]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm/kvm.c
hw/scsi/vmw_pvscsi.c: Use device_cold_reset() to reset SCSI devices
[mirror_qemu.git] / target / i386 / kvm / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
8efc4e51 16#include "qapi/qapi-events-run-state.h"
da34e65c 17#include "qapi/error.h"
e2e69f6b 18#include "qapi/visitor.h"
05330448 19#include <sys/ioctl.h>
25d2e361 20#include <sys/utsname.h>
19db68ca 21#include <sys/syscall.h>
05330448
AL
22
23#include <linux/kvm.h>
1814eab6 24#include "standard-headers/asm-x86/kvm_para.h"
05330448 25
33c11879 26#include "cpu.h"
f5cc5a5c 27#include "host-cpu.h"
9c17d615 28#include "sysemu/sysemu.h"
b3946626 29#include "sysemu/hw_accel.h"
6410848b 30#include "sysemu/kvm_int.h"
54d31236 31#include "sysemu/runstate.h"
1d31f66b 32#include "kvm_i386.h"
93777de3 33#include "sev.h"
50efe82c 34#include "hyperv.h"
5e953812 35#include "hyperv-proto.h"
50efe82c 36
022c62cb 37#include "exec/gdbstub.h"
1de7afc9 38#include "qemu/host-utils.h"
db725815 39#include "qemu/main-loop.h"
1de7afc9 40#include "qemu/config-file.h"
1c4a55db 41#include "qemu/error-report.h"
5df022cf 42#include "qemu/memalign.h"
89a289c7 43#include "hw/i386/x86.h"
0d09e41a 44#include "hw/i386/apic.h"
e0723c45
PB
45#include "hw/i386/apic_internal.h"
46#include "hw/i386/apic-msidef.h"
8b5ed7df 47#include "hw/i386/intel_iommu.h"
e1d4fb2d 48#include "hw/i386/x86-iommu.h"
d6d059ca 49#include "hw/i386/e820_memory_layout.h"
50efe82c 50
a2cb15b0 51#include "hw/pci/pci.h"
15eafc2e 52#include "hw/pci/msi.h"
fd563564 53#include "hw/pci/msix.h"
795c40b8 54#include "migration/blocker.h"
4c663752 55#include "exec/memattrs.h"
8b5ed7df 56#include "trace.h"
05330448 57
d8701185
JD
58#include CONFIG_DEVICES
59
05330448
AL
60//#define DEBUG_KVM
61
62#ifdef DEBUG_KVM
8c0d577e 63#define DPRINTF(fmt, ...) \
05330448
AL
64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
65#else
8c0d577e 66#define DPRINTF(fmt, ...) \
05330448
AL
67 do { } while (0)
68#endif
69
73b994f6
LA
70/* From arch/x86/kvm/lapic.h */
71#define KVM_APIC_BUS_CYCLE_NS 1
72#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
73
1a03675d
GC
74#define MSR_KVM_WALL_CLOCK 0x11
75#define MSR_KVM_SYSTEM_TIME 0x12
76
d1138251
EH
77/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
78 * 255 kvm_msr_entry structs */
79#define MSR_BUF_SIZE 4096
d71b62a1 80
420ae1fc
PB
81static void kvm_init_msrs(X86CPU *cpu);
82
94a8d39a
JK
83const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
84 KVM_CAP_INFO(SET_TSS_ADDR),
85 KVM_CAP_INFO(EXT_CPUID),
86 KVM_CAP_INFO(MP_STATE),
87 KVM_CAP_LAST_INFO
88};
25d2e361 89
c3a3a7d3
JK
90static bool has_msr_star;
91static bool has_msr_hsave_pa;
c9b8f6b6 92static bool has_msr_tsc_aux;
f28558d3 93static bool has_msr_tsc_adjust;
aa82ba54 94static bool has_msr_tsc_deadline;
df67696e 95static bool has_msr_feature_control;
21e87c46 96static bool has_msr_misc_enable;
fc12d72e 97static bool has_msr_smbase;
79e9ebeb 98static bool has_msr_bndcfgs;
25d2e361 99static int lm_capable_kernel;
7bc3d711 100static bool has_msr_hv_hypercall;
f2a53c9e 101static bool has_msr_hv_crash;
744b8a94 102static bool has_msr_hv_reset;
8c145d7c 103static bool has_msr_hv_vpindex;
e9688fab 104static bool hv_vpindex_settable;
46eb8f98 105static bool has_msr_hv_runtime;
866eea9a 106static bool has_msr_hv_synic;
ff99aa64 107static bool has_msr_hv_stimer;
d72bc7f6 108static bool has_msr_hv_frequencies;
ba6a4fd9 109static bool has_msr_hv_reenlightenment;
73d24074 110static bool has_msr_hv_syndbg_options;
18cd2c17 111static bool has_msr_xss;
65087997 112static bool has_msr_umwait;
a33a2cfe 113static bool has_msr_spec_ctrl;
cabf9862 114static bool has_tsc_scale_msr;
2a9758c5 115static bool has_msr_tsx_ctrl;
cfeea0c0 116static bool has_msr_virt_ssbd;
e13713db 117static bool has_msr_smi_count;
aec5e9c3 118static bool has_msr_arch_capabs;
597360c0 119static bool has_msr_core_capabs;
20a78b02 120static bool has_msr_vmx_vmfunc;
67025148 121static bool has_msr_ucode_rev;
4a910e1f 122static bool has_msr_vmx_procbased_ctls2;
ea39f9b6 123static bool has_msr_perf_capabs;
6aa4228b 124static bool has_msr_pkrs;
b827df58 125
0b368a10
JD
126static uint32_t has_architectural_pmu_version;
127static uint32_t num_architectural_pmu_gp_counters;
128static uint32_t num_architectural_pmu_fixed_counters;
0d894367 129
28143b40 130static int has_xsave;
e56dd3c7 131static int has_xsave2;
28143b40
TH
132static int has_xcrs;
133static int has_pit_state2;
8f515d38 134static int has_sregs2;
fd13f23b 135static int has_exception_payload;
12f89a39 136static int has_triple_fault_event;
28143b40 137
87f8b626
AR
138static bool has_msr_mcg_ext_ctl;
139
494e95e9 140static struct kvm_cpuid2 *cpuid_cache;
a8439be6 141static struct kvm_cpuid2 *hv_cpuid_cache;
f57bceb6 142static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 143
860054d8
AG
144static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
145
035d1ef2
CQ
146#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
147static RateLimit bus_lock_ratelimit_ctrl;
5a778a5f 148static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
035d1ef2 149
28143b40
TH
150int kvm_has_pit_state2(void)
151{
152 return has_pit_state2;
153}
154
355023f2
PB
155bool kvm_has_smm(void)
156{
23edf8b5 157 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
355023f2
PB
158}
159
6053a86f
MT
160bool kvm_has_adjust_clock_stable(void)
161{
162 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
163
c4ef867f 164 return (ret & KVM_CLOCK_TSC_STABLE);
6053a86f
MT
165}
166
8700a984
VK
167bool kvm_has_adjust_clock(void)
168{
169 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
170}
171
79a197ab
LA
172bool kvm_has_exception_payload(void)
173{
174 return has_exception_payload;
175}
176
fb506e70
RK
177static bool kvm_x2apic_api_set_flags(uint64_t flags)
178{
4f7f5893 179 KVMState *s = KVM_STATE(current_accel());
fb506e70
RK
180
181 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
182}
183
e391c009 184#define MEMORIZE(fn, _result) \
2a138ec3 185 ({ \
2a138ec3
RK
186 static bool _memorized; \
187 \
188 if (_memorized) { \
189 return _result; \
190 } \
191 _memorized = true; \
192 _result = fn; \
193 })
194
e391c009
IM
195static bool has_x2apic_api;
196
197bool kvm_has_x2apic_api(void)
198{
199 return has_x2apic_api;
200}
201
fb506e70
RK
202bool kvm_enable_x2apic(void)
203{
2a138ec3
RK
204 return MEMORIZE(
205 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
206 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
207 has_x2apic_api);
fb506e70
RK
208}
209
e9688fab
RK
210bool kvm_hv_vpindex_settable(void)
211{
212 return hv_vpindex_settable;
213}
214
0fd7e098
LL
215static int kvm_get_tsc(CPUState *cs)
216{
217 X86CPU *cpu = X86_CPU(cs);
218 CPUX86State *env = &cpu->env;
5a778a5f 219 uint64_t value;
0fd7e098
LL
220 int ret;
221
222 if (env->tsc_valid) {
223 return 0;
224 }
225
0fd7e098
LL
226 env->tsc_valid = !runstate_is_running();
227
5a778a5f 228 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
0fd7e098
LL
229 if (ret < 0) {
230 return ret;
231 }
232
5a778a5f 233 env->tsc = value;
0fd7e098
LL
234 return 0;
235}
236
14e6fe12 237static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 238{
0fd7e098
LL
239 kvm_get_tsc(cpu);
240}
241
242void kvm_synchronize_all_tsc(void)
243{
244 CPUState *cpu;
245
246 if (kvm_enabled()) {
247 CPU_FOREACH(cpu) {
14e6fe12 248 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
249 }
250 }
251}
252
b827df58
AK
253static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
254{
255 struct kvm_cpuid2 *cpuid;
256 int r, size;
257
258 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 259 cpuid = g_malloc0(size);
b827df58
AK
260 cpuid->nent = max;
261 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
262 if (r == 0 && cpuid->nent >= max) {
263 r = -E2BIG;
264 }
b827df58
AK
265 if (r < 0) {
266 if (r == -E2BIG) {
7267c094 267 g_free(cpuid);
b827df58
AK
268 return NULL;
269 } else {
270 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
271 strerror(-r));
272 exit(1);
273 }
274 }
275 return cpuid;
276}
277
dd87f8a6
EH
278/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
279 * for all entries.
280 */
281static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
282{
283 struct kvm_cpuid2 *cpuid;
284 int max = 1;
494e95e9
CP
285
286 if (cpuid_cache != NULL) {
287 return cpuid_cache;
288 }
dd87f8a6
EH
289 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
290 max *= 2;
291 }
494e95e9 292 cpuid_cache = cpuid;
dd87f8a6
EH
293 return cpuid;
294}
295
b199c682 296static bool host_tsx_broken(void)
40e80ee4
EH
297{
298 int family, model, stepping;\
299 char vendor[CPUID_VENDOR_SZ + 1];
300
f5cc5a5c 301 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
40e80ee4
EH
302
303 /* Check if we are running on a Haswell host known to have broken TSX */
304 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
305 (family == 6) &&
306 ((model == 63 && stepping < 4) ||
307 model == 60 || model == 69 || model == 70);
308}
0c31b744 309
829ae2f9
EH
310/* Returns the value for a specific register on the cpuid entry
311 */
312static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
313{
314 uint32_t ret = 0;
315 switch (reg) {
316 case R_EAX:
317 ret = entry->eax;
318 break;
319 case R_EBX:
320 ret = entry->ebx;
321 break;
322 case R_ECX:
323 ret = entry->ecx;
324 break;
325 case R_EDX:
326 ret = entry->edx;
327 break;
328 }
329 return ret;
330}
331
4fb73f1d
EH
332/* Find matching entry for function/index on kvm_cpuid2 struct
333 */
334static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
335 uint32_t function,
336 uint32_t index)
337{
338 int i;
339 for (i = 0; i < cpuid->nent; ++i) {
340 if (cpuid->entries[i].function == function &&
341 cpuid->entries[i].index == index) {
342 return &cpuid->entries[i];
343 }
344 }
345 /* not found: */
346 return NULL;
347}
348
ba9bc59e 349uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 350 uint32_t index, int reg)
b827df58
AK
351{
352 struct kvm_cpuid2 *cpuid;
b827df58
AK
353 uint32_t ret = 0;
354 uint32_t cpuid_1_edx;
19db68ca 355 uint64_t bitmask;
b827df58 356
dd87f8a6 357 cpuid = get_supported_cpuid(s);
b827df58 358
4fb73f1d
EH
359 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
360 if (entry) {
4fb73f1d 361 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
362 }
363
7b46e5ce
EH
364 /* Fixups for the data returned by KVM, below */
365
c2acb022
EH
366 if (function == 1 && reg == R_EDX) {
367 /* KVM before 2.6.30 misreports the following features */
368 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
369 } else if (function == 1 && reg == R_ECX) {
370 /* We can set the hypervisor flag, even if KVM does not return it on
371 * GET_SUPPORTED_CPUID
372 */
373 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
374 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
375 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
376 * and the irqchip is in the kernel.
377 */
378 if (kvm_irqchip_in_kernel() &&
379 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
380 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
381 }
41e5e76d
EH
382
383 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
384 * without the in-kernel irqchip
385 */
386 if (!kvm_irqchip_in_kernel()) {
387 ret &= ~CPUID_EXT_X2APIC;
b827df58 388 }
2266d443
MT
389
390 if (enable_cpu_pm) {
391 int disable_exits = kvm_check_extension(s,
392 KVM_CAP_X86_DISABLE_EXITS);
393
394 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
395 ret |= CPUID_EXT_MONITOR;
396 }
397 }
28b8e4d0
JK
398 } else if (function == 6 && reg == R_EAX) {
399 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4 400 } else if (function == 7 && index == 0 && reg == R_EBX) {
b199c682 401 if (host_tsx_broken()) {
40e80ee4
EH
402 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
403 }
485b1d25
EH
404 } else if (function == 7 && index == 0 && reg == R_EDX) {
405 /*
406 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
407 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
408 * returned by KVM_GET_MSR_INDEX_LIST.
409 */
410 if (!has_msr_arch_capabs) {
411 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
412 }
19db68ca
YZ
413 } else if (function == 0xd && index == 0 &&
414 (reg == R_EAX || reg == R_EDX)) {
3ec5ad40
PB
415 /*
416 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
417 * features that still have to be enabled with the arch_prctl
418 * system call. QEMU needs the full value, which is retrieved
419 * with KVM_GET_DEVICE_ATTR.
420 */
19db68ca
YZ
421 struct kvm_device_attr attr = {
422 .group = 0,
423 .attr = KVM_X86_XCOMP_GUEST_SUPP,
424 .addr = (unsigned long) &bitmask
425 };
426
427 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
428 if (!sys_attr) {
3ec5ad40 429 return ret;
19db68ca
YZ
430 }
431
432 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
3ec5ad40
PB
433 if (rc < 0) {
434 if (rc != -ENXIO) {
435 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
436 "error: %d", rc);
437 }
438 return ret;
19db68ca
YZ
439 }
440 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
f98bbd83
BM
441 } else if (function == 0x80000001 && reg == R_ECX) {
442 /*
443 * It's safe to enable TOPOEXT even if it's not returned by
444 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
445 * us to keep CPU models including TOPOEXT runnable on older kernels.
446 */
447 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
448 } else if (function == 0x80000001 && reg == R_EDX) {
449 /* On Intel, kvm returns cpuid according to the Intel spec,
450 * so add missing bits according to the AMD spec:
451 */
452 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
453 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
454 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
455 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
456 * be enabled without the in-kernel irqchip
457 */
458 if (!kvm_irqchip_in_kernel()) {
459 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
460 }
c1bb5418
DW
461 if (kvm_irqchip_is_split()) {
462 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
463 }
be777326 464 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 465 ret |= 1U << KVM_HINTS_REALTIME;
b9bec74b 466 }
0c31b744
GC
467
468 return ret;
bb0300dc 469}
bb0300dc 470
ede146c2 471uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
472{
473 struct {
474 struct kvm_msrs info;
475 struct kvm_msr_entry entries[1];
a1834d97 476 } msr_data = {};
20a78b02
PB
477 uint64_t value;
478 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
479
480 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
481 return 0;
482 }
483
484 /* Check if requested MSR is supported feature MSR */
485 int i;
486 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
487 if (kvm_feature_msrs->indices[i] == index) {
488 break;
489 }
490 if (i == kvm_feature_msrs->nmsrs) {
491 return 0; /* if the feature MSR is not supported, simply return 0 */
492 }
493
494 msr_data.info.nmsrs = 1;
495 msr_data.entries[0].index = index;
496
497 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
498 if (ret != 1) {
499 error_report("KVM get MSR (index=0x%x) feature failed, %s",
500 index, strerror(-ret));
501 exit(1);
502 }
503
20a78b02
PB
504 value = msr_data.entries[0].data;
505 switch (index) {
506 case MSR_IA32_VMX_PROCBASED_CTLS2:
4a910e1f
VK
507 if (!has_msr_vmx_procbased_ctls2) {
508 /* KVM forgot to add these bits for some time, do this ourselves. */
509 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
510 CPUID_XSAVE_XSAVES) {
511 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
512 }
513 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
514 CPUID_EXT_RDRAND) {
515 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
516 }
517 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
518 CPUID_7_0_EBX_INVPCID) {
519 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
520 }
521 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
522 CPUID_7_0_EBX_RDSEED) {
523 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
524 }
525 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
526 CPUID_EXT2_RDTSCP) {
527 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
528 }
048c9516
PB
529 }
530 /* fall through */
20a78b02
PB
531 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
532 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
533 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
534 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
535 /*
536 * Return true for bits that can be one, but do not have to be one.
537 * The SDM tells us which bits could have a "must be one" setting,
538 * so we can do the opposite transformation in make_vmx_msr_value.
539 */
540 must_be_one = (uint32_t)value;
541 can_be_one = (uint32_t)(value >> 32);
542 return can_be_one & ~must_be_one;
543
544 default:
545 return value;
546 }
f57bceb6
RH
547}
548
e7701825
MT
549static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
550 int *max_banks)
551{
552 int r;
553
14a09518 554 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
555 if (r > 0) {
556 *max_banks = r;
557 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
558 }
559 return -ENOSYS;
560}
561
bee615d4 562static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 563{
87f8b626 564 CPUState *cs = CPU(cpu);
bee615d4 565 CPUX86State *env = &cpu->env;
c34d440a
JK
566 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
567 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
568 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 569 int flags = 0;
e7701825 570
c34d440a
JK
571 if (code == BUS_MCEERR_AR) {
572 status |= MCI_STATUS_AR | 0x134;
cb48748a 573 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
c34d440a
JK
574 } else {
575 status |= 0xc0;
576 mcg_status |= MCG_STATUS_RIPV;
419fb20a 577 }
87f8b626
AR
578
579 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
580 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
581 * guest kernel back into env->mcg_ext_ctl.
582 */
583 cpu_synchronize_state(cs);
584 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
585 mcg_status |= MCG_STATUS_LMCE;
586 flags = 0;
587 }
588
8c5cf3b6 589 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 590 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 591}
419fb20a 592
8efc4e51
ZP
593static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
594{
595 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
596
597 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
598 &mff);
599}
600
73284563 601static void hardware_memory_error(void *host_addr)
419fb20a 602{
8efc4e51 603 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
73284563 604 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
605 exit(1);
606}
607
2ae41db2 608void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 609{
20d695a9
AF
610 X86CPU *cpu = X86_CPU(c);
611 CPUX86State *env = &cpu->env;
419fb20a 612 ram_addr_t ram_addr;
a8170e5e 613 hwaddr paddr;
419fb20a 614
4d39892c
PB
615 /* If we get an action required MCE, it has been injected by KVM
616 * while the VM was running. An action optional MCE instead should
617 * be coming from the main thread, which qemu_init_sigbus identifies
618 * as the "early kill" thread.
619 */
a16fc07e 620 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 621
20e0ff59 622 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 623 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
624 if (ram_addr != RAM_ADDR_INVALID &&
625 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
626 kvm_hwpoison_page_add(ram_addr);
627 kvm_mce_inject(cpu, paddr, code);
73284563
MS
628
629 /*
630 * Use different logging severity based on error type.
631 * If there is additional MCE reporting on the hypervisor, QEMU VA
632 * could be another source to identify the PA and MCE details.
633 */
634 if (code == BUS_MCEERR_AR) {
635 error_report("Guest MCE Memory Error at QEMU addr %p and "
636 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
637 addr, paddr, "BUS_MCEERR_AR");
638 } else {
639 warn_report("Guest MCE Memory Error at QEMU addr %p and "
640 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
641 addr, paddr, "BUS_MCEERR_AO");
642 }
643
2ae41db2 644 return;
419fb20a 645 }
20e0ff59 646
73284563
MS
647 if (code == BUS_MCEERR_AO) {
648 warn_report("Hardware memory error at addr %p of type %s "
649 "for memory used by QEMU itself instead of guest system!",
650 addr, "BUS_MCEERR_AO");
651 }
419fb20a 652 }
20e0ff59
PB
653
654 if (code == BUS_MCEERR_AR) {
73284563 655 hardware_memory_error(addr);
20e0ff59
PB
656 }
657
8efc4e51
ZP
658 /* Hope we are lucky for AO MCE, just notify a event */
659 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
419fb20a
JK
660}
661
fd13f23b
LA
662static void kvm_reset_exception(CPUX86State *env)
663{
664 env->exception_nr = -1;
665 env->exception_pending = 0;
666 env->exception_injected = 0;
667 env->exception_has_payload = false;
668 env->exception_payload = 0;
669}
670
671static void kvm_queue_exception(CPUX86State *env,
672 int32_t exception_nr,
673 uint8_t exception_has_payload,
674 uint64_t exception_payload)
675{
676 assert(env->exception_nr == -1);
677 assert(!env->exception_pending);
678 assert(!env->exception_injected);
679 assert(!env->exception_has_payload);
680
681 env->exception_nr = exception_nr;
682
683 if (has_exception_payload) {
684 env->exception_pending = 1;
685
686 env->exception_has_payload = exception_has_payload;
687 env->exception_payload = exception_payload;
688 } else {
689 env->exception_injected = 1;
690
691 if (exception_nr == EXCP01_DB) {
692 assert(exception_has_payload);
693 env->dr[6] = exception_payload;
694 } else if (exception_nr == EXCP0E_PAGE) {
695 assert(exception_has_payload);
696 env->cr[2] = exception_payload;
697 } else {
698 assert(!exception_has_payload);
699 }
700 }
701}
702
1bc22652 703static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 704{
1bc22652
AF
705 CPUX86State *env = &cpu->env;
706
fd13f23b 707 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
708 unsigned int bank, bank_num = env->mcg_cap & 0xff;
709 struct kvm_x86_mce mce;
710
fd13f23b 711 kvm_reset_exception(env);
ab443475
JK
712
713 /*
714 * There must be at least one bank in use if an MCE is pending.
715 * Find it and use its values for the event injection.
716 */
717 for (bank = 0; bank < bank_num; bank++) {
718 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
719 break;
720 }
721 }
722 assert(bank < bank_num);
723
724 mce.bank = bank;
725 mce.status = env->mce_banks[bank * 4 + 1];
726 mce.mcg_status = env->mcg_status;
727 mce.addr = env->mce_banks[bank * 4 + 2];
728 mce.misc = env->mce_banks[bank * 4 + 3];
729
1bc22652 730 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 731 }
ab443475
JK
732 return 0;
733}
734
538f0497 735static void cpu_update_state(void *opaque, bool running, RunState state)
b8cc45d6 736{
317ac620 737 CPUX86State *env = opaque;
b8cc45d6
GC
738
739 if (running) {
740 env->tsc_valid = false;
741 }
742}
743
83b17af5 744unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 745{
83b17af5 746 X86CPU *cpu = X86_CPU(cs);
7e72a45c 747 return cpu->apic_id;
b164e48e
EH
748}
749
92067bf4
IM
750#ifndef KVM_CPUID_SIGNATURE_NEXT
751#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
752#endif
753
92067bf4
IM
754static bool hyperv_enabled(X86CPU *cpu)
755{
5aa9ef5e 756 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
f701c082 757 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
e48ddcc6 758 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
759}
760
74aaddc6
MT
761/*
762 * Check whether target_freq is within conservative
763 * ntp correctable bounds (250ppm) of freq
764 */
765static inline bool freq_within_bounds(int freq, int target_freq)
766{
767 int max_freq = freq + (freq * 250 / 1000000);
768 int min_freq = freq - (freq * 250 / 1000000);
769
770 if (target_freq >= min_freq && target_freq <= max_freq) {
771 return true;
772 }
773
774 return false;
775}
776
5031283d
HZ
777static int kvm_arch_set_tsc_khz(CPUState *cs)
778{
779 X86CPU *cpu = X86_CPU(cs);
780 CPUX86State *env = &cpu->env;
74aaddc6
MT
781 int r, cur_freq;
782 bool set_ioctl = false;
5031283d
HZ
783
784 if (!env->tsc_khz) {
785 return 0;
786 }
787
74aaddc6
MT
788 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
789 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
790
791 /*
792 * If TSC scaling is supported, attempt to set TSC frequency.
793 */
794 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
795 set_ioctl = true;
796 }
797
798 /*
799 * If desired TSC frequency is within bounds of NTP correction,
800 * attempt to set TSC frequency.
801 */
802 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
803 set_ioctl = true;
804 }
805
806 r = set_ioctl ?
5031283d
HZ
807 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
808 -ENOTSUP;
74aaddc6 809
5031283d
HZ
810 if (r < 0) {
811 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
812 * TSC frequency doesn't match the one we want.
813 */
74aaddc6
MT
814 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
815 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
816 -ENOTSUP;
5031283d 817 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
818 warn_report("TSC frequency mismatch between "
819 "VM (%" PRId64 " kHz) and host (%d kHz), "
820 "and TSC scaling unavailable",
821 env->tsc_khz, cur_freq);
5031283d
HZ
822 return r;
823 }
824 }
825
826 return 0;
827}
828
4bb95b82
LP
829static bool tsc_is_stable_and_known(CPUX86State *env)
830{
831 if (!env->tsc_khz) {
832 return false;
833 }
834 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
835 || env->user_tsc_khz;
836}
837
7110fe56
VK
838#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
839
6760bd20
VK
840static struct {
841 const char *desc;
842 struct {
061817a7
VK
843 uint32_t func;
844 int reg;
6760bd20
VK
845 uint32_t bits;
846 } flags[2];
c6861930 847 uint64_t dependencies;
6760bd20
VK
848} kvm_hyperv_properties[] = {
849 [HYPERV_FEAT_RELAXED] = {
850 .desc = "relaxed timing (hv-relaxed)",
851 .flags = {
061817a7 852 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
853 .bits = HV_RELAXED_TIMING_RECOMMENDED}
854 }
855 },
856 [HYPERV_FEAT_VAPIC] = {
857 .desc = "virtual APIC (hv-vapic)",
858 .flags = {
061817a7 859 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
05071629 860 .bits = HV_APIC_ACCESS_AVAILABLE}
6760bd20
VK
861 }
862 },
863 [HYPERV_FEAT_TIME] = {
864 .desc = "clocksources (hv-time)",
865 .flags = {
061817a7 866 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
b26f68c3 867 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
6760bd20
VK
868 }
869 },
870 [HYPERV_FEAT_CRASH] = {
871 .desc = "crash MSRs (hv-crash)",
872 .flags = {
061817a7 873 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
874 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
875 }
876 },
877 [HYPERV_FEAT_RESET] = {
878 .desc = "reset MSR (hv-reset)",
879 .flags = {
061817a7 880 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
881 .bits = HV_RESET_AVAILABLE}
882 }
883 },
884 [HYPERV_FEAT_VPINDEX] = {
885 .desc = "VP_INDEX MSR (hv-vpindex)",
886 .flags = {
061817a7 887 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
888 .bits = HV_VP_INDEX_AVAILABLE}
889 }
890 },
891 [HYPERV_FEAT_RUNTIME] = {
892 .desc = "VP_RUNTIME MSR (hv-runtime)",
893 .flags = {
061817a7 894 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
895 .bits = HV_VP_RUNTIME_AVAILABLE}
896 }
897 },
898 [HYPERV_FEAT_SYNIC] = {
899 .desc = "synthetic interrupt controller (hv-synic)",
900 .flags = {
061817a7 901 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
902 .bits = HV_SYNIC_AVAILABLE}
903 }
904 },
905 [HYPERV_FEAT_STIMER] = {
906 .desc = "synthetic timers (hv-stimer)",
907 .flags = {
061817a7 908 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 909 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
910 },
911 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
912 },
913 [HYPERV_FEAT_FREQUENCIES] = {
914 .desc = "frequency MSRs (hv-frequencies)",
915 .flags = {
061817a7 916 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 917 .bits = HV_ACCESS_FREQUENCY_MSRS},
061817a7 918 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
919 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
920 }
921 },
922 [HYPERV_FEAT_REENLIGHTENMENT] = {
923 .desc = "reenlightenment MSRs (hv-reenlightenment)",
924 .flags = {
061817a7 925 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
926 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
927 }
928 },
929 [HYPERV_FEAT_TLBFLUSH] = {
930 .desc = "paravirtualized TLB flush (hv-tlbflush)",
931 .flags = {
061817a7 932 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
933 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
934 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
935 },
936 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
937 },
938 [HYPERV_FEAT_EVMCS] = {
939 .desc = "enlightened VMCS (hv-evmcs)",
940 .flags = {
061817a7 941 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20 942 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
943 },
944 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
945 },
946 [HYPERV_FEAT_IPI] = {
947 .desc = "paravirtualized IPI (hv-ipi)",
948 .flags = {
061817a7 949 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
950 .bits = HV_CLUSTER_IPI_RECOMMENDED |
951 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
952 },
953 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 954 },
128531d9
VK
955 [HYPERV_FEAT_STIMER_DIRECT] = {
956 .desc = "direct mode synthetic timers (hv-stimer-direct)",
957 .flags = {
061817a7 958 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
128531d9
VK
959 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
960 },
961 .dependencies = BIT(HYPERV_FEAT_STIMER)
962 },
e1f9a8e8
VK
963 [HYPERV_FEAT_AVIC] = {
964 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
965 .flags = {
966 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
967 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
968 }
969 },
d8701185 970#ifdef CONFIG_SYNDBG
73d24074
JD
971 [HYPERV_FEAT_SYNDBG] = {
972 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
973 .flags = {
974 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
975 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
976 },
977 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
978 },
d8701185 979#endif
869840d2
VK
980 [HYPERV_FEAT_MSR_BITMAP] = {
981 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
982 .flags = {
983 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
984 .bits = HV_NESTED_MSR_BITMAP}
985 }
986 },
9411e8b6
VK
987 [HYPERV_FEAT_XMM_INPUT] = {
988 .desc = "XMM fast hypercall input (hv-xmm-input)",
989 .flags = {
990 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
991 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
992 }
993 },
aa6bb5fa
VK
994 [HYPERV_FEAT_TLBFLUSH_EXT] = {
995 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
996 .flags = {
997 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
998 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
999 },
1000 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1001 },
3aae0854
VK
1002 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1003 .desc = "direct TLB flush (hv-tlbflush-direct)",
1004 .flags = {
1005 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1006 .bits = HV_NESTED_DIRECT_FLUSH}
1007 },
1008 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1009 },
6760bd20
VK
1010};
1011
2e905438
VK
1012static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1013 bool do_sys_ioctl)
6760bd20
VK
1014{
1015 struct kvm_cpuid2 *cpuid;
1016 int r, size;
1017
1018 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1019 cpuid = g_malloc0(size);
1020 cpuid->nent = max;
1021
2e905438
VK
1022 if (do_sys_ioctl) {
1023 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1024 } else {
1025 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1026 }
6760bd20
VK
1027 if (r == 0 && cpuid->nent >= max) {
1028 r = -E2BIG;
1029 }
1030 if (r < 0) {
1031 if (r == -E2BIG) {
1032 g_free(cpuid);
1033 return NULL;
1034 } else {
1035 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1036 strerror(-r));
1037 exit(1);
1038 }
1039 }
1040 return cpuid;
1041}
1042
1043/*
1044 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1045 * for all entries.
1046 */
1047static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1048{
1049 struct kvm_cpuid2 *cpuid;
73d24074
JD
1050 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1051 int max = 11;
decb4f20 1052 int i;
2e905438
VK
1053 bool do_sys_ioctl;
1054
1055 do_sys_ioctl =
1056 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
6760bd20 1057
e4adb09f
VK
1058 /*
1059 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1060 * unsupported, kvm_hyperv_expand_features() checks for that.
1061 */
1062 assert(do_sys_ioctl || cs->kvm_state);
1063
6760bd20
VK
1064 /*
1065 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1066 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1067 * it and re-trying until we succeed.
1068 */
2e905438 1069 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
6760bd20
VK
1070 max++;
1071 }
decb4f20
VK
1072
1073 /*
1074 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1075 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1076 * information early, just check for the capability and set the bit
1077 * manually.
1078 */
2e905438 1079 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
decb4f20
VK
1080 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1081 for (i = 0; i < cpuid->nent; i++) {
1082 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1083 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1084 }
1085 }
1086 }
1087
6760bd20
VK
1088 return cpuid;
1089}
1090
1091/*
1092 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1093 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1094 */
1095static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
1096{
1097 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
1098 struct kvm_cpuid2 *cpuid;
1099 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1100
1101 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1102 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1103 cpuid->nent = 2;
1104
1105 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1106 entry_feat = &cpuid->entries[0];
1107 entry_feat->function = HV_CPUID_FEATURES;
1108
1109 entry_recomm = &cpuid->entries[1];
1110 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1111 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1112
1113 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1114 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1115 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1116 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1117 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1118 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1119 }
c35bd19a 1120
6760bd20
VK
1121 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1122 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1123 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1124 }
6760bd20
VK
1125
1126 if (has_msr_hv_frequencies) {
1127 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1128 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1129 }
6760bd20
VK
1130
1131 if (has_msr_hv_crash) {
1132 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1133 }
6760bd20
VK
1134
1135 if (has_msr_hv_reenlightenment) {
1136 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1137 }
6760bd20
VK
1138
1139 if (has_msr_hv_reset) {
1140 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1141 }
6760bd20
VK
1142
1143 if (has_msr_hv_vpindex) {
1144 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1145 }
6760bd20
VK
1146
1147 if (has_msr_hv_runtime) {
1148 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1149 }
6760bd20
VK
1150
1151 if (has_msr_hv_synic) {
1152 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1153 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1154
1155 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1156 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1157 }
c35bd19a 1158 }
6760bd20
VK
1159
1160 if (has_msr_hv_stimer) {
1161 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1162 }
9b4cf107 1163
73d24074
JD
1164 if (has_msr_hv_syndbg_options) {
1165 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1166 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1167 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1168 }
1169
6760bd20
VK
1170 if (kvm_check_extension(cs->kvm_state,
1171 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1172 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1173 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1174 }
c35bd19a 1175
6760bd20
VK
1176 if (kvm_check_extension(cs->kvm_state,
1177 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1178 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1179 }
6760bd20
VK
1180
1181 if (kvm_check_extension(cs->kvm_state,
1182 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1183 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1184 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1185 }
6760bd20
VK
1186
1187 return cpuid;
1188}
1189
a8439be6 1190static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
e1a66a1e
VK
1191{
1192 struct kvm_cpuid_entry2 *entry;
a8439be6
VK
1193 struct kvm_cpuid2 *cpuid;
1194
1195 if (hv_cpuid_cache) {
1196 cpuid = hv_cpuid_cache;
1197 } else {
1198 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1199 cpuid = get_supported_hv_cpuid(cs);
1200 } else {
e4adb09f
VK
1201 /*
1202 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1203 * before KVM context is created but this is only done when
1204 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1205 * KVM_CAP_HYPERV_CPUID.
1206 */
1207 assert(cs->kvm_state);
1208
a8439be6
VK
1209 cpuid = get_supported_hv_cpuid_legacy(cs);
1210 }
1211 hv_cpuid_cache = cpuid;
1212 }
1213
1214 if (!cpuid) {
1215 return 0;
1216 }
e1a66a1e
VK
1217
1218 entry = cpuid_find_entry(cpuid, func, 0);
1219 if (!entry) {
1220 return 0;
1221 }
1222
1223 return cpuid_entry_get_reg(entry, reg);
1224}
1225
a8439be6 1226static bool hyperv_feature_supported(CPUState *cs, int feature)
7682f857 1227{
061817a7
VK
1228 uint32_t func, bits;
1229 int i, reg;
7682f857
VK
1230
1231 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
061817a7
VK
1232
1233 func = kvm_hyperv_properties[feature].flags[i].func;
1234 reg = kvm_hyperv_properties[feature].flags[i].reg;
7682f857
VK
1235 bits = kvm_hyperv_properties[feature].flags[i].bits;
1236
061817a7 1237 if (!func) {
7682f857
VK
1238 continue;
1239 }
1240
a8439be6 1241 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
7682f857
VK
1242 return false;
1243 }
1244 }
1245
1246 return true;
1247}
1248
5ce48fa3
VK
1249/* Checks that all feature dependencies are enabled */
1250static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
6760bd20 1251{
c6861930 1252 uint64_t deps;
7682f857 1253 int dep_feat;
6760bd20 1254
c6861930 1255 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1256 while (deps) {
1257 dep_feat = ctz64(deps);
c6861930 1258 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
f4a62495
VK
1259 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1260 kvm_hyperv_properties[feature].desc,
1261 kvm_hyperv_properties[dep_feat].desc);
5ce48fa3 1262 return false;
c6861930 1263 }
9dc83cd9 1264 deps &= ~(1ull << dep_feat);
c6861930
VK
1265 }
1266
5ce48fa3 1267 return true;
6760bd20
VK
1268}
1269
061817a7 1270static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
c830015e
VK
1271{
1272 X86CPU *cpu = X86_CPU(cs);
1273 uint32_t r = 0;
1274 int i, j;
1275
1276 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1277 if (!hyperv_feat_enabled(cpu, i)) {
1278 continue;
1279 }
1280
1281 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
061817a7
VK
1282 if (kvm_hyperv_properties[i].flags[j].func != func) {
1283 continue;
1284 }
1285 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
c830015e
VK
1286 continue;
1287 }
1288
1289 r |= kvm_hyperv_properties[i].flags[j].bits;
1290 }
1291 }
1292
7110fe56
VK
1293 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1294 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1295 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1296 r |= DEFAULT_EVMCS_VERSION;
1297 }
1298 }
1299
c830015e
VK
1300 return r;
1301}
1302
2344d22e 1303/*
f6e01ab5
VK
1304 * Expand Hyper-V CPU features. In partucular, check that all the requested
1305 * features are supported by the host and the sanity of the configuration
1306 * (that all the required dependencies are included). Also, this takes care
1307 * of 'hv_passthrough' mode and fills the environment with all supported
1308 * Hyper-V features.
2344d22e 1309 */
071ce4b0 1310bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
6760bd20 1311{
071ce4b0 1312 CPUState *cs = CPU(cpu);
5ce48fa3
VK
1313 Error *local_err = NULL;
1314 int feat;
6760bd20 1315
2344d22e 1316 if (!hyperv_enabled(cpu))
d7652b77 1317 return true;
2344d22e 1318
071ce4b0
VK
1319 /*
1320 * When kvm_hyperv_expand_features is called at CPU feature expansion
1321 * time per-CPU kvm_state is not available yet so we can only proceed
1322 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1323 */
1324 if (!cs->kvm_state &&
1325 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1326 return true;
1327
e48ddcc6 1328 if (cpu->hyperv_passthrough) {
e1a66a1e 1329 cpu->hyperv_vendor_id[0] =
a8439be6 1330 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
e1a66a1e 1331 cpu->hyperv_vendor_id[1] =
a8439be6 1332 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
e1a66a1e 1333 cpu->hyperv_vendor_id[2] =
a8439be6 1334 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
e1a66a1e
VK
1335 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1336 sizeof(cpu->hyperv_vendor_id) + 1);
1337 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1338 sizeof(cpu->hyperv_vendor_id));
1339 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1340
1341 cpu->hyperv_interface_id[0] =
a8439be6 1342 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
e1a66a1e 1343 cpu->hyperv_interface_id[1] =
a8439be6 1344 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
e1a66a1e 1345 cpu->hyperv_interface_id[2] =
a8439be6 1346 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
e1a66a1e 1347 cpu->hyperv_interface_id[3] =
a8439be6 1348 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
e1a66a1e 1349
af7228b8 1350 cpu->hyperv_ver_id_build =
a8439be6 1351 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
af7228b8
VK
1352 cpu->hyperv_ver_id_major =
1353 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1354 cpu->hyperv_ver_id_minor =
1355 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1356 cpu->hyperv_ver_id_sp =
a8439be6 1357 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
af7228b8
VK
1358 cpu->hyperv_ver_id_sb =
1359 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1360 cpu->hyperv_ver_id_sn =
1361 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
e1a66a1e 1362
a8439be6 1363 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
e1a66a1e
VK
1364 R_EAX);
1365 cpu->hyperv_limits[0] =
a8439be6 1366 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
e1a66a1e 1367 cpu->hyperv_limits[1] =
a8439be6 1368 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
e1a66a1e 1369 cpu->hyperv_limits[2] =
a8439be6 1370 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
e1a66a1e
VK
1371
1372 cpu->hyperv_spinlock_attempts =
a8439be6 1373 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
30d6ff66 1374
5ce48fa3
VK
1375 /*
1376 * Mark feature as enabled in 'cpu->hyperv_features' as
1377 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1378 */
1379 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1380 if (hyperv_feature_supported(cs, feat)) {
1381 cpu->hyperv_features |= BIT(feat);
1382 }
1383 }
1384 } else {
1385 /* Check features availability and dependencies */
1386 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1387 /* If the feature was not requested skip it. */
1388 if (!hyperv_feat_enabled(cpu, feat)) {
1389 continue;
1390 }
1391
1392 /* Check if the feature is supported by KVM */
1393 if (!hyperv_feature_supported(cs, feat)) {
1394 error_setg(errp, "Hyper-V %s is not supported by kernel",
1395 kvm_hyperv_properties[feat].desc);
1396 return false;
1397 }
1398
1399 /* Check dependencies */
1400 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1401 error_propagate(errp, local_err);
1402 return false;
1403 }
1404 }
f4a62495 1405 }
6760bd20 1406
c6861930 1407 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1408 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1409 !cpu->hyperv_synic_kvm_only &&
1410 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
f4a62495
VK
1411 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1412 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1413 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
d7652b77 1414 return false;
6760bd20 1415 }
d7652b77
VK
1416
1417 return true;
f6e01ab5
VK
1418}
1419
1420/*
1421 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1422 */
1423static int hyperv_fill_cpuids(CPUState *cs,
1424 struct kvm_cpuid_entry2 *cpuid_ent)
1425{
1426 X86CPU *cpu = X86_CPU(cs);
1427 struct kvm_cpuid_entry2 *c;
73d24074
JD
1428 uint32_t signature[3];
1429 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
7110fe56
VK
1430 uint32_t nested_eax =
1431 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
73d24074 1432
7110fe56
VK
1433 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1434 HV_CPUID_IMPLEMENT_LIMITS;
73d24074
JD
1435
1436 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1437 max_cpuid_leaf =
1438 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1439 }
f6e01ab5 1440
2344d22e
VK
1441 c = &cpuid_ent[cpuid_i++];
1442 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
73d24074 1443 c->eax = max_cpuid_leaf;
08856771
VK
1444 c->ebx = cpu->hyperv_vendor_id[0];
1445 c->ecx = cpu->hyperv_vendor_id[1];
1446 c->edx = cpu->hyperv_vendor_id[2];
2344d22e
VK
1447
1448 c = &cpuid_ent[cpuid_i++];
1449 c->function = HV_CPUID_INTERFACE;
735db465
VK
1450 c->eax = cpu->hyperv_interface_id[0];
1451 c->ebx = cpu->hyperv_interface_id[1];
1452 c->ecx = cpu->hyperv_interface_id[2];
1453 c->edx = cpu->hyperv_interface_id[3];
2344d22e
VK
1454
1455 c = &cpuid_ent[cpuid_i++];
1456 c->function = HV_CPUID_VERSION;
af7228b8
VK
1457 c->eax = cpu->hyperv_ver_id_build;
1458 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1459 cpu->hyperv_ver_id_minor;
1460 c->ecx = cpu->hyperv_ver_id_sp;
1461 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1462 (cpu->hyperv_ver_id_sn & 0xffffff);
2344d22e
VK
1463
1464 c = &cpuid_ent[cpuid_i++];
1465 c->function = HV_CPUID_FEATURES;
061817a7
VK
1466 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1467 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1468 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
c830015e 1469
b26f68c3
VK
1470 /* Unconditionally required with any Hyper-V enlightenment */
1471 c->eax |= HV_HYPERCALL_AVAILABLE;
1472
cce087f6
VK
1473 /* SynIC and Vmbus devices require messages/signals hypercalls */
1474 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1475 !cpu->hyperv_synic_kvm_only) {
1476 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1477 }
1478
05071629 1479
c830015e
VK
1480 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1481 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
2344d22e
VK
1482
1483 c = &cpuid_ent[cpuid_i++];
1484 c->function = HV_CPUID_ENLIGHTMENT_INFO;
061817a7 1485 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
2344d22e
VK
1486 c->ebx = cpu->hyperv_spinlock_attempts;
1487
e1f9a8e8
VK
1488 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1489 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
05071629
VK
1490 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1491 }
1492
c830015e
VK
1493 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1494 c->eax |= HV_NO_NONARCH_CORESHARING;
1495 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
a8439be6 1496 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
e1a66a1e 1497 HV_NO_NONARCH_CORESHARING;
c830015e
VK
1498 }
1499
2344d22e
VK
1500 c = &cpuid_ent[cpuid_i++];
1501 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1502 c->eax = cpu->hv_max_vps;
23eb5d03
VK
1503 c->ebx = cpu->hyperv_limits[0];
1504 c->ecx = cpu->hyperv_limits[1];
1505 c->edx = cpu->hyperv_limits[2];
2344d22e 1506
7110fe56 1507 if (nested_eax) {
dc7d6caf 1508 uint32_t function;
2344d22e
VK
1509
1510 /* Create zeroed 0x40000006..0x40000009 leaves */
1511 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1512 function < HV_CPUID_NESTED_FEATURES; function++) {
1513 c = &cpuid_ent[cpuid_i++];
1514 c->function = function;
1515 }
1516
1517 c = &cpuid_ent[cpuid_i++];
1518 c->function = HV_CPUID_NESTED_FEATURES;
7110fe56 1519 c->eax = nested_eax;
2344d22e 1520 }
6760bd20 1521
73d24074
JD
1522 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1523 c = &cpuid_ent[cpuid_i++];
1524 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1525 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1526 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1527 memcpy(signature, "Microsoft VS", 12);
1528 c->eax = 0;
1529 c->ebx = signature[0];
1530 c->ecx = signature[1];
1531 c->edx = signature[2];
1532
1533 c = &cpuid_ent[cpuid_i++];
1534 c->function = HV_CPUID_SYNDBG_INTERFACE;
1535 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1536 c->eax = signature[0];
1537 c->ebx = 0;
1538 c->ecx = 0;
1539 c->edx = 0;
1540
1541 c = &cpuid_ent[cpuid_i++];
1542 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1543 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1544 c->ebx = 0;
1545 c->ecx = 0;
1546 c->edx = 0;
1547 }
1548
a8439be6 1549 return cpuid_i;
c35bd19a
EY
1550}
1551
e48ddcc6 1552static Error *hv_passthrough_mig_blocker;
30d6ff66 1553static Error *hv_no_nonarch_cs_mig_blocker;
e48ddcc6 1554
07454e2e
VK
1555/* Checks that the exposed eVMCS version range is supported by KVM */
1556static bool evmcs_version_supported(uint16_t evmcs_version,
1557 uint16_t supported_evmcs_version)
1558{
1559 uint8_t min_version = evmcs_version & 0xff;
1560 uint8_t max_version = evmcs_version >> 8;
1561 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1562 uint8_t max_supported_version = supported_evmcs_version >> 8;
1563
1564 return (min_version >= min_supported_version) &&
1565 (max_version <= max_supported_version);
1566}
1567
e9688fab
RK
1568static int hyperv_init_vcpu(X86CPU *cpu)
1569{
729ce7e1 1570 CPUState *cs = CPU(cpu);
e48ddcc6 1571 Error *local_err = NULL;
729ce7e1
RK
1572 int ret;
1573
e48ddcc6
VK
1574 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1575 error_setg(&hv_passthrough_mig_blocker,
1576 "'hv-passthrough' CPU flag prevents migration, use explicit"
1577 " set of hv-* flags instead");
1578 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
436c831a 1579 if (ret < 0) {
e48ddcc6 1580 error_report_err(local_err);
e48ddcc6
VK
1581 return ret;
1582 }
1583 }
1584
30d6ff66
VK
1585 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1586 hv_no_nonarch_cs_mig_blocker == NULL) {
1587 error_setg(&hv_no_nonarch_cs_mig_blocker,
1588 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1589 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1590 " make sure SMT is disabled and/or that vCPUs are properly"
1591 " pinned)");
1592 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
436c831a 1593 if (ret < 0) {
30d6ff66 1594 error_report_err(local_err);
30d6ff66
VK
1595 return ret;
1596 }
1597 }
1598
2d384d7c 1599 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1600 /*
1601 * the kernel doesn't support setting vp_index; assert that its value
1602 * is in sync
1603 */
5a778a5f 1604 uint64_t value;
e9688fab 1605
5a778a5f 1606 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
e9688fab
RK
1607 if (ret < 0) {
1608 return ret;
1609 }
e9688fab 1610
5a778a5f 1611 if (value != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1612 error_report("kernel's vp_index != QEMU's vp_index");
1613 return -ENXIO;
1614 }
1615 }
1616
2d384d7c 1617 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1618 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1619 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1620 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1621 if (ret < 0) {
1622 error_report("failed to turn on HyperV SynIC in KVM: %s",
1623 strerror(-ret));
1624 return ret;
1625 }
606c34bf 1626
9b4cf107
RK
1627 if (!cpu->hyperv_synic_kvm_only) {
1628 ret = hyperv_x86_synic_add(cpu);
1629 if (ret < 0) {
1630 error_report("failed to create HyperV SynIC: %s",
1631 strerror(-ret));
1632 return ret;
1633 }
606c34bf 1634 }
729ce7e1
RK
1635 }
1636
decb4f20 1637 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
07454e2e
VK
1638 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1639 uint16_t supported_evmcs_version;
decb4f20
VK
1640
1641 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
07454e2e 1642 (uintptr_t)&supported_evmcs_version);
decb4f20 1643
07454e2e
VK
1644 /*
1645 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1646 * option sets. Note: we hardcode the maximum supported eVMCS version
1647 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1648 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1649 * to be added.
1650 */
decb4f20 1651 if (ret < 0) {
07454e2e
VK
1652 error_report("Hyper-V %s is not supported by kernel",
1653 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
decb4f20
VK
1654 return ret;
1655 }
1656
07454e2e
VK
1657 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1658 error_report("eVMCS version range [%d..%d] is not supported by "
1659 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1660 evmcs_version >> 8, supported_evmcs_version & 0xff,
1661 supported_evmcs_version >> 8);
1662 return -ENOTSUP;
1663 }
decb4f20
VK
1664 }
1665
70367f09
VK
1666 if (cpu->hyperv_enforce_cpuid) {
1667 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1668 if (ret < 0) {
1669 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1670 strerror(-ret));
1671 return ret;
1672 }
1673 }
1674
e9688fab
RK
1675 return 0;
1676}
1677
68bfd0ad
MT
1678static Error *invtsc_mig_blocker;
1679
f8bb0565 1680#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1681
e56dd3c7
JL
1682static void kvm_init_xsave(CPUX86State *env)
1683{
1684 if (has_xsave2) {
1685 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1686 } else if (has_xsave) {
1687 env->xsave_buf_len = sizeof(struct kvm_xsave);
1688 } else {
1689 return;
1690 }
1691
1692 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1693 memset(env->xsave_buf, 0, env->xsave_buf_len);
1694 /*
1695 * The allocated storage must be large enough for all of the
1696 * possible XSAVE state components.
1697 */
1698 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1699 env->xsave_buf_len);
1700}
1701
3cafdb67
VK
1702static void kvm_init_nested_state(CPUX86State *env)
1703{
1704 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1705 uint32_t size;
1706
1707 if (!env->nested_state) {
1708 return;
1709 }
1710
1711 size = env->nested_state->size;
1712
1713 memset(env->nested_state, 0, size);
1714 env->nested_state->size = size;
1715
1716 if (cpu_has_vmx(env)) {
1717 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1718 vmx_hdr = &env->nested_state->hdr.vmx;
1719 vmx_hdr->vmxon_pa = -1ull;
1720 vmx_hdr->vmcs12_pa = -1ull;
1721 } else if (cpu_has_svm(env)) {
1722 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1723 }
1724}
1725
20d695a9 1726int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1727{
1728 struct {
486bd5a2 1729 struct kvm_cpuid2 cpuid;
f8bb0565 1730 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1731 } cpuid_data;
1732 /*
1733 * The kernel defines these structs with padding fields so there
1734 * should be no extra padding in our cpuid_data struct.
1735 */
1736 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1737 sizeof(struct kvm_cpuid2) +
1738 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1739
20d695a9
AF
1740 X86CPU *cpu = X86_CPU(cs);
1741 CPUX86State *env = &cpu->env;
486bd5a2 1742 uint32_t limit, i, j, cpuid_i;
a33609ca 1743 uint32_t unused;
bb0300dc 1744 struct kvm_cpuid_entry2 *c;
bb0300dc 1745 uint32_t signature[3];
234cc647 1746 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1747 int max_nested_state_len;
e7429073 1748 int r;
fe44dc91 1749 Error *local_err = NULL;
05330448 1750
ef4cbe14
SW
1751 memset(&cpuid_data, 0, sizeof(cpuid_data));
1752
05330448
AL
1753 cpuid_i = 0;
1754
e56dd3c7
JL
1755 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1756
ddb98b5a
LP
1757 r = kvm_arch_set_tsc_khz(cs);
1758 if (r < 0) {
6b2341ee 1759 return r;
ddb98b5a
LP
1760 }
1761
1762 /* vcpu's TSC frequency is either specified by user, or following
1763 * the value used by KVM if the former is not present. In the
1764 * latter case, we query it from KVM and record in env->tsc_khz,
1765 * so that vcpu's TSC frequency can be migrated later via this field.
1766 */
1767 if (!env->tsc_khz) {
1768 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1769 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1770 -ENOTSUP;
1771 if (r > 0) {
1772 env->tsc_khz = r;
1773 }
1774 }
1775
73b994f6
LA
1776 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1777
071ce4b0
VK
1778 /*
1779 * kvm_hyperv_expand_features() is called here for the second time in case
1780 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1781 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1782 * check which Hyper-V enlightenments are supported and which are not, we
1783 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1784 * behavior is preserved.
1785 */
1786 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
f4a62495
VK
1787 error_report_err(local_err);
1788 return -ENOSYS;
f6e01ab5
VK
1789 }
1790
1791 if (hyperv_enabled(cpu)) {
decb4f20
VK
1792 r = hyperv_init_vcpu(cpu);
1793 if (r) {
1794 return r;
1795 }
1796
f6e01ab5 1797 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
234cc647 1798 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1799 has_msr_hv_hypercall = true;
eab70139
VR
1800 }
1801
f522d2ac
AW
1802 if (cpu->expose_kvm) {
1803 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1804 c = &cpuid_data.entries[cpuid_i++];
1805 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1806 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1807 c->ebx = signature[0];
1808 c->ecx = signature[1];
1809 c->edx = signature[2];
234cc647 1810
f522d2ac
AW
1811 c = &cpuid_data.entries[cpuid_i++];
1812 c->function = KVM_CPUID_FEATURES | kvm_base;
1813 c->eax = env->features[FEAT_KVM];
be777326 1814 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1815 }
917367aa 1816
a33609ca 1817 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448 1818
988f7b8b
VK
1819 if (cpu->kvm_pv_enforce_cpuid) {
1820 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1821 if (r < 0) {
1822 fprintf(stderr,
1823 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1824 strerror(-r));
1825 abort();
1826 }
1827 }
1828
05330448 1829 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1830 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1831 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1832 abort();
1833 }
bb0300dc 1834 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1835
1836 switch (i) {
a36b1029
AL
1837 case 2: {
1838 /* Keep reading function 2 till all the input is received */
1839 int times;
1840
a36b1029 1841 c->function = i;
a33609ca
AL
1842 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1843 KVM_CPUID_FLAG_STATE_READ_NEXT;
1844 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1845 times = c->eax & 0xff;
a36b1029
AL
1846
1847 for (j = 1; j < times; ++j) {
f8bb0565
IM
1848 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1849 fprintf(stderr, "cpuid_data is full, no space for "
1850 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1851 abort();
1852 }
a33609ca 1853 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1854 c->function = i;
a33609ca
AL
1855 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1856 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1857 }
1858 break;
1859 }
a94e1428
LX
1860 case 0x1f:
1861 if (env->nr_dies < 2) {
1862 break;
1863 }
8821e214 1864 /* fallthrough */
486bd5a2
AL
1865 case 4:
1866 case 0xb:
1867 case 0xd:
1868 for (j = 0; ; j++) {
31e8c696
AP
1869 if (i == 0xd && j == 64) {
1870 break;
1871 }
a94e1428
LX
1872
1873 if (i == 0x1f && j == 64) {
1874 break;
1875 }
1876
486bd5a2
AL
1877 c->function = i;
1878 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1879 c->index = j;
a33609ca 1880 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1881
b9bec74b 1882 if (i == 4 && c->eax == 0) {
486bd5a2 1883 break;
b9bec74b
JK
1884 }
1885 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1886 break;
b9bec74b 1887 }
a94e1428
LX
1888 if (i == 0x1f && !(c->ecx & 0xff00)) {
1889 break;
1890 }
b9bec74b 1891 if (i == 0xd && c->eax == 0) {
31e8c696 1892 continue;
b9bec74b 1893 }
f8bb0565
IM
1894 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1895 fprintf(stderr, "cpuid_data is full, no space for "
1896 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1897 abort();
1898 }
a33609ca 1899 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1900 }
1901 break;
80db491d 1902 case 0x7:
b9edbade
SC
1903 case 0x12:
1904 for (j = 0; ; j++) {
1905 c->function = i;
1906 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1907 c->index = j;
1908 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1909
1910 if (j > 1 && (c->eax & 0xf) != 1) {
1911 break;
1912 }
1913
1914 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1915 fprintf(stderr, "cpuid_data is full, no space for "
1916 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1917 abort();
1918 }
1919 c = &cpuid_data.entries[cpuid_i++];
1920 }
1921 break;
f21a4817
JL
1922 case 0x14:
1923 case 0x1d:
1924 case 0x1e: {
e37a5c7f
CP
1925 uint32_t times;
1926
1927 c->function = i;
1928 c->index = 0;
1929 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1930 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1931 times = c->eax;
1932
1933 for (j = 1; j <= times; ++j) {
1934 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1935 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1936 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1937 abort();
1938 }
1939 c = &cpuid_data.entries[cpuid_i++];
1940 c->function = i;
1941 c->index = j;
1942 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1943 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1944 }
1945 break;
1946 }
486bd5a2 1947 default:
486bd5a2 1948 c->function = i;
a33609ca
AL
1949 c->flags = 0;
1950 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1951 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1952 /*
1953 * KVM already returns all zeroes if a CPUID entry is missing,
1954 * so we can omit it and avoid hitting KVM's 80-entry limit.
1955 */
1956 cpuid_i--;
1957 }
486bd5a2
AL
1958 break;
1959 }
05330448 1960 }
0d894367
PB
1961
1962 if (limit >= 0x0a) {
0b368a10 1963 uint32_t eax, edx;
0d894367 1964
0b368a10
JD
1965 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1966
1967 has_architectural_pmu_version = eax & 0xff;
1968 if (has_architectural_pmu_version > 0) {
1969 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1970
1971 /* Shouldn't be more than 32, since that's the number of bits
1972 * available in EBX to tell us _which_ counters are available.
1973 * Play it safe.
1974 */
0b368a10
JD
1975 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1976 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1977 }
1978
1979 if (has_architectural_pmu_version > 1) {
1980 num_architectural_pmu_fixed_counters = edx & 0x1f;
1981
1982 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1983 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1984 }
0d894367
PB
1985 }
1986 }
1987 }
1988
a33609ca 1989 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1990
1991 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1992 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1993 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1994 abort();
1995 }
bb0300dc 1996 c = &cpuid_data.entries[cpuid_i++];
05330448 1997
8f4202fb
BM
1998 switch (i) {
1999 case 0x8000001d:
2000 /* Query for all AMD cache information leaves */
2001 for (j = 0; ; j++) {
2002 c->function = i;
2003 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2004 c->index = j;
2005 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2006
2007 if (c->eax == 0) {
2008 break;
2009 }
2010 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2011 fprintf(stderr, "cpuid_data is full, no space for "
2012 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2013 abort();
2014 }
2015 c = &cpuid_data.entries[cpuid_i++];
2016 }
2017 break;
2018 default:
2019 c->function = i;
2020 c->flags = 0;
2021 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
2022 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2023 /*
2024 * KVM already returns all zeroes if a CPUID entry is missing,
2025 * so we can omit it and avoid hitting KVM's 80-entry limit.
2026 */
2027 cpuid_i--;
2028 }
8f4202fb
BM
2029 break;
2030 }
05330448
AL
2031 }
2032
b3baa152
BW
2033 /* Call Centaur's CPUID instructions they are supported. */
2034 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
2035 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2036
2037 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
2038 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2039 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2040 abort();
2041 }
b3baa152
BW
2042 c = &cpuid_data.entries[cpuid_i++];
2043
2044 c->function = i;
2045 c->flags = 0;
2046 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2047 }
2048 }
2049
05330448
AL
2050 cpuid_data.cpuid.nent = cpuid_i;
2051
e7701825 2052 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 2053 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 2054 (CPUID_MCE | CPUID_MCA)
a60f24b5 2055 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 2056 uint64_t mcg_cap, unsupported_caps;
e7701825 2057 int banks;
32a42024 2058 int ret;
e7701825 2059
a60f24b5 2060 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
2061 if (ret < 0) {
2062 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2063 return ret;
e7701825 2064 }
75d49497 2065
2590f15b 2066 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 2067 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 2068 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 2069 return -ENOTSUP;
75d49497 2070 }
49b69cbf 2071
5120901a
EH
2072 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2073 if (unsupported_caps) {
87f8b626
AR
2074 if (unsupported_caps & MCG_LMCE_P) {
2075 error_report("kvm: LMCE not supported");
2076 return -ENOTSUP;
2077 }
3dc6f869
AF
2078 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2079 unsupported_caps);
5120901a
EH
2080 }
2081
2590f15b
EH
2082 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2083 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
2084 if (ret < 0) {
2085 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2086 return ret;
2087 }
e7701825 2088 }
e7701825 2089
2a693142 2090 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
b8cc45d6 2091
df67696e
LJ
2092 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2093 if (c) {
2094 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2095 !!(c->ecx & CPUID_EXT_SMX);
2096 }
2097
a0483541
SC
2098 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2099 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2100 has_msr_feature_control = true;
2101 }
2102
87f8b626
AR
2103 if (env->mcg_cap & MCG_LMCE_P) {
2104 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2105 }
2106
d99569d9
EH
2107 if (!env->user_tsc_khz) {
2108 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2109 invtsc_mig_blocker == NULL) {
d99569d9
EH
2110 error_setg(&invtsc_mig_blocker,
2111 "State blocked by non-migratable CPU device"
2112 " (invtsc flag)");
fe44dc91 2113 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
436c831a 2114 if (r < 0) {
fe44dc91 2115 error_report_err(local_err);
79a197ab 2116 return r;
fe44dc91 2117 }
d99569d9 2118 }
68bfd0ad
MT
2119 }
2120
9954a158
PDJ
2121 if (cpu->vmware_cpuid_freq
2122 /* Guests depend on 0x40000000 to detect this feature, so only expose
2123 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2124 && cpu->expose_kvm
2125 && kvm_base == KVM_CPUID_SIGNATURE
2126 /* TSC clock must be stable and known for this feature. */
4bb95b82 2127 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
2128
2129 c = &cpuid_data.entries[cpuid_i++];
2130 c->function = KVM_CPUID_SIGNATURE | 0x10;
2131 c->eax = env->tsc_khz;
73b994f6 2132 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
9954a158
PDJ
2133 c->ecx = c->edx = 0;
2134
2135 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2136 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2137 }
2138
2139 cpuid_data.cpuid.nent = cpuid_i;
2140
2141 cpuid_data.cpuid.padding = 0;
2142 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2143 if (r) {
2144 goto fail;
2145 }
e56dd3c7 2146 kvm_init_xsave(env);
ebbfef2f
LA
2147
2148 max_nested_state_len = kvm_max_nested_state_length();
2149 if (max_nested_state_len > 0) {
2150 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 2151
b16c0e20 2152 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1e44f3ab
PB
2153 env->nested_state = g_malloc0(max_nested_state_len);
2154 env->nested_state->size = max_nested_state_len;
1e44f3ab 2155
3cafdb67 2156 kvm_init_nested_state(env);
ebbfef2f
LA
2157 }
2158 }
2159
d71b62a1 2160 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 2161
273c515c
PB
2162 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2163 has_msr_tsc_aux = false;
2164 }
d1ae67f6 2165
420ae1fc
PB
2166 kvm_init_msrs(cpu);
2167
e7429073 2168 return 0;
fe44dc91
AA
2169
2170 fail:
2171 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 2172
fe44dc91 2173 return r;
05330448
AL
2174}
2175
b1115c99
LA
2176int kvm_arch_destroy_vcpu(CPUState *cs)
2177{
2178 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 2179 CPUX86State *env = &cpu->env;
b1115c99 2180
dcebbb65
PMD
2181 g_free(env->xsave_buf);
2182
76eb88b1
MA
2183 g_free(cpu->kvm_msr_buf);
2184 cpu->kvm_msr_buf = NULL;
b1115c99 2185
76eb88b1
MA
2186 g_free(env->nested_state);
2187 env->nested_state = NULL;
ebbfef2f 2188
2a693142
PN
2189 qemu_del_vm_change_state_handler(cpu->vmsentry);
2190
b1115c99
LA
2191 return 0;
2192}
2193
50a2c6e5 2194void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 2195{
20d695a9 2196 CPUX86State *env = &cpu->env;
dd673288 2197
1a5e9d2f 2198 env->xcr0 = 1;
ddced198 2199 if (kvm_irqchip_in_kernel()) {
dd673288 2200 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
2201 KVM_MP_STATE_UNINITIALIZED;
2202 } else {
2203 env->mp_state = KVM_MP_STATE_RUNNABLE;
2204 }
689141dd 2205
2d384d7c 2206 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
2207 int i;
2208 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2209 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2210 }
606c34bf
RK
2211
2212 hyperv_x86_synic_reset(cpu);
689141dd 2213 }
d645e132
MT
2214 /* enabled by default */
2215 env->poll_control_msr = 1;
b2f73a07 2216
3cafdb67
VK
2217 kvm_init_nested_state(env);
2218
b2f73a07 2219 sev_es_set_reset_vector(CPU(cpu));
caa5af0f
JK
2220}
2221
e0723c45
PB
2222void kvm_arch_do_init_vcpu(X86CPU *cpu)
2223{
2224 CPUX86State *env = &cpu->env;
2225
2226 /* APs get directly into wait-for-SIPI state. */
2227 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2228 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2229 }
2230}
2231
f57bceb6
RH
2232static int kvm_get_supported_feature_msrs(KVMState *s)
2233{
2234 int ret = 0;
2235
2236 if (kvm_feature_msrs != NULL) {
2237 return 0;
2238 }
2239
2240 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2241 return 0;
2242 }
2243
2244 struct kvm_msr_list msr_list;
2245
2246 msr_list.nmsrs = 0;
2247 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2248 if (ret < 0 && ret != -E2BIG) {
2249 error_report("Fetch KVM feature MSR list failed: %s",
2250 strerror(-ret));
2251 return ret;
2252 }
2253
2254 assert(msr_list.nmsrs > 0);
2255 kvm_feature_msrs = (struct kvm_msr_list *) \
2256 g_malloc0(sizeof(msr_list) +
2257 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2258
2259 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2260 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2261
2262 if (ret < 0) {
2263 error_report("Fetch KVM feature MSR list failed: %s",
2264 strerror(-ret));
2265 g_free(kvm_feature_msrs);
2266 kvm_feature_msrs = NULL;
2267 return ret;
2268 }
2269
2270 return 0;
2271}
2272
c3a3a7d3 2273static int kvm_get_supported_msrs(KVMState *s)
05330448 2274{
c3a3a7d3 2275 int ret = 0;
de428cea 2276 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 2277
de428cea
LQ
2278 /*
2279 * Obtain MSR list from KVM. These are the MSRs that we must
2280 * save/restore.
2281 */
2282 msr_list.nmsrs = 0;
2283 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2284 if (ret < 0 && ret != -E2BIG) {
2285 return ret;
2286 }
2287 /*
2288 * Old kernel modules had a bug and could write beyond the provided
2289 * memory. Allocate at least a safe amount of 1K.
2290 */
2291 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2292 msr_list.nmsrs *
2293 sizeof(msr_list.indices[0])));
05330448 2294
de428cea
LQ
2295 kvm_msr_list->nmsrs = msr_list.nmsrs;
2296 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2297 if (ret >= 0) {
2298 int i;
05330448 2299
de428cea
LQ
2300 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2301 switch (kvm_msr_list->indices[i]) {
2302 case MSR_STAR:
2303 has_msr_star = true;
2304 break;
2305 case MSR_VM_HSAVE_PA:
2306 has_msr_hsave_pa = true;
2307 break;
2308 case MSR_TSC_AUX:
2309 has_msr_tsc_aux = true;
2310 break;
2311 case MSR_TSC_ADJUST:
2312 has_msr_tsc_adjust = true;
2313 break;
2314 case MSR_IA32_TSCDEADLINE:
2315 has_msr_tsc_deadline = true;
2316 break;
2317 case MSR_IA32_SMBASE:
2318 has_msr_smbase = true;
2319 break;
2320 case MSR_SMI_COUNT:
2321 has_msr_smi_count = true;
2322 break;
2323 case MSR_IA32_MISC_ENABLE:
2324 has_msr_misc_enable = true;
2325 break;
2326 case MSR_IA32_BNDCFGS:
2327 has_msr_bndcfgs = true;
2328 break;
2329 case MSR_IA32_XSS:
2330 has_msr_xss = true;
2331 break;
65087997
TX
2332 case MSR_IA32_UMWAIT_CONTROL:
2333 has_msr_umwait = true;
2334 break;
de428cea
LQ
2335 case HV_X64_MSR_CRASH_CTL:
2336 has_msr_hv_crash = true;
2337 break;
2338 case HV_X64_MSR_RESET:
2339 has_msr_hv_reset = true;
2340 break;
2341 case HV_X64_MSR_VP_INDEX:
2342 has_msr_hv_vpindex = true;
2343 break;
2344 case HV_X64_MSR_VP_RUNTIME:
2345 has_msr_hv_runtime = true;
2346 break;
2347 case HV_X64_MSR_SCONTROL:
2348 has_msr_hv_synic = true;
2349 break;
2350 case HV_X64_MSR_STIMER0_CONFIG:
2351 has_msr_hv_stimer = true;
2352 break;
2353 case HV_X64_MSR_TSC_FREQUENCY:
2354 has_msr_hv_frequencies = true;
2355 break;
2356 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2357 has_msr_hv_reenlightenment = true;
2358 break;
73d24074
JD
2359 case HV_X64_MSR_SYNDBG_OPTIONS:
2360 has_msr_hv_syndbg_options = true;
2361 break;
de428cea
LQ
2362 case MSR_IA32_SPEC_CTRL:
2363 has_msr_spec_ctrl = true;
2364 break;
cabf9862
ML
2365 case MSR_AMD64_TSC_RATIO:
2366 has_tsc_scale_msr = true;
2367 break;
2a9758c5
PB
2368 case MSR_IA32_TSX_CTRL:
2369 has_msr_tsx_ctrl = true;
2370 break;
de428cea
LQ
2371 case MSR_VIRT_SSBD:
2372 has_msr_virt_ssbd = true;
2373 break;
2374 case MSR_IA32_ARCH_CAPABILITIES:
2375 has_msr_arch_capabs = true;
2376 break;
2377 case MSR_IA32_CORE_CAPABILITY:
2378 has_msr_core_capabs = true;
2379 break;
ea39f9b6
LX
2380 case MSR_IA32_PERF_CAPABILITIES:
2381 has_msr_perf_capabs = true;
2382 break;
20a78b02
PB
2383 case MSR_IA32_VMX_VMFUNC:
2384 has_msr_vmx_vmfunc = true;
2385 break;
67025148
PB
2386 case MSR_IA32_UCODE_REV:
2387 has_msr_ucode_rev = true;
2388 break;
4a910e1f
VK
2389 case MSR_IA32_VMX_PROCBASED_CTLS2:
2390 has_msr_vmx_procbased_ctls2 = true;
2391 break;
6aa4228b
CQ
2392 case MSR_IA32_PKRS:
2393 has_msr_pkrs = true;
2394 break;
05330448
AL
2395 }
2396 }
05330448
AL
2397 }
2398
de428cea
LQ
2399 g_free(kvm_msr_list);
2400
c3a3a7d3 2401 return ret;
05330448
AL
2402}
2403
37656470
AG
2404static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2405 uint64_t *val)
2406{
2407 CPUState *cs = CPU(cpu);
2408
2409 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2410 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2411
2412 return true;
2413}
2414
6410848b
PB
2415static Notifier smram_machine_done;
2416static KVMMemoryListener smram_listener;
2417static AddressSpace smram_address_space;
2418static MemoryRegion smram_as_root;
2419static MemoryRegion smram_as_mem;
2420
2421static void register_smram_listener(Notifier *n, void *unused)
2422{
2423 MemoryRegion *smram =
2424 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2425
2426 /* Outer container... */
2427 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2428 memory_region_set_enabled(&smram_as_root, true);
2429
2430 /* ... with two regions inside: normal system memory with low
2431 * priority, and...
2432 */
2433 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2434 get_system_memory(), 0, ~0ull);
2435 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2436 memory_region_set_enabled(&smram_as_mem, true);
2437
2438 if (smram) {
2439 /* ... SMRAM with higher priority */
2440 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2441 memory_region_set_enabled(smram, true);
2442 }
2443
2444 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2445 kvm_memory_listener_register(kvm_state, &smram_listener,
142518bd 2446 &smram_address_space, 1, "kvm-smram");
6410848b
PB
2447}
2448
b16565b3 2449int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2450{
11076198 2451 uint64_t identity_base = 0xfffbc000;
39d6960a 2452 uint64_t shadow_mem;
20420430 2453 int ret;
25d2e361 2454 struct utsname utsname;
ec78e2cd
DG
2455 Error *local_err = NULL;
2456
2457 /*
2458 * Initialize SEV context, if required
2459 *
2460 * If no memory encryption is requested (ms->cgs == NULL) this is
2461 * a no-op.
2462 *
2463 * It's also a no-op if a non-SEV confidential guest support
2464 * mechanism is selected. SEV is the only mechanism available to
2465 * select on x86 at present, so this doesn't arise, but if new
2466 * mechanisms are supported in future (e.g. TDX), they'll need
2467 * their own initialization either here or elsewhere.
2468 */
2469 ret = sev_kvm_init(ms->cgs, &local_err);
2470 if (ret < 0) {
2471 error_report_err(local_err);
2472 return ret;
2473 }
20420430 2474
1a6dff5f
EH
2475 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2476 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2477 return -ENOTSUP;
2478 }
2479
28143b40 2480 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2481 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2482 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
8f515d38 2483 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
28143b40 2484
e9688fab
RK
2485 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2486
fd13f23b
LA
2487 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2488 if (has_exception_payload) {
2489 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2490 if (ret < 0) {
2491 error_report("kvm: Failed to enable exception payload cap: %s",
2492 strerror(-ret));
2493 return ret;
2494 }
2495 }
2496
12f89a39
CQ
2497 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2498 if (has_triple_fault_event) {
2499 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2500 if (ret < 0) {
2501 error_report("kvm: Failed to enable triple fault event cap: %s",
2502 strerror(-ret));
2503 return ret;
2504 }
2505 }
2506
c3a3a7d3 2507 ret = kvm_get_supported_msrs(s);
20420430 2508 if (ret < 0) {
20420430
SY
2509 return ret;
2510 }
25d2e361 2511
f57bceb6
RH
2512 kvm_get_supported_feature_msrs(s);
2513
25d2e361
MT
2514 uname(&utsname);
2515 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2516
4c5b10b7 2517 /*
11076198
JK
2518 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2519 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2520 * Since these must be part of guest physical memory, we need to allocate
2521 * them, both by setting their start addresses in the kernel and by
2522 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2523 *
2524 * Older KVM versions may not support setting the identity map base. In
2525 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2526 * size.
4c5b10b7 2527 */
11076198
JK
2528 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2529 /* Allows up to 16M BIOSes. */
2530 identity_base = 0xfeffc000;
2531
2532 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2533 if (ret < 0) {
2534 return ret;
2535 }
4c5b10b7 2536 }
e56ff191 2537
11076198
JK
2538 /* Set TSS base one page after EPT identity map. */
2539 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2540 if (ret < 0) {
2541 return ret;
2542 }
2543
11076198
JK
2544 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2545 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2546 if (ret < 0) {
11076198 2547 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2548 return ret;
2549 }
2550
23b0898e 2551 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
36ad0e94
MA
2552 if (shadow_mem != -1) {
2553 shadow_mem /= 4096;
2554 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2555 if (ret < 0) {
2556 return ret;
39d6960a
JK
2557 }
2558 }
6410848b 2559
d870cfde 2560 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
8f54bbd0 2561 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
ed9e923c 2562 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
6410848b
PB
2563 smram_machine_done.notify = register_smram_listener;
2564 qemu_add_machine_init_done_notifier(&smram_machine_done);
2565 }
6f131f13
MT
2566
2567 if (enable_cpu_pm) {
2568 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2569 int ret;
2570
2571/* Work around for kernel header with a typo. TODO: fix header and drop. */
2572#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2573#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2574#endif
2575 if (disable_exits) {
2576 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2577 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2578 KVM_X86_DISABLE_EXITS_PAUSE |
2579 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2580 }
2581
2582 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2583 disable_exits);
2584 if (ret < 0) {
2585 error_report("kvm: guest stopping CPU not supported: %s",
2586 strerror(-ret));
2587 }
2588 }
2589
035d1ef2
CQ
2590 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2591 X86MachineState *x86ms = X86_MACHINE(ms);
2592
2593 if (x86ms->bus_lock_ratelimit > 0) {
2594 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2595 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2596 error_report("kvm: bus lock detection unsupported");
2597 return -ENOTSUP;
2598 }
2599 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2600 KVM_BUS_LOCK_DETECTION_EXIT);
2601 if (ret < 0) {
2602 error_report("kvm: Failed to enable bus lock detection cap: %s",
2603 strerror(-ret));
2604 return ret;
2605 }
2606 ratelimit_init(&bus_lock_ratelimit_ctrl);
2607 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2608 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2609 }
2610 }
2611
e2e69f6b
CQ
2612 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2613 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2614 uint64_t notify_window_flags =
2615 ((uint64_t)s->notify_window << 32) |
2616 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2617 KVM_X86_NOTIFY_VMEXIT_USER;
2618 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2619 notify_window_flags);
2620 if (ret < 0) {
2621 error_report("kvm: Failed to enable notify vmexit cap: %s",
2622 strerror(-ret));
2623 return ret;
2624 }
2625 }
860054d8 2626 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
37656470
AG
2627 bool r;
2628
860054d8
AG
2629 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2630 KVM_MSR_EXIT_REASON_FILTER);
2631 if (ret) {
2632 error_report("Could not enable user space MSRs: %s",
2633 strerror(-ret));
2634 exit(1);
2635 }
37656470
AG
2636
2637 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2638 kvm_rdmsr_core_thread_count, NULL);
2639 if (!r) {
2640 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2641 strerror(-ret));
2642 exit(1);
2643 }
860054d8 2644 }
e2e69f6b 2645
11076198 2646 return 0;
05330448 2647}
b9bec74b 2648
05330448
AL
2649static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2650{
2651 lhs->selector = rhs->selector;
2652 lhs->base = rhs->base;
2653 lhs->limit = rhs->limit;
2654 lhs->type = 3;
2655 lhs->present = 1;
2656 lhs->dpl = 3;
2657 lhs->db = 0;
2658 lhs->s = 1;
2659 lhs->l = 0;
2660 lhs->g = 0;
2661 lhs->avl = 0;
2662 lhs->unusable = 0;
2663}
2664
2665static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2666{
2667 unsigned flags = rhs->flags;
2668 lhs->selector = rhs->selector;
2669 lhs->base = rhs->base;
2670 lhs->limit = rhs->limit;
2671 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2672 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2673 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2674 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2675 lhs->s = (flags & DESC_S_MASK) != 0;
2676 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2677 lhs->g = (flags & DESC_G_MASK) != 0;
2678 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2679 lhs->unusable = !lhs->present;
7e680753 2680 lhs->padding = 0;
05330448
AL
2681}
2682
2683static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2684{
2685 lhs->selector = rhs->selector;
2686 lhs->base = rhs->base;
2687 lhs->limit = rhs->limit;
d45fc087
RP
2688 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2689 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2690 (rhs->dpl << DESC_DPL_SHIFT) |
2691 (rhs->db << DESC_B_SHIFT) |
2692 (rhs->s * DESC_S_MASK) |
2693 (rhs->l << DESC_L_SHIFT) |
2694 (rhs->g * DESC_G_MASK) |
2695 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2696}
2697
2698static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2699{
b9bec74b 2700 if (set) {
05330448 2701 *kvm_reg = *qemu_reg;
b9bec74b 2702 } else {
05330448 2703 *qemu_reg = *kvm_reg;
b9bec74b 2704 }
05330448
AL
2705}
2706
1bc22652 2707static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2708{
1bc22652 2709 CPUX86State *env = &cpu->env;
05330448
AL
2710 struct kvm_regs regs;
2711 int ret = 0;
2712
2713 if (!set) {
1bc22652 2714 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2715 if (ret < 0) {
05330448 2716 return ret;
b9bec74b 2717 }
05330448
AL
2718 }
2719
2720 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2721 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2722 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2723 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2724 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2725 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2726 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2727 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2728#ifdef TARGET_X86_64
2729 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2730 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2731 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2732 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2733 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2734 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2735 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2736 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2737#endif
2738
2739 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2740 kvm_getput_reg(&regs.rip, &env->eip, set);
2741
b9bec74b 2742 if (set) {
1bc22652 2743 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2744 }
05330448
AL
2745
2746 return ret;
2747}
2748
1bc22652 2749static int kvm_put_fpu(X86CPU *cpu)
05330448 2750{
1bc22652 2751 CPUX86State *env = &cpu->env;
05330448
AL
2752 struct kvm_fpu fpu;
2753 int i;
2754
2755 memset(&fpu, 0, sizeof fpu);
2756 fpu.fsw = env->fpus & ~(7 << 11);
2757 fpu.fsw |= (env->fpstt & 7) << 11;
2758 fpu.fcw = env->fpuc;
42cc8fa6
JK
2759 fpu.last_opcode = env->fpop;
2760 fpu.last_ip = env->fpip;
2761 fpu.last_dp = env->fpdp;
b9bec74b
JK
2762 for (i = 0; i < 8; ++i) {
2763 fpu.ftwx |= (!env->fptags[i]) << i;
2764 }
05330448 2765 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2766 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2767 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2768 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2769 }
05330448
AL
2770 fpu.mxcsr = env->mxcsr;
2771
1bc22652 2772 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2773}
2774
1bc22652 2775static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2776{
1bc22652 2777 CPUX86State *env = &cpu->env;
c0198c5f 2778 void *xsave = env->xsave_buf;
f1665b21 2779
28143b40 2780 if (!has_xsave) {
1bc22652 2781 return kvm_put_fpu(cpu);
b9bec74b 2782 }
c0198c5f 2783 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 2784
9be38598 2785 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2786}
2787
1bc22652 2788static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2789{
1bc22652 2790 CPUX86State *env = &cpu->env;
bdfc8480 2791 struct kvm_xcrs xcrs = {};
f1665b21 2792
28143b40 2793 if (!has_xcrs) {
f1665b21 2794 return 0;
b9bec74b 2795 }
f1665b21
SY
2796
2797 xcrs.nr_xcrs = 1;
2798 xcrs.flags = 0;
2799 xcrs.xcrs[0].xcr = 0;
2800 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2801 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2802}
2803
1bc22652 2804static int kvm_put_sregs(X86CPU *cpu)
05330448 2805{
1bc22652 2806 CPUX86State *env = &cpu->env;
05330448
AL
2807 struct kvm_sregs sregs;
2808
1520f8bb
PB
2809 /*
2810 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2811 * always followed by KVM_SET_VCPU_EVENTS.
2812 */
0e607a80 2813 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
05330448
AL
2814
2815 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2816 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2817 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2818 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2819 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2820 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2821 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2822 } else {
b9bec74b
JK
2823 set_seg(&sregs.cs, &env->segs[R_CS]);
2824 set_seg(&sregs.ds, &env->segs[R_DS]);
2825 set_seg(&sregs.es, &env->segs[R_ES]);
2826 set_seg(&sregs.fs, &env->segs[R_FS]);
2827 set_seg(&sregs.gs, &env->segs[R_GS]);
2828 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2829 }
2830
2831 set_seg(&sregs.tr, &env->tr);
2832 set_seg(&sregs.ldt, &env->ldt);
2833
2834 sregs.idt.limit = env->idt.limit;
2835 sregs.idt.base = env->idt.base;
7e680753 2836 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2837 sregs.gdt.limit = env->gdt.limit;
2838 sregs.gdt.base = env->gdt.base;
7e680753 2839 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2840
2841 sregs.cr0 = env->cr[0];
2842 sregs.cr2 = env->cr[2];
2843 sregs.cr3 = env->cr[3];
2844 sregs.cr4 = env->cr[4];
2845
02e51483
CF
2846 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2847 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2848
2849 sregs.efer = env->efer;
2850
1bc22652 2851 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2852}
2853
8f515d38
ML
2854static int kvm_put_sregs2(X86CPU *cpu)
2855{
2856 CPUX86State *env = &cpu->env;
2857 struct kvm_sregs2 sregs;
2858 int i;
2859
2860 sregs.flags = 0;
2861
2862 if ((env->eflags & VM_MASK)) {
2863 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2864 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2865 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2866 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2867 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2868 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2869 } else {
2870 set_seg(&sregs.cs, &env->segs[R_CS]);
2871 set_seg(&sregs.ds, &env->segs[R_DS]);
2872 set_seg(&sregs.es, &env->segs[R_ES]);
2873 set_seg(&sregs.fs, &env->segs[R_FS]);
2874 set_seg(&sregs.gs, &env->segs[R_GS]);
2875 set_seg(&sregs.ss, &env->segs[R_SS]);
2876 }
2877
2878 set_seg(&sregs.tr, &env->tr);
2879 set_seg(&sregs.ldt, &env->ldt);
2880
2881 sregs.idt.limit = env->idt.limit;
2882 sregs.idt.base = env->idt.base;
2883 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2884 sregs.gdt.limit = env->gdt.limit;
2885 sregs.gdt.base = env->gdt.base;
2886 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2887
2888 sregs.cr0 = env->cr[0];
2889 sregs.cr2 = env->cr[2];
2890 sregs.cr3 = env->cr[3];
2891 sregs.cr4 = env->cr[4];
2892
2893 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2894 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2895
2896 sregs.efer = env->efer;
2897
2898 if (env->pdptrs_valid) {
2899 for (i = 0; i < 4; i++) {
2900 sregs.pdptrs[i] = env->pdptrs[i];
2901 }
2902 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2903 }
2904
2905 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2906}
2907
2908
d71b62a1
EH
2909static void kvm_msr_buf_reset(X86CPU *cpu)
2910{
2911 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2912}
2913
9c600a84
EH
2914static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2915{
2916 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2917 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2918 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2919
2920 assert((void *)(entry + 1) <= limit);
2921
1abc2cae
EH
2922 entry->index = index;
2923 entry->reserved = 0;
2924 entry->data = value;
9c600a84
EH
2925 msrs->nmsrs++;
2926}
2927
73e1b8f2
PB
2928static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2929{
2930 kvm_msr_buf_reset(cpu);
2931 kvm_msr_entry_add(cpu, index, value);
2932
2933 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2934}
2935
5a778a5f
YW
2936static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2937{
2938 int ret;
2939 struct {
2940 struct kvm_msrs info;
2941 struct kvm_msr_entry entries[1];
2942 } msr_data = {
2943 .info.nmsrs = 1,
2944 .entries[0].index = index,
2945 };
2946
2947 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2948 if (ret < 0) {
2949 return ret;
2950 }
2951 assert(ret == 1);
2952 *value = msr_data.entries[0].data;
2953 return ret;
2954}
f8d9ccf8
DDAG
2955void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2956{
2957 int ret;
2958
2959 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2960 assert(ret == 1);
2961}
2962
7477cd38
MT
2963static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2964{
2965 CPUX86State *env = &cpu->env;
48e1a45c 2966 int ret;
7477cd38
MT
2967
2968 if (!has_msr_tsc_deadline) {
2969 return 0;
2970 }
2971
73e1b8f2 2972 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2973 if (ret < 0) {
2974 return ret;
2975 }
2976
2977 assert(ret == 1);
2978 return 0;
7477cd38
MT
2979}
2980
6bdf863d
JK
2981/*
2982 * Provide a separate write service for the feature control MSR in order to
2983 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2984 * before writing any other state because forcibly leaving nested mode
2985 * invalidates the VCPU state.
2986 */
2987static int kvm_put_msr_feature_control(X86CPU *cpu)
2988{
48e1a45c
PB
2989 int ret;
2990
2991 if (!has_msr_feature_control) {
2992 return 0;
2993 }
6bdf863d 2994
73e1b8f2
PB
2995 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2996 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2997 if (ret < 0) {
2998 return ret;
2999 }
3000
3001 assert(ret == 1);
3002 return 0;
6bdf863d
JK
3003}
3004
20a78b02
PB
3005static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3006{
3007 uint32_t default1, can_be_one, can_be_zero;
3008 uint32_t must_be_one;
3009
3010 switch (index) {
3011 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3012 default1 = 0x00000016;
3013 break;
3014 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3015 default1 = 0x0401e172;
3016 break;
3017 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3018 default1 = 0x000011ff;
3019 break;
3020 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3021 default1 = 0x00036dff;
3022 break;
3023 case MSR_IA32_VMX_PROCBASED_CTLS2:
3024 default1 = 0;
3025 break;
3026 default:
3027 abort();
3028 }
3029
3030 /* If a feature bit is set, the control can be either set or clear.
3031 * Otherwise the value is limited to either 0 or 1 by default1.
3032 */
3033 can_be_one = features | default1;
3034 can_be_zero = features | ~default1;
3035 must_be_one = ~can_be_zero;
3036
3037 /*
3038 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3039 * Bit 32:63 -> 1 if the control bit can be one.
3040 */
3041 return must_be_one | (((uint64_t)can_be_one) << 32);
3042}
3043
20a78b02
PB
3044static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3045{
3046 uint64_t kvm_vmx_basic =
3047 kvm_arch_get_supported_msr_feature(kvm_state,
3048 MSR_IA32_VMX_BASIC);
26051882
YZ
3049
3050 if (!kvm_vmx_basic) {
3051 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3052 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3053 */
3054 return;
3055 }
3056
20a78b02
PB
3057 uint64_t kvm_vmx_misc =
3058 kvm_arch_get_supported_msr_feature(kvm_state,
3059 MSR_IA32_VMX_MISC);
3060 uint64_t kvm_vmx_ept_vpid =
3061 kvm_arch_get_supported_msr_feature(kvm_state,
3062 MSR_IA32_VMX_EPT_VPID_CAP);
3063
3064 /*
3065 * If the guest is 64-bit, a value of 1 is allowed for the host address
3066 * space size vmexit control.
3067 */
3068 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3069 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3070
3071 /*
3072 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
3073 * not change them for backwards compatibility.
3074 */
3075 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3076 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3077 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3078 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3079
3080 /*
3081 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3082 * change in the future but are always zero for now, clear them to be
3083 * future proof. Bits 32-63 in theory could change, though KVM does
3084 * not support dual-monitor treatment and probably never will; mask
3085 * them out as well.
3086 */
3087 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3088 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3089 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3090
3091 /*
3092 * EPT memory types should not change either, so we do not bother
3093 * adding features for them.
3094 */
3095 uint64_t fixed_vmx_ept_mask =
3096 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3097 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3098 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3099
3100 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3101 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3102 f[FEAT_VMX_PROCBASED_CTLS]));
3103 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3104 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3105 f[FEAT_VMX_PINBASED_CTLS]));
3106 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3107 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3108 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3109 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3110 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3111 f[FEAT_VMX_ENTRY_CTLS]));
3112 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3113 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3114 f[FEAT_VMX_SECONDARY_CTLS]));
3115 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3116 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3117 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3118 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3119 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3120 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3121 if (has_msr_vmx_vmfunc) {
3122 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3123 }
3124
3125 /*
3126 * Just to be safe, write these with constant values. The CRn_FIXED1
3127 * MSRs are generated by KVM based on the vCPU's CPUID.
3128 */
3129 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3130 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3131 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3132 CR4_VMXE_MASK);
9ce8af4d
PB
3133
3134 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3135 /* TSC multiplier (0x2032). */
3136 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3137 } else {
3138 /* Preemption timer (0x482E). */
3139 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3140 }
20a78b02
PB
3141}
3142
ea39f9b6
LX
3143static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3144{
3145 uint64_t kvm_perf_cap =
3146 kvm_arch_get_supported_msr_feature(kvm_state,
3147 MSR_IA32_PERF_CAPABILITIES);
3148
3149 if (kvm_perf_cap) {
3150 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3151 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3152 }
3153}
3154
420ae1fc
PB
3155static int kvm_buf_set_msrs(X86CPU *cpu)
3156{
3157 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3158 if (ret < 0) {
3159 return ret;
3160 }
3161
3162 if (ret < cpu->kvm_msr_buf->nmsrs) {
3163 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3164 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3165 (uint32_t)e->index, (uint64_t)e->data);
3166 }
3167
3168 assert(ret == cpu->kvm_msr_buf->nmsrs);
3169 return 0;
3170}
3171
3172static void kvm_init_msrs(X86CPU *cpu)
3173{
3174 CPUX86State *env = &cpu->env;
3175
3176 kvm_msr_buf_reset(cpu);
3177 if (has_msr_arch_capabs) {
3178 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3179 env->features[FEAT_ARCH_CAPABILITIES]);
3180 }
3181
3182 if (has_msr_core_capabs) {
3183 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3184 env->features[FEAT_CORE_CAPABILITY]);
3185 }
3186
ea39f9b6
LX
3187 if (has_msr_perf_capabs && cpu->enable_pmu) {
3188 kvm_msr_entry_add_perf(cpu, env->features);
3189 }
3190
67025148 3191 if (has_msr_ucode_rev) {
32c87d70
PB
3192 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3193 }
3194
420ae1fc
PB
3195 /*
3196 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3197 * all kernels with MSR features should have them.
3198 */
3199 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3200 kvm_msr_entry_add_vmx(cpu, env->features);
3201 }
3202
3203 assert(kvm_buf_set_msrs(cpu) == 0);
3204}
3205
1bc22652 3206static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 3207{
1bc22652 3208 CPUX86State *env = &cpu->env;
9c600a84 3209 int i;
05330448 3210
d71b62a1
EH
3211 kvm_msr_buf_reset(cpu);
3212
9c600a84
EH
3213 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3214 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3215 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3216 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 3217 if (has_msr_star) {
9c600a84 3218 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 3219 }
c3a3a7d3 3220 if (has_msr_hsave_pa) {
9c600a84 3221 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 3222 }
c9b8f6b6 3223 if (has_msr_tsc_aux) {
9c600a84 3224 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 3225 }
f28558d3 3226 if (has_msr_tsc_adjust) {
9c600a84 3227 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 3228 }
21e87c46 3229 if (has_msr_misc_enable) {
9c600a84 3230 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
3231 env->msr_ia32_misc_enable);
3232 }
fc12d72e 3233 if (has_msr_smbase) {
9c600a84 3234 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 3235 }
e13713db
LA
3236 if (has_msr_smi_count) {
3237 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3238 }
6aa4228b
CQ
3239 if (has_msr_pkrs) {
3240 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3241 }
439d19f2 3242 if (has_msr_bndcfgs) {
9c600a84 3243 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 3244 }
18cd2c17 3245 if (has_msr_xss) {
9c600a84 3246 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 3247 }
65087997
TX
3248 if (has_msr_umwait) {
3249 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3250 }
a33a2cfe
PB
3251 if (has_msr_spec_ctrl) {
3252 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3253 }
cabf9862
ML
3254 if (has_tsc_scale_msr) {
3255 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3256 }
3257
2a9758c5
PB
3258 if (has_msr_tsx_ctrl) {
3259 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3260 }
cfeea0c0
KRW
3261 if (has_msr_virt_ssbd) {
3262 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3263 }
3264
05330448 3265#ifdef TARGET_X86_64
25d2e361 3266 if (lm_capable_kernel) {
9c600a84
EH
3267 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3268 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3269 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3270 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 3271 }
05330448 3272#endif
a33a2cfe 3273
ff5c186b 3274 /*
0d894367
PB
3275 * The following MSRs have side effects on the guest or are too heavy
3276 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
3277 */
3278 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
3279 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3280 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3281 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
6615be07
VK
3282 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3283 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3284 }
55c911a5 3285 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 3286 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 3287 }
55c911a5 3288 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3289 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 3290 }
55c911a5 3291 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3292 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 3293 }
d645e132
MT
3294
3295 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3296 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3297 }
3298
0b368a10
JD
3299 if (has_architectural_pmu_version > 0) {
3300 if (has_architectural_pmu_version > 1) {
3301 /* Stop the counter. */
3302 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3303 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3304 }
0d894367
PB
3305
3306 /* Set the counter values. */
0b368a10 3307 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3308 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
3309 env->msr_fixed_counters[i]);
3310 }
0b368a10 3311 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 3312 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 3313 env->msr_gp_counters[i]);
9c600a84 3314 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
3315 env->msr_gp_evtsel[i]);
3316 }
0b368a10
JD
3317 if (has_architectural_pmu_version > 1) {
3318 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3319 env->msr_global_status);
3320 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3321 env->msr_global_ovf_ctrl);
3322
3323 /* Now start the PMU. */
3324 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3325 env->msr_fixed_ctr_ctrl);
3326 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3327 env->msr_global_ctrl);
3328 }
0d894367 3329 }
da1cc323
EY
3330 /*
3331 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3332 * only sync them to KVM on the first cpu
3333 */
3334 if (current_cpu == first_cpu) {
3335 if (has_msr_hv_hypercall) {
3336 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3337 env->msr_hv_guest_os_id);
3338 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3339 env->msr_hv_hypercall);
3340 }
2d384d7c 3341 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
3342 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3343 env->msr_hv_tsc);
3344 }
2d384d7c 3345 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3346 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3347 env->msr_hv_reenlightenment_control);
3348 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3349 env->msr_hv_tsc_emulation_control);
3350 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3351 env->msr_hv_tsc_emulation_status);
3352 }
d8701185 3353#ifdef CONFIG_SYNDBG
73d24074
JD
3354 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3355 has_msr_hv_syndbg_options) {
3356 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3357 hyperv_syndbg_query_options());
3358 }
d8701185 3359#endif
eab70139 3360 }
2d384d7c 3361 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3362 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 3363 env->msr_hv_vapic);
eab70139 3364 }
f2a53c9e
AS
3365 if (has_msr_hv_crash) {
3366 int j;
3367
5e953812 3368 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 3369 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
3370 env->msr_hv_crash_params[j]);
3371
5e953812 3372 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 3373 }
46eb8f98 3374 if (has_msr_hv_runtime) {
9c600a84 3375 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 3376 }
2d384d7c
VK
3377 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3378 && hv_vpindex_settable) {
701189e3
RK
3379 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3380 hyperv_vp_index(CPU(cpu)));
e9688fab 3381 }
2d384d7c 3382 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3383 int j;
3384
09df29b6
RK
3385 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3386
9c600a84 3387 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 3388 env->msr_hv_synic_control);
9c600a84 3389 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 3390 env->msr_hv_synic_evt_page);
9c600a84 3391 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
3392 env->msr_hv_synic_msg_page);
3393
3394 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 3395 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
3396 env->msr_hv_synic_sint[j]);
3397 }
3398 }
ff99aa64
AS
3399 if (has_msr_hv_stimer) {
3400 int j;
3401
3402 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 3403 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
3404 env->msr_hv_stimer_config[j]);
3405 }
3406
3407 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 3408 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
3409 env->msr_hv_stimer_count[j]);
3410 }
3411 }
1eabfce6 3412 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
3413 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3414
9c600a84
EH
3415 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3416 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3417 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3418 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3419 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3420 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3421 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3422 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3423 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3424 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3425 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3426 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 3427 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
3428 /* The CPU GPs if we write to a bit above the physical limit of
3429 * the host CPU (and KVM emulates that)
3430 */
3431 uint64_t mask = env->mtrr_var[i].mask;
3432 mask &= phys_mask;
3433
9c600a84
EH
3434 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3435 env->mtrr_var[i].base);
112dad69 3436 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
3437 }
3438 }
b77146e9
CP
3439 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3440 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3441 0x14, 1, R_EAX) & 0x7;
3442
3443 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3444 env->msr_rtit_ctrl);
3445 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3446 env->msr_rtit_status);
3447 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3448 env->msr_rtit_output_base);
3449 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3450 env->msr_rtit_output_mask);
3451 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3452 env->msr_rtit_cr3_match);
3453 for (i = 0; i < addr_num; i++) {
3454 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3455 env->msr_rtit_addrs[i]);
3456 }
3457 }
6bdf863d 3458
db888065
SC
3459 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3460 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3461 env->msr_ia32_sgxlepubkeyhash[0]);
3462 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3463 env->msr_ia32_sgxlepubkeyhash[1]);
3464 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3465 env->msr_ia32_sgxlepubkeyhash[2]);
3466 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3467 env->msr_ia32_sgxlepubkeyhash[3]);
3468 }
3469
cdec2b75
ZG
3470 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3471 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3472 env->msr_xfd);
3473 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3474 env->msr_xfd_err);
3475 }
3476
12703d4e
YW
3477 if (kvm_enabled() && cpu->enable_pmu &&
3478 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3479 uint64_t depth;
3480 int i, ret;
3481
3482 /*
3a7a27cf
YW
3483 * Only migrate Arch LBR states when the host Arch LBR depth
3484 * equals that of source guest's, this is to avoid mismatch
3485 * of guest/host config for the msr hence avoid unexpected
3486 * misbehavior.
12703d4e
YW
3487 */
3488 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3489
3a7a27cf 3490 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
12703d4e
YW
3491 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3492 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3493
3494 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3495 if (!env->lbr_records[i].from) {
3496 continue;
3497 }
3498 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3499 env->lbr_records[i].from);
3500 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3501 env->lbr_records[i].to);
3502 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3503 env->lbr_records[i].info);
3504 }
3505 }
3506 }
3507
6bdf863d
JK
3508 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3509 * kvm_put_msr_feature_control. */
ea643051 3510 }
20a78b02 3511
57780495 3512 if (env->mcg_cap) {
d8da8574 3513 int i;
b9bec74b 3514
9c600a84
EH
3515 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3516 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
3517 if (has_msr_mcg_ext_ctl) {
3518 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3519 }
c34d440a 3520 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3521 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
3522 }
3523 }
1a03675d 3524
420ae1fc 3525 return kvm_buf_set_msrs(cpu);
05330448
AL
3526}
3527
3528
1bc22652 3529static int kvm_get_fpu(X86CPU *cpu)
05330448 3530{
1bc22652 3531 CPUX86State *env = &cpu->env;
05330448
AL
3532 struct kvm_fpu fpu;
3533 int i, ret;
3534
1bc22652 3535 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 3536 if (ret < 0) {
05330448 3537 return ret;
b9bec74b 3538 }
05330448
AL
3539
3540 env->fpstt = (fpu.fsw >> 11) & 7;
3541 env->fpus = fpu.fsw;
3542 env->fpuc = fpu.fcw;
42cc8fa6
JK
3543 env->fpop = fpu.last_opcode;
3544 env->fpip = fpu.last_ip;
3545 env->fpdp = fpu.last_dp;
b9bec74b
JK
3546 for (i = 0; i < 8; ++i) {
3547 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3548 }
05330448 3549 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 3550 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
3551 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3552 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 3553 }
05330448
AL
3554 env->mxcsr = fpu.mxcsr;
3555
3556 return 0;
3557}
3558
1bc22652 3559static int kvm_get_xsave(X86CPU *cpu)
f1665b21 3560{
1bc22652 3561 CPUX86State *env = &cpu->env;
c0198c5f 3562 void *xsave = env->xsave_buf;
e56dd3c7 3563 int type, ret;
f1665b21 3564
28143b40 3565 if (!has_xsave) {
1bc22652 3566 return kvm_get_fpu(cpu);
b9bec74b 3567 }
f1665b21 3568
e56dd3c7
JL
3569 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3570 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
0f53994f 3571 if (ret < 0) {
f1665b21 3572 return ret;
0f53994f 3573 }
c0198c5f 3574 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 3575
f1665b21 3576 return 0;
f1665b21
SY
3577}
3578
1bc22652 3579static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 3580{
1bc22652 3581 CPUX86State *env = &cpu->env;
f1665b21
SY
3582 int i, ret;
3583 struct kvm_xcrs xcrs;
3584
28143b40 3585 if (!has_xcrs) {
f1665b21 3586 return 0;
b9bec74b 3587 }
f1665b21 3588
1bc22652 3589 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 3590 if (ret < 0) {
f1665b21 3591 return ret;
b9bec74b 3592 }
f1665b21 3593
b9bec74b 3594 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 3595 /* Only support xcr0 now */
0fd53fec
PB
3596 if (xcrs.xcrs[i].xcr == 0) {
3597 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
3598 break;
3599 }
b9bec74b 3600 }
f1665b21 3601 return 0;
f1665b21
SY
3602}
3603
1bc22652 3604static int kvm_get_sregs(X86CPU *cpu)
05330448 3605{
1bc22652 3606 CPUX86State *env = &cpu->env;
05330448 3607 struct kvm_sregs sregs;
1520f8bb 3608 int ret;
05330448 3609
1bc22652 3610 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 3611 if (ret < 0) {
05330448 3612 return ret;
b9bec74b 3613 }
05330448 3614
1520f8bb
PB
3615 /*
3616 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3617 * always preceded by KVM_GET_VCPU_EVENTS.
3618 */
05330448
AL
3619
3620 get_seg(&env->segs[R_CS], &sregs.cs);
3621 get_seg(&env->segs[R_DS], &sregs.ds);
3622 get_seg(&env->segs[R_ES], &sregs.es);
3623 get_seg(&env->segs[R_FS], &sregs.fs);
3624 get_seg(&env->segs[R_GS], &sregs.gs);
3625 get_seg(&env->segs[R_SS], &sregs.ss);
3626
3627 get_seg(&env->tr, &sregs.tr);
3628 get_seg(&env->ldt, &sregs.ldt);
3629
3630 env->idt.limit = sregs.idt.limit;
3631 env->idt.base = sregs.idt.base;
3632 env->gdt.limit = sregs.gdt.limit;
3633 env->gdt.base = sregs.gdt.base;
3634
3635 env->cr[0] = sregs.cr0;
3636 env->cr[2] = sregs.cr2;
3637 env->cr[3] = sregs.cr3;
3638 env->cr[4] = sregs.cr4;
3639
05330448 3640 env->efer = sregs.efer;
cce47516
JK
3641
3642 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3643 x86_update_hflags(env);
05330448
AL
3644
3645 return 0;
3646}
3647
8f515d38
ML
3648static int kvm_get_sregs2(X86CPU *cpu)
3649{
3650 CPUX86State *env = &cpu->env;
3651 struct kvm_sregs2 sregs;
3652 int i, ret;
3653
3654 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3655 if (ret < 0) {
3656 return ret;
3657 }
3658
3659 get_seg(&env->segs[R_CS], &sregs.cs);
3660 get_seg(&env->segs[R_DS], &sregs.ds);
3661 get_seg(&env->segs[R_ES], &sregs.es);
3662 get_seg(&env->segs[R_FS], &sregs.fs);
3663 get_seg(&env->segs[R_GS], &sregs.gs);
3664 get_seg(&env->segs[R_SS], &sregs.ss);
3665
3666 get_seg(&env->tr, &sregs.tr);
3667 get_seg(&env->ldt, &sregs.ldt);
3668
3669 env->idt.limit = sregs.idt.limit;
3670 env->idt.base = sregs.idt.base;
3671 env->gdt.limit = sregs.gdt.limit;
3672 env->gdt.base = sregs.gdt.base;
3673
3674 env->cr[0] = sregs.cr0;
3675 env->cr[2] = sregs.cr2;
3676 env->cr[3] = sregs.cr3;
3677 env->cr[4] = sregs.cr4;
3678
3679 env->efer = sregs.efer;
3680
3681 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3682
3683 if (env->pdptrs_valid) {
3684 for (i = 0; i < 4; i++) {
3685 env->pdptrs[i] = sregs.pdptrs[i];
3686 }
3687 }
3688
3689 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3690 x86_update_hflags(env);
3691
3692 return 0;
3693}
3694
1bc22652 3695static int kvm_get_msrs(X86CPU *cpu)
05330448 3696{
1bc22652 3697 CPUX86State *env = &cpu->env;
d71b62a1 3698 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3699 int ret, i;
fcc35e7c 3700 uint64_t mtrr_top_bits;
05330448 3701
d71b62a1
EH
3702 kvm_msr_buf_reset(cpu);
3703
9c600a84
EH
3704 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3705 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3706 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3707 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3708 if (has_msr_star) {
9c600a84 3709 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3710 }
c3a3a7d3 3711 if (has_msr_hsave_pa) {
9c600a84 3712 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3713 }
c9b8f6b6 3714 if (has_msr_tsc_aux) {
9c600a84 3715 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3716 }
f28558d3 3717 if (has_msr_tsc_adjust) {
9c600a84 3718 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3719 }
aa82ba54 3720 if (has_msr_tsc_deadline) {
9c600a84 3721 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3722 }
21e87c46 3723 if (has_msr_misc_enable) {
9c600a84 3724 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3725 }
fc12d72e 3726 if (has_msr_smbase) {
9c600a84 3727 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3728 }
e13713db
LA
3729 if (has_msr_smi_count) {
3730 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3731 }
df67696e 3732 if (has_msr_feature_control) {
9c600a84 3733 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3734 }
6aa4228b
CQ
3735 if (has_msr_pkrs) {
3736 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3737 }
79e9ebeb 3738 if (has_msr_bndcfgs) {
9c600a84 3739 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3740 }
18cd2c17 3741 if (has_msr_xss) {
9c600a84 3742 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3743 }
65087997
TX
3744 if (has_msr_umwait) {
3745 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3746 }
a33a2cfe
PB
3747 if (has_msr_spec_ctrl) {
3748 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3749 }
cabf9862
ML
3750 if (has_tsc_scale_msr) {
3751 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3752 }
3753
2a9758c5
PB
3754 if (has_msr_tsx_ctrl) {
3755 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3756 }
cfeea0c0
KRW
3757 if (has_msr_virt_ssbd) {
3758 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3759 }
b8cc45d6 3760 if (!env->tsc_valid) {
9c600a84 3761 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3762 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3763 }
3764
05330448 3765#ifdef TARGET_X86_64
25d2e361 3766 if (lm_capable_kernel) {
9c600a84
EH
3767 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3768 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3769 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3770 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3771 }
05330448 3772#endif
9c600a84
EH
3773 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3774 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
db5daafa
VK
3775 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3776 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3777 }
6615be07
VK
3778 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3779 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3780 }
55c911a5 3781 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3782 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3783 }
55c911a5 3784 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3785 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3786 }
d645e132
MT
3787 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3788 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3789 }
0b368a10
JD
3790 if (has_architectural_pmu_version > 0) {
3791 if (has_architectural_pmu_version > 1) {
3792 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3793 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3794 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3795 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3796 }
3797 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3798 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3799 }
0b368a10 3800 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3801 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3802 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3803 }
3804 }
1a03675d 3805
57780495 3806 if (env->mcg_cap) {
9c600a84
EH
3807 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3808 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3809 if (has_msr_mcg_ext_ctl) {
3810 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3811 }
b9bec74b 3812 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3813 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3814 }
57780495 3815 }
57780495 3816
1c90ef26 3817 if (has_msr_hv_hypercall) {
9c600a84
EH
3818 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3819 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3820 }
2d384d7c 3821 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3822 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3823 }
2d384d7c 3824 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3825 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3826 }
2d384d7c 3827 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3828 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3829 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3830 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3831 }
73d24074
JD
3832 if (has_msr_hv_syndbg_options) {
3833 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3834 }
f2a53c9e
AS
3835 if (has_msr_hv_crash) {
3836 int j;
3837
5e953812 3838 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3839 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3840 }
3841 }
46eb8f98 3842 if (has_msr_hv_runtime) {
9c600a84 3843 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3844 }
2d384d7c 3845 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3846 uint32_t msr;
3847
9c600a84 3848 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3849 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3850 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3851 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3852 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3853 }
3854 }
ff99aa64
AS
3855 if (has_msr_hv_stimer) {
3856 uint32_t msr;
3857
3858 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3859 msr++) {
9c600a84 3860 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3861 }
3862 }
1eabfce6 3863 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3864 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3865 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3866 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3867 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3868 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3869 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3870 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3871 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3872 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3873 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3874 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3875 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3876 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3877 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3878 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3879 }
3880 }
5ef68987 3881
b77146e9
CP
3882 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3883 int addr_num =
3884 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3885
3886 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3887 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3888 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3889 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3890 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3891 for (i = 0; i < addr_num; i++) {
3892 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3893 }
3894 }
3895
db888065
SC
3896 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3897 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3898 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3899 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3900 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3901 }
3902
cdec2b75
ZG
3903 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3904 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3905 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3906 }
3907
12703d4e
YW
3908 if (kvm_enabled() && cpu->enable_pmu &&
3909 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3a7a27cf
YW
3910 uint64_t depth;
3911 int i, ret;
12703d4e 3912
3a7a27cf
YW
3913 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3914 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
12703d4e
YW
3915 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3916 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3917
3918 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3919 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3920 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3921 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3922 }
3923 }
3924 }
3925
d71b62a1 3926 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3927 if (ret < 0) {
05330448 3928 return ret;
b9bec74b 3929 }
05330448 3930
c70b11d1
EH
3931 if (ret < cpu->kvm_msr_buf->nmsrs) {
3932 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3933 error_report("error: failed to get MSR 0x%" PRIx32,
3934 (uint32_t)e->index);
3935 }
3936
9c600a84 3937 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3938 /*
3939 * MTRR masks: Each mask consists of 5 parts
3940 * a 10..0: must be zero
3941 * b 11 : valid bit
3942 * c n-1.12: actual mask bits
3943 * d 51..n: reserved must be zero
3944 * e 63.52: reserved must be zero
3945 *
3946 * 'n' is the number of physical bits supported by the CPU and is
3947 * apparently always <= 52. We know our 'n' but don't know what
3948 * the destinations 'n' is; it might be smaller, in which case
3949 * it masks (c) on loading. It might be larger, in which case
3950 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3951 * we're migrating to.
3952 */
3953
3954 if (cpu->fill_mtrr_mask) {
3955 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3956 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3957 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3958 } else {
3959 mtrr_top_bits = 0;
3960 }
3961
05330448 3962 for (i = 0; i < ret; i++) {
0d894367
PB
3963 uint32_t index = msrs[i].index;
3964 switch (index) {
05330448
AL
3965 case MSR_IA32_SYSENTER_CS:
3966 env->sysenter_cs = msrs[i].data;
3967 break;
3968 case MSR_IA32_SYSENTER_ESP:
3969 env->sysenter_esp = msrs[i].data;
3970 break;
3971 case MSR_IA32_SYSENTER_EIP:
3972 env->sysenter_eip = msrs[i].data;
3973 break;
0c03266a
JK
3974 case MSR_PAT:
3975 env->pat = msrs[i].data;
3976 break;
05330448
AL
3977 case MSR_STAR:
3978 env->star = msrs[i].data;
3979 break;
3980#ifdef TARGET_X86_64
3981 case MSR_CSTAR:
3982 env->cstar = msrs[i].data;
3983 break;
3984 case MSR_KERNELGSBASE:
3985 env->kernelgsbase = msrs[i].data;
3986 break;
3987 case MSR_FMASK:
3988 env->fmask = msrs[i].data;
3989 break;
3990 case MSR_LSTAR:
3991 env->lstar = msrs[i].data;
3992 break;
3993#endif
3994 case MSR_IA32_TSC:
3995 env->tsc = msrs[i].data;
3996 break;
c9b8f6b6
AS
3997 case MSR_TSC_AUX:
3998 env->tsc_aux = msrs[i].data;
3999 break;
f28558d3
WA
4000 case MSR_TSC_ADJUST:
4001 env->tsc_adjust = msrs[i].data;
4002 break;
aa82ba54
LJ
4003 case MSR_IA32_TSCDEADLINE:
4004 env->tsc_deadline = msrs[i].data;
4005 break;
aa851e36
MT
4006 case MSR_VM_HSAVE_PA:
4007 env->vm_hsave = msrs[i].data;
4008 break;
1a03675d
GC
4009 case MSR_KVM_SYSTEM_TIME:
4010 env->system_time_msr = msrs[i].data;
4011 break;
4012 case MSR_KVM_WALL_CLOCK:
4013 env->wall_clock_msr = msrs[i].data;
4014 break;
57780495
MT
4015 case MSR_MCG_STATUS:
4016 env->mcg_status = msrs[i].data;
4017 break;
4018 case MSR_MCG_CTL:
4019 env->mcg_ctl = msrs[i].data;
4020 break;
87f8b626
AR
4021 case MSR_MCG_EXT_CTL:
4022 env->mcg_ext_ctl = msrs[i].data;
4023 break;
21e87c46
AK
4024 case MSR_IA32_MISC_ENABLE:
4025 env->msr_ia32_misc_enable = msrs[i].data;
4026 break;
fc12d72e
PB
4027 case MSR_IA32_SMBASE:
4028 env->smbase = msrs[i].data;
4029 break;
e13713db
LA
4030 case MSR_SMI_COUNT:
4031 env->msr_smi_count = msrs[i].data;
4032 break;
0779caeb
ACL
4033 case MSR_IA32_FEATURE_CONTROL:
4034 env->msr_ia32_feature_control = msrs[i].data;
df67696e 4035 break;
79e9ebeb
LJ
4036 case MSR_IA32_BNDCFGS:
4037 env->msr_bndcfgs = msrs[i].data;
4038 break;
18cd2c17
WL
4039 case MSR_IA32_XSS:
4040 env->xss = msrs[i].data;
4041 break;
65087997
TX
4042 case MSR_IA32_UMWAIT_CONTROL:
4043 env->umwait = msrs[i].data;
4044 break;
6aa4228b
CQ
4045 case MSR_IA32_PKRS:
4046 env->pkrs = msrs[i].data;
4047 break;
57780495 4048 default:
57780495
MT
4049 if (msrs[i].index >= MSR_MC0_CTL &&
4050 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4051 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 4052 }
d8da8574 4053 break;
f6584ee2
GN
4054 case MSR_KVM_ASYNC_PF_EN:
4055 env->async_pf_en_msr = msrs[i].data;
4056 break;
db5daafa
VK
4057 case MSR_KVM_ASYNC_PF_INT:
4058 env->async_pf_int_msr = msrs[i].data;
4059 break;
bc9a839d
MT
4060 case MSR_KVM_PV_EOI_EN:
4061 env->pv_eoi_en_msr = msrs[i].data;
4062 break;
917367aa
MT
4063 case MSR_KVM_STEAL_TIME:
4064 env->steal_time_msr = msrs[i].data;
4065 break;
d645e132
MT
4066 case MSR_KVM_POLL_CONTROL: {
4067 env->poll_control_msr = msrs[i].data;
4068 break;
4069 }
0d894367
PB
4070 case MSR_CORE_PERF_FIXED_CTR_CTRL:
4071 env->msr_fixed_ctr_ctrl = msrs[i].data;
4072 break;
4073 case MSR_CORE_PERF_GLOBAL_CTRL:
4074 env->msr_global_ctrl = msrs[i].data;
4075 break;
4076 case MSR_CORE_PERF_GLOBAL_STATUS:
4077 env->msr_global_status = msrs[i].data;
4078 break;
4079 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4080 env->msr_global_ovf_ctrl = msrs[i].data;
4081 break;
4082 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4083 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4084 break;
4085 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4086 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4087 break;
4088 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4089 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4090 break;
1c90ef26
VR
4091 case HV_X64_MSR_HYPERCALL:
4092 env->msr_hv_hypercall = msrs[i].data;
4093 break;
4094 case HV_X64_MSR_GUEST_OS_ID:
4095 env->msr_hv_guest_os_id = msrs[i].data;
4096 break;
5ef68987
VR
4097 case HV_X64_MSR_APIC_ASSIST_PAGE:
4098 env->msr_hv_vapic = msrs[i].data;
4099 break;
48a5f3bc
VR
4100 case HV_X64_MSR_REFERENCE_TSC:
4101 env->msr_hv_tsc = msrs[i].data;
4102 break;
f2a53c9e
AS
4103 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4104 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4105 break;
46eb8f98
AS
4106 case HV_X64_MSR_VP_RUNTIME:
4107 env->msr_hv_runtime = msrs[i].data;
4108 break;
866eea9a
AS
4109 case HV_X64_MSR_SCONTROL:
4110 env->msr_hv_synic_control = msrs[i].data;
4111 break;
866eea9a
AS
4112 case HV_X64_MSR_SIEFP:
4113 env->msr_hv_synic_evt_page = msrs[i].data;
4114 break;
4115 case HV_X64_MSR_SIMP:
4116 env->msr_hv_synic_msg_page = msrs[i].data;
4117 break;
4118 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4119 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
4120 break;
4121 case HV_X64_MSR_STIMER0_CONFIG:
4122 case HV_X64_MSR_STIMER1_CONFIG:
4123 case HV_X64_MSR_STIMER2_CONFIG:
4124 case HV_X64_MSR_STIMER3_CONFIG:
4125 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4126 msrs[i].data;
4127 break;
4128 case HV_X64_MSR_STIMER0_COUNT:
4129 case HV_X64_MSR_STIMER1_COUNT:
4130 case HV_X64_MSR_STIMER2_COUNT:
4131 case HV_X64_MSR_STIMER3_COUNT:
4132 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4133 msrs[i].data;
866eea9a 4134 break;
ba6a4fd9
VK
4135 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4136 env->msr_hv_reenlightenment_control = msrs[i].data;
4137 break;
4138 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4139 env->msr_hv_tsc_emulation_control = msrs[i].data;
4140 break;
4141 case HV_X64_MSR_TSC_EMULATION_STATUS:
4142 env->msr_hv_tsc_emulation_status = msrs[i].data;
4143 break;
73d24074
JD
4144 case HV_X64_MSR_SYNDBG_OPTIONS:
4145 env->msr_hv_syndbg_options = msrs[i].data;
4146 break;
d1ae67f6
AW
4147 case MSR_MTRRdefType:
4148 env->mtrr_deftype = msrs[i].data;
4149 break;
4150 case MSR_MTRRfix64K_00000:
4151 env->mtrr_fixed[0] = msrs[i].data;
4152 break;
4153 case MSR_MTRRfix16K_80000:
4154 env->mtrr_fixed[1] = msrs[i].data;
4155 break;
4156 case MSR_MTRRfix16K_A0000:
4157 env->mtrr_fixed[2] = msrs[i].data;
4158 break;
4159 case MSR_MTRRfix4K_C0000:
4160 env->mtrr_fixed[3] = msrs[i].data;
4161 break;
4162 case MSR_MTRRfix4K_C8000:
4163 env->mtrr_fixed[4] = msrs[i].data;
4164 break;
4165 case MSR_MTRRfix4K_D0000:
4166 env->mtrr_fixed[5] = msrs[i].data;
4167 break;
4168 case MSR_MTRRfix4K_D8000:
4169 env->mtrr_fixed[6] = msrs[i].data;
4170 break;
4171 case MSR_MTRRfix4K_E0000:
4172 env->mtrr_fixed[7] = msrs[i].data;
4173 break;
4174 case MSR_MTRRfix4K_E8000:
4175 env->mtrr_fixed[8] = msrs[i].data;
4176 break;
4177 case MSR_MTRRfix4K_F0000:
4178 env->mtrr_fixed[9] = msrs[i].data;
4179 break;
4180 case MSR_MTRRfix4K_F8000:
4181 env->mtrr_fixed[10] = msrs[i].data;
4182 break;
4183 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4184 if (index & 1) {
fcc35e7c
DDAG
4185 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4186 mtrr_top_bits;
d1ae67f6
AW
4187 } else {
4188 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4189 }
4190 break;
a33a2cfe
PB
4191 case MSR_IA32_SPEC_CTRL:
4192 env->spec_ctrl = msrs[i].data;
4193 break;
cabf9862
ML
4194 case MSR_AMD64_TSC_RATIO:
4195 env->amd_tsc_scale_msr = msrs[i].data;
4196 break;
2a9758c5
PB
4197 case MSR_IA32_TSX_CTRL:
4198 env->tsx_ctrl = msrs[i].data;
4199 break;
cfeea0c0
KRW
4200 case MSR_VIRT_SSBD:
4201 env->virt_ssbd = msrs[i].data;
4202 break;
b77146e9
CP
4203 case MSR_IA32_RTIT_CTL:
4204 env->msr_rtit_ctrl = msrs[i].data;
4205 break;
4206 case MSR_IA32_RTIT_STATUS:
4207 env->msr_rtit_status = msrs[i].data;
4208 break;
4209 case MSR_IA32_RTIT_OUTPUT_BASE:
4210 env->msr_rtit_output_base = msrs[i].data;
4211 break;
4212 case MSR_IA32_RTIT_OUTPUT_MASK:
4213 env->msr_rtit_output_mask = msrs[i].data;
4214 break;
4215 case MSR_IA32_RTIT_CR3_MATCH:
4216 env->msr_rtit_cr3_match = msrs[i].data;
4217 break;
4218 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4219 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4220 break;
db888065
SC
4221 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4222 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4223 msrs[i].data;
4224 break;
cdec2b75
ZG
4225 case MSR_IA32_XFD:
4226 env->msr_xfd = msrs[i].data;
4227 break;
4228 case MSR_IA32_XFD_ERR:
4229 env->msr_xfd_err = msrs[i].data;
4230 break;
12703d4e
YW
4231 case MSR_ARCH_LBR_CTL:
4232 env->msr_lbr_ctl = msrs[i].data;
4233 break;
4234 case MSR_ARCH_LBR_DEPTH:
4235 env->msr_lbr_depth = msrs[i].data;
4236 break;
4237 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4238 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4239 break;
4240 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4241 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4242 break;
4243 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4244 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4245 break;
05330448
AL
4246 }
4247 }
4248
4249 return 0;
4250}
4251
1bc22652 4252static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 4253{
1bc22652 4254 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 4255
1bc22652 4256 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
4257}
4258
23d02d9b 4259static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 4260{
259186a7 4261 CPUState *cs = CPU(cpu);
23d02d9b 4262 CPUX86State *env = &cpu->env;
9bdbe550
HB
4263 struct kvm_mp_state mp_state;
4264 int ret;
4265
259186a7 4266 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
4267 if (ret < 0) {
4268 return ret;
4269 }
4270 env->mp_state = mp_state.mp_state;
c14750e8 4271 if (kvm_irqchip_in_kernel()) {
259186a7 4272 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 4273 }
9bdbe550
HB
4274 return 0;
4275}
4276
1bc22652 4277static int kvm_get_apic(X86CPU *cpu)
680c1c6f 4278{
02e51483 4279 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
4280 struct kvm_lapic_state kapic;
4281 int ret;
4282
3d4b2649 4283 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 4284 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
4285 if (ret < 0) {
4286 return ret;
4287 }
4288
4289 kvm_get_apic_state(apic, &kapic);
4290 }
4291 return 0;
4292}
4293
1bc22652 4294static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 4295{
fc12d72e 4296 CPUState *cs = CPU(cpu);
1bc22652 4297 CPUX86State *env = &cpu->env;
076796f8 4298 struct kvm_vcpu_events events = {};
a0fb002c
JK
4299
4300 if (!kvm_has_vcpu_events()) {
4301 return 0;
4302 }
4303
fd13f23b
LA
4304 events.flags = 0;
4305
4306 if (has_exception_payload) {
4307 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4308 events.exception.pending = env->exception_pending;
4309 events.exception_has_payload = env->exception_has_payload;
4310 events.exception_payload = env->exception_payload;
4311 }
4312 events.exception.nr = env->exception_nr;
4313 events.exception.injected = env->exception_injected;
a0fb002c
JK
4314 events.exception.has_error_code = env->has_error_code;
4315 events.exception.error_code = env->error_code;
4316
4317 events.interrupt.injected = (env->interrupt_injected >= 0);
4318 events.interrupt.nr = env->interrupt_injected;
4319 events.interrupt.soft = env->soft_interrupt;
4320
4321 events.nmi.injected = env->nmi_injected;
4322 events.nmi.pending = env->nmi_pending;
4323 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4324
4325 events.sipi_vector = env->sipi_vector;
4326
fc12d72e
PB
4327 if (has_msr_smbase) {
4328 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4329 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4330 if (kvm_irqchip_in_kernel()) {
4331 /* As soon as these are moved to the kernel, remove them
4332 * from cs->interrupt_request.
4333 */
4334 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4335 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4336 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4337 } else {
4338 /* Keep these in cs->interrupt_request. */
4339 events.smi.pending = 0;
4340 events.smi.latched_init = 0;
4341 }
fc3a1fd7
DDAG
4342 /* Stop SMI delivery on old machine types to avoid a reboot
4343 * on an inward migration of an old VM.
4344 */
4345 if (!cpu->kvm_no_smi_migration) {
4346 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4347 }
fc12d72e
PB
4348 }
4349
ea643051 4350 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
4351 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4352 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4353 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4354 }
ea643051 4355 }
aee028b9 4356
12f89a39
CQ
4357 if (has_triple_fault_event) {
4358 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4359 events.triple_fault.pending = env->triple_fault_pending;
4360 }
4361
1bc22652 4362 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
4363}
4364
1bc22652 4365static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 4366{
1bc22652 4367 CPUX86State *env = &cpu->env;
a0fb002c
JK
4368 struct kvm_vcpu_events events;
4369 int ret;
4370
4371 if (!kvm_has_vcpu_events()) {
4372 return 0;
4373 }
4374
fc12d72e 4375 memset(&events, 0, sizeof(events));
1bc22652 4376 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
4377 if (ret < 0) {
4378 return ret;
4379 }
fd13f23b
LA
4380
4381 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4382 env->exception_pending = events.exception.pending;
4383 env->exception_has_payload = events.exception_has_payload;
4384 env->exception_payload = events.exception_payload;
4385 } else {
4386 env->exception_pending = 0;
4387 env->exception_has_payload = false;
4388 }
4389 env->exception_injected = events.exception.injected;
4390 env->exception_nr =
4391 (env->exception_pending || env->exception_injected) ?
4392 events.exception.nr : -1;
a0fb002c
JK
4393 env->has_error_code = events.exception.has_error_code;
4394 env->error_code = events.exception.error_code;
4395
4396 env->interrupt_injected =
4397 events.interrupt.injected ? events.interrupt.nr : -1;
4398 env->soft_interrupt = events.interrupt.soft;
4399
4400 env->nmi_injected = events.nmi.injected;
4401 env->nmi_pending = events.nmi.pending;
4402 if (events.nmi.masked) {
4403 env->hflags2 |= HF2_NMI_MASK;
4404 } else {
4405 env->hflags2 &= ~HF2_NMI_MASK;
4406 }
4407
fc12d72e
PB
4408 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4409 if (events.smi.smm) {
4410 env->hflags |= HF_SMM_MASK;
4411 } else {
4412 env->hflags &= ~HF_SMM_MASK;
4413 }
4414 if (events.smi.pending) {
4415 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4416 } else {
4417 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4418 }
4419 if (events.smi.smm_inside_nmi) {
4420 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4421 } else {
4422 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4423 }
4424 if (events.smi.latched_init) {
4425 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4426 } else {
4427 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4428 }
4429 }
4430
12f89a39
CQ
4431 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4432 env->triple_fault_pending = events.triple_fault.pending;
4433 }
4434
a0fb002c 4435 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
4436
4437 return 0;
4438}
4439
1bc22652 4440static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 4441{
ed2803da 4442 CPUState *cs = CPU(cpu);
1bc22652 4443 CPUX86State *env = &cpu->env;
b0b1d690 4444 int ret = 0;
b0b1d690
JK
4445 unsigned long reinject_trap = 0;
4446
4447 if (!kvm_has_vcpu_events()) {
fd13f23b 4448 if (env->exception_nr == EXCP01_DB) {
b0b1d690 4449 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 4450 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
4451 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4452 }
fd13f23b 4453 kvm_reset_exception(env);
b0b1d690
JK
4454 }
4455
4456 /*
4457 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4458 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4459 * by updating the debug state once again if single-stepping is on.
4460 * Another reason to call kvm_update_guest_debug here is a pending debug
4461 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4462 * reinject them via SET_GUEST_DEBUG.
4463 */
4464 if (reinject_trap ||
ed2803da 4465 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 4466 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 4467 }
b0b1d690
JK
4468 return ret;
4469}
4470
1bc22652 4471static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 4472{
1bc22652 4473 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4474 struct kvm_debugregs dbgregs;
4475 int i;
4476
4477 if (!kvm_has_debugregs()) {
4478 return 0;
4479 }
4480
1f670a95 4481 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
4482 for (i = 0; i < 4; i++) {
4483 dbgregs.db[i] = env->dr[i];
4484 }
4485 dbgregs.dr6 = env->dr[6];
4486 dbgregs.dr7 = env->dr[7];
4487 dbgregs.flags = 0;
4488
1bc22652 4489 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
4490}
4491
1bc22652 4492static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 4493{
1bc22652 4494 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4495 struct kvm_debugregs dbgregs;
4496 int i, ret;
4497
4498 if (!kvm_has_debugregs()) {
4499 return 0;
4500 }
4501
1bc22652 4502 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 4503 if (ret < 0) {
b9bec74b 4504 return ret;
ff44f1a3
JK
4505 }
4506 for (i = 0; i < 4; i++) {
4507 env->dr[i] = dbgregs.db[i];
4508 }
4509 env->dr[4] = env->dr[6] = dbgregs.dr6;
4510 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
4511
4512 return 0;
4513}
4514
ebbfef2f
LA
4515static int kvm_put_nested_state(X86CPU *cpu)
4516{
4517 CPUX86State *env = &cpu->env;
4518 int max_nested_state_len = kvm_max_nested_state_length();
4519
1e44f3ab 4520 if (!env->nested_state) {
ebbfef2f
LA
4521 return 0;
4522 }
4523
b16c0e20
PB
4524 /*
4525 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4526 */
4527 if (env->hflags & HF_GUEST_MASK) {
4528 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4529 } else {
4530 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4531 }
0baa4b44
VK
4532
4533 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4534 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
b16c0e20
PB
4535 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4536 } else {
4537 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4538 }
4539
ebbfef2f
LA
4540 assert(env->nested_state->size <= max_nested_state_len);
4541 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4542}
4543
4544static int kvm_get_nested_state(X86CPU *cpu)
4545{
4546 CPUX86State *env = &cpu->env;
4547 int max_nested_state_len = kvm_max_nested_state_length();
4548 int ret;
4549
1e44f3ab 4550 if (!env->nested_state) {
ebbfef2f
LA
4551 return 0;
4552 }
4553
4554 /*
4555 * It is possible that migration restored a smaller size into
4556 * nested_state->hdr.size than what our kernel support.
4557 * We preserve migration origin nested_state->hdr.size for
4558 * call to KVM_SET_NESTED_STATE but wish that our next call
4559 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4560 */
4561 env->nested_state->size = max_nested_state_len;
4562
4563 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4564 if (ret < 0) {
4565 return ret;
4566 }
4567
b16c0e20
PB
4568 /*
4569 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4570 */
ebbfef2f
LA
4571 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4572 env->hflags |= HF_GUEST_MASK;
4573 } else {
4574 env->hflags &= ~HF_GUEST_MASK;
4575 }
0baa4b44
VK
4576
4577 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4578 if (cpu_has_svm(env)) {
4579 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4580 env->hflags2 |= HF2_GIF_MASK;
4581 } else {
4582 env->hflags2 &= ~HF2_GIF_MASK;
4583 }
b16c0e20 4584 }
ebbfef2f
LA
4585
4586 return ret;
4587}
4588
20d695a9 4589int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 4590{
20d695a9 4591 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
4592 int ret;
4593
2fa45344 4594 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 4595
45ed68a1
VK
4596 /*
4597 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4598 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4599 * preceed kvm_put_nested_state() when 'real' nested state is set.
4600 */
4601 if (level >= KVM_PUT_RESET_STATE) {
4602 ret = kvm_put_msr_feature_control(x86_cpu);
4603 if (ret < 0) {
4604 return ret;
4605 }
4606 }
4607
b16c0e20 4608 /* must be before kvm_put_nested_state so that EFER.SVME is set */
8f515d38 4609 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
b16c0e20
PB
4610 if (ret < 0) {
4611 return ret;
4612 }
4613
48e1a45c 4614 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
4615 ret = kvm_put_nested_state(x86_cpu);
4616 if (ret < 0) {
4617 return ret;
4618 }
6bdf863d
JK
4619 }
4620
36f96c4b
HZ
4621 if (level == KVM_PUT_FULL_STATE) {
4622 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4623 * because TSC frequency mismatch shouldn't abort migration,
4624 * unless the user explicitly asked for a more strict TSC
4625 * setting (e.g. using an explicit "tsc-freq" option).
4626 */
4627 kvm_arch_set_tsc_khz(cpu);
4628 }
4629
1bc22652 4630 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 4631 if (ret < 0) {
05330448 4632 return ret;
b9bec74b 4633 }
1bc22652 4634 ret = kvm_put_xsave(x86_cpu);
b9bec74b 4635 if (ret < 0) {
f1665b21 4636 return ret;
b9bec74b 4637 }
1bc22652 4638 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 4639 if (ret < 0) {
05330448 4640 return ret;
b9bec74b 4641 }
ab443475 4642 /* must be before kvm_put_msrs */
1bc22652 4643 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
4644 if (ret < 0) {
4645 return ret;
4646 }
1bc22652 4647 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 4648 if (ret < 0) {
05330448 4649 return ret;
b9bec74b 4650 }
4fadfa00
PH
4651 ret = kvm_put_vcpu_events(x86_cpu, level);
4652 if (ret < 0) {
4653 return ret;
4654 }
ea643051 4655 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 4656 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 4657 if (ret < 0) {
680c1c6f
JK
4658 return ret;
4659 }
ea643051 4660 }
7477cd38
MT
4661
4662 ret = kvm_put_tscdeadline_msr(x86_cpu);
4663 if (ret < 0) {
4664 return ret;
4665 }
1bc22652 4666 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 4667 if (ret < 0) {
b0b1d690 4668 return ret;
b9bec74b 4669 }
b0b1d690 4670 /* must be last */
1bc22652 4671 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 4672 if (ret < 0) {
ff44f1a3 4673 return ret;
b9bec74b 4674 }
05330448
AL
4675 return 0;
4676}
4677
20d695a9 4678int kvm_arch_get_registers(CPUState *cs)
05330448 4679{
20d695a9 4680 X86CPU *cpu = X86_CPU(cs);
05330448
AL
4681 int ret;
4682
20d695a9 4683 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 4684
4fadfa00 4685 ret = kvm_get_vcpu_events(cpu);
b9bec74b 4686 if (ret < 0) {
f4f1110e 4687 goto out;
b9bec74b 4688 }
4fadfa00
PH
4689 /*
4690 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4691 * KVM_GET_REGS and KVM_GET_SREGS.
4692 */
4693 ret = kvm_get_mp_state(cpu);
b9bec74b 4694 if (ret < 0) {
f4f1110e 4695 goto out;
b9bec74b 4696 }
4fadfa00 4697 ret = kvm_getput_regs(cpu, 0);
b9bec74b 4698 if (ret < 0) {
f4f1110e 4699 goto out;
b9bec74b 4700 }
4fadfa00 4701 ret = kvm_get_xsave(cpu);
b9bec74b 4702 if (ret < 0) {
f4f1110e 4703 goto out;
b9bec74b 4704 }
4fadfa00 4705 ret = kvm_get_xcrs(cpu);
b9bec74b 4706 if (ret < 0) {
f4f1110e 4707 goto out;
b9bec74b 4708 }
8f515d38 4709 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
b9bec74b 4710 if (ret < 0) {
f4f1110e 4711 goto out;
b9bec74b 4712 }
4fadfa00 4713 ret = kvm_get_msrs(cpu);
680c1c6f 4714 if (ret < 0) {
f4f1110e 4715 goto out;
680c1c6f 4716 }
4fadfa00 4717 ret = kvm_get_apic(cpu);
b9bec74b 4718 if (ret < 0) {
f4f1110e 4719 goto out;
b9bec74b 4720 }
1bc22652 4721 ret = kvm_get_debugregs(cpu);
b9bec74b 4722 if (ret < 0) {
f4f1110e 4723 goto out;
b9bec74b 4724 }
ebbfef2f
LA
4725 ret = kvm_get_nested_state(cpu);
4726 if (ret < 0) {
4727 goto out;
4728 }
f4f1110e
RH
4729 ret = 0;
4730 out:
4731 cpu_sync_bndcs_hflags(&cpu->env);
4732 return ret;
05330448
AL
4733}
4734
20d695a9 4735void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 4736{
20d695a9
AF
4737 X86CPU *x86_cpu = X86_CPU(cpu);
4738 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
4739 int ret;
4740
276ce815 4741 /* Inject NMI */
fc12d72e
PB
4742 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4743 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4744 qemu_mutex_lock_iothread();
4745 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4746 qemu_mutex_unlock_iothread();
4747 DPRINTF("injected NMI\n");
4748 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4749 if (ret < 0) {
4750 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4751 strerror(-ret));
4752 }
4753 }
4754 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4755 qemu_mutex_lock_iothread();
4756 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4757 qemu_mutex_unlock_iothread();
4758 DPRINTF("injected SMI\n");
4759 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4760 if (ret < 0) {
4761 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4762 strerror(-ret));
4763 }
ce377af3 4764 }
276ce815
LJ
4765 }
4766
15eafc2e 4767 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
4768 qemu_mutex_lock_iothread();
4769 }
4770
e0723c45
PB
4771 /* Force the VCPU out of its inner loop to process any INIT requests
4772 * or (for userspace APIC, but it is cheap to combine the checks here)
4773 * pending TPR access reports.
4774 */
4775 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
4776 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4777 !(env->hflags & HF_SMM_MASK)) {
4778 cpu->exit_request = 1;
4779 }
4780 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4781 cpu->exit_request = 1;
4782 }
e0723c45 4783 }
05330448 4784
15eafc2e 4785 if (!kvm_pic_in_kernel()) {
db1669bc
JK
4786 /* Try to inject an interrupt if the guest can accept it */
4787 if (run->ready_for_interrupt_injection &&
259186a7 4788 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
4789 (env->eflags & IF_MASK)) {
4790 int irq;
4791
259186a7 4792 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
4793 irq = cpu_get_pic_interrupt(env);
4794 if (irq >= 0) {
4795 struct kvm_interrupt intr;
4796
4797 intr.irq = irq;
db1669bc 4798 DPRINTF("injected interrupt %d\n", irq);
1bc22652 4799 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
4800 if (ret < 0) {
4801 fprintf(stderr,
4802 "KVM: injection failed, interrupt lost (%s)\n",
4803 strerror(-ret));
4804 }
db1669bc
JK
4805 }
4806 }
05330448 4807
db1669bc
JK
4808 /* If we have an interrupt but the guest is not ready to receive an
4809 * interrupt, request an interrupt window exit. This will
4810 * cause a return to userspace as soon as the guest is ready to
4811 * receive interrupts. */
259186a7 4812 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4813 run->request_interrupt_window = 1;
4814 } else {
4815 run->request_interrupt_window = 0;
4816 }
4817
4818 DPRINTF("setting tpr\n");
02e51483 4819 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4820
4821 qemu_mutex_unlock_iothread();
db1669bc 4822 }
05330448
AL
4823}
4824
035d1ef2
CQ
4825static void kvm_rate_limit_on_bus_lock(void)
4826{
4827 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4828
4829 if (delay_ns) {
4830 g_usleep(delay_ns / SCALE_US);
4831 }
4832}
4833
4c663752 4834MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4835{
20d695a9
AF
4836 X86CPU *x86_cpu = X86_CPU(cpu);
4837 CPUX86State *env = &x86_cpu->env;
4838
fc12d72e
PB
4839 if (run->flags & KVM_RUN_X86_SMM) {
4840 env->hflags |= HF_SMM_MASK;
4841 } else {
f5c052b9 4842 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4843 }
b9bec74b 4844 if (run->if_flag) {
05330448 4845 env->eflags |= IF_MASK;
b9bec74b 4846 } else {
05330448 4847 env->eflags &= ~IF_MASK;
b9bec74b 4848 }
035d1ef2
CQ
4849 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4850 kvm_rate_limit_on_bus_lock();
4851 }
4b8523ee
JK
4852
4853 /* We need to protect the apic state against concurrent accesses from
4854 * different threads in case the userspace irqchip is used. */
4855 if (!kvm_irqchip_in_kernel()) {
4856 qemu_mutex_lock_iothread();
4857 }
02e51483
CF
4858 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4859 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4860 if (!kvm_irqchip_in_kernel()) {
4861 qemu_mutex_unlock_iothread();
4862 }
f794aa4a 4863 return cpu_get_mem_attrs(env);
05330448
AL
4864}
4865
20d695a9 4866int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4867{
20d695a9
AF
4868 X86CPU *cpu = X86_CPU(cs);
4869 CPUX86State *env = &cpu->env;
232fc23b 4870
259186a7 4871 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4872 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4873 assert(env->mcg_cap);
4874
259186a7 4875 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4876
dd1750d7 4877 kvm_cpu_synchronize_state(cs);
ab443475 4878
fd13f23b 4879 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4880 /* this means triple fault */
cf83f140 4881 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4882 cs->exit_request = 1;
ab443475
JK
4883 return 0;
4884 }
fd13f23b 4885 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4886 env->has_error_code = 0;
4887
259186a7 4888 cs->halted = 0;
ab443475
JK
4889 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4890 env->mp_state = KVM_MP_STATE_RUNNABLE;
4891 }
4892 }
4893
fc12d72e
PB
4894 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4895 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4896 kvm_cpu_synchronize_state(cs);
4897 do_cpu_init(cpu);
4898 }
4899
db1669bc
JK
4900 if (kvm_irqchip_in_kernel()) {
4901 return 0;
4902 }
4903
259186a7
AF
4904 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4905 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4906 apic_poll_irq(cpu->apic_state);
5d62c43a 4907 }
259186a7 4908 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4909 (env->eflags & IF_MASK)) ||
259186a7
AF
4910 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4911 cs->halted = 0;
6792a57b 4912 }
259186a7 4913 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4914 kvm_cpu_synchronize_state(cs);
232fc23b 4915 do_cpu_sipi(cpu);
0af691d7 4916 }
259186a7
AF
4917 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4918 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4919 kvm_cpu_synchronize_state(cs);
02e51483 4920 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4921 env->tpr_access_type);
4922 }
0af691d7 4923
259186a7 4924 return cs->halted;
0af691d7
MT
4925}
4926
839b5630 4927static int kvm_handle_halt(X86CPU *cpu)
05330448 4928{
259186a7 4929 CPUState *cs = CPU(cpu);
839b5630
AF
4930 CPUX86State *env = &cpu->env;
4931
259186a7 4932 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4933 (env->eflags & IF_MASK)) &&
259186a7
AF
4934 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4935 cs->halted = 1;
bb4ea393 4936 return EXCP_HLT;
05330448
AL
4937 }
4938
bb4ea393 4939 return 0;
05330448
AL
4940}
4941
f7575c96 4942static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4943{
f7575c96
AF
4944 CPUState *cs = CPU(cpu);
4945 struct kvm_run *run = cs->kvm_run;
d362e757 4946
02e51483 4947 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4948 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4949 : TPR_ACCESS_READ);
4950 return 1;
4951}
4952
f17ec444 4953int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4954{
38972938 4955 static const uint8_t int3 = 0xcc;
64bf3f4e 4956
f17ec444
AF
4957 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4958 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4959 return -EINVAL;
b9bec74b 4960 }
e22a25c9
AL
4961 return 0;
4962}
4963
f17ec444 4964int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4965{
4966 uint8_t int3;
4967
c6986f16
PB
4968 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4969 return -EINVAL;
4970 }
4971 if (int3 != 0xcc) {
4972 return 0;
4973 }
4974 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4975 return -EINVAL;
b9bec74b 4976 }
e22a25c9
AL
4977 return 0;
4978}
4979
4980static struct {
4981 target_ulong addr;
4982 int len;
4983 int type;
4984} hw_breakpoint[4];
4985
4986static int nb_hw_breakpoint;
4987
4988static int find_hw_breakpoint(target_ulong addr, int len, int type)
4989{
4990 int n;
4991
b9bec74b 4992 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4993 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4994 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4995 return n;
b9bec74b
JK
4996 }
4997 }
e22a25c9
AL
4998 return -1;
4999}
5000
5001int kvm_arch_insert_hw_breakpoint(target_ulong addr,
5002 target_ulong len, int type)
5003{
5004 switch (type) {
5005 case GDB_BREAKPOINT_HW:
5006 len = 1;
5007 break;
5008 case GDB_WATCHPOINT_WRITE:
5009 case GDB_WATCHPOINT_ACCESS:
5010 switch (len) {
5011 case 1:
5012 break;
5013 case 2:
5014 case 4:
5015 case 8:
b9bec74b 5016 if (addr & (len - 1)) {
e22a25c9 5017 return -EINVAL;
b9bec74b 5018 }
e22a25c9
AL
5019 break;
5020 default:
5021 return -EINVAL;
5022 }
5023 break;
5024 default:
5025 return -ENOSYS;
5026 }
5027
b9bec74b 5028 if (nb_hw_breakpoint == 4) {
e22a25c9 5029 return -ENOBUFS;
b9bec74b
JK
5030 }
5031 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 5032 return -EEXIST;
b9bec74b 5033 }
e22a25c9
AL
5034 hw_breakpoint[nb_hw_breakpoint].addr = addr;
5035 hw_breakpoint[nb_hw_breakpoint].len = len;
5036 hw_breakpoint[nb_hw_breakpoint].type = type;
5037 nb_hw_breakpoint++;
5038
5039 return 0;
5040}
5041
5042int kvm_arch_remove_hw_breakpoint(target_ulong addr,
5043 target_ulong len, int type)
5044{
5045 int n;
5046
5047 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 5048 if (n < 0) {
e22a25c9 5049 return -ENOENT;
b9bec74b 5050 }
e22a25c9
AL
5051 nb_hw_breakpoint--;
5052 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5053
5054 return 0;
5055}
5056
5057void kvm_arch_remove_all_hw_breakpoints(void)
5058{
5059 nb_hw_breakpoint = 0;
5060}
5061
5062static CPUWatchpoint hw_watchpoint;
5063
a60f24b5 5064static int kvm_handle_debug(X86CPU *cpu,
48405526 5065 struct kvm_debug_exit_arch *arch_info)
e22a25c9 5066{
ed2803da 5067 CPUState *cs = CPU(cpu);
a60f24b5 5068 CPUX86State *env = &cpu->env;
f2574737 5069 int ret = 0;
e22a25c9
AL
5070 int n;
5071
37936ac7
LA
5072 if (arch_info->exception == EXCP01_DB) {
5073 if (arch_info->dr6 & DR6_BS) {
ed2803da 5074 if (cs->singlestep_enabled) {
f2574737 5075 ret = EXCP_DEBUG;
b9bec74b 5076 }
e22a25c9 5077 } else {
b9bec74b
JK
5078 for (n = 0; n < 4; n++) {
5079 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
5080 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5081 case 0x0:
f2574737 5082 ret = EXCP_DEBUG;
e22a25c9
AL
5083 break;
5084 case 0x1:
f2574737 5085 ret = EXCP_DEBUG;
ff4700b0 5086 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
5087 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5088 hw_watchpoint.flags = BP_MEM_WRITE;
5089 break;
5090 case 0x3:
f2574737 5091 ret = EXCP_DEBUG;
ff4700b0 5092 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
5093 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5094 hw_watchpoint.flags = BP_MEM_ACCESS;
5095 break;
5096 }
b9bec74b
JK
5097 }
5098 }
e22a25c9 5099 }
ff4700b0 5100 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 5101 ret = EXCP_DEBUG;
b9bec74b 5102 }
f2574737 5103 if (ret == 0) {
ff4700b0 5104 cpu_synchronize_state(cs);
fd13f23b 5105 assert(env->exception_nr == -1);
b0b1d690 5106
f2574737 5107 /* pass to guest */
fd13f23b
LA
5108 kvm_queue_exception(env, arch_info->exception,
5109 arch_info->exception == EXCP01_DB,
5110 arch_info->dr6);
48405526 5111 env->has_error_code = 0;
b0b1d690 5112 }
e22a25c9 5113
f2574737 5114 return ret;
e22a25c9
AL
5115}
5116
20d695a9 5117void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
5118{
5119 const uint8_t type_code[] = {
5120 [GDB_BREAKPOINT_HW] = 0x0,
5121 [GDB_WATCHPOINT_WRITE] = 0x1,
5122 [GDB_WATCHPOINT_ACCESS] = 0x3
5123 };
5124 const uint8_t len_code[] = {
5125 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5126 };
5127 int n;
5128
a60f24b5 5129 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 5130 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 5131 }
e22a25c9
AL
5132 if (nb_hw_breakpoint > 0) {
5133 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5134 dbg->arch.debugreg[7] = 0x0600;
5135 for (n = 0; n < nb_hw_breakpoint; n++) {
5136 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5137 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5138 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 5139 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
5140 }
5141 }
5142}
4513d923 5143
860054d8
AG
5144static bool kvm_install_msr_filters(KVMState *s)
5145{
5146 uint64_t zero = 0;
5147 struct kvm_msr_filter filter = {
5148 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5149 };
5150 int r, i, j = 0;
5151
5152 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5153 KVMMSRHandlers *handler = &msr_handlers[i];
5154 if (handler->msr) {
5155 struct kvm_msr_filter_range *range = &filter.ranges[j++];
5156
5157 *range = (struct kvm_msr_filter_range) {
5158 .flags = 0,
5159 .nmsrs = 1,
5160 .base = handler->msr,
5161 .bitmap = (__u8 *)&zero,
5162 };
5163
5164 if (handler->rdmsr) {
5165 range->flags |= KVM_MSR_FILTER_READ;
5166 }
5167
5168 if (handler->wrmsr) {
5169 range->flags |= KVM_MSR_FILTER_WRITE;
5170 }
5171 }
5172 }
5173
5174 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5175 if (r) {
5176 return false;
5177 }
5178
5179 return true;
5180}
5181
5182bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5183 QEMUWRMSRHandler *wrmsr)
5184{
5185 int i;
5186
5187 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5188 if (!msr_handlers[i].msr) {
5189 msr_handlers[i] = (KVMMSRHandlers) {
5190 .msr = msr,
5191 .rdmsr = rdmsr,
5192 .wrmsr = wrmsr,
5193 };
5194
5195 if (!kvm_install_msr_filters(s)) {
5196 msr_handlers[i] = (KVMMSRHandlers) { };
5197 return false;
5198 }
5199
5200 return true;
5201 }
5202 }
5203
5204 return false;
5205}
5206
5207static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5208{
5209 int i;
5210 bool r;
5211
5212 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5213 KVMMSRHandlers *handler = &msr_handlers[i];
5214 if (run->msr.index == handler->msr) {
5215 if (handler->rdmsr) {
5216 r = handler->rdmsr(cpu, handler->msr,
5217 (uint64_t *)&run->msr.data);
5218 run->msr.error = r ? 0 : 1;
5219 return 0;
5220 }
5221 }
5222 }
5223
5224 assert(false);
5225}
5226
5227static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5228{
5229 int i;
5230 bool r;
5231
5232 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5233 KVMMSRHandlers *handler = &msr_handlers[i];
5234 if (run->msr.index == handler->msr) {
5235 if (handler->wrmsr) {
5236 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5237 run->msr.error = r ? 0 : 1;
5238 return 0;
5239 }
5240 }
5241 }
5242
5243 assert(false);
5244}
5245
c22f5467
SC
5246static bool has_sgx_provisioning;
5247
5248static bool __kvm_enable_sgx_provisioning(KVMState *s)
5249{
5250 int fd, ret;
5251
5252 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5253 return false;
5254 }
5255
5256 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5257 if (fd < 0) {
5258 return false;
5259 }
5260
5261 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5262 if (ret) {
5263 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5264 exit(1);
5265 }
5266 close(fd);
5267 return true;
5268}
5269
5270bool kvm_enable_sgx_provisioning(KVMState *s)
5271{
5272 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5273}
5274
2a4dac83
JK
5275static bool host_supports_vmx(void)
5276{
5277 uint32_t ecx, unused;
5278
5279 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5280 return ecx & CPUID_EXT_VMX;
5281}
5282
5283#define VMX_INVALID_GUEST_STATE 0x80000021
5284
20d695a9 5285int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 5286{
20d695a9 5287 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
5288 uint64_t code;
5289 int ret;
e2e69f6b
CQ
5290 bool ctx_invalid;
5291 char str[256];
5292 KVMState *state;
2a4dac83
JK
5293
5294 switch (run->exit_reason) {
5295 case KVM_EXIT_HLT:
5296 DPRINTF("handle_hlt\n");
4b8523ee 5297 qemu_mutex_lock_iothread();
839b5630 5298 ret = kvm_handle_halt(cpu);
4b8523ee 5299 qemu_mutex_unlock_iothread();
2a4dac83
JK
5300 break;
5301 case KVM_EXIT_SET_TPR:
5302 ret = 0;
5303 break;
d362e757 5304 case KVM_EXIT_TPR_ACCESS:
4b8523ee 5305 qemu_mutex_lock_iothread();
f7575c96 5306 ret = kvm_handle_tpr_access(cpu);
4b8523ee 5307 qemu_mutex_unlock_iothread();
d362e757 5308 break;
2a4dac83
JK
5309 case KVM_EXIT_FAIL_ENTRY:
5310 code = run->fail_entry.hardware_entry_failure_reason;
5311 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5312 code);
5313 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5314 fprintf(stderr,
12619721 5315 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
5316 "unrestricted mode\n"
5317 "support, the failure can be most likely due to the guest "
5318 "entering an invalid\n"
5319 "state for Intel VT. For example, the guest maybe running "
5320 "in big real mode\n"
5321 "which is not supported on less recent Intel processors."
5322 "\n\n");
5323 }
5324 ret = -1;
5325 break;
5326 case KVM_EXIT_EXCEPTION:
5327 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5328 run->ex.exception, run->ex.error_code);
5329 ret = -1;
5330 break;
f2574737
JK
5331 case KVM_EXIT_DEBUG:
5332 DPRINTF("kvm_exit_debug\n");
4b8523ee 5333 qemu_mutex_lock_iothread();
a60f24b5 5334 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 5335 qemu_mutex_unlock_iothread();
f2574737 5336 break;
50efe82c
AS
5337 case KVM_EXIT_HYPERV:
5338 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5339 break;
15eafc2e
PB
5340 case KVM_EXIT_IOAPIC_EOI:
5341 ioapic_eoi_broadcast(run->eoi.vector);
5342 ret = 0;
5343 break;
035d1ef2
CQ
5344 case KVM_EXIT_X86_BUS_LOCK:
5345 /* already handled in kvm_arch_post_run */
5346 ret = 0;
5347 break;
e2e69f6b
CQ
5348 case KVM_EXIT_NOTIFY:
5349 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5350 state = KVM_STATE(current_accel());
5351 sprintf(str, "Encounter a notify exit with %svalid context in"
5352 " guest. There can be possible misbehaves in guest."
5353 " Please have a look.", ctx_invalid ? "in" : "");
5354 if (ctx_invalid ||
5355 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5356 warn_report("KVM internal error: %s", str);
5357 ret = -1;
5358 } else {
5359 warn_report_once("KVM: %s", str);
5360 ret = 0;
5361 }
5362 break;
860054d8
AG
5363 case KVM_EXIT_X86_RDMSR:
5364 /* We only enable MSR filtering, any other exit is bogus */
5365 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5366 ret = kvm_handle_rdmsr(cpu, run);
5367 break;
5368 case KVM_EXIT_X86_WRMSR:
5369 /* We only enable MSR filtering, any other exit is bogus */
5370 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5371 ret = kvm_handle_wrmsr(cpu, run);
5372 break;
2a4dac83
JK
5373 default:
5374 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5375 ret = -1;
5376 break;
5377 }
5378
5379 return ret;
5380}
5381
20d695a9 5382bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 5383{
20d695a9
AF
5384 X86CPU *cpu = X86_CPU(cs);
5385 CPUX86State *env = &cpu->env;
5386
dd1750d7 5387 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
5388 return !(env->cr[0] & CR0_PE_MASK) ||
5389 ((env->segs[R_CS].selector & 3) != 3);
4513d923 5390}
84b058d7
JK
5391
5392void kvm_arch_init_irq_routing(KVMState *s)
5393{
cc7e0ddf 5394 /* We know at this point that we're using the in-kernel
614e41bc 5395 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 5396 * we can use msi via irqfd and GSI routing.
cc7e0ddf 5397 */
614e41bc 5398 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 5399 kvm_gsi_routing_allowed = true;
15eafc2e
PB
5400
5401 if (kvm_irqchip_is_split()) {
def4c557 5402 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
15eafc2e
PB
5403 int i;
5404
5405 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5406 MSI routes for signaling interrupts to the local apics. */
5407 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
def4c557 5408 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
15eafc2e
PB
5409 error_report("Could not enable split IRQ mode.");
5410 exit(1);
5411 }
5412 }
def4c557 5413 kvm_irqchip_commit_route_changes(&c);
15eafc2e
PB
5414 }
5415}
5416
4376c40d 5417int kvm_arch_irqchip_create(KVMState *s)
15eafc2e
PB
5418{
5419 int ret;
4376c40d 5420 if (kvm_kernel_irqchip_split()) {
15eafc2e
PB
5421 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5422 if (ret) {
df3c286c 5423 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
5424 strerror(-ret));
5425 exit(1);
5426 } else {
5427 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5428 kvm_split_irqchip = true;
5429 return 1;
5430 }
5431 } else {
5432 return 0;
5433 }
84b058d7 5434}
b139bd30 5435
c1bb5418
DW
5436uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5437{
5438 CPUX86State *env;
5439 uint64_t ext_id;
5440
5441 if (!first_cpu) {
5442 return address;
5443 }
5444 env = &X86_CPU(first_cpu)->env;
5445 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5446 return address;
5447 }
5448
5449 /*
5450 * If the remappable format bit is set, or the upper bits are
5451 * already set in address_hi, or the low extended bits aren't
5452 * there anyway, do nothing.
5453 */
5454 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5455 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5456 return address;
5457 }
5458
5459 address &= ~ext_id;
5460 address |= ext_id << 35;
5461 return address;
5462}
5463
9e03a040 5464int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 5465 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 5466{
8b5ed7df
PX
5467 X86IOMMUState *iommu = x86_iommu_get_default();
5468
5469 if (iommu) {
30c60f77 5470 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
8b5ed7df 5471
c1bb5418
DW
5472 if (class->int_remap) {
5473 int ret;
5474 MSIMessage src, dst;
0ea1472d 5475
c1bb5418
DW
5476 src.address = route->u.msi.address_hi;
5477 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5478 src.address |= route->u.msi.address_lo;
5479 src.data = route->u.msi.data;
8b5ed7df 5480
c1bb5418
DW
5481 ret = class->int_remap(iommu, &src, &dst, dev ? \
5482 pci_requester_id(dev) : \
5483 X86_IOMMU_SID_INVALID);
5484 if (ret) {
5485 trace_kvm_x86_fixup_msi_error(route->gsi);
5486 return 1;
5487 }
5488
5489 /*
5490 * Handled untranslated compatibilty format interrupt with
5491 * extended destination ID in the low bits 11-5. */
5492 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
8b5ed7df 5493
c1bb5418
DW
5494 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5495 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5496 route->u.msi.data = dst.data;
5497 return 0;
5498 }
8b5ed7df
PX
5499 }
5500
c1bb5418
DW
5501 address = kvm_swizzle_msi_ext_dest_id(address);
5502 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5503 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
9e03a040
FB
5504 return 0;
5505}
1850b6b7 5506
38d87493
PX
5507typedef struct MSIRouteEntry MSIRouteEntry;
5508
5509struct MSIRouteEntry {
5510 PCIDevice *dev; /* Device pointer */
5511 int vector; /* MSI/MSIX vector index */
5512 int virq; /* Virtual IRQ index */
5513 QLIST_ENTRY(MSIRouteEntry) list;
5514};
5515
5516/* List of used GSI routes */
5517static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5518 QLIST_HEAD_INITIALIZER(msi_route_list);
5519
e1d4fb2d
PX
5520static void kvm_update_msi_routes_all(void *private, bool global,
5521 uint32_t index, uint32_t mask)
5522{
a56de056 5523 int cnt = 0, vector;
e1d4fb2d
PX
5524 MSIRouteEntry *entry;
5525 MSIMessage msg;
fd563564
PX
5526 PCIDevice *dev;
5527
e1d4fb2d
PX
5528 /* TODO: explicit route update */
5529 QLIST_FOREACH(entry, &msi_route_list, list) {
5530 cnt++;
a56de056 5531 vector = entry->vector;
fd563564 5532 dev = entry->dev;
a56de056
PX
5533 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5534 msg = msix_get_message(dev, vector);
5535 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5536 msg = msi_get_message(dev, vector);
5537 } else {
5538 /*
5539 * Either MSI/MSIX is disabled for the device, or the
5540 * specific message was masked out. Skip this one.
5541 */
fd563564
PX
5542 continue;
5543 }
fd563564 5544 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 5545 }
3f1fea0f 5546 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
5547 trace_kvm_x86_update_msi_routes(cnt);
5548}
5549
38d87493
PX
5550int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5551 int vector, PCIDevice *dev)
5552{
e1d4fb2d 5553 static bool notify_list_inited = false;
38d87493
PX
5554 MSIRouteEntry *entry;
5555
5556 if (!dev) {
5557 /* These are (possibly) IOAPIC routes only used for split
5558 * kernel irqchip mode, while what we are housekeeping are
5559 * PCI devices only. */
5560 return 0;
5561 }
5562
5563 entry = g_new0(MSIRouteEntry, 1);
5564 entry->dev = dev;
5565 entry->vector = vector;
5566 entry->virq = route->gsi;
5567 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5568
5569 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
5570
5571 if (!notify_list_inited) {
5572 /* For the first time we do add route, add ourselves into
5573 * IOMMU's IEC notify list if needed. */
5574 X86IOMMUState *iommu = x86_iommu_get_default();
5575 if (iommu) {
5576 x86_iommu_iec_register_notifier(iommu,
5577 kvm_update_msi_routes_all,
5578 NULL);
5579 }
5580 notify_list_inited = true;
5581 }
38d87493
PX
5582 return 0;
5583}
5584
5585int kvm_arch_release_virq_post(int virq)
5586{
5587 MSIRouteEntry *entry, *next;
5588 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5589 if (entry->virq == virq) {
5590 trace_kvm_x86_remove_msi_route(virq);
5591 QLIST_REMOVE(entry, list);
01960e6d 5592 g_free(entry);
38d87493
PX
5593 break;
5594 }
5595 }
9e03a040
FB
5596 return 0;
5597}
1850b6b7
EA
5598
5599int kvm_arch_msi_data_to_gsi(uint32_t data)
5600{
5601 abort();
5602}
e1e43813
PB
5603
5604bool kvm_has_waitpkg(void)
5605{
5606 return has_msr_umwait;
5607}
92a5199b
TL
5608
5609bool kvm_arch_cpu_check_are_resettable(void)
5610{
5611 return !sev_es_enabled();
5612}
19db68ca
YZ
5613
5614#define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5615
5616void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5617{
5618 KVMState *s = kvm_state;
5619 uint64_t supported;
5620
5621 mask &= XSTATE_DYNAMIC_MASK;
5622 if (!mask) {
5623 return;
5624 }
5625 /*
5626 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5627 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5628 * about them already because they are not supported features.
5629 */
5630 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5631 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5632 mask &= supported;
5633
5634 while (mask) {
5635 int bit = ctz64(mask);
5636 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5637 if (rc) {
5638 /*
5639 * Older kernel version (<5.17) do not support
5640 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5641 * any dynamic feature from kvm_arch_get_supported_cpuid.
5642 */
5643 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5644 "for feature bit %d", bit);
5645 }
5646 mask &= ~BIT_ULL(bit);
5647 }
5648}
3dba0a33 5649
e2e69f6b
CQ
5650static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5651{
5652 KVMState *s = KVM_STATE(obj);
5653 return s->notify_vmexit;
5654}
5655
5656static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5657{
5658 KVMState *s = KVM_STATE(obj);
5659
5660 if (s->fd != -1) {
5661 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5662 return;
5663 }
5664
5665 s->notify_vmexit = value;
5666}
5667
5668static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5669 const char *name, void *opaque,
5670 Error **errp)
5671{
5672 KVMState *s = KVM_STATE(obj);
5673 uint32_t value = s->notify_window;
5674
5675 visit_type_uint32(v, name, &value, errp);
5676}
5677
5678static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5679 const char *name, void *opaque,
5680 Error **errp)
5681{
5682 KVMState *s = KVM_STATE(obj);
5683 Error *error = NULL;
5684 uint32_t value;
5685
5686 if (s->fd != -1) {
5687 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5688 return;
5689 }
5690
5691 visit_type_uint32(v, name, &value, &error);
5692 if (error) {
5693 error_propagate(errp, error);
5694 return;
5695 }
5696
5697 s->notify_window = value;
5698}
5699
3dba0a33
PB
5700void kvm_arch_accel_class_init(ObjectClass *oc)
5701{
e2e69f6b
CQ
5702 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5703 &NotifyVmexitOption_lookup,
5704 kvm_arch_get_notify_vmexit,
5705 kvm_arch_set_notify_vmexit);
5706 object_class_property_set_description(oc, "notify-vmexit",
5707 "Enable notify VM exit");
5708
5709 object_class_property_add(oc, "notify-window", "uint32",
5710 kvm_arch_get_notify_window,
5711 kvm_arch_set_notify_window,
5712 NULL, NULL);
5713 object_class_property_set_description(oc, "notify-window",
5714 "Clock cycles without an event window "
5715 "after which a notification VM exit occurs");
3dba0a33 5716}