3369 }
df67696e 3370 if (has_msr_feature_control) {
9c600a84 3371 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3372 }
6aa4228b
CQ
3373 if (has_msr_pkrs) {
3374 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3375 }
79e9ebeb 3376 if (has_msr_bndcfgs) {
9c600a84 3377 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3378 }
18cd2c17 3379 if (has_msr_xss) {
9c600a84 3380 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3381 }
65087997
TX
3382 if (has_msr_umwait) {
3383 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3384 }
a33a2cfe
PB
3385 if (has_msr_spec_ctrl) {
3386 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3387 }
cabf9862
ML
3388 if (has_tsc_scale_msr) {
3389 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3390 }
3391
2a9758c5
PB
3392 if (has_msr_tsx_ctrl) {
3393 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3394 }
cfeea0c0
KRW
3395 if (has_msr_virt_ssbd) {
3396 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3397 }
b8cc45d6 3398 if (!env->tsc_valid) {
9c600a84 3399 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3400 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3401 }
3402
05330448 3403#ifdef TARGET_X86_64
25d2e361 3404 if (lm_capable_kernel) {
9c600a84
EH
3405 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3406 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3407 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3408 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3409 }
05330448 3410#endif
9c600a84
EH
3411 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3412 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
db5daafa
VK
3413 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3414 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3415 }
6615be07
VK
3416 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3417 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3418 }
55c911a5 3419 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3420 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3421 }
55c911a5 3422 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3423 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3424 }
d645e132
MT
3425 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3426 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3427 }
0b368a10
JD
3428 if (has_architectural_pmu_version > 0) {
3429 if (has_architectural_pmu_version > 1) {
3430 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3431 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3432 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3433 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3434 }
3435 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3436 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3437 }
0b368a10 3438 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3439 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3440 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3441 }
3442 }
1a03675d 3443
57780495 3444 if (env->mcg_cap) {
9c600a84
EH
3445 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3446 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3447 if (has_msr_mcg_ext_ctl) {
3448 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3449 }
b9bec74b 3450 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3451 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3452 }
57780495 3453 }
57780495 3454
1c90ef26 3455 if (has_msr_hv_hypercall) {
9c600a84
EH
3456 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3457 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3458 }
2d384d7c 3459 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3460 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3461 }
2d384d7c 3462 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3463 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3464 }
2d384d7c 3465 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3466 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3467 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3468 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3469 }
f2a53c9e
AS
3470 if (has_msr_hv_crash) {
3471 int j;
3472
5e953812 3473 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3474 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3475 }
3476 }
46eb8f98 3477 if (has_msr_hv_runtime) {
9c600a84 3478 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3479 }
2d384d7c 3480 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3481 uint32_t msr;
3482
9c600a84 3483 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3484 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3485 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3486 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3487 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3488 }
3489 }
ff99aa64
AS
3490 if (has_msr_hv_stimer) {
3491 uint32_t msr;
3492
3493 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3494 msr++) {
9c600a84 3495 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3496 }
3497 }
1eabfce6 3498 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3499 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3500 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3501 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3502 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3503 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3504 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3505 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3506 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3507 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3508 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3509 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3510 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3511 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3512 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3513 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3514 }
3515 }
5ef68987 3516
b77146e9
CP
3517 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3518 int addr_num =
3519 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3520
3521 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3522 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3523 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3524 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3525 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3526 for (i = 0; i < addr_num; i++) {
3527 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3528 }
3529 }
3530
db888065
SC
3531 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3532 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3533 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3534 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3535 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3536 }
3537
d71b62a1 3538 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3539 if (ret < 0) {
05330448 3540 return ret;
b9bec74b 3541 }
05330448 3542
c70b11d1
EH
3543 if (ret < cpu->kvm_msr_buf->nmsrs) {
3544 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3545 error_report("error: failed to get MSR 0x%" PRIx32,
3546 (uint32_t)e->index);
3547 }
3548
9c600a84 3549 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3550 /*
3551 * MTRR masks: Each mask consists of 5 parts
3552 * a 10..0: must be zero
3553 * b 11 : valid bit
3554 * c n-1.12: actual mask bits
3555 * d 51..n: reserved must be zero
3556 * e 63.52: reserved must be zero
3557 *
3558 * 'n' is the number of physical bits supported by the CPU and is
3559 * apparently always <= 52. We know our 'n' but don't know what
3560 * the destinations 'n' is; it might be smaller, in which case
3561 * it masks (c) on loading. It might be larger, in which case
3562 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3563 * we're migrating to.
3564 */
3565
3566 if (cpu->fill_mtrr_mask) {
3567 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3568 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3569 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3570 } else {
3571 mtrr_top_bits = 0;
3572 }
3573
05330448 3574 for (i = 0; i < ret; i++) {
0d894367
PB
3575 uint32_t index = msrs[i].index;
3576 switch (index) {
05330448
AL
3577 case MSR_IA32_SYSENTER_CS:
3578 env->sysenter_cs = msrs[i].data;
3579 break;
3580 case MSR_IA32_SYSENTER_ESP:
3581 env->sysenter_esp = msrs[i].data;
3582 break;
3583 case MSR_IA32_SYSENTER_EIP:
3584 env->sysenter_eip = msrs[i].data;
3585 break;
0c03266a
JK
3586 case MSR_PAT:
3587 env->pat = msrs[i].data;
3588 break;
05330448
AL
3589 case MSR_STAR:
3590 env->star = msrs[i].data;
3591 break;
3592#ifdef TARGET_X86_64
3593 case MSR_CSTAR:
3594 env->cstar = msrs[i].data;
3595 break;
3596 case MSR_KERNELGSBASE:
3597 env->kernelgsbase = msrs[i].data;
3598 break;
3599 case MSR_FMASK:
3600 env->fmask = msrs[i].data;
3601 break;
3602 case MSR_LSTAR:
3603 env->lstar = msrs[i].data;
3604 break;
3605#endif
3606 case MSR_IA32_TSC:
3607 env->tsc = msrs[i].data;
3608 break;
c9b8f6b6
AS
3609 case MSR_TSC_AUX:
3610 env->tsc_aux = msrs[i].data;
3611 break;
f28558d3
WA
3612 case MSR_TSC_ADJUST:
3613 env->tsc_adjust = msrs[i].data;
3614 break;
aa82ba54
LJ
3615 case MSR_IA32_TSCDEADLINE:
3616 env->tsc_deadline = msrs[i].data;
3617 break;
aa851e36
MT
3618 case MSR_VM_HSAVE_PA:
3619 env->vm_hsave = msrs[i].data;
3620 break;
1a03675d
GC
3621 case MSR_KVM_SYSTEM_TIME:
3622 env->system_time_msr = msrs[i].data;
3623 break;
3624 case MSR_KVM_WALL_CLOCK:
3625 env->wall_clock_msr = msrs[i].data;
3626 break;
57780495
MT
3627 case MSR_MCG_STATUS:
3628 env->mcg_status = msrs[i].data;
3629 break;
3630 case MSR_MCG_CTL:
3631 env->mcg_ctl = msrs[i].data;
3632 break;
87f8b626
AR
3633 case MSR_MCG_EXT_CTL:
3634 env->mcg_ext_ctl = msrs[i].data;
3635 break;
21e87c46
AK
3636 case MSR_IA32_MISC_ENABLE:
3637 env->msr_ia32_misc_enable = msrs[i].data;
3638 break;
fc12d72e
PB
3639 case MSR_IA32_SMBASE:
3640 env->smbase = msrs[i].data;
3641 break;
e13713db
LA
3642 case MSR_SMI_COUNT:
3643 env->msr_smi_count = msrs[i].data;
3644 break;
0779caeb
ACL
3645 case MSR_IA32_FEATURE_CONTROL:
3646 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3647 break;
79e9ebeb
LJ
3648 case MSR_IA32_BNDCFGS:
3649 env->msr_bndcfgs = msrs[i].data;
3650 break;
18cd2c17
WL
3651 case MSR_IA32_XSS:
3652 env->xss = msrs[i].data;
3653 break;
65087997
TX
3654 case MSR_IA32_UMWAIT_CONTROL:
3655 env->umwait = msrs[i].data;
3656 break;
6aa4228b
CQ
3657 case MSR_IA32_PKRS:
3658 env->pkrs = msrs[i].data;
3659 break;
57780495 3660 default:
57780495
MT
3661 if (msrs[i].index >= MSR_MC0_CTL &&
3662 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3663 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3664 }
d8da8574 3665 break;
f6584ee2
GN
3666 case MSR_KVM_ASYNC_PF_EN:
3667 env->async_pf_en_msr = msrs[i].data;
3668 break;
db5daafa
VK
3669 case MSR_KVM_ASYNC_PF_INT:
3670 env->async_pf_int_msr = msrs[i].data;
3671 break;
bc9a839d
MT
3672 case MSR_KVM_PV_EOI_EN:
3673 env->pv_eoi_en_msr = msrs[i].data;
3674 break;
917367aa
MT
3675 case MSR_KVM_STEAL_TIME:
3676 env->steal_time_msr = msrs[i].data;
3677 break;
d645e132
MT
3678 case MSR_KVM_POLL_CONTROL: {
3679 env->poll_control_msr = msrs[i].data;
3680 break;
3681 }
0d894367
PB
3682 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3683 env->msr_fixed_ctr_ctrl = msrs[i].data;
3684 break;
3685 case MSR_CORE_PERF_GLOBAL_CTRL:
3686 env->msr_global_ctrl = msrs[i].data;
3687 break;
3688 case MSR_CORE_PERF_GLOBAL_STATUS:
3689 env->msr_global_status = msrs[i].data;
3690 break;
3691 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3692 env->msr_global_ovf_ctrl = msrs[i].data;
3693 break;
3694 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3695 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3696 break;
3697 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3698 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3699 break;
3700 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3701 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3702 break;
1c90ef26
VR
3703 case HV_X64_MSR_HYPERCALL:
3704 env->msr_hv_hypercall = msrs[i].data;
3705 break;
3706 case HV_X64_MSR_GUEST_OS_ID:
3707 env->msr_hv_guest_os_id = msrs[i].data;
3708 break;
5ef68987
VR
3709 case HV_X64_MSR_APIC_ASSIST_PAGE:
3710 env->msr_hv_vapic = msrs[i].data;
3711 break;
48a5f3bc
VR
3712 case HV_X64_MSR_REFERENCE_TSC:
3713 env->msr_hv_tsc = msrs[i].data;
3714 break;
f2a53c9e
AS
3715 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3716 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3717 break;
46eb8f98
AS
3718 case HV_X64_MSR_VP_RUNTIME:
3719 env->msr_hv_runtime = msrs[i].data;
3720 break;
866eea9a
AS
3721 case HV_X64_MSR_SCONTROL:
3722 env->msr_hv_synic_control = msrs[i].data;
3723 break;
866eea9a
AS
3724 case HV_X64_MSR_SIEFP:
3725 env->msr_hv_synic_evt_page = msrs[i].data;
3726 break;
3727 case HV_X64_MSR_SIMP:
3728 env->msr_hv_synic_msg_page = msrs[i].data;
3729 break;
3730 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3731 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3732 break;
3733 case HV_X64_MSR_STIMER0_CONFIG:
3734 case HV_X64_MSR_STIMER1_CONFIG:
3735 case HV_X64_MSR_STIMER2_CONFIG:
3736 case HV_X64_MSR_STIMER3_CONFIG:
3737 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3738 msrs[i].data;
3739 break;
3740 case HV_X64_MSR_STIMER0_COUNT:
3741 case HV_X64_MSR_STIMER1_COUNT:
3742 case HV_X64_MSR_STIMER2_COUNT:
3743 case HV_X64_MSR_STIMER3_COUNT:
3744 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3745 msrs[i].data;
866eea9a 3746 break;
ba6a4fd9
VK
3747 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3748 env->msr_hv_reenlightenment_control = msrs[i].data;
3749 break;
3750 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3751 env->msr_hv_tsc_emulation_control = msrs[i].data;
3752 break;
3753 case HV_X64_MSR_TSC_EMULATION_STATUS:
3754 env->msr_hv_tsc_emulation_status = msrs[i].data;
3755 break;
d1ae67f6
AW
3756 case MSR_MTRRdefType:
3757 env->mtrr_deftype = msrs[i].data;
3758 break;
3759 case MSR_MTRRfix64K_00000:
3760 env->mtrr_fixed[0] = msrs[i].data;
3761 break;
3762 case MSR_MTRRfix16K_80000:
3763 env->mtrr_fixed[1] = msrs[i].data;
3764 break;
3765 case MSR_MTRRfix16K_A0000:
3766 env->mtrr_fixed[2] = msrs[i].data;
3767 break;
3768 case MSR_MTRRfix4K_C0000:
3769 env->mtrr_fixed[3] = msrs[i].data;
3770 break;
3771 case MSR_MTRRfix4K_C8000:
3772 env->mtrr_fixed[4] = msrs[i].data;
3773 break;
3774 case MSR_MTRRfix4K_D0000:
3775 env->mtrr_fixed[5] = msrs[i].data;
3776 break;
3777 case MSR_MTRRfix4K_D8000:
3778 env->mtrr_fixed[6] = msrs[i].data;
3779 break;
3780 case MSR_MTRRfix4K_E0000:
3781 env->mtrr_fixed[7] = msrs[i].data;
3782 break;
3783 case MSR_MTRRfix4K_E8000:
3784 env->mtrr_fixed[8] = msrs[i].data;
3785 break;
3786 case MSR_MTRRfix4K_F0000:
3787 env->mtrr_fixed[9] = msrs[i].data;
3788 break;
3789 case MSR_MTRRfix4K_F8000:
3790 env->mtrr_fixed[10] = msrs[i].data;
3791 break;
3792 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3793 if (index & 1) {
fcc35e7c
DDAG
3794 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3795 mtrr_top_bits;
d1ae67f6
AW
3796 } else {
3797 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3798 }
3799 break;
a33a2cfe
PB
3800 case MSR_IA32_SPEC_CTRL:
3801 env->spec_ctrl = msrs[i].data;
3802 break;
cabf9862
ML
3803 case MSR_AMD64_TSC_RATIO:
3804 env->amd_tsc_scale_msr = msrs[i].data;
3805 break;
2a9758c5
PB
3806 case MSR_IA32_TSX_CTRL:
3807 env->tsx_ctrl = msrs[i].data;
3808 break;
cfeea0c0
KRW
3809 case MSR_VIRT_SSBD:
3810 env->virt_ssbd = msrs[i].data;
3811 break;
b77146e9
CP
3812 case MSR_IA32_RTIT_CTL:
3813 env->msr_rtit_ctrl = msrs[i].data;
3814 break;
3815 case MSR_IA32_RTIT_STATUS:
3816 env->msr_rtit_status = msrs[i].data;
3817 break;
3818 case MSR_IA32_RTIT_OUTPUT_BASE:
3819 env->msr_rtit_output_base = msrs[i].data;
3820 break;
3821 case MSR_IA32_RTIT_OUTPUT_MASK:
3822 env->msr_rtit_output_mask = msrs[i].data;
3823 break;
3824 case MSR_IA32_RTIT_CR3_MATCH:
3825 env->msr_rtit_cr3_match = msrs[i].data;
3826 break;
3827 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3828 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3829 break;
db888065
SC
3830 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3831 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3832 msrs[i].data;
3833 break;
05330448
AL
3834 }
3835 }
3836
3837 return 0;
3838}
3839
1bc22652 3840static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3841{
1bc22652 3842 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3843
1bc22652 3844 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3845}
3846
23d02d9b 3847static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3848{
259186a7 3849 CPUState *cs = CPU(cpu);
23d02d9b 3850 CPUX86State *env = &cpu->env;
9bdbe550
HB
3851 struct kvm_mp_state mp_state;
3852 int ret;
3853
259186a7 3854 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3855 if (ret < 0) {
3856 return ret;
3857 }
3858 env->mp_state = mp_state.mp_state;
c14750e8 3859 if (kvm_irqchip_in_kernel()) {
259186a7 3860 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3861 }
9bdbe550
HB
3862 return 0;
3863}
3864
1bc22652 3865static int kvm_get_apic(X86CPU *cpu)
680c1c6f 3866{
02e51483 3867 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
3868 struct kvm_lapic_state kapic;
3869 int ret;
3870
3d4b2649 3871 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 3872 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
3873 if (ret < 0) {
3874 return ret;
3875 }
3876
3877 kvm_get_apic_state(apic, &kapic);
3878 }
3879 return 0;
3880}
3881
1bc22652 3882static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 3883{
fc12d72e 3884 CPUState *cs = CPU(cpu);
1bc22652 3885 CPUX86State *env = &cpu->env;
076796f8 3886 struct kvm_vcpu_events events = {};
a0fb002c
JK
3887
3888 if (!kvm_has_vcpu_events()) {
3889 return 0;
3890 }
3891
fd13f23b
LA
3892 events.flags = 0;
3893
3894 if (has_exception_payload) {
3895 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3896 events.exception.pending = env->exception_pending;
3897 events.exception_has_payload = env->exception_has_payload;
3898 events.exception_payload = env->exception_payload;
3899 }
3900 events.exception.nr = env->exception_nr;
3901 events.exception.injected = env->exception_injected;
a0fb002c
JK
3902 events.exception.has_error_code = env->has_error_code;
3903 events.exception.error_code = env->error_code;
3904
3905 events.interrupt.injected = (env->interrupt_injected >= 0);
3906 events.interrupt.nr = env->interrupt_injected;
3907 events.interrupt.soft = env->soft_interrupt;
3908
3909 events.nmi.injected = env->nmi_injected;
3910 events.nmi.pending = env->nmi_pending;
3911 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3912
3913 events.sipi_vector = env->sipi_vector;
3914
fc12d72e
PB
3915 if (has_msr_smbase) {
3916 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3917 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3918 if (kvm_irqchip_in_kernel()) {
3919 /* As soon as these are moved to the kernel, remove them
3920 * from cs->interrupt_request.
3921 */
3922 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3923 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3924 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3925 } else {
3926 /* Keep these in cs->interrupt_request. */
3927 events.smi.pending = 0;
3928 events.smi.latched_init = 0;
3929 }
fc3a1fd7
DDAG
3930 /* Stop SMI delivery on old machine types to avoid a reboot
3931 * on an inward migration of an old VM.
3932 */
3933 if (!cpu->kvm_no_smi_migration) {
3934 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3935 }
fc12d72e
PB
3936 }
3937
ea643051 3938 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
3939 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3940 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3941 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3942 }
ea643051 3943 }
aee028b9 3944
1bc22652 3945 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
3946}
3947
1bc22652 3948static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 3949{
1bc22652 3950 CPUX86State *env = &cpu->env;
a0fb002c
JK
3951 struct kvm_vcpu_events events;
3952 int ret;
3953
3954 if (!kvm_has_vcpu_events()) {
3955 return 0;
3956 }
3957
fc12d72e 3958 memset(&events, 0, sizeof(events));
1bc22652 3959 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
3960 if (ret < 0) {
3961 return ret;
3962 }
fd13f23b
LA
3963
3964 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3965 env->exception_pending = events.exception.pending;
3966 env->exception_has_payload = events.exception_has_payload;
3967 env->exception_payload = events.exception_payload;
3968 } else {
3969 env->exception_pending = 0;
3970 env->exception_has_payload = false;
3971 }
3972 env->exception_injected = events.exception.injected;
3973 env->exception_nr =
3974 (env->exception_pending || env->exception_injected) ?
3975 events.exception.nr : -1;
a0fb002c
JK
3976 env->has_error_code = events.exception.has_error_code;
3977 env->error_code = events.exception.error_code;
3978
3979 env->interrupt_injected =
3980 events.interrupt.injected ? events.interrupt.nr : -1;
3981 env->soft_interrupt = events.interrupt.soft;
3982
3983 env->nmi_injected = events.nmi.injected;
3984 env->nmi_pending = events.nmi.pending;
3985 if (events.nmi.masked) {
3986 env->hflags2 |= HF2_NMI_MASK;
3987 } else {
3988 env->hflags2 &= ~HF2_NMI_MASK;
3989 }
3990
fc12d72e
PB
3991 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3992 if (events.smi.smm) {
3993 env->hflags |= HF_SMM_MASK;
3994 } else {
3995 env->hflags &= ~HF_SMM_MASK;
3996 }
3997 if (events.smi.pending) {
3998 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3999 } else {
4000 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4001 }
4002 if (events.smi.smm_inside_nmi) {
4003 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4004 } else {
4005 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4006 }
4007 if (events.smi.latched_init) {
4008 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4009 } else {
4010 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4011 }
4012 }
4013
a0fb002c 4014 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
4015
4016 return 0;
4017}
4018
1bc22652 4019static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 4020{
ed2803da 4021 CPUState *cs = CPU(cpu);
1bc22652 4022 CPUX86State *env = &cpu->env;
b0b1d690 4023 int ret = 0;
b0b1d690
JK
4024 unsigned long reinject_trap = 0;
4025
4026 if (!kvm_has_vcpu_events()) {
fd13f23b 4027 if (env->exception_nr == EXCP01_DB) {
b0b1d690 4028 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 4029 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
4030 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4031 }
fd13f23b 4032 kvm_reset_exception(env);
b0b1d690
JK
4033 }
4034
4035 /*
4036 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4037 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4038 * by updating the debug state once again if single-stepping is on.
4039 * Another reason to call kvm_update_guest_debug here is a pending debug
4040 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4041 * reinject them via SET_GUEST_DEBUG.
4042 */
4043 if (reinject_trap ||
ed2803da 4044 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 4045 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 4046 }
b0b1d690
JK
4047 return ret;
4048}
4049
1bc22652 4050static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 4051{
1bc22652 4052 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4053 struct kvm_debugregs dbgregs;
4054 int i;
4055
4056 if (!kvm_has_debugregs()) {
4057 return 0;
4058 }
4059
1f670a95 4060 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
4061 for (i = 0; i < 4; i++) {
4062 dbgregs.db[i] = env->dr[i];
4063 }
4064 dbgregs.dr6 = env->dr[6];
4065 dbgregs.dr7 = env->dr[7];
4066 dbgregs.flags = 0;
4067
1bc22652 4068 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
4069}
4070
1bc22652 4071static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 4072{
1bc22652 4073 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4074 struct kvm_debugregs dbgregs;
4075 int i, ret;
4076
4077 if (!kvm_has_debugregs()) {
4078 return 0;
4079 }
4080
1bc22652 4081 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 4082 if (ret < 0) {
b9bec74b 4083 return ret;
ff44f1a3
JK
4084 }
4085 for (i = 0; i < 4; i++) {
4086 env->dr[i] = dbgregs.db[i];
4087 }
4088 env->dr[4] = env->dr[6] = dbgregs.dr6;
4089 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
4090
4091 return 0;
4092}
4093
ebbfef2f
LA
4094static int kvm_put_nested_state(X86CPU *cpu)
4095{
4096 CPUX86State *env = &cpu->env;
4097 int max_nested_state_len = kvm_max_nested_state_length();
4098
1e44f3ab 4099 if (!env->nested_state) {
ebbfef2f
LA
4100 return 0;
4101 }
4102
b16c0e20
PB
4103 /*
4104 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4105 */
4106 if (env->hflags & HF_GUEST_MASK) {
4107 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4108 } else {
4109 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4110 }
0baa4b44
VK
4111
4112 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4113 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
b16c0e20
PB
4114 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4115 } else {
4116 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4117 }
4118
ebbfef2f
LA
4119 assert(env->nested_state->size <= max_nested_state_len);
4120 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4121}
4122
4123static int kvm_get_nested_state(X86CPU *cpu)
4124{
4125 CPUX86State *env = &cpu->env;
4126 int max_nested_state_len = kvm_max_nested_state_length();
4127 int ret;
4128
1e44f3ab 4129 if (!env->nested_state) {
ebbfef2f
LA
4130 return 0;
4131 }
4132
4133 /*
4134 * It is possible that migration restored a smaller size into
4135 * nested_state->hdr.size than what our kernel support.
4136 * We preserve migration origin nested_state->hdr.size for
4137 * call to KVM_SET_NESTED_STATE but wish that our next call
4138 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4139 */
4140 env->nested_state->size = max_nested_state_len;
4141
4142 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4143 if (ret < 0) {
4144 return ret;
4145 }
4146
b16c0e20
PB
4147 /*
4148 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4149 */
ebbfef2f
LA
4150 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4151 env->hflags |= HF_GUEST_MASK;
4152 } else {
4153 env->hflags &= ~HF_GUEST_MASK;
4154 }
0baa4b44
VK
4155
4156 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4157 if (cpu_has_svm(env)) {
4158 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4159 env->hflags2 |= HF2_GIF_MASK;
4160 } else {
4161 env->hflags2 &= ~HF2_GIF_MASK;
4162 }
b16c0e20 4163 }
ebbfef2f
LA
4164
4165 return ret;
4166}
4167
20d695a9 4168int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 4169{
20d695a9 4170 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
4171 int ret;
4172
2fa45344 4173 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 4174
b16c0e20
PB
4175 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4176 ret = kvm_put_sregs(x86_cpu);
4177 if (ret < 0) {
4178 return ret;
4179 }
4180
48e1a45c 4181 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
4182 ret = kvm_put_nested_state(x86_cpu);
4183 if (ret < 0) {
4184 return ret;
4185 }
4186
6bdf863d
JK
4187 ret = kvm_put_msr_feature_control(x86_cpu);
4188 if (ret < 0) {
4189 return ret;
4190 }
4191 }
4192
36f96c4b
HZ
4193 if (level == KVM_PUT_FULL_STATE) {
4194 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4195 * because TSC frequency mismatch shouldn't abort migration,
4196 * unless the user explicitly asked for a more strict TSC
4197 * setting (e.g. using an explicit "tsc-freq" option).
4198 */
4199 kvm_arch_set_tsc_khz(cpu);
4200 }
4201
1bc22652 4202 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 4203 if (ret < 0) {
05330448 4204 return ret;
b9bec74b 4205 }
1bc22652 4206 ret = kvm_put_xsave(x86_cpu);
b9bec74b 4207 if (ret < 0) {
f1665b21 4208 return ret;
b9bec74b 4209 }
1bc22652 4210 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 4211 if (ret < 0) {
05330448 4212 return ret;
b9bec74b 4213 }
ab443475 4214 /* must be before kvm_put_msrs */
1bc22652 4215 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
4216 if (ret < 0) {
4217 return ret;
4218 }
1bc22652 4219 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 4220 if (ret < 0) {
05330448 4221 return ret;
b9bec74b 4222 }
4fadfa00
PH
4223 ret = kvm_put_vcpu_events(x86_cpu, level);
4224 if (ret < 0) {
4225 return ret;
4226 }
ea643051 4227 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 4228 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 4229 if (ret < 0) {
680c1c6f
JK
4230 return ret;
4231 }
ea643051 4232 }
7477cd38
MT
4233
4234 ret = kvm_put_tscdeadline_msr(x86_cpu);
4235 if (ret < 0) {
4236 return ret;
4237 }
1bc22652 4238 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 4239 if (ret < 0) {
b0b1d690 4240 return ret;
b9bec74b 4241 }
b0b1d690 4242 /* must be last */
1bc22652 4243 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 4244 if (ret < 0) {
ff44f1a3 4245 return ret;
b9bec74b 4246 }
05330448
AL
4247 return 0;
4248}
4249
20d695a9 4250int kvm_arch_get_registers(CPUState *cs)
05330448 4251{
20d695a9 4252 X86CPU *cpu = X86_CPU(cs);
05330448
AL
4253 int ret;
4254
20d695a9 4255 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 4256
4fadfa00 4257 ret = kvm_get_vcpu_events(cpu);
b9bec74b 4258 if (ret < 0) {
f4f1110e 4259 goto out;
b9bec74b 4260 }
4fadfa00
PH
4261 /*
4262 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4263 * KVM_GET_REGS and KVM_GET_SREGS.
4264 */
4265 ret = kvm_get_mp_state(cpu);
b9bec74b 4266 if (ret < 0) {
f4f1110e 4267 goto out;
b9bec74b 4268 }
4fadfa00 4269 ret = kvm_getput_regs(cpu, 0);
b9bec74b 4270 if (ret < 0) {
f4f1110e 4271 goto out;
b9bec74b 4272 }
4fadfa00 4273 ret = kvm_get_xsave(cpu);
b9bec74b 4274 if (ret < 0) {
f4f1110e 4275 goto out;
b9bec74b 4276 }
4fadfa00 4277 ret = kvm_get_xcrs(cpu);
b9bec74b 4278 if (ret < 0) {
f4f1110e 4279 goto out;
b9bec74b 4280 }
4fadfa00 4281 ret = kvm_get_sregs(cpu);
b9bec74b 4282 if (ret < 0) {
f4f1110e 4283 goto out;
b9bec74b 4284 }
4fadfa00 4285 ret = kvm_get_msrs(cpu);
680c1c6f 4286 if (ret < 0) {
f4f1110e 4287 goto out;
680c1c6f 4288 }
4fadfa00 4289 ret = kvm_get_apic(cpu);
b9bec74b 4290 if (ret < 0) {
f4f1110e 4291 goto out;
b9bec74b 4292 }
1bc22652 4293 ret = kvm_get_debugregs(cpu);
b9bec74b 4294 if (ret < 0) {
f4f1110e 4295 goto out;
b9bec74b 4296 }
ebbfef2f
LA
4297 ret = kvm_get_nested_state(cpu);
4298 if (ret < 0) {
4299 goto out;
4300 }
f4f1110e
RH
4301 ret = 0;
4302 out:
4303 cpu_sync_bndcs_hflags(&cpu->env);
4304 return ret;
05330448
AL
4305}
4306
20d695a9 4307void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 4308{
20d695a9
AF
4309 X86CPU *x86_cpu = X86_CPU(cpu);
4310 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
4311 int ret;
4312
276ce815 4313 /* Inject NMI */
fc12d72e
PB
4314 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4315 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4316 qemu_mutex_lock_iothread();
4317 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4318 qemu_mutex_unlock_iothread();
4319 DPRINTF("injected NMI\n");
4320 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4321 if (ret < 0) {
4322 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4323 strerror(-ret));
4324 }
4325 }
4326 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4327 qemu_mutex_lock_iothread();
4328 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4329 qemu_mutex_unlock_iothread();
4330 DPRINTF("injected SMI\n");
4331 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4332 if (ret < 0) {
4333 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4334 strerror(-ret));
4335 }
ce377af3 4336 }
276ce815
LJ
4337 }
4338
15eafc2e 4339 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
4340 qemu_mutex_lock_iothread();
4341 }
4342
e0723c45
PB
4343 /* Force the VCPU out of its inner loop to process any INIT requests
4344 * or (for userspace APIC, but it is cheap to combine the checks here)
4345 * pending TPR access reports.
4346 */
4347 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
4348 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4349 !(env->hflags & HF_SMM_MASK)) {
4350 cpu->exit_request = 1;
4351 }
4352 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4353 cpu->exit_request = 1;
4354 }
e0723c45 4355 }
05330448 4356
15eafc2e 4357 if (!kvm_pic_in_kernel()) {
db1669bc
JK
4358 /* Try to inject an interrupt if the guest can accept it */
4359 if (run->ready_for_interrupt_injection &&
259186a7 4360 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
4361 (env->eflags & IF_MASK)) {
4362 int irq;
4363
259186a7 4364 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
4365 irq = cpu_get_pic_interrupt(env);
4366 if (irq >= 0) {
4367 struct kvm_interrupt intr;
4368
4369 intr.irq = irq;
db1669bc 4370 DPRINTF("injected interrupt %d\n", irq);
1bc22652 4371 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
4372 if (ret < 0) {
4373 fprintf(stderr,
4374 "KVM: injection failed, interrupt lost (%s)\n",
4375 strerror(-ret));
4376 }
db1669bc
JK
4377 }
4378 }
05330448 4379
db1669bc
JK
4380 /* If we have an interrupt but the guest is not ready to receive an
4381 * interrupt, request an interrupt window exit. This will
4382 * cause a return to userspace as soon as the guest is ready to
4383 * receive interrupts. */
259186a7 4384 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4385 run->request_interrupt_window = 1;
4386 } else {
4387 run->request_interrupt_window = 0;
4388 }
4389
4390 DPRINTF("setting tpr\n");
02e51483 4391 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4392
4393 qemu_mutex_unlock_iothread();
db1669bc 4394 }
05330448
AL
4395}
4396
035d1ef2
CQ
4397static void kvm_rate_limit_on_bus_lock(void)
4398{
4399 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4400
4401 if (delay_ns) {
4402 g_usleep(delay_ns / SCALE_US);
4403 }
4404}
4405
4c663752 4406MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4407{
20d695a9
AF
4408 X86CPU *x86_cpu = X86_CPU(cpu);
4409 CPUX86State *env = &x86_cpu->env;
4410
fc12d72e
PB
4411 if (run->flags & KVM_RUN_X86_SMM) {
4412 env->hflags |= HF_SMM_MASK;
4413 } else {
f5c052b9 4414 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4415 }
b9bec74b 4416 if (run->if_flag) {
05330448 4417 env->eflags |= IF_MASK;
b9bec74b 4418 } else {
05330448 4419 env->eflags &= ~IF_MASK;
b9bec74b 4420 }
035d1ef2
CQ
4421 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4422 kvm_rate_limit_on_bus_lock();
4423 }
4b8523ee
JK
4424
4425 /* We need to protect the apic state against concurrent accesses from
4426 * different threads in case the userspace irqchip is used. */
4427 if (!kvm_irqchip_in_kernel()) {
4428 qemu_mutex_lock_iothread();
4429 }
02e51483
CF
4430 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4431 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4432 if (!kvm_irqchip_in_kernel()) {
4433 qemu_mutex_unlock_iothread();
4434 }
f794aa4a 4435 return cpu_get_mem_attrs(env);
05330448
AL
4436}
4437
20d695a9 4438int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4439{
20d695a9
AF
4440 X86CPU *cpu = X86_CPU(cs);
4441 CPUX86State *env = &cpu->env;
232fc23b 4442
259186a7 4443 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4444 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4445 assert(env->mcg_cap);
4446
259186a7 4447 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4448
dd1750d7 4449 kvm_cpu_synchronize_state(cs);
ab443475 4450
fd13f23b 4451 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4452 /* this means triple fault */
cf83f140 4453 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4454 cs->exit_request = 1;
ab443475
JK
4455 return 0;
4456 }
fd13f23b 4457 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4458 env->has_error_code = 0;
4459
259186a7 4460 cs->halted = 0;
ab443475
JK
4461 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4462 env->mp_state = KVM_MP_STATE_RUNNABLE;
4463 }
4464 }
4465
fc12d72e
PB
4466 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4467 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4468 kvm_cpu_synchronize_state(cs);
4469 do_cpu_init(cpu);
4470 }
4471
db1669bc
JK
4472 if (kvm_irqchip_in_kernel()) {
4473 return 0;
4474 }
4475
259186a7
AF
4476 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4477 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4478 apic_poll_irq(cpu->apic_state);
5d62c43a 4479 }
259186a7 4480 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4481 (env->eflags & IF_MASK)) ||
259186a7
AF
4482 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4483 cs->halted = 0;
6792a57b 4484 }
259186a7 4485 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4486 kvm_cpu_synchronize_state(cs);
232fc23b 4487 do_cpu_sipi(cpu);
0af691d7 4488 }
259186a7
AF
4489 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4490 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4491 kvm_cpu_synchronize_state(cs);
02e51483 4492 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4493 env->tpr_access_type);
4494 }
0af691d7 4495
259186a7 4496 return cs->halted;
0af691d7
MT
4497}
4498
839b5630 4499static int kvm_handle_halt(X86CPU *cpu)
05330448 4500{
259186a7 4501 CPUState *cs = CPU(cpu);
839b5630
AF
4502 CPUX86State *env = &cpu->env;
4503
259186a7 4504 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4505 (env->eflags & IF_MASK)) &&
259186a7
AF
4506 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4507 cs->halted = 1;
bb4ea393 4508 return EXCP_HLT;
05330448
AL
4509 }
4510
bb4ea393 4511 return 0;
05330448
AL
4512}
4513
f7575c96 4514static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4515{
f7575c96
AF
4516 CPUState *cs = CPU(cpu);
4517 struct kvm_run *run = cs->kvm_run;
d362e757 4518
02e51483 4519 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4520 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4521 : TPR_ACCESS_READ);
4522 return 1;
4523}
4524
f17ec444 4525int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4526{
38972938 4527 static const uint8_t int3 = 0xcc;
64bf3f4e 4528
f17ec444
AF
4529 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4530 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4531 return -EINVAL;
b9bec74b 4532 }
e22a25c9
AL
4533 return 0;
4534}
4535
f17ec444 4536int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4537{
4538 uint8_t int3;
4539
c6986f16
PB
4540 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4541 return -EINVAL;
4542 }
4543 if (int3 != 0xcc) {
4544 return 0;
4545 }
4546 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4547 return -EINVAL;
b9bec74b 4548 }
e22a25c9
AL
4549 return 0;
4550}
4551
4552static struct {
4553 target_ulong addr;
4554 int len;
4555 int type;
4556} hw_breakpoint[4];
4557
4558static int nb_hw_breakpoint;
4559
4560static int find_hw_breakpoint(target_ulong addr, int len, int type)
4561{
4562 int n;
4563
b9bec74b 4564 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4565 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4566 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4567 return n;
b9bec74b
JK
4568 }
4569 }
e22a25c9
AL
4570 return -1;
4571}
4572
4573int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4574 target_ulong len, int type)
4575{
4576 switch (type) {
4577 case GDB_BREAKPOINT_HW:
4578 len = 1;
4579 break;
4580 case GDB_WATCHPOINT_WRITE:
4581 case GDB_WATCHPOINT_ACCESS:
4582 switch (len) {
4583 case 1:
4584 break;
4585 case 2:
4586 case 4:
4587 case 8:
b9bec74b 4588 if (addr & (len - 1)) {
e22a25c9 4589 return -EINVAL;
b9bec74b 4590 }
e22a25c9
AL
4591 break;
4592 default:
4593 return -EINVAL;
4594 }
4595 break;
4596 default:
4597 return -ENOSYS;
4598 }
4599
b9bec74b 4600 if (nb_hw_breakpoint == 4) {
e22a25c9 4601 return -ENOBUFS;
b9bec74b
JK
4602 }
4603 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4604 return -EEXIST;
b9bec74b 4605 }
e22a25c9
AL
4606 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4607 hw_breakpoint[nb_hw_breakpoint].len = len;
4608 hw_breakpoint[nb_hw_breakpoint].type = type;
4609 nb_hw_breakpoint++;
4610
4611 return 0;
4612}
4613
4614int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4615 target_ulong len, int type)
4616{
4617 int n;
4618
4619 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4620 if (n < 0) {
e22a25c9 4621 return -ENOENT;
b9bec74b 4622 }
e22a25c9
AL
4623 nb_hw_breakpoint--;
4624 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4625
4626 return 0;
4627}
4628
4629void kvm_arch_remove_all_hw_breakpoints(void)
4630{
4631 nb_hw_breakpoint = 0;
4632}
4633
4634static CPUWatchpoint hw_watchpoint;
4635
a60f24b5 4636static int kvm_handle_debug(X86CPU *cpu,
48405526 4637 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4638{
ed2803da 4639 CPUState *cs = CPU(cpu);
a60f24b5 4640 CPUX86State *env = &cpu->env;
f2574737 4641 int ret = 0;
e22a25c9
AL
4642 int n;
4643
37936ac7
LA
4644 if (arch_info->exception == EXCP01_DB) {
4645 if (arch_info->dr6 & DR6_BS) {
ed2803da 4646 if (cs->singlestep_enabled) {
f2574737 4647 ret = EXCP_DEBUG;
b9bec74b 4648 }
e22a25c9 4649 } else {
b9bec74b
JK
4650 for (n = 0; n < 4; n++) {
4651 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4652 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4653 case 0x0:
f2574737 4654 ret = EXCP_DEBUG;
e22a25c9
AL
4655 break;
4656 case 0x1:
f2574737 4657 ret = EXCP_DEBUG;
ff4700b0 4658 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4659 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4660 hw_watchpoint.flags = BP_MEM_WRITE;
4661 break;
4662 case 0x3:
f2574737 4663 ret = EXCP_DEBUG;
ff4700b0 4664 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4665 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4666 hw_watchpoint.flags = BP_MEM_ACCESS;
4667 break;
4668 }
b9bec74b
JK
4669 }
4670 }
e22a25c9 4671 }
ff4700b0 4672 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4673 ret = EXCP_DEBUG;
b9bec74b 4674 }
f2574737 4675 if (ret == 0) {
ff4700b0 4676 cpu_synchronize_state(cs);
fd13f23b 4677 assert(env->exception_nr == -1);
b0b1d690 4678
f2574737 4679 /* pass to guest */
fd13f23b
LA
4680 kvm_queue_exception(env, arch_info->exception,
4681 arch_info->exception == EXCP01_DB,
4682 arch_info->dr6);
48405526 4683 env->has_error_code = 0;
b0b1d690 4684 }
e22a25c9 4685
f2574737 4686 return ret;
e22a25c9
AL
4687}
4688
20d695a9 4689void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4690{
4691 const uint8_t type_code[] = {
4692 [GDB_BREAKPOINT_HW] = 0x0,
4693 [GDB_WATCHPOINT_WRITE] = 0x1,
4694 [GDB_WATCHPOINT_ACCESS] = 0x3
4695 };
4696 const uint8_t len_code[] = {
4697 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4698 };
4699 int n;
4700
a60f24b5 4701 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4702 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4703 }
e22a25c9
AL
4704 if (nb_hw_breakpoint > 0) {
4705 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4706 dbg->arch.debugreg[7] = 0x0600;
4707 for (n = 0; n < nb_hw_breakpoint; n++) {
4708 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4709 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4710 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4711 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4712 }
4713 }
4714}
4513d923 4715
c22f5467
SC
4716static bool has_sgx_provisioning;
4717
4718static bool __kvm_enable_sgx_provisioning(KVMState *s)
4719{
4720 int fd, ret;
4721
4722 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4723 return false;
4724 }
4725
4726 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4727 if (fd < 0) {
4728 return false;
4729 }
4730
4731 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4732 if (ret) {
4733 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4734 exit(1);
4735 }
4736 close(fd);
4737 return true;
4738}
4739
4740bool kvm_enable_sgx_provisioning(KVMState *s)
4741{
4742 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4743}
4744
2a4dac83
JK
4745static bool host_supports_vmx(void)
4746{
4747 uint32_t ecx, unused;
4748
4749 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4750 return ecx & CPUID_EXT_VMX;
4751}
4752
4753#define VMX_INVALID_GUEST_STATE 0x80000021
4754
20d695a9 4755int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4756{
20d695a9 4757 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4758 uint64_t code;
4759 int ret;
4760
4761 switch (run->exit_reason) {
4762 case KVM_EXIT_HLT:
4763 DPRINTF("handle_hlt\n");
4b8523ee 4764 qemu_mutex_lock_iothread();
839b5630 4765 ret = kvm_handle_halt(cpu);
4b8523ee 4766 qemu_mutex_unlock_iothread();
2a4dac83
JK
4767 break;
4768 case KVM_EXIT_SET_TPR:
4769 ret = 0;
4770 break;
d362e757 4771 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4772 qemu_mutex_lock_iothread();
f7575c96 4773 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4774 qemu_mutex_unlock_iothread();
d362e757 4775 break;
2a4dac83
JK
4776 case KVM_EXIT_FAIL_ENTRY:
4777 code = run->fail_entry.hardware_entry_failure_reason;
4778 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4779 code);
4780 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4781 fprintf(stderr,
12619721 4782 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4783 "unrestricted mode\n"
4784 "support, the failure can be most likely due to the guest "
4785 "entering an invalid\n"
4786 "state for Intel VT. For example, the guest maybe running "
4787 "in big real mode\n"
4788 "which is not supported on less recent Intel processors."
4789 "\n\n");
4790 }
4791 ret = -1;
4792 break;
4793 case KVM_EXIT_EXCEPTION:
4794 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4795 run->ex.exception, run->ex.error_code);
4796 ret = -1;
4797 break;
f2574737
JK
4798 case KVM_EXIT_DEBUG:
4799 DPRINTF("kvm_exit_debug\n");
4b8523ee 4800 qemu_mutex_lock_iothread();
a60f24b5 4801 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4802 qemu_mutex_unlock_iothread();
f2574737 4803 break;
50efe82c
AS
4804 case KVM_EXIT_HYPERV:
4805 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4806 break;
15eafc2e
PB
4807 case KVM_EXIT_IOAPIC_EOI:
4808 ioapic_eoi_broadcast(run->eoi.vector);
4809 ret = 0;
4810 break;
035d1ef2
CQ
4811 case KVM_EXIT_X86_BUS_LOCK:
4812 /* already handled in kvm_arch_post_run */
4813 ret = 0;
4814 break;
2a4dac83
JK
4815 default:
4816 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4817 ret = -1;
4818 break;
4819 }
4820
4821 return ret;
4822}
4823
20d695a9 4824bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4825{
20d695a9
AF
4826 X86CPU *cpu = X86_CPU(cs);
4827 CPUX86State *env = &cpu->env;
4828
dd1750d7 4829 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4830 return !(env->cr[0] & CR0_PE_MASK) ||
4831 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4832}
84b058d7
JK
4833
4834void kvm_arch_init_irq_routing(KVMState *s)
4835{
cc7e0ddf 4836 /* We know at this point that we're using the in-kernel
614e41bc 4837 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4838 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4839 */
614e41bc 4840 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4841 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4842
4843 if (kvm_irqchip_is_split()) {
4844 int i;
4845
4846 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4847 MSI routes for signaling interrupts to the local apics. */
4848 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 4849 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
4850 error_report("Could not enable split IRQ mode.");
4851 exit(1);
4852 }
4853 }
4854 }
4855}
4856
4376c40d 4857int kvm_arch_irqchip_create(KVMState *s)
15eafc2e
PB
4858{
4859 int ret;
4376c40d 4860 if (kvm_kernel_irqchip_split()) {
15eafc2e
PB
4861 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4862 if (ret) {
df3c286c 4863 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
4864 strerror(-ret));
4865 exit(1);
4866 } else {
4867 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4868 kvm_split_irqchip = true;
4869 return 1;
4870 }
4871 } else {
4872 return 0;
4873 }
84b058d7 4874}
b139bd30 4875
c1bb5418
DW
4876uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4877{
4878 CPUX86State *env;
4879 uint64_t ext_id;
4880
4881 if (!first_cpu) {
4882 return address;
4883 }
4884 env = &X86_CPU(first_cpu)->env;
4885 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4886 return address;
4887 }
4888
4889 /*
4890 * If the remappable format bit is set, or the upper bits are
4891 * already set in address_hi, or the low extended bits aren't
4892 * there anyway, do nothing.
4893 */
4894 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4895 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4896 return address;
4897 }
4898
4899 address &= ~ext_id;
4900 address |= ext_id << 35;
4901 return address;
4902}
4903
9e03a040 4904int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 4905 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 4906{
8b5ed7df
PX
4907 X86IOMMUState *iommu = x86_iommu_get_default();
4908
4909 if (iommu) {
30c60f77 4910 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
8b5ed7df 4911
c1bb5418
DW
4912 if (class->int_remap) {
4913 int ret;
4914 MSIMessage src, dst;
0ea1472d 4915
c1bb5418
DW
4916 src.address = route->u.msi.address_hi;
4917 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4918 src.address |= route->u.msi.address_lo;
4919 src.data = route->u.msi.data;
8b5ed7df 4920
c1bb5418
DW
4921 ret = class->int_remap(iommu, &src, &dst, dev ? \
4922 pci_requester_id(dev) : \
4923 X86_IOMMU_SID_INVALID);
4924 if (ret) {
4925 trace_kvm_x86_fixup_msi_error(route->gsi);
4926 return 1;
4927 }
4928
4929 /*
4930 * Handled untranslated compatibilty format interrupt with
4931 * extended destination ID in the low bits 11-5. */
4932 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
8b5ed7df 4933
c1bb5418
DW
4934 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4935 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4936 route->u.msi.data = dst.data;
4937 return 0;
4938 }
8b5ed7df
PX
4939 }
4940
c1bb5418
DW
4941 address = kvm_swizzle_msi_ext_dest_id(address);
4942 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4943 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
9e03a040
FB
4944 return 0;
4945}
1850b6b7 4946
38d87493
PX
4947typedef struct MSIRouteEntry MSIRouteEntry;
4948
4949struct MSIRouteEntry {
4950 PCIDevice *dev; /* Device pointer */
4951 int vector; /* MSI/MSIX vector index */
4952 int virq; /* Virtual IRQ index */
4953 QLIST_ENTRY(MSIRouteEntry) list;
4954};
4955
4956/* List of used GSI routes */
4957static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4958 QLIST_HEAD_INITIALIZER(msi_route_list);
4959
e1d4fb2d
PX
4960static void kvm_update_msi_routes_all(void *private, bool global,
4961 uint32_t index, uint32_t mask)
4962{
a56de056 4963 int cnt = 0, vector;
e1d4fb2d
PX
4964 MSIRouteEntry *entry;
4965 MSIMessage msg;
fd563564
PX
4966 PCIDevice *dev;
4967
e1d4fb2d
PX
4968 /* TODO: explicit route update */
4969 QLIST_FOREACH(entry, &msi_route_list, list) {
4970 cnt++;
a56de056 4971 vector = entry->vector;
fd563564 4972 dev = entry->dev;
a56de056
PX
4973 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4974 msg = msix_get_message(dev, vector);
4975 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4976 msg = msi_get_message(dev, vector);
4977 } else {
4978 /*
4979 * Either MSI/MSIX is disabled for the device, or the
4980 * specific message was masked out. Skip this one.
4981 */
fd563564
PX
4982 continue;
4983 }
fd563564 4984 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 4985 }
3f1fea0f 4986 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
4987 trace_kvm_x86_update_msi_routes(cnt);
4988}
4989
38d87493
PX
4990int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4991 int vector, PCIDevice *dev)
4992{
e1d4fb2d 4993 static bool notify_list_inited = false;
38d87493
PX
4994 MSIRouteEntry *entry;
4995
4996 if (!dev) {
4997 /* These are (possibly) IOAPIC routes only used for split
4998 * kernel irqchip mode, while what we are housekeeping are
4999 * PCI devices only. */
5000 return 0;
5001 }
5002
5003 entry = g_new0(MSIRouteEntry, 1);
5004 entry->dev = dev;
5005 entry->vector = vector;
5006 entry->virq = route->gsi;
5007 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5008
5009 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
5010
5011 if (!notify_list_inited) {
5012 /* For the first time we do add route, add ourselves into
5013 * IOMMU's IEC notify list if needed. */
5014 X86IOMMUState *iommu = x86_iommu_get_default();
5015 if (iommu) {
5016 x86_iommu_iec_register_notifier(iommu,
5017 kvm_update_msi_routes_all,
5018 NULL);
5019 }
5020 notify_list_inited = true;
5021 }
38d87493
PX
5022 return 0;
5023}
5024
5025int kvm_arch_release_virq_post(int virq)
5026{
5027 MSIRouteEntry *entry, *next;
5028 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5029 if (entry->virq == virq) {
5030 trace_kvm_x86_remove_msi_route(virq);
5031 QLIST_REMOVE(entry, list);
01960e6d 5032 g_free(entry);
38d87493
PX
5033 break;
5034 }
5035 }
9e03a040
FB
5036 return 0;
5037}
1850b6b7
EA
5038
5039int kvm_arch_msi_data_to_gsi(uint32_t data)
5040{
5041 abort();
5042}
e1e43813
PB
5043
5044bool kvm_has_waitpkg(void)
5045{
5046 return has_msr_umwait;
5047}
92a5199b
TL
5048
5049bool kvm_arch_cpu_check_are_resettable(void)
5050{
5051 return !sev_es_enabled();
5052}