]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm/kvm.c
i386: Hyper-V Support extended GVA ranges for TLB flush hypercalls
[mirror_qemu.git] / target / i386 / kvm / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
8efc4e51 16#include "qapi/qapi-events-run-state.h"
da34e65c 17#include "qapi/error.h"
05330448 18#include <sys/ioctl.h>
25d2e361 19#include <sys/utsname.h>
19db68ca 20#include <sys/syscall.h>
05330448
AL
21
22#include <linux/kvm.h>
1814eab6 23#include "standard-headers/asm-x86/kvm_para.h"
05330448 24
33c11879 25#include "cpu.h"
f5cc5a5c 26#include "host-cpu.h"
9c17d615 27#include "sysemu/sysemu.h"
b3946626 28#include "sysemu/hw_accel.h"
6410848b 29#include "sysemu/kvm_int.h"
54d31236 30#include "sysemu/runstate.h"
1d31f66b 31#include "kvm_i386.h"
93777de3 32#include "sev.h"
50efe82c 33#include "hyperv.h"
5e953812 34#include "hyperv-proto.h"
50efe82c 35
022c62cb 36#include "exec/gdbstub.h"
1de7afc9 37#include "qemu/host-utils.h"
db725815 38#include "qemu/main-loop.h"
1de7afc9 39#include "qemu/config-file.h"
1c4a55db 40#include "qemu/error-report.h"
5df022cf 41#include "qemu/memalign.h"
89a289c7 42#include "hw/i386/x86.h"
0d09e41a 43#include "hw/i386/apic.h"
e0723c45
PB
44#include "hw/i386/apic_internal.h"
45#include "hw/i386/apic-msidef.h"
8b5ed7df 46#include "hw/i386/intel_iommu.h"
e1d4fb2d 47#include "hw/i386/x86-iommu.h"
d6d059ca 48#include "hw/i386/e820_memory_layout.h"
50efe82c 49
a2cb15b0 50#include "hw/pci/pci.h"
15eafc2e 51#include "hw/pci/msi.h"
fd563564 52#include "hw/pci/msix.h"
795c40b8 53#include "migration/blocker.h"
4c663752 54#include "exec/memattrs.h"
8b5ed7df 55#include "trace.h"
05330448 56
d8701185
JD
57#include CONFIG_DEVICES
58
05330448
AL
59//#define DEBUG_KVM
60
61#ifdef DEBUG_KVM
8c0d577e 62#define DPRINTF(fmt, ...) \
05330448
AL
63 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
64#else
8c0d577e 65#define DPRINTF(fmt, ...) \
05330448
AL
66 do { } while (0)
67#endif
68
73b994f6
LA
69/* From arch/x86/kvm/lapic.h */
70#define KVM_APIC_BUS_CYCLE_NS 1
71#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
72
1a03675d
GC
73#define MSR_KVM_WALL_CLOCK 0x11
74#define MSR_KVM_SYSTEM_TIME 0x12
75
d1138251
EH
76/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
77 * 255 kvm_msr_entry structs */
78#define MSR_BUF_SIZE 4096
d71b62a1 79
420ae1fc
PB
80static void kvm_init_msrs(X86CPU *cpu);
81
94a8d39a
JK
82const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
83 KVM_CAP_INFO(SET_TSS_ADDR),
84 KVM_CAP_INFO(EXT_CPUID),
85 KVM_CAP_INFO(MP_STATE),
86 KVM_CAP_LAST_INFO
87};
25d2e361 88
c3a3a7d3
JK
89static bool has_msr_star;
90static bool has_msr_hsave_pa;
c9b8f6b6 91static bool has_msr_tsc_aux;
f28558d3 92static bool has_msr_tsc_adjust;
aa82ba54 93static bool has_msr_tsc_deadline;
df67696e 94static bool has_msr_feature_control;
21e87c46 95static bool has_msr_misc_enable;
fc12d72e 96static bool has_msr_smbase;
79e9ebeb 97static bool has_msr_bndcfgs;
25d2e361 98static int lm_capable_kernel;
7bc3d711 99static bool has_msr_hv_hypercall;
f2a53c9e 100static bool has_msr_hv_crash;
744b8a94 101static bool has_msr_hv_reset;
8c145d7c 102static bool has_msr_hv_vpindex;
e9688fab 103static bool hv_vpindex_settable;
46eb8f98 104static bool has_msr_hv_runtime;
866eea9a 105static bool has_msr_hv_synic;
ff99aa64 106static bool has_msr_hv_stimer;
d72bc7f6 107static bool has_msr_hv_frequencies;
ba6a4fd9 108static bool has_msr_hv_reenlightenment;
73d24074 109static bool has_msr_hv_syndbg_options;
18cd2c17 110static bool has_msr_xss;
65087997 111static bool has_msr_umwait;
a33a2cfe 112static bool has_msr_spec_ctrl;
cabf9862 113static bool has_tsc_scale_msr;
2a9758c5 114static bool has_msr_tsx_ctrl;
cfeea0c0 115static bool has_msr_virt_ssbd;
e13713db 116static bool has_msr_smi_count;
aec5e9c3 117static bool has_msr_arch_capabs;
597360c0 118static bool has_msr_core_capabs;
20a78b02 119static bool has_msr_vmx_vmfunc;
67025148 120static bool has_msr_ucode_rev;
4a910e1f 121static bool has_msr_vmx_procbased_ctls2;
ea39f9b6 122static bool has_msr_perf_capabs;
6aa4228b 123static bool has_msr_pkrs;
b827df58 124
0b368a10
JD
125static uint32_t has_architectural_pmu_version;
126static uint32_t num_architectural_pmu_gp_counters;
127static uint32_t num_architectural_pmu_fixed_counters;
0d894367 128
28143b40 129static int has_xsave;
e56dd3c7 130static int has_xsave2;
28143b40
TH
131static int has_xcrs;
132static int has_pit_state2;
8f515d38 133static int has_sregs2;
fd13f23b 134static int has_exception_payload;
28143b40 135
87f8b626
AR
136static bool has_msr_mcg_ext_ctl;
137
494e95e9 138static struct kvm_cpuid2 *cpuid_cache;
a8439be6 139static struct kvm_cpuid2 *hv_cpuid_cache;
f57bceb6 140static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 141
035d1ef2
CQ
142#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
143static RateLimit bus_lock_ratelimit_ctrl;
5a778a5f 144static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
035d1ef2 145
28143b40
TH
146int kvm_has_pit_state2(void)
147{
148 return has_pit_state2;
149}
150
355023f2
PB
151bool kvm_has_smm(void)
152{
23edf8b5 153 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
355023f2
PB
154}
155
6053a86f
MT
156bool kvm_has_adjust_clock_stable(void)
157{
158 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
159
160 return (ret == KVM_CLOCK_TSC_STABLE);
161}
162
8700a984
VK
163bool kvm_has_adjust_clock(void)
164{
165 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
166}
167
79a197ab
LA
168bool kvm_has_exception_payload(void)
169{
170 return has_exception_payload;
171}
172
fb506e70
RK
173static bool kvm_x2apic_api_set_flags(uint64_t flags)
174{
4f7f5893 175 KVMState *s = KVM_STATE(current_accel());
fb506e70
RK
176
177 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
178}
179
e391c009 180#define MEMORIZE(fn, _result) \
2a138ec3 181 ({ \
2a138ec3
RK
182 static bool _memorized; \
183 \
184 if (_memorized) { \
185 return _result; \
186 } \
187 _memorized = true; \
188 _result = fn; \
189 })
190
e391c009
IM
191static bool has_x2apic_api;
192
193bool kvm_has_x2apic_api(void)
194{
195 return has_x2apic_api;
196}
197
fb506e70
RK
198bool kvm_enable_x2apic(void)
199{
2a138ec3
RK
200 return MEMORIZE(
201 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
202 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
203 has_x2apic_api);
fb506e70
RK
204}
205
e9688fab
RK
206bool kvm_hv_vpindex_settable(void)
207{
208 return hv_vpindex_settable;
209}
210
0fd7e098
LL
211static int kvm_get_tsc(CPUState *cs)
212{
213 X86CPU *cpu = X86_CPU(cs);
214 CPUX86State *env = &cpu->env;
5a778a5f 215 uint64_t value;
0fd7e098
LL
216 int ret;
217
218 if (env->tsc_valid) {
219 return 0;
220 }
221
0fd7e098
LL
222 env->tsc_valid = !runstate_is_running();
223
5a778a5f 224 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
0fd7e098
LL
225 if (ret < 0) {
226 return ret;
227 }
228
5a778a5f 229 env->tsc = value;
0fd7e098
LL
230 return 0;
231}
232
14e6fe12 233static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 234{
0fd7e098
LL
235 kvm_get_tsc(cpu);
236}
237
238void kvm_synchronize_all_tsc(void)
239{
240 CPUState *cpu;
241
242 if (kvm_enabled()) {
243 CPU_FOREACH(cpu) {
14e6fe12 244 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
245 }
246 }
247}
248
b827df58
AK
249static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
250{
251 struct kvm_cpuid2 *cpuid;
252 int r, size;
253
254 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 255 cpuid = g_malloc0(size);
b827df58
AK
256 cpuid->nent = max;
257 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
258 if (r == 0 && cpuid->nent >= max) {
259 r = -E2BIG;
260 }
b827df58
AK
261 if (r < 0) {
262 if (r == -E2BIG) {
7267c094 263 g_free(cpuid);
b827df58
AK
264 return NULL;
265 } else {
266 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
267 strerror(-r));
268 exit(1);
269 }
270 }
271 return cpuid;
272}
273
dd87f8a6
EH
274/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
275 * for all entries.
276 */
277static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
278{
279 struct kvm_cpuid2 *cpuid;
280 int max = 1;
494e95e9
CP
281
282 if (cpuid_cache != NULL) {
283 return cpuid_cache;
284 }
dd87f8a6
EH
285 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
286 max *= 2;
287 }
494e95e9 288 cpuid_cache = cpuid;
dd87f8a6
EH
289 return cpuid;
290}
291
b199c682 292static bool host_tsx_broken(void)
40e80ee4
EH
293{
294 int family, model, stepping;\
295 char vendor[CPUID_VENDOR_SZ + 1];
296
f5cc5a5c 297 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
40e80ee4
EH
298
299 /* Check if we are running on a Haswell host known to have broken TSX */
300 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
301 (family == 6) &&
302 ((model == 63 && stepping < 4) ||
303 model == 60 || model == 69 || model == 70);
304}
0c31b744 305
829ae2f9
EH
306/* Returns the value for a specific register on the cpuid entry
307 */
308static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
309{
310 uint32_t ret = 0;
311 switch (reg) {
312 case R_EAX:
313 ret = entry->eax;
314 break;
315 case R_EBX:
316 ret = entry->ebx;
317 break;
318 case R_ECX:
319 ret = entry->ecx;
320 break;
321 case R_EDX:
322 ret = entry->edx;
323 break;
324 }
325 return ret;
326}
327
4fb73f1d
EH
328/* Find matching entry for function/index on kvm_cpuid2 struct
329 */
330static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
331 uint32_t function,
332 uint32_t index)
333{
334 int i;
335 for (i = 0; i < cpuid->nent; ++i) {
336 if (cpuid->entries[i].function == function &&
337 cpuid->entries[i].index == index) {
338 return &cpuid->entries[i];
339 }
340 }
341 /* not found: */
342 return NULL;
343}
344
ba9bc59e 345uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 346 uint32_t index, int reg)
b827df58
AK
347{
348 struct kvm_cpuid2 *cpuid;
b827df58
AK
349 uint32_t ret = 0;
350 uint32_t cpuid_1_edx;
19db68ca 351 uint64_t bitmask;
b827df58 352
dd87f8a6 353 cpuid = get_supported_cpuid(s);
b827df58 354
4fb73f1d
EH
355 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
356 if (entry) {
4fb73f1d 357 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
358 }
359
7b46e5ce
EH
360 /* Fixups for the data returned by KVM, below */
361
c2acb022
EH
362 if (function == 1 && reg == R_EDX) {
363 /* KVM before 2.6.30 misreports the following features */
364 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
365 } else if (function == 1 && reg == R_ECX) {
366 /* We can set the hypervisor flag, even if KVM does not return it on
367 * GET_SUPPORTED_CPUID
368 */
369 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
370 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
371 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
372 * and the irqchip is in the kernel.
373 */
374 if (kvm_irqchip_in_kernel() &&
375 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
376 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
377 }
41e5e76d
EH
378
379 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
380 * without the in-kernel irqchip
381 */
382 if (!kvm_irqchip_in_kernel()) {
383 ret &= ~CPUID_EXT_X2APIC;
b827df58 384 }
2266d443
MT
385
386 if (enable_cpu_pm) {
387 int disable_exits = kvm_check_extension(s,
388 KVM_CAP_X86_DISABLE_EXITS);
389
390 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
391 ret |= CPUID_EXT_MONITOR;
392 }
393 }
28b8e4d0
JK
394 } else if (function == 6 && reg == R_EAX) {
395 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4 396 } else if (function == 7 && index == 0 && reg == R_EBX) {
b199c682 397 if (host_tsx_broken()) {
40e80ee4
EH
398 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
399 }
485b1d25
EH
400 } else if (function == 7 && index == 0 && reg == R_EDX) {
401 /*
402 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
403 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
404 * returned by KVM_GET_MSR_INDEX_LIST.
405 */
406 if (!has_msr_arch_capabs) {
407 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
408 }
19db68ca
YZ
409 } else if (function == 0xd && index == 0 &&
410 (reg == R_EAX || reg == R_EDX)) {
3ec5ad40
PB
411 /*
412 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
413 * features that still have to be enabled with the arch_prctl
414 * system call. QEMU needs the full value, which is retrieved
415 * with KVM_GET_DEVICE_ATTR.
416 */
19db68ca
YZ
417 struct kvm_device_attr attr = {
418 .group = 0,
419 .attr = KVM_X86_XCOMP_GUEST_SUPP,
420 .addr = (unsigned long) &bitmask
421 };
422
423 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
424 if (!sys_attr) {
3ec5ad40 425 return ret;
19db68ca
YZ
426 }
427
428 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
3ec5ad40
PB
429 if (rc < 0) {
430 if (rc != -ENXIO) {
431 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
432 "error: %d", rc);
433 }
434 return ret;
19db68ca
YZ
435 }
436 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
f98bbd83
BM
437 } else if (function == 0x80000001 && reg == R_ECX) {
438 /*
439 * It's safe to enable TOPOEXT even if it's not returned by
440 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
441 * us to keep CPU models including TOPOEXT runnable on older kernels.
442 */
443 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
444 } else if (function == 0x80000001 && reg == R_EDX) {
445 /* On Intel, kvm returns cpuid according to the Intel spec,
446 * so add missing bits according to the AMD spec:
447 */
448 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
449 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
450 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
451 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
452 * be enabled without the in-kernel irqchip
453 */
454 if (!kvm_irqchip_in_kernel()) {
455 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
456 }
c1bb5418
DW
457 if (kvm_irqchip_is_split()) {
458 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
459 }
be777326 460 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 461 ret |= 1U << KVM_HINTS_REALTIME;
b9bec74b 462 }
0c31b744
GC
463
464 return ret;
bb0300dc 465}
bb0300dc 466
ede146c2 467uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
468{
469 struct {
470 struct kvm_msrs info;
471 struct kvm_msr_entry entries[1];
a1834d97 472 } msr_data = {};
20a78b02
PB
473 uint64_t value;
474 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
475
476 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
477 return 0;
478 }
479
480 /* Check if requested MSR is supported feature MSR */
481 int i;
482 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
483 if (kvm_feature_msrs->indices[i] == index) {
484 break;
485 }
486 if (i == kvm_feature_msrs->nmsrs) {
487 return 0; /* if the feature MSR is not supported, simply return 0 */
488 }
489
490 msr_data.info.nmsrs = 1;
491 msr_data.entries[0].index = index;
492
493 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
494 if (ret != 1) {
495 error_report("KVM get MSR (index=0x%x) feature failed, %s",
496 index, strerror(-ret));
497 exit(1);
498 }
499
20a78b02
PB
500 value = msr_data.entries[0].data;
501 switch (index) {
502 case MSR_IA32_VMX_PROCBASED_CTLS2:
4a910e1f
VK
503 if (!has_msr_vmx_procbased_ctls2) {
504 /* KVM forgot to add these bits for some time, do this ourselves. */
505 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
506 CPUID_XSAVE_XSAVES) {
507 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
508 }
509 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
510 CPUID_EXT_RDRAND) {
511 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
512 }
513 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
514 CPUID_7_0_EBX_INVPCID) {
515 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
516 }
517 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
518 CPUID_7_0_EBX_RDSEED) {
519 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
520 }
521 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
522 CPUID_EXT2_RDTSCP) {
523 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
524 }
048c9516
PB
525 }
526 /* fall through */
20a78b02
PB
527 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
528 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
529 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
530 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
531 /*
532 * Return true for bits that can be one, but do not have to be one.
533 * The SDM tells us which bits could have a "must be one" setting,
534 * so we can do the opposite transformation in make_vmx_msr_value.
535 */
536 must_be_one = (uint32_t)value;
537 can_be_one = (uint32_t)(value >> 32);
538 return can_be_one & ~must_be_one;
539
540 default:
541 return value;
542 }
f57bceb6
RH
543}
544
e7701825
MT
545static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
546 int *max_banks)
547{
548 int r;
549
14a09518 550 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
551 if (r > 0) {
552 *max_banks = r;
553 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
554 }
555 return -ENOSYS;
556}
557
bee615d4 558static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 559{
87f8b626 560 CPUState *cs = CPU(cpu);
bee615d4 561 CPUX86State *env = &cpu->env;
c34d440a
JK
562 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
563 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
564 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 565 int flags = 0;
e7701825 566
c34d440a
JK
567 if (code == BUS_MCEERR_AR) {
568 status |= MCI_STATUS_AR | 0x134;
cb48748a 569 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
c34d440a
JK
570 } else {
571 status |= 0xc0;
572 mcg_status |= MCG_STATUS_RIPV;
419fb20a 573 }
87f8b626
AR
574
575 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
576 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
577 * guest kernel back into env->mcg_ext_ctl.
578 */
579 cpu_synchronize_state(cs);
580 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
581 mcg_status |= MCG_STATUS_LMCE;
582 flags = 0;
583 }
584
8c5cf3b6 585 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 586 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 587}
419fb20a 588
8efc4e51
ZP
589static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
590{
591 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
592
593 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
594 &mff);
595}
596
73284563 597static void hardware_memory_error(void *host_addr)
419fb20a 598{
8efc4e51 599 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
73284563 600 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
601 exit(1);
602}
603
2ae41db2 604void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 605{
20d695a9
AF
606 X86CPU *cpu = X86_CPU(c);
607 CPUX86State *env = &cpu->env;
419fb20a 608 ram_addr_t ram_addr;
a8170e5e 609 hwaddr paddr;
419fb20a 610
4d39892c
PB
611 /* If we get an action required MCE, it has been injected by KVM
612 * while the VM was running. An action optional MCE instead should
613 * be coming from the main thread, which qemu_init_sigbus identifies
614 * as the "early kill" thread.
615 */
a16fc07e 616 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 617
20e0ff59 618 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 619 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
620 if (ram_addr != RAM_ADDR_INVALID &&
621 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
622 kvm_hwpoison_page_add(ram_addr);
623 kvm_mce_inject(cpu, paddr, code);
73284563
MS
624
625 /*
626 * Use different logging severity based on error type.
627 * If there is additional MCE reporting on the hypervisor, QEMU VA
628 * could be another source to identify the PA and MCE details.
629 */
630 if (code == BUS_MCEERR_AR) {
631 error_report("Guest MCE Memory Error at QEMU addr %p and "
632 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
633 addr, paddr, "BUS_MCEERR_AR");
634 } else {
635 warn_report("Guest MCE Memory Error at QEMU addr %p and "
636 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
637 addr, paddr, "BUS_MCEERR_AO");
638 }
639
2ae41db2 640 return;
419fb20a 641 }
20e0ff59 642
73284563
MS
643 if (code == BUS_MCEERR_AO) {
644 warn_report("Hardware memory error at addr %p of type %s "
645 "for memory used by QEMU itself instead of guest system!",
646 addr, "BUS_MCEERR_AO");
647 }
419fb20a 648 }
20e0ff59
PB
649
650 if (code == BUS_MCEERR_AR) {
73284563 651 hardware_memory_error(addr);
20e0ff59
PB
652 }
653
8efc4e51
ZP
654 /* Hope we are lucky for AO MCE, just notify a event */
655 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
419fb20a
JK
656}
657
fd13f23b
LA
658static void kvm_reset_exception(CPUX86State *env)
659{
660 env->exception_nr = -1;
661 env->exception_pending = 0;
662 env->exception_injected = 0;
663 env->exception_has_payload = false;
664 env->exception_payload = 0;
665}
666
667static void kvm_queue_exception(CPUX86State *env,
668 int32_t exception_nr,
669 uint8_t exception_has_payload,
670 uint64_t exception_payload)
671{
672 assert(env->exception_nr == -1);
673 assert(!env->exception_pending);
674 assert(!env->exception_injected);
675 assert(!env->exception_has_payload);
676
677 env->exception_nr = exception_nr;
678
679 if (has_exception_payload) {
680 env->exception_pending = 1;
681
682 env->exception_has_payload = exception_has_payload;
683 env->exception_payload = exception_payload;
684 } else {
685 env->exception_injected = 1;
686
687 if (exception_nr == EXCP01_DB) {
688 assert(exception_has_payload);
689 env->dr[6] = exception_payload;
690 } else if (exception_nr == EXCP0E_PAGE) {
691 assert(exception_has_payload);
692 env->cr[2] = exception_payload;
693 } else {
694 assert(!exception_has_payload);
695 }
696 }
697}
698
1bc22652 699static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 700{
1bc22652
AF
701 CPUX86State *env = &cpu->env;
702
fd13f23b 703 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
704 unsigned int bank, bank_num = env->mcg_cap & 0xff;
705 struct kvm_x86_mce mce;
706
fd13f23b 707 kvm_reset_exception(env);
ab443475
JK
708
709 /*
710 * There must be at least one bank in use if an MCE is pending.
711 * Find it and use its values for the event injection.
712 */
713 for (bank = 0; bank < bank_num; bank++) {
714 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
715 break;
716 }
717 }
718 assert(bank < bank_num);
719
720 mce.bank = bank;
721 mce.status = env->mce_banks[bank * 4 + 1];
722 mce.mcg_status = env->mcg_status;
723 mce.addr = env->mce_banks[bank * 4 + 2];
724 mce.misc = env->mce_banks[bank * 4 + 3];
725
1bc22652 726 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 727 }
ab443475
JK
728 return 0;
729}
730
538f0497 731static void cpu_update_state(void *opaque, bool running, RunState state)
b8cc45d6 732{
317ac620 733 CPUX86State *env = opaque;
b8cc45d6
GC
734
735 if (running) {
736 env->tsc_valid = false;
737 }
738}
739
83b17af5 740unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 741{
83b17af5 742 X86CPU *cpu = X86_CPU(cs);
7e72a45c 743 return cpu->apic_id;
b164e48e
EH
744}
745
92067bf4
IM
746#ifndef KVM_CPUID_SIGNATURE_NEXT
747#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
748#endif
749
92067bf4
IM
750static bool hyperv_enabled(X86CPU *cpu)
751{
5aa9ef5e 752 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
f701c082 753 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
e48ddcc6 754 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
755}
756
74aaddc6
MT
757/*
758 * Check whether target_freq is within conservative
759 * ntp correctable bounds (250ppm) of freq
760 */
761static inline bool freq_within_bounds(int freq, int target_freq)
762{
763 int max_freq = freq + (freq * 250 / 1000000);
764 int min_freq = freq - (freq * 250 / 1000000);
765
766 if (target_freq >= min_freq && target_freq <= max_freq) {
767 return true;
768 }
769
770 return false;
771}
772
5031283d
HZ
773static int kvm_arch_set_tsc_khz(CPUState *cs)
774{
775 X86CPU *cpu = X86_CPU(cs);
776 CPUX86State *env = &cpu->env;
74aaddc6
MT
777 int r, cur_freq;
778 bool set_ioctl = false;
5031283d
HZ
779
780 if (!env->tsc_khz) {
781 return 0;
782 }
783
74aaddc6
MT
784 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
785 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
786
787 /*
788 * If TSC scaling is supported, attempt to set TSC frequency.
789 */
790 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
791 set_ioctl = true;
792 }
793
794 /*
795 * If desired TSC frequency is within bounds of NTP correction,
796 * attempt to set TSC frequency.
797 */
798 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
799 set_ioctl = true;
800 }
801
802 r = set_ioctl ?
5031283d
HZ
803 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
804 -ENOTSUP;
74aaddc6 805
5031283d
HZ
806 if (r < 0) {
807 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
808 * TSC frequency doesn't match the one we want.
809 */
74aaddc6
MT
810 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
811 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
812 -ENOTSUP;
5031283d 813 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
814 warn_report("TSC frequency mismatch between "
815 "VM (%" PRId64 " kHz) and host (%d kHz), "
816 "and TSC scaling unavailable",
817 env->tsc_khz, cur_freq);
5031283d
HZ
818 return r;
819 }
820 }
821
822 return 0;
823}
824
4bb95b82
LP
825static bool tsc_is_stable_and_known(CPUX86State *env)
826{
827 if (!env->tsc_khz) {
828 return false;
829 }
830 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
831 || env->user_tsc_khz;
832}
833
7110fe56
VK
834#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
835
6760bd20
VK
836static struct {
837 const char *desc;
838 struct {
061817a7
VK
839 uint32_t func;
840 int reg;
6760bd20
VK
841 uint32_t bits;
842 } flags[2];
c6861930 843 uint64_t dependencies;
6760bd20
VK
844} kvm_hyperv_properties[] = {
845 [HYPERV_FEAT_RELAXED] = {
846 .desc = "relaxed timing (hv-relaxed)",
847 .flags = {
061817a7 848 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
849 .bits = HV_RELAXED_TIMING_RECOMMENDED}
850 }
851 },
852 [HYPERV_FEAT_VAPIC] = {
853 .desc = "virtual APIC (hv-vapic)",
854 .flags = {
061817a7 855 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
05071629 856 .bits = HV_APIC_ACCESS_AVAILABLE}
6760bd20
VK
857 }
858 },
859 [HYPERV_FEAT_TIME] = {
860 .desc = "clocksources (hv-time)",
861 .flags = {
061817a7 862 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
b26f68c3 863 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
6760bd20
VK
864 }
865 },
866 [HYPERV_FEAT_CRASH] = {
867 .desc = "crash MSRs (hv-crash)",
868 .flags = {
061817a7 869 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
870 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
871 }
872 },
873 [HYPERV_FEAT_RESET] = {
874 .desc = "reset MSR (hv-reset)",
875 .flags = {
061817a7 876 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
877 .bits = HV_RESET_AVAILABLE}
878 }
879 },
880 [HYPERV_FEAT_VPINDEX] = {
881 .desc = "VP_INDEX MSR (hv-vpindex)",
882 .flags = {
061817a7 883 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
884 .bits = HV_VP_INDEX_AVAILABLE}
885 }
886 },
887 [HYPERV_FEAT_RUNTIME] = {
888 .desc = "VP_RUNTIME MSR (hv-runtime)",
889 .flags = {
061817a7 890 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
891 .bits = HV_VP_RUNTIME_AVAILABLE}
892 }
893 },
894 [HYPERV_FEAT_SYNIC] = {
895 .desc = "synthetic interrupt controller (hv-synic)",
896 .flags = {
061817a7 897 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
898 .bits = HV_SYNIC_AVAILABLE}
899 }
900 },
901 [HYPERV_FEAT_STIMER] = {
902 .desc = "synthetic timers (hv-stimer)",
903 .flags = {
061817a7 904 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 905 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
906 },
907 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
908 },
909 [HYPERV_FEAT_FREQUENCIES] = {
910 .desc = "frequency MSRs (hv-frequencies)",
911 .flags = {
061817a7 912 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 913 .bits = HV_ACCESS_FREQUENCY_MSRS},
061817a7 914 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
915 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
916 }
917 },
918 [HYPERV_FEAT_REENLIGHTENMENT] = {
919 .desc = "reenlightenment MSRs (hv-reenlightenment)",
920 .flags = {
061817a7 921 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
922 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
923 }
924 },
925 [HYPERV_FEAT_TLBFLUSH] = {
926 .desc = "paravirtualized TLB flush (hv-tlbflush)",
927 .flags = {
061817a7 928 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
929 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
930 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
931 },
932 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
933 },
934 [HYPERV_FEAT_EVMCS] = {
935 .desc = "enlightened VMCS (hv-evmcs)",
936 .flags = {
061817a7 937 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20 938 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
939 },
940 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
941 },
942 [HYPERV_FEAT_IPI] = {
943 .desc = "paravirtualized IPI (hv-ipi)",
944 .flags = {
061817a7 945 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
946 .bits = HV_CLUSTER_IPI_RECOMMENDED |
947 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
948 },
949 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 950 },
128531d9
VK
951 [HYPERV_FEAT_STIMER_DIRECT] = {
952 .desc = "direct mode synthetic timers (hv-stimer-direct)",
953 .flags = {
061817a7 954 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
128531d9
VK
955 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
956 },
957 .dependencies = BIT(HYPERV_FEAT_STIMER)
958 },
e1f9a8e8
VK
959 [HYPERV_FEAT_AVIC] = {
960 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
961 .flags = {
962 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
963 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
964 }
965 },
d8701185 966#ifdef CONFIG_SYNDBG
73d24074
JD
967 [HYPERV_FEAT_SYNDBG] = {
968 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
969 .flags = {
970 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
971 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
972 },
973 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
974 },
d8701185 975#endif
869840d2
VK
976 [HYPERV_FEAT_MSR_BITMAP] = {
977 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
978 .flags = {
979 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
980 .bits = HV_NESTED_MSR_BITMAP}
981 }
982 },
9411e8b6
VK
983 [HYPERV_FEAT_XMM_INPUT] = {
984 .desc = "XMM fast hypercall input (hv-xmm-input)",
985 .flags = {
986 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
987 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
988 }
989 },
aa6bb5fa
VK
990 [HYPERV_FEAT_TLBFLUSH_EXT] = {
991 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
992 .flags = {
993 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
994 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
995 },
996 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
997 },
6760bd20
VK
998};
999
2e905438
VK
1000static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1001 bool do_sys_ioctl)
6760bd20
VK
1002{
1003 struct kvm_cpuid2 *cpuid;
1004 int r, size;
1005
1006 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1007 cpuid = g_malloc0(size);
1008 cpuid->nent = max;
1009
2e905438
VK
1010 if (do_sys_ioctl) {
1011 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1012 } else {
1013 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1014 }
6760bd20
VK
1015 if (r == 0 && cpuid->nent >= max) {
1016 r = -E2BIG;
1017 }
1018 if (r < 0) {
1019 if (r == -E2BIG) {
1020 g_free(cpuid);
1021 return NULL;
1022 } else {
1023 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1024 strerror(-r));
1025 exit(1);
1026 }
1027 }
1028 return cpuid;
1029}
1030
1031/*
1032 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1033 * for all entries.
1034 */
1035static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1036{
1037 struct kvm_cpuid2 *cpuid;
73d24074
JD
1038 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1039 int max = 11;
decb4f20 1040 int i;
2e905438
VK
1041 bool do_sys_ioctl;
1042
1043 do_sys_ioctl =
1044 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
6760bd20 1045
e4adb09f
VK
1046 /*
1047 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1048 * unsupported, kvm_hyperv_expand_features() checks for that.
1049 */
1050 assert(do_sys_ioctl || cs->kvm_state);
1051
6760bd20
VK
1052 /*
1053 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1054 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1055 * it and re-trying until we succeed.
1056 */
2e905438 1057 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
6760bd20
VK
1058 max++;
1059 }
decb4f20
VK
1060
1061 /*
1062 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1063 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1064 * information early, just check for the capability and set the bit
1065 * manually.
1066 */
2e905438 1067 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
decb4f20
VK
1068 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1069 for (i = 0; i < cpuid->nent; i++) {
1070 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1071 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1072 }
1073 }
1074 }
1075
6760bd20
VK
1076 return cpuid;
1077}
1078
1079/*
1080 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1081 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1082 */
1083static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
1084{
1085 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
1086 struct kvm_cpuid2 *cpuid;
1087 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1088
1089 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1090 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1091 cpuid->nent = 2;
1092
1093 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1094 entry_feat = &cpuid->entries[0];
1095 entry_feat->function = HV_CPUID_FEATURES;
1096
1097 entry_recomm = &cpuid->entries[1];
1098 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1099 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1100
1101 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1102 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1103 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1104 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1105 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1106 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1107 }
c35bd19a 1108
6760bd20
VK
1109 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1110 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1111 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1112 }
6760bd20
VK
1113
1114 if (has_msr_hv_frequencies) {
1115 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1116 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1117 }
6760bd20
VK
1118
1119 if (has_msr_hv_crash) {
1120 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1121 }
6760bd20
VK
1122
1123 if (has_msr_hv_reenlightenment) {
1124 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1125 }
6760bd20
VK
1126
1127 if (has_msr_hv_reset) {
1128 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1129 }
6760bd20
VK
1130
1131 if (has_msr_hv_vpindex) {
1132 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1133 }
6760bd20
VK
1134
1135 if (has_msr_hv_runtime) {
1136 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1137 }
6760bd20
VK
1138
1139 if (has_msr_hv_synic) {
1140 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1141 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1142
1143 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1144 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1145 }
c35bd19a 1146 }
6760bd20
VK
1147
1148 if (has_msr_hv_stimer) {
1149 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1150 }
9b4cf107 1151
73d24074
JD
1152 if (has_msr_hv_syndbg_options) {
1153 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1154 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1155 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1156 }
1157
6760bd20
VK
1158 if (kvm_check_extension(cs->kvm_state,
1159 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1160 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1161 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1162 }
c35bd19a 1163
6760bd20
VK
1164 if (kvm_check_extension(cs->kvm_state,
1165 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1166 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1167 }
6760bd20
VK
1168
1169 if (kvm_check_extension(cs->kvm_state,
1170 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1171 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1172 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1173 }
6760bd20
VK
1174
1175 return cpuid;
1176}
1177
a8439be6 1178static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
e1a66a1e
VK
1179{
1180 struct kvm_cpuid_entry2 *entry;
a8439be6
VK
1181 struct kvm_cpuid2 *cpuid;
1182
1183 if (hv_cpuid_cache) {
1184 cpuid = hv_cpuid_cache;
1185 } else {
1186 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1187 cpuid = get_supported_hv_cpuid(cs);
1188 } else {
e4adb09f
VK
1189 /*
1190 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1191 * before KVM context is created but this is only done when
1192 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1193 * KVM_CAP_HYPERV_CPUID.
1194 */
1195 assert(cs->kvm_state);
1196
a8439be6
VK
1197 cpuid = get_supported_hv_cpuid_legacy(cs);
1198 }
1199 hv_cpuid_cache = cpuid;
1200 }
1201
1202 if (!cpuid) {
1203 return 0;
1204 }
e1a66a1e
VK
1205
1206 entry = cpuid_find_entry(cpuid, func, 0);
1207 if (!entry) {
1208 return 0;
1209 }
1210
1211 return cpuid_entry_get_reg(entry, reg);
1212}
1213
a8439be6 1214static bool hyperv_feature_supported(CPUState *cs, int feature)
7682f857 1215{
061817a7
VK
1216 uint32_t func, bits;
1217 int i, reg;
7682f857
VK
1218
1219 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
061817a7
VK
1220
1221 func = kvm_hyperv_properties[feature].flags[i].func;
1222 reg = kvm_hyperv_properties[feature].flags[i].reg;
7682f857
VK
1223 bits = kvm_hyperv_properties[feature].flags[i].bits;
1224
061817a7 1225 if (!func) {
7682f857
VK
1226 continue;
1227 }
1228
a8439be6 1229 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
7682f857
VK
1230 return false;
1231 }
1232 }
1233
1234 return true;
1235}
1236
5ce48fa3
VK
1237/* Checks that all feature dependencies are enabled */
1238static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
6760bd20 1239{
c6861930 1240 uint64_t deps;
7682f857 1241 int dep_feat;
6760bd20 1242
c6861930 1243 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1244 while (deps) {
1245 dep_feat = ctz64(deps);
c6861930 1246 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
f4a62495
VK
1247 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1248 kvm_hyperv_properties[feature].desc,
1249 kvm_hyperv_properties[dep_feat].desc);
5ce48fa3 1250 return false;
c6861930 1251 }
9dc83cd9 1252 deps &= ~(1ull << dep_feat);
c6861930
VK
1253 }
1254
5ce48fa3 1255 return true;
6760bd20
VK
1256}
1257
061817a7 1258static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
c830015e
VK
1259{
1260 X86CPU *cpu = X86_CPU(cs);
1261 uint32_t r = 0;
1262 int i, j;
1263
1264 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1265 if (!hyperv_feat_enabled(cpu, i)) {
1266 continue;
1267 }
1268
1269 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
061817a7
VK
1270 if (kvm_hyperv_properties[i].flags[j].func != func) {
1271 continue;
1272 }
1273 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
c830015e
VK
1274 continue;
1275 }
1276
1277 r |= kvm_hyperv_properties[i].flags[j].bits;
1278 }
1279 }
1280
7110fe56
VK
1281 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1282 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1283 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1284 r |= DEFAULT_EVMCS_VERSION;
1285 }
1286 }
1287
c830015e
VK
1288 return r;
1289}
1290
2344d22e 1291/*
f6e01ab5
VK
1292 * Expand Hyper-V CPU features. In partucular, check that all the requested
1293 * features are supported by the host and the sanity of the configuration
1294 * (that all the required dependencies are included). Also, this takes care
1295 * of 'hv_passthrough' mode and fills the environment with all supported
1296 * Hyper-V features.
2344d22e 1297 */
071ce4b0 1298bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
6760bd20 1299{
071ce4b0 1300 CPUState *cs = CPU(cpu);
5ce48fa3
VK
1301 Error *local_err = NULL;
1302 int feat;
6760bd20 1303
2344d22e 1304 if (!hyperv_enabled(cpu))
d7652b77 1305 return true;
2344d22e 1306
071ce4b0
VK
1307 /*
1308 * When kvm_hyperv_expand_features is called at CPU feature expansion
1309 * time per-CPU kvm_state is not available yet so we can only proceed
1310 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1311 */
1312 if (!cs->kvm_state &&
1313 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1314 return true;
1315
e48ddcc6 1316 if (cpu->hyperv_passthrough) {
e1a66a1e 1317 cpu->hyperv_vendor_id[0] =
a8439be6 1318 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
e1a66a1e 1319 cpu->hyperv_vendor_id[1] =
a8439be6 1320 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
e1a66a1e 1321 cpu->hyperv_vendor_id[2] =
a8439be6 1322 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
e1a66a1e
VK
1323 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1324 sizeof(cpu->hyperv_vendor_id) + 1);
1325 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1326 sizeof(cpu->hyperv_vendor_id));
1327 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1328
1329 cpu->hyperv_interface_id[0] =
a8439be6 1330 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
e1a66a1e 1331 cpu->hyperv_interface_id[1] =
a8439be6 1332 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
e1a66a1e 1333 cpu->hyperv_interface_id[2] =
a8439be6 1334 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
e1a66a1e 1335 cpu->hyperv_interface_id[3] =
a8439be6 1336 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
e1a66a1e 1337
af7228b8 1338 cpu->hyperv_ver_id_build =
a8439be6 1339 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
af7228b8
VK
1340 cpu->hyperv_ver_id_major =
1341 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1342 cpu->hyperv_ver_id_minor =
1343 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1344 cpu->hyperv_ver_id_sp =
a8439be6 1345 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
af7228b8
VK
1346 cpu->hyperv_ver_id_sb =
1347 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1348 cpu->hyperv_ver_id_sn =
1349 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
e1a66a1e 1350
a8439be6 1351 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
e1a66a1e
VK
1352 R_EAX);
1353 cpu->hyperv_limits[0] =
a8439be6 1354 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
e1a66a1e 1355 cpu->hyperv_limits[1] =
a8439be6 1356 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
e1a66a1e 1357 cpu->hyperv_limits[2] =
a8439be6 1358 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
e1a66a1e
VK
1359
1360 cpu->hyperv_spinlock_attempts =
a8439be6 1361 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
30d6ff66 1362
5ce48fa3
VK
1363 /*
1364 * Mark feature as enabled in 'cpu->hyperv_features' as
1365 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1366 */
1367 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1368 if (hyperv_feature_supported(cs, feat)) {
1369 cpu->hyperv_features |= BIT(feat);
1370 }
1371 }
1372 } else {
1373 /* Check features availability and dependencies */
1374 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1375 /* If the feature was not requested skip it. */
1376 if (!hyperv_feat_enabled(cpu, feat)) {
1377 continue;
1378 }
1379
1380 /* Check if the feature is supported by KVM */
1381 if (!hyperv_feature_supported(cs, feat)) {
1382 error_setg(errp, "Hyper-V %s is not supported by kernel",
1383 kvm_hyperv_properties[feat].desc);
1384 return false;
1385 }
1386
1387 /* Check dependencies */
1388 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1389 error_propagate(errp, local_err);
1390 return false;
1391 }
1392 }
f4a62495 1393 }
6760bd20 1394
c6861930 1395 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1396 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1397 !cpu->hyperv_synic_kvm_only &&
1398 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
f4a62495
VK
1399 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1400 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1401 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
d7652b77 1402 return false;
6760bd20 1403 }
d7652b77
VK
1404
1405 return true;
f6e01ab5
VK
1406}
1407
1408/*
1409 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1410 */
1411static int hyperv_fill_cpuids(CPUState *cs,
1412 struct kvm_cpuid_entry2 *cpuid_ent)
1413{
1414 X86CPU *cpu = X86_CPU(cs);
1415 struct kvm_cpuid_entry2 *c;
73d24074
JD
1416 uint32_t signature[3];
1417 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
7110fe56
VK
1418 uint32_t nested_eax =
1419 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
73d24074 1420
7110fe56
VK
1421 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1422 HV_CPUID_IMPLEMENT_LIMITS;
73d24074
JD
1423
1424 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1425 max_cpuid_leaf =
1426 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1427 }
f6e01ab5 1428
2344d22e
VK
1429 c = &cpuid_ent[cpuid_i++];
1430 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
73d24074 1431 c->eax = max_cpuid_leaf;
08856771
VK
1432 c->ebx = cpu->hyperv_vendor_id[0];
1433 c->ecx = cpu->hyperv_vendor_id[1];
1434 c->edx = cpu->hyperv_vendor_id[2];
2344d22e
VK
1435
1436 c = &cpuid_ent[cpuid_i++];
1437 c->function = HV_CPUID_INTERFACE;
735db465
VK
1438 c->eax = cpu->hyperv_interface_id[0];
1439 c->ebx = cpu->hyperv_interface_id[1];
1440 c->ecx = cpu->hyperv_interface_id[2];
1441 c->edx = cpu->hyperv_interface_id[3];
2344d22e
VK
1442
1443 c = &cpuid_ent[cpuid_i++];
1444 c->function = HV_CPUID_VERSION;
af7228b8
VK
1445 c->eax = cpu->hyperv_ver_id_build;
1446 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1447 cpu->hyperv_ver_id_minor;
1448 c->ecx = cpu->hyperv_ver_id_sp;
1449 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1450 (cpu->hyperv_ver_id_sn & 0xffffff);
2344d22e
VK
1451
1452 c = &cpuid_ent[cpuid_i++];
1453 c->function = HV_CPUID_FEATURES;
061817a7
VK
1454 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1455 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1456 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
c830015e 1457
b26f68c3
VK
1458 /* Unconditionally required with any Hyper-V enlightenment */
1459 c->eax |= HV_HYPERCALL_AVAILABLE;
1460
cce087f6
VK
1461 /* SynIC and Vmbus devices require messages/signals hypercalls */
1462 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1463 !cpu->hyperv_synic_kvm_only) {
1464 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1465 }
1466
05071629 1467
c830015e
VK
1468 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1469 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
2344d22e
VK
1470
1471 c = &cpuid_ent[cpuid_i++];
1472 c->function = HV_CPUID_ENLIGHTMENT_INFO;
061817a7 1473 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
2344d22e
VK
1474 c->ebx = cpu->hyperv_spinlock_attempts;
1475
e1f9a8e8
VK
1476 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1477 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
05071629
VK
1478 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1479 }
1480
c830015e
VK
1481 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1482 c->eax |= HV_NO_NONARCH_CORESHARING;
1483 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
a8439be6 1484 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
e1a66a1e 1485 HV_NO_NONARCH_CORESHARING;
c830015e
VK
1486 }
1487
2344d22e
VK
1488 c = &cpuid_ent[cpuid_i++];
1489 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1490 c->eax = cpu->hv_max_vps;
23eb5d03
VK
1491 c->ebx = cpu->hyperv_limits[0];
1492 c->ecx = cpu->hyperv_limits[1];
1493 c->edx = cpu->hyperv_limits[2];
2344d22e 1494
7110fe56 1495 if (nested_eax) {
dc7d6caf 1496 uint32_t function;
2344d22e
VK
1497
1498 /* Create zeroed 0x40000006..0x40000009 leaves */
1499 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1500 function < HV_CPUID_NESTED_FEATURES; function++) {
1501 c = &cpuid_ent[cpuid_i++];
1502 c->function = function;
1503 }
1504
1505 c = &cpuid_ent[cpuid_i++];
1506 c->function = HV_CPUID_NESTED_FEATURES;
7110fe56 1507 c->eax = nested_eax;
2344d22e 1508 }
6760bd20 1509
73d24074
JD
1510 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1511 c = &cpuid_ent[cpuid_i++];
1512 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1513 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1514 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1515 memcpy(signature, "Microsoft VS", 12);
1516 c->eax = 0;
1517 c->ebx = signature[0];
1518 c->ecx = signature[1];
1519 c->edx = signature[2];
1520
1521 c = &cpuid_ent[cpuid_i++];
1522 c->function = HV_CPUID_SYNDBG_INTERFACE;
1523 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1524 c->eax = signature[0];
1525 c->ebx = 0;
1526 c->ecx = 0;
1527 c->edx = 0;
1528
1529 c = &cpuid_ent[cpuid_i++];
1530 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1531 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1532 c->ebx = 0;
1533 c->ecx = 0;
1534 c->edx = 0;
1535 }
1536
a8439be6 1537 return cpuid_i;
c35bd19a
EY
1538}
1539
e48ddcc6 1540static Error *hv_passthrough_mig_blocker;
30d6ff66 1541static Error *hv_no_nonarch_cs_mig_blocker;
e48ddcc6 1542
07454e2e
VK
1543/* Checks that the exposed eVMCS version range is supported by KVM */
1544static bool evmcs_version_supported(uint16_t evmcs_version,
1545 uint16_t supported_evmcs_version)
1546{
1547 uint8_t min_version = evmcs_version & 0xff;
1548 uint8_t max_version = evmcs_version >> 8;
1549 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1550 uint8_t max_supported_version = supported_evmcs_version >> 8;
1551
1552 return (min_version >= min_supported_version) &&
1553 (max_version <= max_supported_version);
1554}
1555
e9688fab
RK
1556static int hyperv_init_vcpu(X86CPU *cpu)
1557{
729ce7e1 1558 CPUState *cs = CPU(cpu);
e48ddcc6 1559 Error *local_err = NULL;
729ce7e1
RK
1560 int ret;
1561
e48ddcc6
VK
1562 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1563 error_setg(&hv_passthrough_mig_blocker,
1564 "'hv-passthrough' CPU flag prevents migration, use explicit"
1565 " set of hv-* flags instead");
1566 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
436c831a 1567 if (ret < 0) {
e48ddcc6 1568 error_report_err(local_err);
e48ddcc6
VK
1569 return ret;
1570 }
1571 }
1572
30d6ff66
VK
1573 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1574 hv_no_nonarch_cs_mig_blocker == NULL) {
1575 error_setg(&hv_no_nonarch_cs_mig_blocker,
1576 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1577 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1578 " make sure SMT is disabled and/or that vCPUs are properly"
1579 " pinned)");
1580 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
436c831a 1581 if (ret < 0) {
30d6ff66 1582 error_report_err(local_err);
30d6ff66
VK
1583 return ret;
1584 }
1585 }
1586
2d384d7c 1587 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1588 /*
1589 * the kernel doesn't support setting vp_index; assert that its value
1590 * is in sync
1591 */
5a778a5f 1592 uint64_t value;
e9688fab 1593
5a778a5f 1594 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
e9688fab
RK
1595 if (ret < 0) {
1596 return ret;
1597 }
e9688fab 1598
5a778a5f 1599 if (value != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1600 error_report("kernel's vp_index != QEMU's vp_index");
1601 return -ENXIO;
1602 }
1603 }
1604
2d384d7c 1605 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1606 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1607 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1608 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1609 if (ret < 0) {
1610 error_report("failed to turn on HyperV SynIC in KVM: %s",
1611 strerror(-ret));
1612 return ret;
1613 }
606c34bf 1614
9b4cf107
RK
1615 if (!cpu->hyperv_synic_kvm_only) {
1616 ret = hyperv_x86_synic_add(cpu);
1617 if (ret < 0) {
1618 error_report("failed to create HyperV SynIC: %s",
1619 strerror(-ret));
1620 return ret;
1621 }
606c34bf 1622 }
729ce7e1
RK
1623 }
1624
decb4f20 1625 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
07454e2e
VK
1626 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1627 uint16_t supported_evmcs_version;
decb4f20
VK
1628
1629 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
07454e2e 1630 (uintptr_t)&supported_evmcs_version);
decb4f20 1631
07454e2e
VK
1632 /*
1633 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1634 * option sets. Note: we hardcode the maximum supported eVMCS version
1635 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1636 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1637 * to be added.
1638 */
decb4f20 1639 if (ret < 0) {
07454e2e
VK
1640 error_report("Hyper-V %s is not supported by kernel",
1641 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
decb4f20
VK
1642 return ret;
1643 }
1644
07454e2e
VK
1645 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1646 error_report("eVMCS version range [%d..%d] is not supported by "
1647 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1648 evmcs_version >> 8, supported_evmcs_version & 0xff,
1649 supported_evmcs_version >> 8);
1650 return -ENOTSUP;
1651 }
decb4f20
VK
1652 }
1653
70367f09
VK
1654 if (cpu->hyperv_enforce_cpuid) {
1655 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1656 if (ret < 0) {
1657 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1658 strerror(-ret));
1659 return ret;
1660 }
1661 }
1662
e9688fab
RK
1663 return 0;
1664}
1665
68bfd0ad
MT
1666static Error *invtsc_mig_blocker;
1667
f8bb0565 1668#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1669
e56dd3c7
JL
1670static void kvm_init_xsave(CPUX86State *env)
1671{
1672 if (has_xsave2) {
1673 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1674 } else if (has_xsave) {
1675 env->xsave_buf_len = sizeof(struct kvm_xsave);
1676 } else {
1677 return;
1678 }
1679
1680 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1681 memset(env->xsave_buf, 0, env->xsave_buf_len);
1682 /*
1683 * The allocated storage must be large enough for all of the
1684 * possible XSAVE state components.
1685 */
1686 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1687 env->xsave_buf_len);
1688}
1689
20d695a9 1690int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1691{
1692 struct {
486bd5a2 1693 struct kvm_cpuid2 cpuid;
f8bb0565 1694 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1695 } cpuid_data;
1696 /*
1697 * The kernel defines these structs with padding fields so there
1698 * should be no extra padding in our cpuid_data struct.
1699 */
1700 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1701 sizeof(struct kvm_cpuid2) +
1702 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1703
20d695a9
AF
1704 X86CPU *cpu = X86_CPU(cs);
1705 CPUX86State *env = &cpu->env;
486bd5a2 1706 uint32_t limit, i, j, cpuid_i;
a33609ca 1707 uint32_t unused;
bb0300dc 1708 struct kvm_cpuid_entry2 *c;
bb0300dc 1709 uint32_t signature[3];
234cc647 1710 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1711 int max_nested_state_len;
e7429073 1712 int r;
fe44dc91 1713 Error *local_err = NULL;
05330448 1714
ef4cbe14
SW
1715 memset(&cpuid_data, 0, sizeof(cpuid_data));
1716
05330448
AL
1717 cpuid_i = 0;
1718
e56dd3c7
JL
1719 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1720
ddb98b5a
LP
1721 r = kvm_arch_set_tsc_khz(cs);
1722 if (r < 0) {
6b2341ee 1723 return r;
ddb98b5a
LP
1724 }
1725
1726 /* vcpu's TSC frequency is either specified by user, or following
1727 * the value used by KVM if the former is not present. In the
1728 * latter case, we query it from KVM and record in env->tsc_khz,
1729 * so that vcpu's TSC frequency can be migrated later via this field.
1730 */
1731 if (!env->tsc_khz) {
1732 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1733 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1734 -ENOTSUP;
1735 if (r > 0) {
1736 env->tsc_khz = r;
1737 }
1738 }
1739
73b994f6
LA
1740 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1741
071ce4b0
VK
1742 /*
1743 * kvm_hyperv_expand_features() is called here for the second time in case
1744 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1745 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1746 * check which Hyper-V enlightenments are supported and which are not, we
1747 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1748 * behavior is preserved.
1749 */
1750 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
f4a62495
VK
1751 error_report_err(local_err);
1752 return -ENOSYS;
f6e01ab5
VK
1753 }
1754
1755 if (hyperv_enabled(cpu)) {
decb4f20
VK
1756 r = hyperv_init_vcpu(cpu);
1757 if (r) {
1758 return r;
1759 }
1760
f6e01ab5 1761 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
234cc647 1762 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1763 has_msr_hv_hypercall = true;
eab70139
VR
1764 }
1765
f522d2ac
AW
1766 if (cpu->expose_kvm) {
1767 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1768 c = &cpuid_data.entries[cpuid_i++];
1769 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1770 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1771 c->ebx = signature[0];
1772 c->ecx = signature[1];
1773 c->edx = signature[2];
234cc647 1774
f522d2ac
AW
1775 c = &cpuid_data.entries[cpuid_i++];
1776 c->function = KVM_CPUID_FEATURES | kvm_base;
1777 c->eax = env->features[FEAT_KVM];
be777326 1778 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1779 }
917367aa 1780
a33609ca 1781 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448 1782
988f7b8b
VK
1783 if (cpu->kvm_pv_enforce_cpuid) {
1784 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1785 if (r < 0) {
1786 fprintf(stderr,
1787 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1788 strerror(-r));
1789 abort();
1790 }
1791 }
1792
05330448 1793 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1794 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1795 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1796 abort();
1797 }
bb0300dc 1798 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1799
1800 switch (i) {
a36b1029
AL
1801 case 2: {
1802 /* Keep reading function 2 till all the input is received */
1803 int times;
1804
a36b1029 1805 c->function = i;
a33609ca
AL
1806 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1807 KVM_CPUID_FLAG_STATE_READ_NEXT;
1808 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1809 times = c->eax & 0xff;
a36b1029
AL
1810
1811 for (j = 1; j < times; ++j) {
f8bb0565
IM
1812 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1813 fprintf(stderr, "cpuid_data is full, no space for "
1814 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1815 abort();
1816 }
a33609ca 1817 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1818 c->function = i;
a33609ca
AL
1819 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1820 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1821 }
1822 break;
1823 }
a94e1428
LX
1824 case 0x1f:
1825 if (env->nr_dies < 2) {
1826 break;
1827 }
8821e214 1828 /* fallthrough */
486bd5a2
AL
1829 case 4:
1830 case 0xb:
1831 case 0xd:
1832 for (j = 0; ; j++) {
31e8c696
AP
1833 if (i == 0xd && j == 64) {
1834 break;
1835 }
a94e1428
LX
1836
1837 if (i == 0x1f && j == 64) {
1838 break;
1839 }
1840
486bd5a2
AL
1841 c->function = i;
1842 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1843 c->index = j;
a33609ca 1844 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1845
b9bec74b 1846 if (i == 4 && c->eax == 0) {
486bd5a2 1847 break;
b9bec74b
JK
1848 }
1849 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1850 break;
b9bec74b 1851 }
a94e1428
LX
1852 if (i == 0x1f && !(c->ecx & 0xff00)) {
1853 break;
1854 }
b9bec74b 1855 if (i == 0xd && c->eax == 0) {
31e8c696 1856 continue;
b9bec74b 1857 }
f8bb0565
IM
1858 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1859 fprintf(stderr, "cpuid_data is full, no space for "
1860 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1861 abort();
1862 }
a33609ca 1863 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1864 }
1865 break;
80db491d 1866 case 0x7:
b9edbade
SC
1867 case 0x12:
1868 for (j = 0; ; j++) {
1869 c->function = i;
1870 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1871 c->index = j;
1872 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1873
1874 if (j > 1 && (c->eax & 0xf) != 1) {
1875 break;
1876 }
1877
1878 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1879 fprintf(stderr, "cpuid_data is full, no space for "
1880 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1881 abort();
1882 }
1883 c = &cpuid_data.entries[cpuid_i++];
1884 }
1885 break;
f21a4817
JL
1886 case 0x14:
1887 case 0x1d:
1888 case 0x1e: {
e37a5c7f
CP
1889 uint32_t times;
1890
1891 c->function = i;
1892 c->index = 0;
1893 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1894 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1895 times = c->eax;
1896
1897 for (j = 1; j <= times; ++j) {
1898 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1899 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1900 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1901 abort();
1902 }
1903 c = &cpuid_data.entries[cpuid_i++];
1904 c->function = i;
1905 c->index = j;
1906 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1907 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1908 }
1909 break;
1910 }
486bd5a2 1911 default:
486bd5a2 1912 c->function = i;
a33609ca
AL
1913 c->flags = 0;
1914 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1915 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1916 /*
1917 * KVM already returns all zeroes if a CPUID entry is missing,
1918 * so we can omit it and avoid hitting KVM's 80-entry limit.
1919 */
1920 cpuid_i--;
1921 }
486bd5a2
AL
1922 break;
1923 }
05330448 1924 }
0d894367
PB
1925
1926 if (limit >= 0x0a) {
0b368a10 1927 uint32_t eax, edx;
0d894367 1928
0b368a10
JD
1929 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1930
1931 has_architectural_pmu_version = eax & 0xff;
1932 if (has_architectural_pmu_version > 0) {
1933 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1934
1935 /* Shouldn't be more than 32, since that's the number of bits
1936 * available in EBX to tell us _which_ counters are available.
1937 * Play it safe.
1938 */
0b368a10
JD
1939 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1940 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1941 }
1942
1943 if (has_architectural_pmu_version > 1) {
1944 num_architectural_pmu_fixed_counters = edx & 0x1f;
1945
1946 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1947 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1948 }
0d894367
PB
1949 }
1950 }
1951 }
1952
a33609ca 1953 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1954
1955 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1956 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1957 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1958 abort();
1959 }
bb0300dc 1960 c = &cpuid_data.entries[cpuid_i++];
05330448 1961
8f4202fb
BM
1962 switch (i) {
1963 case 0x8000001d:
1964 /* Query for all AMD cache information leaves */
1965 for (j = 0; ; j++) {
1966 c->function = i;
1967 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1968 c->index = j;
1969 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1970
1971 if (c->eax == 0) {
1972 break;
1973 }
1974 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1975 fprintf(stderr, "cpuid_data is full, no space for "
1976 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1977 abort();
1978 }
1979 c = &cpuid_data.entries[cpuid_i++];
1980 }
1981 break;
1982 default:
1983 c->function = i;
1984 c->flags = 0;
1985 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1986 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1987 /*
1988 * KVM already returns all zeroes if a CPUID entry is missing,
1989 * so we can omit it and avoid hitting KVM's 80-entry limit.
1990 */
1991 cpuid_i--;
1992 }
8f4202fb
BM
1993 break;
1994 }
05330448
AL
1995 }
1996
b3baa152
BW
1997 /* Call Centaur's CPUID instructions they are supported. */
1998 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1999 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2000
2001 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
2002 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2003 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2004 abort();
2005 }
b3baa152
BW
2006 c = &cpuid_data.entries[cpuid_i++];
2007
2008 c->function = i;
2009 c->flags = 0;
2010 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2011 }
2012 }
2013
05330448
AL
2014 cpuid_data.cpuid.nent = cpuid_i;
2015
e7701825 2016 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 2017 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 2018 (CPUID_MCE | CPUID_MCA)
a60f24b5 2019 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 2020 uint64_t mcg_cap, unsupported_caps;
e7701825 2021 int banks;
32a42024 2022 int ret;
e7701825 2023
a60f24b5 2024 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
2025 if (ret < 0) {
2026 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2027 return ret;
e7701825 2028 }
75d49497 2029
2590f15b 2030 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 2031 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 2032 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 2033 return -ENOTSUP;
75d49497 2034 }
49b69cbf 2035
5120901a
EH
2036 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2037 if (unsupported_caps) {
87f8b626
AR
2038 if (unsupported_caps & MCG_LMCE_P) {
2039 error_report("kvm: LMCE not supported");
2040 return -ENOTSUP;
2041 }
3dc6f869
AF
2042 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2043 unsupported_caps);
5120901a
EH
2044 }
2045
2590f15b
EH
2046 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2047 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
2048 if (ret < 0) {
2049 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2050 return ret;
2051 }
e7701825 2052 }
e7701825 2053
2a693142 2054 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
b8cc45d6 2055
df67696e
LJ
2056 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2057 if (c) {
2058 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2059 !!(c->ecx & CPUID_EXT_SMX);
2060 }
2061
a0483541
SC
2062 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2063 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2064 has_msr_feature_control = true;
2065 }
2066
87f8b626
AR
2067 if (env->mcg_cap & MCG_LMCE_P) {
2068 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2069 }
2070
d99569d9
EH
2071 if (!env->user_tsc_khz) {
2072 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2073 invtsc_mig_blocker == NULL) {
d99569d9
EH
2074 error_setg(&invtsc_mig_blocker,
2075 "State blocked by non-migratable CPU device"
2076 " (invtsc flag)");
fe44dc91 2077 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
436c831a 2078 if (r < 0) {
fe44dc91 2079 error_report_err(local_err);
79a197ab 2080 return r;
fe44dc91 2081 }
d99569d9 2082 }
68bfd0ad
MT
2083 }
2084
9954a158
PDJ
2085 if (cpu->vmware_cpuid_freq
2086 /* Guests depend on 0x40000000 to detect this feature, so only expose
2087 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2088 && cpu->expose_kvm
2089 && kvm_base == KVM_CPUID_SIGNATURE
2090 /* TSC clock must be stable and known for this feature. */
4bb95b82 2091 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
2092
2093 c = &cpuid_data.entries[cpuid_i++];
2094 c->function = KVM_CPUID_SIGNATURE | 0x10;
2095 c->eax = env->tsc_khz;
73b994f6 2096 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
9954a158
PDJ
2097 c->ecx = c->edx = 0;
2098
2099 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2100 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2101 }
2102
2103 cpuid_data.cpuid.nent = cpuid_i;
2104
2105 cpuid_data.cpuid.padding = 0;
2106 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2107 if (r) {
2108 goto fail;
2109 }
e56dd3c7 2110 kvm_init_xsave(env);
ebbfef2f
LA
2111
2112 max_nested_state_len = kvm_max_nested_state_length();
2113 if (max_nested_state_len > 0) {
2114 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 2115
b16c0e20 2116 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1e44f3ab 2117 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 2118
1e44f3ab
PB
2119 env->nested_state = g_malloc0(max_nested_state_len);
2120 env->nested_state->size = max_nested_state_len;
1e44f3ab 2121
b16c0e20 2122 if (cpu_has_vmx(env)) {
2654ace1
TL
2123 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2124 vmx_hdr = &env->nested_state->hdr.vmx;
2125 vmx_hdr->vmxon_pa = -1ull;
2126 vmx_hdr->vmcs12_pa = -1ull;
2127 } else {
2128 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
b16c0e20 2129 }
ebbfef2f
LA
2130 }
2131 }
2132
d71b62a1 2133 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 2134
273c515c
PB
2135 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2136 has_msr_tsc_aux = false;
2137 }
d1ae67f6 2138
420ae1fc
PB
2139 kvm_init_msrs(cpu);
2140
e7429073 2141 return 0;
fe44dc91
AA
2142
2143 fail:
2144 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 2145
fe44dc91 2146 return r;
05330448
AL
2147}
2148
b1115c99
LA
2149int kvm_arch_destroy_vcpu(CPUState *cs)
2150{
2151 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 2152 CPUX86State *env = &cpu->env;
b1115c99 2153
dcebbb65
PMD
2154 g_free(env->xsave_buf);
2155
b1115c99
LA
2156 if (cpu->kvm_msr_buf) {
2157 g_free(cpu->kvm_msr_buf);
2158 cpu->kvm_msr_buf = NULL;
2159 }
2160
ebbfef2f
LA
2161 if (env->nested_state) {
2162 g_free(env->nested_state);
2163 env->nested_state = NULL;
2164 }
2165
2a693142
PN
2166 qemu_del_vm_change_state_handler(cpu->vmsentry);
2167
b1115c99
LA
2168 return 0;
2169}
2170
50a2c6e5 2171void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 2172{
20d695a9 2173 CPUX86State *env = &cpu->env;
dd673288 2174
1a5e9d2f 2175 env->xcr0 = 1;
ddced198 2176 if (kvm_irqchip_in_kernel()) {
dd673288 2177 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
2178 KVM_MP_STATE_UNINITIALIZED;
2179 } else {
2180 env->mp_state = KVM_MP_STATE_RUNNABLE;
2181 }
689141dd 2182
2d384d7c 2183 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
2184 int i;
2185 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2186 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2187 }
606c34bf
RK
2188
2189 hyperv_x86_synic_reset(cpu);
689141dd 2190 }
d645e132
MT
2191 /* enabled by default */
2192 env->poll_control_msr = 1;
b2f73a07
PB
2193
2194 sev_es_set_reset_vector(CPU(cpu));
caa5af0f
JK
2195}
2196
e0723c45
PB
2197void kvm_arch_do_init_vcpu(X86CPU *cpu)
2198{
2199 CPUX86State *env = &cpu->env;
2200
2201 /* APs get directly into wait-for-SIPI state. */
2202 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2203 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2204 }
2205}
2206
f57bceb6
RH
2207static int kvm_get_supported_feature_msrs(KVMState *s)
2208{
2209 int ret = 0;
2210
2211 if (kvm_feature_msrs != NULL) {
2212 return 0;
2213 }
2214
2215 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2216 return 0;
2217 }
2218
2219 struct kvm_msr_list msr_list;
2220
2221 msr_list.nmsrs = 0;
2222 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2223 if (ret < 0 && ret != -E2BIG) {
2224 error_report("Fetch KVM feature MSR list failed: %s",
2225 strerror(-ret));
2226 return ret;
2227 }
2228
2229 assert(msr_list.nmsrs > 0);
2230 kvm_feature_msrs = (struct kvm_msr_list *) \
2231 g_malloc0(sizeof(msr_list) +
2232 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2233
2234 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2235 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2236
2237 if (ret < 0) {
2238 error_report("Fetch KVM feature MSR list failed: %s",
2239 strerror(-ret));
2240 g_free(kvm_feature_msrs);
2241 kvm_feature_msrs = NULL;
2242 return ret;
2243 }
2244
2245 return 0;
2246}
2247
c3a3a7d3 2248static int kvm_get_supported_msrs(KVMState *s)
05330448 2249{
c3a3a7d3 2250 int ret = 0;
de428cea 2251 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 2252
de428cea
LQ
2253 /*
2254 * Obtain MSR list from KVM. These are the MSRs that we must
2255 * save/restore.
2256 */
2257 msr_list.nmsrs = 0;
2258 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2259 if (ret < 0 && ret != -E2BIG) {
2260 return ret;
2261 }
2262 /*
2263 * Old kernel modules had a bug and could write beyond the provided
2264 * memory. Allocate at least a safe amount of 1K.
2265 */
2266 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2267 msr_list.nmsrs *
2268 sizeof(msr_list.indices[0])));
05330448 2269
de428cea
LQ
2270 kvm_msr_list->nmsrs = msr_list.nmsrs;
2271 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2272 if (ret >= 0) {
2273 int i;
05330448 2274
de428cea
LQ
2275 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2276 switch (kvm_msr_list->indices[i]) {
2277 case MSR_STAR:
2278 has_msr_star = true;
2279 break;
2280 case MSR_VM_HSAVE_PA:
2281 has_msr_hsave_pa = true;
2282 break;
2283 case MSR_TSC_AUX:
2284 has_msr_tsc_aux = true;
2285 break;
2286 case MSR_TSC_ADJUST:
2287 has_msr_tsc_adjust = true;
2288 break;
2289 case MSR_IA32_TSCDEADLINE:
2290 has_msr_tsc_deadline = true;
2291 break;
2292 case MSR_IA32_SMBASE:
2293 has_msr_smbase = true;
2294 break;
2295 case MSR_SMI_COUNT:
2296 has_msr_smi_count = true;
2297 break;
2298 case MSR_IA32_MISC_ENABLE:
2299 has_msr_misc_enable = true;
2300 break;
2301 case MSR_IA32_BNDCFGS:
2302 has_msr_bndcfgs = true;
2303 break;
2304 case MSR_IA32_XSS:
2305 has_msr_xss = true;
2306 break;
65087997
TX
2307 case MSR_IA32_UMWAIT_CONTROL:
2308 has_msr_umwait = true;
2309 break;
de428cea
LQ
2310 case HV_X64_MSR_CRASH_CTL:
2311 has_msr_hv_crash = true;
2312 break;
2313 case HV_X64_MSR_RESET:
2314 has_msr_hv_reset = true;
2315 break;
2316 case HV_X64_MSR_VP_INDEX:
2317 has_msr_hv_vpindex = true;
2318 break;
2319 case HV_X64_MSR_VP_RUNTIME:
2320 has_msr_hv_runtime = true;
2321 break;
2322 case HV_X64_MSR_SCONTROL:
2323 has_msr_hv_synic = true;
2324 break;
2325 case HV_X64_MSR_STIMER0_CONFIG:
2326 has_msr_hv_stimer = true;
2327 break;
2328 case HV_X64_MSR_TSC_FREQUENCY:
2329 has_msr_hv_frequencies = true;
2330 break;
2331 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2332 has_msr_hv_reenlightenment = true;
2333 break;
73d24074
JD
2334 case HV_X64_MSR_SYNDBG_OPTIONS:
2335 has_msr_hv_syndbg_options = true;
2336 break;
de428cea
LQ
2337 case MSR_IA32_SPEC_CTRL:
2338 has_msr_spec_ctrl = true;
2339 break;
cabf9862
ML
2340 case MSR_AMD64_TSC_RATIO:
2341 has_tsc_scale_msr = true;
2342 break;
2a9758c5
PB
2343 case MSR_IA32_TSX_CTRL:
2344 has_msr_tsx_ctrl = true;
2345 break;
de428cea
LQ
2346 case MSR_VIRT_SSBD:
2347 has_msr_virt_ssbd = true;
2348 break;
2349 case MSR_IA32_ARCH_CAPABILITIES:
2350 has_msr_arch_capabs = true;
2351 break;
2352 case MSR_IA32_CORE_CAPABILITY:
2353 has_msr_core_capabs = true;
2354 break;
ea39f9b6
LX
2355 case MSR_IA32_PERF_CAPABILITIES:
2356 has_msr_perf_capabs = true;
2357 break;
20a78b02
PB
2358 case MSR_IA32_VMX_VMFUNC:
2359 has_msr_vmx_vmfunc = true;
2360 break;
67025148
PB
2361 case MSR_IA32_UCODE_REV:
2362 has_msr_ucode_rev = true;
2363 break;
4a910e1f
VK
2364 case MSR_IA32_VMX_PROCBASED_CTLS2:
2365 has_msr_vmx_procbased_ctls2 = true;
2366 break;
6aa4228b
CQ
2367 case MSR_IA32_PKRS:
2368 has_msr_pkrs = true;
2369 break;
05330448
AL
2370 }
2371 }
05330448
AL
2372 }
2373
de428cea
LQ
2374 g_free(kvm_msr_list);
2375
c3a3a7d3 2376 return ret;
05330448
AL
2377}
2378
6410848b
PB
2379static Notifier smram_machine_done;
2380static KVMMemoryListener smram_listener;
2381static AddressSpace smram_address_space;
2382static MemoryRegion smram_as_root;
2383static MemoryRegion smram_as_mem;
2384
2385static void register_smram_listener(Notifier *n, void *unused)
2386{
2387 MemoryRegion *smram =
2388 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2389
2390 /* Outer container... */
2391 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2392 memory_region_set_enabled(&smram_as_root, true);
2393
2394 /* ... with two regions inside: normal system memory with low
2395 * priority, and...
2396 */
2397 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2398 get_system_memory(), 0, ~0ull);
2399 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2400 memory_region_set_enabled(&smram_as_mem, true);
2401
2402 if (smram) {
2403 /* ... SMRAM with higher priority */
2404 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2405 memory_region_set_enabled(smram, true);
2406 }
2407
2408 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2409 kvm_memory_listener_register(kvm_state, &smram_listener,
142518bd 2410 &smram_address_space, 1, "kvm-smram");
6410848b
PB
2411}
2412
b16565b3 2413int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2414{
11076198 2415 uint64_t identity_base = 0xfffbc000;
39d6960a 2416 uint64_t shadow_mem;
20420430 2417 int ret;
25d2e361 2418 struct utsname utsname;
ec78e2cd
DG
2419 Error *local_err = NULL;
2420
2421 /*
2422 * Initialize SEV context, if required
2423 *
2424 * If no memory encryption is requested (ms->cgs == NULL) this is
2425 * a no-op.
2426 *
2427 * It's also a no-op if a non-SEV confidential guest support
2428 * mechanism is selected. SEV is the only mechanism available to
2429 * select on x86 at present, so this doesn't arise, but if new
2430 * mechanisms are supported in future (e.g. TDX), they'll need
2431 * their own initialization either here or elsewhere.
2432 */
2433 ret = sev_kvm_init(ms->cgs, &local_err);
2434 if (ret < 0) {
2435 error_report_err(local_err);
2436 return ret;
2437 }
20420430 2438
1a6dff5f
EH
2439 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2440 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2441 return -ENOTSUP;
2442 }
2443
28143b40 2444 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2445 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2446 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
8f515d38 2447 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
28143b40 2448
e9688fab
RK
2449 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2450
fd13f23b
LA
2451 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2452 if (has_exception_payload) {
2453 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2454 if (ret < 0) {
2455 error_report("kvm: Failed to enable exception payload cap: %s",
2456 strerror(-ret));
2457 return ret;
2458 }
2459 }
2460
c3a3a7d3 2461 ret = kvm_get_supported_msrs(s);
20420430 2462 if (ret < 0) {
20420430
SY
2463 return ret;
2464 }
25d2e361 2465
f57bceb6
RH
2466 kvm_get_supported_feature_msrs(s);
2467
25d2e361
MT
2468 uname(&utsname);
2469 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2470
4c5b10b7 2471 /*
11076198
JK
2472 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2473 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2474 * Since these must be part of guest physical memory, we need to allocate
2475 * them, both by setting their start addresses in the kernel and by
2476 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2477 *
2478 * Older KVM versions may not support setting the identity map base. In
2479 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2480 * size.
4c5b10b7 2481 */
11076198
JK
2482 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2483 /* Allows up to 16M BIOSes. */
2484 identity_base = 0xfeffc000;
2485
2486 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2487 if (ret < 0) {
2488 return ret;
2489 }
4c5b10b7 2490 }
e56ff191 2491
11076198
JK
2492 /* Set TSS base one page after EPT identity map. */
2493 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2494 if (ret < 0) {
2495 return ret;
2496 }
2497
11076198
JK
2498 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2499 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2500 if (ret < 0) {
11076198 2501 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2502 return ret;
2503 }
2504
23b0898e 2505 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
36ad0e94
MA
2506 if (shadow_mem != -1) {
2507 shadow_mem /= 4096;
2508 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2509 if (ret < 0) {
2510 return ret;
39d6960a
JK
2511 }
2512 }
6410848b 2513
d870cfde 2514 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
8f54bbd0 2515 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
ed9e923c 2516 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
6410848b
PB
2517 smram_machine_done.notify = register_smram_listener;
2518 qemu_add_machine_init_done_notifier(&smram_machine_done);
2519 }
6f131f13
MT
2520
2521 if (enable_cpu_pm) {
2522 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2523 int ret;
2524
2525/* Work around for kernel header with a typo. TODO: fix header and drop. */
2526#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2527#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2528#endif
2529 if (disable_exits) {
2530 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2531 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2532 KVM_X86_DISABLE_EXITS_PAUSE |
2533 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2534 }
2535
2536 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2537 disable_exits);
2538 if (ret < 0) {
2539 error_report("kvm: guest stopping CPU not supported: %s",
2540 strerror(-ret));
2541 }
2542 }
2543
035d1ef2
CQ
2544 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2545 X86MachineState *x86ms = X86_MACHINE(ms);
2546
2547 if (x86ms->bus_lock_ratelimit > 0) {
2548 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2549 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2550 error_report("kvm: bus lock detection unsupported");
2551 return -ENOTSUP;
2552 }
2553 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2554 KVM_BUS_LOCK_DETECTION_EXIT);
2555 if (ret < 0) {
2556 error_report("kvm: Failed to enable bus lock detection cap: %s",
2557 strerror(-ret));
2558 return ret;
2559 }
2560 ratelimit_init(&bus_lock_ratelimit_ctrl);
2561 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2562 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2563 }
2564 }
2565
11076198 2566 return 0;
05330448 2567}
b9bec74b 2568
05330448
AL
2569static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2570{
2571 lhs->selector = rhs->selector;
2572 lhs->base = rhs->base;
2573 lhs->limit = rhs->limit;
2574 lhs->type = 3;
2575 lhs->present = 1;
2576 lhs->dpl = 3;
2577 lhs->db = 0;
2578 lhs->s = 1;
2579 lhs->l = 0;
2580 lhs->g = 0;
2581 lhs->avl = 0;
2582 lhs->unusable = 0;
2583}
2584
2585static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2586{
2587 unsigned flags = rhs->flags;
2588 lhs->selector = rhs->selector;
2589 lhs->base = rhs->base;
2590 lhs->limit = rhs->limit;
2591 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2592 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2593 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2594 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2595 lhs->s = (flags & DESC_S_MASK) != 0;
2596 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2597 lhs->g = (flags & DESC_G_MASK) != 0;
2598 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2599 lhs->unusable = !lhs->present;
7e680753 2600 lhs->padding = 0;
05330448
AL
2601}
2602
2603static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2604{
2605 lhs->selector = rhs->selector;
2606 lhs->base = rhs->base;
2607 lhs->limit = rhs->limit;
d45fc087
RP
2608 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2609 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2610 (rhs->dpl << DESC_DPL_SHIFT) |
2611 (rhs->db << DESC_B_SHIFT) |
2612 (rhs->s * DESC_S_MASK) |
2613 (rhs->l << DESC_L_SHIFT) |
2614 (rhs->g * DESC_G_MASK) |
2615 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2616}
2617
2618static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2619{
b9bec74b 2620 if (set) {
05330448 2621 *kvm_reg = *qemu_reg;
b9bec74b 2622 } else {
05330448 2623 *qemu_reg = *kvm_reg;
b9bec74b 2624 }
05330448
AL
2625}
2626
1bc22652 2627static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2628{
1bc22652 2629 CPUX86State *env = &cpu->env;
05330448
AL
2630 struct kvm_regs regs;
2631 int ret = 0;
2632
2633 if (!set) {
1bc22652 2634 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2635 if (ret < 0) {
05330448 2636 return ret;
b9bec74b 2637 }
05330448
AL
2638 }
2639
2640 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2641 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2642 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2643 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2644 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2645 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2646 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2647 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2648#ifdef TARGET_X86_64
2649 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2650 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2651 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2652 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2653 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2654 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2655 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2656 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2657#endif
2658
2659 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2660 kvm_getput_reg(&regs.rip, &env->eip, set);
2661
b9bec74b 2662 if (set) {
1bc22652 2663 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2664 }
05330448
AL
2665
2666 return ret;
2667}
2668
1bc22652 2669static int kvm_put_fpu(X86CPU *cpu)
05330448 2670{
1bc22652 2671 CPUX86State *env = &cpu->env;
05330448
AL
2672 struct kvm_fpu fpu;
2673 int i;
2674
2675 memset(&fpu, 0, sizeof fpu);
2676 fpu.fsw = env->fpus & ~(7 << 11);
2677 fpu.fsw |= (env->fpstt & 7) << 11;
2678 fpu.fcw = env->fpuc;
42cc8fa6
JK
2679 fpu.last_opcode = env->fpop;
2680 fpu.last_ip = env->fpip;
2681 fpu.last_dp = env->fpdp;
b9bec74b
JK
2682 for (i = 0; i < 8; ++i) {
2683 fpu.ftwx |= (!env->fptags[i]) << i;
2684 }
05330448 2685 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2686 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2687 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2688 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2689 }
05330448
AL
2690 fpu.mxcsr = env->mxcsr;
2691
1bc22652 2692 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2693}
2694
1bc22652 2695static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2696{
1bc22652 2697 CPUX86State *env = &cpu->env;
c0198c5f 2698 void *xsave = env->xsave_buf;
f1665b21 2699
28143b40 2700 if (!has_xsave) {
1bc22652 2701 return kvm_put_fpu(cpu);
b9bec74b 2702 }
c0198c5f 2703 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 2704
9be38598 2705 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2706}
2707
1bc22652 2708static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2709{
1bc22652 2710 CPUX86State *env = &cpu->env;
bdfc8480 2711 struct kvm_xcrs xcrs = {};
f1665b21 2712
28143b40 2713 if (!has_xcrs) {
f1665b21 2714 return 0;
b9bec74b 2715 }
f1665b21
SY
2716
2717 xcrs.nr_xcrs = 1;
2718 xcrs.flags = 0;
2719 xcrs.xcrs[0].xcr = 0;
2720 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2721 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2722}
2723
1bc22652 2724static int kvm_put_sregs(X86CPU *cpu)
05330448 2725{
1bc22652 2726 CPUX86State *env = &cpu->env;
05330448
AL
2727 struct kvm_sregs sregs;
2728
1520f8bb
PB
2729 /*
2730 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2731 * always followed by KVM_SET_VCPU_EVENTS.
2732 */
0e607a80 2733 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
05330448
AL
2734
2735 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2736 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2737 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2738 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2739 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2740 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2741 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2742 } else {
b9bec74b
JK
2743 set_seg(&sregs.cs, &env->segs[R_CS]);
2744 set_seg(&sregs.ds, &env->segs[R_DS]);
2745 set_seg(&sregs.es, &env->segs[R_ES]);
2746 set_seg(&sregs.fs, &env->segs[R_FS]);
2747 set_seg(&sregs.gs, &env->segs[R_GS]);
2748 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2749 }
2750
2751 set_seg(&sregs.tr, &env->tr);
2752 set_seg(&sregs.ldt, &env->ldt);
2753
2754 sregs.idt.limit = env->idt.limit;
2755 sregs.idt.base = env->idt.base;
7e680753 2756 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2757 sregs.gdt.limit = env->gdt.limit;
2758 sregs.gdt.base = env->gdt.base;
7e680753 2759 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2760
2761 sregs.cr0 = env->cr[0];
2762 sregs.cr2 = env->cr[2];
2763 sregs.cr3 = env->cr[3];
2764 sregs.cr4 = env->cr[4];
2765
02e51483
CF
2766 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2767 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2768
2769 sregs.efer = env->efer;
2770
1bc22652 2771 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2772}
2773
8f515d38
ML
2774static int kvm_put_sregs2(X86CPU *cpu)
2775{
2776 CPUX86State *env = &cpu->env;
2777 struct kvm_sregs2 sregs;
2778 int i;
2779
2780 sregs.flags = 0;
2781
2782 if ((env->eflags & VM_MASK)) {
2783 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2784 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2785 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2786 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2787 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2788 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2789 } else {
2790 set_seg(&sregs.cs, &env->segs[R_CS]);
2791 set_seg(&sregs.ds, &env->segs[R_DS]);
2792 set_seg(&sregs.es, &env->segs[R_ES]);
2793 set_seg(&sregs.fs, &env->segs[R_FS]);
2794 set_seg(&sregs.gs, &env->segs[R_GS]);
2795 set_seg(&sregs.ss, &env->segs[R_SS]);
2796 }
2797
2798 set_seg(&sregs.tr, &env->tr);
2799 set_seg(&sregs.ldt, &env->ldt);
2800
2801 sregs.idt.limit = env->idt.limit;
2802 sregs.idt.base = env->idt.base;
2803 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2804 sregs.gdt.limit = env->gdt.limit;
2805 sregs.gdt.base = env->gdt.base;
2806 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2807
2808 sregs.cr0 = env->cr[0];
2809 sregs.cr2 = env->cr[2];
2810 sregs.cr3 = env->cr[3];
2811 sregs.cr4 = env->cr[4];
2812
2813 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2814 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2815
2816 sregs.efer = env->efer;
2817
2818 if (env->pdptrs_valid) {
2819 for (i = 0; i < 4; i++) {
2820 sregs.pdptrs[i] = env->pdptrs[i];
2821 }
2822 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2823 }
2824
2825 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2826}
2827
2828
d71b62a1
EH
2829static void kvm_msr_buf_reset(X86CPU *cpu)
2830{
2831 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2832}
2833
9c600a84
EH
2834static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2835{
2836 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2837 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2838 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2839
2840 assert((void *)(entry + 1) <= limit);
2841
1abc2cae
EH
2842 entry->index = index;
2843 entry->reserved = 0;
2844 entry->data = value;
9c600a84
EH
2845 msrs->nmsrs++;
2846}
2847
73e1b8f2
PB
2848static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2849{
2850 kvm_msr_buf_reset(cpu);
2851 kvm_msr_entry_add(cpu, index, value);
2852
2853 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2854}
2855
5a778a5f
YW
2856static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2857{
2858 int ret;
2859 struct {
2860 struct kvm_msrs info;
2861 struct kvm_msr_entry entries[1];
2862 } msr_data = {
2863 .info.nmsrs = 1,
2864 .entries[0].index = index,
2865 };
2866
2867 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2868 if (ret < 0) {
2869 return ret;
2870 }
2871 assert(ret == 1);
2872 *value = msr_data.entries[0].data;
2873 return ret;
2874}
f8d9ccf8
DDAG
2875void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2876{
2877 int ret;
2878
2879 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2880 assert(ret == 1);
2881}
2882
7477cd38
MT
2883static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2884{
2885 CPUX86State *env = &cpu->env;
48e1a45c 2886 int ret;
7477cd38
MT
2887
2888 if (!has_msr_tsc_deadline) {
2889 return 0;
2890 }
2891
73e1b8f2 2892 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2893 if (ret < 0) {
2894 return ret;
2895 }
2896
2897 assert(ret == 1);
2898 return 0;
7477cd38
MT
2899}
2900
6bdf863d
JK
2901/*
2902 * Provide a separate write service for the feature control MSR in order to
2903 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2904 * before writing any other state because forcibly leaving nested mode
2905 * invalidates the VCPU state.
2906 */
2907static int kvm_put_msr_feature_control(X86CPU *cpu)
2908{
48e1a45c
PB
2909 int ret;
2910
2911 if (!has_msr_feature_control) {
2912 return 0;
2913 }
6bdf863d 2914
73e1b8f2
PB
2915 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2916 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2917 if (ret < 0) {
2918 return ret;
2919 }
2920
2921 assert(ret == 1);
2922 return 0;
6bdf863d
JK
2923}
2924
20a78b02
PB
2925static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2926{
2927 uint32_t default1, can_be_one, can_be_zero;
2928 uint32_t must_be_one;
2929
2930 switch (index) {
2931 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2932 default1 = 0x00000016;
2933 break;
2934 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2935 default1 = 0x0401e172;
2936 break;
2937 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2938 default1 = 0x000011ff;
2939 break;
2940 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2941 default1 = 0x00036dff;
2942 break;
2943 case MSR_IA32_VMX_PROCBASED_CTLS2:
2944 default1 = 0;
2945 break;
2946 default:
2947 abort();
2948 }
2949
2950 /* If a feature bit is set, the control can be either set or clear.
2951 * Otherwise the value is limited to either 0 or 1 by default1.
2952 */
2953 can_be_one = features | default1;
2954 can_be_zero = features | ~default1;
2955 must_be_one = ~can_be_zero;
2956
2957 /*
2958 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2959 * Bit 32:63 -> 1 if the control bit can be one.
2960 */
2961 return must_be_one | (((uint64_t)can_be_one) << 32);
2962}
2963
20a78b02
PB
2964static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2965{
2966 uint64_t kvm_vmx_basic =
2967 kvm_arch_get_supported_msr_feature(kvm_state,
2968 MSR_IA32_VMX_BASIC);
26051882
YZ
2969
2970 if (!kvm_vmx_basic) {
2971 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2972 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2973 */
2974 return;
2975 }
2976
20a78b02
PB
2977 uint64_t kvm_vmx_misc =
2978 kvm_arch_get_supported_msr_feature(kvm_state,
2979 MSR_IA32_VMX_MISC);
2980 uint64_t kvm_vmx_ept_vpid =
2981 kvm_arch_get_supported_msr_feature(kvm_state,
2982 MSR_IA32_VMX_EPT_VPID_CAP);
2983
2984 /*
2985 * If the guest is 64-bit, a value of 1 is allowed for the host address
2986 * space size vmexit control.
2987 */
2988 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2989 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2990
2991 /*
2992 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2993 * not change them for backwards compatibility.
2994 */
2995 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2996 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2997 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2998 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2999
3000 /*
3001 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3002 * change in the future but are always zero for now, clear them to be
3003 * future proof. Bits 32-63 in theory could change, though KVM does
3004 * not support dual-monitor treatment and probably never will; mask
3005 * them out as well.
3006 */
3007 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3008 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3009 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3010
3011 /*
3012 * EPT memory types should not change either, so we do not bother
3013 * adding features for them.
3014 */
3015 uint64_t fixed_vmx_ept_mask =
3016 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3017 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3018 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3019
3020 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3021 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3022 f[FEAT_VMX_PROCBASED_CTLS]));
3023 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3024 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3025 f[FEAT_VMX_PINBASED_CTLS]));
3026 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3027 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3028 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3029 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3030 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3031 f[FEAT_VMX_ENTRY_CTLS]));
3032 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3033 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3034 f[FEAT_VMX_SECONDARY_CTLS]));
3035 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3036 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3037 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3038 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3039 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3040 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3041 if (has_msr_vmx_vmfunc) {
3042 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3043 }
3044
3045 /*
3046 * Just to be safe, write these with constant values. The CRn_FIXED1
3047 * MSRs are generated by KVM based on the vCPU's CPUID.
3048 */
3049 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3050 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3051 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3052 CR4_VMXE_MASK);
9ce8af4d
PB
3053
3054 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3055 /* TSC multiplier (0x2032). */
3056 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3057 } else {
3058 /* Preemption timer (0x482E). */
3059 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3060 }
20a78b02
PB
3061}
3062
ea39f9b6
LX
3063static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3064{
3065 uint64_t kvm_perf_cap =
3066 kvm_arch_get_supported_msr_feature(kvm_state,
3067 MSR_IA32_PERF_CAPABILITIES);
3068
3069 if (kvm_perf_cap) {
3070 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3071 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3072 }
3073}
3074
420ae1fc
PB
3075static int kvm_buf_set_msrs(X86CPU *cpu)
3076{
3077 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3078 if (ret < 0) {
3079 return ret;
3080 }
3081
3082 if (ret < cpu->kvm_msr_buf->nmsrs) {
3083 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3084 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3085 (uint32_t)e->index, (uint64_t)e->data);
3086 }
3087
3088 assert(ret == cpu->kvm_msr_buf->nmsrs);
3089 return 0;
3090}
3091
3092static void kvm_init_msrs(X86CPU *cpu)
3093{
3094 CPUX86State *env = &cpu->env;
3095
3096 kvm_msr_buf_reset(cpu);
3097 if (has_msr_arch_capabs) {
3098 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3099 env->features[FEAT_ARCH_CAPABILITIES]);
3100 }
3101
3102 if (has_msr_core_capabs) {
3103 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3104 env->features[FEAT_CORE_CAPABILITY]);
3105 }
3106
ea39f9b6
LX
3107 if (has_msr_perf_capabs && cpu->enable_pmu) {
3108 kvm_msr_entry_add_perf(cpu, env->features);
3109 }
3110
67025148 3111 if (has_msr_ucode_rev) {
32c87d70
PB
3112 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3113 }
3114
420ae1fc
PB
3115 /*
3116 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3117 * all kernels with MSR features should have them.
3118 */
3119 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3120 kvm_msr_entry_add_vmx(cpu, env->features);
3121 }
3122
3123 assert(kvm_buf_set_msrs(cpu) == 0);
3124}
3125
1bc22652 3126static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 3127{
1bc22652 3128 CPUX86State *env = &cpu->env;
9c600a84 3129 int i;
05330448 3130
d71b62a1
EH
3131 kvm_msr_buf_reset(cpu);
3132
9c600a84
EH
3133 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3134 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3135 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3136 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 3137 if (has_msr_star) {
9c600a84 3138 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 3139 }
c3a3a7d3 3140 if (has_msr_hsave_pa) {
9c600a84 3141 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 3142 }
c9b8f6b6 3143 if (has_msr_tsc_aux) {
9c600a84 3144 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 3145 }
f28558d3 3146 if (has_msr_tsc_adjust) {
9c600a84 3147 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 3148 }
21e87c46 3149 if (has_msr_misc_enable) {
9c600a84 3150 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
3151 env->msr_ia32_misc_enable);
3152 }
fc12d72e 3153 if (has_msr_smbase) {
9c600a84 3154 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 3155 }
e13713db
LA
3156 if (has_msr_smi_count) {
3157 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3158 }
6aa4228b
CQ
3159 if (has_msr_pkrs) {
3160 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3161 }
439d19f2 3162 if (has_msr_bndcfgs) {
9c600a84 3163 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 3164 }
18cd2c17 3165 if (has_msr_xss) {
9c600a84 3166 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 3167 }
65087997
TX
3168 if (has_msr_umwait) {
3169 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3170 }
a33a2cfe
PB
3171 if (has_msr_spec_ctrl) {
3172 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3173 }
cabf9862
ML
3174 if (has_tsc_scale_msr) {
3175 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3176 }
3177
2a9758c5
PB
3178 if (has_msr_tsx_ctrl) {
3179 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3180 }
cfeea0c0
KRW
3181 if (has_msr_virt_ssbd) {
3182 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3183 }
3184
05330448 3185#ifdef TARGET_X86_64
25d2e361 3186 if (lm_capable_kernel) {
9c600a84
EH
3187 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3188 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3189 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3190 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 3191 }
05330448 3192#endif
a33a2cfe 3193
ff5c186b 3194 /*
0d894367
PB
3195 * The following MSRs have side effects on the guest or are too heavy
3196 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
3197 */
3198 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
3199 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3200 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3201 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
6615be07
VK
3202 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3203 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3204 }
55c911a5 3205 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 3206 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 3207 }
55c911a5 3208 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3209 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 3210 }
55c911a5 3211 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3212 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 3213 }
d645e132
MT
3214
3215 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3216 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3217 }
3218
0b368a10
JD
3219 if (has_architectural_pmu_version > 0) {
3220 if (has_architectural_pmu_version > 1) {
3221 /* Stop the counter. */
3222 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3223 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3224 }
0d894367
PB
3225
3226 /* Set the counter values. */
0b368a10 3227 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3228 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
3229 env->msr_fixed_counters[i]);
3230 }
0b368a10 3231 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 3232 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 3233 env->msr_gp_counters[i]);
9c600a84 3234 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
3235 env->msr_gp_evtsel[i]);
3236 }
0b368a10
JD
3237 if (has_architectural_pmu_version > 1) {
3238 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3239 env->msr_global_status);
3240 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3241 env->msr_global_ovf_ctrl);
3242
3243 /* Now start the PMU. */
3244 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3245 env->msr_fixed_ctr_ctrl);
3246 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3247 env->msr_global_ctrl);
3248 }
0d894367 3249 }
da1cc323
EY
3250 /*
3251 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3252 * only sync them to KVM on the first cpu
3253 */
3254 if (current_cpu == first_cpu) {
3255 if (has_msr_hv_hypercall) {
3256 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3257 env->msr_hv_guest_os_id);
3258 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3259 env->msr_hv_hypercall);
3260 }
2d384d7c 3261 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
3262 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3263 env->msr_hv_tsc);
3264 }
2d384d7c 3265 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3266 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3267 env->msr_hv_reenlightenment_control);
3268 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3269 env->msr_hv_tsc_emulation_control);
3270 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3271 env->msr_hv_tsc_emulation_status);
3272 }
d8701185 3273#ifdef CONFIG_SYNDBG
73d24074
JD
3274 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3275 has_msr_hv_syndbg_options) {
3276 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3277 hyperv_syndbg_query_options());
3278 }
d8701185 3279#endif
eab70139 3280 }
2d384d7c 3281 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3282 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 3283 env->msr_hv_vapic);
eab70139 3284 }
f2a53c9e
AS
3285 if (has_msr_hv_crash) {
3286 int j;
3287
5e953812 3288 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 3289 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
3290 env->msr_hv_crash_params[j]);
3291
5e953812 3292 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 3293 }
46eb8f98 3294 if (has_msr_hv_runtime) {
9c600a84 3295 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 3296 }
2d384d7c
VK
3297 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3298 && hv_vpindex_settable) {
701189e3
RK
3299 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3300 hyperv_vp_index(CPU(cpu)));
e9688fab 3301 }
2d384d7c 3302 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3303 int j;
3304
09df29b6
RK
3305 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3306
9c600a84 3307 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 3308 env->msr_hv_synic_control);
9c600a84 3309 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 3310 env->msr_hv_synic_evt_page);
9c600a84 3311 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
3312 env->msr_hv_synic_msg_page);
3313
3314 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 3315 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
3316 env->msr_hv_synic_sint[j]);
3317 }
3318 }
ff99aa64
AS
3319 if (has_msr_hv_stimer) {
3320 int j;
3321
3322 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 3323 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
3324 env->msr_hv_stimer_config[j]);
3325 }
3326
3327 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 3328 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
3329 env->msr_hv_stimer_count[j]);
3330 }
3331 }
1eabfce6 3332 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
3333 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3334
9c600a84
EH
3335 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3336 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3337 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3338 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3339 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3340 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3341 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3342 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3343 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3344 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3345 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3346 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 3347 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
3348 /* The CPU GPs if we write to a bit above the physical limit of
3349 * the host CPU (and KVM emulates that)
3350 */
3351 uint64_t mask = env->mtrr_var[i].mask;
3352 mask &= phys_mask;
3353
9c600a84
EH
3354 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3355 env->mtrr_var[i].base);
112dad69 3356 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
3357 }
3358 }
b77146e9
CP
3359 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3360 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3361 0x14, 1, R_EAX) & 0x7;
3362
3363 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3364 env->msr_rtit_ctrl);
3365 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3366 env->msr_rtit_status);
3367 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3368 env->msr_rtit_output_base);
3369 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3370 env->msr_rtit_output_mask);
3371 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3372 env->msr_rtit_cr3_match);
3373 for (i = 0; i < addr_num; i++) {
3374 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3375 env->msr_rtit_addrs[i]);
3376 }
3377 }
6bdf863d 3378
db888065
SC
3379 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3380 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3381 env->msr_ia32_sgxlepubkeyhash[0]);
3382 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3383 env->msr_ia32_sgxlepubkeyhash[1]);
3384 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3385 env->msr_ia32_sgxlepubkeyhash[2]);
3386 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3387 env->msr_ia32_sgxlepubkeyhash[3]);
3388 }
3389
cdec2b75
ZG
3390 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3391 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3392 env->msr_xfd);
3393 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3394 env->msr_xfd_err);
3395 }
3396
12703d4e
YW
3397 if (kvm_enabled() && cpu->enable_pmu &&
3398 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3399 uint64_t depth;
3400 int i, ret;
3401
3402 /*
3a7a27cf
YW
3403 * Only migrate Arch LBR states when the host Arch LBR depth
3404 * equals that of source guest's, this is to avoid mismatch
3405 * of guest/host config for the msr hence avoid unexpected
3406 * misbehavior.
12703d4e
YW
3407 */
3408 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3409
3a7a27cf 3410 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
12703d4e
YW
3411 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3412 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3413
3414 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3415 if (!env->lbr_records[i].from) {
3416 continue;
3417 }
3418 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3419 env->lbr_records[i].from);
3420 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3421 env->lbr_records[i].to);
3422 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3423 env->lbr_records[i].info);
3424 }
3425 }
3426 }
3427
6bdf863d
JK
3428 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3429 * kvm_put_msr_feature_control. */
ea643051 3430 }
20a78b02 3431
57780495 3432 if (env->mcg_cap) {
d8da8574 3433 int i;
b9bec74b 3434
9c600a84
EH
3435 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3436 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
3437 if (has_msr_mcg_ext_ctl) {
3438 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3439 }
c34d440a 3440 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3441 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
3442 }
3443 }
1a03675d 3444
420ae1fc 3445 return kvm_buf_set_msrs(cpu);
05330448
AL
3446}
3447
3448
1bc22652 3449static int kvm_get_fpu(X86CPU *cpu)
05330448 3450{
1bc22652 3451 CPUX86State *env = &cpu->env;
05330448
AL
3452 struct kvm_fpu fpu;
3453 int i, ret;
3454
1bc22652 3455 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 3456 if (ret < 0) {
05330448 3457 return ret;
b9bec74b 3458 }
05330448
AL
3459
3460 env->fpstt = (fpu.fsw >> 11) & 7;
3461 env->fpus = fpu.fsw;
3462 env->fpuc = fpu.fcw;
42cc8fa6
JK
3463 env->fpop = fpu.last_opcode;
3464 env->fpip = fpu.last_ip;
3465 env->fpdp = fpu.last_dp;
b9bec74b
JK
3466 for (i = 0; i < 8; ++i) {
3467 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3468 }
05330448 3469 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 3470 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
3471 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3472 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 3473 }
05330448
AL
3474 env->mxcsr = fpu.mxcsr;
3475
3476 return 0;
3477}
3478
1bc22652 3479static int kvm_get_xsave(X86CPU *cpu)
f1665b21 3480{
1bc22652 3481 CPUX86State *env = &cpu->env;
c0198c5f 3482 void *xsave = env->xsave_buf;
e56dd3c7 3483 int type, ret;
f1665b21 3484
28143b40 3485 if (!has_xsave) {
1bc22652 3486 return kvm_get_fpu(cpu);
b9bec74b 3487 }
f1665b21 3488
e56dd3c7
JL
3489 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3490 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
0f53994f 3491 if (ret < 0) {
f1665b21 3492 return ret;
0f53994f 3493 }
c0198c5f 3494 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 3495
f1665b21 3496 return 0;
f1665b21
SY
3497}
3498
1bc22652 3499static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 3500{
1bc22652 3501 CPUX86State *env = &cpu->env;
f1665b21
SY
3502 int i, ret;
3503 struct kvm_xcrs xcrs;
3504
28143b40 3505 if (!has_xcrs) {
f1665b21 3506 return 0;
b9bec74b 3507 }
f1665b21 3508
1bc22652 3509 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 3510 if (ret < 0) {
f1665b21 3511 return ret;
b9bec74b 3512 }
f1665b21 3513
b9bec74b 3514 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 3515 /* Only support xcr0 now */
0fd53fec
PB
3516 if (xcrs.xcrs[i].xcr == 0) {
3517 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
3518 break;
3519 }
b9bec74b 3520 }
f1665b21 3521 return 0;
f1665b21
SY
3522}
3523
1bc22652 3524static int kvm_get_sregs(X86CPU *cpu)
05330448 3525{
1bc22652 3526 CPUX86State *env = &cpu->env;
05330448 3527 struct kvm_sregs sregs;
1520f8bb 3528 int ret;
05330448 3529
1bc22652 3530 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 3531 if (ret < 0) {
05330448 3532 return ret;
b9bec74b 3533 }
05330448 3534
1520f8bb
PB
3535 /*
3536 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3537 * always preceded by KVM_GET_VCPU_EVENTS.
3538 */
05330448
AL
3539
3540 get_seg(&env->segs[R_CS], &sregs.cs);
3541 get_seg(&env->segs[R_DS], &sregs.ds);
3542 get_seg(&env->segs[R_ES], &sregs.es);
3543 get_seg(&env->segs[R_FS], &sregs.fs);
3544 get_seg(&env->segs[R_GS], &sregs.gs);
3545 get_seg(&env->segs[R_SS], &sregs.ss);
3546
3547 get_seg(&env->tr, &sregs.tr);
3548 get_seg(&env->ldt, &sregs.ldt);
3549
3550 env->idt.limit = sregs.idt.limit;
3551 env->idt.base = sregs.idt.base;
3552 env->gdt.limit = sregs.gdt.limit;
3553 env->gdt.base = sregs.gdt.base;
3554
3555 env->cr[0] = sregs.cr0;
3556 env->cr[2] = sregs.cr2;
3557 env->cr[3] = sregs.cr3;
3558 env->cr[4] = sregs.cr4;
3559
05330448 3560 env->efer = sregs.efer;
cce47516
JK
3561
3562 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3563 x86_update_hflags(env);
05330448
AL
3564
3565 return 0;
3566}
3567
8f515d38
ML
3568static int kvm_get_sregs2(X86CPU *cpu)
3569{
3570 CPUX86State *env = &cpu->env;
3571 struct kvm_sregs2 sregs;
3572 int i, ret;
3573
3574 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3575 if (ret < 0) {
3576 return ret;
3577 }
3578
3579 get_seg(&env->segs[R_CS], &sregs.cs);
3580 get_seg(&env->segs[R_DS], &sregs.ds);
3581 get_seg(&env->segs[R_ES], &sregs.es);
3582 get_seg(&env->segs[R_FS], &sregs.fs);
3583 get_seg(&env->segs[R_GS], &sregs.gs);
3584 get_seg(&env->segs[R_SS], &sregs.ss);
3585
3586 get_seg(&env->tr, &sregs.tr);
3587 get_seg(&env->ldt, &sregs.ldt);
3588
3589 env->idt.limit = sregs.idt.limit;
3590 env->idt.base = sregs.idt.base;
3591 env->gdt.limit = sregs.gdt.limit;
3592 env->gdt.base = sregs.gdt.base;
3593
3594 env->cr[0] = sregs.cr0;
3595 env->cr[2] = sregs.cr2;
3596 env->cr[3] = sregs.cr3;
3597 env->cr[4] = sregs.cr4;
3598
3599 env->efer = sregs.efer;
3600
3601 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3602
3603 if (env->pdptrs_valid) {
3604 for (i = 0; i < 4; i++) {
3605 env->pdptrs[i] = sregs.pdptrs[i];
3606 }
3607 }
3608
3609 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3610 x86_update_hflags(env);
3611
3612 return 0;
3613}
3614
1bc22652 3615static int kvm_get_msrs(X86CPU *cpu)
05330448 3616{
1bc22652 3617 CPUX86State *env = &cpu->env;
d71b62a1 3618 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3619 int ret, i;
fcc35e7c 3620 uint64_t mtrr_top_bits;
05330448 3621
d71b62a1
EH
3622 kvm_msr_buf_reset(cpu);
3623
9c600a84
EH
3624 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3625 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3626 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3627 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3628 if (has_msr_star) {
9c600a84 3629 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3630 }
c3a3a7d3 3631 if (has_msr_hsave_pa) {
9c600a84 3632 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3633 }
c9b8f6b6 3634 if (has_msr_tsc_aux) {
9c600a84 3635 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3636 }
f28558d3 3637 if (has_msr_tsc_adjust) {
9c600a84 3638 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3639 }
aa82ba54 3640 if (has_msr_tsc_deadline) {
9c600a84 3641 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3642 }
21e87c46 3643 if (has_msr_misc_enable) {
9c600a84 3644 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3645 }
fc12d72e 3646 if (has_msr_smbase) {
9c600a84 3647 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3648 }
e13713db
LA
3649 if (has_msr_smi_count) {
3650 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3651 }
df67696e 3652 if (has_msr_feature_control) {
9c600a84 3653 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3654 }
6aa4228b
CQ
3655 if (has_msr_pkrs) {
3656 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3657 }
79e9ebeb 3658 if (has_msr_bndcfgs) {
9c600a84 3659 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3660 }
18cd2c17 3661 if (has_msr_xss) {
9c600a84 3662 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3663 }
65087997
TX
3664 if (has_msr_umwait) {
3665 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3666 }
a33a2cfe
PB
3667 if (has_msr_spec_ctrl) {
3668 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3669 }
cabf9862
ML
3670 if (has_tsc_scale_msr) {
3671 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3672 }
3673
2a9758c5
PB
3674 if (has_msr_tsx_ctrl) {
3675 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3676 }
cfeea0c0
KRW
3677 if (has_msr_virt_ssbd) {
3678 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3679 }
b8cc45d6 3680 if (!env->tsc_valid) {
9c600a84 3681 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3682 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3683 }
3684
05330448 3685#ifdef TARGET_X86_64
25d2e361 3686 if (lm_capable_kernel) {
9c600a84
EH
3687 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3688 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3689 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3690 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3691 }
05330448 3692#endif
9c600a84
EH
3693 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3694 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
db5daafa
VK
3695 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3696 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3697 }
6615be07
VK
3698 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3699 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3700 }
55c911a5 3701 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3702 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3703 }
55c911a5 3704 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3705 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3706 }
d645e132
MT
3707 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3708 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3709 }
0b368a10
JD
3710 if (has_architectural_pmu_version > 0) {
3711 if (has_architectural_pmu_version > 1) {
3712 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3713 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3714 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3715 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3716 }
3717 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3718 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3719 }
0b368a10 3720 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3721 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3722 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3723 }
3724 }
1a03675d 3725
57780495 3726 if (env->mcg_cap) {
9c600a84
EH
3727 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3728 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3729 if (has_msr_mcg_ext_ctl) {
3730 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3731 }
b9bec74b 3732 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3733 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3734 }
57780495 3735 }
57780495 3736
1c90ef26 3737 if (has_msr_hv_hypercall) {
9c600a84
EH
3738 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3739 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3740 }
2d384d7c 3741 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3742 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3743 }
2d384d7c 3744 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3745 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3746 }
2d384d7c 3747 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3748 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3749 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3750 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3751 }
73d24074
JD
3752 if (has_msr_hv_syndbg_options) {
3753 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3754 }
f2a53c9e
AS
3755 if (has_msr_hv_crash) {
3756 int j;
3757
5e953812 3758 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3759 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3760 }
3761 }
46eb8f98 3762 if (has_msr_hv_runtime) {
9c600a84 3763 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3764 }
2d384d7c 3765 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3766 uint32_t msr;
3767
9c600a84 3768 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3769 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3770 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3771 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3772 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3773 }
3774 }
ff99aa64
AS
3775 if (has_msr_hv_stimer) {
3776 uint32_t msr;
3777
3778 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3779 msr++) {
9c600a84 3780 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3781 }
3782 }
1eabfce6 3783 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3784 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3785 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3786 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3787 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3788 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3789 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3790 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3791 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3792 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3793 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3794 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3795 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3796 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3797 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3798 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3799 }
3800 }
5ef68987 3801
b77146e9
CP
3802 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3803 int addr_num =
3804 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3805
3806 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3807 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3808 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3809 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3810 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3811 for (i = 0; i < addr_num; i++) {
3812 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3813 }
3814 }
3815
db888065
SC
3816 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3817 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3818 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3819 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3820 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3821 }
3822
cdec2b75
ZG
3823 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3824 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3825 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3826 }
3827
12703d4e
YW
3828 if (kvm_enabled() && cpu->enable_pmu &&
3829 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3a7a27cf
YW
3830 uint64_t depth;
3831 int i, ret;
12703d4e 3832
3a7a27cf
YW
3833 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3834 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
12703d4e
YW
3835 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3836 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3837
3838 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3839 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3840 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3841 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3842 }
3843 }
3844 }
3845
d71b62a1 3846 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3847 if (ret < 0) {
05330448 3848 return ret;
b9bec74b 3849 }
05330448 3850
c70b11d1
EH
3851 if (ret < cpu->kvm_msr_buf->nmsrs) {
3852 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3853 error_report("error: failed to get MSR 0x%" PRIx32,
3854 (uint32_t)e->index);
3855 }
3856
9c600a84 3857 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3858 /*
3859 * MTRR masks: Each mask consists of 5 parts
3860 * a 10..0: must be zero
3861 * b 11 : valid bit
3862 * c n-1.12: actual mask bits
3863 * d 51..n: reserved must be zero
3864 * e 63.52: reserved must be zero
3865 *
3866 * 'n' is the number of physical bits supported by the CPU and is
3867 * apparently always <= 52. We know our 'n' but don't know what
3868 * the destinations 'n' is; it might be smaller, in which case
3869 * it masks (c) on loading. It might be larger, in which case
3870 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3871 * we're migrating to.
3872 */
3873
3874 if (cpu->fill_mtrr_mask) {
3875 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3876 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3877 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3878 } else {
3879 mtrr_top_bits = 0;
3880 }
3881
05330448 3882 for (i = 0; i < ret; i++) {
0d894367
PB
3883 uint32_t index = msrs[i].index;
3884 switch (index) {
05330448
AL
3885 case MSR_IA32_SYSENTER_CS:
3886 env->sysenter_cs = msrs[i].data;
3887 break;
3888 case MSR_IA32_SYSENTER_ESP:
3889 env->sysenter_esp = msrs[i].data;
3890 break;
3891 case MSR_IA32_SYSENTER_EIP:
3892 env->sysenter_eip = msrs[i].data;
3893 break;
0c03266a
JK
3894 case MSR_PAT:
3895 env->pat = msrs[i].data;
3896 break;
05330448
AL
3897 case MSR_STAR:
3898 env->star = msrs[i].data;
3899 break;
3900#ifdef TARGET_X86_64
3901 case MSR_CSTAR:
3902 env->cstar = msrs[i].data;
3903 break;
3904 case MSR_KERNELGSBASE:
3905 env->kernelgsbase = msrs[i].data;
3906 break;
3907 case MSR_FMASK:
3908 env->fmask = msrs[i].data;
3909 break;
3910 case MSR_LSTAR:
3911 env->lstar = msrs[i].data;
3912 break;
3913#endif
3914 case MSR_IA32_TSC:
3915 env->tsc = msrs[i].data;
3916 break;
c9b8f6b6
AS
3917 case MSR_TSC_AUX:
3918 env->tsc_aux = msrs[i].data;
3919 break;
f28558d3
WA
3920 case MSR_TSC_ADJUST:
3921 env->tsc_adjust = msrs[i].data;
3922 break;
aa82ba54
LJ
3923 case MSR_IA32_TSCDEADLINE:
3924 env->tsc_deadline = msrs[i].data;
3925 break;
aa851e36
MT
3926 case MSR_VM_HSAVE_PA:
3927 env->vm_hsave = msrs[i].data;
3928 break;
1a03675d
GC
3929 case MSR_KVM_SYSTEM_TIME:
3930 env->system_time_msr = msrs[i].data;
3931 break;
3932 case MSR_KVM_WALL_CLOCK:
3933 env->wall_clock_msr = msrs[i].data;
3934 break;
57780495
MT
3935 case MSR_MCG_STATUS:
3936 env->mcg_status = msrs[i].data;
3937 break;
3938 case MSR_MCG_CTL:
3939 env->mcg_ctl = msrs[i].data;
3940 break;
87f8b626
AR
3941 case MSR_MCG_EXT_CTL:
3942 env->mcg_ext_ctl = msrs[i].data;
3943 break;
21e87c46
AK
3944 case MSR_IA32_MISC_ENABLE:
3945 env->msr_ia32_misc_enable = msrs[i].data;
3946 break;
fc12d72e
PB
3947 case MSR_IA32_SMBASE:
3948 env->smbase = msrs[i].data;
3949 break;
e13713db
LA
3950 case MSR_SMI_COUNT:
3951 env->msr_smi_count = msrs[i].data;
3952 break;
0779caeb
ACL
3953 case MSR_IA32_FEATURE_CONTROL:
3954 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3955 break;
79e9ebeb
LJ
3956 case MSR_IA32_BNDCFGS:
3957 env->msr_bndcfgs = msrs[i].data;
3958 break;
18cd2c17
WL
3959 case MSR_IA32_XSS:
3960 env->xss = msrs[i].data;
3961 break;
65087997
TX
3962 case MSR_IA32_UMWAIT_CONTROL:
3963 env->umwait = msrs[i].data;
3964 break;
6aa4228b
CQ
3965 case MSR_IA32_PKRS:
3966 env->pkrs = msrs[i].data;
3967 break;
57780495 3968 default:
57780495
MT
3969 if (msrs[i].index >= MSR_MC0_CTL &&
3970 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3971 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3972 }
d8da8574 3973 break;
f6584ee2
GN
3974 case MSR_KVM_ASYNC_PF_EN:
3975 env->async_pf_en_msr = msrs[i].data;
3976 break;
db5daafa
VK
3977 case MSR_KVM_ASYNC_PF_INT:
3978 env->async_pf_int_msr = msrs[i].data;
3979 break;
bc9a839d
MT
3980 case MSR_KVM_PV_EOI_EN:
3981 env->pv_eoi_en_msr = msrs[i].data;
3982 break;
917367aa
MT
3983 case MSR_KVM_STEAL_TIME:
3984 env->steal_time_msr = msrs[i].data;
3985 break;
d645e132
MT
3986 case MSR_KVM_POLL_CONTROL: {
3987 env->poll_control_msr = msrs[i].data;
3988 break;
3989 }
0d894367
PB
3990 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3991 env->msr_fixed_ctr_ctrl = msrs[i].data;
3992 break;
3993 case MSR_CORE_PERF_GLOBAL_CTRL:
3994 env->msr_global_ctrl = msrs[i].data;
3995 break;
3996 case MSR_CORE_PERF_GLOBAL_STATUS:
3997 env->msr_global_status = msrs[i].data;
3998 break;
3999 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4000 env->msr_global_ovf_ctrl = msrs[i].data;
4001 break;
4002 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4003 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4004 break;
4005 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4006 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4007 break;
4008 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4009 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4010 break;
1c90ef26
VR
4011 case HV_X64_MSR_HYPERCALL:
4012 env->msr_hv_hypercall = msrs[i].data;
4013 break;
4014 case HV_X64_MSR_GUEST_OS_ID:
4015 env->msr_hv_guest_os_id = msrs[i].data;
4016 break;
5ef68987
VR
4017 case HV_X64_MSR_APIC_ASSIST_PAGE:
4018 env->msr_hv_vapic = msrs[i].data;
4019 break;
48a5f3bc
VR
4020 case HV_X64_MSR_REFERENCE_TSC:
4021 env->msr_hv_tsc = msrs[i].data;
4022 break;
f2a53c9e
AS
4023 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4024 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4025 break;
46eb8f98
AS
4026 case HV_X64_MSR_VP_RUNTIME:
4027 env->msr_hv_runtime = msrs[i].data;
4028 break;
866eea9a
AS
4029 case HV_X64_MSR_SCONTROL:
4030 env->msr_hv_synic_control = msrs[i].data;
4031 break;
866eea9a
AS
4032 case HV_X64_MSR_SIEFP:
4033 env->msr_hv_synic_evt_page = msrs[i].data;
4034 break;
4035 case HV_X64_MSR_SIMP:
4036 env->msr_hv_synic_msg_page = msrs[i].data;
4037 break;
4038 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4039 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
4040 break;
4041 case HV_X64_MSR_STIMER0_CONFIG:
4042 case HV_X64_MSR_STIMER1_CONFIG:
4043 case HV_X64_MSR_STIMER2_CONFIG:
4044 case HV_X64_MSR_STIMER3_CONFIG:
4045 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4046 msrs[i].data;
4047 break;
4048 case HV_X64_MSR_STIMER0_COUNT:
4049 case HV_X64_MSR_STIMER1_COUNT:
4050 case HV_X64_MSR_STIMER2_COUNT:
4051 case HV_X64_MSR_STIMER3_COUNT:
4052 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4053 msrs[i].data;
866eea9a 4054 break;
ba6a4fd9
VK
4055 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4056 env->msr_hv_reenlightenment_control = msrs[i].data;
4057 break;
4058 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4059 env->msr_hv_tsc_emulation_control = msrs[i].data;
4060 break;
4061 case HV_X64_MSR_TSC_EMULATION_STATUS:
4062 env->msr_hv_tsc_emulation_status = msrs[i].data;
4063 break;
73d24074
JD
4064 case HV_X64_MSR_SYNDBG_OPTIONS:
4065 env->msr_hv_syndbg_options = msrs[i].data;
4066 break;
d1ae67f6
AW
4067 case MSR_MTRRdefType:
4068 env->mtrr_deftype = msrs[i].data;
4069 break;
4070 case MSR_MTRRfix64K_00000:
4071 env->mtrr_fixed[0] = msrs[i].data;
4072 break;
4073 case MSR_MTRRfix16K_80000:
4074 env->mtrr_fixed[1] = msrs[i].data;
4075 break;
4076 case MSR_MTRRfix16K_A0000:
4077 env->mtrr_fixed[2] = msrs[i].data;
4078 break;
4079 case MSR_MTRRfix4K_C0000:
4080 env->mtrr_fixed[3] = msrs[i].data;
4081 break;
4082 case MSR_MTRRfix4K_C8000:
4083 env->mtrr_fixed[4] = msrs[i].data;
4084 break;
4085 case MSR_MTRRfix4K_D0000:
4086 env->mtrr_fixed[5] = msrs[i].data;
4087 break;
4088 case MSR_MTRRfix4K_D8000:
4089 env->mtrr_fixed[6] = msrs[i].data;
4090 break;
4091 case MSR_MTRRfix4K_E0000:
4092 env->mtrr_fixed[7] = msrs[i].data;
4093 break;
4094 case MSR_MTRRfix4K_E8000:
4095 env->mtrr_fixed[8] = msrs[i].data;
4096 break;
4097 case MSR_MTRRfix4K_F0000:
4098 env->mtrr_fixed[9] = msrs[i].data;
4099 break;
4100 case MSR_MTRRfix4K_F8000:
4101 env->mtrr_fixed[10] = msrs[i].data;
4102 break;
4103 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4104 if (index & 1) {
fcc35e7c
DDAG
4105 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4106 mtrr_top_bits;
d1ae67f6
AW
4107 } else {
4108 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4109 }
4110 break;
a33a2cfe
PB
4111 case MSR_IA32_SPEC_CTRL:
4112 env->spec_ctrl = msrs[i].data;
4113 break;
cabf9862
ML
4114 case MSR_AMD64_TSC_RATIO:
4115 env->amd_tsc_scale_msr = msrs[i].data;
4116 break;
2a9758c5
PB
4117 case MSR_IA32_TSX_CTRL:
4118 env->tsx_ctrl = msrs[i].data;
4119 break;
cfeea0c0
KRW
4120 case MSR_VIRT_SSBD:
4121 env->virt_ssbd = msrs[i].data;
4122 break;
b77146e9
CP
4123 case MSR_IA32_RTIT_CTL:
4124 env->msr_rtit_ctrl = msrs[i].data;
4125 break;
4126 case MSR_IA32_RTIT_STATUS:
4127 env->msr_rtit_status = msrs[i].data;
4128 break;
4129 case MSR_IA32_RTIT_OUTPUT_BASE:
4130 env->msr_rtit_output_base = msrs[i].data;
4131 break;
4132 case MSR_IA32_RTIT_OUTPUT_MASK:
4133 env->msr_rtit_output_mask = msrs[i].data;
4134 break;
4135 case MSR_IA32_RTIT_CR3_MATCH:
4136 env->msr_rtit_cr3_match = msrs[i].data;
4137 break;
4138 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4139 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4140 break;
db888065
SC
4141 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4142 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4143 msrs[i].data;
4144 break;
cdec2b75
ZG
4145 case MSR_IA32_XFD:
4146 env->msr_xfd = msrs[i].data;
4147 break;
4148 case MSR_IA32_XFD_ERR:
4149 env->msr_xfd_err = msrs[i].data;
4150 break;
12703d4e
YW
4151 case MSR_ARCH_LBR_CTL:
4152 env->msr_lbr_ctl = msrs[i].data;
4153 break;
4154 case MSR_ARCH_LBR_DEPTH:
4155 env->msr_lbr_depth = msrs[i].data;
4156 break;
4157 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4158 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4159 break;
4160 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4161 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4162 break;
4163 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4164 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4165 break;
05330448
AL
4166 }
4167 }
4168
4169 return 0;
4170}
4171
1bc22652 4172static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 4173{
1bc22652 4174 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 4175
1bc22652 4176 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
4177}
4178
23d02d9b 4179static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 4180{
259186a7 4181 CPUState *cs = CPU(cpu);
23d02d9b 4182 CPUX86State *env = &cpu->env;
9bdbe550
HB
4183 struct kvm_mp_state mp_state;
4184 int ret;
4185
259186a7 4186 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
4187 if (ret < 0) {
4188 return ret;
4189 }
4190 env->mp_state = mp_state.mp_state;
c14750e8 4191 if (kvm_irqchip_in_kernel()) {
259186a7 4192 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 4193 }
9bdbe550
HB
4194 return 0;
4195}
4196
1bc22652 4197static int kvm_get_apic(X86CPU *cpu)
680c1c6f 4198{
02e51483 4199 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
4200 struct kvm_lapic_state kapic;
4201 int ret;
4202
3d4b2649 4203 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 4204 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
4205 if (ret < 0) {
4206 return ret;
4207 }
4208
4209 kvm_get_apic_state(apic, &kapic);
4210 }
4211 return 0;
4212}
4213
1bc22652 4214static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 4215{
fc12d72e 4216 CPUState *cs = CPU(cpu);
1bc22652 4217 CPUX86State *env = &cpu->env;
076796f8 4218 struct kvm_vcpu_events events = {};
a0fb002c
JK
4219
4220 if (!kvm_has_vcpu_events()) {
4221 return 0;
4222 }
4223
fd13f23b
LA
4224 events.flags = 0;
4225
4226 if (has_exception_payload) {
4227 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4228 events.exception.pending = env->exception_pending;
4229 events.exception_has_payload = env->exception_has_payload;
4230 events.exception_payload = env->exception_payload;
4231 }
4232 events.exception.nr = env->exception_nr;
4233 events.exception.injected = env->exception_injected;
a0fb002c
JK
4234 events.exception.has_error_code = env->has_error_code;
4235 events.exception.error_code = env->error_code;
4236
4237 events.interrupt.injected = (env->interrupt_injected >= 0);
4238 events.interrupt.nr = env->interrupt_injected;
4239 events.interrupt.soft = env->soft_interrupt;
4240
4241 events.nmi.injected = env->nmi_injected;
4242 events.nmi.pending = env->nmi_pending;
4243 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4244
4245 events.sipi_vector = env->sipi_vector;
4246
fc12d72e
PB
4247 if (has_msr_smbase) {
4248 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4249 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4250 if (kvm_irqchip_in_kernel()) {
4251 /* As soon as these are moved to the kernel, remove them
4252 * from cs->interrupt_request.
4253 */
4254 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4255 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4256 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4257 } else {
4258 /* Keep these in cs->interrupt_request. */
4259 events.smi.pending = 0;
4260 events.smi.latched_init = 0;
4261 }
fc3a1fd7
DDAG
4262 /* Stop SMI delivery on old machine types to avoid a reboot
4263 * on an inward migration of an old VM.
4264 */
4265 if (!cpu->kvm_no_smi_migration) {
4266 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4267 }
fc12d72e
PB
4268 }
4269
ea643051 4270 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
4271 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4272 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4273 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4274 }
ea643051 4275 }
aee028b9 4276
1bc22652 4277 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
4278}
4279
1bc22652 4280static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 4281{
1bc22652 4282 CPUX86State *env = &cpu->env;
a0fb002c
JK
4283 struct kvm_vcpu_events events;
4284 int ret;
4285
4286 if (!kvm_has_vcpu_events()) {
4287 return 0;
4288 }
4289
fc12d72e 4290 memset(&events, 0, sizeof(events));
1bc22652 4291 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
4292 if (ret < 0) {
4293 return ret;
4294 }
fd13f23b
LA
4295
4296 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4297 env->exception_pending = events.exception.pending;
4298 env->exception_has_payload = events.exception_has_payload;
4299 env->exception_payload = events.exception_payload;
4300 } else {
4301 env->exception_pending = 0;
4302 env->exception_has_payload = false;
4303 }
4304 env->exception_injected = events.exception.injected;
4305 env->exception_nr =
4306 (env->exception_pending || env->exception_injected) ?
4307 events.exception.nr : -1;
a0fb002c
JK
4308 env->has_error_code = events.exception.has_error_code;
4309 env->error_code = events.exception.error_code;
4310
4311 env->interrupt_injected =
4312 events.interrupt.injected ? events.interrupt.nr : -1;
4313 env->soft_interrupt = events.interrupt.soft;
4314
4315 env->nmi_injected = events.nmi.injected;
4316 env->nmi_pending = events.nmi.pending;
4317 if (events.nmi.masked) {
4318 env->hflags2 |= HF2_NMI_MASK;
4319 } else {
4320 env->hflags2 &= ~HF2_NMI_MASK;
4321 }
4322
fc12d72e
PB
4323 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4324 if (events.smi.smm) {
4325 env->hflags |= HF_SMM_MASK;
4326 } else {
4327 env->hflags &= ~HF_SMM_MASK;
4328 }
4329 if (events.smi.pending) {
4330 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4331 } else {
4332 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4333 }
4334 if (events.smi.smm_inside_nmi) {
4335 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4336 } else {
4337 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4338 }
4339 if (events.smi.latched_init) {
4340 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4341 } else {
4342 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4343 }
4344 }
4345
a0fb002c 4346 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
4347
4348 return 0;
4349}
4350
1bc22652 4351static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 4352{
ed2803da 4353 CPUState *cs = CPU(cpu);
1bc22652 4354 CPUX86State *env = &cpu->env;
b0b1d690 4355 int ret = 0;
b0b1d690
JK
4356 unsigned long reinject_trap = 0;
4357
4358 if (!kvm_has_vcpu_events()) {
fd13f23b 4359 if (env->exception_nr == EXCP01_DB) {
b0b1d690 4360 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 4361 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
4362 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4363 }
fd13f23b 4364 kvm_reset_exception(env);
b0b1d690
JK
4365 }
4366
4367 /*
4368 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4369 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4370 * by updating the debug state once again if single-stepping is on.
4371 * Another reason to call kvm_update_guest_debug here is a pending debug
4372 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4373 * reinject them via SET_GUEST_DEBUG.
4374 */
4375 if (reinject_trap ||
ed2803da 4376 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 4377 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 4378 }
b0b1d690
JK
4379 return ret;
4380}
4381
1bc22652 4382static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 4383{
1bc22652 4384 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4385 struct kvm_debugregs dbgregs;
4386 int i;
4387
4388 if (!kvm_has_debugregs()) {
4389 return 0;
4390 }
4391
1f670a95 4392 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
4393 for (i = 0; i < 4; i++) {
4394 dbgregs.db[i] = env->dr[i];
4395 }
4396 dbgregs.dr6 = env->dr[6];
4397 dbgregs.dr7 = env->dr[7];
4398 dbgregs.flags = 0;
4399
1bc22652 4400 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
4401}
4402
1bc22652 4403static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 4404{
1bc22652 4405 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4406 struct kvm_debugregs dbgregs;
4407 int i, ret;
4408
4409 if (!kvm_has_debugregs()) {
4410 return 0;
4411 }
4412
1bc22652 4413 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 4414 if (ret < 0) {
b9bec74b 4415 return ret;
ff44f1a3
JK
4416 }
4417 for (i = 0; i < 4; i++) {
4418 env->dr[i] = dbgregs.db[i];
4419 }
4420 env->dr[4] = env->dr[6] = dbgregs.dr6;
4421 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
4422
4423 return 0;
4424}
4425
ebbfef2f
LA
4426static int kvm_put_nested_state(X86CPU *cpu)
4427{
4428 CPUX86State *env = &cpu->env;
4429 int max_nested_state_len = kvm_max_nested_state_length();
4430
1e44f3ab 4431 if (!env->nested_state) {
ebbfef2f
LA
4432 return 0;
4433 }
4434
b16c0e20
PB
4435 /*
4436 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4437 */
4438 if (env->hflags & HF_GUEST_MASK) {
4439 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4440 } else {
4441 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4442 }
0baa4b44
VK
4443
4444 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4445 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
b16c0e20
PB
4446 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4447 } else {
4448 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4449 }
4450
ebbfef2f
LA
4451 assert(env->nested_state->size <= max_nested_state_len);
4452 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4453}
4454
4455static int kvm_get_nested_state(X86CPU *cpu)
4456{
4457 CPUX86State *env = &cpu->env;
4458 int max_nested_state_len = kvm_max_nested_state_length();
4459 int ret;
4460
1e44f3ab 4461 if (!env->nested_state) {
ebbfef2f
LA
4462 return 0;
4463 }
4464
4465 /*
4466 * It is possible that migration restored a smaller size into
4467 * nested_state->hdr.size than what our kernel support.
4468 * We preserve migration origin nested_state->hdr.size for
4469 * call to KVM_SET_NESTED_STATE but wish that our next call
4470 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4471 */
4472 env->nested_state->size = max_nested_state_len;
4473
4474 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4475 if (ret < 0) {
4476 return ret;
4477 }
4478
b16c0e20
PB
4479 /*
4480 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4481 */
ebbfef2f
LA
4482 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4483 env->hflags |= HF_GUEST_MASK;
4484 } else {
4485 env->hflags &= ~HF_GUEST_MASK;
4486 }
0baa4b44
VK
4487
4488 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4489 if (cpu_has_svm(env)) {
4490 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4491 env->hflags2 |= HF2_GIF_MASK;
4492 } else {
4493 env->hflags2 &= ~HF2_GIF_MASK;
4494 }
b16c0e20 4495 }
ebbfef2f
LA
4496
4497 return ret;
4498}
4499
20d695a9 4500int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 4501{
20d695a9 4502 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
4503 int ret;
4504
2fa45344 4505 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 4506
b16c0e20 4507 /* must be before kvm_put_nested_state so that EFER.SVME is set */
8f515d38 4508 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
b16c0e20
PB
4509 if (ret < 0) {
4510 return ret;
4511 }
4512
48e1a45c 4513 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
4514 ret = kvm_put_nested_state(x86_cpu);
4515 if (ret < 0) {
4516 return ret;
4517 }
4518
6bdf863d
JK
4519 ret = kvm_put_msr_feature_control(x86_cpu);
4520 if (ret < 0) {
4521 return ret;
4522 }
4523 }
4524
36f96c4b
HZ
4525 if (level == KVM_PUT_FULL_STATE) {
4526 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4527 * because TSC frequency mismatch shouldn't abort migration,
4528 * unless the user explicitly asked for a more strict TSC
4529 * setting (e.g. using an explicit "tsc-freq" option).
4530 */
4531 kvm_arch_set_tsc_khz(cpu);
4532 }
4533
1bc22652 4534 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 4535 if (ret < 0) {
05330448 4536 return ret;
b9bec74b 4537 }
1bc22652 4538 ret = kvm_put_xsave(x86_cpu);
b9bec74b 4539 if (ret < 0) {
f1665b21 4540 return ret;
b9bec74b 4541 }
1bc22652 4542 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 4543 if (ret < 0) {
05330448 4544 return ret;
b9bec74b 4545 }
ab443475 4546 /* must be before kvm_put_msrs */
1bc22652 4547 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
4548 if (ret < 0) {
4549 return ret;
4550 }
1bc22652 4551 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 4552 if (ret < 0) {
05330448 4553 return ret;
b9bec74b 4554 }
4fadfa00
PH
4555 ret = kvm_put_vcpu_events(x86_cpu, level);
4556 if (ret < 0) {
4557 return ret;
4558 }
ea643051 4559 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 4560 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 4561 if (ret < 0) {
680c1c6f
JK
4562 return ret;
4563 }
ea643051 4564 }
7477cd38
MT
4565
4566 ret = kvm_put_tscdeadline_msr(x86_cpu);
4567 if (ret < 0) {
4568 return ret;
4569 }
1bc22652 4570 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 4571 if (ret < 0) {
b0b1d690 4572 return ret;
b9bec74b 4573 }
b0b1d690 4574 /* must be last */
1bc22652 4575 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 4576 if (ret < 0) {
ff44f1a3 4577 return ret;
b9bec74b 4578 }
05330448
AL
4579 return 0;
4580}
4581
20d695a9 4582int kvm_arch_get_registers(CPUState *cs)
05330448 4583{
20d695a9 4584 X86CPU *cpu = X86_CPU(cs);
05330448
AL
4585 int ret;
4586
20d695a9 4587 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 4588
4fadfa00 4589 ret = kvm_get_vcpu_events(cpu);
b9bec74b 4590 if (ret < 0) {
f4f1110e 4591 goto out;
b9bec74b 4592 }
4fadfa00
PH
4593 /*
4594 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4595 * KVM_GET_REGS and KVM_GET_SREGS.
4596 */
4597 ret = kvm_get_mp_state(cpu);
b9bec74b 4598 if (ret < 0) {
f4f1110e 4599 goto out;
b9bec74b 4600 }
4fadfa00 4601 ret = kvm_getput_regs(cpu, 0);
b9bec74b 4602 if (ret < 0) {
f4f1110e 4603 goto out;
b9bec74b 4604 }
4fadfa00 4605 ret = kvm_get_xsave(cpu);
b9bec74b 4606 if (ret < 0) {
f4f1110e 4607 goto out;
b9bec74b 4608 }
4fadfa00 4609 ret = kvm_get_xcrs(cpu);
b9bec74b 4610 if (ret < 0) {
f4f1110e 4611 goto out;
b9bec74b 4612 }
8f515d38 4613 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
b9bec74b 4614 if (ret < 0) {
f4f1110e 4615 goto out;
b9bec74b 4616 }
4fadfa00 4617 ret = kvm_get_msrs(cpu);
680c1c6f 4618 if (ret < 0) {
f4f1110e 4619 goto out;
680c1c6f 4620 }
4fadfa00 4621 ret = kvm_get_apic(cpu);
b9bec74b 4622 if (ret < 0) {
f4f1110e 4623 goto out;
b9bec74b 4624 }
1bc22652 4625 ret = kvm_get_debugregs(cpu);
b9bec74b 4626 if (ret < 0) {
f4f1110e 4627 goto out;
b9bec74b 4628 }
ebbfef2f
LA
4629 ret = kvm_get_nested_state(cpu);
4630 if (ret < 0) {
4631 goto out;
4632 }
f4f1110e
RH
4633 ret = 0;
4634 out:
4635 cpu_sync_bndcs_hflags(&cpu->env);
4636 return ret;
05330448
AL
4637}
4638
20d695a9 4639void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 4640{
20d695a9
AF
4641 X86CPU *x86_cpu = X86_CPU(cpu);
4642 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
4643 int ret;
4644
276ce815 4645 /* Inject NMI */
fc12d72e
PB
4646 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4647 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4648 qemu_mutex_lock_iothread();
4649 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4650 qemu_mutex_unlock_iothread();
4651 DPRINTF("injected NMI\n");
4652 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4653 if (ret < 0) {
4654 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4655 strerror(-ret));
4656 }
4657 }
4658 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4659 qemu_mutex_lock_iothread();
4660 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4661 qemu_mutex_unlock_iothread();
4662 DPRINTF("injected SMI\n");
4663 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4664 if (ret < 0) {
4665 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4666 strerror(-ret));
4667 }
ce377af3 4668 }
276ce815
LJ
4669 }
4670
15eafc2e 4671 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
4672 qemu_mutex_lock_iothread();
4673 }
4674
e0723c45
PB
4675 /* Force the VCPU out of its inner loop to process any INIT requests
4676 * or (for userspace APIC, but it is cheap to combine the checks here)
4677 * pending TPR access reports.
4678 */
4679 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
4680 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4681 !(env->hflags & HF_SMM_MASK)) {
4682 cpu->exit_request = 1;
4683 }
4684 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4685 cpu->exit_request = 1;
4686 }
e0723c45 4687 }
05330448 4688
15eafc2e 4689 if (!kvm_pic_in_kernel()) {
db1669bc
JK
4690 /* Try to inject an interrupt if the guest can accept it */
4691 if (run->ready_for_interrupt_injection &&
259186a7 4692 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
4693 (env->eflags & IF_MASK)) {
4694 int irq;
4695
259186a7 4696 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
4697 irq = cpu_get_pic_interrupt(env);
4698 if (irq >= 0) {
4699 struct kvm_interrupt intr;
4700
4701 intr.irq = irq;
db1669bc 4702 DPRINTF("injected interrupt %d\n", irq);
1bc22652 4703 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
4704 if (ret < 0) {
4705 fprintf(stderr,
4706 "KVM: injection failed, interrupt lost (%s)\n",
4707 strerror(-ret));
4708 }
db1669bc
JK
4709 }
4710 }
05330448 4711
db1669bc
JK
4712 /* If we have an interrupt but the guest is not ready to receive an
4713 * interrupt, request an interrupt window exit. This will
4714 * cause a return to userspace as soon as the guest is ready to
4715 * receive interrupts. */
259186a7 4716 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4717 run->request_interrupt_window = 1;
4718 } else {
4719 run->request_interrupt_window = 0;
4720 }
4721
4722 DPRINTF("setting tpr\n");
02e51483 4723 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4724
4725 qemu_mutex_unlock_iothread();
db1669bc 4726 }
05330448
AL
4727}
4728
035d1ef2
CQ
4729static void kvm_rate_limit_on_bus_lock(void)
4730{
4731 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4732
4733 if (delay_ns) {
4734 g_usleep(delay_ns / SCALE_US);
4735 }
4736}
4737
4c663752 4738MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4739{
20d695a9
AF
4740 X86CPU *x86_cpu = X86_CPU(cpu);
4741 CPUX86State *env = &x86_cpu->env;
4742
fc12d72e
PB
4743 if (run->flags & KVM_RUN_X86_SMM) {
4744 env->hflags |= HF_SMM_MASK;
4745 } else {
f5c052b9 4746 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4747 }
b9bec74b 4748 if (run->if_flag) {
05330448 4749 env->eflags |= IF_MASK;
b9bec74b 4750 } else {
05330448 4751 env->eflags &= ~IF_MASK;
b9bec74b 4752 }
035d1ef2
CQ
4753 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4754 kvm_rate_limit_on_bus_lock();
4755 }
4b8523ee
JK
4756
4757 /* We need to protect the apic state against concurrent accesses from
4758 * different threads in case the userspace irqchip is used. */
4759 if (!kvm_irqchip_in_kernel()) {
4760 qemu_mutex_lock_iothread();
4761 }
02e51483
CF
4762 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4763 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4764 if (!kvm_irqchip_in_kernel()) {
4765 qemu_mutex_unlock_iothread();
4766 }
f794aa4a 4767 return cpu_get_mem_attrs(env);
05330448
AL
4768}
4769
20d695a9 4770int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4771{
20d695a9
AF
4772 X86CPU *cpu = X86_CPU(cs);
4773 CPUX86State *env = &cpu->env;
232fc23b 4774
259186a7 4775 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4776 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4777 assert(env->mcg_cap);
4778
259186a7 4779 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4780
dd1750d7 4781 kvm_cpu_synchronize_state(cs);
ab443475 4782
fd13f23b 4783 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4784 /* this means triple fault */
cf83f140 4785 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4786 cs->exit_request = 1;
ab443475
JK
4787 return 0;
4788 }
fd13f23b 4789 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4790 env->has_error_code = 0;
4791
259186a7 4792 cs->halted = 0;
ab443475
JK
4793 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4794 env->mp_state = KVM_MP_STATE_RUNNABLE;
4795 }
4796 }
4797
fc12d72e
PB
4798 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4799 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4800 kvm_cpu_synchronize_state(cs);
4801 do_cpu_init(cpu);
4802 }
4803
db1669bc
JK
4804 if (kvm_irqchip_in_kernel()) {
4805 return 0;
4806 }
4807
259186a7
AF
4808 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4809 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4810 apic_poll_irq(cpu->apic_state);
5d62c43a 4811 }
259186a7 4812 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4813 (env->eflags & IF_MASK)) ||
259186a7
AF
4814 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4815 cs->halted = 0;
6792a57b 4816 }
259186a7 4817 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4818 kvm_cpu_synchronize_state(cs);
232fc23b 4819 do_cpu_sipi(cpu);
0af691d7 4820 }
259186a7
AF
4821 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4822 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4823 kvm_cpu_synchronize_state(cs);
02e51483 4824 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4825 env->tpr_access_type);
4826 }
0af691d7 4827
259186a7 4828 return cs->halted;
0af691d7
MT
4829}
4830
839b5630 4831static int kvm_handle_halt(X86CPU *cpu)
05330448 4832{
259186a7 4833 CPUState *cs = CPU(cpu);
839b5630
AF
4834 CPUX86State *env = &cpu->env;
4835
259186a7 4836 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4837 (env->eflags & IF_MASK)) &&
259186a7
AF
4838 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4839 cs->halted = 1;
bb4ea393 4840 return EXCP_HLT;
05330448
AL
4841 }
4842
bb4ea393 4843 return 0;
05330448
AL
4844}
4845
f7575c96 4846static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4847{
f7575c96
AF
4848 CPUState *cs = CPU(cpu);
4849 struct kvm_run *run = cs->kvm_run;
d362e757 4850
02e51483 4851 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4852 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4853 : TPR_ACCESS_READ);
4854 return 1;
4855}
4856
f17ec444 4857int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4858{
38972938 4859 static const uint8_t int3 = 0xcc;
64bf3f4e 4860
f17ec444
AF
4861 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4862 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4863 return -EINVAL;
b9bec74b 4864 }
e22a25c9
AL
4865 return 0;
4866}
4867
f17ec444 4868int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4869{
4870 uint8_t int3;
4871
c6986f16
PB
4872 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4873 return -EINVAL;
4874 }
4875 if (int3 != 0xcc) {
4876 return 0;
4877 }
4878 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4879 return -EINVAL;
b9bec74b 4880 }
e22a25c9
AL
4881 return 0;
4882}
4883
4884static struct {
4885 target_ulong addr;
4886 int len;
4887 int type;
4888} hw_breakpoint[4];
4889
4890static int nb_hw_breakpoint;
4891
4892static int find_hw_breakpoint(target_ulong addr, int len, int type)
4893{
4894 int n;
4895
b9bec74b 4896 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4897 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4898 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4899 return n;
b9bec74b
JK
4900 }
4901 }
e22a25c9
AL
4902 return -1;
4903}
4904
4905int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4906 target_ulong len, int type)
4907{
4908 switch (type) {
4909 case GDB_BREAKPOINT_HW:
4910 len = 1;
4911 break;
4912 case GDB_WATCHPOINT_WRITE:
4913 case GDB_WATCHPOINT_ACCESS:
4914 switch (len) {
4915 case 1:
4916 break;
4917 case 2:
4918 case 4:
4919 case 8:
b9bec74b 4920 if (addr & (len - 1)) {
e22a25c9 4921 return -EINVAL;
b9bec74b 4922 }
e22a25c9
AL
4923 break;
4924 default:
4925 return -EINVAL;
4926 }
4927 break;
4928 default:
4929 return -ENOSYS;
4930 }
4931
b9bec74b 4932 if (nb_hw_breakpoint == 4) {
e22a25c9 4933 return -ENOBUFS;
b9bec74b
JK
4934 }
4935 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4936 return -EEXIST;
b9bec74b 4937 }
e22a25c9
AL
4938 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4939 hw_breakpoint[nb_hw_breakpoint].len = len;
4940 hw_breakpoint[nb_hw_breakpoint].type = type;
4941 nb_hw_breakpoint++;
4942
4943 return 0;
4944}
4945
4946int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4947 target_ulong len, int type)
4948{
4949 int n;
4950
4951 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4952 if (n < 0) {
e22a25c9 4953 return -ENOENT;
b9bec74b 4954 }
e22a25c9
AL
4955 nb_hw_breakpoint--;
4956 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4957
4958 return 0;
4959}
4960
4961void kvm_arch_remove_all_hw_breakpoints(void)
4962{
4963 nb_hw_breakpoint = 0;
4964}
4965
4966static CPUWatchpoint hw_watchpoint;
4967
a60f24b5 4968static int kvm_handle_debug(X86CPU *cpu,
48405526 4969 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4970{
ed2803da 4971 CPUState *cs = CPU(cpu);
a60f24b5 4972 CPUX86State *env = &cpu->env;
f2574737 4973 int ret = 0;
e22a25c9
AL
4974 int n;
4975
37936ac7
LA
4976 if (arch_info->exception == EXCP01_DB) {
4977 if (arch_info->dr6 & DR6_BS) {
ed2803da 4978 if (cs->singlestep_enabled) {
f2574737 4979 ret = EXCP_DEBUG;
b9bec74b 4980 }
e22a25c9 4981 } else {
b9bec74b
JK
4982 for (n = 0; n < 4; n++) {
4983 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4984 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4985 case 0x0:
f2574737 4986 ret = EXCP_DEBUG;
e22a25c9
AL
4987 break;
4988 case 0x1:
f2574737 4989 ret = EXCP_DEBUG;
ff4700b0 4990 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4991 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4992 hw_watchpoint.flags = BP_MEM_WRITE;
4993 break;
4994 case 0x3:
f2574737 4995 ret = EXCP_DEBUG;
ff4700b0 4996 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4997 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4998 hw_watchpoint.flags = BP_MEM_ACCESS;
4999 break;
5000 }
b9bec74b
JK
5001 }
5002 }
e22a25c9 5003 }
ff4700b0 5004 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 5005 ret = EXCP_DEBUG;
b9bec74b 5006 }
f2574737 5007 if (ret == 0) {
ff4700b0 5008 cpu_synchronize_state(cs);
fd13f23b 5009 assert(env->exception_nr == -1);
b0b1d690 5010
f2574737 5011 /* pass to guest */
fd13f23b
LA
5012 kvm_queue_exception(env, arch_info->exception,
5013 arch_info->exception == EXCP01_DB,
5014 arch_info->dr6);
48405526 5015 env->has_error_code = 0;
b0b1d690 5016 }
e22a25c9 5017
f2574737 5018 return ret;
e22a25c9
AL
5019}
5020
20d695a9 5021void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
5022{
5023 const uint8_t type_code[] = {
5024 [GDB_BREAKPOINT_HW] = 0x0,
5025 [GDB_WATCHPOINT_WRITE] = 0x1,
5026 [GDB_WATCHPOINT_ACCESS] = 0x3
5027 };
5028 const uint8_t len_code[] = {
5029 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5030 };
5031 int n;
5032
a60f24b5 5033 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 5034 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 5035 }
e22a25c9
AL
5036 if (nb_hw_breakpoint > 0) {
5037 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5038 dbg->arch.debugreg[7] = 0x0600;
5039 for (n = 0; n < nb_hw_breakpoint; n++) {
5040 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5041 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5042 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 5043 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
5044 }
5045 }
5046}
4513d923 5047
c22f5467
SC
5048static bool has_sgx_provisioning;
5049
5050static bool __kvm_enable_sgx_provisioning(KVMState *s)
5051{
5052 int fd, ret;
5053
5054 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5055 return false;
5056 }
5057
5058 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5059 if (fd < 0) {
5060 return false;
5061 }
5062
5063 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5064 if (ret) {
5065 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5066 exit(1);
5067 }
5068 close(fd);
5069 return true;
5070}
5071
5072bool kvm_enable_sgx_provisioning(KVMState *s)
5073{
5074 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5075}
5076
2a4dac83
JK
5077static bool host_supports_vmx(void)
5078{
5079 uint32_t ecx, unused;
5080
5081 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5082 return ecx & CPUID_EXT_VMX;
5083}
5084
5085#define VMX_INVALID_GUEST_STATE 0x80000021
5086
20d695a9 5087int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 5088{
20d695a9 5089 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
5090 uint64_t code;
5091 int ret;
5092
5093 switch (run->exit_reason) {
5094 case KVM_EXIT_HLT:
5095 DPRINTF("handle_hlt\n");
4b8523ee 5096 qemu_mutex_lock_iothread();
839b5630 5097 ret = kvm_handle_halt(cpu);
4b8523ee 5098 qemu_mutex_unlock_iothread();
2a4dac83
JK
5099 break;
5100 case KVM_EXIT_SET_TPR:
5101 ret = 0;
5102 break;
d362e757 5103 case KVM_EXIT_TPR_ACCESS:
4b8523ee 5104 qemu_mutex_lock_iothread();
f7575c96 5105 ret = kvm_handle_tpr_access(cpu);
4b8523ee 5106 qemu_mutex_unlock_iothread();
d362e757 5107 break;
2a4dac83
JK
5108 case KVM_EXIT_FAIL_ENTRY:
5109 code = run->fail_entry.hardware_entry_failure_reason;
5110 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5111 code);
5112 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5113 fprintf(stderr,
12619721 5114 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
5115 "unrestricted mode\n"
5116 "support, the failure can be most likely due to the guest "
5117 "entering an invalid\n"
5118 "state for Intel VT. For example, the guest maybe running "
5119 "in big real mode\n"
5120 "which is not supported on less recent Intel processors."
5121 "\n\n");
5122 }
5123 ret = -1;
5124 break;
5125 case KVM_EXIT_EXCEPTION:
5126 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5127 run->ex.exception, run->ex.error_code);
5128 ret = -1;
5129 break;
f2574737
JK
5130 case KVM_EXIT_DEBUG:
5131 DPRINTF("kvm_exit_debug\n");
4b8523ee 5132 qemu_mutex_lock_iothread();
a60f24b5 5133 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 5134 qemu_mutex_unlock_iothread();
f2574737 5135 break;
50efe82c
AS
5136 case KVM_EXIT_HYPERV:
5137 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5138 break;
15eafc2e
PB
5139 case KVM_EXIT_IOAPIC_EOI:
5140 ioapic_eoi_broadcast(run->eoi.vector);
5141 ret = 0;
5142 break;
035d1ef2
CQ
5143 case KVM_EXIT_X86_BUS_LOCK:
5144 /* already handled in kvm_arch_post_run */
5145 ret = 0;
5146 break;
2a4dac83
JK
5147 default:
5148 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5149 ret = -1;
5150 break;
5151 }
5152
5153 return ret;
5154}
5155
20d695a9 5156bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 5157{
20d695a9
AF
5158 X86CPU *cpu = X86_CPU(cs);
5159 CPUX86State *env = &cpu->env;
5160
dd1750d7 5161 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
5162 return !(env->cr[0] & CR0_PE_MASK) ||
5163 ((env->segs[R_CS].selector & 3) != 3);
4513d923 5164}
84b058d7
JK
5165
5166void kvm_arch_init_irq_routing(KVMState *s)
5167{
cc7e0ddf 5168 /* We know at this point that we're using the in-kernel
614e41bc 5169 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 5170 * we can use msi via irqfd and GSI routing.
cc7e0ddf 5171 */
614e41bc 5172 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 5173 kvm_gsi_routing_allowed = true;
15eafc2e
PB
5174
5175 if (kvm_irqchip_is_split()) {
def4c557 5176 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
15eafc2e
PB
5177 int i;
5178
5179 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5180 MSI routes for signaling interrupts to the local apics. */
5181 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
def4c557 5182 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
15eafc2e
PB
5183 error_report("Could not enable split IRQ mode.");
5184 exit(1);
5185 }
5186 }
def4c557 5187 kvm_irqchip_commit_route_changes(&c);
15eafc2e
PB
5188 }
5189}
5190
4376c40d 5191int kvm_arch_irqchip_create(KVMState *s)
15eafc2e
PB
5192{
5193 int ret;
4376c40d 5194 if (kvm_kernel_irqchip_split()) {
15eafc2e
PB
5195 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5196 if (ret) {
df3c286c 5197 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
5198 strerror(-ret));
5199 exit(1);
5200 } else {
5201 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5202 kvm_split_irqchip = true;
5203 return 1;
5204 }
5205 } else {
5206 return 0;
5207 }
84b058d7 5208}
b139bd30 5209
c1bb5418
DW
5210uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5211{
5212 CPUX86State *env;
5213 uint64_t ext_id;
5214
5215 if (!first_cpu) {
5216 return address;
5217 }
5218 env = &X86_CPU(first_cpu)->env;
5219 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5220 return address;
5221 }
5222
5223 /*
5224 * If the remappable format bit is set, or the upper bits are
5225 * already set in address_hi, or the low extended bits aren't
5226 * there anyway, do nothing.
5227 */
5228 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5229 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5230 return address;
5231 }
5232
5233 address &= ~ext_id;
5234 address |= ext_id << 35;
5235 return address;
5236}
5237
9e03a040 5238int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 5239 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 5240{
8b5ed7df
PX
5241 X86IOMMUState *iommu = x86_iommu_get_default();
5242
5243 if (iommu) {
30c60f77 5244 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
8b5ed7df 5245
c1bb5418
DW
5246 if (class->int_remap) {
5247 int ret;
5248 MSIMessage src, dst;
0ea1472d 5249
c1bb5418
DW
5250 src.address = route->u.msi.address_hi;
5251 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5252 src.address |= route->u.msi.address_lo;
5253 src.data = route->u.msi.data;
8b5ed7df 5254
c1bb5418
DW
5255 ret = class->int_remap(iommu, &src, &dst, dev ? \
5256 pci_requester_id(dev) : \
5257 X86_IOMMU_SID_INVALID);
5258 if (ret) {
5259 trace_kvm_x86_fixup_msi_error(route->gsi);
5260 return 1;
5261 }
5262
5263 /*
5264 * Handled untranslated compatibilty format interrupt with
5265 * extended destination ID in the low bits 11-5. */
5266 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
8b5ed7df 5267
c1bb5418
DW
5268 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5269 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5270 route->u.msi.data = dst.data;
5271 return 0;
5272 }
8b5ed7df
PX
5273 }
5274
c1bb5418
DW
5275 address = kvm_swizzle_msi_ext_dest_id(address);
5276 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5277 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
9e03a040
FB
5278 return 0;
5279}
1850b6b7 5280
38d87493
PX
5281typedef struct MSIRouteEntry MSIRouteEntry;
5282
5283struct MSIRouteEntry {
5284 PCIDevice *dev; /* Device pointer */
5285 int vector; /* MSI/MSIX vector index */
5286 int virq; /* Virtual IRQ index */
5287 QLIST_ENTRY(MSIRouteEntry) list;
5288};
5289
5290/* List of used GSI routes */
5291static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5292 QLIST_HEAD_INITIALIZER(msi_route_list);
5293
e1d4fb2d
PX
5294static void kvm_update_msi_routes_all(void *private, bool global,
5295 uint32_t index, uint32_t mask)
5296{
a56de056 5297 int cnt = 0, vector;
e1d4fb2d
PX
5298 MSIRouteEntry *entry;
5299 MSIMessage msg;
fd563564
PX
5300 PCIDevice *dev;
5301
e1d4fb2d
PX
5302 /* TODO: explicit route update */
5303 QLIST_FOREACH(entry, &msi_route_list, list) {
5304 cnt++;
a56de056 5305 vector = entry->vector;
fd563564 5306 dev = entry->dev;
a56de056
PX
5307 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5308 msg = msix_get_message(dev, vector);
5309 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5310 msg = msi_get_message(dev, vector);
5311 } else {
5312 /*
5313 * Either MSI/MSIX is disabled for the device, or the
5314 * specific message was masked out. Skip this one.
5315 */
fd563564
PX
5316 continue;
5317 }
fd563564 5318 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 5319 }
3f1fea0f 5320 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
5321 trace_kvm_x86_update_msi_routes(cnt);
5322}
5323
38d87493
PX
5324int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5325 int vector, PCIDevice *dev)
5326{
e1d4fb2d 5327 static bool notify_list_inited = false;
38d87493
PX
5328 MSIRouteEntry *entry;
5329
5330 if (!dev) {
5331 /* These are (possibly) IOAPIC routes only used for split
5332 * kernel irqchip mode, while what we are housekeeping are
5333 * PCI devices only. */
5334 return 0;
5335 }
5336
5337 entry = g_new0(MSIRouteEntry, 1);
5338 entry->dev = dev;
5339 entry->vector = vector;
5340 entry->virq = route->gsi;
5341 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5342
5343 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
5344
5345 if (!notify_list_inited) {
5346 /* For the first time we do add route, add ourselves into
5347 * IOMMU's IEC notify list if needed. */
5348 X86IOMMUState *iommu = x86_iommu_get_default();
5349 if (iommu) {
5350 x86_iommu_iec_register_notifier(iommu,
5351 kvm_update_msi_routes_all,
5352 NULL);
5353 }
5354 notify_list_inited = true;
5355 }
38d87493
PX
5356 return 0;
5357}
5358
5359int kvm_arch_release_virq_post(int virq)
5360{
5361 MSIRouteEntry *entry, *next;
5362 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5363 if (entry->virq == virq) {
5364 trace_kvm_x86_remove_msi_route(virq);
5365 QLIST_REMOVE(entry, list);
01960e6d 5366 g_free(entry);
38d87493
PX
5367 break;
5368 }
5369 }
9e03a040
FB
5370 return 0;
5371}
1850b6b7
EA
5372
5373int kvm_arch_msi_data_to_gsi(uint32_t data)
5374{
5375 abort();
5376}
e1e43813
PB
5377
5378bool kvm_has_waitpkg(void)
5379{
5380 return has_msr_umwait;
5381}
92a5199b
TL
5382
5383bool kvm_arch_cpu_check_are_resettable(void)
5384{
5385 return !sev_es_enabled();
5386}
19db68ca
YZ
5387
5388#define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5389
5390void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5391{
5392 KVMState *s = kvm_state;
5393 uint64_t supported;
5394
5395 mask &= XSTATE_DYNAMIC_MASK;
5396 if (!mask) {
5397 return;
5398 }
5399 /*
5400 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5401 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5402 * about them already because they are not supported features.
5403 */
5404 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5405 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5406 mask &= supported;
5407
5408 while (mask) {
5409 int bit = ctz64(mask);
5410 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5411 if (rc) {
5412 /*
5413 * Older kernel version (<5.17) do not support
5414 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5415 * any dynamic feature from kvm_arch_get_supported_cpuid.
5416 */
5417 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5418 "for feature bit %d", bit);
5419 }
5420 mask &= ~BIT_ULL(bit);
5421 }
5422}