]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm/kvm.c
i386: Support KVM_CAP_ENFORCE_PV_FEATURE_CPUID
[mirror_qemu.git] / target / i386 / kvm / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
8efc4e51 16#include "qapi/qapi-events-run-state.h"
da34e65c 17#include "qapi/error.h"
05330448 18#include <sys/ioctl.h>
25d2e361 19#include <sys/utsname.h>
05330448
AL
20
21#include <linux/kvm.h>
1814eab6 22#include "standard-headers/asm-x86/kvm_para.h"
05330448 23
33c11879 24#include "cpu.h"
f5cc5a5c 25#include "host-cpu.h"
9c17d615 26#include "sysemu/sysemu.h"
b3946626 27#include "sysemu/hw_accel.h"
6410848b 28#include "sysemu/kvm_int.h"
54d31236 29#include "sysemu/runstate.h"
1d31f66b 30#include "kvm_i386.h"
92a5199b 31#include "sev_i386.h"
50efe82c 32#include "hyperv.h"
5e953812 33#include "hyperv-proto.h"
50efe82c 34
022c62cb 35#include "exec/gdbstub.h"
1de7afc9 36#include "qemu/host-utils.h"
db725815 37#include "qemu/main-loop.h"
1de7afc9 38#include "qemu/config-file.h"
1c4a55db 39#include "qemu/error-report.h"
89a289c7 40#include "hw/i386/x86.h"
0d09e41a 41#include "hw/i386/apic.h"
e0723c45
PB
42#include "hw/i386/apic_internal.h"
43#include "hw/i386/apic-msidef.h"
8b5ed7df 44#include "hw/i386/intel_iommu.h"
e1d4fb2d 45#include "hw/i386/x86-iommu.h"
d6d059ca 46#include "hw/i386/e820_memory_layout.h"
ec78e2cd 47#include "sysemu/sev.h"
50efe82c 48
a2cb15b0 49#include "hw/pci/pci.h"
15eafc2e 50#include "hw/pci/msi.h"
fd563564 51#include "hw/pci/msix.h"
795c40b8 52#include "migration/blocker.h"
4c663752 53#include "exec/memattrs.h"
8b5ed7df 54#include "trace.h"
05330448
AL
55
56//#define DEBUG_KVM
57
58#ifdef DEBUG_KVM
8c0d577e 59#define DPRINTF(fmt, ...) \
05330448
AL
60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
61#else
8c0d577e 62#define DPRINTF(fmt, ...) \
05330448
AL
63 do { } while (0)
64#endif
65
73b994f6
LA
66/* From arch/x86/kvm/lapic.h */
67#define KVM_APIC_BUS_CYCLE_NS 1
68#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
69
1a03675d
GC
70#define MSR_KVM_WALL_CLOCK 0x11
71#define MSR_KVM_SYSTEM_TIME 0x12
72
d1138251
EH
73/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
74 * 255 kvm_msr_entry structs */
75#define MSR_BUF_SIZE 4096
d71b62a1 76
420ae1fc
PB
77static void kvm_init_msrs(X86CPU *cpu);
78
94a8d39a
JK
79const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
80 KVM_CAP_INFO(SET_TSS_ADDR),
81 KVM_CAP_INFO(EXT_CPUID),
82 KVM_CAP_INFO(MP_STATE),
83 KVM_CAP_LAST_INFO
84};
25d2e361 85
c3a3a7d3
JK
86static bool has_msr_star;
87static bool has_msr_hsave_pa;
c9b8f6b6 88static bool has_msr_tsc_aux;
f28558d3 89static bool has_msr_tsc_adjust;
aa82ba54 90static bool has_msr_tsc_deadline;
df67696e 91static bool has_msr_feature_control;
21e87c46 92static bool has_msr_misc_enable;
fc12d72e 93static bool has_msr_smbase;
79e9ebeb 94static bool has_msr_bndcfgs;
25d2e361 95static int lm_capable_kernel;
7bc3d711 96static bool has_msr_hv_hypercall;
f2a53c9e 97static bool has_msr_hv_crash;
744b8a94 98static bool has_msr_hv_reset;
8c145d7c 99static bool has_msr_hv_vpindex;
e9688fab 100static bool hv_vpindex_settable;
46eb8f98 101static bool has_msr_hv_runtime;
866eea9a 102static bool has_msr_hv_synic;
ff99aa64 103static bool has_msr_hv_stimer;
d72bc7f6 104static bool has_msr_hv_frequencies;
ba6a4fd9 105static bool has_msr_hv_reenlightenment;
18cd2c17 106static bool has_msr_xss;
65087997 107static bool has_msr_umwait;
a33a2cfe 108static bool has_msr_spec_ctrl;
2a9758c5 109static bool has_msr_tsx_ctrl;
cfeea0c0 110static bool has_msr_virt_ssbd;
e13713db 111static bool has_msr_smi_count;
aec5e9c3 112static bool has_msr_arch_capabs;
597360c0 113static bool has_msr_core_capabs;
20a78b02 114static bool has_msr_vmx_vmfunc;
67025148 115static bool has_msr_ucode_rev;
4a910e1f 116static bool has_msr_vmx_procbased_ctls2;
ea39f9b6 117static bool has_msr_perf_capabs;
6aa4228b 118static bool has_msr_pkrs;
b827df58 119
0b368a10
JD
120static uint32_t has_architectural_pmu_version;
121static uint32_t num_architectural_pmu_gp_counters;
122static uint32_t num_architectural_pmu_fixed_counters;
0d894367 123
28143b40
TH
124static int has_xsave;
125static int has_xcrs;
126static int has_pit_state2;
fd13f23b 127static int has_exception_payload;
28143b40 128
87f8b626
AR
129static bool has_msr_mcg_ext_ctl;
130
494e95e9 131static struct kvm_cpuid2 *cpuid_cache;
a8439be6 132static struct kvm_cpuid2 *hv_cpuid_cache;
f57bceb6 133static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 134
035d1ef2
CQ
135#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
136static RateLimit bus_lock_ratelimit_ctrl;
137
28143b40
TH
138int kvm_has_pit_state2(void)
139{
140 return has_pit_state2;
141}
142
355023f2
PB
143bool kvm_has_smm(void)
144{
23edf8b5 145 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
355023f2
PB
146}
147
6053a86f
MT
148bool kvm_has_adjust_clock_stable(void)
149{
150 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
151
152 return (ret == KVM_CLOCK_TSC_STABLE);
153}
154
8700a984
VK
155bool kvm_has_adjust_clock(void)
156{
157 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
158}
159
79a197ab
LA
160bool kvm_has_exception_payload(void)
161{
162 return has_exception_payload;
163}
164
fb506e70
RK
165static bool kvm_x2apic_api_set_flags(uint64_t flags)
166{
4f7f5893 167 KVMState *s = KVM_STATE(current_accel());
fb506e70
RK
168
169 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
170}
171
e391c009 172#define MEMORIZE(fn, _result) \
2a138ec3 173 ({ \
2a138ec3
RK
174 static bool _memorized; \
175 \
176 if (_memorized) { \
177 return _result; \
178 } \
179 _memorized = true; \
180 _result = fn; \
181 })
182
e391c009
IM
183static bool has_x2apic_api;
184
185bool kvm_has_x2apic_api(void)
186{
187 return has_x2apic_api;
188}
189
fb506e70
RK
190bool kvm_enable_x2apic(void)
191{
2a138ec3
RK
192 return MEMORIZE(
193 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
194 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
195 has_x2apic_api);
fb506e70
RK
196}
197
e9688fab
RK
198bool kvm_hv_vpindex_settable(void)
199{
200 return hv_vpindex_settable;
201}
202
0fd7e098
LL
203static int kvm_get_tsc(CPUState *cs)
204{
205 X86CPU *cpu = X86_CPU(cs);
206 CPUX86State *env = &cpu->env;
207 struct {
208 struct kvm_msrs info;
209 struct kvm_msr_entry entries[1];
a1834d97 210 } msr_data = {};
0fd7e098
LL
211 int ret;
212
213 if (env->tsc_valid) {
214 return 0;
215 }
216
1f670a95 217 memset(&msr_data, 0, sizeof(msr_data));
0fd7e098
LL
218 msr_data.info.nmsrs = 1;
219 msr_data.entries[0].index = MSR_IA32_TSC;
220 env->tsc_valid = !runstate_is_running();
221
222 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
223 if (ret < 0) {
224 return ret;
225 }
226
48e1a45c 227 assert(ret == 1);
0fd7e098
LL
228 env->tsc = msr_data.entries[0].data;
229 return 0;
230}
231
14e6fe12 232static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 233{
0fd7e098
LL
234 kvm_get_tsc(cpu);
235}
236
237void kvm_synchronize_all_tsc(void)
238{
239 CPUState *cpu;
240
241 if (kvm_enabled()) {
242 CPU_FOREACH(cpu) {
14e6fe12 243 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
244 }
245 }
246}
247
b827df58
AK
248static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
249{
250 struct kvm_cpuid2 *cpuid;
251 int r, size;
252
253 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 254 cpuid = g_malloc0(size);
b827df58
AK
255 cpuid->nent = max;
256 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
257 if (r == 0 && cpuid->nent >= max) {
258 r = -E2BIG;
259 }
b827df58
AK
260 if (r < 0) {
261 if (r == -E2BIG) {
7267c094 262 g_free(cpuid);
b827df58
AK
263 return NULL;
264 } else {
265 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
266 strerror(-r));
267 exit(1);
268 }
269 }
270 return cpuid;
271}
272
dd87f8a6
EH
273/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
274 * for all entries.
275 */
276static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
277{
278 struct kvm_cpuid2 *cpuid;
279 int max = 1;
494e95e9
CP
280
281 if (cpuid_cache != NULL) {
282 return cpuid_cache;
283 }
dd87f8a6
EH
284 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
285 max *= 2;
286 }
494e95e9 287 cpuid_cache = cpuid;
dd87f8a6
EH
288 return cpuid;
289}
290
b199c682 291static bool host_tsx_broken(void)
40e80ee4
EH
292{
293 int family, model, stepping;\
294 char vendor[CPUID_VENDOR_SZ + 1];
295
f5cc5a5c 296 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
40e80ee4
EH
297
298 /* Check if we are running on a Haswell host known to have broken TSX */
299 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
300 (family == 6) &&
301 ((model == 63 && stepping < 4) ||
302 model == 60 || model == 69 || model == 70);
303}
0c31b744 304
829ae2f9
EH
305/* Returns the value for a specific register on the cpuid entry
306 */
307static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
308{
309 uint32_t ret = 0;
310 switch (reg) {
311 case R_EAX:
312 ret = entry->eax;
313 break;
314 case R_EBX:
315 ret = entry->ebx;
316 break;
317 case R_ECX:
318 ret = entry->ecx;
319 break;
320 case R_EDX:
321 ret = entry->edx;
322 break;
323 }
324 return ret;
325}
326
4fb73f1d
EH
327/* Find matching entry for function/index on kvm_cpuid2 struct
328 */
329static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
330 uint32_t function,
331 uint32_t index)
332{
333 int i;
334 for (i = 0; i < cpuid->nent; ++i) {
335 if (cpuid->entries[i].function == function &&
336 cpuid->entries[i].index == index) {
337 return &cpuid->entries[i];
338 }
339 }
340 /* not found: */
341 return NULL;
342}
343
ba9bc59e 344uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 345 uint32_t index, int reg)
b827df58
AK
346{
347 struct kvm_cpuid2 *cpuid;
b827df58
AK
348 uint32_t ret = 0;
349 uint32_t cpuid_1_edx;
350
dd87f8a6 351 cpuid = get_supported_cpuid(s);
b827df58 352
4fb73f1d
EH
353 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
354 if (entry) {
4fb73f1d 355 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
356 }
357
7b46e5ce
EH
358 /* Fixups for the data returned by KVM, below */
359
c2acb022
EH
360 if (function == 1 && reg == R_EDX) {
361 /* KVM before 2.6.30 misreports the following features */
362 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
363 } else if (function == 1 && reg == R_ECX) {
364 /* We can set the hypervisor flag, even if KVM does not return it on
365 * GET_SUPPORTED_CPUID
366 */
367 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
368 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
369 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
370 * and the irqchip is in the kernel.
371 */
372 if (kvm_irqchip_in_kernel() &&
373 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
374 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
375 }
41e5e76d
EH
376
377 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
378 * without the in-kernel irqchip
379 */
380 if (!kvm_irqchip_in_kernel()) {
381 ret &= ~CPUID_EXT_X2APIC;
b827df58 382 }
2266d443
MT
383
384 if (enable_cpu_pm) {
385 int disable_exits = kvm_check_extension(s,
386 KVM_CAP_X86_DISABLE_EXITS);
387
388 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
389 ret |= CPUID_EXT_MONITOR;
390 }
391 }
28b8e4d0
JK
392 } else if (function == 6 && reg == R_EAX) {
393 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4 394 } else if (function == 7 && index == 0 && reg == R_EBX) {
b199c682 395 if (host_tsx_broken()) {
40e80ee4
EH
396 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
397 }
485b1d25
EH
398 } else if (function == 7 && index == 0 && reg == R_EDX) {
399 /*
400 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
401 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
402 * returned by KVM_GET_MSR_INDEX_LIST.
403 */
404 if (!has_msr_arch_capabs) {
405 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
406 }
f98bbd83
BM
407 } else if (function == 0x80000001 && reg == R_ECX) {
408 /*
409 * It's safe to enable TOPOEXT even if it's not returned by
410 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
411 * us to keep CPU models including TOPOEXT runnable on older kernels.
412 */
413 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
414 } else if (function == 0x80000001 && reg == R_EDX) {
415 /* On Intel, kvm returns cpuid according to the Intel spec,
416 * so add missing bits according to the AMD spec:
417 */
418 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
419 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
420 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
421 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
422 * be enabled without the in-kernel irqchip
423 */
424 if (!kvm_irqchip_in_kernel()) {
425 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
426 }
c1bb5418
DW
427 if (kvm_irqchip_is_split()) {
428 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
429 }
be777326 430 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 431 ret |= 1U << KVM_HINTS_REALTIME;
b9bec74b 432 }
0c31b744
GC
433
434 return ret;
bb0300dc 435}
bb0300dc 436
ede146c2 437uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
438{
439 struct {
440 struct kvm_msrs info;
441 struct kvm_msr_entry entries[1];
a1834d97 442 } msr_data = {};
20a78b02
PB
443 uint64_t value;
444 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
445
446 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
447 return 0;
448 }
449
450 /* Check if requested MSR is supported feature MSR */
451 int i;
452 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
453 if (kvm_feature_msrs->indices[i] == index) {
454 break;
455 }
456 if (i == kvm_feature_msrs->nmsrs) {
457 return 0; /* if the feature MSR is not supported, simply return 0 */
458 }
459
460 msr_data.info.nmsrs = 1;
461 msr_data.entries[0].index = index;
462
463 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
464 if (ret != 1) {
465 error_report("KVM get MSR (index=0x%x) feature failed, %s",
466 index, strerror(-ret));
467 exit(1);
468 }
469
20a78b02
PB
470 value = msr_data.entries[0].data;
471 switch (index) {
472 case MSR_IA32_VMX_PROCBASED_CTLS2:
4a910e1f
VK
473 if (!has_msr_vmx_procbased_ctls2) {
474 /* KVM forgot to add these bits for some time, do this ourselves. */
475 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
476 CPUID_XSAVE_XSAVES) {
477 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
478 }
479 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
480 CPUID_EXT_RDRAND) {
481 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
482 }
483 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
484 CPUID_7_0_EBX_INVPCID) {
485 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
486 }
487 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
488 CPUID_7_0_EBX_RDSEED) {
489 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
490 }
491 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
492 CPUID_EXT2_RDTSCP) {
493 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
494 }
048c9516
PB
495 }
496 /* fall through */
20a78b02
PB
497 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
498 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
499 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
500 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
501 /*
502 * Return true for bits that can be one, but do not have to be one.
503 * The SDM tells us which bits could have a "must be one" setting,
504 * so we can do the opposite transformation in make_vmx_msr_value.
505 */
506 must_be_one = (uint32_t)value;
507 can_be_one = (uint32_t)(value >> 32);
508 return can_be_one & ~must_be_one;
509
510 default:
511 return value;
512 }
f57bceb6
RH
513}
514
e7701825
MT
515static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
516 int *max_banks)
517{
518 int r;
519
14a09518 520 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
521 if (r > 0) {
522 *max_banks = r;
523 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
524 }
525 return -ENOSYS;
526}
527
bee615d4 528static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 529{
87f8b626 530 CPUState *cs = CPU(cpu);
bee615d4 531 CPUX86State *env = &cpu->env;
c34d440a
JK
532 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
533 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
534 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 535 int flags = 0;
e7701825 536
c34d440a
JK
537 if (code == BUS_MCEERR_AR) {
538 status |= MCI_STATUS_AR | 0x134;
539 mcg_status |= MCG_STATUS_EIPV;
540 } else {
541 status |= 0xc0;
542 mcg_status |= MCG_STATUS_RIPV;
419fb20a 543 }
87f8b626
AR
544
545 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
546 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
547 * guest kernel back into env->mcg_ext_ctl.
548 */
549 cpu_synchronize_state(cs);
550 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
551 mcg_status |= MCG_STATUS_LMCE;
552 flags = 0;
553 }
554
8c5cf3b6 555 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 556 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 557}
419fb20a 558
8efc4e51
ZP
559static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
560{
561 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
562
563 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
564 &mff);
565}
566
73284563 567static void hardware_memory_error(void *host_addr)
419fb20a 568{
8efc4e51 569 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
73284563 570 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
571 exit(1);
572}
573
2ae41db2 574void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 575{
20d695a9
AF
576 X86CPU *cpu = X86_CPU(c);
577 CPUX86State *env = &cpu->env;
419fb20a 578 ram_addr_t ram_addr;
a8170e5e 579 hwaddr paddr;
419fb20a 580
4d39892c
PB
581 /* If we get an action required MCE, it has been injected by KVM
582 * while the VM was running. An action optional MCE instead should
583 * be coming from the main thread, which qemu_init_sigbus identifies
584 * as the "early kill" thread.
585 */
a16fc07e 586 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 587
20e0ff59 588 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 589 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
590 if (ram_addr != RAM_ADDR_INVALID &&
591 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
592 kvm_hwpoison_page_add(ram_addr);
593 kvm_mce_inject(cpu, paddr, code);
73284563
MS
594
595 /*
596 * Use different logging severity based on error type.
597 * If there is additional MCE reporting on the hypervisor, QEMU VA
598 * could be another source to identify the PA and MCE details.
599 */
600 if (code == BUS_MCEERR_AR) {
601 error_report("Guest MCE Memory Error at QEMU addr %p and "
602 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
603 addr, paddr, "BUS_MCEERR_AR");
604 } else {
605 warn_report("Guest MCE Memory Error at QEMU addr %p and "
606 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
607 addr, paddr, "BUS_MCEERR_AO");
608 }
609
2ae41db2 610 return;
419fb20a 611 }
20e0ff59 612
73284563
MS
613 if (code == BUS_MCEERR_AO) {
614 warn_report("Hardware memory error at addr %p of type %s "
615 "for memory used by QEMU itself instead of guest system!",
616 addr, "BUS_MCEERR_AO");
617 }
419fb20a 618 }
20e0ff59
PB
619
620 if (code == BUS_MCEERR_AR) {
73284563 621 hardware_memory_error(addr);
20e0ff59
PB
622 }
623
8efc4e51
ZP
624 /* Hope we are lucky for AO MCE, just notify a event */
625 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
419fb20a
JK
626}
627
fd13f23b
LA
628static void kvm_reset_exception(CPUX86State *env)
629{
630 env->exception_nr = -1;
631 env->exception_pending = 0;
632 env->exception_injected = 0;
633 env->exception_has_payload = false;
634 env->exception_payload = 0;
635}
636
637static void kvm_queue_exception(CPUX86State *env,
638 int32_t exception_nr,
639 uint8_t exception_has_payload,
640 uint64_t exception_payload)
641{
642 assert(env->exception_nr == -1);
643 assert(!env->exception_pending);
644 assert(!env->exception_injected);
645 assert(!env->exception_has_payload);
646
647 env->exception_nr = exception_nr;
648
649 if (has_exception_payload) {
650 env->exception_pending = 1;
651
652 env->exception_has_payload = exception_has_payload;
653 env->exception_payload = exception_payload;
654 } else {
655 env->exception_injected = 1;
656
657 if (exception_nr == EXCP01_DB) {
658 assert(exception_has_payload);
659 env->dr[6] = exception_payload;
660 } else if (exception_nr == EXCP0E_PAGE) {
661 assert(exception_has_payload);
662 env->cr[2] = exception_payload;
663 } else {
664 assert(!exception_has_payload);
665 }
666 }
667}
668
1bc22652 669static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 670{
1bc22652
AF
671 CPUX86State *env = &cpu->env;
672
fd13f23b 673 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
674 unsigned int bank, bank_num = env->mcg_cap & 0xff;
675 struct kvm_x86_mce mce;
676
fd13f23b 677 kvm_reset_exception(env);
ab443475
JK
678
679 /*
680 * There must be at least one bank in use if an MCE is pending.
681 * Find it and use its values for the event injection.
682 */
683 for (bank = 0; bank < bank_num; bank++) {
684 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
685 break;
686 }
687 }
688 assert(bank < bank_num);
689
690 mce.bank = bank;
691 mce.status = env->mce_banks[bank * 4 + 1];
692 mce.mcg_status = env->mcg_status;
693 mce.addr = env->mce_banks[bank * 4 + 2];
694 mce.misc = env->mce_banks[bank * 4 + 3];
695
1bc22652 696 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 697 }
ab443475
JK
698 return 0;
699}
700
538f0497 701static void cpu_update_state(void *opaque, bool running, RunState state)
b8cc45d6 702{
317ac620 703 CPUX86State *env = opaque;
b8cc45d6
GC
704
705 if (running) {
706 env->tsc_valid = false;
707 }
708}
709
83b17af5 710unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 711{
83b17af5 712 X86CPU *cpu = X86_CPU(cs);
7e72a45c 713 return cpu->apic_id;
b164e48e
EH
714}
715
92067bf4
IM
716#ifndef KVM_CPUID_SIGNATURE_NEXT
717#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
718#endif
719
92067bf4
IM
720static bool hyperv_enabled(X86CPU *cpu)
721{
5aa9ef5e 722 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
f701c082 723 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
e48ddcc6 724 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
725}
726
74aaddc6
MT
727/*
728 * Check whether target_freq is within conservative
729 * ntp correctable bounds (250ppm) of freq
730 */
731static inline bool freq_within_bounds(int freq, int target_freq)
732{
733 int max_freq = freq + (freq * 250 / 1000000);
734 int min_freq = freq - (freq * 250 / 1000000);
735
736 if (target_freq >= min_freq && target_freq <= max_freq) {
737 return true;
738 }
739
740 return false;
741}
742
5031283d
HZ
743static int kvm_arch_set_tsc_khz(CPUState *cs)
744{
745 X86CPU *cpu = X86_CPU(cs);
746 CPUX86State *env = &cpu->env;
74aaddc6
MT
747 int r, cur_freq;
748 bool set_ioctl = false;
5031283d
HZ
749
750 if (!env->tsc_khz) {
751 return 0;
752 }
753
74aaddc6
MT
754 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
755 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
756
757 /*
758 * If TSC scaling is supported, attempt to set TSC frequency.
759 */
760 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
761 set_ioctl = true;
762 }
763
764 /*
765 * If desired TSC frequency is within bounds of NTP correction,
766 * attempt to set TSC frequency.
767 */
768 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
769 set_ioctl = true;
770 }
771
772 r = set_ioctl ?
5031283d
HZ
773 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
774 -ENOTSUP;
74aaddc6 775
5031283d
HZ
776 if (r < 0) {
777 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
778 * TSC frequency doesn't match the one we want.
779 */
74aaddc6
MT
780 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
781 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
782 -ENOTSUP;
5031283d 783 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
784 warn_report("TSC frequency mismatch between "
785 "VM (%" PRId64 " kHz) and host (%d kHz), "
786 "and TSC scaling unavailable",
787 env->tsc_khz, cur_freq);
5031283d
HZ
788 return r;
789 }
790 }
791
792 return 0;
793}
794
4bb95b82
LP
795static bool tsc_is_stable_and_known(CPUX86State *env)
796{
797 if (!env->tsc_khz) {
798 return false;
799 }
800 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
801 || env->user_tsc_khz;
802}
803
6760bd20
VK
804static struct {
805 const char *desc;
806 struct {
061817a7
VK
807 uint32_t func;
808 int reg;
6760bd20
VK
809 uint32_t bits;
810 } flags[2];
c6861930 811 uint64_t dependencies;
6760bd20
VK
812} kvm_hyperv_properties[] = {
813 [HYPERV_FEAT_RELAXED] = {
814 .desc = "relaxed timing (hv-relaxed)",
815 .flags = {
061817a7 816 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
817 .bits = HV_RELAXED_TIMING_RECOMMENDED}
818 }
819 },
820 [HYPERV_FEAT_VAPIC] = {
821 .desc = "virtual APIC (hv-vapic)",
822 .flags = {
061817a7 823 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
b26f68c3 824 .bits = HV_APIC_ACCESS_AVAILABLE},
061817a7 825 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
826 .bits = HV_APIC_ACCESS_RECOMMENDED}
827 }
828 },
829 [HYPERV_FEAT_TIME] = {
830 .desc = "clocksources (hv-time)",
831 .flags = {
061817a7 832 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
b26f68c3 833 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
6760bd20
VK
834 }
835 },
836 [HYPERV_FEAT_CRASH] = {
837 .desc = "crash MSRs (hv-crash)",
838 .flags = {
061817a7 839 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
840 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
841 }
842 },
843 [HYPERV_FEAT_RESET] = {
844 .desc = "reset MSR (hv-reset)",
845 .flags = {
061817a7 846 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
847 .bits = HV_RESET_AVAILABLE}
848 }
849 },
850 [HYPERV_FEAT_VPINDEX] = {
851 .desc = "VP_INDEX MSR (hv-vpindex)",
852 .flags = {
061817a7 853 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
854 .bits = HV_VP_INDEX_AVAILABLE}
855 }
856 },
857 [HYPERV_FEAT_RUNTIME] = {
858 .desc = "VP_RUNTIME MSR (hv-runtime)",
859 .flags = {
061817a7 860 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
861 .bits = HV_VP_RUNTIME_AVAILABLE}
862 }
863 },
864 [HYPERV_FEAT_SYNIC] = {
865 .desc = "synthetic interrupt controller (hv-synic)",
866 .flags = {
061817a7 867 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
868 .bits = HV_SYNIC_AVAILABLE}
869 }
870 },
871 [HYPERV_FEAT_STIMER] = {
872 .desc = "synthetic timers (hv-stimer)",
873 .flags = {
061817a7 874 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 875 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
876 },
877 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
878 },
879 [HYPERV_FEAT_FREQUENCIES] = {
880 .desc = "frequency MSRs (hv-frequencies)",
881 .flags = {
061817a7 882 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 883 .bits = HV_ACCESS_FREQUENCY_MSRS},
061817a7 884 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
885 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
886 }
887 },
888 [HYPERV_FEAT_REENLIGHTENMENT] = {
889 .desc = "reenlightenment MSRs (hv-reenlightenment)",
890 .flags = {
061817a7 891 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
892 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
893 }
894 },
895 [HYPERV_FEAT_TLBFLUSH] = {
896 .desc = "paravirtualized TLB flush (hv-tlbflush)",
897 .flags = {
061817a7 898 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
899 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
900 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
901 },
902 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
903 },
904 [HYPERV_FEAT_EVMCS] = {
905 .desc = "enlightened VMCS (hv-evmcs)",
906 .flags = {
061817a7 907 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20 908 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
909 },
910 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
911 },
912 [HYPERV_FEAT_IPI] = {
913 .desc = "paravirtualized IPI (hv-ipi)",
914 .flags = {
061817a7 915 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
916 .bits = HV_CLUSTER_IPI_RECOMMENDED |
917 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
918 },
919 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 920 },
128531d9
VK
921 [HYPERV_FEAT_STIMER_DIRECT] = {
922 .desc = "direct mode synthetic timers (hv-stimer-direct)",
923 .flags = {
061817a7 924 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
128531d9
VK
925 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
926 },
927 .dependencies = BIT(HYPERV_FEAT_STIMER)
928 },
6760bd20
VK
929};
930
2e905438
VK
931static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
932 bool do_sys_ioctl)
6760bd20
VK
933{
934 struct kvm_cpuid2 *cpuid;
935 int r, size;
936
937 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
938 cpuid = g_malloc0(size);
939 cpuid->nent = max;
940
2e905438
VK
941 if (do_sys_ioctl) {
942 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
943 } else {
944 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
945 }
6760bd20
VK
946 if (r == 0 && cpuid->nent >= max) {
947 r = -E2BIG;
948 }
949 if (r < 0) {
950 if (r == -E2BIG) {
951 g_free(cpuid);
952 return NULL;
953 } else {
954 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
955 strerror(-r));
956 exit(1);
957 }
958 }
959 return cpuid;
960}
961
962/*
963 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
964 * for all entries.
965 */
966static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
967{
968 struct kvm_cpuid2 *cpuid;
05c900ce
VK
969 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
970 int max = 10;
decb4f20 971 int i;
2e905438
VK
972 bool do_sys_ioctl;
973
974 do_sys_ioctl =
975 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
6760bd20 976
e4adb09f
VK
977 /*
978 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
979 * unsupported, kvm_hyperv_expand_features() checks for that.
980 */
981 assert(do_sys_ioctl || cs->kvm_state);
982
6760bd20
VK
983 /*
984 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
985 * -E2BIG, however, it doesn't report back the right size. Keep increasing
986 * it and re-trying until we succeed.
987 */
2e905438 988 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
6760bd20
VK
989 max++;
990 }
decb4f20
VK
991
992 /*
993 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
994 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
995 * information early, just check for the capability and set the bit
996 * manually.
997 */
2e905438 998 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
decb4f20
VK
999 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1000 for (i = 0; i < cpuid->nent; i++) {
1001 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1002 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1003 }
1004 }
1005 }
1006
6760bd20
VK
1007 return cpuid;
1008}
1009
1010/*
1011 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1012 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1013 */
1014static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
1015{
1016 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
1017 struct kvm_cpuid2 *cpuid;
1018 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1019
1020 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1021 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1022 cpuid->nent = 2;
1023
1024 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1025 entry_feat = &cpuid->entries[0];
1026 entry_feat->function = HV_CPUID_FEATURES;
1027
1028 entry_recomm = &cpuid->entries[1];
1029 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1030 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1031
1032 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1033 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1034 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1035 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1036 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1037 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1038 }
c35bd19a 1039
6760bd20
VK
1040 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1041 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1042 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1043 }
6760bd20
VK
1044
1045 if (has_msr_hv_frequencies) {
1046 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1047 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1048 }
6760bd20
VK
1049
1050 if (has_msr_hv_crash) {
1051 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1052 }
6760bd20
VK
1053
1054 if (has_msr_hv_reenlightenment) {
1055 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1056 }
6760bd20
VK
1057
1058 if (has_msr_hv_reset) {
1059 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1060 }
6760bd20
VK
1061
1062 if (has_msr_hv_vpindex) {
1063 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1064 }
6760bd20
VK
1065
1066 if (has_msr_hv_runtime) {
1067 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1068 }
6760bd20
VK
1069
1070 if (has_msr_hv_synic) {
1071 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1072 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1073
1074 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1075 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1076 }
c35bd19a 1077 }
6760bd20
VK
1078
1079 if (has_msr_hv_stimer) {
1080 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1081 }
9b4cf107 1082
6760bd20
VK
1083 if (kvm_check_extension(cs->kvm_state,
1084 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1085 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1086 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1087 }
c35bd19a 1088
6760bd20
VK
1089 if (kvm_check_extension(cs->kvm_state,
1090 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1091 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1092 }
6760bd20
VK
1093
1094 if (kvm_check_extension(cs->kvm_state,
1095 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1096 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1097 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1098 }
6760bd20
VK
1099
1100 return cpuid;
1101}
1102
a8439be6 1103static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
e1a66a1e
VK
1104{
1105 struct kvm_cpuid_entry2 *entry;
a8439be6
VK
1106 struct kvm_cpuid2 *cpuid;
1107
1108 if (hv_cpuid_cache) {
1109 cpuid = hv_cpuid_cache;
1110 } else {
1111 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1112 cpuid = get_supported_hv_cpuid(cs);
1113 } else {
e4adb09f
VK
1114 /*
1115 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1116 * before KVM context is created but this is only done when
1117 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1118 * KVM_CAP_HYPERV_CPUID.
1119 */
1120 assert(cs->kvm_state);
1121
a8439be6
VK
1122 cpuid = get_supported_hv_cpuid_legacy(cs);
1123 }
1124 hv_cpuid_cache = cpuid;
1125 }
1126
1127 if (!cpuid) {
1128 return 0;
1129 }
e1a66a1e
VK
1130
1131 entry = cpuid_find_entry(cpuid, func, 0);
1132 if (!entry) {
1133 return 0;
1134 }
1135
1136 return cpuid_entry_get_reg(entry, reg);
1137}
1138
a8439be6 1139static bool hyperv_feature_supported(CPUState *cs, int feature)
7682f857 1140{
061817a7
VK
1141 uint32_t func, bits;
1142 int i, reg;
7682f857
VK
1143
1144 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
061817a7
VK
1145
1146 func = kvm_hyperv_properties[feature].flags[i].func;
1147 reg = kvm_hyperv_properties[feature].flags[i].reg;
7682f857
VK
1148 bits = kvm_hyperv_properties[feature].flags[i].bits;
1149
061817a7 1150 if (!func) {
7682f857
VK
1151 continue;
1152 }
1153
a8439be6 1154 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
7682f857
VK
1155 return false;
1156 }
1157 }
1158
1159 return true;
1160}
1161
5ce48fa3
VK
1162/* Checks that all feature dependencies are enabled */
1163static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
6760bd20 1164{
c6861930 1165 uint64_t deps;
7682f857 1166 int dep_feat;
6760bd20 1167
c6861930 1168 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1169 while (deps) {
1170 dep_feat = ctz64(deps);
c6861930 1171 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
f4a62495
VK
1172 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1173 kvm_hyperv_properties[feature].desc,
1174 kvm_hyperv_properties[dep_feat].desc);
5ce48fa3 1175 return false;
c6861930 1176 }
9dc83cd9 1177 deps &= ~(1ull << dep_feat);
c6861930
VK
1178 }
1179
5ce48fa3 1180 return true;
6760bd20
VK
1181}
1182
061817a7 1183static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
c830015e
VK
1184{
1185 X86CPU *cpu = X86_CPU(cs);
1186 uint32_t r = 0;
1187 int i, j;
1188
1189 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1190 if (!hyperv_feat_enabled(cpu, i)) {
1191 continue;
1192 }
1193
1194 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
061817a7
VK
1195 if (kvm_hyperv_properties[i].flags[j].func != func) {
1196 continue;
1197 }
1198 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
c830015e
VK
1199 continue;
1200 }
1201
1202 r |= kvm_hyperv_properties[i].flags[j].bits;
1203 }
1204 }
1205
1206 return r;
1207}
1208
2344d22e 1209/*
f6e01ab5
VK
1210 * Expand Hyper-V CPU features. In partucular, check that all the requested
1211 * features are supported by the host and the sanity of the configuration
1212 * (that all the required dependencies are included). Also, this takes care
1213 * of 'hv_passthrough' mode and fills the environment with all supported
1214 * Hyper-V features.
2344d22e 1215 */
071ce4b0 1216bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
6760bd20 1217{
071ce4b0 1218 CPUState *cs = CPU(cpu);
5ce48fa3
VK
1219 Error *local_err = NULL;
1220 int feat;
6760bd20 1221
2344d22e 1222 if (!hyperv_enabled(cpu))
d7652b77 1223 return true;
2344d22e 1224
071ce4b0
VK
1225 /*
1226 * When kvm_hyperv_expand_features is called at CPU feature expansion
1227 * time per-CPU kvm_state is not available yet so we can only proceed
1228 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1229 */
1230 if (!cs->kvm_state &&
1231 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1232 return true;
1233
e48ddcc6 1234 if (cpu->hyperv_passthrough) {
e1a66a1e 1235 cpu->hyperv_vendor_id[0] =
a8439be6 1236 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
e1a66a1e 1237 cpu->hyperv_vendor_id[1] =
a8439be6 1238 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
e1a66a1e 1239 cpu->hyperv_vendor_id[2] =
a8439be6 1240 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
e1a66a1e
VK
1241 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1242 sizeof(cpu->hyperv_vendor_id) + 1);
1243 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1244 sizeof(cpu->hyperv_vendor_id));
1245 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1246
1247 cpu->hyperv_interface_id[0] =
a8439be6 1248 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
e1a66a1e 1249 cpu->hyperv_interface_id[1] =
a8439be6 1250 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
e1a66a1e 1251 cpu->hyperv_interface_id[2] =
a8439be6 1252 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
e1a66a1e 1253 cpu->hyperv_interface_id[3] =
a8439be6 1254 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
e1a66a1e
VK
1255
1256 cpu->hyperv_version_id[0] =
a8439be6 1257 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
e1a66a1e 1258 cpu->hyperv_version_id[1] =
a8439be6 1259 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX);
e1a66a1e 1260 cpu->hyperv_version_id[2] =
a8439be6 1261 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
e1a66a1e 1262 cpu->hyperv_version_id[3] =
a8439be6 1263 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX);
e1a66a1e 1264
a8439be6 1265 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
e1a66a1e
VK
1266 R_EAX);
1267 cpu->hyperv_limits[0] =
a8439be6 1268 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
e1a66a1e 1269 cpu->hyperv_limits[1] =
a8439be6 1270 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
e1a66a1e 1271 cpu->hyperv_limits[2] =
a8439be6 1272 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
e1a66a1e
VK
1273
1274 cpu->hyperv_spinlock_attempts =
a8439be6 1275 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
30d6ff66 1276
5ce48fa3
VK
1277 /*
1278 * Mark feature as enabled in 'cpu->hyperv_features' as
1279 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1280 */
1281 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1282 if (hyperv_feature_supported(cs, feat)) {
1283 cpu->hyperv_features |= BIT(feat);
1284 }
1285 }
1286 } else {
1287 /* Check features availability and dependencies */
1288 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1289 /* If the feature was not requested skip it. */
1290 if (!hyperv_feat_enabled(cpu, feat)) {
1291 continue;
1292 }
1293
1294 /* Check if the feature is supported by KVM */
1295 if (!hyperv_feature_supported(cs, feat)) {
1296 error_setg(errp, "Hyper-V %s is not supported by kernel",
1297 kvm_hyperv_properties[feat].desc);
1298 return false;
1299 }
1300
1301 /* Check dependencies */
1302 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1303 error_propagate(errp, local_err);
1304 return false;
1305 }
1306 }
f4a62495 1307 }
6760bd20 1308
c6861930 1309 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1310 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1311 !cpu->hyperv_synic_kvm_only &&
1312 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
f4a62495
VK
1313 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1314 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1315 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
d7652b77 1316 return false;
6760bd20 1317 }
d7652b77
VK
1318
1319 return true;
f6e01ab5
VK
1320}
1321
1322/*
1323 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1324 */
1325static int hyperv_fill_cpuids(CPUState *cs,
1326 struct kvm_cpuid_entry2 *cpuid_ent)
1327{
1328 X86CPU *cpu = X86_CPU(cs);
1329 struct kvm_cpuid_entry2 *c;
1330 uint32_t cpuid_i = 0;
1331
2344d22e
VK
1332 c = &cpuid_ent[cpuid_i++];
1333 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
2344d22e
VK
1334 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1335 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
08856771
VK
1336 c->ebx = cpu->hyperv_vendor_id[0];
1337 c->ecx = cpu->hyperv_vendor_id[1];
1338 c->edx = cpu->hyperv_vendor_id[2];
2344d22e
VK
1339
1340 c = &cpuid_ent[cpuid_i++];
1341 c->function = HV_CPUID_INTERFACE;
735db465
VK
1342 c->eax = cpu->hyperv_interface_id[0];
1343 c->ebx = cpu->hyperv_interface_id[1];
1344 c->ecx = cpu->hyperv_interface_id[2];
1345 c->edx = cpu->hyperv_interface_id[3];
2344d22e
VK
1346
1347 c = &cpuid_ent[cpuid_i++];
1348 c->function = HV_CPUID_VERSION;
fb7e31aa
VK
1349 c->eax = cpu->hyperv_version_id[0];
1350 c->ebx = cpu->hyperv_version_id[1];
1351 c->ecx = cpu->hyperv_version_id[2];
1352 c->edx = cpu->hyperv_version_id[3];
2344d22e
VK
1353
1354 c = &cpuid_ent[cpuid_i++];
1355 c->function = HV_CPUID_FEATURES;
061817a7
VK
1356 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1357 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1358 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
c830015e 1359
b26f68c3
VK
1360 /* Unconditionally required with any Hyper-V enlightenment */
1361 c->eax |= HV_HYPERCALL_AVAILABLE;
1362
cce087f6
VK
1363 /* SynIC and Vmbus devices require messages/signals hypercalls */
1364 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1365 !cpu->hyperv_synic_kvm_only) {
1366 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1367 }
1368
c830015e
VK
1369 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1370 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
2344d22e
VK
1371
1372 c = &cpuid_ent[cpuid_i++];
1373 c->function = HV_CPUID_ENLIGHTMENT_INFO;
061817a7 1374 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
2344d22e
VK
1375 c->ebx = cpu->hyperv_spinlock_attempts;
1376
c830015e
VK
1377 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1378 c->eax |= HV_NO_NONARCH_CORESHARING;
1379 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
a8439be6 1380 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
e1a66a1e 1381 HV_NO_NONARCH_CORESHARING;
c830015e
VK
1382 }
1383
2344d22e
VK
1384 c = &cpuid_ent[cpuid_i++];
1385 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1386 c->eax = cpu->hv_max_vps;
23eb5d03
VK
1387 c->ebx = cpu->hyperv_limits[0];
1388 c->ecx = cpu->hyperv_limits[1];
1389 c->edx = cpu->hyperv_limits[2];
2344d22e
VK
1390
1391 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1392 __u32 function;
1393
1394 /* Create zeroed 0x40000006..0x40000009 leaves */
1395 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1396 function < HV_CPUID_NESTED_FEATURES; function++) {
1397 c = &cpuid_ent[cpuid_i++];
1398 c->function = function;
1399 }
1400
1401 c = &cpuid_ent[cpuid_i++];
1402 c->function = HV_CPUID_NESTED_FEATURES;
c830015e 1403 c->eax = cpu->hyperv_nested[0];
2344d22e 1404 }
6760bd20 1405
a8439be6 1406 return cpuid_i;
c35bd19a
EY
1407}
1408
e48ddcc6 1409static Error *hv_passthrough_mig_blocker;
30d6ff66 1410static Error *hv_no_nonarch_cs_mig_blocker;
e48ddcc6 1411
07454e2e
VK
1412/* Checks that the exposed eVMCS version range is supported by KVM */
1413static bool evmcs_version_supported(uint16_t evmcs_version,
1414 uint16_t supported_evmcs_version)
1415{
1416 uint8_t min_version = evmcs_version & 0xff;
1417 uint8_t max_version = evmcs_version >> 8;
1418 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1419 uint8_t max_supported_version = supported_evmcs_version >> 8;
1420
1421 return (min_version >= min_supported_version) &&
1422 (max_version <= max_supported_version);
1423}
1424
1425#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1426
e9688fab
RK
1427static int hyperv_init_vcpu(X86CPU *cpu)
1428{
729ce7e1 1429 CPUState *cs = CPU(cpu);
e48ddcc6 1430 Error *local_err = NULL;
729ce7e1
RK
1431 int ret;
1432
e48ddcc6
VK
1433 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1434 error_setg(&hv_passthrough_mig_blocker,
1435 "'hv-passthrough' CPU flag prevents migration, use explicit"
1436 " set of hv-* flags instead");
1437 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
436c831a 1438 if (ret < 0) {
e48ddcc6 1439 error_report_err(local_err);
e48ddcc6
VK
1440 return ret;
1441 }
1442 }
1443
30d6ff66
VK
1444 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1445 hv_no_nonarch_cs_mig_blocker == NULL) {
1446 error_setg(&hv_no_nonarch_cs_mig_blocker,
1447 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1448 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1449 " make sure SMT is disabled and/or that vCPUs are properly"
1450 " pinned)");
1451 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
436c831a 1452 if (ret < 0) {
30d6ff66 1453 error_report_err(local_err);
30d6ff66
VK
1454 return ret;
1455 }
1456 }
1457
2d384d7c 1458 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1459 /*
1460 * the kernel doesn't support setting vp_index; assert that its value
1461 * is in sync
1462 */
e9688fab
RK
1463 struct {
1464 struct kvm_msrs info;
1465 struct kvm_msr_entry entries[1];
1466 } msr_data = {
1467 .info.nmsrs = 1,
1468 .entries[0].index = HV_X64_MSR_VP_INDEX,
1469 };
1470
729ce7e1 1471 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1472 if (ret < 0) {
1473 return ret;
1474 }
1475 assert(ret == 1);
1476
701189e3 1477 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1478 error_report("kernel's vp_index != QEMU's vp_index");
1479 return -ENXIO;
1480 }
1481 }
1482
2d384d7c 1483 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1484 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1485 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1486 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1487 if (ret < 0) {
1488 error_report("failed to turn on HyperV SynIC in KVM: %s",
1489 strerror(-ret));
1490 return ret;
1491 }
606c34bf 1492
9b4cf107
RK
1493 if (!cpu->hyperv_synic_kvm_only) {
1494 ret = hyperv_x86_synic_add(cpu);
1495 if (ret < 0) {
1496 error_report("failed to create HyperV SynIC: %s",
1497 strerror(-ret));
1498 return ret;
1499 }
606c34bf 1500 }
729ce7e1
RK
1501 }
1502
decb4f20 1503 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
07454e2e
VK
1504 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1505 uint16_t supported_evmcs_version;
decb4f20
VK
1506
1507 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
07454e2e 1508 (uintptr_t)&supported_evmcs_version);
decb4f20 1509
07454e2e
VK
1510 /*
1511 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1512 * option sets. Note: we hardcode the maximum supported eVMCS version
1513 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1514 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1515 * to be added.
1516 */
decb4f20 1517 if (ret < 0) {
07454e2e
VK
1518 error_report("Hyper-V %s is not supported by kernel",
1519 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
decb4f20
VK
1520 return ret;
1521 }
1522
07454e2e
VK
1523 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1524 error_report("eVMCS version range [%d..%d] is not supported by "
1525 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1526 evmcs_version >> 8, supported_evmcs_version & 0xff,
1527 supported_evmcs_version >> 8);
1528 return -ENOTSUP;
1529 }
1530
decb4f20
VK
1531 cpu->hyperv_nested[0] = evmcs_version;
1532 }
1533
e9688fab
RK
1534 return 0;
1535}
1536
68bfd0ad
MT
1537static Error *invtsc_mig_blocker;
1538
f8bb0565 1539#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1540
20d695a9 1541int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1542{
1543 struct {
486bd5a2 1544 struct kvm_cpuid2 cpuid;
f8bb0565 1545 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1546 } cpuid_data;
1547 /*
1548 * The kernel defines these structs with padding fields so there
1549 * should be no extra padding in our cpuid_data struct.
1550 */
1551 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1552 sizeof(struct kvm_cpuid2) +
1553 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1554
20d695a9
AF
1555 X86CPU *cpu = X86_CPU(cs);
1556 CPUX86State *env = &cpu->env;
486bd5a2 1557 uint32_t limit, i, j, cpuid_i;
a33609ca 1558 uint32_t unused;
bb0300dc 1559 struct kvm_cpuid_entry2 *c;
bb0300dc 1560 uint32_t signature[3];
234cc647 1561 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1562 int max_nested_state_len;
e7429073 1563 int r;
fe44dc91 1564 Error *local_err = NULL;
05330448 1565
ef4cbe14
SW
1566 memset(&cpuid_data, 0, sizeof(cpuid_data));
1567
05330448
AL
1568 cpuid_i = 0;
1569
ddb98b5a
LP
1570 r = kvm_arch_set_tsc_khz(cs);
1571 if (r < 0) {
6b2341ee 1572 return r;
ddb98b5a
LP
1573 }
1574
1575 /* vcpu's TSC frequency is either specified by user, or following
1576 * the value used by KVM if the former is not present. In the
1577 * latter case, we query it from KVM and record in env->tsc_khz,
1578 * so that vcpu's TSC frequency can be migrated later via this field.
1579 */
1580 if (!env->tsc_khz) {
1581 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1582 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1583 -ENOTSUP;
1584 if (r > 0) {
1585 env->tsc_khz = r;
1586 }
1587 }
1588
73b994f6
LA
1589 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1590
071ce4b0
VK
1591 /*
1592 * kvm_hyperv_expand_features() is called here for the second time in case
1593 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1594 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1595 * check which Hyper-V enlightenments are supported and which are not, we
1596 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1597 * behavior is preserved.
1598 */
1599 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
f4a62495
VK
1600 error_report_err(local_err);
1601 return -ENOSYS;
f6e01ab5
VK
1602 }
1603
1604 if (hyperv_enabled(cpu)) {
decb4f20
VK
1605 r = hyperv_init_vcpu(cpu);
1606 if (r) {
1607 return r;
1608 }
1609
f6e01ab5 1610 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
234cc647 1611 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1612 has_msr_hv_hypercall = true;
eab70139
VR
1613 }
1614
f522d2ac
AW
1615 if (cpu->expose_kvm) {
1616 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1617 c = &cpuid_data.entries[cpuid_i++];
1618 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1619 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1620 c->ebx = signature[0];
1621 c->ecx = signature[1];
1622 c->edx = signature[2];
234cc647 1623
f522d2ac
AW
1624 c = &cpuid_data.entries[cpuid_i++];
1625 c->function = KVM_CPUID_FEATURES | kvm_base;
1626 c->eax = env->features[FEAT_KVM];
be777326 1627 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1628 }
917367aa 1629
a33609ca 1630 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448 1631
988f7b8b
VK
1632 if (cpu->kvm_pv_enforce_cpuid) {
1633 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1634 if (r < 0) {
1635 fprintf(stderr,
1636 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1637 strerror(-r));
1638 abort();
1639 }
1640 }
1641
05330448 1642 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1643 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1644 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1645 abort();
1646 }
bb0300dc 1647 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1648
1649 switch (i) {
a36b1029
AL
1650 case 2: {
1651 /* Keep reading function 2 till all the input is received */
1652 int times;
1653
a36b1029 1654 c->function = i;
a33609ca
AL
1655 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1656 KVM_CPUID_FLAG_STATE_READ_NEXT;
1657 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1658 times = c->eax & 0xff;
a36b1029
AL
1659
1660 for (j = 1; j < times; ++j) {
f8bb0565
IM
1661 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1662 fprintf(stderr, "cpuid_data is full, no space for "
1663 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1664 abort();
1665 }
a33609ca 1666 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1667 c->function = i;
a33609ca
AL
1668 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1669 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1670 }
1671 break;
1672 }
a94e1428
LX
1673 case 0x1f:
1674 if (env->nr_dies < 2) {
1675 break;
1676 }
8821e214 1677 /* fallthrough */
486bd5a2
AL
1678 case 4:
1679 case 0xb:
1680 case 0xd:
1681 for (j = 0; ; j++) {
31e8c696
AP
1682 if (i == 0xd && j == 64) {
1683 break;
1684 }
a94e1428
LX
1685
1686 if (i == 0x1f && j == 64) {
1687 break;
1688 }
1689
486bd5a2
AL
1690 c->function = i;
1691 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1692 c->index = j;
a33609ca 1693 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1694
b9bec74b 1695 if (i == 4 && c->eax == 0) {
486bd5a2 1696 break;
b9bec74b
JK
1697 }
1698 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1699 break;
b9bec74b 1700 }
a94e1428
LX
1701 if (i == 0x1f && !(c->ecx & 0xff00)) {
1702 break;
1703 }
b9bec74b 1704 if (i == 0xd && c->eax == 0) {
31e8c696 1705 continue;
b9bec74b 1706 }
f8bb0565
IM
1707 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1708 fprintf(stderr, "cpuid_data is full, no space for "
1709 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1710 abort();
1711 }
a33609ca 1712 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1713 }
1714 break;
80db491d 1715 case 0x7:
b9edbade
SC
1716 case 0x12:
1717 for (j = 0; ; j++) {
1718 c->function = i;
1719 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1720 c->index = j;
1721 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1722
1723 if (j > 1 && (c->eax & 0xf) != 1) {
1724 break;
1725 }
1726
1727 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1728 fprintf(stderr, "cpuid_data is full, no space for "
1729 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1730 abort();
1731 }
1732 c = &cpuid_data.entries[cpuid_i++];
1733 }
1734 break;
e37a5c7f
CP
1735 case 0x14: {
1736 uint32_t times;
1737
1738 c->function = i;
1739 c->index = 0;
1740 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1741 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1742 times = c->eax;
1743
1744 for (j = 1; j <= times; ++j) {
1745 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1746 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1747 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1748 abort();
1749 }
1750 c = &cpuid_data.entries[cpuid_i++];
1751 c->function = i;
1752 c->index = j;
1753 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1754 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1755 }
1756 break;
1757 }
486bd5a2 1758 default:
486bd5a2 1759 c->function = i;
a33609ca
AL
1760 c->flags = 0;
1761 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1762 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1763 /*
1764 * KVM already returns all zeroes if a CPUID entry is missing,
1765 * so we can omit it and avoid hitting KVM's 80-entry limit.
1766 */
1767 cpuid_i--;
1768 }
486bd5a2
AL
1769 break;
1770 }
05330448 1771 }
0d894367
PB
1772
1773 if (limit >= 0x0a) {
0b368a10 1774 uint32_t eax, edx;
0d894367 1775
0b368a10
JD
1776 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1777
1778 has_architectural_pmu_version = eax & 0xff;
1779 if (has_architectural_pmu_version > 0) {
1780 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1781
1782 /* Shouldn't be more than 32, since that's the number of bits
1783 * available in EBX to tell us _which_ counters are available.
1784 * Play it safe.
1785 */
0b368a10
JD
1786 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1787 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1788 }
1789
1790 if (has_architectural_pmu_version > 1) {
1791 num_architectural_pmu_fixed_counters = edx & 0x1f;
1792
1793 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1794 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1795 }
0d894367
PB
1796 }
1797 }
1798 }
1799
a33609ca 1800 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1801
1802 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1803 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1804 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1805 abort();
1806 }
bb0300dc 1807 c = &cpuid_data.entries[cpuid_i++];
05330448 1808
8f4202fb
BM
1809 switch (i) {
1810 case 0x8000001d:
1811 /* Query for all AMD cache information leaves */
1812 for (j = 0; ; j++) {
1813 c->function = i;
1814 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1815 c->index = j;
1816 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1817
1818 if (c->eax == 0) {
1819 break;
1820 }
1821 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1822 fprintf(stderr, "cpuid_data is full, no space for "
1823 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1824 abort();
1825 }
1826 c = &cpuid_data.entries[cpuid_i++];
1827 }
1828 break;
1829 default:
1830 c->function = i;
1831 c->flags = 0;
1832 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1833 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1834 /*
1835 * KVM already returns all zeroes if a CPUID entry is missing,
1836 * so we can omit it and avoid hitting KVM's 80-entry limit.
1837 */
1838 cpuid_i--;
1839 }
8f4202fb
BM
1840 break;
1841 }
05330448
AL
1842 }
1843
b3baa152
BW
1844 /* Call Centaur's CPUID instructions they are supported. */
1845 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1846 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1847
1848 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1849 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1850 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1851 abort();
1852 }
b3baa152
BW
1853 c = &cpuid_data.entries[cpuid_i++];
1854
1855 c->function = i;
1856 c->flags = 0;
1857 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1858 }
1859 }
1860
05330448
AL
1861 cpuid_data.cpuid.nent = cpuid_i;
1862
e7701825 1863 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1864 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1865 (CPUID_MCE | CPUID_MCA)
a60f24b5 1866 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1867 uint64_t mcg_cap, unsupported_caps;
e7701825 1868 int banks;
32a42024 1869 int ret;
e7701825 1870
a60f24b5 1871 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1872 if (ret < 0) {
1873 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1874 return ret;
e7701825 1875 }
75d49497 1876
2590f15b 1877 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1878 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1879 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1880 return -ENOTSUP;
75d49497 1881 }
49b69cbf 1882
5120901a
EH
1883 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1884 if (unsupported_caps) {
87f8b626
AR
1885 if (unsupported_caps & MCG_LMCE_P) {
1886 error_report("kvm: LMCE not supported");
1887 return -ENOTSUP;
1888 }
3dc6f869
AF
1889 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1890 unsupported_caps);
5120901a
EH
1891 }
1892
2590f15b
EH
1893 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1894 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1895 if (ret < 0) {
1896 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1897 return ret;
1898 }
e7701825 1899 }
e7701825 1900
2a693142 1901 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
b8cc45d6 1902
df67696e
LJ
1903 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1904 if (c) {
1905 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1906 !!(c->ecx & CPUID_EXT_SMX);
1907 }
1908
a0483541
SC
1909 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1910 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1911 has_msr_feature_control = true;
1912 }
1913
87f8b626
AR
1914 if (env->mcg_cap & MCG_LMCE_P) {
1915 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1916 }
1917
d99569d9
EH
1918 if (!env->user_tsc_khz) {
1919 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1920 invtsc_mig_blocker == NULL) {
d99569d9
EH
1921 error_setg(&invtsc_mig_blocker,
1922 "State blocked by non-migratable CPU device"
1923 " (invtsc flag)");
fe44dc91 1924 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
436c831a 1925 if (r < 0) {
fe44dc91 1926 error_report_err(local_err);
79a197ab 1927 return r;
fe44dc91 1928 }
d99569d9 1929 }
68bfd0ad
MT
1930 }
1931
9954a158
PDJ
1932 if (cpu->vmware_cpuid_freq
1933 /* Guests depend on 0x40000000 to detect this feature, so only expose
1934 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1935 && cpu->expose_kvm
1936 && kvm_base == KVM_CPUID_SIGNATURE
1937 /* TSC clock must be stable and known for this feature. */
4bb95b82 1938 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1939
1940 c = &cpuid_data.entries[cpuid_i++];
1941 c->function = KVM_CPUID_SIGNATURE | 0x10;
1942 c->eax = env->tsc_khz;
73b994f6 1943 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
9954a158
PDJ
1944 c->ecx = c->edx = 0;
1945
1946 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1947 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1948 }
1949
1950 cpuid_data.cpuid.nent = cpuid_i;
1951
1952 cpuid_data.cpuid.padding = 0;
1953 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1954 if (r) {
1955 goto fail;
1956 }
1957
28143b40 1958 if (has_xsave) {
c0198c5f
DE
1959 env->xsave_buf_len = sizeof(struct kvm_xsave);
1960 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1961 memset(env->xsave_buf, 0, env->xsave_buf_len);
fea45008
DE
1962
1963 /*
1964 * The allocated storage must be large enough for all of the
1965 * possible XSAVE state components.
1966 */
1967 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX)
1968 <= env->xsave_buf_len);
fabacc0f 1969 }
ebbfef2f
LA
1970
1971 max_nested_state_len = kvm_max_nested_state_length();
1972 if (max_nested_state_len > 0) {
1973 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 1974
b16c0e20 1975 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1e44f3ab 1976 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 1977
1e44f3ab
PB
1978 env->nested_state = g_malloc0(max_nested_state_len);
1979 env->nested_state->size = max_nested_state_len;
1e44f3ab 1980
b16c0e20 1981 if (cpu_has_vmx(env)) {
2654ace1
TL
1982 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1983 vmx_hdr = &env->nested_state->hdr.vmx;
1984 vmx_hdr->vmxon_pa = -1ull;
1985 vmx_hdr->vmcs12_pa = -1ull;
1986 } else {
1987 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
b16c0e20 1988 }
ebbfef2f
LA
1989 }
1990 }
1991
d71b62a1 1992 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1993
273c515c
PB
1994 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1995 has_msr_tsc_aux = false;
1996 }
d1ae67f6 1997
420ae1fc
PB
1998 kvm_init_msrs(cpu);
1999
e7429073 2000 return 0;
fe44dc91
AA
2001
2002 fail:
2003 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 2004
fe44dc91 2005 return r;
05330448
AL
2006}
2007
b1115c99
LA
2008int kvm_arch_destroy_vcpu(CPUState *cs)
2009{
2010 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 2011 CPUX86State *env = &cpu->env;
b1115c99
LA
2012
2013 if (cpu->kvm_msr_buf) {
2014 g_free(cpu->kvm_msr_buf);
2015 cpu->kvm_msr_buf = NULL;
2016 }
2017
ebbfef2f
LA
2018 if (env->nested_state) {
2019 g_free(env->nested_state);
2020 env->nested_state = NULL;
2021 }
2022
2a693142
PN
2023 qemu_del_vm_change_state_handler(cpu->vmsentry);
2024
b1115c99
LA
2025 return 0;
2026}
2027
50a2c6e5 2028void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 2029{
20d695a9 2030 CPUX86State *env = &cpu->env;
dd673288 2031
1a5e9d2f 2032 env->xcr0 = 1;
ddced198 2033 if (kvm_irqchip_in_kernel()) {
dd673288 2034 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
2035 KVM_MP_STATE_UNINITIALIZED;
2036 } else {
2037 env->mp_state = KVM_MP_STATE_RUNNABLE;
2038 }
689141dd 2039
2d384d7c 2040 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
2041 int i;
2042 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2043 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2044 }
606c34bf
RK
2045
2046 hyperv_x86_synic_reset(cpu);
689141dd 2047 }
d645e132
MT
2048 /* enabled by default */
2049 env->poll_control_msr = 1;
b2f73a07
PB
2050
2051 sev_es_set_reset_vector(CPU(cpu));
caa5af0f
JK
2052}
2053
e0723c45
PB
2054void kvm_arch_do_init_vcpu(X86CPU *cpu)
2055{
2056 CPUX86State *env = &cpu->env;
2057
2058 /* APs get directly into wait-for-SIPI state. */
2059 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2060 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2061 }
2062}
2063
f57bceb6
RH
2064static int kvm_get_supported_feature_msrs(KVMState *s)
2065{
2066 int ret = 0;
2067
2068 if (kvm_feature_msrs != NULL) {
2069 return 0;
2070 }
2071
2072 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2073 return 0;
2074 }
2075
2076 struct kvm_msr_list msr_list;
2077
2078 msr_list.nmsrs = 0;
2079 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2080 if (ret < 0 && ret != -E2BIG) {
2081 error_report("Fetch KVM feature MSR list failed: %s",
2082 strerror(-ret));
2083 return ret;
2084 }
2085
2086 assert(msr_list.nmsrs > 0);
2087 kvm_feature_msrs = (struct kvm_msr_list *) \
2088 g_malloc0(sizeof(msr_list) +
2089 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2090
2091 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2092 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2093
2094 if (ret < 0) {
2095 error_report("Fetch KVM feature MSR list failed: %s",
2096 strerror(-ret));
2097 g_free(kvm_feature_msrs);
2098 kvm_feature_msrs = NULL;
2099 return ret;
2100 }
2101
2102 return 0;
2103}
2104
c3a3a7d3 2105static int kvm_get_supported_msrs(KVMState *s)
05330448 2106{
c3a3a7d3 2107 int ret = 0;
de428cea 2108 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 2109
de428cea
LQ
2110 /*
2111 * Obtain MSR list from KVM. These are the MSRs that we must
2112 * save/restore.
2113 */
2114 msr_list.nmsrs = 0;
2115 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2116 if (ret < 0 && ret != -E2BIG) {
2117 return ret;
2118 }
2119 /*
2120 * Old kernel modules had a bug and could write beyond the provided
2121 * memory. Allocate at least a safe amount of 1K.
2122 */
2123 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2124 msr_list.nmsrs *
2125 sizeof(msr_list.indices[0])));
05330448 2126
de428cea
LQ
2127 kvm_msr_list->nmsrs = msr_list.nmsrs;
2128 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2129 if (ret >= 0) {
2130 int i;
05330448 2131
de428cea
LQ
2132 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2133 switch (kvm_msr_list->indices[i]) {
2134 case MSR_STAR:
2135 has_msr_star = true;
2136 break;
2137 case MSR_VM_HSAVE_PA:
2138 has_msr_hsave_pa = true;
2139 break;
2140 case MSR_TSC_AUX:
2141 has_msr_tsc_aux = true;
2142 break;
2143 case MSR_TSC_ADJUST:
2144 has_msr_tsc_adjust = true;
2145 break;
2146 case MSR_IA32_TSCDEADLINE:
2147 has_msr_tsc_deadline = true;
2148 break;
2149 case MSR_IA32_SMBASE:
2150 has_msr_smbase = true;
2151 break;
2152 case MSR_SMI_COUNT:
2153 has_msr_smi_count = true;
2154 break;
2155 case MSR_IA32_MISC_ENABLE:
2156 has_msr_misc_enable = true;
2157 break;
2158 case MSR_IA32_BNDCFGS:
2159 has_msr_bndcfgs = true;
2160 break;
2161 case MSR_IA32_XSS:
2162 has_msr_xss = true;
2163 break;
65087997
TX
2164 case MSR_IA32_UMWAIT_CONTROL:
2165 has_msr_umwait = true;
2166 break;
de428cea
LQ
2167 case HV_X64_MSR_CRASH_CTL:
2168 has_msr_hv_crash = true;
2169 break;
2170 case HV_X64_MSR_RESET:
2171 has_msr_hv_reset = true;
2172 break;
2173 case HV_X64_MSR_VP_INDEX:
2174 has_msr_hv_vpindex = true;
2175 break;
2176 case HV_X64_MSR_VP_RUNTIME:
2177 has_msr_hv_runtime = true;
2178 break;
2179 case HV_X64_MSR_SCONTROL:
2180 has_msr_hv_synic = true;
2181 break;
2182 case HV_X64_MSR_STIMER0_CONFIG:
2183 has_msr_hv_stimer = true;
2184 break;
2185 case HV_X64_MSR_TSC_FREQUENCY:
2186 has_msr_hv_frequencies = true;
2187 break;
2188 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2189 has_msr_hv_reenlightenment = true;
2190 break;
2191 case MSR_IA32_SPEC_CTRL:
2192 has_msr_spec_ctrl = true;
2193 break;
2a9758c5
PB
2194 case MSR_IA32_TSX_CTRL:
2195 has_msr_tsx_ctrl = true;
2196 break;
de428cea
LQ
2197 case MSR_VIRT_SSBD:
2198 has_msr_virt_ssbd = true;
2199 break;
2200 case MSR_IA32_ARCH_CAPABILITIES:
2201 has_msr_arch_capabs = true;
2202 break;
2203 case MSR_IA32_CORE_CAPABILITY:
2204 has_msr_core_capabs = true;
2205 break;
ea39f9b6
LX
2206 case MSR_IA32_PERF_CAPABILITIES:
2207 has_msr_perf_capabs = true;
2208 break;
20a78b02
PB
2209 case MSR_IA32_VMX_VMFUNC:
2210 has_msr_vmx_vmfunc = true;
2211 break;
67025148
PB
2212 case MSR_IA32_UCODE_REV:
2213 has_msr_ucode_rev = true;
2214 break;
4a910e1f
VK
2215 case MSR_IA32_VMX_PROCBASED_CTLS2:
2216 has_msr_vmx_procbased_ctls2 = true;
2217 break;
6aa4228b
CQ
2218 case MSR_IA32_PKRS:
2219 has_msr_pkrs = true;
2220 break;
05330448
AL
2221 }
2222 }
05330448
AL
2223 }
2224
de428cea
LQ
2225 g_free(kvm_msr_list);
2226
c3a3a7d3 2227 return ret;
05330448
AL
2228}
2229
6410848b
PB
2230static Notifier smram_machine_done;
2231static KVMMemoryListener smram_listener;
2232static AddressSpace smram_address_space;
2233static MemoryRegion smram_as_root;
2234static MemoryRegion smram_as_mem;
2235
2236static void register_smram_listener(Notifier *n, void *unused)
2237{
2238 MemoryRegion *smram =
2239 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2240
2241 /* Outer container... */
2242 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2243 memory_region_set_enabled(&smram_as_root, true);
2244
2245 /* ... with two regions inside: normal system memory with low
2246 * priority, and...
2247 */
2248 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2249 get_system_memory(), 0, ~0ull);
2250 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2251 memory_region_set_enabled(&smram_as_mem, true);
2252
2253 if (smram) {
2254 /* ... SMRAM with higher priority */
2255 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2256 memory_region_set_enabled(smram, true);
2257 }
2258
2259 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2260 kvm_memory_listener_register(kvm_state, &smram_listener,
142518bd 2261 &smram_address_space, 1, "kvm-smram");
6410848b
PB
2262}
2263
b16565b3 2264int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2265{
11076198 2266 uint64_t identity_base = 0xfffbc000;
39d6960a 2267 uint64_t shadow_mem;
20420430 2268 int ret;
25d2e361 2269 struct utsname utsname;
ec78e2cd
DG
2270 Error *local_err = NULL;
2271
2272 /*
2273 * Initialize SEV context, if required
2274 *
2275 * If no memory encryption is requested (ms->cgs == NULL) this is
2276 * a no-op.
2277 *
2278 * It's also a no-op if a non-SEV confidential guest support
2279 * mechanism is selected. SEV is the only mechanism available to
2280 * select on x86 at present, so this doesn't arise, but if new
2281 * mechanisms are supported in future (e.g. TDX), they'll need
2282 * their own initialization either here or elsewhere.
2283 */
2284 ret = sev_kvm_init(ms->cgs, &local_err);
2285 if (ret < 0) {
2286 error_report_err(local_err);
2287 return ret;
2288 }
20420430 2289
1a6dff5f
EH
2290 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2291 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2292 return -ENOTSUP;
2293 }
2294
28143b40 2295 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2296 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2297 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 2298
e9688fab
RK
2299 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2300
fd13f23b
LA
2301 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2302 if (has_exception_payload) {
2303 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2304 if (ret < 0) {
2305 error_report("kvm: Failed to enable exception payload cap: %s",
2306 strerror(-ret));
2307 return ret;
2308 }
2309 }
2310
c3a3a7d3 2311 ret = kvm_get_supported_msrs(s);
20420430 2312 if (ret < 0) {
20420430
SY
2313 return ret;
2314 }
25d2e361 2315
f57bceb6
RH
2316 kvm_get_supported_feature_msrs(s);
2317
25d2e361
MT
2318 uname(&utsname);
2319 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2320
4c5b10b7 2321 /*
11076198
JK
2322 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2323 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2324 * Since these must be part of guest physical memory, we need to allocate
2325 * them, both by setting their start addresses in the kernel and by
2326 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2327 *
2328 * Older KVM versions may not support setting the identity map base. In
2329 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2330 * size.
4c5b10b7 2331 */
11076198
JK
2332 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2333 /* Allows up to 16M BIOSes. */
2334 identity_base = 0xfeffc000;
2335
2336 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2337 if (ret < 0) {
2338 return ret;
2339 }
4c5b10b7 2340 }
e56ff191 2341
11076198
JK
2342 /* Set TSS base one page after EPT identity map. */
2343 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2344 if (ret < 0) {
2345 return ret;
2346 }
2347
11076198
JK
2348 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2349 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2350 if (ret < 0) {
11076198 2351 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2352 return ret;
2353 }
2354
23b0898e 2355 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
36ad0e94
MA
2356 if (shadow_mem != -1) {
2357 shadow_mem /= 4096;
2358 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2359 if (ret < 0) {
2360 return ret;
39d6960a
JK
2361 }
2362 }
6410848b 2363
d870cfde 2364 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
8f54bbd0 2365 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
ed9e923c 2366 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
6410848b
PB
2367 smram_machine_done.notify = register_smram_listener;
2368 qemu_add_machine_init_done_notifier(&smram_machine_done);
2369 }
6f131f13
MT
2370
2371 if (enable_cpu_pm) {
2372 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2373 int ret;
2374
2375/* Work around for kernel header with a typo. TODO: fix header and drop. */
2376#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2377#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2378#endif
2379 if (disable_exits) {
2380 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2381 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2382 KVM_X86_DISABLE_EXITS_PAUSE |
2383 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2384 }
2385
2386 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2387 disable_exits);
2388 if (ret < 0) {
2389 error_report("kvm: guest stopping CPU not supported: %s",
2390 strerror(-ret));
2391 }
2392 }
2393
035d1ef2
CQ
2394 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2395 X86MachineState *x86ms = X86_MACHINE(ms);
2396
2397 if (x86ms->bus_lock_ratelimit > 0) {
2398 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2399 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2400 error_report("kvm: bus lock detection unsupported");
2401 return -ENOTSUP;
2402 }
2403 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2404 KVM_BUS_LOCK_DETECTION_EXIT);
2405 if (ret < 0) {
2406 error_report("kvm: Failed to enable bus lock detection cap: %s",
2407 strerror(-ret));
2408 return ret;
2409 }
2410 ratelimit_init(&bus_lock_ratelimit_ctrl);
2411 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2412 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2413 }
2414 }
2415
11076198 2416 return 0;
05330448 2417}
b9bec74b 2418
05330448
AL
2419static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2420{
2421 lhs->selector = rhs->selector;
2422 lhs->base = rhs->base;
2423 lhs->limit = rhs->limit;
2424 lhs->type = 3;
2425 lhs->present = 1;
2426 lhs->dpl = 3;
2427 lhs->db = 0;
2428 lhs->s = 1;
2429 lhs->l = 0;
2430 lhs->g = 0;
2431 lhs->avl = 0;
2432 lhs->unusable = 0;
2433}
2434
2435static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2436{
2437 unsigned flags = rhs->flags;
2438 lhs->selector = rhs->selector;
2439 lhs->base = rhs->base;
2440 lhs->limit = rhs->limit;
2441 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2442 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2443 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2444 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2445 lhs->s = (flags & DESC_S_MASK) != 0;
2446 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2447 lhs->g = (flags & DESC_G_MASK) != 0;
2448 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2449 lhs->unusable = !lhs->present;
7e680753 2450 lhs->padding = 0;
05330448
AL
2451}
2452
2453static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2454{
2455 lhs->selector = rhs->selector;
2456 lhs->base = rhs->base;
2457 lhs->limit = rhs->limit;
d45fc087
RP
2458 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2459 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2460 (rhs->dpl << DESC_DPL_SHIFT) |
2461 (rhs->db << DESC_B_SHIFT) |
2462 (rhs->s * DESC_S_MASK) |
2463 (rhs->l << DESC_L_SHIFT) |
2464 (rhs->g * DESC_G_MASK) |
2465 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2466}
2467
2468static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2469{
b9bec74b 2470 if (set) {
05330448 2471 *kvm_reg = *qemu_reg;
b9bec74b 2472 } else {
05330448 2473 *qemu_reg = *kvm_reg;
b9bec74b 2474 }
05330448
AL
2475}
2476
1bc22652 2477static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2478{
1bc22652 2479 CPUX86State *env = &cpu->env;
05330448
AL
2480 struct kvm_regs regs;
2481 int ret = 0;
2482
2483 if (!set) {
1bc22652 2484 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2485 if (ret < 0) {
05330448 2486 return ret;
b9bec74b 2487 }
05330448
AL
2488 }
2489
2490 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2491 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2492 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2493 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2494 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2495 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2496 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2497 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2498#ifdef TARGET_X86_64
2499 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2500 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2501 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2502 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2503 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2504 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2505 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2506 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2507#endif
2508
2509 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2510 kvm_getput_reg(&regs.rip, &env->eip, set);
2511
b9bec74b 2512 if (set) {
1bc22652 2513 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2514 }
05330448
AL
2515
2516 return ret;
2517}
2518
1bc22652 2519static int kvm_put_fpu(X86CPU *cpu)
05330448 2520{
1bc22652 2521 CPUX86State *env = &cpu->env;
05330448
AL
2522 struct kvm_fpu fpu;
2523 int i;
2524
2525 memset(&fpu, 0, sizeof fpu);
2526 fpu.fsw = env->fpus & ~(7 << 11);
2527 fpu.fsw |= (env->fpstt & 7) << 11;
2528 fpu.fcw = env->fpuc;
42cc8fa6
JK
2529 fpu.last_opcode = env->fpop;
2530 fpu.last_ip = env->fpip;
2531 fpu.last_dp = env->fpdp;
b9bec74b
JK
2532 for (i = 0; i < 8; ++i) {
2533 fpu.ftwx |= (!env->fptags[i]) << i;
2534 }
05330448 2535 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2536 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2537 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2538 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2539 }
05330448
AL
2540 fpu.mxcsr = env->mxcsr;
2541
1bc22652 2542 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2543}
2544
1bc22652 2545static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2546{
1bc22652 2547 CPUX86State *env = &cpu->env;
c0198c5f 2548 void *xsave = env->xsave_buf;
f1665b21 2549
28143b40 2550 if (!has_xsave) {
1bc22652 2551 return kvm_put_fpu(cpu);
b9bec74b 2552 }
c0198c5f 2553 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 2554
9be38598 2555 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2556}
2557
1bc22652 2558static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2559{
1bc22652 2560 CPUX86State *env = &cpu->env;
bdfc8480 2561 struct kvm_xcrs xcrs = {};
f1665b21 2562
28143b40 2563 if (!has_xcrs) {
f1665b21 2564 return 0;
b9bec74b 2565 }
f1665b21
SY
2566
2567 xcrs.nr_xcrs = 1;
2568 xcrs.flags = 0;
2569 xcrs.xcrs[0].xcr = 0;
2570 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2571 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2572}
2573
1bc22652 2574static int kvm_put_sregs(X86CPU *cpu)
05330448 2575{
1bc22652 2576 CPUX86State *env = &cpu->env;
05330448
AL
2577 struct kvm_sregs sregs;
2578
0e607a80
JK
2579 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2580 if (env->interrupt_injected >= 0) {
2581 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2582 (uint64_t)1 << (env->interrupt_injected % 64);
2583 }
05330448
AL
2584
2585 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2586 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2587 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2588 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2589 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2590 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2591 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2592 } else {
b9bec74b
JK
2593 set_seg(&sregs.cs, &env->segs[R_CS]);
2594 set_seg(&sregs.ds, &env->segs[R_DS]);
2595 set_seg(&sregs.es, &env->segs[R_ES]);
2596 set_seg(&sregs.fs, &env->segs[R_FS]);
2597 set_seg(&sregs.gs, &env->segs[R_GS]);
2598 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2599 }
2600
2601 set_seg(&sregs.tr, &env->tr);
2602 set_seg(&sregs.ldt, &env->ldt);
2603
2604 sregs.idt.limit = env->idt.limit;
2605 sregs.idt.base = env->idt.base;
7e680753 2606 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2607 sregs.gdt.limit = env->gdt.limit;
2608 sregs.gdt.base = env->gdt.base;
7e680753 2609 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2610
2611 sregs.cr0 = env->cr[0];
2612 sregs.cr2 = env->cr[2];
2613 sregs.cr3 = env->cr[3];
2614 sregs.cr4 = env->cr[4];
2615
02e51483
CF
2616 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2617 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2618
2619 sregs.efer = env->efer;
2620
1bc22652 2621 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2622}
2623
d71b62a1
EH
2624static void kvm_msr_buf_reset(X86CPU *cpu)
2625{
2626 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2627}
2628
9c600a84
EH
2629static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2630{
2631 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2632 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2633 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2634
2635 assert((void *)(entry + 1) <= limit);
2636
1abc2cae
EH
2637 entry->index = index;
2638 entry->reserved = 0;
2639 entry->data = value;
9c600a84
EH
2640 msrs->nmsrs++;
2641}
2642
73e1b8f2
PB
2643static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2644{
2645 kvm_msr_buf_reset(cpu);
2646 kvm_msr_entry_add(cpu, index, value);
2647
2648 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2649}
2650
f8d9ccf8
DDAG
2651void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2652{
2653 int ret;
2654
2655 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2656 assert(ret == 1);
2657}
2658
7477cd38
MT
2659static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2660{
2661 CPUX86State *env = &cpu->env;
48e1a45c 2662 int ret;
7477cd38
MT
2663
2664 if (!has_msr_tsc_deadline) {
2665 return 0;
2666 }
2667
73e1b8f2 2668 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2669 if (ret < 0) {
2670 return ret;
2671 }
2672
2673 assert(ret == 1);
2674 return 0;
7477cd38
MT
2675}
2676
6bdf863d
JK
2677/*
2678 * Provide a separate write service for the feature control MSR in order to
2679 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2680 * before writing any other state because forcibly leaving nested mode
2681 * invalidates the VCPU state.
2682 */
2683static int kvm_put_msr_feature_control(X86CPU *cpu)
2684{
48e1a45c
PB
2685 int ret;
2686
2687 if (!has_msr_feature_control) {
2688 return 0;
2689 }
6bdf863d 2690
73e1b8f2
PB
2691 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2692 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2693 if (ret < 0) {
2694 return ret;
2695 }
2696
2697 assert(ret == 1);
2698 return 0;
6bdf863d
JK
2699}
2700
20a78b02
PB
2701static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2702{
2703 uint32_t default1, can_be_one, can_be_zero;
2704 uint32_t must_be_one;
2705
2706 switch (index) {
2707 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2708 default1 = 0x00000016;
2709 break;
2710 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2711 default1 = 0x0401e172;
2712 break;
2713 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2714 default1 = 0x000011ff;
2715 break;
2716 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2717 default1 = 0x00036dff;
2718 break;
2719 case MSR_IA32_VMX_PROCBASED_CTLS2:
2720 default1 = 0;
2721 break;
2722 default:
2723 abort();
2724 }
2725
2726 /* If a feature bit is set, the control can be either set or clear.
2727 * Otherwise the value is limited to either 0 or 1 by default1.
2728 */
2729 can_be_one = features | default1;
2730 can_be_zero = features | ~default1;
2731 must_be_one = ~can_be_zero;
2732
2733 /*
2734 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2735 * Bit 32:63 -> 1 if the control bit can be one.
2736 */
2737 return must_be_one | (((uint64_t)can_be_one) << 32);
2738}
2739
20a78b02
PB
2740static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2741{
2742 uint64_t kvm_vmx_basic =
2743 kvm_arch_get_supported_msr_feature(kvm_state,
2744 MSR_IA32_VMX_BASIC);
26051882
YZ
2745
2746 if (!kvm_vmx_basic) {
2747 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2748 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2749 */
2750 return;
2751 }
2752
20a78b02
PB
2753 uint64_t kvm_vmx_misc =
2754 kvm_arch_get_supported_msr_feature(kvm_state,
2755 MSR_IA32_VMX_MISC);
2756 uint64_t kvm_vmx_ept_vpid =
2757 kvm_arch_get_supported_msr_feature(kvm_state,
2758 MSR_IA32_VMX_EPT_VPID_CAP);
2759
2760 /*
2761 * If the guest is 64-bit, a value of 1 is allowed for the host address
2762 * space size vmexit control.
2763 */
2764 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2765 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2766
2767 /*
2768 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2769 * not change them for backwards compatibility.
2770 */
2771 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2772 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2773 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2774 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2775
2776 /*
2777 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2778 * change in the future but are always zero for now, clear them to be
2779 * future proof. Bits 32-63 in theory could change, though KVM does
2780 * not support dual-monitor treatment and probably never will; mask
2781 * them out as well.
2782 */
2783 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2784 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2785 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2786
2787 /*
2788 * EPT memory types should not change either, so we do not bother
2789 * adding features for them.
2790 */
2791 uint64_t fixed_vmx_ept_mask =
2792 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2793 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2794 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2795
2796 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2797 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2798 f[FEAT_VMX_PROCBASED_CTLS]));
2799 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2800 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2801 f[FEAT_VMX_PINBASED_CTLS]));
2802 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2803 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2804 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2805 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2806 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2807 f[FEAT_VMX_ENTRY_CTLS]));
2808 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2809 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2810 f[FEAT_VMX_SECONDARY_CTLS]));
2811 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2812 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2813 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2814 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2815 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2816 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2817 if (has_msr_vmx_vmfunc) {
2818 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2819 }
2820
2821 /*
2822 * Just to be safe, write these with constant values. The CRn_FIXED1
2823 * MSRs are generated by KVM based on the vCPU's CPUID.
2824 */
2825 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2826 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2827 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2828 CR4_VMXE_MASK);
9ce8af4d
PB
2829
2830 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2831 /* TSC multiplier (0x2032). */
2832 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2833 } else {
2834 /* Preemption timer (0x482E). */
2835 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2836 }
20a78b02
PB
2837}
2838
ea39f9b6
LX
2839static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2840{
2841 uint64_t kvm_perf_cap =
2842 kvm_arch_get_supported_msr_feature(kvm_state,
2843 MSR_IA32_PERF_CAPABILITIES);
2844
2845 if (kvm_perf_cap) {
2846 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2847 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2848 }
2849}
2850
420ae1fc
PB
2851static int kvm_buf_set_msrs(X86CPU *cpu)
2852{
2853 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2854 if (ret < 0) {
2855 return ret;
2856 }
2857
2858 if (ret < cpu->kvm_msr_buf->nmsrs) {
2859 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2860 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2861 (uint32_t)e->index, (uint64_t)e->data);
2862 }
2863
2864 assert(ret == cpu->kvm_msr_buf->nmsrs);
2865 return 0;
2866}
2867
2868static void kvm_init_msrs(X86CPU *cpu)
2869{
2870 CPUX86State *env = &cpu->env;
2871
2872 kvm_msr_buf_reset(cpu);
2873 if (has_msr_arch_capabs) {
2874 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2875 env->features[FEAT_ARCH_CAPABILITIES]);
2876 }
2877
2878 if (has_msr_core_capabs) {
2879 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2880 env->features[FEAT_CORE_CAPABILITY]);
2881 }
2882
ea39f9b6
LX
2883 if (has_msr_perf_capabs && cpu->enable_pmu) {
2884 kvm_msr_entry_add_perf(cpu, env->features);
2885 }
2886
67025148 2887 if (has_msr_ucode_rev) {
32c87d70
PB
2888 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2889 }
2890
420ae1fc
PB
2891 /*
2892 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2893 * all kernels with MSR features should have them.
2894 */
2895 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2896 kvm_msr_entry_add_vmx(cpu, env->features);
2897 }
2898
2899 assert(kvm_buf_set_msrs(cpu) == 0);
2900}
2901
1bc22652 2902static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 2903{
1bc22652 2904 CPUX86State *env = &cpu->env;
9c600a84 2905 int i;
05330448 2906
d71b62a1
EH
2907 kvm_msr_buf_reset(cpu);
2908
9c600a84
EH
2909 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2910 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2911 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2912 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 2913 if (has_msr_star) {
9c600a84 2914 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 2915 }
c3a3a7d3 2916 if (has_msr_hsave_pa) {
9c600a84 2917 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2918 }
c9b8f6b6 2919 if (has_msr_tsc_aux) {
9c600a84 2920 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2921 }
f28558d3 2922 if (has_msr_tsc_adjust) {
9c600a84 2923 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2924 }
21e87c46 2925 if (has_msr_misc_enable) {
9c600a84 2926 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2927 env->msr_ia32_misc_enable);
2928 }
fc12d72e 2929 if (has_msr_smbase) {
9c600a84 2930 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2931 }
e13713db
LA
2932 if (has_msr_smi_count) {
2933 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2934 }
6aa4228b
CQ
2935 if (has_msr_pkrs) {
2936 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
2937 }
439d19f2 2938 if (has_msr_bndcfgs) {
9c600a84 2939 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2940 }
18cd2c17 2941 if (has_msr_xss) {
9c600a84 2942 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2943 }
65087997
TX
2944 if (has_msr_umwait) {
2945 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2946 }
a33a2cfe
PB
2947 if (has_msr_spec_ctrl) {
2948 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2949 }
2a9758c5
PB
2950 if (has_msr_tsx_ctrl) {
2951 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2952 }
cfeea0c0
KRW
2953 if (has_msr_virt_ssbd) {
2954 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2955 }
2956
05330448 2957#ifdef TARGET_X86_64
25d2e361 2958 if (lm_capable_kernel) {
9c600a84
EH
2959 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2960 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2961 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2962 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2963 }
05330448 2964#endif
a33a2cfe 2965
ff5c186b 2966 /*
0d894367
PB
2967 * The following MSRs have side effects on the guest or are too heavy
2968 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
2969 */
2970 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
2971 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2972 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2973 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
6615be07
VK
2974 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2975 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2976 }
55c911a5 2977 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2978 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 2979 }
55c911a5 2980 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2981 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 2982 }
55c911a5 2983 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2984 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 2985 }
d645e132
MT
2986
2987 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2988 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2989 }
2990
0b368a10
JD
2991 if (has_architectural_pmu_version > 0) {
2992 if (has_architectural_pmu_version > 1) {
2993 /* Stop the counter. */
2994 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2995 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2996 }
0d894367
PB
2997
2998 /* Set the counter values. */
0b368a10 2999 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3000 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
3001 env->msr_fixed_counters[i]);
3002 }
0b368a10 3003 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 3004 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 3005 env->msr_gp_counters[i]);
9c600a84 3006 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
3007 env->msr_gp_evtsel[i]);
3008 }
0b368a10
JD
3009 if (has_architectural_pmu_version > 1) {
3010 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3011 env->msr_global_status);
3012 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3013 env->msr_global_ovf_ctrl);
3014
3015 /* Now start the PMU. */
3016 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3017 env->msr_fixed_ctr_ctrl);
3018 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3019 env->msr_global_ctrl);
3020 }
0d894367 3021 }
da1cc323
EY
3022 /*
3023 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3024 * only sync them to KVM on the first cpu
3025 */
3026 if (current_cpu == first_cpu) {
3027 if (has_msr_hv_hypercall) {
3028 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3029 env->msr_hv_guest_os_id);
3030 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3031 env->msr_hv_hypercall);
3032 }
2d384d7c 3033 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
3034 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3035 env->msr_hv_tsc);
3036 }
2d384d7c 3037 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3038 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3039 env->msr_hv_reenlightenment_control);
3040 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3041 env->msr_hv_tsc_emulation_control);
3042 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3043 env->msr_hv_tsc_emulation_status);
3044 }
eab70139 3045 }
2d384d7c 3046 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3047 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 3048 env->msr_hv_vapic);
eab70139 3049 }
f2a53c9e
AS
3050 if (has_msr_hv_crash) {
3051 int j;
3052
5e953812 3053 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 3054 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
3055 env->msr_hv_crash_params[j]);
3056
5e953812 3057 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 3058 }
46eb8f98 3059 if (has_msr_hv_runtime) {
9c600a84 3060 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 3061 }
2d384d7c
VK
3062 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3063 && hv_vpindex_settable) {
701189e3
RK
3064 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3065 hyperv_vp_index(CPU(cpu)));
e9688fab 3066 }
2d384d7c 3067 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3068 int j;
3069
09df29b6
RK
3070 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3071
9c600a84 3072 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 3073 env->msr_hv_synic_control);
9c600a84 3074 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 3075 env->msr_hv_synic_evt_page);
9c600a84 3076 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
3077 env->msr_hv_synic_msg_page);
3078
3079 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 3080 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
3081 env->msr_hv_synic_sint[j]);
3082 }
3083 }
ff99aa64
AS
3084 if (has_msr_hv_stimer) {
3085 int j;
3086
3087 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 3088 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
3089 env->msr_hv_stimer_config[j]);
3090 }
3091
3092 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 3093 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
3094 env->msr_hv_stimer_count[j]);
3095 }
3096 }
1eabfce6 3097 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
3098 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3099
9c600a84
EH
3100 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3101 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3102 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3103 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3104 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3105 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3106 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3107 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3108 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3109 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3110 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3111 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 3112 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
3113 /* The CPU GPs if we write to a bit above the physical limit of
3114 * the host CPU (and KVM emulates that)
3115 */
3116 uint64_t mask = env->mtrr_var[i].mask;
3117 mask &= phys_mask;
3118
9c600a84
EH
3119 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3120 env->mtrr_var[i].base);
112dad69 3121 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
3122 }
3123 }
b77146e9
CP
3124 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3125 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3126 0x14, 1, R_EAX) & 0x7;
3127
3128 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3129 env->msr_rtit_ctrl);
3130 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3131 env->msr_rtit_status);
3132 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3133 env->msr_rtit_output_base);
3134 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3135 env->msr_rtit_output_mask);
3136 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3137 env->msr_rtit_cr3_match);
3138 for (i = 0; i < addr_num; i++) {
3139 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3140 env->msr_rtit_addrs[i]);
3141 }
3142 }
6bdf863d 3143
db888065
SC
3144 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3145 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3146 env->msr_ia32_sgxlepubkeyhash[0]);
3147 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3148 env->msr_ia32_sgxlepubkeyhash[1]);
3149 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3150 env->msr_ia32_sgxlepubkeyhash[2]);
3151 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3152 env->msr_ia32_sgxlepubkeyhash[3]);
3153 }
3154
6bdf863d
JK
3155 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3156 * kvm_put_msr_feature_control. */
ea643051 3157 }
20a78b02 3158
57780495 3159 if (env->mcg_cap) {
d8da8574 3160 int i;
b9bec74b 3161
9c600a84
EH
3162 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3163 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
3164 if (has_msr_mcg_ext_ctl) {
3165 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3166 }
c34d440a 3167 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3168 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
3169 }
3170 }
1a03675d 3171
420ae1fc 3172 return kvm_buf_set_msrs(cpu);
05330448
AL
3173}
3174
3175
1bc22652 3176static int kvm_get_fpu(X86CPU *cpu)
05330448 3177{
1bc22652 3178 CPUX86State *env = &cpu->env;
05330448
AL
3179 struct kvm_fpu fpu;
3180 int i, ret;
3181
1bc22652 3182 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 3183 if (ret < 0) {
05330448 3184 return ret;
b9bec74b 3185 }
05330448
AL
3186
3187 env->fpstt = (fpu.fsw >> 11) & 7;
3188 env->fpus = fpu.fsw;
3189 env->fpuc = fpu.fcw;
42cc8fa6
JK
3190 env->fpop = fpu.last_opcode;
3191 env->fpip = fpu.last_ip;
3192 env->fpdp = fpu.last_dp;
b9bec74b
JK
3193 for (i = 0; i < 8; ++i) {
3194 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3195 }
05330448 3196 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 3197 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
3198 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3199 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 3200 }
05330448
AL
3201 env->mxcsr = fpu.mxcsr;
3202
3203 return 0;
3204}
3205
1bc22652 3206static int kvm_get_xsave(X86CPU *cpu)
f1665b21 3207{
1bc22652 3208 CPUX86State *env = &cpu->env;
c0198c5f 3209 void *xsave = env->xsave_buf;
86a57621 3210 int ret;
f1665b21 3211
28143b40 3212 if (!has_xsave) {
1bc22652 3213 return kvm_get_fpu(cpu);
b9bec74b 3214 }
f1665b21 3215
1bc22652 3216 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 3217 if (ret < 0) {
f1665b21 3218 return ret;
0f53994f 3219 }
c0198c5f 3220 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 3221
f1665b21 3222 return 0;
f1665b21
SY
3223}
3224
1bc22652 3225static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 3226{
1bc22652 3227 CPUX86State *env = &cpu->env;
f1665b21
SY
3228 int i, ret;
3229 struct kvm_xcrs xcrs;
3230
28143b40 3231 if (!has_xcrs) {
f1665b21 3232 return 0;
b9bec74b 3233 }
f1665b21 3234
1bc22652 3235 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 3236 if (ret < 0) {
f1665b21 3237 return ret;
b9bec74b 3238 }
f1665b21 3239
b9bec74b 3240 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 3241 /* Only support xcr0 now */
0fd53fec
PB
3242 if (xcrs.xcrs[i].xcr == 0) {
3243 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
3244 break;
3245 }
b9bec74b 3246 }
f1665b21 3247 return 0;
f1665b21
SY
3248}
3249
1bc22652 3250static int kvm_get_sregs(X86CPU *cpu)
05330448 3251{
1bc22652 3252 CPUX86State *env = &cpu->env;
05330448 3253 struct kvm_sregs sregs;
0e607a80 3254 int bit, i, ret;
05330448 3255
1bc22652 3256 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 3257 if (ret < 0) {
05330448 3258 return ret;
b9bec74b 3259 }
05330448 3260
0e607a80
JK
3261 /* There can only be one pending IRQ set in the bitmap at a time, so try
3262 to find it and save its number instead (-1 for none). */
3263 env->interrupt_injected = -1;
3264 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3265 if (sregs.interrupt_bitmap[i]) {
3266 bit = ctz64(sregs.interrupt_bitmap[i]);
3267 env->interrupt_injected = i * 64 + bit;
3268 break;
3269 }
3270 }
05330448
AL
3271
3272 get_seg(&env->segs[R_CS], &sregs.cs);
3273 get_seg(&env->segs[R_DS], &sregs.ds);
3274 get_seg(&env->segs[R_ES], &sregs.es);
3275 get_seg(&env->segs[R_FS], &sregs.fs);
3276 get_seg(&env->segs[R_GS], &sregs.gs);
3277 get_seg(&env->segs[R_SS], &sregs.ss);
3278
3279 get_seg(&env->tr, &sregs.tr);
3280 get_seg(&env->ldt, &sregs.ldt);
3281
3282 env->idt.limit = sregs.idt.limit;
3283 env->idt.base = sregs.idt.base;
3284 env->gdt.limit = sregs.gdt.limit;
3285 env->gdt.base = sregs.gdt.base;
3286
3287 env->cr[0] = sregs.cr0;
3288 env->cr[2] = sregs.cr2;
3289 env->cr[3] = sregs.cr3;
3290 env->cr[4] = sregs.cr4;
3291
05330448 3292 env->efer = sregs.efer;
cce47516
JK
3293
3294 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3295 x86_update_hflags(env);
05330448
AL
3296
3297 return 0;
3298}
3299
1bc22652 3300static int kvm_get_msrs(X86CPU *cpu)
05330448 3301{
1bc22652 3302 CPUX86State *env = &cpu->env;
d71b62a1 3303 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3304 int ret, i;
fcc35e7c 3305 uint64_t mtrr_top_bits;
05330448 3306
d71b62a1
EH
3307 kvm_msr_buf_reset(cpu);
3308
9c600a84
EH
3309 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3310 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3311 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3312 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3313 if (has_msr_star) {
9c600a84 3314 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3315 }
c3a3a7d3 3316 if (has_msr_hsave_pa) {
9c600a84 3317 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3318 }
c9b8f6b6 3319 if (has_msr_tsc_aux) {
9c600a84 3320 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3321 }
f28558d3 3322 if (has_msr_tsc_adjust) {
9c600a84 3323 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3324 }
aa82ba54 3325 if (has_msr_tsc_deadline) {
9c600a84 3326 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3327 }
21e87c46 3328 if (has_msr_misc_enable) {
9c600a84 3329 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3330 }
fc12d72e 3331 if (has_msr_smbase) {
9c600a84 3332 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3333 }
e13713db
LA
3334 if (has_msr_smi_count) {
3335 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3336 }
df67696e 3337 if (has_msr_feature_control) {
9c600a84 3338 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3339 }
6aa4228b
CQ
3340 if (has_msr_pkrs) {
3341 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3342 }
79e9ebeb 3343 if (has_msr_bndcfgs) {
9c600a84 3344 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3345 }
18cd2c17 3346 if (has_msr_xss) {
9c600a84 3347 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3348 }
65087997
TX
3349 if (has_msr_umwait) {
3350 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3351 }
a33a2cfe
PB
3352 if (has_msr_spec_ctrl) {
3353 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3354 }
2a9758c5
PB
3355 if (has_msr_tsx_ctrl) {
3356 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3357 }
cfeea0c0
KRW
3358 if (has_msr_virt_ssbd) {
3359 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3360 }
b8cc45d6 3361 if (!env->tsc_valid) {
9c600a84 3362 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3363 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3364 }
3365
05330448 3366#ifdef TARGET_X86_64
25d2e361 3367 if (lm_capable_kernel) {
9c600a84
EH
3368 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3369 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3370 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3371 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3372 }
05330448 3373#endif
9c600a84
EH
3374 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3375 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
db5daafa
VK
3376 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3377 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3378 }
6615be07
VK
3379 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3380 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3381 }
55c911a5 3382 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3383 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3384 }
55c911a5 3385 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3386 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3387 }
d645e132
MT
3388 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3389 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3390 }
0b368a10
JD
3391 if (has_architectural_pmu_version > 0) {
3392 if (has_architectural_pmu_version > 1) {
3393 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3394 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3395 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3396 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3397 }
3398 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3399 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3400 }
0b368a10 3401 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3402 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3403 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3404 }
3405 }
1a03675d 3406
57780495 3407 if (env->mcg_cap) {
9c600a84
EH
3408 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3409 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3410 if (has_msr_mcg_ext_ctl) {
3411 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3412 }
b9bec74b 3413 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3414 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3415 }
57780495 3416 }
57780495 3417
1c90ef26 3418 if (has_msr_hv_hypercall) {
9c600a84
EH
3419 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3420 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3421 }
2d384d7c 3422 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3423 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3424 }
2d384d7c 3425 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3426 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3427 }
2d384d7c 3428 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3429 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3430 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3431 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3432 }
f2a53c9e
AS
3433 if (has_msr_hv_crash) {
3434 int j;
3435
5e953812 3436 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3437 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3438 }
3439 }
46eb8f98 3440 if (has_msr_hv_runtime) {
9c600a84 3441 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3442 }
2d384d7c 3443 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3444 uint32_t msr;
3445
9c600a84 3446 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3447 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3448 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3449 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3450 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3451 }
3452 }
ff99aa64
AS
3453 if (has_msr_hv_stimer) {
3454 uint32_t msr;
3455
3456 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3457 msr++) {
9c600a84 3458 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3459 }
3460 }
1eabfce6 3461 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3462 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3463 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3464 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3465 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3466 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3467 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3468 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3469 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3470 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3471 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3472 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3473 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3474 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3475 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3476 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3477 }
3478 }
5ef68987 3479
b77146e9
CP
3480 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3481 int addr_num =
3482 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3483
3484 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3485 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3486 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3487 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3488 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3489 for (i = 0; i < addr_num; i++) {
3490 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3491 }
3492 }
3493
db888065
SC
3494 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3495 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3496 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3497 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3498 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3499 }
3500
d71b62a1 3501 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3502 if (ret < 0) {
05330448 3503 return ret;
b9bec74b 3504 }
05330448 3505
c70b11d1
EH
3506 if (ret < cpu->kvm_msr_buf->nmsrs) {
3507 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3508 error_report("error: failed to get MSR 0x%" PRIx32,
3509 (uint32_t)e->index);
3510 }
3511
9c600a84 3512 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3513 /*
3514 * MTRR masks: Each mask consists of 5 parts
3515 * a 10..0: must be zero
3516 * b 11 : valid bit
3517 * c n-1.12: actual mask bits
3518 * d 51..n: reserved must be zero
3519 * e 63.52: reserved must be zero
3520 *
3521 * 'n' is the number of physical bits supported by the CPU and is
3522 * apparently always <= 52. We know our 'n' but don't know what
3523 * the destinations 'n' is; it might be smaller, in which case
3524 * it masks (c) on loading. It might be larger, in which case
3525 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3526 * we're migrating to.
3527 */
3528
3529 if (cpu->fill_mtrr_mask) {
3530 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3531 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3532 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3533 } else {
3534 mtrr_top_bits = 0;
3535 }
3536
05330448 3537 for (i = 0; i < ret; i++) {
0d894367
PB
3538 uint32_t index = msrs[i].index;
3539 switch (index) {
05330448
AL
3540 case MSR_IA32_SYSENTER_CS:
3541 env->sysenter_cs = msrs[i].data;
3542 break;
3543 case MSR_IA32_SYSENTER_ESP:
3544 env->sysenter_esp = msrs[i].data;
3545 break;
3546 case MSR_IA32_SYSENTER_EIP:
3547 env->sysenter_eip = msrs[i].data;
3548 break;
0c03266a
JK
3549 case MSR_PAT:
3550 env->pat = msrs[i].data;
3551 break;
05330448
AL
3552 case MSR_STAR:
3553 env->star = msrs[i].data;
3554 break;
3555#ifdef TARGET_X86_64
3556 case MSR_CSTAR:
3557 env->cstar = msrs[i].data;
3558 break;
3559 case MSR_KERNELGSBASE:
3560 env->kernelgsbase = msrs[i].data;
3561 break;
3562 case MSR_FMASK:
3563 env->fmask = msrs[i].data;
3564 break;
3565 case MSR_LSTAR:
3566 env->lstar = msrs[i].data;
3567 break;
3568#endif
3569 case MSR_IA32_TSC:
3570 env->tsc = msrs[i].data;
3571 break;
c9b8f6b6
AS
3572 case MSR_TSC_AUX:
3573 env->tsc_aux = msrs[i].data;
3574 break;
f28558d3
WA
3575 case MSR_TSC_ADJUST:
3576 env->tsc_adjust = msrs[i].data;
3577 break;
aa82ba54
LJ
3578 case MSR_IA32_TSCDEADLINE:
3579 env->tsc_deadline = msrs[i].data;
3580 break;
aa851e36
MT
3581 case MSR_VM_HSAVE_PA:
3582 env->vm_hsave = msrs[i].data;
3583 break;
1a03675d
GC
3584 case MSR_KVM_SYSTEM_TIME:
3585 env->system_time_msr = msrs[i].data;
3586 break;
3587 case MSR_KVM_WALL_CLOCK:
3588 env->wall_clock_msr = msrs[i].data;
3589 break;
57780495
MT
3590 case MSR_MCG_STATUS:
3591 env->mcg_status = msrs[i].data;
3592 break;
3593 case MSR_MCG_CTL:
3594 env->mcg_ctl = msrs[i].data;
3595 break;
87f8b626
AR
3596 case MSR_MCG_EXT_CTL:
3597 env->mcg_ext_ctl = msrs[i].data;
3598 break;
21e87c46
AK
3599 case MSR_IA32_MISC_ENABLE:
3600 env->msr_ia32_misc_enable = msrs[i].data;
3601 break;
fc12d72e
PB
3602 case MSR_IA32_SMBASE:
3603 env->smbase = msrs[i].data;
3604 break;
e13713db
LA
3605 case MSR_SMI_COUNT:
3606 env->msr_smi_count = msrs[i].data;
3607 break;
0779caeb
ACL
3608 case MSR_IA32_FEATURE_CONTROL:
3609 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3610 break;
79e9ebeb
LJ
3611 case MSR_IA32_BNDCFGS:
3612 env->msr_bndcfgs = msrs[i].data;
3613 break;
18cd2c17
WL
3614 case MSR_IA32_XSS:
3615 env->xss = msrs[i].data;
3616 break;
65087997
TX
3617 case MSR_IA32_UMWAIT_CONTROL:
3618 env->umwait = msrs[i].data;
3619 break;
6aa4228b
CQ
3620 case MSR_IA32_PKRS:
3621 env->pkrs = msrs[i].data;
3622 break;
57780495 3623 default:
57780495
MT
3624 if (msrs[i].index >= MSR_MC0_CTL &&
3625 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3626 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3627 }
d8da8574 3628 break;
f6584ee2
GN
3629 case MSR_KVM_ASYNC_PF_EN:
3630 env->async_pf_en_msr = msrs[i].data;
3631 break;
db5daafa
VK
3632 case MSR_KVM_ASYNC_PF_INT:
3633 env->async_pf_int_msr = msrs[i].data;
3634 break;
bc9a839d
MT
3635 case MSR_KVM_PV_EOI_EN:
3636 env->pv_eoi_en_msr = msrs[i].data;
3637 break;
917367aa
MT
3638 case MSR_KVM_STEAL_TIME:
3639 env->steal_time_msr = msrs[i].data;
3640 break;
d645e132
MT
3641 case MSR_KVM_POLL_CONTROL: {
3642 env->poll_control_msr = msrs[i].data;
3643 break;
3644 }
0d894367
PB
3645 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3646 env->msr_fixed_ctr_ctrl = msrs[i].data;
3647 break;
3648 case MSR_CORE_PERF_GLOBAL_CTRL:
3649 env->msr_global_ctrl = msrs[i].data;
3650 break;
3651 case MSR_CORE_PERF_GLOBAL_STATUS:
3652 env->msr_global_status = msrs[i].data;
3653 break;
3654 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3655 env->msr_global_ovf_ctrl = msrs[i].data;
3656 break;
3657 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3658 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3659 break;
3660 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3661 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3662 break;
3663 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3664 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3665 break;
1c90ef26
VR
3666 case HV_X64_MSR_HYPERCALL:
3667 env->msr_hv_hypercall = msrs[i].data;
3668 break;
3669 case HV_X64_MSR_GUEST_OS_ID:
3670 env->msr_hv_guest_os_id = msrs[i].data;
3671 break;
5ef68987
VR
3672 case HV_X64_MSR_APIC_ASSIST_PAGE:
3673 env->msr_hv_vapic = msrs[i].data;
3674 break;
48a5f3bc
VR
3675 case HV_X64_MSR_REFERENCE_TSC:
3676 env->msr_hv_tsc = msrs[i].data;
3677 break;
f2a53c9e
AS
3678 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3679 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3680 break;
46eb8f98
AS
3681 case HV_X64_MSR_VP_RUNTIME:
3682 env->msr_hv_runtime = msrs[i].data;
3683 break;
866eea9a
AS
3684 case HV_X64_MSR_SCONTROL:
3685 env->msr_hv_synic_control = msrs[i].data;
3686 break;
866eea9a
AS
3687 case HV_X64_MSR_SIEFP:
3688 env->msr_hv_synic_evt_page = msrs[i].data;
3689 break;
3690 case HV_X64_MSR_SIMP:
3691 env->msr_hv_synic_msg_page = msrs[i].data;
3692 break;
3693 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3694 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3695 break;
3696 case HV_X64_MSR_STIMER0_CONFIG:
3697 case HV_X64_MSR_STIMER1_CONFIG:
3698 case HV_X64_MSR_STIMER2_CONFIG:
3699 case HV_X64_MSR_STIMER3_CONFIG:
3700 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3701 msrs[i].data;
3702 break;
3703 case HV_X64_MSR_STIMER0_COUNT:
3704 case HV_X64_MSR_STIMER1_COUNT:
3705 case HV_X64_MSR_STIMER2_COUNT:
3706 case HV_X64_MSR_STIMER3_COUNT:
3707 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3708 msrs[i].data;
866eea9a 3709 break;
ba6a4fd9
VK
3710 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3711 env->msr_hv_reenlightenment_control = msrs[i].data;
3712 break;
3713 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3714 env->msr_hv_tsc_emulation_control = msrs[i].data;
3715 break;
3716 case HV_X64_MSR_TSC_EMULATION_STATUS:
3717 env->msr_hv_tsc_emulation_status = msrs[i].data;
3718 break;
d1ae67f6
AW
3719 case MSR_MTRRdefType:
3720 env->mtrr_deftype = msrs[i].data;
3721 break;
3722 case MSR_MTRRfix64K_00000:
3723 env->mtrr_fixed[0] = msrs[i].data;
3724 break;
3725 case MSR_MTRRfix16K_80000:
3726 env->mtrr_fixed[1] = msrs[i].data;
3727 break;
3728 case MSR_MTRRfix16K_A0000:
3729 env->mtrr_fixed[2] = msrs[i].data;
3730 break;
3731 case MSR_MTRRfix4K_C0000:
3732 env->mtrr_fixed[3] = msrs[i].data;
3733 break;
3734 case MSR_MTRRfix4K_C8000:
3735 env->mtrr_fixed[4] = msrs[i].data;
3736 break;
3737 case MSR_MTRRfix4K_D0000:
3738 env->mtrr_fixed[5] = msrs[i].data;
3739 break;
3740 case MSR_MTRRfix4K_D8000:
3741 env->mtrr_fixed[6] = msrs[i].data;
3742 break;
3743 case MSR_MTRRfix4K_E0000:
3744 env->mtrr_fixed[7] = msrs[i].data;
3745 break;
3746 case MSR_MTRRfix4K_E8000:
3747 env->mtrr_fixed[8] = msrs[i].data;
3748 break;
3749 case MSR_MTRRfix4K_F0000:
3750 env->mtrr_fixed[9] = msrs[i].data;
3751 break;
3752 case MSR_MTRRfix4K_F8000:
3753 env->mtrr_fixed[10] = msrs[i].data;
3754 break;
3755 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3756 if (index & 1) {
fcc35e7c
DDAG
3757 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3758 mtrr_top_bits;
d1ae67f6
AW
3759 } else {
3760 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3761 }
3762 break;
a33a2cfe
PB
3763 case MSR_IA32_SPEC_CTRL:
3764 env->spec_ctrl = msrs[i].data;
3765 break;
2a9758c5
PB
3766 case MSR_IA32_TSX_CTRL:
3767 env->tsx_ctrl = msrs[i].data;
3768 break;
cfeea0c0
KRW
3769 case MSR_VIRT_SSBD:
3770 env->virt_ssbd = msrs[i].data;
3771 break;
b77146e9
CP
3772 case MSR_IA32_RTIT_CTL:
3773 env->msr_rtit_ctrl = msrs[i].data;
3774 break;
3775 case MSR_IA32_RTIT_STATUS:
3776 env->msr_rtit_status = msrs[i].data;
3777 break;
3778 case MSR_IA32_RTIT_OUTPUT_BASE:
3779 env->msr_rtit_output_base = msrs[i].data;
3780 break;
3781 case MSR_IA32_RTIT_OUTPUT_MASK:
3782 env->msr_rtit_output_mask = msrs[i].data;
3783 break;
3784 case MSR_IA32_RTIT_CR3_MATCH:
3785 env->msr_rtit_cr3_match = msrs[i].data;
3786 break;
3787 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3788 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3789 break;
db888065
SC
3790 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3791 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3792 msrs[i].data;
3793 break;
05330448
AL
3794 }
3795 }
3796
3797 return 0;
3798}
3799
1bc22652 3800static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3801{
1bc22652 3802 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3803
1bc22652 3804 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3805}
3806
23d02d9b 3807static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3808{
259186a7 3809 CPUState *cs = CPU(cpu);
23d02d9b 3810 CPUX86State *env = &cpu->env;
9bdbe550
HB
3811 struct kvm_mp_state mp_state;
3812 int ret;
3813
259186a7 3814 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3815 if (ret < 0) {
3816 return ret;
3817 }
3818 env->mp_state = mp_state.mp_state;
c14750e8 3819 if (kvm_irqchip_in_kernel()) {
259186a7 3820 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3821 }
9bdbe550
HB
3822 return 0;
3823}
3824
1bc22652 3825static int kvm_get_apic(X86CPU *cpu)
680c1c6f 3826{
02e51483 3827 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
3828 struct kvm_lapic_state kapic;
3829 int ret;
3830
3d4b2649 3831 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 3832 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
3833 if (ret < 0) {
3834 return ret;
3835 }
3836
3837 kvm_get_apic_state(apic, &kapic);
3838 }
3839 return 0;
3840}
3841
1bc22652 3842static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 3843{
fc12d72e 3844 CPUState *cs = CPU(cpu);
1bc22652 3845 CPUX86State *env = &cpu->env;
076796f8 3846 struct kvm_vcpu_events events = {};
a0fb002c
JK
3847
3848 if (!kvm_has_vcpu_events()) {
3849 return 0;
3850 }
3851
fd13f23b
LA
3852 events.flags = 0;
3853
3854 if (has_exception_payload) {
3855 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3856 events.exception.pending = env->exception_pending;
3857 events.exception_has_payload = env->exception_has_payload;
3858 events.exception_payload = env->exception_payload;
3859 }
3860 events.exception.nr = env->exception_nr;
3861 events.exception.injected = env->exception_injected;
a0fb002c
JK
3862 events.exception.has_error_code = env->has_error_code;
3863 events.exception.error_code = env->error_code;
3864
3865 events.interrupt.injected = (env->interrupt_injected >= 0);
3866 events.interrupt.nr = env->interrupt_injected;
3867 events.interrupt.soft = env->soft_interrupt;
3868
3869 events.nmi.injected = env->nmi_injected;
3870 events.nmi.pending = env->nmi_pending;
3871 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3872
3873 events.sipi_vector = env->sipi_vector;
3874
fc12d72e
PB
3875 if (has_msr_smbase) {
3876 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3877 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3878 if (kvm_irqchip_in_kernel()) {
3879 /* As soon as these are moved to the kernel, remove them
3880 * from cs->interrupt_request.
3881 */
3882 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3883 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3884 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3885 } else {
3886 /* Keep these in cs->interrupt_request. */
3887 events.smi.pending = 0;
3888 events.smi.latched_init = 0;
3889 }
fc3a1fd7
DDAG
3890 /* Stop SMI delivery on old machine types to avoid a reboot
3891 * on an inward migration of an old VM.
3892 */
3893 if (!cpu->kvm_no_smi_migration) {
3894 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3895 }
fc12d72e
PB
3896 }
3897
ea643051 3898 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
3899 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3900 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3901 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3902 }
ea643051 3903 }
aee028b9 3904
1bc22652 3905 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
3906}
3907
1bc22652 3908static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 3909{
1bc22652 3910 CPUX86State *env = &cpu->env;
a0fb002c
JK
3911 struct kvm_vcpu_events events;
3912 int ret;
3913
3914 if (!kvm_has_vcpu_events()) {
3915 return 0;
3916 }
3917
fc12d72e 3918 memset(&events, 0, sizeof(events));
1bc22652 3919 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
3920 if (ret < 0) {
3921 return ret;
3922 }
fd13f23b
LA
3923
3924 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3925 env->exception_pending = events.exception.pending;
3926 env->exception_has_payload = events.exception_has_payload;
3927 env->exception_payload = events.exception_payload;
3928 } else {
3929 env->exception_pending = 0;
3930 env->exception_has_payload = false;
3931 }
3932 env->exception_injected = events.exception.injected;
3933 env->exception_nr =
3934 (env->exception_pending || env->exception_injected) ?
3935 events.exception.nr : -1;
a0fb002c
JK
3936 env->has_error_code = events.exception.has_error_code;
3937 env->error_code = events.exception.error_code;
3938
3939 env->interrupt_injected =
3940 events.interrupt.injected ? events.interrupt.nr : -1;
3941 env->soft_interrupt = events.interrupt.soft;
3942
3943 env->nmi_injected = events.nmi.injected;
3944 env->nmi_pending = events.nmi.pending;
3945 if (events.nmi.masked) {
3946 env->hflags2 |= HF2_NMI_MASK;
3947 } else {
3948 env->hflags2 &= ~HF2_NMI_MASK;
3949 }
3950
fc12d72e
PB
3951 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3952 if (events.smi.smm) {
3953 env->hflags |= HF_SMM_MASK;
3954 } else {
3955 env->hflags &= ~HF_SMM_MASK;
3956 }
3957 if (events.smi.pending) {
3958 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3959 } else {
3960 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3961 }
3962 if (events.smi.smm_inside_nmi) {
3963 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3964 } else {
3965 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3966 }
3967 if (events.smi.latched_init) {
3968 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3969 } else {
3970 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3971 }
3972 }
3973
a0fb002c 3974 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
3975
3976 return 0;
3977}
3978
1bc22652 3979static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 3980{
ed2803da 3981 CPUState *cs = CPU(cpu);
1bc22652 3982 CPUX86State *env = &cpu->env;
b0b1d690 3983 int ret = 0;
b0b1d690
JK
3984 unsigned long reinject_trap = 0;
3985
3986 if (!kvm_has_vcpu_events()) {
fd13f23b 3987 if (env->exception_nr == EXCP01_DB) {
b0b1d690 3988 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 3989 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
3990 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3991 }
fd13f23b 3992 kvm_reset_exception(env);
b0b1d690
JK
3993 }
3994
3995 /*
3996 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3997 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3998 * by updating the debug state once again if single-stepping is on.
3999 * Another reason to call kvm_update_guest_debug here is a pending debug
4000 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4001 * reinject them via SET_GUEST_DEBUG.
4002 */
4003 if (reinject_trap ||
ed2803da 4004 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 4005 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 4006 }
b0b1d690
JK
4007 return ret;
4008}
4009
1bc22652 4010static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 4011{
1bc22652 4012 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4013 struct kvm_debugregs dbgregs;
4014 int i;
4015
4016 if (!kvm_has_debugregs()) {
4017 return 0;
4018 }
4019
1f670a95 4020 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
4021 for (i = 0; i < 4; i++) {
4022 dbgregs.db[i] = env->dr[i];
4023 }
4024 dbgregs.dr6 = env->dr[6];
4025 dbgregs.dr7 = env->dr[7];
4026 dbgregs.flags = 0;
4027
1bc22652 4028 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
4029}
4030
1bc22652 4031static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 4032{
1bc22652 4033 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4034 struct kvm_debugregs dbgregs;
4035 int i, ret;
4036
4037 if (!kvm_has_debugregs()) {
4038 return 0;
4039 }
4040
1bc22652 4041 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 4042 if (ret < 0) {
b9bec74b 4043 return ret;
ff44f1a3
JK
4044 }
4045 for (i = 0; i < 4; i++) {
4046 env->dr[i] = dbgregs.db[i];
4047 }
4048 env->dr[4] = env->dr[6] = dbgregs.dr6;
4049 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
4050
4051 return 0;
4052}
4053
ebbfef2f
LA
4054static int kvm_put_nested_state(X86CPU *cpu)
4055{
4056 CPUX86State *env = &cpu->env;
4057 int max_nested_state_len = kvm_max_nested_state_length();
4058
1e44f3ab 4059 if (!env->nested_state) {
ebbfef2f
LA
4060 return 0;
4061 }
4062
b16c0e20
PB
4063 /*
4064 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4065 */
4066 if (env->hflags & HF_GUEST_MASK) {
4067 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4068 } else {
4069 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4070 }
0baa4b44
VK
4071
4072 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4073 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
b16c0e20
PB
4074 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4075 } else {
4076 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4077 }
4078
ebbfef2f
LA
4079 assert(env->nested_state->size <= max_nested_state_len);
4080 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4081}
4082
4083static int kvm_get_nested_state(X86CPU *cpu)
4084{
4085 CPUX86State *env = &cpu->env;
4086 int max_nested_state_len = kvm_max_nested_state_length();
4087 int ret;
4088
1e44f3ab 4089 if (!env->nested_state) {
ebbfef2f
LA
4090 return 0;
4091 }
4092
4093 /*
4094 * It is possible that migration restored a smaller size into
4095 * nested_state->hdr.size than what our kernel support.
4096 * We preserve migration origin nested_state->hdr.size for
4097 * call to KVM_SET_NESTED_STATE but wish that our next call
4098 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4099 */
4100 env->nested_state->size = max_nested_state_len;
4101
4102 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4103 if (ret < 0) {
4104 return ret;
4105 }
4106
b16c0e20
PB
4107 /*
4108 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4109 */
ebbfef2f
LA
4110 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4111 env->hflags |= HF_GUEST_MASK;
4112 } else {
4113 env->hflags &= ~HF_GUEST_MASK;
4114 }
0baa4b44
VK
4115
4116 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4117 if (cpu_has_svm(env)) {
4118 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4119 env->hflags2 |= HF2_GIF_MASK;
4120 } else {
4121 env->hflags2 &= ~HF2_GIF_MASK;
4122 }
b16c0e20 4123 }
ebbfef2f
LA
4124
4125 return ret;
4126}
4127
20d695a9 4128int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 4129{
20d695a9 4130 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
4131 int ret;
4132
2fa45344 4133 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 4134
b16c0e20
PB
4135 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4136 ret = kvm_put_sregs(x86_cpu);
4137 if (ret < 0) {
4138 return ret;
4139 }
4140
48e1a45c 4141 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
4142 ret = kvm_put_nested_state(x86_cpu);
4143 if (ret < 0) {
4144 return ret;
4145 }
4146
6bdf863d
JK
4147 ret = kvm_put_msr_feature_control(x86_cpu);
4148 if (ret < 0) {
4149 return ret;
4150 }
4151 }
4152
36f96c4b
HZ
4153 if (level == KVM_PUT_FULL_STATE) {
4154 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4155 * because TSC frequency mismatch shouldn't abort migration,
4156 * unless the user explicitly asked for a more strict TSC
4157 * setting (e.g. using an explicit "tsc-freq" option).
4158 */
4159 kvm_arch_set_tsc_khz(cpu);
4160 }
4161
1bc22652 4162 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 4163 if (ret < 0) {
05330448 4164 return ret;
b9bec74b 4165 }
1bc22652 4166 ret = kvm_put_xsave(x86_cpu);
b9bec74b 4167 if (ret < 0) {
f1665b21 4168 return ret;
b9bec74b 4169 }
1bc22652 4170 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 4171 if (ret < 0) {
05330448 4172 return ret;
b9bec74b 4173 }
ab443475 4174 /* must be before kvm_put_msrs */
1bc22652 4175 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
4176 if (ret < 0) {
4177 return ret;
4178 }
1bc22652 4179 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 4180 if (ret < 0) {
05330448 4181 return ret;
b9bec74b 4182 }
4fadfa00
PH
4183 ret = kvm_put_vcpu_events(x86_cpu, level);
4184 if (ret < 0) {
4185 return ret;
4186 }
ea643051 4187 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 4188 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 4189 if (ret < 0) {
680c1c6f
JK
4190 return ret;
4191 }
ea643051 4192 }
7477cd38
MT
4193
4194 ret = kvm_put_tscdeadline_msr(x86_cpu);
4195 if (ret < 0) {
4196 return ret;
4197 }
1bc22652 4198 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 4199 if (ret < 0) {
b0b1d690 4200 return ret;
b9bec74b 4201 }
b0b1d690 4202 /* must be last */
1bc22652 4203 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 4204 if (ret < 0) {
ff44f1a3 4205 return ret;
b9bec74b 4206 }
05330448
AL
4207 return 0;
4208}
4209
20d695a9 4210int kvm_arch_get_registers(CPUState *cs)
05330448 4211{
20d695a9 4212 X86CPU *cpu = X86_CPU(cs);
05330448
AL
4213 int ret;
4214
20d695a9 4215 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 4216
4fadfa00 4217 ret = kvm_get_vcpu_events(cpu);
b9bec74b 4218 if (ret < 0) {
f4f1110e 4219 goto out;
b9bec74b 4220 }
4fadfa00
PH
4221 /*
4222 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4223 * KVM_GET_REGS and KVM_GET_SREGS.
4224 */
4225 ret = kvm_get_mp_state(cpu);
b9bec74b 4226 if (ret < 0) {
f4f1110e 4227 goto out;
b9bec74b 4228 }
4fadfa00 4229 ret = kvm_getput_regs(cpu, 0);
b9bec74b 4230 if (ret < 0) {
f4f1110e 4231 goto out;
b9bec74b 4232 }
4fadfa00 4233 ret = kvm_get_xsave(cpu);
b9bec74b 4234 if (ret < 0) {
f4f1110e 4235 goto out;
b9bec74b 4236 }
4fadfa00 4237 ret = kvm_get_xcrs(cpu);
b9bec74b 4238 if (ret < 0) {
f4f1110e 4239 goto out;
b9bec74b 4240 }
4fadfa00 4241 ret = kvm_get_sregs(cpu);
b9bec74b 4242 if (ret < 0) {
f4f1110e 4243 goto out;
b9bec74b 4244 }
4fadfa00 4245 ret = kvm_get_msrs(cpu);
680c1c6f 4246 if (ret < 0) {
f4f1110e 4247 goto out;
680c1c6f 4248 }
4fadfa00 4249 ret = kvm_get_apic(cpu);
b9bec74b 4250 if (ret < 0) {
f4f1110e 4251 goto out;
b9bec74b 4252 }
1bc22652 4253 ret = kvm_get_debugregs(cpu);
b9bec74b 4254 if (ret < 0) {
f4f1110e 4255 goto out;
b9bec74b 4256 }
ebbfef2f
LA
4257 ret = kvm_get_nested_state(cpu);
4258 if (ret < 0) {
4259 goto out;
4260 }
f4f1110e
RH
4261 ret = 0;
4262 out:
4263 cpu_sync_bndcs_hflags(&cpu->env);
4264 return ret;
05330448
AL
4265}
4266
20d695a9 4267void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 4268{
20d695a9
AF
4269 X86CPU *x86_cpu = X86_CPU(cpu);
4270 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
4271 int ret;
4272
276ce815 4273 /* Inject NMI */
fc12d72e
PB
4274 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4275 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4276 qemu_mutex_lock_iothread();
4277 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4278 qemu_mutex_unlock_iothread();
4279 DPRINTF("injected NMI\n");
4280 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4281 if (ret < 0) {
4282 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4283 strerror(-ret));
4284 }
4285 }
4286 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4287 qemu_mutex_lock_iothread();
4288 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4289 qemu_mutex_unlock_iothread();
4290 DPRINTF("injected SMI\n");
4291 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4292 if (ret < 0) {
4293 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4294 strerror(-ret));
4295 }
ce377af3 4296 }
276ce815
LJ
4297 }
4298
15eafc2e 4299 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
4300 qemu_mutex_lock_iothread();
4301 }
4302
e0723c45
PB
4303 /* Force the VCPU out of its inner loop to process any INIT requests
4304 * or (for userspace APIC, but it is cheap to combine the checks here)
4305 * pending TPR access reports.
4306 */
4307 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
4308 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4309 !(env->hflags & HF_SMM_MASK)) {
4310 cpu->exit_request = 1;
4311 }
4312 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4313 cpu->exit_request = 1;
4314 }
e0723c45 4315 }
05330448 4316
15eafc2e 4317 if (!kvm_pic_in_kernel()) {
db1669bc
JK
4318 /* Try to inject an interrupt if the guest can accept it */
4319 if (run->ready_for_interrupt_injection &&
259186a7 4320 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
4321 (env->eflags & IF_MASK)) {
4322 int irq;
4323
259186a7 4324 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
4325 irq = cpu_get_pic_interrupt(env);
4326 if (irq >= 0) {
4327 struct kvm_interrupt intr;
4328
4329 intr.irq = irq;
db1669bc 4330 DPRINTF("injected interrupt %d\n", irq);
1bc22652 4331 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
4332 if (ret < 0) {
4333 fprintf(stderr,
4334 "KVM: injection failed, interrupt lost (%s)\n",
4335 strerror(-ret));
4336 }
db1669bc
JK
4337 }
4338 }
05330448 4339
db1669bc
JK
4340 /* If we have an interrupt but the guest is not ready to receive an
4341 * interrupt, request an interrupt window exit. This will
4342 * cause a return to userspace as soon as the guest is ready to
4343 * receive interrupts. */
259186a7 4344 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4345 run->request_interrupt_window = 1;
4346 } else {
4347 run->request_interrupt_window = 0;
4348 }
4349
4350 DPRINTF("setting tpr\n");
02e51483 4351 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4352
4353 qemu_mutex_unlock_iothread();
db1669bc 4354 }
05330448
AL
4355}
4356
035d1ef2
CQ
4357static void kvm_rate_limit_on_bus_lock(void)
4358{
4359 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4360
4361 if (delay_ns) {
4362 g_usleep(delay_ns / SCALE_US);
4363 }
4364}
4365
4c663752 4366MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4367{
20d695a9
AF
4368 X86CPU *x86_cpu = X86_CPU(cpu);
4369 CPUX86State *env = &x86_cpu->env;
4370
fc12d72e
PB
4371 if (run->flags & KVM_RUN_X86_SMM) {
4372 env->hflags |= HF_SMM_MASK;
4373 } else {
f5c052b9 4374 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4375 }
b9bec74b 4376 if (run->if_flag) {
05330448 4377 env->eflags |= IF_MASK;
b9bec74b 4378 } else {
05330448 4379 env->eflags &= ~IF_MASK;
b9bec74b 4380 }
035d1ef2
CQ
4381 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4382 kvm_rate_limit_on_bus_lock();
4383 }
4b8523ee
JK
4384
4385 /* We need to protect the apic state against concurrent accesses from
4386 * different threads in case the userspace irqchip is used. */
4387 if (!kvm_irqchip_in_kernel()) {
4388 qemu_mutex_lock_iothread();
4389 }
02e51483
CF
4390 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4391 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4392 if (!kvm_irqchip_in_kernel()) {
4393 qemu_mutex_unlock_iothread();
4394 }
f794aa4a 4395 return cpu_get_mem_attrs(env);
05330448
AL
4396}
4397
20d695a9 4398int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4399{
20d695a9
AF
4400 X86CPU *cpu = X86_CPU(cs);
4401 CPUX86State *env = &cpu->env;
232fc23b 4402
259186a7 4403 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4404 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4405 assert(env->mcg_cap);
4406
259186a7 4407 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4408
dd1750d7 4409 kvm_cpu_synchronize_state(cs);
ab443475 4410
fd13f23b 4411 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4412 /* this means triple fault */
cf83f140 4413 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4414 cs->exit_request = 1;
ab443475
JK
4415 return 0;
4416 }
fd13f23b 4417 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4418 env->has_error_code = 0;
4419
259186a7 4420 cs->halted = 0;
ab443475
JK
4421 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4422 env->mp_state = KVM_MP_STATE_RUNNABLE;
4423 }
4424 }
4425
fc12d72e
PB
4426 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4427 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4428 kvm_cpu_synchronize_state(cs);
4429 do_cpu_init(cpu);
4430 }
4431
db1669bc
JK
4432 if (kvm_irqchip_in_kernel()) {
4433 return 0;
4434 }
4435
259186a7
AF
4436 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4437 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4438 apic_poll_irq(cpu->apic_state);
5d62c43a 4439 }
259186a7 4440 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4441 (env->eflags & IF_MASK)) ||
259186a7
AF
4442 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4443 cs->halted = 0;
6792a57b 4444 }
259186a7 4445 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4446 kvm_cpu_synchronize_state(cs);
232fc23b 4447 do_cpu_sipi(cpu);
0af691d7 4448 }
259186a7
AF
4449 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4450 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4451 kvm_cpu_synchronize_state(cs);
02e51483 4452 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4453 env->tpr_access_type);
4454 }
0af691d7 4455
259186a7 4456 return cs->halted;
0af691d7
MT
4457}
4458
839b5630 4459static int kvm_handle_halt(X86CPU *cpu)
05330448 4460{
259186a7 4461 CPUState *cs = CPU(cpu);
839b5630
AF
4462 CPUX86State *env = &cpu->env;
4463
259186a7 4464 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4465 (env->eflags & IF_MASK)) &&
259186a7
AF
4466 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4467 cs->halted = 1;
bb4ea393 4468 return EXCP_HLT;
05330448
AL
4469 }
4470
bb4ea393 4471 return 0;
05330448
AL
4472}
4473
f7575c96 4474static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4475{
f7575c96
AF
4476 CPUState *cs = CPU(cpu);
4477 struct kvm_run *run = cs->kvm_run;
d362e757 4478
02e51483 4479 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4480 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4481 : TPR_ACCESS_READ);
4482 return 1;
4483}
4484
f17ec444 4485int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4486{
38972938 4487 static const uint8_t int3 = 0xcc;
64bf3f4e 4488
f17ec444
AF
4489 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4490 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4491 return -EINVAL;
b9bec74b 4492 }
e22a25c9
AL
4493 return 0;
4494}
4495
f17ec444 4496int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4497{
4498 uint8_t int3;
4499
c6986f16
PB
4500 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4501 return -EINVAL;
4502 }
4503 if (int3 != 0xcc) {
4504 return 0;
4505 }
4506 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4507 return -EINVAL;
b9bec74b 4508 }
e22a25c9
AL
4509 return 0;
4510}
4511
4512static struct {
4513 target_ulong addr;
4514 int len;
4515 int type;
4516} hw_breakpoint[4];
4517
4518static int nb_hw_breakpoint;
4519
4520static int find_hw_breakpoint(target_ulong addr, int len, int type)
4521{
4522 int n;
4523
b9bec74b 4524 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4525 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4526 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4527 return n;
b9bec74b
JK
4528 }
4529 }
e22a25c9
AL
4530 return -1;
4531}
4532
4533int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4534 target_ulong len, int type)
4535{
4536 switch (type) {
4537 case GDB_BREAKPOINT_HW:
4538 len = 1;
4539 break;
4540 case GDB_WATCHPOINT_WRITE:
4541 case GDB_WATCHPOINT_ACCESS:
4542 switch (len) {
4543 case 1:
4544 break;
4545 case 2:
4546 case 4:
4547 case 8:
b9bec74b 4548 if (addr & (len - 1)) {
e22a25c9 4549 return -EINVAL;
b9bec74b 4550 }
e22a25c9
AL
4551 break;
4552 default:
4553 return -EINVAL;
4554 }
4555 break;
4556 default:
4557 return -ENOSYS;
4558 }
4559
b9bec74b 4560 if (nb_hw_breakpoint == 4) {
e22a25c9 4561 return -ENOBUFS;
b9bec74b
JK
4562 }
4563 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4564 return -EEXIST;
b9bec74b 4565 }
e22a25c9
AL
4566 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4567 hw_breakpoint[nb_hw_breakpoint].len = len;
4568 hw_breakpoint[nb_hw_breakpoint].type = type;
4569 nb_hw_breakpoint++;
4570
4571 return 0;
4572}
4573
4574int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4575 target_ulong len, int type)
4576{
4577 int n;
4578
4579 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4580 if (n < 0) {
e22a25c9 4581 return -ENOENT;
b9bec74b 4582 }
e22a25c9
AL
4583 nb_hw_breakpoint--;
4584 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4585
4586 return 0;
4587}
4588
4589void kvm_arch_remove_all_hw_breakpoints(void)
4590{
4591 nb_hw_breakpoint = 0;
4592}
4593
4594static CPUWatchpoint hw_watchpoint;
4595
a60f24b5 4596static int kvm_handle_debug(X86CPU *cpu,
48405526 4597 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4598{
ed2803da 4599 CPUState *cs = CPU(cpu);
a60f24b5 4600 CPUX86State *env = &cpu->env;
f2574737 4601 int ret = 0;
e22a25c9
AL
4602 int n;
4603
37936ac7
LA
4604 if (arch_info->exception == EXCP01_DB) {
4605 if (arch_info->dr6 & DR6_BS) {
ed2803da 4606 if (cs->singlestep_enabled) {
f2574737 4607 ret = EXCP_DEBUG;
b9bec74b 4608 }
e22a25c9 4609 } else {
b9bec74b
JK
4610 for (n = 0; n < 4; n++) {
4611 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4612 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4613 case 0x0:
f2574737 4614 ret = EXCP_DEBUG;
e22a25c9
AL
4615 break;
4616 case 0x1:
f2574737 4617 ret = EXCP_DEBUG;
ff4700b0 4618 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4619 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4620 hw_watchpoint.flags = BP_MEM_WRITE;
4621 break;
4622 case 0x3:
f2574737 4623 ret = EXCP_DEBUG;
ff4700b0 4624 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4625 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4626 hw_watchpoint.flags = BP_MEM_ACCESS;
4627 break;
4628 }
b9bec74b
JK
4629 }
4630 }
e22a25c9 4631 }
ff4700b0 4632 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4633 ret = EXCP_DEBUG;
b9bec74b 4634 }
f2574737 4635 if (ret == 0) {
ff4700b0 4636 cpu_synchronize_state(cs);
fd13f23b 4637 assert(env->exception_nr == -1);
b0b1d690 4638
f2574737 4639 /* pass to guest */
fd13f23b
LA
4640 kvm_queue_exception(env, arch_info->exception,
4641 arch_info->exception == EXCP01_DB,
4642 arch_info->dr6);
48405526 4643 env->has_error_code = 0;
b0b1d690 4644 }
e22a25c9 4645
f2574737 4646 return ret;
e22a25c9
AL
4647}
4648
20d695a9 4649void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4650{
4651 const uint8_t type_code[] = {
4652 [GDB_BREAKPOINT_HW] = 0x0,
4653 [GDB_WATCHPOINT_WRITE] = 0x1,
4654 [GDB_WATCHPOINT_ACCESS] = 0x3
4655 };
4656 const uint8_t len_code[] = {
4657 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4658 };
4659 int n;
4660
a60f24b5 4661 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4662 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4663 }
e22a25c9
AL
4664 if (nb_hw_breakpoint > 0) {
4665 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4666 dbg->arch.debugreg[7] = 0x0600;
4667 for (n = 0; n < nb_hw_breakpoint; n++) {
4668 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4669 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4670 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4671 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4672 }
4673 }
4674}
4513d923 4675
c22f5467
SC
4676static bool has_sgx_provisioning;
4677
4678static bool __kvm_enable_sgx_provisioning(KVMState *s)
4679{
4680 int fd, ret;
4681
4682 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4683 return false;
4684 }
4685
4686 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4687 if (fd < 0) {
4688 return false;
4689 }
4690
4691 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4692 if (ret) {
4693 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4694 exit(1);
4695 }
4696 close(fd);
4697 return true;
4698}
4699
4700bool kvm_enable_sgx_provisioning(KVMState *s)
4701{
4702 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4703}
4704
2a4dac83
JK
4705static bool host_supports_vmx(void)
4706{
4707 uint32_t ecx, unused;
4708
4709 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4710 return ecx & CPUID_EXT_VMX;
4711}
4712
4713#define VMX_INVALID_GUEST_STATE 0x80000021
4714
20d695a9 4715int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4716{
20d695a9 4717 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4718 uint64_t code;
4719 int ret;
4720
4721 switch (run->exit_reason) {
4722 case KVM_EXIT_HLT:
4723 DPRINTF("handle_hlt\n");
4b8523ee 4724 qemu_mutex_lock_iothread();
839b5630 4725 ret = kvm_handle_halt(cpu);
4b8523ee 4726 qemu_mutex_unlock_iothread();
2a4dac83
JK
4727 break;
4728 case KVM_EXIT_SET_TPR:
4729 ret = 0;
4730 break;
d362e757 4731 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4732 qemu_mutex_lock_iothread();
f7575c96 4733 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4734 qemu_mutex_unlock_iothread();
d362e757 4735 break;
2a4dac83
JK
4736 case KVM_EXIT_FAIL_ENTRY:
4737 code = run->fail_entry.hardware_entry_failure_reason;
4738 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4739 code);
4740 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4741 fprintf(stderr,
12619721 4742 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4743 "unrestricted mode\n"
4744 "support, the failure can be most likely due to the guest "
4745 "entering an invalid\n"
4746 "state for Intel VT. For example, the guest maybe running "
4747 "in big real mode\n"
4748 "which is not supported on less recent Intel processors."
4749 "\n\n");
4750 }
4751 ret = -1;
4752 break;
4753 case KVM_EXIT_EXCEPTION:
4754 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4755 run->ex.exception, run->ex.error_code);
4756 ret = -1;
4757 break;
f2574737
JK
4758 case KVM_EXIT_DEBUG:
4759 DPRINTF("kvm_exit_debug\n");
4b8523ee 4760 qemu_mutex_lock_iothread();
a60f24b5 4761 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4762 qemu_mutex_unlock_iothread();
f2574737 4763 break;
50efe82c
AS
4764 case KVM_EXIT_HYPERV:
4765 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4766 break;
15eafc2e
PB
4767 case KVM_EXIT_IOAPIC_EOI:
4768 ioapic_eoi_broadcast(run->eoi.vector);
4769 ret = 0;
4770 break;
035d1ef2
CQ
4771 case KVM_EXIT_X86_BUS_LOCK:
4772 /* already handled in kvm_arch_post_run */
4773 ret = 0;
4774 break;
2a4dac83
JK
4775 default:
4776 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4777 ret = -1;
4778 break;
4779 }
4780
4781 return ret;
4782}
4783
20d695a9 4784bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4785{
20d695a9
AF
4786 X86CPU *cpu = X86_CPU(cs);
4787 CPUX86State *env = &cpu->env;
4788
dd1750d7 4789 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4790 return !(env->cr[0] & CR0_PE_MASK) ||
4791 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4792}
84b058d7
JK
4793
4794void kvm_arch_init_irq_routing(KVMState *s)
4795{
cc7e0ddf 4796 /* We know at this point that we're using the in-kernel
614e41bc 4797 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4798 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4799 */
614e41bc 4800 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4801 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4802
4803 if (kvm_irqchip_is_split()) {
4804 int i;
4805
4806 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4807 MSI routes for signaling interrupts to the local apics. */
4808 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 4809 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
4810 error_report("Could not enable split IRQ mode.");
4811 exit(1);
4812 }
4813 }
4814 }
4815}
4816
4376c40d 4817int kvm_arch_irqchip_create(KVMState *s)
15eafc2e
PB
4818{
4819 int ret;
4376c40d 4820 if (kvm_kernel_irqchip_split()) {
15eafc2e
PB
4821 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4822 if (ret) {
df3c286c 4823 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
4824 strerror(-ret));
4825 exit(1);
4826 } else {
4827 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4828 kvm_split_irqchip = true;
4829 return 1;
4830 }
4831 } else {
4832 return 0;
4833 }
84b058d7 4834}
b139bd30 4835
c1bb5418
DW
4836uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4837{
4838 CPUX86State *env;
4839 uint64_t ext_id;
4840
4841 if (!first_cpu) {
4842 return address;
4843 }
4844 env = &X86_CPU(first_cpu)->env;
4845 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4846 return address;
4847 }
4848
4849 /*
4850 * If the remappable format bit is set, or the upper bits are
4851 * already set in address_hi, or the low extended bits aren't
4852 * there anyway, do nothing.
4853 */
4854 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4855 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4856 return address;
4857 }
4858
4859 address &= ~ext_id;
4860 address |= ext_id << 35;
4861 return address;
4862}
4863
9e03a040 4864int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 4865 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 4866{
8b5ed7df
PX
4867 X86IOMMUState *iommu = x86_iommu_get_default();
4868
4869 if (iommu) {
30c60f77 4870 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
8b5ed7df 4871
c1bb5418
DW
4872 if (class->int_remap) {
4873 int ret;
4874 MSIMessage src, dst;
0ea1472d 4875
c1bb5418
DW
4876 src.address = route->u.msi.address_hi;
4877 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4878 src.address |= route->u.msi.address_lo;
4879 src.data = route->u.msi.data;
8b5ed7df 4880
c1bb5418
DW
4881 ret = class->int_remap(iommu, &src, &dst, dev ? \
4882 pci_requester_id(dev) : \
4883 X86_IOMMU_SID_INVALID);
4884 if (ret) {
4885 trace_kvm_x86_fixup_msi_error(route->gsi);
4886 return 1;
4887 }
4888
4889 /*
4890 * Handled untranslated compatibilty format interrupt with
4891 * extended destination ID in the low bits 11-5. */
4892 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
8b5ed7df 4893
c1bb5418
DW
4894 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4895 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4896 route->u.msi.data = dst.data;
4897 return 0;
4898 }
8b5ed7df
PX
4899 }
4900
c1bb5418
DW
4901 address = kvm_swizzle_msi_ext_dest_id(address);
4902 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4903 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
9e03a040
FB
4904 return 0;
4905}
1850b6b7 4906
38d87493
PX
4907typedef struct MSIRouteEntry MSIRouteEntry;
4908
4909struct MSIRouteEntry {
4910 PCIDevice *dev; /* Device pointer */
4911 int vector; /* MSI/MSIX vector index */
4912 int virq; /* Virtual IRQ index */
4913 QLIST_ENTRY(MSIRouteEntry) list;
4914};
4915
4916/* List of used GSI routes */
4917static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4918 QLIST_HEAD_INITIALIZER(msi_route_list);
4919
e1d4fb2d
PX
4920static void kvm_update_msi_routes_all(void *private, bool global,
4921 uint32_t index, uint32_t mask)
4922{
a56de056 4923 int cnt = 0, vector;
e1d4fb2d
PX
4924 MSIRouteEntry *entry;
4925 MSIMessage msg;
fd563564
PX
4926 PCIDevice *dev;
4927
e1d4fb2d
PX
4928 /* TODO: explicit route update */
4929 QLIST_FOREACH(entry, &msi_route_list, list) {
4930 cnt++;
a56de056 4931 vector = entry->vector;
fd563564 4932 dev = entry->dev;
a56de056
PX
4933 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4934 msg = msix_get_message(dev, vector);
4935 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4936 msg = msi_get_message(dev, vector);
4937 } else {
4938 /*
4939 * Either MSI/MSIX is disabled for the device, or the
4940 * specific message was masked out. Skip this one.
4941 */
fd563564
PX
4942 continue;
4943 }
fd563564 4944 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 4945 }
3f1fea0f 4946 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
4947 trace_kvm_x86_update_msi_routes(cnt);
4948}
4949
38d87493
PX
4950int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4951 int vector, PCIDevice *dev)
4952{
e1d4fb2d 4953 static bool notify_list_inited = false;
38d87493
PX
4954 MSIRouteEntry *entry;
4955
4956 if (!dev) {
4957 /* These are (possibly) IOAPIC routes only used for split
4958 * kernel irqchip mode, while what we are housekeeping are
4959 * PCI devices only. */
4960 return 0;
4961 }
4962
4963 entry = g_new0(MSIRouteEntry, 1);
4964 entry->dev = dev;
4965 entry->vector = vector;
4966 entry->virq = route->gsi;
4967 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4968
4969 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
4970
4971 if (!notify_list_inited) {
4972 /* For the first time we do add route, add ourselves into
4973 * IOMMU's IEC notify list if needed. */
4974 X86IOMMUState *iommu = x86_iommu_get_default();
4975 if (iommu) {
4976 x86_iommu_iec_register_notifier(iommu,
4977 kvm_update_msi_routes_all,
4978 NULL);
4979 }
4980 notify_list_inited = true;
4981 }
38d87493
PX
4982 return 0;
4983}
4984
4985int kvm_arch_release_virq_post(int virq)
4986{
4987 MSIRouteEntry *entry, *next;
4988 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4989 if (entry->virq == virq) {
4990 trace_kvm_x86_remove_msi_route(virq);
4991 QLIST_REMOVE(entry, list);
01960e6d 4992 g_free(entry);
38d87493
PX
4993 break;
4994 }
4995 }
9e03a040
FB
4996 return 0;
4997}
1850b6b7
EA
4998
4999int kvm_arch_msi_data_to_gsi(uint32_t data)
5000{
5001 abort();
5002}
e1e43813
PB
5003
5004bool kvm_has_waitpkg(void)
5005{
5006 return has_msr_umwait;
5007}
92a5199b
TL
5008
5009bool kvm_arch_cpu_check_are_resettable(void)
5010{
5011 return !sev_es_enabled();
5012}