]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm/kvm.c
x86: add support for KVM_CAP_XSAVE2 and AMX state migration
[mirror_qemu.git] / target / i386 / kvm / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
8efc4e51 16#include "qapi/qapi-events-run-state.h"
da34e65c 17#include "qapi/error.h"
05330448 18#include <sys/ioctl.h>
25d2e361 19#include <sys/utsname.h>
19db68ca 20#include <sys/syscall.h>
05330448
AL
21
22#include <linux/kvm.h>
1814eab6 23#include "standard-headers/asm-x86/kvm_para.h"
05330448 24
33c11879 25#include "cpu.h"
f5cc5a5c 26#include "host-cpu.h"
9c17d615 27#include "sysemu/sysemu.h"
b3946626 28#include "sysemu/hw_accel.h"
6410848b 29#include "sysemu/kvm_int.h"
54d31236 30#include "sysemu/runstate.h"
1d31f66b 31#include "kvm_i386.h"
93777de3 32#include "sev.h"
50efe82c 33#include "hyperv.h"
5e953812 34#include "hyperv-proto.h"
50efe82c 35
022c62cb 36#include "exec/gdbstub.h"
1de7afc9 37#include "qemu/host-utils.h"
db725815 38#include "qemu/main-loop.h"
1de7afc9 39#include "qemu/config-file.h"
1c4a55db 40#include "qemu/error-report.h"
5df022cf 41#include "qemu/memalign.h"
89a289c7 42#include "hw/i386/x86.h"
0d09e41a 43#include "hw/i386/apic.h"
e0723c45
PB
44#include "hw/i386/apic_internal.h"
45#include "hw/i386/apic-msidef.h"
8b5ed7df 46#include "hw/i386/intel_iommu.h"
e1d4fb2d 47#include "hw/i386/x86-iommu.h"
d6d059ca 48#include "hw/i386/e820_memory_layout.h"
50efe82c 49
a2cb15b0 50#include "hw/pci/pci.h"
15eafc2e 51#include "hw/pci/msi.h"
fd563564 52#include "hw/pci/msix.h"
795c40b8 53#include "migration/blocker.h"
4c663752 54#include "exec/memattrs.h"
8b5ed7df 55#include "trace.h"
05330448
AL
56
57//#define DEBUG_KVM
58
59#ifdef DEBUG_KVM
8c0d577e 60#define DPRINTF(fmt, ...) \
05330448
AL
61 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62#else
8c0d577e 63#define DPRINTF(fmt, ...) \
05330448
AL
64 do { } while (0)
65#endif
66
73b994f6
LA
67/* From arch/x86/kvm/lapic.h */
68#define KVM_APIC_BUS_CYCLE_NS 1
69#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
70
1a03675d
GC
71#define MSR_KVM_WALL_CLOCK 0x11
72#define MSR_KVM_SYSTEM_TIME 0x12
73
d1138251
EH
74/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
75 * 255 kvm_msr_entry structs */
76#define MSR_BUF_SIZE 4096
d71b62a1 77
420ae1fc
PB
78static void kvm_init_msrs(X86CPU *cpu);
79
94a8d39a
JK
80const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
81 KVM_CAP_INFO(SET_TSS_ADDR),
82 KVM_CAP_INFO(EXT_CPUID),
83 KVM_CAP_INFO(MP_STATE),
84 KVM_CAP_LAST_INFO
85};
25d2e361 86
c3a3a7d3
JK
87static bool has_msr_star;
88static bool has_msr_hsave_pa;
c9b8f6b6 89static bool has_msr_tsc_aux;
f28558d3 90static bool has_msr_tsc_adjust;
aa82ba54 91static bool has_msr_tsc_deadline;
df67696e 92static bool has_msr_feature_control;
21e87c46 93static bool has_msr_misc_enable;
fc12d72e 94static bool has_msr_smbase;
79e9ebeb 95static bool has_msr_bndcfgs;
25d2e361 96static int lm_capable_kernel;
7bc3d711 97static bool has_msr_hv_hypercall;
f2a53c9e 98static bool has_msr_hv_crash;
744b8a94 99static bool has_msr_hv_reset;
8c145d7c 100static bool has_msr_hv_vpindex;
e9688fab 101static bool hv_vpindex_settable;
46eb8f98 102static bool has_msr_hv_runtime;
866eea9a 103static bool has_msr_hv_synic;
ff99aa64 104static bool has_msr_hv_stimer;
d72bc7f6 105static bool has_msr_hv_frequencies;
ba6a4fd9 106static bool has_msr_hv_reenlightenment;
18cd2c17 107static bool has_msr_xss;
65087997 108static bool has_msr_umwait;
a33a2cfe 109static bool has_msr_spec_ctrl;
cabf9862 110static bool has_tsc_scale_msr;
2a9758c5 111static bool has_msr_tsx_ctrl;
cfeea0c0 112static bool has_msr_virt_ssbd;
e13713db 113static bool has_msr_smi_count;
aec5e9c3 114static bool has_msr_arch_capabs;
597360c0 115static bool has_msr_core_capabs;
20a78b02 116static bool has_msr_vmx_vmfunc;
67025148 117static bool has_msr_ucode_rev;
4a910e1f 118static bool has_msr_vmx_procbased_ctls2;
ea39f9b6 119static bool has_msr_perf_capabs;
6aa4228b 120static bool has_msr_pkrs;
b827df58 121
0b368a10
JD
122static uint32_t has_architectural_pmu_version;
123static uint32_t num_architectural_pmu_gp_counters;
124static uint32_t num_architectural_pmu_fixed_counters;
0d894367 125
28143b40 126static int has_xsave;
e56dd3c7 127static int has_xsave2;
28143b40
TH
128static int has_xcrs;
129static int has_pit_state2;
8f515d38 130static int has_sregs2;
fd13f23b 131static int has_exception_payload;
28143b40 132
87f8b626
AR
133static bool has_msr_mcg_ext_ctl;
134
494e95e9 135static struct kvm_cpuid2 *cpuid_cache;
a8439be6 136static struct kvm_cpuid2 *hv_cpuid_cache;
f57bceb6 137static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 138
035d1ef2
CQ
139#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
140static RateLimit bus_lock_ratelimit_ctrl;
141
28143b40
TH
142int kvm_has_pit_state2(void)
143{
144 return has_pit_state2;
145}
146
355023f2
PB
147bool kvm_has_smm(void)
148{
23edf8b5 149 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
355023f2
PB
150}
151
6053a86f
MT
152bool kvm_has_adjust_clock_stable(void)
153{
154 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
155
156 return (ret == KVM_CLOCK_TSC_STABLE);
157}
158
8700a984
VK
159bool kvm_has_adjust_clock(void)
160{
161 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
162}
163
79a197ab
LA
164bool kvm_has_exception_payload(void)
165{
166 return has_exception_payload;
167}
168
fb506e70
RK
169static bool kvm_x2apic_api_set_flags(uint64_t flags)
170{
4f7f5893 171 KVMState *s = KVM_STATE(current_accel());
fb506e70
RK
172
173 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
174}
175
e391c009 176#define MEMORIZE(fn, _result) \
2a138ec3 177 ({ \
2a138ec3
RK
178 static bool _memorized; \
179 \
180 if (_memorized) { \
181 return _result; \
182 } \
183 _memorized = true; \
184 _result = fn; \
185 })
186
e391c009
IM
187static bool has_x2apic_api;
188
189bool kvm_has_x2apic_api(void)
190{
191 return has_x2apic_api;
192}
193
fb506e70
RK
194bool kvm_enable_x2apic(void)
195{
2a138ec3
RK
196 return MEMORIZE(
197 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
198 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
199 has_x2apic_api);
fb506e70
RK
200}
201
e9688fab
RK
202bool kvm_hv_vpindex_settable(void)
203{
204 return hv_vpindex_settable;
205}
206
0fd7e098
LL
207static int kvm_get_tsc(CPUState *cs)
208{
209 X86CPU *cpu = X86_CPU(cs);
210 CPUX86State *env = &cpu->env;
211 struct {
212 struct kvm_msrs info;
213 struct kvm_msr_entry entries[1];
a1834d97 214 } msr_data = {};
0fd7e098
LL
215 int ret;
216
217 if (env->tsc_valid) {
218 return 0;
219 }
220
1f670a95 221 memset(&msr_data, 0, sizeof(msr_data));
0fd7e098
LL
222 msr_data.info.nmsrs = 1;
223 msr_data.entries[0].index = MSR_IA32_TSC;
224 env->tsc_valid = !runstate_is_running();
225
226 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
227 if (ret < 0) {
228 return ret;
229 }
230
48e1a45c 231 assert(ret == 1);
0fd7e098
LL
232 env->tsc = msr_data.entries[0].data;
233 return 0;
234}
235
14e6fe12 236static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 237{
0fd7e098
LL
238 kvm_get_tsc(cpu);
239}
240
241void kvm_synchronize_all_tsc(void)
242{
243 CPUState *cpu;
244
245 if (kvm_enabled()) {
246 CPU_FOREACH(cpu) {
14e6fe12 247 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
248 }
249 }
250}
251
b827df58
AK
252static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
253{
254 struct kvm_cpuid2 *cpuid;
255 int r, size;
256
257 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 258 cpuid = g_malloc0(size);
b827df58
AK
259 cpuid->nent = max;
260 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
261 if (r == 0 && cpuid->nent >= max) {
262 r = -E2BIG;
263 }
b827df58
AK
264 if (r < 0) {
265 if (r == -E2BIG) {
7267c094 266 g_free(cpuid);
b827df58
AK
267 return NULL;
268 } else {
269 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
270 strerror(-r));
271 exit(1);
272 }
273 }
274 return cpuid;
275}
276
dd87f8a6
EH
277/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
278 * for all entries.
279 */
280static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
281{
282 struct kvm_cpuid2 *cpuid;
283 int max = 1;
494e95e9
CP
284
285 if (cpuid_cache != NULL) {
286 return cpuid_cache;
287 }
dd87f8a6
EH
288 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
289 max *= 2;
290 }
494e95e9 291 cpuid_cache = cpuid;
dd87f8a6
EH
292 return cpuid;
293}
294
b199c682 295static bool host_tsx_broken(void)
40e80ee4
EH
296{
297 int family, model, stepping;\
298 char vendor[CPUID_VENDOR_SZ + 1];
299
f5cc5a5c 300 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
40e80ee4
EH
301
302 /* Check if we are running on a Haswell host known to have broken TSX */
303 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
304 (family == 6) &&
305 ((model == 63 && stepping < 4) ||
306 model == 60 || model == 69 || model == 70);
307}
0c31b744 308
829ae2f9
EH
309/* Returns the value for a specific register on the cpuid entry
310 */
311static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
312{
313 uint32_t ret = 0;
314 switch (reg) {
315 case R_EAX:
316 ret = entry->eax;
317 break;
318 case R_EBX:
319 ret = entry->ebx;
320 break;
321 case R_ECX:
322 ret = entry->ecx;
323 break;
324 case R_EDX:
325 ret = entry->edx;
326 break;
327 }
328 return ret;
329}
330
4fb73f1d
EH
331/* Find matching entry for function/index on kvm_cpuid2 struct
332 */
333static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334 uint32_t function,
335 uint32_t index)
336{
337 int i;
338 for (i = 0; i < cpuid->nent; ++i) {
339 if (cpuid->entries[i].function == function &&
340 cpuid->entries[i].index == index) {
341 return &cpuid->entries[i];
342 }
343 }
344 /* not found: */
345 return NULL;
346}
347
ba9bc59e 348uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 349 uint32_t index, int reg)
b827df58
AK
350{
351 struct kvm_cpuid2 *cpuid;
b827df58
AK
352 uint32_t ret = 0;
353 uint32_t cpuid_1_edx;
19db68ca 354 uint64_t bitmask;
b827df58 355
dd87f8a6 356 cpuid = get_supported_cpuid(s);
b827df58 357
4fb73f1d
EH
358 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
359 if (entry) {
4fb73f1d 360 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
361 }
362
7b46e5ce
EH
363 /* Fixups for the data returned by KVM, below */
364
c2acb022
EH
365 if (function == 1 && reg == R_EDX) {
366 /* KVM before 2.6.30 misreports the following features */
367 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
368 } else if (function == 1 && reg == R_ECX) {
369 /* We can set the hypervisor flag, even if KVM does not return it on
370 * GET_SUPPORTED_CPUID
371 */
372 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
373 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
374 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
375 * and the irqchip is in the kernel.
376 */
377 if (kvm_irqchip_in_kernel() &&
378 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
379 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
380 }
41e5e76d
EH
381
382 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
383 * without the in-kernel irqchip
384 */
385 if (!kvm_irqchip_in_kernel()) {
386 ret &= ~CPUID_EXT_X2APIC;
b827df58 387 }
2266d443
MT
388
389 if (enable_cpu_pm) {
390 int disable_exits = kvm_check_extension(s,
391 KVM_CAP_X86_DISABLE_EXITS);
392
393 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
394 ret |= CPUID_EXT_MONITOR;
395 }
396 }
28b8e4d0
JK
397 } else if (function == 6 && reg == R_EAX) {
398 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4 399 } else if (function == 7 && index == 0 && reg == R_EBX) {
b199c682 400 if (host_tsx_broken()) {
40e80ee4
EH
401 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
402 }
485b1d25
EH
403 } else if (function == 7 && index == 0 && reg == R_EDX) {
404 /*
405 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
406 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
407 * returned by KVM_GET_MSR_INDEX_LIST.
408 */
409 if (!has_msr_arch_capabs) {
410 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
411 }
19db68ca
YZ
412 } else if (function == 0xd && index == 0 &&
413 (reg == R_EAX || reg == R_EDX)) {
414 struct kvm_device_attr attr = {
415 .group = 0,
416 .attr = KVM_X86_XCOMP_GUEST_SUPP,
417 .addr = (unsigned long) &bitmask
418 };
419
420 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
421 if (!sys_attr) {
422 warn_report("cannot get sys attribute capabilities %d", sys_attr);
423 }
424
425 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
426 if (rc == -1 && (errno == ENXIO || errno == EINVAL)) {
427 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
428 "error: %d", rc);
429 }
430 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
f98bbd83
BM
431 } else if (function == 0x80000001 && reg == R_ECX) {
432 /*
433 * It's safe to enable TOPOEXT even if it's not returned by
434 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
435 * us to keep CPU models including TOPOEXT runnable on older kernels.
436 */
437 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
438 } else if (function == 0x80000001 && reg == R_EDX) {
439 /* On Intel, kvm returns cpuid according to the Intel spec,
440 * so add missing bits according to the AMD spec:
441 */
442 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
443 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
444 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
445 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
446 * be enabled without the in-kernel irqchip
447 */
448 if (!kvm_irqchip_in_kernel()) {
449 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
450 }
c1bb5418
DW
451 if (kvm_irqchip_is_split()) {
452 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
453 }
be777326 454 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 455 ret |= 1U << KVM_HINTS_REALTIME;
b9bec74b 456 }
0c31b744
GC
457
458 return ret;
bb0300dc 459}
bb0300dc 460
ede146c2 461uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
462{
463 struct {
464 struct kvm_msrs info;
465 struct kvm_msr_entry entries[1];
a1834d97 466 } msr_data = {};
20a78b02
PB
467 uint64_t value;
468 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
469
470 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
471 return 0;
472 }
473
474 /* Check if requested MSR is supported feature MSR */
475 int i;
476 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
477 if (kvm_feature_msrs->indices[i] == index) {
478 break;
479 }
480 if (i == kvm_feature_msrs->nmsrs) {
481 return 0; /* if the feature MSR is not supported, simply return 0 */
482 }
483
484 msr_data.info.nmsrs = 1;
485 msr_data.entries[0].index = index;
486
487 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
488 if (ret != 1) {
489 error_report("KVM get MSR (index=0x%x) feature failed, %s",
490 index, strerror(-ret));
491 exit(1);
492 }
493
20a78b02
PB
494 value = msr_data.entries[0].data;
495 switch (index) {
496 case MSR_IA32_VMX_PROCBASED_CTLS2:
4a910e1f
VK
497 if (!has_msr_vmx_procbased_ctls2) {
498 /* KVM forgot to add these bits for some time, do this ourselves. */
499 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
500 CPUID_XSAVE_XSAVES) {
501 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
502 }
503 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
504 CPUID_EXT_RDRAND) {
505 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
506 }
507 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
508 CPUID_7_0_EBX_INVPCID) {
509 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
510 }
511 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
512 CPUID_7_0_EBX_RDSEED) {
513 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
514 }
515 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
516 CPUID_EXT2_RDTSCP) {
517 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
518 }
048c9516
PB
519 }
520 /* fall through */
20a78b02
PB
521 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
522 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
523 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
524 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
525 /*
526 * Return true for bits that can be one, but do not have to be one.
527 * The SDM tells us which bits could have a "must be one" setting,
528 * so we can do the opposite transformation in make_vmx_msr_value.
529 */
530 must_be_one = (uint32_t)value;
531 can_be_one = (uint32_t)(value >> 32);
532 return can_be_one & ~must_be_one;
533
534 default:
535 return value;
536 }
f57bceb6
RH
537}
538
e7701825
MT
539static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
540 int *max_banks)
541{
542 int r;
543
14a09518 544 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
545 if (r > 0) {
546 *max_banks = r;
547 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
548 }
549 return -ENOSYS;
550}
551
bee615d4 552static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 553{
87f8b626 554 CPUState *cs = CPU(cpu);
bee615d4 555 CPUX86State *env = &cpu->env;
c34d440a
JK
556 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
557 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
558 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 559 int flags = 0;
e7701825 560
c34d440a
JK
561 if (code == BUS_MCEERR_AR) {
562 status |= MCI_STATUS_AR | 0x134;
563 mcg_status |= MCG_STATUS_EIPV;
564 } else {
565 status |= 0xc0;
566 mcg_status |= MCG_STATUS_RIPV;
419fb20a 567 }
87f8b626
AR
568
569 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
570 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
571 * guest kernel back into env->mcg_ext_ctl.
572 */
573 cpu_synchronize_state(cs);
574 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
575 mcg_status |= MCG_STATUS_LMCE;
576 flags = 0;
577 }
578
8c5cf3b6 579 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 580 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 581}
419fb20a 582
8efc4e51
ZP
583static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
584{
585 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
586
587 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
588 &mff);
589}
590
73284563 591static void hardware_memory_error(void *host_addr)
419fb20a 592{
8efc4e51 593 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
73284563 594 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
595 exit(1);
596}
597
2ae41db2 598void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 599{
20d695a9
AF
600 X86CPU *cpu = X86_CPU(c);
601 CPUX86State *env = &cpu->env;
419fb20a 602 ram_addr_t ram_addr;
a8170e5e 603 hwaddr paddr;
419fb20a 604
4d39892c
PB
605 /* If we get an action required MCE, it has been injected by KVM
606 * while the VM was running. An action optional MCE instead should
607 * be coming from the main thread, which qemu_init_sigbus identifies
608 * as the "early kill" thread.
609 */
a16fc07e 610 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 611
20e0ff59 612 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 613 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
614 if (ram_addr != RAM_ADDR_INVALID &&
615 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
616 kvm_hwpoison_page_add(ram_addr);
617 kvm_mce_inject(cpu, paddr, code);
73284563
MS
618
619 /*
620 * Use different logging severity based on error type.
621 * If there is additional MCE reporting on the hypervisor, QEMU VA
622 * could be another source to identify the PA and MCE details.
623 */
624 if (code == BUS_MCEERR_AR) {
625 error_report("Guest MCE Memory Error at QEMU addr %p and "
626 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
627 addr, paddr, "BUS_MCEERR_AR");
628 } else {
629 warn_report("Guest MCE Memory Error at QEMU addr %p and "
630 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
631 addr, paddr, "BUS_MCEERR_AO");
632 }
633
2ae41db2 634 return;
419fb20a 635 }
20e0ff59 636
73284563
MS
637 if (code == BUS_MCEERR_AO) {
638 warn_report("Hardware memory error at addr %p of type %s "
639 "for memory used by QEMU itself instead of guest system!",
640 addr, "BUS_MCEERR_AO");
641 }
419fb20a 642 }
20e0ff59
PB
643
644 if (code == BUS_MCEERR_AR) {
73284563 645 hardware_memory_error(addr);
20e0ff59
PB
646 }
647
8efc4e51
ZP
648 /* Hope we are lucky for AO MCE, just notify a event */
649 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
419fb20a
JK
650}
651
fd13f23b
LA
652static void kvm_reset_exception(CPUX86State *env)
653{
654 env->exception_nr = -1;
655 env->exception_pending = 0;
656 env->exception_injected = 0;
657 env->exception_has_payload = false;
658 env->exception_payload = 0;
659}
660
661static void kvm_queue_exception(CPUX86State *env,
662 int32_t exception_nr,
663 uint8_t exception_has_payload,
664 uint64_t exception_payload)
665{
666 assert(env->exception_nr == -1);
667 assert(!env->exception_pending);
668 assert(!env->exception_injected);
669 assert(!env->exception_has_payload);
670
671 env->exception_nr = exception_nr;
672
673 if (has_exception_payload) {
674 env->exception_pending = 1;
675
676 env->exception_has_payload = exception_has_payload;
677 env->exception_payload = exception_payload;
678 } else {
679 env->exception_injected = 1;
680
681 if (exception_nr == EXCP01_DB) {
682 assert(exception_has_payload);
683 env->dr[6] = exception_payload;
684 } else if (exception_nr == EXCP0E_PAGE) {
685 assert(exception_has_payload);
686 env->cr[2] = exception_payload;
687 } else {
688 assert(!exception_has_payload);
689 }
690 }
691}
692
1bc22652 693static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 694{
1bc22652
AF
695 CPUX86State *env = &cpu->env;
696
fd13f23b 697 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
698 unsigned int bank, bank_num = env->mcg_cap & 0xff;
699 struct kvm_x86_mce mce;
700
fd13f23b 701 kvm_reset_exception(env);
ab443475
JK
702
703 /*
704 * There must be at least one bank in use if an MCE is pending.
705 * Find it and use its values for the event injection.
706 */
707 for (bank = 0; bank < bank_num; bank++) {
708 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
709 break;
710 }
711 }
712 assert(bank < bank_num);
713
714 mce.bank = bank;
715 mce.status = env->mce_banks[bank * 4 + 1];
716 mce.mcg_status = env->mcg_status;
717 mce.addr = env->mce_banks[bank * 4 + 2];
718 mce.misc = env->mce_banks[bank * 4 + 3];
719
1bc22652 720 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 721 }
ab443475
JK
722 return 0;
723}
724
538f0497 725static void cpu_update_state(void *opaque, bool running, RunState state)
b8cc45d6 726{
317ac620 727 CPUX86State *env = opaque;
b8cc45d6
GC
728
729 if (running) {
730 env->tsc_valid = false;
731 }
732}
733
83b17af5 734unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 735{
83b17af5 736 X86CPU *cpu = X86_CPU(cs);
7e72a45c 737 return cpu->apic_id;
b164e48e
EH
738}
739
92067bf4
IM
740#ifndef KVM_CPUID_SIGNATURE_NEXT
741#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
742#endif
743
92067bf4
IM
744static bool hyperv_enabled(X86CPU *cpu)
745{
5aa9ef5e 746 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
f701c082 747 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
e48ddcc6 748 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
749}
750
74aaddc6
MT
751/*
752 * Check whether target_freq is within conservative
753 * ntp correctable bounds (250ppm) of freq
754 */
755static inline bool freq_within_bounds(int freq, int target_freq)
756{
757 int max_freq = freq + (freq * 250 / 1000000);
758 int min_freq = freq - (freq * 250 / 1000000);
759
760 if (target_freq >= min_freq && target_freq <= max_freq) {
761 return true;
762 }
763
764 return false;
765}
766
5031283d
HZ
767static int kvm_arch_set_tsc_khz(CPUState *cs)
768{
769 X86CPU *cpu = X86_CPU(cs);
770 CPUX86State *env = &cpu->env;
74aaddc6
MT
771 int r, cur_freq;
772 bool set_ioctl = false;
5031283d
HZ
773
774 if (!env->tsc_khz) {
775 return 0;
776 }
777
74aaddc6
MT
778 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
779 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
780
781 /*
782 * If TSC scaling is supported, attempt to set TSC frequency.
783 */
784 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
785 set_ioctl = true;
786 }
787
788 /*
789 * If desired TSC frequency is within bounds of NTP correction,
790 * attempt to set TSC frequency.
791 */
792 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
793 set_ioctl = true;
794 }
795
796 r = set_ioctl ?
5031283d
HZ
797 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
798 -ENOTSUP;
74aaddc6 799
5031283d
HZ
800 if (r < 0) {
801 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
802 * TSC frequency doesn't match the one we want.
803 */
74aaddc6
MT
804 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
805 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
806 -ENOTSUP;
5031283d 807 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
808 warn_report("TSC frequency mismatch between "
809 "VM (%" PRId64 " kHz) and host (%d kHz), "
810 "and TSC scaling unavailable",
811 env->tsc_khz, cur_freq);
5031283d
HZ
812 return r;
813 }
814 }
815
816 return 0;
817}
818
4bb95b82
LP
819static bool tsc_is_stable_and_known(CPUX86State *env)
820{
821 if (!env->tsc_khz) {
822 return false;
823 }
824 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
825 || env->user_tsc_khz;
826}
827
6760bd20
VK
828static struct {
829 const char *desc;
830 struct {
061817a7
VK
831 uint32_t func;
832 int reg;
6760bd20
VK
833 uint32_t bits;
834 } flags[2];
c6861930 835 uint64_t dependencies;
6760bd20
VK
836} kvm_hyperv_properties[] = {
837 [HYPERV_FEAT_RELAXED] = {
838 .desc = "relaxed timing (hv-relaxed)",
839 .flags = {
061817a7 840 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
841 .bits = HV_RELAXED_TIMING_RECOMMENDED}
842 }
843 },
844 [HYPERV_FEAT_VAPIC] = {
845 .desc = "virtual APIC (hv-vapic)",
846 .flags = {
061817a7 847 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
05071629 848 .bits = HV_APIC_ACCESS_AVAILABLE}
6760bd20
VK
849 }
850 },
851 [HYPERV_FEAT_TIME] = {
852 .desc = "clocksources (hv-time)",
853 .flags = {
061817a7 854 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
b26f68c3 855 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
6760bd20
VK
856 }
857 },
858 [HYPERV_FEAT_CRASH] = {
859 .desc = "crash MSRs (hv-crash)",
860 .flags = {
061817a7 861 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
862 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
863 }
864 },
865 [HYPERV_FEAT_RESET] = {
866 .desc = "reset MSR (hv-reset)",
867 .flags = {
061817a7 868 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
869 .bits = HV_RESET_AVAILABLE}
870 }
871 },
872 [HYPERV_FEAT_VPINDEX] = {
873 .desc = "VP_INDEX MSR (hv-vpindex)",
874 .flags = {
061817a7 875 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
876 .bits = HV_VP_INDEX_AVAILABLE}
877 }
878 },
879 [HYPERV_FEAT_RUNTIME] = {
880 .desc = "VP_RUNTIME MSR (hv-runtime)",
881 .flags = {
061817a7 882 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
883 .bits = HV_VP_RUNTIME_AVAILABLE}
884 }
885 },
886 [HYPERV_FEAT_SYNIC] = {
887 .desc = "synthetic interrupt controller (hv-synic)",
888 .flags = {
061817a7 889 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
890 .bits = HV_SYNIC_AVAILABLE}
891 }
892 },
893 [HYPERV_FEAT_STIMER] = {
894 .desc = "synthetic timers (hv-stimer)",
895 .flags = {
061817a7 896 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 897 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
898 },
899 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
900 },
901 [HYPERV_FEAT_FREQUENCIES] = {
902 .desc = "frequency MSRs (hv-frequencies)",
903 .flags = {
061817a7 904 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20 905 .bits = HV_ACCESS_FREQUENCY_MSRS},
061817a7 906 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
6760bd20
VK
907 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
908 }
909 },
910 [HYPERV_FEAT_REENLIGHTENMENT] = {
911 .desc = "reenlightenment MSRs (hv-reenlightenment)",
912 .flags = {
061817a7 913 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
6760bd20
VK
914 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
915 }
916 },
917 [HYPERV_FEAT_TLBFLUSH] = {
918 .desc = "paravirtualized TLB flush (hv-tlbflush)",
919 .flags = {
061817a7 920 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
921 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
922 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
923 },
924 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
925 },
926 [HYPERV_FEAT_EVMCS] = {
927 .desc = "enlightened VMCS (hv-evmcs)",
928 .flags = {
061817a7 929 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20 930 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
931 },
932 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
933 },
934 [HYPERV_FEAT_IPI] = {
935 .desc = "paravirtualized IPI (hv-ipi)",
936 .flags = {
061817a7 937 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
6760bd20
VK
938 .bits = HV_CLUSTER_IPI_RECOMMENDED |
939 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
940 },
941 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 942 },
128531d9
VK
943 [HYPERV_FEAT_STIMER_DIRECT] = {
944 .desc = "direct mode synthetic timers (hv-stimer-direct)",
945 .flags = {
061817a7 946 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
128531d9
VK
947 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
948 },
949 .dependencies = BIT(HYPERV_FEAT_STIMER)
950 },
e1f9a8e8
VK
951 [HYPERV_FEAT_AVIC] = {
952 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
953 .flags = {
954 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
955 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
956 }
957 },
6760bd20
VK
958};
959
2e905438
VK
960static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
961 bool do_sys_ioctl)
6760bd20
VK
962{
963 struct kvm_cpuid2 *cpuid;
964 int r, size;
965
966 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
967 cpuid = g_malloc0(size);
968 cpuid->nent = max;
969
2e905438
VK
970 if (do_sys_ioctl) {
971 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
972 } else {
973 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
974 }
6760bd20
VK
975 if (r == 0 && cpuid->nent >= max) {
976 r = -E2BIG;
977 }
978 if (r < 0) {
979 if (r == -E2BIG) {
980 g_free(cpuid);
981 return NULL;
982 } else {
983 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
984 strerror(-r));
985 exit(1);
986 }
987 }
988 return cpuid;
989}
990
991/*
992 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
993 * for all entries.
994 */
995static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
996{
997 struct kvm_cpuid2 *cpuid;
05c900ce
VK
998 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
999 int max = 10;
decb4f20 1000 int i;
2e905438
VK
1001 bool do_sys_ioctl;
1002
1003 do_sys_ioctl =
1004 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
6760bd20 1005
e4adb09f
VK
1006 /*
1007 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1008 * unsupported, kvm_hyperv_expand_features() checks for that.
1009 */
1010 assert(do_sys_ioctl || cs->kvm_state);
1011
6760bd20
VK
1012 /*
1013 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1014 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1015 * it and re-trying until we succeed.
1016 */
2e905438 1017 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
6760bd20
VK
1018 max++;
1019 }
decb4f20
VK
1020
1021 /*
1022 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1023 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1024 * information early, just check for the capability and set the bit
1025 * manually.
1026 */
2e905438 1027 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
decb4f20
VK
1028 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1029 for (i = 0; i < cpuid->nent; i++) {
1030 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1031 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1032 }
1033 }
1034 }
1035
6760bd20
VK
1036 return cpuid;
1037}
1038
1039/*
1040 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1041 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1042 */
1043static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
1044{
1045 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
1046 struct kvm_cpuid2 *cpuid;
1047 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1048
1049 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1050 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1051 cpuid->nent = 2;
1052
1053 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1054 entry_feat = &cpuid->entries[0];
1055 entry_feat->function = HV_CPUID_FEATURES;
1056
1057 entry_recomm = &cpuid->entries[1];
1058 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1059 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1060
1061 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1062 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1063 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1064 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1065 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1066 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1067 }
c35bd19a 1068
6760bd20
VK
1069 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1070 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1071 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1072 }
6760bd20
VK
1073
1074 if (has_msr_hv_frequencies) {
1075 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1076 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1077 }
6760bd20
VK
1078
1079 if (has_msr_hv_crash) {
1080 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1081 }
6760bd20
VK
1082
1083 if (has_msr_hv_reenlightenment) {
1084 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1085 }
6760bd20
VK
1086
1087 if (has_msr_hv_reset) {
1088 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1089 }
6760bd20
VK
1090
1091 if (has_msr_hv_vpindex) {
1092 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1093 }
6760bd20
VK
1094
1095 if (has_msr_hv_runtime) {
1096 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1097 }
6760bd20
VK
1098
1099 if (has_msr_hv_synic) {
1100 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1101 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1102
1103 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1104 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1105 }
c35bd19a 1106 }
6760bd20
VK
1107
1108 if (has_msr_hv_stimer) {
1109 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1110 }
9b4cf107 1111
6760bd20
VK
1112 if (kvm_check_extension(cs->kvm_state,
1113 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1114 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1115 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1116 }
c35bd19a 1117
6760bd20
VK
1118 if (kvm_check_extension(cs->kvm_state,
1119 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1120 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1121 }
6760bd20
VK
1122
1123 if (kvm_check_extension(cs->kvm_state,
1124 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1125 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1126 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1127 }
6760bd20
VK
1128
1129 return cpuid;
1130}
1131
a8439be6 1132static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
e1a66a1e
VK
1133{
1134 struct kvm_cpuid_entry2 *entry;
a8439be6
VK
1135 struct kvm_cpuid2 *cpuid;
1136
1137 if (hv_cpuid_cache) {
1138 cpuid = hv_cpuid_cache;
1139 } else {
1140 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1141 cpuid = get_supported_hv_cpuid(cs);
1142 } else {
e4adb09f
VK
1143 /*
1144 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1145 * before KVM context is created but this is only done when
1146 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1147 * KVM_CAP_HYPERV_CPUID.
1148 */
1149 assert(cs->kvm_state);
1150
a8439be6
VK
1151 cpuid = get_supported_hv_cpuid_legacy(cs);
1152 }
1153 hv_cpuid_cache = cpuid;
1154 }
1155
1156 if (!cpuid) {
1157 return 0;
1158 }
e1a66a1e
VK
1159
1160 entry = cpuid_find_entry(cpuid, func, 0);
1161 if (!entry) {
1162 return 0;
1163 }
1164
1165 return cpuid_entry_get_reg(entry, reg);
1166}
1167
a8439be6 1168static bool hyperv_feature_supported(CPUState *cs, int feature)
7682f857 1169{
061817a7
VK
1170 uint32_t func, bits;
1171 int i, reg;
7682f857
VK
1172
1173 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
061817a7
VK
1174
1175 func = kvm_hyperv_properties[feature].flags[i].func;
1176 reg = kvm_hyperv_properties[feature].flags[i].reg;
7682f857
VK
1177 bits = kvm_hyperv_properties[feature].flags[i].bits;
1178
061817a7 1179 if (!func) {
7682f857
VK
1180 continue;
1181 }
1182
a8439be6 1183 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
7682f857
VK
1184 return false;
1185 }
1186 }
1187
1188 return true;
1189}
1190
5ce48fa3
VK
1191/* Checks that all feature dependencies are enabled */
1192static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
6760bd20 1193{
c6861930 1194 uint64_t deps;
7682f857 1195 int dep_feat;
6760bd20 1196
c6861930 1197 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1198 while (deps) {
1199 dep_feat = ctz64(deps);
c6861930 1200 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
f4a62495
VK
1201 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1202 kvm_hyperv_properties[feature].desc,
1203 kvm_hyperv_properties[dep_feat].desc);
5ce48fa3 1204 return false;
c6861930 1205 }
9dc83cd9 1206 deps &= ~(1ull << dep_feat);
c6861930
VK
1207 }
1208
5ce48fa3 1209 return true;
6760bd20
VK
1210}
1211
061817a7 1212static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
c830015e
VK
1213{
1214 X86CPU *cpu = X86_CPU(cs);
1215 uint32_t r = 0;
1216 int i, j;
1217
1218 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1219 if (!hyperv_feat_enabled(cpu, i)) {
1220 continue;
1221 }
1222
1223 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
061817a7
VK
1224 if (kvm_hyperv_properties[i].flags[j].func != func) {
1225 continue;
1226 }
1227 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
c830015e
VK
1228 continue;
1229 }
1230
1231 r |= kvm_hyperv_properties[i].flags[j].bits;
1232 }
1233 }
1234
1235 return r;
1236}
1237
2344d22e 1238/*
f6e01ab5
VK
1239 * Expand Hyper-V CPU features. In partucular, check that all the requested
1240 * features are supported by the host and the sanity of the configuration
1241 * (that all the required dependencies are included). Also, this takes care
1242 * of 'hv_passthrough' mode and fills the environment with all supported
1243 * Hyper-V features.
2344d22e 1244 */
071ce4b0 1245bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
6760bd20 1246{
071ce4b0 1247 CPUState *cs = CPU(cpu);
5ce48fa3
VK
1248 Error *local_err = NULL;
1249 int feat;
6760bd20 1250
2344d22e 1251 if (!hyperv_enabled(cpu))
d7652b77 1252 return true;
2344d22e 1253
071ce4b0
VK
1254 /*
1255 * When kvm_hyperv_expand_features is called at CPU feature expansion
1256 * time per-CPU kvm_state is not available yet so we can only proceed
1257 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1258 */
1259 if (!cs->kvm_state &&
1260 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1261 return true;
1262
e48ddcc6 1263 if (cpu->hyperv_passthrough) {
e1a66a1e 1264 cpu->hyperv_vendor_id[0] =
a8439be6 1265 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
e1a66a1e 1266 cpu->hyperv_vendor_id[1] =
a8439be6 1267 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
e1a66a1e 1268 cpu->hyperv_vendor_id[2] =
a8439be6 1269 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
e1a66a1e
VK
1270 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1271 sizeof(cpu->hyperv_vendor_id) + 1);
1272 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1273 sizeof(cpu->hyperv_vendor_id));
1274 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1275
1276 cpu->hyperv_interface_id[0] =
a8439be6 1277 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
e1a66a1e 1278 cpu->hyperv_interface_id[1] =
a8439be6 1279 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
e1a66a1e 1280 cpu->hyperv_interface_id[2] =
a8439be6 1281 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
e1a66a1e 1282 cpu->hyperv_interface_id[3] =
a8439be6 1283 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
e1a66a1e 1284
af7228b8 1285 cpu->hyperv_ver_id_build =
a8439be6 1286 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
af7228b8
VK
1287 cpu->hyperv_ver_id_major =
1288 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1289 cpu->hyperv_ver_id_minor =
1290 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1291 cpu->hyperv_ver_id_sp =
a8439be6 1292 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
af7228b8
VK
1293 cpu->hyperv_ver_id_sb =
1294 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1295 cpu->hyperv_ver_id_sn =
1296 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
e1a66a1e 1297
a8439be6 1298 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
e1a66a1e
VK
1299 R_EAX);
1300 cpu->hyperv_limits[0] =
a8439be6 1301 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
e1a66a1e 1302 cpu->hyperv_limits[1] =
a8439be6 1303 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
e1a66a1e 1304 cpu->hyperv_limits[2] =
a8439be6 1305 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
e1a66a1e
VK
1306
1307 cpu->hyperv_spinlock_attempts =
a8439be6 1308 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
30d6ff66 1309
5ce48fa3
VK
1310 /*
1311 * Mark feature as enabled in 'cpu->hyperv_features' as
1312 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1313 */
1314 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1315 if (hyperv_feature_supported(cs, feat)) {
1316 cpu->hyperv_features |= BIT(feat);
1317 }
1318 }
1319 } else {
1320 /* Check features availability and dependencies */
1321 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1322 /* If the feature was not requested skip it. */
1323 if (!hyperv_feat_enabled(cpu, feat)) {
1324 continue;
1325 }
1326
1327 /* Check if the feature is supported by KVM */
1328 if (!hyperv_feature_supported(cs, feat)) {
1329 error_setg(errp, "Hyper-V %s is not supported by kernel",
1330 kvm_hyperv_properties[feat].desc);
1331 return false;
1332 }
1333
1334 /* Check dependencies */
1335 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1336 error_propagate(errp, local_err);
1337 return false;
1338 }
1339 }
f4a62495 1340 }
6760bd20 1341
c6861930 1342 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1343 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1344 !cpu->hyperv_synic_kvm_only &&
1345 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
f4a62495
VK
1346 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1347 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1348 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
d7652b77 1349 return false;
6760bd20 1350 }
d7652b77
VK
1351
1352 return true;
f6e01ab5
VK
1353}
1354
1355/*
1356 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1357 */
1358static int hyperv_fill_cpuids(CPUState *cs,
1359 struct kvm_cpuid_entry2 *cpuid_ent)
1360{
1361 X86CPU *cpu = X86_CPU(cs);
1362 struct kvm_cpuid_entry2 *c;
1363 uint32_t cpuid_i = 0;
1364
2344d22e
VK
1365 c = &cpuid_ent[cpuid_i++];
1366 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
2344d22e
VK
1367 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1368 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
08856771
VK
1369 c->ebx = cpu->hyperv_vendor_id[0];
1370 c->ecx = cpu->hyperv_vendor_id[1];
1371 c->edx = cpu->hyperv_vendor_id[2];
2344d22e
VK
1372
1373 c = &cpuid_ent[cpuid_i++];
1374 c->function = HV_CPUID_INTERFACE;
735db465
VK
1375 c->eax = cpu->hyperv_interface_id[0];
1376 c->ebx = cpu->hyperv_interface_id[1];
1377 c->ecx = cpu->hyperv_interface_id[2];
1378 c->edx = cpu->hyperv_interface_id[3];
2344d22e
VK
1379
1380 c = &cpuid_ent[cpuid_i++];
1381 c->function = HV_CPUID_VERSION;
af7228b8
VK
1382 c->eax = cpu->hyperv_ver_id_build;
1383 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1384 cpu->hyperv_ver_id_minor;
1385 c->ecx = cpu->hyperv_ver_id_sp;
1386 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1387 (cpu->hyperv_ver_id_sn & 0xffffff);
2344d22e
VK
1388
1389 c = &cpuid_ent[cpuid_i++];
1390 c->function = HV_CPUID_FEATURES;
061817a7
VK
1391 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1392 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1393 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
c830015e 1394
b26f68c3
VK
1395 /* Unconditionally required with any Hyper-V enlightenment */
1396 c->eax |= HV_HYPERCALL_AVAILABLE;
1397
cce087f6
VK
1398 /* SynIC and Vmbus devices require messages/signals hypercalls */
1399 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1400 !cpu->hyperv_synic_kvm_only) {
1401 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1402 }
1403
05071629 1404
c830015e
VK
1405 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1406 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
2344d22e
VK
1407
1408 c = &cpuid_ent[cpuid_i++];
1409 c->function = HV_CPUID_ENLIGHTMENT_INFO;
061817a7 1410 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
2344d22e
VK
1411 c->ebx = cpu->hyperv_spinlock_attempts;
1412
e1f9a8e8
VK
1413 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1414 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
05071629
VK
1415 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1416 }
1417
c830015e
VK
1418 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1419 c->eax |= HV_NO_NONARCH_CORESHARING;
1420 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
a8439be6 1421 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
e1a66a1e 1422 HV_NO_NONARCH_CORESHARING;
c830015e
VK
1423 }
1424
2344d22e
VK
1425 c = &cpuid_ent[cpuid_i++];
1426 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1427 c->eax = cpu->hv_max_vps;
23eb5d03
VK
1428 c->ebx = cpu->hyperv_limits[0];
1429 c->ecx = cpu->hyperv_limits[1];
1430 c->edx = cpu->hyperv_limits[2];
2344d22e
VK
1431
1432 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
dc7d6caf 1433 uint32_t function;
2344d22e
VK
1434
1435 /* Create zeroed 0x40000006..0x40000009 leaves */
1436 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1437 function < HV_CPUID_NESTED_FEATURES; function++) {
1438 c = &cpuid_ent[cpuid_i++];
1439 c->function = function;
1440 }
1441
1442 c = &cpuid_ent[cpuid_i++];
1443 c->function = HV_CPUID_NESTED_FEATURES;
c830015e 1444 c->eax = cpu->hyperv_nested[0];
2344d22e 1445 }
6760bd20 1446
a8439be6 1447 return cpuid_i;
c35bd19a
EY
1448}
1449
e48ddcc6 1450static Error *hv_passthrough_mig_blocker;
30d6ff66 1451static Error *hv_no_nonarch_cs_mig_blocker;
e48ddcc6 1452
07454e2e
VK
1453/* Checks that the exposed eVMCS version range is supported by KVM */
1454static bool evmcs_version_supported(uint16_t evmcs_version,
1455 uint16_t supported_evmcs_version)
1456{
1457 uint8_t min_version = evmcs_version & 0xff;
1458 uint8_t max_version = evmcs_version >> 8;
1459 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1460 uint8_t max_supported_version = supported_evmcs_version >> 8;
1461
1462 return (min_version >= min_supported_version) &&
1463 (max_version <= max_supported_version);
1464}
1465
1466#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1467
e9688fab
RK
1468static int hyperv_init_vcpu(X86CPU *cpu)
1469{
729ce7e1 1470 CPUState *cs = CPU(cpu);
e48ddcc6 1471 Error *local_err = NULL;
729ce7e1
RK
1472 int ret;
1473
e48ddcc6
VK
1474 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1475 error_setg(&hv_passthrough_mig_blocker,
1476 "'hv-passthrough' CPU flag prevents migration, use explicit"
1477 " set of hv-* flags instead");
1478 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
436c831a 1479 if (ret < 0) {
e48ddcc6 1480 error_report_err(local_err);
e48ddcc6
VK
1481 return ret;
1482 }
1483 }
1484
30d6ff66
VK
1485 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1486 hv_no_nonarch_cs_mig_blocker == NULL) {
1487 error_setg(&hv_no_nonarch_cs_mig_blocker,
1488 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1489 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1490 " make sure SMT is disabled and/or that vCPUs are properly"
1491 " pinned)");
1492 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
436c831a 1493 if (ret < 0) {
30d6ff66 1494 error_report_err(local_err);
30d6ff66
VK
1495 return ret;
1496 }
1497 }
1498
2d384d7c 1499 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1500 /*
1501 * the kernel doesn't support setting vp_index; assert that its value
1502 * is in sync
1503 */
e9688fab
RK
1504 struct {
1505 struct kvm_msrs info;
1506 struct kvm_msr_entry entries[1];
1507 } msr_data = {
1508 .info.nmsrs = 1,
1509 .entries[0].index = HV_X64_MSR_VP_INDEX,
1510 };
1511
729ce7e1 1512 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1513 if (ret < 0) {
1514 return ret;
1515 }
1516 assert(ret == 1);
1517
701189e3 1518 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1519 error_report("kernel's vp_index != QEMU's vp_index");
1520 return -ENXIO;
1521 }
1522 }
1523
2d384d7c 1524 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1525 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1526 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1527 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1528 if (ret < 0) {
1529 error_report("failed to turn on HyperV SynIC in KVM: %s",
1530 strerror(-ret));
1531 return ret;
1532 }
606c34bf 1533
9b4cf107
RK
1534 if (!cpu->hyperv_synic_kvm_only) {
1535 ret = hyperv_x86_synic_add(cpu);
1536 if (ret < 0) {
1537 error_report("failed to create HyperV SynIC: %s",
1538 strerror(-ret));
1539 return ret;
1540 }
606c34bf 1541 }
729ce7e1
RK
1542 }
1543
decb4f20 1544 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
07454e2e
VK
1545 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1546 uint16_t supported_evmcs_version;
decb4f20
VK
1547
1548 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
07454e2e 1549 (uintptr_t)&supported_evmcs_version);
decb4f20 1550
07454e2e
VK
1551 /*
1552 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1553 * option sets. Note: we hardcode the maximum supported eVMCS version
1554 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1555 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1556 * to be added.
1557 */
decb4f20 1558 if (ret < 0) {
07454e2e
VK
1559 error_report("Hyper-V %s is not supported by kernel",
1560 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
decb4f20
VK
1561 return ret;
1562 }
1563
07454e2e
VK
1564 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1565 error_report("eVMCS version range [%d..%d] is not supported by "
1566 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1567 evmcs_version >> 8, supported_evmcs_version & 0xff,
1568 supported_evmcs_version >> 8);
1569 return -ENOTSUP;
1570 }
1571
decb4f20
VK
1572 cpu->hyperv_nested[0] = evmcs_version;
1573 }
1574
70367f09
VK
1575 if (cpu->hyperv_enforce_cpuid) {
1576 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1577 if (ret < 0) {
1578 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1579 strerror(-ret));
1580 return ret;
1581 }
1582 }
1583
e9688fab
RK
1584 return 0;
1585}
1586
68bfd0ad
MT
1587static Error *invtsc_mig_blocker;
1588
f8bb0565 1589#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1590
e56dd3c7
JL
1591static void kvm_init_xsave(CPUX86State *env)
1592{
1593 if (has_xsave2) {
1594 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1595 } else if (has_xsave) {
1596 env->xsave_buf_len = sizeof(struct kvm_xsave);
1597 } else {
1598 return;
1599 }
1600
1601 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1602 memset(env->xsave_buf, 0, env->xsave_buf_len);
1603 /*
1604 * The allocated storage must be large enough for all of the
1605 * possible XSAVE state components.
1606 */
1607 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1608 env->xsave_buf_len);
1609}
1610
20d695a9 1611int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1612{
1613 struct {
486bd5a2 1614 struct kvm_cpuid2 cpuid;
f8bb0565 1615 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1616 } cpuid_data;
1617 /*
1618 * The kernel defines these structs with padding fields so there
1619 * should be no extra padding in our cpuid_data struct.
1620 */
1621 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1622 sizeof(struct kvm_cpuid2) +
1623 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1624
20d695a9
AF
1625 X86CPU *cpu = X86_CPU(cs);
1626 CPUX86State *env = &cpu->env;
486bd5a2 1627 uint32_t limit, i, j, cpuid_i;
a33609ca 1628 uint32_t unused;
bb0300dc 1629 struct kvm_cpuid_entry2 *c;
bb0300dc 1630 uint32_t signature[3];
234cc647 1631 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1632 int max_nested_state_len;
e7429073 1633 int r;
fe44dc91 1634 Error *local_err = NULL;
05330448 1635
ef4cbe14
SW
1636 memset(&cpuid_data, 0, sizeof(cpuid_data));
1637
05330448
AL
1638 cpuid_i = 0;
1639
e56dd3c7
JL
1640 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1641
ddb98b5a
LP
1642 r = kvm_arch_set_tsc_khz(cs);
1643 if (r < 0) {
6b2341ee 1644 return r;
ddb98b5a
LP
1645 }
1646
1647 /* vcpu's TSC frequency is either specified by user, or following
1648 * the value used by KVM if the former is not present. In the
1649 * latter case, we query it from KVM and record in env->tsc_khz,
1650 * so that vcpu's TSC frequency can be migrated later via this field.
1651 */
1652 if (!env->tsc_khz) {
1653 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1654 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1655 -ENOTSUP;
1656 if (r > 0) {
1657 env->tsc_khz = r;
1658 }
1659 }
1660
73b994f6
LA
1661 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1662
071ce4b0
VK
1663 /*
1664 * kvm_hyperv_expand_features() is called here for the second time in case
1665 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1666 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1667 * check which Hyper-V enlightenments are supported and which are not, we
1668 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1669 * behavior is preserved.
1670 */
1671 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
f4a62495
VK
1672 error_report_err(local_err);
1673 return -ENOSYS;
f6e01ab5
VK
1674 }
1675
1676 if (hyperv_enabled(cpu)) {
decb4f20
VK
1677 r = hyperv_init_vcpu(cpu);
1678 if (r) {
1679 return r;
1680 }
1681
f6e01ab5 1682 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
234cc647 1683 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1684 has_msr_hv_hypercall = true;
eab70139
VR
1685 }
1686
f522d2ac
AW
1687 if (cpu->expose_kvm) {
1688 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1689 c = &cpuid_data.entries[cpuid_i++];
1690 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1691 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1692 c->ebx = signature[0];
1693 c->ecx = signature[1];
1694 c->edx = signature[2];
234cc647 1695
f522d2ac
AW
1696 c = &cpuid_data.entries[cpuid_i++];
1697 c->function = KVM_CPUID_FEATURES | kvm_base;
1698 c->eax = env->features[FEAT_KVM];
be777326 1699 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1700 }
917367aa 1701
a33609ca 1702 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448 1703
988f7b8b
VK
1704 if (cpu->kvm_pv_enforce_cpuid) {
1705 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1706 if (r < 0) {
1707 fprintf(stderr,
1708 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1709 strerror(-r));
1710 abort();
1711 }
1712 }
1713
05330448 1714 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1715 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1716 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1717 abort();
1718 }
bb0300dc 1719 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1720
1721 switch (i) {
a36b1029
AL
1722 case 2: {
1723 /* Keep reading function 2 till all the input is received */
1724 int times;
1725
a36b1029 1726 c->function = i;
a33609ca
AL
1727 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1728 KVM_CPUID_FLAG_STATE_READ_NEXT;
1729 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1730 times = c->eax & 0xff;
a36b1029
AL
1731
1732 for (j = 1; j < times; ++j) {
f8bb0565
IM
1733 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1734 fprintf(stderr, "cpuid_data is full, no space for "
1735 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1736 abort();
1737 }
a33609ca 1738 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1739 c->function = i;
a33609ca
AL
1740 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1741 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1742 }
1743 break;
1744 }
a94e1428
LX
1745 case 0x1f:
1746 if (env->nr_dies < 2) {
1747 break;
1748 }
8821e214 1749 /* fallthrough */
486bd5a2
AL
1750 case 4:
1751 case 0xb:
1752 case 0xd:
1753 for (j = 0; ; j++) {
31e8c696
AP
1754 if (i == 0xd && j == 64) {
1755 break;
1756 }
a94e1428
LX
1757
1758 if (i == 0x1f && j == 64) {
1759 break;
1760 }
1761
486bd5a2
AL
1762 c->function = i;
1763 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1764 c->index = j;
a33609ca 1765 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1766
b9bec74b 1767 if (i == 4 && c->eax == 0) {
486bd5a2 1768 break;
b9bec74b
JK
1769 }
1770 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1771 break;
b9bec74b 1772 }
a94e1428
LX
1773 if (i == 0x1f && !(c->ecx & 0xff00)) {
1774 break;
1775 }
b9bec74b 1776 if (i == 0xd && c->eax == 0) {
31e8c696 1777 continue;
b9bec74b 1778 }
f8bb0565
IM
1779 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1780 fprintf(stderr, "cpuid_data is full, no space for "
1781 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1782 abort();
1783 }
a33609ca 1784 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1785 }
1786 break;
80db491d 1787 case 0x7:
b9edbade
SC
1788 case 0x12:
1789 for (j = 0; ; j++) {
1790 c->function = i;
1791 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1792 c->index = j;
1793 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1794
1795 if (j > 1 && (c->eax & 0xf) != 1) {
1796 break;
1797 }
1798
1799 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1800 fprintf(stderr, "cpuid_data is full, no space for "
1801 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1802 abort();
1803 }
1804 c = &cpuid_data.entries[cpuid_i++];
1805 }
1806 break;
f21a4817
JL
1807 case 0x14:
1808 case 0x1d:
1809 case 0x1e: {
e37a5c7f
CP
1810 uint32_t times;
1811
1812 c->function = i;
1813 c->index = 0;
1814 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1815 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1816 times = c->eax;
1817
1818 for (j = 1; j <= times; ++j) {
1819 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1820 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1821 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1822 abort();
1823 }
1824 c = &cpuid_data.entries[cpuid_i++];
1825 c->function = i;
1826 c->index = j;
1827 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1828 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1829 }
1830 break;
1831 }
486bd5a2 1832 default:
486bd5a2 1833 c->function = i;
a33609ca
AL
1834 c->flags = 0;
1835 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1836 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1837 /*
1838 * KVM already returns all zeroes if a CPUID entry is missing,
1839 * so we can omit it and avoid hitting KVM's 80-entry limit.
1840 */
1841 cpuid_i--;
1842 }
486bd5a2
AL
1843 break;
1844 }
05330448 1845 }
0d894367
PB
1846
1847 if (limit >= 0x0a) {
0b368a10 1848 uint32_t eax, edx;
0d894367 1849
0b368a10
JD
1850 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1851
1852 has_architectural_pmu_version = eax & 0xff;
1853 if (has_architectural_pmu_version > 0) {
1854 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1855
1856 /* Shouldn't be more than 32, since that's the number of bits
1857 * available in EBX to tell us _which_ counters are available.
1858 * Play it safe.
1859 */
0b368a10
JD
1860 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1861 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1862 }
1863
1864 if (has_architectural_pmu_version > 1) {
1865 num_architectural_pmu_fixed_counters = edx & 0x1f;
1866
1867 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1868 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1869 }
0d894367
PB
1870 }
1871 }
1872 }
1873
a33609ca 1874 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1875
1876 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1877 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1878 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1879 abort();
1880 }
bb0300dc 1881 c = &cpuid_data.entries[cpuid_i++];
05330448 1882
8f4202fb
BM
1883 switch (i) {
1884 case 0x8000001d:
1885 /* Query for all AMD cache information leaves */
1886 for (j = 0; ; j++) {
1887 c->function = i;
1888 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1889 c->index = j;
1890 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1891
1892 if (c->eax == 0) {
1893 break;
1894 }
1895 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1896 fprintf(stderr, "cpuid_data is full, no space for "
1897 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1898 abort();
1899 }
1900 c = &cpuid_data.entries[cpuid_i++];
1901 }
1902 break;
1903 default:
1904 c->function = i;
1905 c->flags = 0;
1906 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1907 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1908 /*
1909 * KVM already returns all zeroes if a CPUID entry is missing,
1910 * so we can omit it and avoid hitting KVM's 80-entry limit.
1911 */
1912 cpuid_i--;
1913 }
8f4202fb
BM
1914 break;
1915 }
05330448
AL
1916 }
1917
b3baa152
BW
1918 /* Call Centaur's CPUID instructions they are supported. */
1919 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1920 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1921
1922 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1923 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1924 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1925 abort();
1926 }
b3baa152
BW
1927 c = &cpuid_data.entries[cpuid_i++];
1928
1929 c->function = i;
1930 c->flags = 0;
1931 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1932 }
1933 }
1934
05330448
AL
1935 cpuid_data.cpuid.nent = cpuid_i;
1936
e7701825 1937 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1938 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1939 (CPUID_MCE | CPUID_MCA)
a60f24b5 1940 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1941 uint64_t mcg_cap, unsupported_caps;
e7701825 1942 int banks;
32a42024 1943 int ret;
e7701825 1944
a60f24b5 1945 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1946 if (ret < 0) {
1947 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1948 return ret;
e7701825 1949 }
75d49497 1950
2590f15b 1951 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1952 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1953 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1954 return -ENOTSUP;
75d49497 1955 }
49b69cbf 1956
5120901a
EH
1957 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1958 if (unsupported_caps) {
87f8b626
AR
1959 if (unsupported_caps & MCG_LMCE_P) {
1960 error_report("kvm: LMCE not supported");
1961 return -ENOTSUP;
1962 }
3dc6f869
AF
1963 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1964 unsupported_caps);
5120901a
EH
1965 }
1966
2590f15b
EH
1967 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1968 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1969 if (ret < 0) {
1970 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1971 return ret;
1972 }
e7701825 1973 }
e7701825 1974
2a693142 1975 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
b8cc45d6 1976
df67696e
LJ
1977 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1978 if (c) {
1979 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1980 !!(c->ecx & CPUID_EXT_SMX);
1981 }
1982
a0483541
SC
1983 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1984 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1985 has_msr_feature_control = true;
1986 }
1987
87f8b626
AR
1988 if (env->mcg_cap & MCG_LMCE_P) {
1989 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1990 }
1991
d99569d9
EH
1992 if (!env->user_tsc_khz) {
1993 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1994 invtsc_mig_blocker == NULL) {
d99569d9
EH
1995 error_setg(&invtsc_mig_blocker,
1996 "State blocked by non-migratable CPU device"
1997 " (invtsc flag)");
fe44dc91 1998 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
436c831a 1999 if (r < 0) {
fe44dc91 2000 error_report_err(local_err);
79a197ab 2001 return r;
fe44dc91 2002 }
d99569d9 2003 }
68bfd0ad
MT
2004 }
2005
9954a158
PDJ
2006 if (cpu->vmware_cpuid_freq
2007 /* Guests depend on 0x40000000 to detect this feature, so only expose
2008 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2009 && cpu->expose_kvm
2010 && kvm_base == KVM_CPUID_SIGNATURE
2011 /* TSC clock must be stable and known for this feature. */
4bb95b82 2012 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
2013
2014 c = &cpuid_data.entries[cpuid_i++];
2015 c->function = KVM_CPUID_SIGNATURE | 0x10;
2016 c->eax = env->tsc_khz;
73b994f6 2017 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
9954a158
PDJ
2018 c->ecx = c->edx = 0;
2019
2020 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2021 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2022 }
2023
2024 cpuid_data.cpuid.nent = cpuid_i;
2025
2026 cpuid_data.cpuid.padding = 0;
2027 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2028 if (r) {
2029 goto fail;
2030 }
e56dd3c7 2031 kvm_init_xsave(env);
ebbfef2f
LA
2032
2033 max_nested_state_len = kvm_max_nested_state_length();
2034 if (max_nested_state_len > 0) {
2035 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 2036
b16c0e20 2037 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1e44f3ab 2038 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 2039
1e44f3ab
PB
2040 env->nested_state = g_malloc0(max_nested_state_len);
2041 env->nested_state->size = max_nested_state_len;
1e44f3ab 2042
b16c0e20 2043 if (cpu_has_vmx(env)) {
2654ace1
TL
2044 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2045 vmx_hdr = &env->nested_state->hdr.vmx;
2046 vmx_hdr->vmxon_pa = -1ull;
2047 vmx_hdr->vmcs12_pa = -1ull;
2048 } else {
2049 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
b16c0e20 2050 }
ebbfef2f
LA
2051 }
2052 }
2053
d71b62a1 2054 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 2055
273c515c
PB
2056 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2057 has_msr_tsc_aux = false;
2058 }
d1ae67f6 2059
420ae1fc
PB
2060 kvm_init_msrs(cpu);
2061
e7429073 2062 return 0;
fe44dc91
AA
2063
2064 fail:
2065 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 2066
fe44dc91 2067 return r;
05330448
AL
2068}
2069
b1115c99
LA
2070int kvm_arch_destroy_vcpu(CPUState *cs)
2071{
2072 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 2073 CPUX86State *env = &cpu->env;
b1115c99
LA
2074
2075 if (cpu->kvm_msr_buf) {
2076 g_free(cpu->kvm_msr_buf);
2077 cpu->kvm_msr_buf = NULL;
2078 }
2079
ebbfef2f
LA
2080 if (env->nested_state) {
2081 g_free(env->nested_state);
2082 env->nested_state = NULL;
2083 }
2084
2a693142
PN
2085 qemu_del_vm_change_state_handler(cpu->vmsentry);
2086
b1115c99
LA
2087 return 0;
2088}
2089
50a2c6e5 2090void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 2091{
20d695a9 2092 CPUX86State *env = &cpu->env;
dd673288 2093
1a5e9d2f 2094 env->xcr0 = 1;
ddced198 2095 if (kvm_irqchip_in_kernel()) {
dd673288 2096 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
2097 KVM_MP_STATE_UNINITIALIZED;
2098 } else {
2099 env->mp_state = KVM_MP_STATE_RUNNABLE;
2100 }
689141dd 2101
2d384d7c 2102 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
2103 int i;
2104 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2105 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2106 }
606c34bf
RK
2107
2108 hyperv_x86_synic_reset(cpu);
689141dd 2109 }
d645e132
MT
2110 /* enabled by default */
2111 env->poll_control_msr = 1;
b2f73a07
PB
2112
2113 sev_es_set_reset_vector(CPU(cpu));
caa5af0f
JK
2114}
2115
e0723c45
PB
2116void kvm_arch_do_init_vcpu(X86CPU *cpu)
2117{
2118 CPUX86State *env = &cpu->env;
2119
2120 /* APs get directly into wait-for-SIPI state. */
2121 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2122 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2123 }
2124}
2125
f57bceb6
RH
2126static int kvm_get_supported_feature_msrs(KVMState *s)
2127{
2128 int ret = 0;
2129
2130 if (kvm_feature_msrs != NULL) {
2131 return 0;
2132 }
2133
2134 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2135 return 0;
2136 }
2137
2138 struct kvm_msr_list msr_list;
2139
2140 msr_list.nmsrs = 0;
2141 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2142 if (ret < 0 && ret != -E2BIG) {
2143 error_report("Fetch KVM feature MSR list failed: %s",
2144 strerror(-ret));
2145 return ret;
2146 }
2147
2148 assert(msr_list.nmsrs > 0);
2149 kvm_feature_msrs = (struct kvm_msr_list *) \
2150 g_malloc0(sizeof(msr_list) +
2151 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2152
2153 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2154 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2155
2156 if (ret < 0) {
2157 error_report("Fetch KVM feature MSR list failed: %s",
2158 strerror(-ret));
2159 g_free(kvm_feature_msrs);
2160 kvm_feature_msrs = NULL;
2161 return ret;
2162 }
2163
2164 return 0;
2165}
2166
c3a3a7d3 2167static int kvm_get_supported_msrs(KVMState *s)
05330448 2168{
c3a3a7d3 2169 int ret = 0;
de428cea 2170 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 2171
de428cea
LQ
2172 /*
2173 * Obtain MSR list from KVM. These are the MSRs that we must
2174 * save/restore.
2175 */
2176 msr_list.nmsrs = 0;
2177 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2178 if (ret < 0 && ret != -E2BIG) {
2179 return ret;
2180 }
2181 /*
2182 * Old kernel modules had a bug and could write beyond the provided
2183 * memory. Allocate at least a safe amount of 1K.
2184 */
2185 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2186 msr_list.nmsrs *
2187 sizeof(msr_list.indices[0])));
05330448 2188
de428cea
LQ
2189 kvm_msr_list->nmsrs = msr_list.nmsrs;
2190 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2191 if (ret >= 0) {
2192 int i;
05330448 2193
de428cea
LQ
2194 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2195 switch (kvm_msr_list->indices[i]) {
2196 case MSR_STAR:
2197 has_msr_star = true;
2198 break;
2199 case MSR_VM_HSAVE_PA:
2200 has_msr_hsave_pa = true;
2201 break;
2202 case MSR_TSC_AUX:
2203 has_msr_tsc_aux = true;
2204 break;
2205 case MSR_TSC_ADJUST:
2206 has_msr_tsc_adjust = true;
2207 break;
2208 case MSR_IA32_TSCDEADLINE:
2209 has_msr_tsc_deadline = true;
2210 break;
2211 case MSR_IA32_SMBASE:
2212 has_msr_smbase = true;
2213 break;
2214 case MSR_SMI_COUNT:
2215 has_msr_smi_count = true;
2216 break;
2217 case MSR_IA32_MISC_ENABLE:
2218 has_msr_misc_enable = true;
2219 break;
2220 case MSR_IA32_BNDCFGS:
2221 has_msr_bndcfgs = true;
2222 break;
2223 case MSR_IA32_XSS:
2224 has_msr_xss = true;
2225 break;
65087997
TX
2226 case MSR_IA32_UMWAIT_CONTROL:
2227 has_msr_umwait = true;
2228 break;
de428cea
LQ
2229 case HV_X64_MSR_CRASH_CTL:
2230 has_msr_hv_crash = true;
2231 break;
2232 case HV_X64_MSR_RESET:
2233 has_msr_hv_reset = true;
2234 break;
2235 case HV_X64_MSR_VP_INDEX:
2236 has_msr_hv_vpindex = true;
2237 break;
2238 case HV_X64_MSR_VP_RUNTIME:
2239 has_msr_hv_runtime = true;
2240 break;
2241 case HV_X64_MSR_SCONTROL:
2242 has_msr_hv_synic = true;
2243 break;
2244 case HV_X64_MSR_STIMER0_CONFIG:
2245 has_msr_hv_stimer = true;
2246 break;
2247 case HV_X64_MSR_TSC_FREQUENCY:
2248 has_msr_hv_frequencies = true;
2249 break;
2250 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2251 has_msr_hv_reenlightenment = true;
2252 break;
2253 case MSR_IA32_SPEC_CTRL:
2254 has_msr_spec_ctrl = true;
2255 break;
cabf9862
ML
2256 case MSR_AMD64_TSC_RATIO:
2257 has_tsc_scale_msr = true;
2258 break;
2a9758c5
PB
2259 case MSR_IA32_TSX_CTRL:
2260 has_msr_tsx_ctrl = true;
2261 break;
de428cea
LQ
2262 case MSR_VIRT_SSBD:
2263 has_msr_virt_ssbd = true;
2264 break;
2265 case MSR_IA32_ARCH_CAPABILITIES:
2266 has_msr_arch_capabs = true;
2267 break;
2268 case MSR_IA32_CORE_CAPABILITY:
2269 has_msr_core_capabs = true;
2270 break;
ea39f9b6
LX
2271 case MSR_IA32_PERF_CAPABILITIES:
2272 has_msr_perf_capabs = true;
2273 break;
20a78b02
PB
2274 case MSR_IA32_VMX_VMFUNC:
2275 has_msr_vmx_vmfunc = true;
2276 break;
67025148
PB
2277 case MSR_IA32_UCODE_REV:
2278 has_msr_ucode_rev = true;
2279 break;
4a910e1f
VK
2280 case MSR_IA32_VMX_PROCBASED_CTLS2:
2281 has_msr_vmx_procbased_ctls2 = true;
2282 break;
6aa4228b
CQ
2283 case MSR_IA32_PKRS:
2284 has_msr_pkrs = true;
2285 break;
05330448
AL
2286 }
2287 }
05330448
AL
2288 }
2289
de428cea
LQ
2290 g_free(kvm_msr_list);
2291
c3a3a7d3 2292 return ret;
05330448
AL
2293}
2294
6410848b
PB
2295static Notifier smram_machine_done;
2296static KVMMemoryListener smram_listener;
2297static AddressSpace smram_address_space;
2298static MemoryRegion smram_as_root;
2299static MemoryRegion smram_as_mem;
2300
2301static void register_smram_listener(Notifier *n, void *unused)
2302{
2303 MemoryRegion *smram =
2304 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2305
2306 /* Outer container... */
2307 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2308 memory_region_set_enabled(&smram_as_root, true);
2309
2310 /* ... with two regions inside: normal system memory with low
2311 * priority, and...
2312 */
2313 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2314 get_system_memory(), 0, ~0ull);
2315 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2316 memory_region_set_enabled(&smram_as_mem, true);
2317
2318 if (smram) {
2319 /* ... SMRAM with higher priority */
2320 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2321 memory_region_set_enabled(smram, true);
2322 }
2323
2324 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2325 kvm_memory_listener_register(kvm_state, &smram_listener,
142518bd 2326 &smram_address_space, 1, "kvm-smram");
6410848b
PB
2327}
2328
b16565b3 2329int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2330{
11076198 2331 uint64_t identity_base = 0xfffbc000;
39d6960a 2332 uint64_t shadow_mem;
20420430 2333 int ret;
25d2e361 2334 struct utsname utsname;
ec78e2cd
DG
2335 Error *local_err = NULL;
2336
2337 /*
2338 * Initialize SEV context, if required
2339 *
2340 * If no memory encryption is requested (ms->cgs == NULL) this is
2341 * a no-op.
2342 *
2343 * It's also a no-op if a non-SEV confidential guest support
2344 * mechanism is selected. SEV is the only mechanism available to
2345 * select on x86 at present, so this doesn't arise, but if new
2346 * mechanisms are supported in future (e.g. TDX), they'll need
2347 * their own initialization either here or elsewhere.
2348 */
2349 ret = sev_kvm_init(ms->cgs, &local_err);
2350 if (ret < 0) {
2351 error_report_err(local_err);
2352 return ret;
2353 }
20420430 2354
1a6dff5f
EH
2355 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2356 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2357 return -ENOTSUP;
2358 }
2359
28143b40 2360 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2361 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2362 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
8f515d38 2363 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
28143b40 2364
e9688fab
RK
2365 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2366
fd13f23b
LA
2367 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2368 if (has_exception_payload) {
2369 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2370 if (ret < 0) {
2371 error_report("kvm: Failed to enable exception payload cap: %s",
2372 strerror(-ret));
2373 return ret;
2374 }
2375 }
2376
c3a3a7d3 2377 ret = kvm_get_supported_msrs(s);
20420430 2378 if (ret < 0) {
20420430
SY
2379 return ret;
2380 }
25d2e361 2381
f57bceb6
RH
2382 kvm_get_supported_feature_msrs(s);
2383
25d2e361
MT
2384 uname(&utsname);
2385 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2386
4c5b10b7 2387 /*
11076198
JK
2388 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2389 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2390 * Since these must be part of guest physical memory, we need to allocate
2391 * them, both by setting their start addresses in the kernel and by
2392 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2393 *
2394 * Older KVM versions may not support setting the identity map base. In
2395 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2396 * size.
4c5b10b7 2397 */
11076198
JK
2398 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2399 /* Allows up to 16M BIOSes. */
2400 identity_base = 0xfeffc000;
2401
2402 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2403 if (ret < 0) {
2404 return ret;
2405 }
4c5b10b7 2406 }
e56ff191 2407
11076198
JK
2408 /* Set TSS base one page after EPT identity map. */
2409 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2410 if (ret < 0) {
2411 return ret;
2412 }
2413
11076198
JK
2414 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2415 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2416 if (ret < 0) {
11076198 2417 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2418 return ret;
2419 }
2420
23b0898e 2421 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
36ad0e94
MA
2422 if (shadow_mem != -1) {
2423 shadow_mem /= 4096;
2424 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2425 if (ret < 0) {
2426 return ret;
39d6960a
JK
2427 }
2428 }
6410848b 2429
d870cfde 2430 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
8f54bbd0 2431 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
ed9e923c 2432 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
6410848b
PB
2433 smram_machine_done.notify = register_smram_listener;
2434 qemu_add_machine_init_done_notifier(&smram_machine_done);
2435 }
6f131f13
MT
2436
2437 if (enable_cpu_pm) {
2438 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2439 int ret;
2440
2441/* Work around for kernel header with a typo. TODO: fix header and drop. */
2442#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2443#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2444#endif
2445 if (disable_exits) {
2446 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2447 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2448 KVM_X86_DISABLE_EXITS_PAUSE |
2449 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2450 }
2451
2452 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2453 disable_exits);
2454 if (ret < 0) {
2455 error_report("kvm: guest stopping CPU not supported: %s",
2456 strerror(-ret));
2457 }
2458 }
2459
035d1ef2
CQ
2460 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2461 X86MachineState *x86ms = X86_MACHINE(ms);
2462
2463 if (x86ms->bus_lock_ratelimit > 0) {
2464 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2465 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2466 error_report("kvm: bus lock detection unsupported");
2467 return -ENOTSUP;
2468 }
2469 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2470 KVM_BUS_LOCK_DETECTION_EXIT);
2471 if (ret < 0) {
2472 error_report("kvm: Failed to enable bus lock detection cap: %s",
2473 strerror(-ret));
2474 return ret;
2475 }
2476 ratelimit_init(&bus_lock_ratelimit_ctrl);
2477 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2478 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2479 }
2480 }
2481
11076198 2482 return 0;
05330448 2483}
b9bec74b 2484
05330448
AL
2485static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2486{
2487 lhs->selector = rhs->selector;
2488 lhs->base = rhs->base;
2489 lhs->limit = rhs->limit;
2490 lhs->type = 3;
2491 lhs->present = 1;
2492 lhs->dpl = 3;
2493 lhs->db = 0;
2494 lhs->s = 1;
2495 lhs->l = 0;
2496 lhs->g = 0;
2497 lhs->avl = 0;
2498 lhs->unusable = 0;
2499}
2500
2501static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2502{
2503 unsigned flags = rhs->flags;
2504 lhs->selector = rhs->selector;
2505 lhs->base = rhs->base;
2506 lhs->limit = rhs->limit;
2507 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2508 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2509 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2510 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2511 lhs->s = (flags & DESC_S_MASK) != 0;
2512 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2513 lhs->g = (flags & DESC_G_MASK) != 0;
2514 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2515 lhs->unusable = !lhs->present;
7e680753 2516 lhs->padding = 0;
05330448
AL
2517}
2518
2519static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2520{
2521 lhs->selector = rhs->selector;
2522 lhs->base = rhs->base;
2523 lhs->limit = rhs->limit;
d45fc087
RP
2524 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2525 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2526 (rhs->dpl << DESC_DPL_SHIFT) |
2527 (rhs->db << DESC_B_SHIFT) |
2528 (rhs->s * DESC_S_MASK) |
2529 (rhs->l << DESC_L_SHIFT) |
2530 (rhs->g * DESC_G_MASK) |
2531 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2532}
2533
2534static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2535{
b9bec74b 2536 if (set) {
05330448 2537 *kvm_reg = *qemu_reg;
b9bec74b 2538 } else {
05330448 2539 *qemu_reg = *kvm_reg;
b9bec74b 2540 }
05330448
AL
2541}
2542
1bc22652 2543static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2544{
1bc22652 2545 CPUX86State *env = &cpu->env;
05330448
AL
2546 struct kvm_regs regs;
2547 int ret = 0;
2548
2549 if (!set) {
1bc22652 2550 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2551 if (ret < 0) {
05330448 2552 return ret;
b9bec74b 2553 }
05330448
AL
2554 }
2555
2556 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2557 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2558 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2559 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2560 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2561 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2562 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2563 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2564#ifdef TARGET_X86_64
2565 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2566 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2567 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2568 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2569 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2570 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2571 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2572 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2573#endif
2574
2575 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2576 kvm_getput_reg(&regs.rip, &env->eip, set);
2577
b9bec74b 2578 if (set) {
1bc22652 2579 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2580 }
05330448
AL
2581
2582 return ret;
2583}
2584
1bc22652 2585static int kvm_put_fpu(X86CPU *cpu)
05330448 2586{
1bc22652 2587 CPUX86State *env = &cpu->env;
05330448
AL
2588 struct kvm_fpu fpu;
2589 int i;
2590
2591 memset(&fpu, 0, sizeof fpu);
2592 fpu.fsw = env->fpus & ~(7 << 11);
2593 fpu.fsw |= (env->fpstt & 7) << 11;
2594 fpu.fcw = env->fpuc;
42cc8fa6
JK
2595 fpu.last_opcode = env->fpop;
2596 fpu.last_ip = env->fpip;
2597 fpu.last_dp = env->fpdp;
b9bec74b
JK
2598 for (i = 0; i < 8; ++i) {
2599 fpu.ftwx |= (!env->fptags[i]) << i;
2600 }
05330448 2601 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2602 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2603 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2604 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2605 }
05330448
AL
2606 fpu.mxcsr = env->mxcsr;
2607
1bc22652 2608 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2609}
2610
1bc22652 2611static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2612{
1bc22652 2613 CPUX86State *env = &cpu->env;
c0198c5f 2614 void *xsave = env->xsave_buf;
f1665b21 2615
28143b40 2616 if (!has_xsave) {
1bc22652 2617 return kvm_put_fpu(cpu);
b9bec74b 2618 }
c0198c5f 2619 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 2620
9be38598 2621 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2622}
2623
1bc22652 2624static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2625{
1bc22652 2626 CPUX86State *env = &cpu->env;
bdfc8480 2627 struct kvm_xcrs xcrs = {};
f1665b21 2628
28143b40 2629 if (!has_xcrs) {
f1665b21 2630 return 0;
b9bec74b 2631 }
f1665b21
SY
2632
2633 xcrs.nr_xcrs = 1;
2634 xcrs.flags = 0;
2635 xcrs.xcrs[0].xcr = 0;
2636 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2637 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2638}
2639
1bc22652 2640static int kvm_put_sregs(X86CPU *cpu)
05330448 2641{
1bc22652 2642 CPUX86State *env = &cpu->env;
05330448
AL
2643 struct kvm_sregs sregs;
2644
1520f8bb
PB
2645 /*
2646 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2647 * always followed by KVM_SET_VCPU_EVENTS.
2648 */
0e607a80 2649 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
05330448
AL
2650
2651 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2652 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2653 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2654 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2655 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2656 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2657 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2658 } else {
b9bec74b
JK
2659 set_seg(&sregs.cs, &env->segs[R_CS]);
2660 set_seg(&sregs.ds, &env->segs[R_DS]);
2661 set_seg(&sregs.es, &env->segs[R_ES]);
2662 set_seg(&sregs.fs, &env->segs[R_FS]);
2663 set_seg(&sregs.gs, &env->segs[R_GS]);
2664 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2665 }
2666
2667 set_seg(&sregs.tr, &env->tr);
2668 set_seg(&sregs.ldt, &env->ldt);
2669
2670 sregs.idt.limit = env->idt.limit;
2671 sregs.idt.base = env->idt.base;
7e680753 2672 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2673 sregs.gdt.limit = env->gdt.limit;
2674 sregs.gdt.base = env->gdt.base;
7e680753 2675 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2676
2677 sregs.cr0 = env->cr[0];
2678 sregs.cr2 = env->cr[2];
2679 sregs.cr3 = env->cr[3];
2680 sregs.cr4 = env->cr[4];
2681
02e51483
CF
2682 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2683 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2684
2685 sregs.efer = env->efer;
2686
1bc22652 2687 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2688}
2689
8f515d38
ML
2690static int kvm_put_sregs2(X86CPU *cpu)
2691{
2692 CPUX86State *env = &cpu->env;
2693 struct kvm_sregs2 sregs;
2694 int i;
2695
2696 sregs.flags = 0;
2697
2698 if ((env->eflags & VM_MASK)) {
2699 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2700 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2701 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2702 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2703 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2704 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2705 } else {
2706 set_seg(&sregs.cs, &env->segs[R_CS]);
2707 set_seg(&sregs.ds, &env->segs[R_DS]);
2708 set_seg(&sregs.es, &env->segs[R_ES]);
2709 set_seg(&sregs.fs, &env->segs[R_FS]);
2710 set_seg(&sregs.gs, &env->segs[R_GS]);
2711 set_seg(&sregs.ss, &env->segs[R_SS]);
2712 }
2713
2714 set_seg(&sregs.tr, &env->tr);
2715 set_seg(&sregs.ldt, &env->ldt);
2716
2717 sregs.idt.limit = env->idt.limit;
2718 sregs.idt.base = env->idt.base;
2719 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2720 sregs.gdt.limit = env->gdt.limit;
2721 sregs.gdt.base = env->gdt.base;
2722 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2723
2724 sregs.cr0 = env->cr[0];
2725 sregs.cr2 = env->cr[2];
2726 sregs.cr3 = env->cr[3];
2727 sregs.cr4 = env->cr[4];
2728
2729 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2730 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2731
2732 sregs.efer = env->efer;
2733
2734 if (env->pdptrs_valid) {
2735 for (i = 0; i < 4; i++) {
2736 sregs.pdptrs[i] = env->pdptrs[i];
2737 }
2738 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2739 }
2740
2741 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2742}
2743
2744
d71b62a1
EH
2745static void kvm_msr_buf_reset(X86CPU *cpu)
2746{
2747 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2748}
2749
9c600a84
EH
2750static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2751{
2752 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2753 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2754 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2755
2756 assert((void *)(entry + 1) <= limit);
2757
1abc2cae
EH
2758 entry->index = index;
2759 entry->reserved = 0;
2760 entry->data = value;
9c600a84
EH
2761 msrs->nmsrs++;
2762}
2763
73e1b8f2
PB
2764static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2765{
2766 kvm_msr_buf_reset(cpu);
2767 kvm_msr_entry_add(cpu, index, value);
2768
2769 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2770}
2771
f8d9ccf8
DDAG
2772void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2773{
2774 int ret;
2775
2776 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2777 assert(ret == 1);
2778}
2779
7477cd38
MT
2780static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2781{
2782 CPUX86State *env = &cpu->env;
48e1a45c 2783 int ret;
7477cd38
MT
2784
2785 if (!has_msr_tsc_deadline) {
2786 return 0;
2787 }
2788
73e1b8f2 2789 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2790 if (ret < 0) {
2791 return ret;
2792 }
2793
2794 assert(ret == 1);
2795 return 0;
7477cd38
MT
2796}
2797
6bdf863d
JK
2798/*
2799 * Provide a separate write service for the feature control MSR in order to
2800 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2801 * before writing any other state because forcibly leaving nested mode
2802 * invalidates the VCPU state.
2803 */
2804static int kvm_put_msr_feature_control(X86CPU *cpu)
2805{
48e1a45c
PB
2806 int ret;
2807
2808 if (!has_msr_feature_control) {
2809 return 0;
2810 }
6bdf863d 2811
73e1b8f2
PB
2812 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2813 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2814 if (ret < 0) {
2815 return ret;
2816 }
2817
2818 assert(ret == 1);
2819 return 0;
6bdf863d
JK
2820}
2821
20a78b02
PB
2822static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2823{
2824 uint32_t default1, can_be_one, can_be_zero;
2825 uint32_t must_be_one;
2826
2827 switch (index) {
2828 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2829 default1 = 0x00000016;
2830 break;
2831 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2832 default1 = 0x0401e172;
2833 break;
2834 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2835 default1 = 0x000011ff;
2836 break;
2837 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2838 default1 = 0x00036dff;
2839 break;
2840 case MSR_IA32_VMX_PROCBASED_CTLS2:
2841 default1 = 0;
2842 break;
2843 default:
2844 abort();
2845 }
2846
2847 /* If a feature bit is set, the control can be either set or clear.
2848 * Otherwise the value is limited to either 0 or 1 by default1.
2849 */
2850 can_be_one = features | default1;
2851 can_be_zero = features | ~default1;
2852 must_be_one = ~can_be_zero;
2853
2854 /*
2855 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2856 * Bit 32:63 -> 1 if the control bit can be one.
2857 */
2858 return must_be_one | (((uint64_t)can_be_one) << 32);
2859}
2860
20a78b02
PB
2861static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2862{
2863 uint64_t kvm_vmx_basic =
2864 kvm_arch_get_supported_msr_feature(kvm_state,
2865 MSR_IA32_VMX_BASIC);
26051882
YZ
2866
2867 if (!kvm_vmx_basic) {
2868 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2869 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2870 */
2871 return;
2872 }
2873
20a78b02
PB
2874 uint64_t kvm_vmx_misc =
2875 kvm_arch_get_supported_msr_feature(kvm_state,
2876 MSR_IA32_VMX_MISC);
2877 uint64_t kvm_vmx_ept_vpid =
2878 kvm_arch_get_supported_msr_feature(kvm_state,
2879 MSR_IA32_VMX_EPT_VPID_CAP);
2880
2881 /*
2882 * If the guest is 64-bit, a value of 1 is allowed for the host address
2883 * space size vmexit control.
2884 */
2885 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2886 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2887
2888 /*
2889 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2890 * not change them for backwards compatibility.
2891 */
2892 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2893 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2894 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2895 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2896
2897 /*
2898 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2899 * change in the future but are always zero for now, clear them to be
2900 * future proof. Bits 32-63 in theory could change, though KVM does
2901 * not support dual-monitor treatment and probably never will; mask
2902 * them out as well.
2903 */
2904 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2905 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2906 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2907
2908 /*
2909 * EPT memory types should not change either, so we do not bother
2910 * adding features for them.
2911 */
2912 uint64_t fixed_vmx_ept_mask =
2913 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2914 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2915 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2916
2917 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2918 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2919 f[FEAT_VMX_PROCBASED_CTLS]));
2920 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2921 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2922 f[FEAT_VMX_PINBASED_CTLS]));
2923 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2924 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2925 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2926 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2927 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2928 f[FEAT_VMX_ENTRY_CTLS]));
2929 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2930 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2931 f[FEAT_VMX_SECONDARY_CTLS]));
2932 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2933 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2934 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2935 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2936 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2937 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2938 if (has_msr_vmx_vmfunc) {
2939 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2940 }
2941
2942 /*
2943 * Just to be safe, write these with constant values. The CRn_FIXED1
2944 * MSRs are generated by KVM based on the vCPU's CPUID.
2945 */
2946 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2947 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2948 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2949 CR4_VMXE_MASK);
9ce8af4d
PB
2950
2951 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2952 /* TSC multiplier (0x2032). */
2953 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2954 } else {
2955 /* Preemption timer (0x482E). */
2956 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2957 }
20a78b02
PB
2958}
2959
ea39f9b6
LX
2960static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2961{
2962 uint64_t kvm_perf_cap =
2963 kvm_arch_get_supported_msr_feature(kvm_state,
2964 MSR_IA32_PERF_CAPABILITIES);
2965
2966 if (kvm_perf_cap) {
2967 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2968 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2969 }
2970}
2971
420ae1fc
PB
2972static int kvm_buf_set_msrs(X86CPU *cpu)
2973{
2974 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2975 if (ret < 0) {
2976 return ret;
2977 }
2978
2979 if (ret < cpu->kvm_msr_buf->nmsrs) {
2980 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2981 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2982 (uint32_t)e->index, (uint64_t)e->data);
2983 }
2984
2985 assert(ret == cpu->kvm_msr_buf->nmsrs);
2986 return 0;
2987}
2988
2989static void kvm_init_msrs(X86CPU *cpu)
2990{
2991 CPUX86State *env = &cpu->env;
2992
2993 kvm_msr_buf_reset(cpu);
2994 if (has_msr_arch_capabs) {
2995 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2996 env->features[FEAT_ARCH_CAPABILITIES]);
2997 }
2998
2999 if (has_msr_core_capabs) {
3000 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3001 env->features[FEAT_CORE_CAPABILITY]);
3002 }
3003
ea39f9b6
LX
3004 if (has_msr_perf_capabs && cpu->enable_pmu) {
3005 kvm_msr_entry_add_perf(cpu, env->features);
3006 }
3007
67025148 3008 if (has_msr_ucode_rev) {
32c87d70
PB
3009 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3010 }
3011
420ae1fc
PB
3012 /*
3013 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3014 * all kernels with MSR features should have them.
3015 */
3016 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3017 kvm_msr_entry_add_vmx(cpu, env->features);
3018 }
3019
3020 assert(kvm_buf_set_msrs(cpu) == 0);
3021}
3022
1bc22652 3023static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 3024{
1bc22652 3025 CPUX86State *env = &cpu->env;
9c600a84 3026 int i;
05330448 3027
d71b62a1
EH
3028 kvm_msr_buf_reset(cpu);
3029
9c600a84
EH
3030 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3031 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3032 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3033 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 3034 if (has_msr_star) {
9c600a84 3035 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 3036 }
c3a3a7d3 3037 if (has_msr_hsave_pa) {
9c600a84 3038 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 3039 }
c9b8f6b6 3040 if (has_msr_tsc_aux) {
9c600a84 3041 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 3042 }
f28558d3 3043 if (has_msr_tsc_adjust) {
9c600a84 3044 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 3045 }
21e87c46 3046 if (has_msr_misc_enable) {
9c600a84 3047 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
3048 env->msr_ia32_misc_enable);
3049 }
fc12d72e 3050 if (has_msr_smbase) {
9c600a84 3051 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 3052 }
e13713db
LA
3053 if (has_msr_smi_count) {
3054 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3055 }
6aa4228b
CQ
3056 if (has_msr_pkrs) {
3057 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3058 }
439d19f2 3059 if (has_msr_bndcfgs) {
9c600a84 3060 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 3061 }
18cd2c17 3062 if (has_msr_xss) {
9c600a84 3063 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 3064 }
65087997
TX
3065 if (has_msr_umwait) {
3066 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3067 }
a33a2cfe
PB
3068 if (has_msr_spec_ctrl) {
3069 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3070 }
cabf9862
ML
3071 if (has_tsc_scale_msr) {
3072 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3073 }
3074
2a9758c5
PB
3075 if (has_msr_tsx_ctrl) {
3076 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3077 }
cfeea0c0
KRW
3078 if (has_msr_virt_ssbd) {
3079 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3080 }
3081
05330448 3082#ifdef TARGET_X86_64
25d2e361 3083 if (lm_capable_kernel) {
9c600a84
EH
3084 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3085 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3086 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3087 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 3088 }
05330448 3089#endif
a33a2cfe 3090
ff5c186b 3091 /*
0d894367
PB
3092 * The following MSRs have side effects on the guest or are too heavy
3093 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
3094 */
3095 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
3096 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3097 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3098 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
6615be07
VK
3099 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3100 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3101 }
55c911a5 3102 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 3103 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 3104 }
55c911a5 3105 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3106 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 3107 }
55c911a5 3108 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3109 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 3110 }
d645e132
MT
3111
3112 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3113 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3114 }
3115
0b368a10
JD
3116 if (has_architectural_pmu_version > 0) {
3117 if (has_architectural_pmu_version > 1) {
3118 /* Stop the counter. */
3119 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3120 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3121 }
0d894367
PB
3122
3123 /* Set the counter values. */
0b368a10 3124 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3125 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
3126 env->msr_fixed_counters[i]);
3127 }
0b368a10 3128 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 3129 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 3130 env->msr_gp_counters[i]);
9c600a84 3131 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
3132 env->msr_gp_evtsel[i]);
3133 }
0b368a10
JD
3134 if (has_architectural_pmu_version > 1) {
3135 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3136 env->msr_global_status);
3137 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3138 env->msr_global_ovf_ctrl);
3139
3140 /* Now start the PMU. */
3141 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3142 env->msr_fixed_ctr_ctrl);
3143 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3144 env->msr_global_ctrl);
3145 }
0d894367 3146 }
da1cc323
EY
3147 /*
3148 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3149 * only sync them to KVM on the first cpu
3150 */
3151 if (current_cpu == first_cpu) {
3152 if (has_msr_hv_hypercall) {
3153 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3154 env->msr_hv_guest_os_id);
3155 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3156 env->msr_hv_hypercall);
3157 }
2d384d7c 3158 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
3159 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3160 env->msr_hv_tsc);
3161 }
2d384d7c 3162 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3163 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3164 env->msr_hv_reenlightenment_control);
3165 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3166 env->msr_hv_tsc_emulation_control);
3167 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3168 env->msr_hv_tsc_emulation_status);
3169 }
eab70139 3170 }
2d384d7c 3171 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3172 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 3173 env->msr_hv_vapic);
eab70139 3174 }
f2a53c9e
AS
3175 if (has_msr_hv_crash) {
3176 int j;
3177
5e953812 3178 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 3179 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
3180 env->msr_hv_crash_params[j]);
3181
5e953812 3182 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 3183 }
46eb8f98 3184 if (has_msr_hv_runtime) {
9c600a84 3185 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 3186 }
2d384d7c
VK
3187 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3188 && hv_vpindex_settable) {
701189e3
RK
3189 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3190 hyperv_vp_index(CPU(cpu)));
e9688fab 3191 }
2d384d7c 3192 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3193 int j;
3194
09df29b6
RK
3195 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3196
9c600a84 3197 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 3198 env->msr_hv_synic_control);
9c600a84 3199 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 3200 env->msr_hv_synic_evt_page);
9c600a84 3201 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
3202 env->msr_hv_synic_msg_page);
3203
3204 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 3205 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
3206 env->msr_hv_synic_sint[j]);
3207 }
3208 }
ff99aa64
AS
3209 if (has_msr_hv_stimer) {
3210 int j;
3211
3212 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 3213 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
3214 env->msr_hv_stimer_config[j]);
3215 }
3216
3217 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 3218 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
3219 env->msr_hv_stimer_count[j]);
3220 }
3221 }
1eabfce6 3222 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
3223 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3224
9c600a84
EH
3225 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3226 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3227 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3228 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3229 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3230 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3231 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3232 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3233 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3234 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3235 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3236 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 3237 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
3238 /* The CPU GPs if we write to a bit above the physical limit of
3239 * the host CPU (and KVM emulates that)
3240 */
3241 uint64_t mask = env->mtrr_var[i].mask;
3242 mask &= phys_mask;
3243
9c600a84
EH
3244 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3245 env->mtrr_var[i].base);
112dad69 3246 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
3247 }
3248 }
b77146e9
CP
3249 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3250 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3251 0x14, 1, R_EAX) & 0x7;
3252
3253 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3254 env->msr_rtit_ctrl);
3255 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3256 env->msr_rtit_status);
3257 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3258 env->msr_rtit_output_base);
3259 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3260 env->msr_rtit_output_mask);
3261 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3262 env->msr_rtit_cr3_match);
3263 for (i = 0; i < addr_num; i++) {
3264 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3265 env->msr_rtit_addrs[i]);
3266 }
3267 }
6bdf863d 3268
db888065
SC
3269 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3270 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3271 env->msr_ia32_sgxlepubkeyhash[0]);
3272 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3273 env->msr_ia32_sgxlepubkeyhash[1]);
3274 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3275 env->msr_ia32_sgxlepubkeyhash[2]);
3276 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3277 env->msr_ia32_sgxlepubkeyhash[3]);
3278 }
3279
6bdf863d
JK
3280 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3281 * kvm_put_msr_feature_control. */
ea643051 3282 }
20a78b02 3283
57780495 3284 if (env->mcg_cap) {
d8da8574 3285 int i;
b9bec74b 3286
9c600a84
EH
3287 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3288 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
3289 if (has_msr_mcg_ext_ctl) {
3290 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3291 }
c34d440a 3292 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3293 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
3294 }
3295 }
1a03675d 3296
420ae1fc 3297 return kvm_buf_set_msrs(cpu);
05330448
AL
3298}
3299
3300
1bc22652 3301static int kvm_get_fpu(X86CPU *cpu)
05330448 3302{
1bc22652 3303 CPUX86State *env = &cpu->env;
05330448
AL
3304 struct kvm_fpu fpu;
3305 int i, ret;
3306
1bc22652 3307 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 3308 if (ret < 0) {
05330448 3309 return ret;
b9bec74b 3310 }
05330448
AL
3311
3312 env->fpstt = (fpu.fsw >> 11) & 7;
3313 env->fpus = fpu.fsw;
3314 env->fpuc = fpu.fcw;
42cc8fa6
JK
3315 env->fpop = fpu.last_opcode;
3316 env->fpip = fpu.last_ip;
3317 env->fpdp = fpu.last_dp;
b9bec74b
JK
3318 for (i = 0; i < 8; ++i) {
3319 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3320 }
05330448 3321 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 3322 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
3323 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3324 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 3325 }
05330448
AL
3326 env->mxcsr = fpu.mxcsr;
3327
3328 return 0;
3329}
3330
1bc22652 3331static int kvm_get_xsave(X86CPU *cpu)
f1665b21 3332{
1bc22652 3333 CPUX86State *env = &cpu->env;
c0198c5f 3334 void *xsave = env->xsave_buf;
e56dd3c7 3335 int type, ret;
f1665b21 3336
28143b40 3337 if (!has_xsave) {
1bc22652 3338 return kvm_get_fpu(cpu);
b9bec74b 3339 }
f1665b21 3340
e56dd3c7
JL
3341 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3342 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
0f53994f 3343 if (ret < 0) {
f1665b21 3344 return ret;
0f53994f 3345 }
c0198c5f 3346 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
f1665b21 3347
f1665b21 3348 return 0;
f1665b21
SY
3349}
3350
1bc22652 3351static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 3352{
1bc22652 3353 CPUX86State *env = &cpu->env;
f1665b21
SY
3354 int i, ret;
3355 struct kvm_xcrs xcrs;
3356
28143b40 3357 if (!has_xcrs) {
f1665b21 3358 return 0;
b9bec74b 3359 }
f1665b21 3360
1bc22652 3361 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 3362 if (ret < 0) {
f1665b21 3363 return ret;
b9bec74b 3364 }
f1665b21 3365
b9bec74b 3366 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 3367 /* Only support xcr0 now */
0fd53fec
PB
3368 if (xcrs.xcrs[i].xcr == 0) {
3369 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
3370 break;
3371 }
b9bec74b 3372 }
f1665b21 3373 return 0;
f1665b21
SY
3374}
3375
1bc22652 3376static int kvm_get_sregs(X86CPU *cpu)
05330448 3377{
1bc22652 3378 CPUX86State *env = &cpu->env;
05330448 3379 struct kvm_sregs sregs;
1520f8bb 3380 int ret;
05330448 3381
1bc22652 3382 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 3383 if (ret < 0) {
05330448 3384 return ret;
b9bec74b 3385 }
05330448 3386
1520f8bb
PB
3387 /*
3388 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3389 * always preceded by KVM_GET_VCPU_EVENTS.
3390 */
05330448
AL
3391
3392 get_seg(&env->segs[R_CS], &sregs.cs);
3393 get_seg(&env->segs[R_DS], &sregs.ds);
3394 get_seg(&env->segs[R_ES], &sregs.es);
3395 get_seg(&env->segs[R_FS], &sregs.fs);
3396 get_seg(&env->segs[R_GS], &sregs.gs);
3397 get_seg(&env->segs[R_SS], &sregs.ss);
3398
3399 get_seg(&env->tr, &sregs.tr);
3400 get_seg(&env->ldt, &sregs.ldt);
3401
3402 env->idt.limit = sregs.idt.limit;
3403 env->idt.base = sregs.idt.base;
3404 env->gdt.limit = sregs.gdt.limit;
3405 env->gdt.base = sregs.gdt.base;
3406
3407 env->cr[0] = sregs.cr0;
3408 env->cr[2] = sregs.cr2;
3409 env->cr[3] = sregs.cr3;
3410 env->cr[4] = sregs.cr4;
3411
05330448 3412 env->efer = sregs.efer;
cce47516
JK
3413
3414 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3415 x86_update_hflags(env);
05330448
AL
3416
3417 return 0;
3418}
3419
8f515d38
ML
3420static int kvm_get_sregs2(X86CPU *cpu)
3421{
3422 CPUX86State *env = &cpu->env;
3423 struct kvm_sregs2 sregs;
3424 int i, ret;
3425
3426 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3427 if (ret < 0) {
3428 return ret;
3429 }
3430
3431 get_seg(&env->segs[R_CS], &sregs.cs);
3432 get_seg(&env->segs[R_DS], &sregs.ds);
3433 get_seg(&env->segs[R_ES], &sregs.es);
3434 get_seg(&env->segs[R_FS], &sregs.fs);
3435 get_seg(&env->segs[R_GS], &sregs.gs);
3436 get_seg(&env->segs[R_SS], &sregs.ss);
3437
3438 get_seg(&env->tr, &sregs.tr);
3439 get_seg(&env->ldt, &sregs.ldt);
3440
3441 env->idt.limit = sregs.idt.limit;
3442 env->idt.base = sregs.idt.base;
3443 env->gdt.limit = sregs.gdt.limit;
3444 env->gdt.base = sregs.gdt.base;
3445
3446 env->cr[0] = sregs.cr0;
3447 env->cr[2] = sregs.cr2;
3448 env->cr[3] = sregs.cr3;
3449 env->cr[4] = sregs.cr4;
3450
3451 env->efer = sregs.efer;
3452
3453 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3454
3455 if (env->pdptrs_valid) {
3456 for (i = 0; i < 4; i++) {
3457 env->pdptrs[i] = sregs.pdptrs[i];
3458 }
3459 }
3460
3461 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3462 x86_update_hflags(env);
3463
3464 return 0;
3465}
3466
1bc22652 3467static int kvm_get_msrs(X86CPU *cpu)
05330448 3468{
1bc22652 3469 CPUX86State *env = &cpu->env;
d71b62a1 3470 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3471 int ret, i;
fcc35e7c 3472 uint64_t mtrr_top_bits;
05330448 3473
d71b62a1
EH
3474 kvm_msr_buf_reset(cpu);
3475
9c600a84
EH
3476 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3477 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3478 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3479 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3480 if (has_msr_star) {
9c600a84 3481 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3482 }
c3a3a7d3 3483 if (has_msr_hsave_pa) {
9c600a84 3484 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3485 }
c9b8f6b6 3486 if (has_msr_tsc_aux) {
9c600a84 3487 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3488 }
f28558d3 3489 if (has_msr_tsc_adjust) {
9c600a84 3490 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3491 }
aa82ba54 3492 if (has_msr_tsc_deadline) {
9c600a84 3493 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3494 }
21e87c46 3495 if (has_msr_misc_enable) {
9c600a84 3496 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3497 }
fc12d72e 3498 if (has_msr_smbase) {
9c600a84 3499 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3500 }
e13713db
LA
3501 if (has_msr_smi_count) {
3502 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3503 }
df67696e 3504 if (has_msr_feature_control) {
9c600a84 3505 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3506 }
6aa4228b
CQ
3507 if (has_msr_pkrs) {
3508 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3509 }
79e9ebeb 3510 if (has_msr_bndcfgs) {
9c600a84 3511 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3512 }
18cd2c17 3513 if (has_msr_xss) {
9c600a84 3514 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3515 }
65087997
TX
3516 if (has_msr_umwait) {
3517 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3518 }
a33a2cfe
PB
3519 if (has_msr_spec_ctrl) {
3520 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3521 }
cabf9862
ML
3522 if (has_tsc_scale_msr) {
3523 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3524 }
3525
2a9758c5
PB
3526 if (has_msr_tsx_ctrl) {
3527 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3528 }
cfeea0c0
KRW
3529 if (has_msr_virt_ssbd) {
3530 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3531 }
b8cc45d6 3532 if (!env->tsc_valid) {
9c600a84 3533 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3534 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3535 }
3536
05330448 3537#ifdef TARGET_X86_64
25d2e361 3538 if (lm_capable_kernel) {
9c600a84
EH
3539 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3540 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3541 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3542 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3543 }
05330448 3544#endif
9c600a84
EH
3545 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3546 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
db5daafa
VK
3547 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3548 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3549 }
6615be07
VK
3550 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3551 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3552 }
55c911a5 3553 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3554 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3555 }
55c911a5 3556 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3557 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3558 }
d645e132
MT
3559 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3560 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3561 }
0b368a10
JD
3562 if (has_architectural_pmu_version > 0) {
3563 if (has_architectural_pmu_version > 1) {
3564 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3565 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3566 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3567 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3568 }
3569 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3570 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3571 }
0b368a10 3572 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3573 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3574 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3575 }
3576 }
1a03675d 3577
57780495 3578 if (env->mcg_cap) {
9c600a84
EH
3579 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3580 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3581 if (has_msr_mcg_ext_ctl) {
3582 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3583 }
b9bec74b 3584 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3585 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3586 }
57780495 3587 }
57780495 3588
1c90ef26 3589 if (has_msr_hv_hypercall) {
9c600a84
EH
3590 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3591 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3592 }
2d384d7c 3593 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3594 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3595 }
2d384d7c 3596 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3597 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3598 }
2d384d7c 3599 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3600 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3601 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3602 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3603 }
f2a53c9e
AS
3604 if (has_msr_hv_crash) {
3605 int j;
3606
5e953812 3607 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3608 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3609 }
3610 }
46eb8f98 3611 if (has_msr_hv_runtime) {
9c600a84 3612 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3613 }
2d384d7c 3614 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3615 uint32_t msr;
3616
9c600a84 3617 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3618 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3619 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3620 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3621 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3622 }
3623 }
ff99aa64
AS
3624 if (has_msr_hv_stimer) {
3625 uint32_t msr;
3626
3627 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3628 msr++) {
9c600a84 3629 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3630 }
3631 }
1eabfce6 3632 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3633 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3634 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3635 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3636 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3637 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3638 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3639 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3640 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3641 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3642 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3643 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3644 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3645 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3646 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3647 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3648 }
3649 }
5ef68987 3650
b77146e9
CP
3651 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3652 int addr_num =
3653 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3654
3655 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3656 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3657 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3658 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3659 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3660 for (i = 0; i < addr_num; i++) {
3661 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3662 }
3663 }
3664
db888065
SC
3665 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3666 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3667 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3668 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3669 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3670 }
3671
d71b62a1 3672 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3673 if (ret < 0) {
05330448 3674 return ret;
b9bec74b 3675 }
05330448 3676
c70b11d1
EH
3677 if (ret < cpu->kvm_msr_buf->nmsrs) {
3678 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3679 error_report("error: failed to get MSR 0x%" PRIx32,
3680 (uint32_t)e->index);
3681 }
3682
9c600a84 3683 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3684 /*
3685 * MTRR masks: Each mask consists of 5 parts
3686 * a 10..0: must be zero
3687 * b 11 : valid bit
3688 * c n-1.12: actual mask bits
3689 * d 51..n: reserved must be zero
3690 * e 63.52: reserved must be zero
3691 *
3692 * 'n' is the number of physical bits supported by the CPU and is
3693 * apparently always <= 52. We know our 'n' but don't know what
3694 * the destinations 'n' is; it might be smaller, in which case
3695 * it masks (c) on loading. It might be larger, in which case
3696 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3697 * we're migrating to.
3698 */
3699
3700 if (cpu->fill_mtrr_mask) {
3701 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3702 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3703 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3704 } else {
3705 mtrr_top_bits = 0;
3706 }
3707
05330448 3708 for (i = 0; i < ret; i++) {
0d894367
PB
3709 uint32_t index = msrs[i].index;
3710 switch (index) {
05330448
AL
3711 case MSR_IA32_SYSENTER_CS:
3712 env->sysenter_cs = msrs[i].data;
3713 break;
3714 case MSR_IA32_SYSENTER_ESP:
3715 env->sysenter_esp = msrs[i].data;
3716 break;
3717 case MSR_IA32_SYSENTER_EIP:
3718 env->sysenter_eip = msrs[i].data;
3719 break;
0c03266a
JK
3720 case MSR_PAT:
3721 env->pat = msrs[i].data;
3722 break;
05330448
AL
3723 case MSR_STAR:
3724 env->star = msrs[i].data;
3725 break;
3726#ifdef TARGET_X86_64
3727 case MSR_CSTAR:
3728 env->cstar = msrs[i].data;
3729 break;
3730 case MSR_KERNELGSBASE:
3731 env->kernelgsbase = msrs[i].data;
3732 break;
3733 case MSR_FMASK:
3734 env->fmask = msrs[i].data;
3735 break;
3736 case MSR_LSTAR:
3737 env->lstar = msrs[i].data;
3738 break;
3739#endif
3740 case MSR_IA32_TSC:
3741 env->tsc = msrs[i].data;
3742 break;
c9b8f6b6
AS
3743 case MSR_TSC_AUX:
3744 env->tsc_aux = msrs[i].data;
3745 break;
f28558d3
WA
3746 case MSR_TSC_ADJUST:
3747 env->tsc_adjust = msrs[i].data;
3748 break;
aa82ba54
LJ
3749 case MSR_IA32_TSCDEADLINE:
3750 env->tsc_deadline = msrs[i].data;
3751 break;
aa851e36
MT
3752 case MSR_VM_HSAVE_PA:
3753 env->vm_hsave = msrs[i].data;
3754 break;
1a03675d
GC
3755 case MSR_KVM_SYSTEM_TIME:
3756 env->system_time_msr = msrs[i].data;
3757 break;
3758 case MSR_KVM_WALL_CLOCK:
3759 env->wall_clock_msr = msrs[i].data;
3760 break;
57780495
MT
3761 case MSR_MCG_STATUS:
3762 env->mcg_status = msrs[i].data;
3763 break;
3764 case MSR_MCG_CTL:
3765 env->mcg_ctl = msrs[i].data;
3766 break;
87f8b626
AR
3767 case MSR_MCG_EXT_CTL:
3768 env->mcg_ext_ctl = msrs[i].data;
3769 break;
21e87c46
AK
3770 case MSR_IA32_MISC_ENABLE:
3771 env->msr_ia32_misc_enable = msrs[i].data;
3772 break;
fc12d72e
PB
3773 case MSR_IA32_SMBASE:
3774 env->smbase = msrs[i].data;
3775 break;
e13713db
LA
3776 case MSR_SMI_COUNT:
3777 env->msr_smi_count = msrs[i].data;
3778 break;
0779caeb
ACL
3779 case MSR_IA32_FEATURE_CONTROL:
3780 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3781 break;
79e9ebeb
LJ
3782 case MSR_IA32_BNDCFGS:
3783 env->msr_bndcfgs = msrs[i].data;
3784 break;
18cd2c17
WL
3785 case MSR_IA32_XSS:
3786 env->xss = msrs[i].data;
3787 break;
65087997
TX
3788 case MSR_IA32_UMWAIT_CONTROL:
3789 env->umwait = msrs[i].data;
3790 break;
6aa4228b
CQ
3791 case MSR_IA32_PKRS:
3792 env->pkrs = msrs[i].data;
3793 break;
57780495 3794 default:
57780495
MT
3795 if (msrs[i].index >= MSR_MC0_CTL &&
3796 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3797 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3798 }
d8da8574 3799 break;
f6584ee2
GN
3800 case MSR_KVM_ASYNC_PF_EN:
3801 env->async_pf_en_msr = msrs[i].data;
3802 break;
db5daafa
VK
3803 case MSR_KVM_ASYNC_PF_INT:
3804 env->async_pf_int_msr = msrs[i].data;
3805 break;
bc9a839d
MT
3806 case MSR_KVM_PV_EOI_EN:
3807 env->pv_eoi_en_msr = msrs[i].data;
3808 break;
917367aa
MT
3809 case MSR_KVM_STEAL_TIME:
3810 env->steal_time_msr = msrs[i].data;
3811 break;
d645e132
MT
3812 case MSR_KVM_POLL_CONTROL: {
3813 env->poll_control_msr = msrs[i].data;
3814 break;
3815 }
0d894367
PB
3816 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3817 env->msr_fixed_ctr_ctrl = msrs[i].data;
3818 break;
3819 case MSR_CORE_PERF_GLOBAL_CTRL:
3820 env->msr_global_ctrl = msrs[i].data;
3821 break;
3822 case MSR_CORE_PERF_GLOBAL_STATUS:
3823 env->msr_global_status = msrs[i].data;
3824 break;
3825 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3826 env->msr_global_ovf_ctrl = msrs[i].data;
3827 break;
3828 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3829 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3830 break;
3831 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3832 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3833 break;
3834 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3835 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3836 break;
1c90ef26
VR
3837 case HV_X64_MSR_HYPERCALL:
3838 env->msr_hv_hypercall = msrs[i].data;
3839 break;
3840 case HV_X64_MSR_GUEST_OS_ID:
3841 env->msr_hv_guest_os_id = msrs[i].data;
3842 break;
5ef68987
VR
3843 case HV_X64_MSR_APIC_ASSIST_PAGE:
3844 env->msr_hv_vapic = msrs[i].data;
3845 break;
48a5f3bc
VR
3846 case HV_X64_MSR_REFERENCE_TSC:
3847 env->msr_hv_tsc = msrs[i].data;
3848 break;
f2a53c9e
AS
3849 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3850 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3851 break;
46eb8f98
AS
3852 case HV_X64_MSR_VP_RUNTIME:
3853 env->msr_hv_runtime = msrs[i].data;
3854 break;
866eea9a
AS
3855 case HV_X64_MSR_SCONTROL:
3856 env->msr_hv_synic_control = msrs[i].data;
3857 break;
866eea9a
AS
3858 case HV_X64_MSR_SIEFP:
3859 env->msr_hv_synic_evt_page = msrs[i].data;
3860 break;
3861 case HV_X64_MSR_SIMP:
3862 env->msr_hv_synic_msg_page = msrs[i].data;
3863 break;
3864 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3865 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3866 break;
3867 case HV_X64_MSR_STIMER0_CONFIG:
3868 case HV_X64_MSR_STIMER1_CONFIG:
3869 case HV_X64_MSR_STIMER2_CONFIG:
3870 case HV_X64_MSR_STIMER3_CONFIG:
3871 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3872 msrs[i].data;
3873 break;
3874 case HV_X64_MSR_STIMER0_COUNT:
3875 case HV_X64_MSR_STIMER1_COUNT:
3876 case HV_X64_MSR_STIMER2_COUNT:
3877 case HV_X64_MSR_STIMER3_COUNT:
3878 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3879 msrs[i].data;
866eea9a 3880 break;
ba6a4fd9
VK
3881 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3882 env->msr_hv_reenlightenment_control = msrs[i].data;
3883 break;
3884 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3885 env->msr_hv_tsc_emulation_control = msrs[i].data;
3886 break;
3887 case HV_X64_MSR_TSC_EMULATION_STATUS:
3888 env->msr_hv_tsc_emulation_status = msrs[i].data;
3889 break;
d1ae67f6
AW
3890 case MSR_MTRRdefType:
3891 env->mtrr_deftype = msrs[i].data;
3892 break;
3893 case MSR_MTRRfix64K_00000:
3894 env->mtrr_fixed[0] = msrs[i].data;
3895 break;
3896 case MSR_MTRRfix16K_80000:
3897 env->mtrr_fixed[1] = msrs[i].data;
3898 break;
3899 case MSR_MTRRfix16K_A0000:
3900 env->mtrr_fixed[2] = msrs[i].data;
3901 break;
3902 case MSR_MTRRfix4K_C0000:
3903 env->mtrr_fixed[3] = msrs[i].data;
3904 break;
3905 case MSR_MTRRfix4K_C8000:
3906 env->mtrr_fixed[4] = msrs[i].data;
3907 break;
3908 case MSR_MTRRfix4K_D0000:
3909 env->mtrr_fixed[5] = msrs[i].data;
3910 break;
3911 case MSR_MTRRfix4K_D8000:
3912 env->mtrr_fixed[6] = msrs[i].data;
3913 break;
3914 case MSR_MTRRfix4K_E0000:
3915 env->mtrr_fixed[7] = msrs[i].data;
3916 break;
3917 case MSR_MTRRfix4K_E8000:
3918 env->mtrr_fixed[8] = msrs[i].data;
3919 break;
3920 case MSR_MTRRfix4K_F0000:
3921 env->mtrr_fixed[9] = msrs[i].data;
3922 break;
3923 case MSR_MTRRfix4K_F8000:
3924 env->mtrr_fixed[10] = msrs[i].data;
3925 break;
3926 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3927 if (index & 1) {
fcc35e7c
DDAG
3928 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3929 mtrr_top_bits;
d1ae67f6
AW
3930 } else {
3931 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3932 }
3933 break;
a33a2cfe
PB
3934 case MSR_IA32_SPEC_CTRL:
3935 env->spec_ctrl = msrs[i].data;
3936 break;
cabf9862
ML
3937 case MSR_AMD64_TSC_RATIO:
3938 env->amd_tsc_scale_msr = msrs[i].data;
3939 break;
2a9758c5
PB
3940 case MSR_IA32_TSX_CTRL:
3941 env->tsx_ctrl = msrs[i].data;
3942 break;
cfeea0c0
KRW
3943 case MSR_VIRT_SSBD:
3944 env->virt_ssbd = msrs[i].data;
3945 break;
b77146e9
CP
3946 case MSR_IA32_RTIT_CTL:
3947 env->msr_rtit_ctrl = msrs[i].data;
3948 break;
3949 case MSR_IA32_RTIT_STATUS:
3950 env->msr_rtit_status = msrs[i].data;
3951 break;
3952 case MSR_IA32_RTIT_OUTPUT_BASE:
3953 env->msr_rtit_output_base = msrs[i].data;
3954 break;
3955 case MSR_IA32_RTIT_OUTPUT_MASK:
3956 env->msr_rtit_output_mask = msrs[i].data;
3957 break;
3958 case MSR_IA32_RTIT_CR3_MATCH:
3959 env->msr_rtit_cr3_match = msrs[i].data;
3960 break;
3961 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3962 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3963 break;
db888065
SC
3964 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3965 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3966 msrs[i].data;
3967 break;
05330448
AL
3968 }
3969 }
3970
3971 return 0;
3972}
3973
1bc22652 3974static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3975{
1bc22652 3976 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3977
1bc22652 3978 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3979}
3980
23d02d9b 3981static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3982{
259186a7 3983 CPUState *cs = CPU(cpu);
23d02d9b 3984 CPUX86State *env = &cpu->env;
9bdbe550
HB
3985 struct kvm_mp_state mp_state;
3986 int ret;
3987
259186a7 3988 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3989 if (ret < 0) {
3990 return ret;
3991 }
3992 env->mp_state = mp_state.mp_state;
c14750e8 3993 if (kvm_irqchip_in_kernel()) {
259186a7 3994 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3995 }
9bdbe550
HB
3996 return 0;
3997}
3998
1bc22652 3999static int kvm_get_apic(X86CPU *cpu)
680c1c6f 4000{
02e51483 4001 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
4002 struct kvm_lapic_state kapic;
4003 int ret;
4004
3d4b2649 4005 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 4006 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
4007 if (ret < 0) {
4008 return ret;
4009 }
4010
4011 kvm_get_apic_state(apic, &kapic);
4012 }
4013 return 0;
4014}
4015
1bc22652 4016static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 4017{
fc12d72e 4018 CPUState *cs = CPU(cpu);
1bc22652 4019 CPUX86State *env = &cpu->env;
076796f8 4020 struct kvm_vcpu_events events = {};
a0fb002c
JK
4021
4022 if (!kvm_has_vcpu_events()) {
4023 return 0;
4024 }
4025
fd13f23b
LA
4026 events.flags = 0;
4027
4028 if (has_exception_payload) {
4029 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4030 events.exception.pending = env->exception_pending;
4031 events.exception_has_payload = env->exception_has_payload;
4032 events.exception_payload = env->exception_payload;
4033 }
4034 events.exception.nr = env->exception_nr;
4035 events.exception.injected = env->exception_injected;
a0fb002c
JK
4036 events.exception.has_error_code = env->has_error_code;
4037 events.exception.error_code = env->error_code;
4038
4039 events.interrupt.injected = (env->interrupt_injected >= 0);
4040 events.interrupt.nr = env->interrupt_injected;
4041 events.interrupt.soft = env->soft_interrupt;
4042
4043 events.nmi.injected = env->nmi_injected;
4044 events.nmi.pending = env->nmi_pending;
4045 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4046
4047 events.sipi_vector = env->sipi_vector;
4048
fc12d72e
PB
4049 if (has_msr_smbase) {
4050 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4051 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4052 if (kvm_irqchip_in_kernel()) {
4053 /* As soon as these are moved to the kernel, remove them
4054 * from cs->interrupt_request.
4055 */
4056 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4057 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4058 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4059 } else {
4060 /* Keep these in cs->interrupt_request. */
4061 events.smi.pending = 0;
4062 events.smi.latched_init = 0;
4063 }
fc3a1fd7
DDAG
4064 /* Stop SMI delivery on old machine types to avoid a reboot
4065 * on an inward migration of an old VM.
4066 */
4067 if (!cpu->kvm_no_smi_migration) {
4068 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4069 }
fc12d72e
PB
4070 }
4071
ea643051 4072 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
4073 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4074 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4075 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4076 }
ea643051 4077 }
aee028b9 4078
1bc22652 4079 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
4080}
4081
1bc22652 4082static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 4083{
1bc22652 4084 CPUX86State *env = &cpu->env;
a0fb002c
JK
4085 struct kvm_vcpu_events events;
4086 int ret;
4087
4088 if (!kvm_has_vcpu_events()) {
4089 return 0;
4090 }
4091
fc12d72e 4092 memset(&events, 0, sizeof(events));
1bc22652 4093 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
4094 if (ret < 0) {
4095 return ret;
4096 }
fd13f23b
LA
4097
4098 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4099 env->exception_pending = events.exception.pending;
4100 env->exception_has_payload = events.exception_has_payload;
4101 env->exception_payload = events.exception_payload;
4102 } else {
4103 env->exception_pending = 0;
4104 env->exception_has_payload = false;
4105 }
4106 env->exception_injected = events.exception.injected;
4107 env->exception_nr =
4108 (env->exception_pending || env->exception_injected) ?
4109 events.exception.nr : -1;
a0fb002c
JK
4110 env->has_error_code = events.exception.has_error_code;
4111 env->error_code = events.exception.error_code;
4112
4113 env->interrupt_injected =
4114 events.interrupt.injected ? events.interrupt.nr : -1;
4115 env->soft_interrupt = events.interrupt.soft;
4116
4117 env->nmi_injected = events.nmi.injected;
4118 env->nmi_pending = events.nmi.pending;
4119 if (events.nmi.masked) {
4120 env->hflags2 |= HF2_NMI_MASK;
4121 } else {
4122 env->hflags2 &= ~HF2_NMI_MASK;
4123 }
4124
fc12d72e
PB
4125 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4126 if (events.smi.smm) {
4127 env->hflags |= HF_SMM_MASK;
4128 } else {
4129 env->hflags &= ~HF_SMM_MASK;
4130 }
4131 if (events.smi.pending) {
4132 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4133 } else {
4134 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4135 }
4136 if (events.smi.smm_inside_nmi) {
4137 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4138 } else {
4139 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4140 }
4141 if (events.smi.latched_init) {
4142 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4143 } else {
4144 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4145 }
4146 }
4147
a0fb002c 4148 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
4149
4150 return 0;
4151}
4152
1bc22652 4153static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 4154{
ed2803da 4155 CPUState *cs = CPU(cpu);
1bc22652 4156 CPUX86State *env = &cpu->env;
b0b1d690 4157 int ret = 0;
b0b1d690
JK
4158 unsigned long reinject_trap = 0;
4159
4160 if (!kvm_has_vcpu_events()) {
fd13f23b 4161 if (env->exception_nr == EXCP01_DB) {
b0b1d690 4162 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 4163 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
4164 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4165 }
fd13f23b 4166 kvm_reset_exception(env);
b0b1d690
JK
4167 }
4168
4169 /*
4170 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4171 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4172 * by updating the debug state once again if single-stepping is on.
4173 * Another reason to call kvm_update_guest_debug here is a pending debug
4174 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4175 * reinject them via SET_GUEST_DEBUG.
4176 */
4177 if (reinject_trap ||
ed2803da 4178 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 4179 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 4180 }
b0b1d690
JK
4181 return ret;
4182}
4183
1bc22652 4184static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 4185{
1bc22652 4186 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4187 struct kvm_debugregs dbgregs;
4188 int i;
4189
4190 if (!kvm_has_debugregs()) {
4191 return 0;
4192 }
4193
1f670a95 4194 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
4195 for (i = 0; i < 4; i++) {
4196 dbgregs.db[i] = env->dr[i];
4197 }
4198 dbgregs.dr6 = env->dr[6];
4199 dbgregs.dr7 = env->dr[7];
4200 dbgregs.flags = 0;
4201
1bc22652 4202 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
4203}
4204
1bc22652 4205static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 4206{
1bc22652 4207 CPUX86State *env = &cpu->env;
ff44f1a3
JK
4208 struct kvm_debugregs dbgregs;
4209 int i, ret;
4210
4211 if (!kvm_has_debugregs()) {
4212 return 0;
4213 }
4214
1bc22652 4215 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 4216 if (ret < 0) {
b9bec74b 4217 return ret;
ff44f1a3
JK
4218 }
4219 for (i = 0; i < 4; i++) {
4220 env->dr[i] = dbgregs.db[i];
4221 }
4222 env->dr[4] = env->dr[6] = dbgregs.dr6;
4223 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
4224
4225 return 0;
4226}
4227
ebbfef2f
LA
4228static int kvm_put_nested_state(X86CPU *cpu)
4229{
4230 CPUX86State *env = &cpu->env;
4231 int max_nested_state_len = kvm_max_nested_state_length();
4232
1e44f3ab 4233 if (!env->nested_state) {
ebbfef2f
LA
4234 return 0;
4235 }
4236
b16c0e20
PB
4237 /*
4238 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4239 */
4240 if (env->hflags & HF_GUEST_MASK) {
4241 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4242 } else {
4243 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4244 }
0baa4b44
VK
4245
4246 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4247 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
b16c0e20
PB
4248 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4249 } else {
4250 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4251 }
4252
ebbfef2f
LA
4253 assert(env->nested_state->size <= max_nested_state_len);
4254 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4255}
4256
4257static int kvm_get_nested_state(X86CPU *cpu)
4258{
4259 CPUX86State *env = &cpu->env;
4260 int max_nested_state_len = kvm_max_nested_state_length();
4261 int ret;
4262
1e44f3ab 4263 if (!env->nested_state) {
ebbfef2f
LA
4264 return 0;
4265 }
4266
4267 /*
4268 * It is possible that migration restored a smaller size into
4269 * nested_state->hdr.size than what our kernel support.
4270 * We preserve migration origin nested_state->hdr.size for
4271 * call to KVM_SET_NESTED_STATE but wish that our next call
4272 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4273 */
4274 env->nested_state->size = max_nested_state_len;
4275
4276 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4277 if (ret < 0) {
4278 return ret;
4279 }
4280
b16c0e20
PB
4281 /*
4282 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4283 */
ebbfef2f
LA
4284 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4285 env->hflags |= HF_GUEST_MASK;
4286 } else {
4287 env->hflags &= ~HF_GUEST_MASK;
4288 }
0baa4b44
VK
4289
4290 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4291 if (cpu_has_svm(env)) {
4292 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4293 env->hflags2 |= HF2_GIF_MASK;
4294 } else {
4295 env->hflags2 &= ~HF2_GIF_MASK;
4296 }
b16c0e20 4297 }
ebbfef2f
LA
4298
4299 return ret;
4300}
4301
20d695a9 4302int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 4303{
20d695a9 4304 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
4305 int ret;
4306
2fa45344 4307 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 4308
b16c0e20 4309 /* must be before kvm_put_nested_state so that EFER.SVME is set */
8f515d38 4310 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
b16c0e20
PB
4311 if (ret < 0) {
4312 return ret;
4313 }
4314
48e1a45c 4315 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
4316 ret = kvm_put_nested_state(x86_cpu);
4317 if (ret < 0) {
4318 return ret;
4319 }
4320
6bdf863d
JK
4321 ret = kvm_put_msr_feature_control(x86_cpu);
4322 if (ret < 0) {
4323 return ret;
4324 }
4325 }
4326
36f96c4b
HZ
4327 if (level == KVM_PUT_FULL_STATE) {
4328 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4329 * because TSC frequency mismatch shouldn't abort migration,
4330 * unless the user explicitly asked for a more strict TSC
4331 * setting (e.g. using an explicit "tsc-freq" option).
4332 */
4333 kvm_arch_set_tsc_khz(cpu);
4334 }
4335
1bc22652 4336 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 4337 if (ret < 0) {
05330448 4338 return ret;
b9bec74b 4339 }
1bc22652 4340 ret = kvm_put_xsave(x86_cpu);
b9bec74b 4341 if (ret < 0) {
f1665b21 4342 return ret;
b9bec74b 4343 }
1bc22652 4344 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 4345 if (ret < 0) {
05330448 4346 return ret;
b9bec74b 4347 }
ab443475 4348 /* must be before kvm_put_msrs */
1bc22652 4349 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
4350 if (ret < 0) {
4351 return ret;
4352 }
1bc22652 4353 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 4354 if (ret < 0) {
05330448 4355 return ret;
b9bec74b 4356 }
4fadfa00
PH
4357 ret = kvm_put_vcpu_events(x86_cpu, level);
4358 if (ret < 0) {
4359 return ret;
4360 }
ea643051 4361 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 4362 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 4363 if (ret < 0) {
680c1c6f
JK
4364 return ret;
4365 }
ea643051 4366 }
7477cd38
MT
4367
4368 ret = kvm_put_tscdeadline_msr(x86_cpu);
4369 if (ret < 0) {
4370 return ret;
4371 }
1bc22652 4372 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 4373 if (ret < 0) {
b0b1d690 4374 return ret;
b9bec74b 4375 }
b0b1d690 4376 /* must be last */
1bc22652 4377 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 4378 if (ret < 0) {
ff44f1a3 4379 return ret;
b9bec74b 4380 }
05330448
AL
4381 return 0;
4382}
4383
20d695a9 4384int kvm_arch_get_registers(CPUState *cs)
05330448 4385{
20d695a9 4386 X86CPU *cpu = X86_CPU(cs);
05330448
AL
4387 int ret;
4388
20d695a9 4389 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 4390
4fadfa00 4391 ret = kvm_get_vcpu_events(cpu);
b9bec74b 4392 if (ret < 0) {
f4f1110e 4393 goto out;
b9bec74b 4394 }
4fadfa00
PH
4395 /*
4396 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4397 * KVM_GET_REGS and KVM_GET_SREGS.
4398 */
4399 ret = kvm_get_mp_state(cpu);
b9bec74b 4400 if (ret < 0) {
f4f1110e 4401 goto out;
b9bec74b 4402 }
4fadfa00 4403 ret = kvm_getput_regs(cpu, 0);
b9bec74b 4404 if (ret < 0) {
f4f1110e 4405 goto out;
b9bec74b 4406 }
4fadfa00 4407 ret = kvm_get_xsave(cpu);
b9bec74b 4408 if (ret < 0) {
f4f1110e 4409 goto out;
b9bec74b 4410 }
4fadfa00 4411 ret = kvm_get_xcrs(cpu);
b9bec74b 4412 if (ret < 0) {
f4f1110e 4413 goto out;
b9bec74b 4414 }
8f515d38 4415 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
b9bec74b 4416 if (ret < 0) {
f4f1110e 4417 goto out;
b9bec74b 4418 }
4fadfa00 4419 ret = kvm_get_msrs(cpu);
680c1c6f 4420 if (ret < 0) {
f4f1110e 4421 goto out;
680c1c6f 4422 }
4fadfa00 4423 ret = kvm_get_apic(cpu);
b9bec74b 4424 if (ret < 0) {
f4f1110e 4425 goto out;
b9bec74b 4426 }
1bc22652 4427 ret = kvm_get_debugregs(cpu);
b9bec74b 4428 if (ret < 0) {
f4f1110e 4429 goto out;
b9bec74b 4430 }
ebbfef2f
LA
4431 ret = kvm_get_nested_state(cpu);
4432 if (ret < 0) {
4433 goto out;
4434 }
f4f1110e
RH
4435 ret = 0;
4436 out:
4437 cpu_sync_bndcs_hflags(&cpu->env);
4438 return ret;
05330448
AL
4439}
4440
20d695a9 4441void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 4442{
20d695a9
AF
4443 X86CPU *x86_cpu = X86_CPU(cpu);
4444 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
4445 int ret;
4446
276ce815 4447 /* Inject NMI */
fc12d72e
PB
4448 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4449 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4450 qemu_mutex_lock_iothread();
4451 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4452 qemu_mutex_unlock_iothread();
4453 DPRINTF("injected NMI\n");
4454 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4455 if (ret < 0) {
4456 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4457 strerror(-ret));
4458 }
4459 }
4460 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4461 qemu_mutex_lock_iothread();
4462 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4463 qemu_mutex_unlock_iothread();
4464 DPRINTF("injected SMI\n");
4465 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4466 if (ret < 0) {
4467 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4468 strerror(-ret));
4469 }
ce377af3 4470 }
276ce815
LJ
4471 }
4472
15eafc2e 4473 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
4474 qemu_mutex_lock_iothread();
4475 }
4476
e0723c45
PB
4477 /* Force the VCPU out of its inner loop to process any INIT requests
4478 * or (for userspace APIC, but it is cheap to combine the checks here)
4479 * pending TPR access reports.
4480 */
4481 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
4482 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4483 !(env->hflags & HF_SMM_MASK)) {
4484 cpu->exit_request = 1;
4485 }
4486 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4487 cpu->exit_request = 1;
4488 }
e0723c45 4489 }
05330448 4490
15eafc2e 4491 if (!kvm_pic_in_kernel()) {
db1669bc
JK
4492 /* Try to inject an interrupt if the guest can accept it */
4493 if (run->ready_for_interrupt_injection &&
259186a7 4494 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
4495 (env->eflags & IF_MASK)) {
4496 int irq;
4497
259186a7 4498 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
4499 irq = cpu_get_pic_interrupt(env);
4500 if (irq >= 0) {
4501 struct kvm_interrupt intr;
4502
4503 intr.irq = irq;
db1669bc 4504 DPRINTF("injected interrupt %d\n", irq);
1bc22652 4505 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
4506 if (ret < 0) {
4507 fprintf(stderr,
4508 "KVM: injection failed, interrupt lost (%s)\n",
4509 strerror(-ret));
4510 }
db1669bc
JK
4511 }
4512 }
05330448 4513
db1669bc
JK
4514 /* If we have an interrupt but the guest is not ready to receive an
4515 * interrupt, request an interrupt window exit. This will
4516 * cause a return to userspace as soon as the guest is ready to
4517 * receive interrupts. */
259186a7 4518 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4519 run->request_interrupt_window = 1;
4520 } else {
4521 run->request_interrupt_window = 0;
4522 }
4523
4524 DPRINTF("setting tpr\n");
02e51483 4525 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4526
4527 qemu_mutex_unlock_iothread();
db1669bc 4528 }
05330448
AL
4529}
4530
035d1ef2
CQ
4531static void kvm_rate_limit_on_bus_lock(void)
4532{
4533 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4534
4535 if (delay_ns) {
4536 g_usleep(delay_ns / SCALE_US);
4537 }
4538}
4539
4c663752 4540MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4541{
20d695a9
AF
4542 X86CPU *x86_cpu = X86_CPU(cpu);
4543 CPUX86State *env = &x86_cpu->env;
4544
fc12d72e
PB
4545 if (run->flags & KVM_RUN_X86_SMM) {
4546 env->hflags |= HF_SMM_MASK;
4547 } else {
f5c052b9 4548 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4549 }
b9bec74b 4550 if (run->if_flag) {
05330448 4551 env->eflags |= IF_MASK;
b9bec74b 4552 } else {
05330448 4553 env->eflags &= ~IF_MASK;
b9bec74b 4554 }
035d1ef2
CQ
4555 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4556 kvm_rate_limit_on_bus_lock();
4557 }
4b8523ee
JK
4558
4559 /* We need to protect the apic state against concurrent accesses from
4560 * different threads in case the userspace irqchip is used. */
4561 if (!kvm_irqchip_in_kernel()) {
4562 qemu_mutex_lock_iothread();
4563 }
02e51483
CF
4564 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4565 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4566 if (!kvm_irqchip_in_kernel()) {
4567 qemu_mutex_unlock_iothread();
4568 }
f794aa4a 4569 return cpu_get_mem_attrs(env);
05330448
AL
4570}
4571
20d695a9 4572int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4573{
20d695a9
AF
4574 X86CPU *cpu = X86_CPU(cs);
4575 CPUX86State *env = &cpu->env;
232fc23b 4576
259186a7 4577 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4578 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4579 assert(env->mcg_cap);
4580
259186a7 4581 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4582
dd1750d7 4583 kvm_cpu_synchronize_state(cs);
ab443475 4584
fd13f23b 4585 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4586 /* this means triple fault */
cf83f140 4587 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4588 cs->exit_request = 1;
ab443475
JK
4589 return 0;
4590 }
fd13f23b 4591 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4592 env->has_error_code = 0;
4593
259186a7 4594 cs->halted = 0;
ab443475
JK
4595 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4596 env->mp_state = KVM_MP_STATE_RUNNABLE;
4597 }
4598 }
4599
fc12d72e
PB
4600 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4601 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4602 kvm_cpu_synchronize_state(cs);
4603 do_cpu_init(cpu);
4604 }
4605
db1669bc
JK
4606 if (kvm_irqchip_in_kernel()) {
4607 return 0;
4608 }
4609
259186a7
AF
4610 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4611 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4612 apic_poll_irq(cpu->apic_state);
5d62c43a 4613 }
259186a7 4614 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4615 (env->eflags & IF_MASK)) ||
259186a7
AF
4616 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4617 cs->halted = 0;
6792a57b 4618 }
259186a7 4619 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4620 kvm_cpu_synchronize_state(cs);
232fc23b 4621 do_cpu_sipi(cpu);
0af691d7 4622 }
259186a7
AF
4623 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4624 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4625 kvm_cpu_synchronize_state(cs);
02e51483 4626 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4627 env->tpr_access_type);
4628 }
0af691d7 4629
259186a7 4630 return cs->halted;
0af691d7
MT
4631}
4632
839b5630 4633static int kvm_handle_halt(X86CPU *cpu)
05330448 4634{
259186a7 4635 CPUState *cs = CPU(cpu);
839b5630
AF
4636 CPUX86State *env = &cpu->env;
4637
259186a7 4638 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4639 (env->eflags & IF_MASK)) &&
259186a7
AF
4640 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4641 cs->halted = 1;
bb4ea393 4642 return EXCP_HLT;
05330448
AL
4643 }
4644
bb4ea393 4645 return 0;
05330448
AL
4646}
4647
f7575c96 4648static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4649{
f7575c96
AF
4650 CPUState *cs = CPU(cpu);
4651 struct kvm_run *run = cs->kvm_run;
d362e757 4652
02e51483 4653 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4654 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4655 : TPR_ACCESS_READ);
4656 return 1;
4657}
4658
f17ec444 4659int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4660{
38972938 4661 static const uint8_t int3 = 0xcc;
64bf3f4e 4662
f17ec444
AF
4663 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4664 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4665 return -EINVAL;
b9bec74b 4666 }
e22a25c9
AL
4667 return 0;
4668}
4669
f17ec444 4670int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4671{
4672 uint8_t int3;
4673
c6986f16
PB
4674 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4675 return -EINVAL;
4676 }
4677 if (int3 != 0xcc) {
4678 return 0;
4679 }
4680 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4681 return -EINVAL;
b9bec74b 4682 }
e22a25c9
AL
4683 return 0;
4684}
4685
4686static struct {
4687 target_ulong addr;
4688 int len;
4689 int type;
4690} hw_breakpoint[4];
4691
4692static int nb_hw_breakpoint;
4693
4694static int find_hw_breakpoint(target_ulong addr, int len, int type)
4695{
4696 int n;
4697
b9bec74b 4698 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4699 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4700 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4701 return n;
b9bec74b
JK
4702 }
4703 }
e22a25c9
AL
4704 return -1;
4705}
4706
4707int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4708 target_ulong len, int type)
4709{
4710 switch (type) {
4711 case GDB_BREAKPOINT_HW:
4712 len = 1;
4713 break;
4714 case GDB_WATCHPOINT_WRITE:
4715 case GDB_WATCHPOINT_ACCESS:
4716 switch (len) {
4717 case 1:
4718 break;
4719 case 2:
4720 case 4:
4721 case 8:
b9bec74b 4722 if (addr & (len - 1)) {
e22a25c9 4723 return -EINVAL;
b9bec74b 4724 }
e22a25c9
AL
4725 break;
4726 default:
4727 return -EINVAL;
4728 }
4729 break;
4730 default:
4731 return -ENOSYS;
4732 }
4733
b9bec74b 4734 if (nb_hw_breakpoint == 4) {
e22a25c9 4735 return -ENOBUFS;
b9bec74b
JK
4736 }
4737 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4738 return -EEXIST;
b9bec74b 4739 }
e22a25c9
AL
4740 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4741 hw_breakpoint[nb_hw_breakpoint].len = len;
4742 hw_breakpoint[nb_hw_breakpoint].type = type;
4743 nb_hw_breakpoint++;
4744
4745 return 0;
4746}
4747
4748int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4749 target_ulong len, int type)
4750{
4751 int n;
4752
4753 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4754 if (n < 0) {
e22a25c9 4755 return -ENOENT;
b9bec74b 4756 }
e22a25c9
AL
4757 nb_hw_breakpoint--;
4758 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4759
4760 return 0;
4761}
4762
4763void kvm_arch_remove_all_hw_breakpoints(void)
4764{
4765 nb_hw_breakpoint = 0;
4766}
4767
4768static CPUWatchpoint hw_watchpoint;
4769
a60f24b5 4770static int kvm_handle_debug(X86CPU *cpu,
48405526 4771 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4772{
ed2803da 4773 CPUState *cs = CPU(cpu);
a60f24b5 4774 CPUX86State *env = &cpu->env;
f2574737 4775 int ret = 0;
e22a25c9
AL
4776 int n;
4777
37936ac7
LA
4778 if (arch_info->exception == EXCP01_DB) {
4779 if (arch_info->dr6 & DR6_BS) {
ed2803da 4780 if (cs->singlestep_enabled) {
f2574737 4781 ret = EXCP_DEBUG;
b9bec74b 4782 }
e22a25c9 4783 } else {
b9bec74b
JK
4784 for (n = 0; n < 4; n++) {
4785 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4786 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4787 case 0x0:
f2574737 4788 ret = EXCP_DEBUG;
e22a25c9
AL
4789 break;
4790 case 0x1:
f2574737 4791 ret = EXCP_DEBUG;
ff4700b0 4792 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4793 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4794 hw_watchpoint.flags = BP_MEM_WRITE;
4795 break;
4796 case 0x3:
f2574737 4797 ret = EXCP_DEBUG;
ff4700b0 4798 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4799 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4800 hw_watchpoint.flags = BP_MEM_ACCESS;
4801 break;
4802 }
b9bec74b
JK
4803 }
4804 }
e22a25c9 4805 }
ff4700b0 4806 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4807 ret = EXCP_DEBUG;
b9bec74b 4808 }
f2574737 4809 if (ret == 0) {
ff4700b0 4810 cpu_synchronize_state(cs);
fd13f23b 4811 assert(env->exception_nr == -1);
b0b1d690 4812
f2574737 4813 /* pass to guest */
fd13f23b
LA
4814 kvm_queue_exception(env, arch_info->exception,
4815 arch_info->exception == EXCP01_DB,
4816 arch_info->dr6);
48405526 4817 env->has_error_code = 0;
b0b1d690 4818 }
e22a25c9 4819
f2574737 4820 return ret;
e22a25c9
AL
4821}
4822
20d695a9 4823void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4824{
4825 const uint8_t type_code[] = {
4826 [GDB_BREAKPOINT_HW] = 0x0,
4827 [GDB_WATCHPOINT_WRITE] = 0x1,
4828 [GDB_WATCHPOINT_ACCESS] = 0x3
4829 };
4830 const uint8_t len_code[] = {
4831 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4832 };
4833 int n;
4834
a60f24b5 4835 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4836 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4837 }
e22a25c9
AL
4838 if (nb_hw_breakpoint > 0) {
4839 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4840 dbg->arch.debugreg[7] = 0x0600;
4841 for (n = 0; n < nb_hw_breakpoint; n++) {
4842 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4843 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4844 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4845 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4846 }
4847 }
4848}
4513d923 4849
c22f5467
SC
4850static bool has_sgx_provisioning;
4851
4852static bool __kvm_enable_sgx_provisioning(KVMState *s)
4853{
4854 int fd, ret;
4855
4856 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4857 return false;
4858 }
4859
4860 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4861 if (fd < 0) {
4862 return false;
4863 }
4864
4865 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4866 if (ret) {
4867 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4868 exit(1);
4869 }
4870 close(fd);
4871 return true;
4872}
4873
4874bool kvm_enable_sgx_provisioning(KVMState *s)
4875{
4876 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4877}
4878
2a4dac83
JK
4879static bool host_supports_vmx(void)
4880{
4881 uint32_t ecx, unused;
4882
4883 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4884 return ecx & CPUID_EXT_VMX;
4885}
4886
4887#define VMX_INVALID_GUEST_STATE 0x80000021
4888
20d695a9 4889int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4890{
20d695a9 4891 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4892 uint64_t code;
4893 int ret;
4894
4895 switch (run->exit_reason) {
4896 case KVM_EXIT_HLT:
4897 DPRINTF("handle_hlt\n");
4b8523ee 4898 qemu_mutex_lock_iothread();
839b5630 4899 ret = kvm_handle_halt(cpu);
4b8523ee 4900 qemu_mutex_unlock_iothread();
2a4dac83
JK
4901 break;
4902 case KVM_EXIT_SET_TPR:
4903 ret = 0;
4904 break;
d362e757 4905 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4906 qemu_mutex_lock_iothread();
f7575c96 4907 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4908 qemu_mutex_unlock_iothread();
d362e757 4909 break;
2a4dac83
JK
4910 case KVM_EXIT_FAIL_ENTRY:
4911 code = run->fail_entry.hardware_entry_failure_reason;
4912 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4913 code);
4914 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4915 fprintf(stderr,
12619721 4916 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4917 "unrestricted mode\n"
4918 "support, the failure can be most likely due to the guest "
4919 "entering an invalid\n"
4920 "state for Intel VT. For example, the guest maybe running "
4921 "in big real mode\n"
4922 "which is not supported on less recent Intel processors."
4923 "\n\n");
4924 }
4925 ret = -1;
4926 break;
4927 case KVM_EXIT_EXCEPTION:
4928 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4929 run->ex.exception, run->ex.error_code);
4930 ret = -1;
4931 break;
f2574737
JK
4932 case KVM_EXIT_DEBUG:
4933 DPRINTF("kvm_exit_debug\n");
4b8523ee 4934 qemu_mutex_lock_iothread();
a60f24b5 4935 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4936 qemu_mutex_unlock_iothread();
f2574737 4937 break;
50efe82c
AS
4938 case KVM_EXIT_HYPERV:
4939 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4940 break;
15eafc2e
PB
4941 case KVM_EXIT_IOAPIC_EOI:
4942 ioapic_eoi_broadcast(run->eoi.vector);
4943 ret = 0;
4944 break;
035d1ef2
CQ
4945 case KVM_EXIT_X86_BUS_LOCK:
4946 /* already handled in kvm_arch_post_run */
4947 ret = 0;
4948 break;
2a4dac83
JK
4949 default:
4950 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4951 ret = -1;
4952 break;
4953 }
4954
4955 return ret;
4956}
4957
20d695a9 4958bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4959{
20d695a9
AF
4960 X86CPU *cpu = X86_CPU(cs);
4961 CPUX86State *env = &cpu->env;
4962
dd1750d7 4963 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4964 return !(env->cr[0] & CR0_PE_MASK) ||
4965 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4966}
84b058d7
JK
4967
4968void kvm_arch_init_irq_routing(KVMState *s)
4969{
cc7e0ddf 4970 /* We know at this point that we're using the in-kernel
614e41bc 4971 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4972 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4973 */
614e41bc 4974 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4975 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4976
4977 if (kvm_irqchip_is_split()) {
def4c557 4978 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
15eafc2e
PB
4979 int i;
4980
4981 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4982 MSI routes for signaling interrupts to the local apics. */
4983 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
def4c557 4984 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
15eafc2e
PB
4985 error_report("Could not enable split IRQ mode.");
4986 exit(1);
4987 }
4988 }
def4c557 4989 kvm_irqchip_commit_route_changes(&c);
15eafc2e
PB
4990 }
4991}
4992
4376c40d 4993int kvm_arch_irqchip_create(KVMState *s)
15eafc2e
PB
4994{
4995 int ret;
4376c40d 4996 if (kvm_kernel_irqchip_split()) {
15eafc2e
PB
4997 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4998 if (ret) {
df3c286c 4999 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
5000 strerror(-ret));
5001 exit(1);
5002 } else {
5003 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5004 kvm_split_irqchip = true;
5005 return 1;
5006 }
5007 } else {
5008 return 0;
5009 }
84b058d7 5010}
b139bd30 5011
c1bb5418
DW
5012uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5013{
5014 CPUX86State *env;
5015 uint64_t ext_id;
5016
5017 if (!first_cpu) {
5018 return address;
5019 }
5020 env = &X86_CPU(first_cpu)->env;
5021 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5022 return address;
5023 }
5024
5025 /*
5026 * If the remappable format bit is set, or the upper bits are
5027 * already set in address_hi, or the low extended bits aren't
5028 * there anyway, do nothing.
5029 */
5030 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5031 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5032 return address;
5033 }
5034
5035 address &= ~ext_id;
5036 address |= ext_id << 35;
5037 return address;
5038}
5039
9e03a040 5040int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 5041 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 5042{
8b5ed7df
PX
5043 X86IOMMUState *iommu = x86_iommu_get_default();
5044
5045 if (iommu) {
30c60f77 5046 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
8b5ed7df 5047
c1bb5418
DW
5048 if (class->int_remap) {
5049 int ret;
5050 MSIMessage src, dst;
0ea1472d 5051
c1bb5418
DW
5052 src.address = route->u.msi.address_hi;
5053 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5054 src.address |= route->u.msi.address_lo;
5055 src.data = route->u.msi.data;
8b5ed7df 5056
c1bb5418
DW
5057 ret = class->int_remap(iommu, &src, &dst, dev ? \
5058 pci_requester_id(dev) : \
5059 X86_IOMMU_SID_INVALID);
5060 if (ret) {
5061 trace_kvm_x86_fixup_msi_error(route->gsi);
5062 return 1;
5063 }
5064
5065 /*
5066 * Handled untranslated compatibilty format interrupt with
5067 * extended destination ID in the low bits 11-5. */
5068 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
8b5ed7df 5069
c1bb5418
DW
5070 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5071 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5072 route->u.msi.data = dst.data;
5073 return 0;
5074 }
8b5ed7df
PX
5075 }
5076
c1bb5418
DW
5077 address = kvm_swizzle_msi_ext_dest_id(address);
5078 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5079 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
9e03a040
FB
5080 return 0;
5081}
1850b6b7 5082
38d87493
PX
5083typedef struct MSIRouteEntry MSIRouteEntry;
5084
5085struct MSIRouteEntry {
5086 PCIDevice *dev; /* Device pointer */
5087 int vector; /* MSI/MSIX vector index */
5088 int virq; /* Virtual IRQ index */
5089 QLIST_ENTRY(MSIRouteEntry) list;
5090};
5091
5092/* List of used GSI routes */
5093static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5094 QLIST_HEAD_INITIALIZER(msi_route_list);
5095
e1d4fb2d
PX
5096static void kvm_update_msi_routes_all(void *private, bool global,
5097 uint32_t index, uint32_t mask)
5098{
a56de056 5099 int cnt = 0, vector;
e1d4fb2d
PX
5100 MSIRouteEntry *entry;
5101 MSIMessage msg;
fd563564
PX
5102 PCIDevice *dev;
5103
e1d4fb2d
PX
5104 /* TODO: explicit route update */
5105 QLIST_FOREACH(entry, &msi_route_list, list) {
5106 cnt++;
a56de056 5107 vector = entry->vector;
fd563564 5108 dev = entry->dev;
a56de056
PX
5109 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5110 msg = msix_get_message(dev, vector);
5111 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5112 msg = msi_get_message(dev, vector);
5113 } else {
5114 /*
5115 * Either MSI/MSIX is disabled for the device, or the
5116 * specific message was masked out. Skip this one.
5117 */
fd563564
PX
5118 continue;
5119 }
fd563564 5120 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 5121 }
3f1fea0f 5122 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
5123 trace_kvm_x86_update_msi_routes(cnt);
5124}
5125
38d87493
PX
5126int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5127 int vector, PCIDevice *dev)
5128{
e1d4fb2d 5129 static bool notify_list_inited = false;
38d87493
PX
5130 MSIRouteEntry *entry;
5131
5132 if (!dev) {
5133 /* These are (possibly) IOAPIC routes only used for split
5134 * kernel irqchip mode, while what we are housekeeping are
5135 * PCI devices only. */
5136 return 0;
5137 }
5138
5139 entry = g_new0(MSIRouteEntry, 1);
5140 entry->dev = dev;
5141 entry->vector = vector;
5142 entry->virq = route->gsi;
5143 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5144
5145 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
5146
5147 if (!notify_list_inited) {
5148 /* For the first time we do add route, add ourselves into
5149 * IOMMU's IEC notify list if needed. */
5150 X86IOMMUState *iommu = x86_iommu_get_default();
5151 if (iommu) {
5152 x86_iommu_iec_register_notifier(iommu,
5153 kvm_update_msi_routes_all,
5154 NULL);
5155 }
5156 notify_list_inited = true;
5157 }
38d87493
PX
5158 return 0;
5159}
5160
5161int kvm_arch_release_virq_post(int virq)
5162{
5163 MSIRouteEntry *entry, *next;
5164 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5165 if (entry->virq == virq) {
5166 trace_kvm_x86_remove_msi_route(virq);
5167 QLIST_REMOVE(entry, list);
01960e6d 5168 g_free(entry);
38d87493
PX
5169 break;
5170 }
5171 }
9e03a040
FB
5172 return 0;
5173}
1850b6b7
EA
5174
5175int kvm_arch_msi_data_to_gsi(uint32_t data)
5176{
5177 abort();
5178}
e1e43813
PB
5179
5180bool kvm_has_waitpkg(void)
5181{
5182 return has_msr_umwait;
5183}
92a5199b
TL
5184
5185bool kvm_arch_cpu_check_are_resettable(void)
5186{
5187 return !sev_es_enabled();
5188}
19db68ca
YZ
5189
5190#define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5191
5192void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5193{
5194 KVMState *s = kvm_state;
5195 uint64_t supported;
5196
5197 mask &= XSTATE_DYNAMIC_MASK;
5198 if (!mask) {
5199 return;
5200 }
5201 /*
5202 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5203 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5204 * about them already because they are not supported features.
5205 */
5206 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5207 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5208 mask &= supported;
5209
5210 while (mask) {
5211 int bit = ctz64(mask);
5212 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5213 if (rc) {
5214 /*
5215 * Older kernel version (<5.17) do not support
5216 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5217 * any dynamic feature from kvm_arch_get_supported_cpuid.
5218 */
5219 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5220 "for feature bit %d", bit);
5221 }
5222 mask &= ~BIT_ULL(bit);
5223 }
5224}