]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm.c
Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-4.1-pull-request...
[mirror_qemu.git] / target / i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
da34e65c 16#include "qapi/error.h"
05330448 17#include <sys/ioctl.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
1814eab6 21#include "standard-headers/asm-x86/kvm_para.h"
05330448
AL
22
23#include "qemu-common.h"
33c11879 24#include "cpu.h"
9c17d615 25#include "sysemu/sysemu.h"
b3946626 26#include "sysemu/hw_accel.h"
6410848b 27#include "sysemu/kvm_int.h"
1d31f66b 28#include "kvm_i386.h"
50efe82c 29#include "hyperv.h"
5e953812 30#include "hyperv-proto.h"
50efe82c 31
022c62cb 32#include "exec/gdbstub.h"
1de7afc9
PB
33#include "qemu/host-utils.h"
34#include "qemu/config-file.h"
1c4a55db 35#include "qemu/error-report.h"
0d09e41a
PB
36#include "hw/i386/pc.h"
37#include "hw/i386/apic.h"
e0723c45
PB
38#include "hw/i386/apic_internal.h"
39#include "hw/i386/apic-msidef.h"
8b5ed7df 40#include "hw/i386/intel_iommu.h"
e1d4fb2d 41#include "hw/i386/x86-iommu.h"
50efe82c 42
a2cb15b0 43#include "hw/pci/pci.h"
15eafc2e 44#include "hw/pci/msi.h"
fd563564 45#include "hw/pci/msix.h"
795c40b8 46#include "migration/blocker.h"
4c663752 47#include "exec/memattrs.h"
8b5ed7df 48#include "trace.h"
05330448
AL
49
50//#define DEBUG_KVM
51
52#ifdef DEBUG_KVM
8c0d577e 53#define DPRINTF(fmt, ...) \
05330448
AL
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55#else
8c0d577e 56#define DPRINTF(fmt, ...) \
05330448
AL
57 do { } while (0)
58#endif
59
1a03675d
GC
60#define MSR_KVM_WALL_CLOCK 0x11
61#define MSR_KVM_SYSTEM_TIME 0x12
62
d1138251
EH
63/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
64 * 255 kvm_msr_entry structs */
65#define MSR_BUF_SIZE 4096
d71b62a1 66
94a8d39a
JK
67const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
68 KVM_CAP_INFO(SET_TSS_ADDR),
69 KVM_CAP_INFO(EXT_CPUID),
70 KVM_CAP_INFO(MP_STATE),
71 KVM_CAP_LAST_INFO
72};
25d2e361 73
c3a3a7d3
JK
74static bool has_msr_star;
75static bool has_msr_hsave_pa;
c9b8f6b6 76static bool has_msr_tsc_aux;
f28558d3 77static bool has_msr_tsc_adjust;
aa82ba54 78static bool has_msr_tsc_deadline;
df67696e 79static bool has_msr_feature_control;
21e87c46 80static bool has_msr_misc_enable;
fc12d72e 81static bool has_msr_smbase;
79e9ebeb 82static bool has_msr_bndcfgs;
25d2e361 83static int lm_capable_kernel;
7bc3d711 84static bool has_msr_hv_hypercall;
f2a53c9e 85static bool has_msr_hv_crash;
744b8a94 86static bool has_msr_hv_reset;
8c145d7c 87static bool has_msr_hv_vpindex;
e9688fab 88static bool hv_vpindex_settable;
46eb8f98 89static bool has_msr_hv_runtime;
866eea9a 90static bool has_msr_hv_synic;
ff99aa64 91static bool has_msr_hv_stimer;
d72bc7f6 92static bool has_msr_hv_frequencies;
ba6a4fd9 93static bool has_msr_hv_reenlightenment;
18cd2c17 94static bool has_msr_xss;
a33a2cfe 95static bool has_msr_spec_ctrl;
cfeea0c0 96static bool has_msr_virt_ssbd;
e13713db 97static bool has_msr_smi_count;
aec5e9c3 98static bool has_msr_arch_capabs;
b827df58 99
0b368a10
JD
100static uint32_t has_architectural_pmu_version;
101static uint32_t num_architectural_pmu_gp_counters;
102static uint32_t num_architectural_pmu_fixed_counters;
0d894367 103
28143b40
TH
104static int has_xsave;
105static int has_xcrs;
106static int has_pit_state2;
107
87f8b626
AR
108static bool has_msr_mcg_ext_ctl;
109
494e95e9 110static struct kvm_cpuid2 *cpuid_cache;
f57bceb6 111static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 112
28143b40
TH
113int kvm_has_pit_state2(void)
114{
115 return has_pit_state2;
116}
117
355023f2
PB
118bool kvm_has_smm(void)
119{
120 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
121}
122
6053a86f
MT
123bool kvm_has_adjust_clock_stable(void)
124{
125 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
126
127 return (ret == KVM_CLOCK_TSC_STABLE);
128}
129
1d31f66b
PM
130bool kvm_allows_irq0_override(void)
131{
132 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
133}
134
fb506e70
RK
135static bool kvm_x2apic_api_set_flags(uint64_t flags)
136{
137 KVMState *s = KVM_STATE(current_machine->accelerator);
138
139 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
140}
141
e391c009 142#define MEMORIZE(fn, _result) \
2a138ec3 143 ({ \
2a138ec3
RK
144 static bool _memorized; \
145 \
146 if (_memorized) { \
147 return _result; \
148 } \
149 _memorized = true; \
150 _result = fn; \
151 })
152
e391c009
IM
153static bool has_x2apic_api;
154
155bool kvm_has_x2apic_api(void)
156{
157 return has_x2apic_api;
158}
159
fb506e70
RK
160bool kvm_enable_x2apic(void)
161{
2a138ec3
RK
162 return MEMORIZE(
163 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
164 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
165 has_x2apic_api);
fb506e70
RK
166}
167
e9688fab
RK
168bool kvm_hv_vpindex_settable(void)
169{
170 return hv_vpindex_settable;
171}
172
0fd7e098
LL
173static int kvm_get_tsc(CPUState *cs)
174{
175 X86CPU *cpu = X86_CPU(cs);
176 CPUX86State *env = &cpu->env;
177 struct {
178 struct kvm_msrs info;
179 struct kvm_msr_entry entries[1];
180 } msr_data;
181 int ret;
182
183 if (env->tsc_valid) {
184 return 0;
185 }
186
187 msr_data.info.nmsrs = 1;
188 msr_data.entries[0].index = MSR_IA32_TSC;
189 env->tsc_valid = !runstate_is_running();
190
191 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
192 if (ret < 0) {
193 return ret;
194 }
195
48e1a45c 196 assert(ret == 1);
0fd7e098
LL
197 env->tsc = msr_data.entries[0].data;
198 return 0;
199}
200
14e6fe12 201static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 202{
0fd7e098
LL
203 kvm_get_tsc(cpu);
204}
205
206void kvm_synchronize_all_tsc(void)
207{
208 CPUState *cpu;
209
210 if (kvm_enabled()) {
211 CPU_FOREACH(cpu) {
14e6fe12 212 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
213 }
214 }
215}
216
b827df58
AK
217static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
218{
219 struct kvm_cpuid2 *cpuid;
220 int r, size;
221
222 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 223 cpuid = g_malloc0(size);
b827df58
AK
224 cpuid->nent = max;
225 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
226 if (r == 0 && cpuid->nent >= max) {
227 r = -E2BIG;
228 }
b827df58
AK
229 if (r < 0) {
230 if (r == -E2BIG) {
7267c094 231 g_free(cpuid);
b827df58
AK
232 return NULL;
233 } else {
234 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
235 strerror(-r));
236 exit(1);
237 }
238 }
239 return cpuid;
240}
241
dd87f8a6
EH
242/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
243 * for all entries.
244 */
245static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
246{
247 struct kvm_cpuid2 *cpuid;
248 int max = 1;
494e95e9
CP
249
250 if (cpuid_cache != NULL) {
251 return cpuid_cache;
252 }
dd87f8a6
EH
253 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
254 max *= 2;
255 }
494e95e9 256 cpuid_cache = cpuid;
dd87f8a6
EH
257 return cpuid;
258}
259
a443bc34 260static const struct kvm_para_features {
0c31b744
GC
261 int cap;
262 int feature;
263} para_features[] = {
264 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
265 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
266 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 267 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
268};
269
ba9bc59e 270static int get_para_features(KVMState *s)
0c31b744
GC
271{
272 int i, features = 0;
273
8e03c100 274 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 275 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
276 features |= (1 << para_features[i].feature);
277 }
278 }
279
280 return features;
281}
0c31b744 282
40e80ee4
EH
283static bool host_tsx_blacklisted(void)
284{
285 int family, model, stepping;\
286 char vendor[CPUID_VENDOR_SZ + 1];
287
288 host_vendor_fms(vendor, &family, &model, &stepping);
289
290 /* Check if we are running on a Haswell host known to have broken TSX */
291 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
292 (family == 6) &&
293 ((model == 63 && stepping < 4) ||
294 model == 60 || model == 69 || model == 70);
295}
0c31b744 296
829ae2f9
EH
297/* Returns the value for a specific register on the cpuid entry
298 */
299static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
300{
301 uint32_t ret = 0;
302 switch (reg) {
303 case R_EAX:
304 ret = entry->eax;
305 break;
306 case R_EBX:
307 ret = entry->ebx;
308 break;
309 case R_ECX:
310 ret = entry->ecx;
311 break;
312 case R_EDX:
313 ret = entry->edx;
314 break;
315 }
316 return ret;
317}
318
4fb73f1d
EH
319/* Find matching entry for function/index on kvm_cpuid2 struct
320 */
321static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
322 uint32_t function,
323 uint32_t index)
324{
325 int i;
326 for (i = 0; i < cpuid->nent; ++i) {
327 if (cpuid->entries[i].function == function &&
328 cpuid->entries[i].index == index) {
329 return &cpuid->entries[i];
330 }
331 }
332 /* not found: */
333 return NULL;
334}
335
ba9bc59e 336uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 337 uint32_t index, int reg)
b827df58
AK
338{
339 struct kvm_cpuid2 *cpuid;
b827df58
AK
340 uint32_t ret = 0;
341 uint32_t cpuid_1_edx;
8c723b79 342 bool found = false;
b827df58 343
dd87f8a6 344 cpuid = get_supported_cpuid(s);
b827df58 345
4fb73f1d
EH
346 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
347 if (entry) {
348 found = true;
349 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
350 }
351
7b46e5ce
EH
352 /* Fixups for the data returned by KVM, below */
353
c2acb022
EH
354 if (function == 1 && reg == R_EDX) {
355 /* KVM before 2.6.30 misreports the following features */
356 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
357 } else if (function == 1 && reg == R_ECX) {
358 /* We can set the hypervisor flag, even if KVM does not return it on
359 * GET_SUPPORTED_CPUID
360 */
361 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
362 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
363 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
364 * and the irqchip is in the kernel.
365 */
366 if (kvm_irqchip_in_kernel() &&
367 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
368 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
369 }
41e5e76d
EH
370
371 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
372 * without the in-kernel irqchip
373 */
374 if (!kvm_irqchip_in_kernel()) {
375 ret &= ~CPUID_EXT_X2APIC;
b827df58 376 }
2266d443
MT
377
378 if (enable_cpu_pm) {
379 int disable_exits = kvm_check_extension(s,
380 KVM_CAP_X86_DISABLE_EXITS);
381
382 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
383 ret |= CPUID_EXT_MONITOR;
384 }
385 }
28b8e4d0
JK
386 } else if (function == 6 && reg == R_EAX) {
387 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4
EH
388 } else if (function == 7 && index == 0 && reg == R_EBX) {
389 if (host_tsx_blacklisted()) {
390 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
391 }
485b1d25
EH
392 } else if (function == 7 && index == 0 && reg == R_EDX) {
393 /*
394 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
395 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
396 * returned by KVM_GET_MSR_INDEX_LIST.
397 */
398 if (!has_msr_arch_capabs) {
399 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
400 }
f98bbd83
BM
401 } else if (function == 0x80000001 && reg == R_ECX) {
402 /*
403 * It's safe to enable TOPOEXT even if it's not returned by
404 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
405 * us to keep CPU models including TOPOEXT runnable on older kernels.
406 */
407 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
408 } else if (function == 0x80000001 && reg == R_EDX) {
409 /* On Intel, kvm returns cpuid according to the Intel spec,
410 * so add missing bits according to the AMD spec:
411 */
412 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
413 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
414 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
415 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
416 * be enabled without the in-kernel irqchip
417 */
418 if (!kvm_irqchip_in_kernel()) {
419 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
420 }
be777326 421 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 422 ret |= 1U << KVM_HINTS_REALTIME;
be777326 423 found = 1;
b827df58
AK
424 }
425
0c31b744 426 /* fallback for older kernels */
8c723b79 427 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 428 ret = get_para_features(s);
b9bec74b 429 }
0c31b744
GC
430
431 return ret;
bb0300dc 432}
bb0300dc 433
f57bceb6
RH
434uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
435{
436 struct {
437 struct kvm_msrs info;
438 struct kvm_msr_entry entries[1];
439 } msr_data;
440 uint32_t ret;
441
442 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
443 return 0;
444 }
445
446 /* Check if requested MSR is supported feature MSR */
447 int i;
448 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
449 if (kvm_feature_msrs->indices[i] == index) {
450 break;
451 }
452 if (i == kvm_feature_msrs->nmsrs) {
453 return 0; /* if the feature MSR is not supported, simply return 0 */
454 }
455
456 msr_data.info.nmsrs = 1;
457 msr_data.entries[0].index = index;
458
459 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
460 if (ret != 1) {
461 error_report("KVM get MSR (index=0x%x) feature failed, %s",
462 index, strerror(-ret));
463 exit(1);
464 }
465
466 return msr_data.entries[0].data;
467}
468
469
3c85e74f
HY
470typedef struct HWPoisonPage {
471 ram_addr_t ram_addr;
472 QLIST_ENTRY(HWPoisonPage) list;
473} HWPoisonPage;
474
475static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
476 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
477
478static void kvm_unpoison_all(void *param)
479{
480 HWPoisonPage *page, *next_page;
481
482 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
483 QLIST_REMOVE(page, list);
484 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 485 g_free(page);
3c85e74f
HY
486 }
487}
488
3c85e74f
HY
489static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
490{
491 HWPoisonPage *page;
492
493 QLIST_FOREACH(page, &hwpoison_page_list, list) {
494 if (page->ram_addr == ram_addr) {
495 return;
496 }
497 }
ab3ad07f 498 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
499 page->ram_addr = ram_addr;
500 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
501}
502
e7701825
MT
503static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
504 int *max_banks)
505{
506 int r;
507
14a09518 508 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
509 if (r > 0) {
510 *max_banks = r;
511 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
512 }
513 return -ENOSYS;
514}
515
bee615d4 516static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 517{
87f8b626 518 CPUState *cs = CPU(cpu);
bee615d4 519 CPUX86State *env = &cpu->env;
c34d440a
JK
520 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
521 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
522 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 523 int flags = 0;
e7701825 524
c34d440a
JK
525 if (code == BUS_MCEERR_AR) {
526 status |= MCI_STATUS_AR | 0x134;
527 mcg_status |= MCG_STATUS_EIPV;
528 } else {
529 status |= 0xc0;
530 mcg_status |= MCG_STATUS_RIPV;
419fb20a 531 }
87f8b626
AR
532
533 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
534 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
535 * guest kernel back into env->mcg_ext_ctl.
536 */
537 cpu_synchronize_state(cs);
538 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
539 mcg_status |= MCG_STATUS_LMCE;
540 flags = 0;
541 }
542
8c5cf3b6 543 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 544 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 545}
419fb20a
JK
546
547static void hardware_memory_error(void)
548{
549 fprintf(stderr, "Hardware memory error!\n");
550 exit(1);
551}
552
2ae41db2 553void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 554{
20d695a9
AF
555 X86CPU *cpu = X86_CPU(c);
556 CPUX86State *env = &cpu->env;
419fb20a 557 ram_addr_t ram_addr;
a8170e5e 558 hwaddr paddr;
419fb20a 559
4d39892c
PB
560 /* If we get an action required MCE, it has been injected by KVM
561 * while the VM was running. An action optional MCE instead should
562 * be coming from the main thread, which qemu_init_sigbus identifies
563 * as the "early kill" thread.
564 */
a16fc07e 565 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 566
20e0ff59 567 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 568 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
569 if (ram_addr != RAM_ADDR_INVALID &&
570 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
571 kvm_hwpoison_page_add(ram_addr);
572 kvm_mce_inject(cpu, paddr, code);
2ae41db2 573 return;
419fb20a 574 }
20e0ff59
PB
575
576 fprintf(stderr, "Hardware memory error for memory used by "
577 "QEMU itself instead of guest system!\n");
419fb20a 578 }
20e0ff59
PB
579
580 if (code == BUS_MCEERR_AR) {
581 hardware_memory_error();
582 }
583
584 /* Hope we are lucky for AO MCE */
419fb20a
JK
585}
586
1bc22652 587static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 588{
1bc22652
AF
589 CPUX86State *env = &cpu->env;
590
ab443475
JK
591 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
592 unsigned int bank, bank_num = env->mcg_cap & 0xff;
593 struct kvm_x86_mce mce;
594
595 env->exception_injected = -1;
596
597 /*
598 * There must be at least one bank in use if an MCE is pending.
599 * Find it and use its values for the event injection.
600 */
601 for (bank = 0; bank < bank_num; bank++) {
602 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
603 break;
604 }
605 }
606 assert(bank < bank_num);
607
608 mce.bank = bank;
609 mce.status = env->mce_banks[bank * 4 + 1];
610 mce.mcg_status = env->mcg_status;
611 mce.addr = env->mce_banks[bank * 4 + 2];
612 mce.misc = env->mce_banks[bank * 4 + 3];
613
1bc22652 614 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 615 }
ab443475
JK
616 return 0;
617}
618
1dfb4dd9 619static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 620{
317ac620 621 CPUX86State *env = opaque;
b8cc45d6
GC
622
623 if (running) {
624 env->tsc_valid = false;
625 }
626}
627
83b17af5 628unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 629{
83b17af5 630 X86CPU *cpu = X86_CPU(cs);
7e72a45c 631 return cpu->apic_id;
b164e48e
EH
632}
633
92067bf4
IM
634#ifndef KVM_CPUID_SIGNATURE_NEXT
635#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
636#endif
637
638static bool hyperv_hypercall_available(X86CPU *cpu)
639{
640 return cpu->hyperv_vapic ||
641 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
642}
643
644static bool hyperv_enabled(X86CPU *cpu)
645{
7bc3d711
PB
646 CPUState *cs = CPU(cpu);
647 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
648 (hyperv_hypercall_available(cpu) ||
48a5f3bc 649 cpu->hyperv_time ||
f2a53c9e 650 cpu->hyperv_relaxed_timing ||
744b8a94 651 cpu->hyperv_crash ||
8c145d7c 652 cpu->hyperv_reset ||
46eb8f98 653 cpu->hyperv_vpindex ||
866eea9a 654 cpu->hyperv_runtime ||
ff99aa64 655 cpu->hyperv_synic ||
ba6a4fd9 656 cpu->hyperv_stimer ||
47512009 657 cpu->hyperv_reenlightenment ||
6b7a9830
VK
658 cpu->hyperv_tlbflush ||
659 cpu->hyperv_ipi);
92067bf4
IM
660}
661
5031283d
HZ
662static int kvm_arch_set_tsc_khz(CPUState *cs)
663{
664 X86CPU *cpu = X86_CPU(cs);
665 CPUX86State *env = &cpu->env;
666 int r;
667
668 if (!env->tsc_khz) {
669 return 0;
670 }
671
672 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
673 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
674 -ENOTSUP;
675 if (r < 0) {
676 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
677 * TSC frequency doesn't match the one we want.
678 */
679 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
680 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
681 -ENOTSUP;
682 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
683 warn_report("TSC frequency mismatch between "
684 "VM (%" PRId64 " kHz) and host (%d kHz), "
685 "and TSC scaling unavailable",
686 env->tsc_khz, cur_freq);
5031283d
HZ
687 return r;
688 }
689 }
690
691 return 0;
692}
693
4bb95b82
LP
694static bool tsc_is_stable_and_known(CPUX86State *env)
695{
696 if (!env->tsc_khz) {
697 return false;
698 }
699 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
700 || env->user_tsc_khz;
701}
702
c35bd19a
EY
703static int hyperv_handle_properties(CPUState *cs)
704{
705 X86CPU *cpu = X86_CPU(cs);
706 CPUX86State *env = &cpu->env;
707
708 if (cpu->hyperv_relaxed_timing) {
5e953812 709 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
c35bd19a
EY
710 }
711 if (cpu->hyperv_vapic) {
5e953812
RK
712 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
713 env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE;
c35bd19a 714 }
3ddcd2ed 715 if (cpu->hyperv_time) {
1221f150
RK
716 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
717 fprintf(stderr, "Hyper-V clocksources "
718 "(requested by 'hv-time' cpu flag) "
719 "are not supported by kernel\n");
720 return -ENOSYS;
721 }
5e953812
RK
722 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
723 env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE;
724 env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE;
9445597b
RK
725 }
726 if (cpu->hyperv_frequencies) {
727 if (!has_msr_hv_frequencies) {
728 fprintf(stderr, "Hyper-V frequency MSRs "
729 "(requested by 'hv-frequencies' cpu flag) "
730 "are not supported by kernel\n");
731 return -ENOSYS;
d72bc7f6 732 }
9445597b
RK
733 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS;
734 env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 735 }
1221f150
RK
736 if (cpu->hyperv_crash) {
737 if (!has_msr_hv_crash) {
738 fprintf(stderr, "Hyper-V crash MSRs "
739 "(requested by 'hv-crash' cpu flag) "
740 "are not supported by kernel\n");
741 return -ENOSYS;
742 }
5e953812 743 env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE;
c35bd19a 744 }
ba6a4fd9
VK
745 if (cpu->hyperv_reenlightenment) {
746 if (!has_msr_hv_reenlightenment) {
747 fprintf(stderr,
748 "Hyper-V Reenlightenment MSRs "
749 "(requested by 'hv-reenlightenment' cpu flag) "
750 "are not supported by kernel\n");
751 return -ENOSYS;
752 }
753 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
754 }
5e953812 755 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1221f150
RK
756 if (cpu->hyperv_reset) {
757 if (!has_msr_hv_reset) {
758 fprintf(stderr, "Hyper-V reset MSR "
759 "(requested by 'hv-reset' cpu flag) "
760 "is not supported by kernel\n");
761 return -ENOSYS;
762 }
5e953812 763 env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE;
c35bd19a 764 }
1221f150
RK
765 if (cpu->hyperv_vpindex) {
766 if (!has_msr_hv_vpindex) {
767 fprintf(stderr, "Hyper-V VP_INDEX MSR "
768 "(requested by 'hv-vpindex' cpu flag) "
769 "is not supported by kernel\n");
770 return -ENOSYS;
771 }
5e953812 772 env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE;
c35bd19a 773 }
1221f150
RK
774 if (cpu->hyperv_runtime) {
775 if (!has_msr_hv_runtime) {
776 fprintf(stderr, "Hyper-V VP_RUNTIME MSR "
777 "(requested by 'hv-runtime' cpu flag) "
778 "is not supported by kernel\n");
779 return -ENOSYS;
780 }
5e953812 781 env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a
EY
782 }
783 if (cpu->hyperv_synic) {
9b4cf107
RK
784 unsigned int cap = KVM_CAP_HYPERV_SYNIC;
785 if (!cpu->hyperv_synic_kvm_only) {
786 if (!cpu->hyperv_vpindex) {
787 fprintf(stderr, "Hyper-V SynIC "
788 "(requested by 'hv-synic' cpu flag) "
789 "requires Hyper-V VP_INDEX ('hv-vpindex')\n");
790 return -ENOSYS;
791 }
792 cap = KVM_CAP_HYPERV_SYNIC2;
793 }
794
795 if (!has_msr_hv_synic || !kvm_check_extension(cs->kvm_state, cap)) {
729ce7e1
RK
796 fprintf(stderr, "Hyper-V SynIC (requested by 'hv-synic' cpu flag) "
797 "is not supported by kernel\n");
c35bd19a
EY
798 return -ENOSYS;
799 }
800
5e953812 801 env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE;
c35bd19a
EY
802 }
803 if (cpu->hyperv_stimer) {
804 if (!has_msr_hv_stimer) {
805 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
806 return -ENOSYS;
807 }
5e953812 808 env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 809 }
a2b107db
VK
810 if (cpu->hyperv_relaxed_timing) {
811 env->features[FEAT_HV_RECOMM_EAX] |= HV_RELAXED_TIMING_RECOMMENDED;
812 }
813 if (cpu->hyperv_vapic) {
814 env->features[FEAT_HV_RECOMM_EAX] |= HV_APIC_ACCESS_RECOMMENDED;
815 }
816 if (cpu->hyperv_tlbflush) {
817 if (kvm_check_extension(cs->kvm_state,
818 KVM_CAP_HYPERV_TLBFLUSH) <= 0) {
819 fprintf(stderr, "Hyper-V TLB flush support "
820 "(requested by 'hv-tlbflush' cpu flag) "
821 " is not supported by kernel\n");
822 return -ENOSYS;
823 }
824 env->features[FEAT_HV_RECOMM_EAX] |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
825 env->features[FEAT_HV_RECOMM_EAX] |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
826 }
827 if (cpu->hyperv_ipi) {
828 if (kvm_check_extension(cs->kvm_state,
829 KVM_CAP_HYPERV_SEND_IPI) <= 0) {
830 fprintf(stderr, "Hyper-V IPI send support "
831 "(requested by 'hv-ipi' cpu flag) "
832 " is not supported by kernel\n");
833 return -ENOSYS;
834 }
835 env->features[FEAT_HV_RECOMM_EAX] |= HV_CLUSTER_IPI_RECOMMENDED;
836 env->features[FEAT_HV_RECOMM_EAX] |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
837 }
838 if (cpu->hyperv_evmcs) {
839 uint16_t evmcs_version;
840
841 if (kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
842 (uintptr_t)&evmcs_version)) {
843 fprintf(stderr, "Hyper-V Enlightened VMCS "
844 "(requested by 'hv-evmcs' cpu flag) "
845 "is not supported by kernel\n");
846 return -ENOSYS;
847 }
848 env->features[FEAT_HV_RECOMM_EAX] |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
849 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
850 }
851
c35bd19a
EY
852 return 0;
853}
854
e9688fab
RK
855static int hyperv_init_vcpu(X86CPU *cpu)
856{
729ce7e1
RK
857 CPUState *cs = CPU(cpu);
858 int ret;
859
e9688fab
RK
860 if (cpu->hyperv_vpindex && !hv_vpindex_settable) {
861 /*
862 * the kernel doesn't support setting vp_index; assert that its value
863 * is in sync
864 */
e9688fab
RK
865 struct {
866 struct kvm_msrs info;
867 struct kvm_msr_entry entries[1];
868 } msr_data = {
869 .info.nmsrs = 1,
870 .entries[0].index = HV_X64_MSR_VP_INDEX,
871 };
872
729ce7e1 873 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
874 if (ret < 0) {
875 return ret;
876 }
877 assert(ret == 1);
878
701189e3 879 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
880 error_report("kernel's vp_index != QEMU's vp_index");
881 return -ENXIO;
882 }
883 }
884
729ce7e1 885 if (cpu->hyperv_synic) {
9b4cf107
RK
886 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
887 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
888 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
889 if (ret < 0) {
890 error_report("failed to turn on HyperV SynIC in KVM: %s",
891 strerror(-ret));
892 return ret;
893 }
606c34bf 894
9b4cf107
RK
895 if (!cpu->hyperv_synic_kvm_only) {
896 ret = hyperv_x86_synic_add(cpu);
897 if (ret < 0) {
898 error_report("failed to create HyperV SynIC: %s",
899 strerror(-ret));
900 return ret;
901 }
606c34bf 902 }
729ce7e1
RK
903 }
904
e9688fab
RK
905 return 0;
906}
907
68bfd0ad 908static Error *invtsc_mig_blocker;
d98f2607 909static Error *vmx_mig_blocker;
68bfd0ad 910
f8bb0565 911#define KVM_MAX_CPUID_ENTRIES 100
0893d460 912
20d695a9 913int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
914{
915 struct {
486bd5a2 916 struct kvm_cpuid2 cpuid;
f8bb0565 917 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
918 } cpuid_data;
919 /*
920 * The kernel defines these structs with padding fields so there
921 * should be no extra padding in our cpuid_data struct.
922 */
923 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
924 sizeof(struct kvm_cpuid2) +
925 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
926
20d695a9
AF
927 X86CPU *cpu = X86_CPU(cs);
928 CPUX86State *env = &cpu->env;
486bd5a2 929 uint32_t limit, i, j, cpuid_i;
a33609ca 930 uint32_t unused;
bb0300dc 931 struct kvm_cpuid_entry2 *c;
bb0300dc 932 uint32_t signature[3];
234cc647 933 int kvm_base = KVM_CPUID_SIGNATURE;
e7429073 934 int r;
fe44dc91 935 Error *local_err = NULL;
05330448 936
ef4cbe14
SW
937 memset(&cpuid_data, 0, sizeof(cpuid_data));
938
05330448
AL
939 cpuid_i = 0;
940
ddb98b5a
LP
941 r = kvm_arch_set_tsc_khz(cs);
942 if (r < 0) {
943 goto fail;
944 }
945
946 /* vcpu's TSC frequency is either specified by user, or following
947 * the value used by KVM if the former is not present. In the
948 * latter case, we query it from KVM and record in env->tsc_khz,
949 * so that vcpu's TSC frequency can be migrated later via this field.
950 */
951 if (!env->tsc_khz) {
952 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
953 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
954 -ENOTSUP;
955 if (r > 0) {
956 env->tsc_khz = r;
957 }
958 }
959
bb0300dc 960 /* Paravirtualization CPUIDs */
234cc647
PB
961 if (hyperv_enabled(cpu)) {
962 c = &cpuid_data.entries[cpuid_i++];
5e953812 963 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1c4a55db
AW
964 if (!cpu->hyperv_vendor_id) {
965 memcpy(signature, "Microsoft Hv", 12);
966 } else {
967 size_t len = strlen(cpu->hyperv_vendor_id);
968
969 if (len > 12) {
970 error_report("hv-vendor-id truncated to 12 characters");
971 len = 12;
972 }
973 memset(signature, 0, 12);
974 memcpy(signature, cpu->hyperv_vendor_id, len);
975 }
e204ac61
VK
976 c->eax = cpu->hyperv_evmcs ?
977 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
234cc647
PB
978 c->ebx = signature[0];
979 c->ecx = signature[1];
980 c->edx = signature[2];
0c31b744 981
234cc647 982 c = &cpuid_data.entries[cpuid_i++];
5e953812 983 c->function = HV_CPUID_INTERFACE;
eab70139
VR
984 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
985 c->eax = signature[0];
234cc647
PB
986 c->ebx = 0;
987 c->ecx = 0;
988 c->edx = 0;
eab70139
VR
989
990 c = &cpuid_data.entries[cpuid_i++];
5e953812 991 c->function = HV_CPUID_VERSION;
eab70139
VR
992 c->eax = 0x00001bbc;
993 c->ebx = 0x00060001;
994
995 c = &cpuid_data.entries[cpuid_i++];
5e953812 996 c->function = HV_CPUID_FEATURES;
c35bd19a
EY
997 r = hyperv_handle_properties(cs);
998 if (r) {
999 return r;
46eb8f98 1000 }
c35bd19a
EY
1001 c->eax = env->features[FEAT_HYPERV_EAX];
1002 c->ebx = env->features[FEAT_HYPERV_EBX];
1003 c->edx = env->features[FEAT_HYPERV_EDX];
866eea9a 1004
eab70139 1005 c = &cpuid_data.entries[cpuid_i++];
5e953812 1006 c->function = HV_CPUID_ENLIGHTMENT_INFO;
a2b107db
VK
1007
1008 c->eax = env->features[FEAT_HV_RECOMM_EAX];
92067bf4 1009 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
1010
1011 c = &cpuid_data.entries[cpuid_i++];
5e953812 1012 c->function = HV_CPUID_IMPLEMENT_LIMITS;
6c69dfb6
GA
1013
1014 c->eax = cpu->hv_max_vps;
eab70139
VR
1015 c->ebx = 0x40;
1016
234cc647 1017 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1018 has_msr_hv_hypercall = true;
e204ac61
VK
1019
1020 if (cpu->hyperv_evmcs) {
1021 __u32 function;
1022
1023 /* Create zeroed 0x40000006..0x40000009 leaves */
1024 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1025 function < HV_CPUID_NESTED_FEATURES; function++) {
1026 c = &cpuid_data.entries[cpuid_i++];
1027 c->function = function;
1028 }
1029
1030 c = &cpuid_data.entries[cpuid_i++];
1031 c->function = HV_CPUID_NESTED_FEATURES;
a2b107db 1032 c->eax = env->features[FEAT_HV_NESTED_EAX];
e204ac61 1033 }
eab70139
VR
1034 }
1035
f522d2ac
AW
1036 if (cpu->expose_kvm) {
1037 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1038 c = &cpuid_data.entries[cpuid_i++];
1039 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1040 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1041 c->ebx = signature[0];
1042 c->ecx = signature[1];
1043 c->edx = signature[2];
234cc647 1044
f522d2ac
AW
1045 c = &cpuid_data.entries[cpuid_i++];
1046 c->function = KVM_CPUID_FEATURES | kvm_base;
1047 c->eax = env->features[FEAT_KVM];
be777326 1048 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1049 }
917367aa 1050
a33609ca 1051 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
1052
1053 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1054 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1055 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1056 abort();
1057 }
bb0300dc 1058 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1059
1060 switch (i) {
a36b1029
AL
1061 case 2: {
1062 /* Keep reading function 2 till all the input is received */
1063 int times;
1064
a36b1029 1065 c->function = i;
a33609ca
AL
1066 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1067 KVM_CPUID_FLAG_STATE_READ_NEXT;
1068 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1069 times = c->eax & 0xff;
a36b1029
AL
1070
1071 for (j = 1; j < times; ++j) {
f8bb0565
IM
1072 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1073 fprintf(stderr, "cpuid_data is full, no space for "
1074 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1075 abort();
1076 }
a33609ca 1077 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1078 c->function = i;
a33609ca
AL
1079 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1080 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1081 }
1082 break;
1083 }
486bd5a2
AL
1084 case 4:
1085 case 0xb:
1086 case 0xd:
1087 for (j = 0; ; j++) {
31e8c696
AP
1088 if (i == 0xd && j == 64) {
1089 break;
1090 }
486bd5a2
AL
1091 c->function = i;
1092 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1093 c->index = j;
a33609ca 1094 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1095
b9bec74b 1096 if (i == 4 && c->eax == 0) {
486bd5a2 1097 break;
b9bec74b
JK
1098 }
1099 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1100 break;
b9bec74b
JK
1101 }
1102 if (i == 0xd && c->eax == 0) {
31e8c696 1103 continue;
b9bec74b 1104 }
f8bb0565
IM
1105 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1106 fprintf(stderr, "cpuid_data is full, no space for "
1107 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1108 abort();
1109 }
a33609ca 1110 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1111 }
1112 break;
e37a5c7f
CP
1113 case 0x14: {
1114 uint32_t times;
1115
1116 c->function = i;
1117 c->index = 0;
1118 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1119 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1120 times = c->eax;
1121
1122 for (j = 1; j <= times; ++j) {
1123 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1124 fprintf(stderr, "cpuid_data is full, no space for "
1125 "cpuid(eax:0x14,ecx:0x%x)\n", j);
1126 abort();
1127 }
1128 c = &cpuid_data.entries[cpuid_i++];
1129 c->function = i;
1130 c->index = j;
1131 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1132 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1133 }
1134 break;
1135 }
486bd5a2 1136 default:
486bd5a2 1137 c->function = i;
a33609ca
AL
1138 c->flags = 0;
1139 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
1140 break;
1141 }
05330448 1142 }
0d894367
PB
1143
1144 if (limit >= 0x0a) {
0b368a10 1145 uint32_t eax, edx;
0d894367 1146
0b368a10
JD
1147 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1148
1149 has_architectural_pmu_version = eax & 0xff;
1150 if (has_architectural_pmu_version > 0) {
1151 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1152
1153 /* Shouldn't be more than 32, since that's the number of bits
1154 * available in EBX to tell us _which_ counters are available.
1155 * Play it safe.
1156 */
0b368a10
JD
1157 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1158 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1159 }
1160
1161 if (has_architectural_pmu_version > 1) {
1162 num_architectural_pmu_fixed_counters = edx & 0x1f;
1163
1164 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1165 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1166 }
0d894367
PB
1167 }
1168 }
1169 }
1170
a33609ca 1171 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1172
1173 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1174 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1175 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1176 abort();
1177 }
bb0300dc 1178 c = &cpuid_data.entries[cpuid_i++];
05330448 1179
8f4202fb
BM
1180 switch (i) {
1181 case 0x8000001d:
1182 /* Query for all AMD cache information leaves */
1183 for (j = 0; ; j++) {
1184 c->function = i;
1185 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1186 c->index = j;
1187 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1188
1189 if (c->eax == 0) {
1190 break;
1191 }
1192 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1193 fprintf(stderr, "cpuid_data is full, no space for "
1194 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1195 abort();
1196 }
1197 c = &cpuid_data.entries[cpuid_i++];
1198 }
1199 break;
1200 default:
1201 c->function = i;
1202 c->flags = 0;
1203 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1204 break;
1205 }
05330448
AL
1206 }
1207
b3baa152
BW
1208 /* Call Centaur's CPUID instructions they are supported. */
1209 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1210 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1211
1212 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1213 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1214 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1215 abort();
1216 }
b3baa152
BW
1217 c = &cpuid_data.entries[cpuid_i++];
1218
1219 c->function = i;
1220 c->flags = 0;
1221 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1222 }
1223 }
1224
05330448
AL
1225 cpuid_data.cpuid.nent = cpuid_i;
1226
e7701825 1227 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1228 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1229 (CPUID_MCE | CPUID_MCA)
a60f24b5 1230 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1231 uint64_t mcg_cap, unsupported_caps;
e7701825 1232 int banks;
32a42024 1233 int ret;
e7701825 1234
a60f24b5 1235 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1236 if (ret < 0) {
1237 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1238 return ret;
e7701825 1239 }
75d49497 1240
2590f15b 1241 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1242 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1243 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1244 return -ENOTSUP;
75d49497 1245 }
49b69cbf 1246
5120901a
EH
1247 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1248 if (unsupported_caps) {
87f8b626
AR
1249 if (unsupported_caps & MCG_LMCE_P) {
1250 error_report("kvm: LMCE not supported");
1251 return -ENOTSUP;
1252 }
3dc6f869
AF
1253 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1254 unsupported_caps);
5120901a
EH
1255 }
1256
2590f15b
EH
1257 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1258 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1259 if (ret < 0) {
1260 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1261 return ret;
1262 }
e7701825 1263 }
e7701825 1264
b8cc45d6
GC
1265 qemu_add_vm_change_state_handler(cpu_update_state, env);
1266
df67696e
LJ
1267 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1268 if (c) {
1269 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1270 !!(c->ecx & CPUID_EXT_SMX);
1271 }
1272
d98f2607
PB
1273 if ((env->features[FEAT_1_ECX] & CPUID_EXT_VMX) && !vmx_mig_blocker) {
1274 error_setg(&vmx_mig_blocker,
1275 "Nested VMX virtualization does not support live migration yet");
1276 r = migrate_add_blocker(vmx_mig_blocker, &local_err);
1277 if (local_err) {
1278 error_report_err(local_err);
1279 error_free(vmx_mig_blocker);
1280 return r;
1281 }
1282 }
1283
87f8b626
AR
1284 if (env->mcg_cap & MCG_LMCE_P) {
1285 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1286 }
1287
d99569d9
EH
1288 if (!env->user_tsc_khz) {
1289 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1290 invtsc_mig_blocker == NULL) {
d99569d9
EH
1291 error_setg(&invtsc_mig_blocker,
1292 "State blocked by non-migratable CPU device"
1293 " (invtsc flag)");
fe44dc91
AA
1294 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1295 if (local_err) {
1296 error_report_err(local_err);
1297 error_free(invtsc_mig_blocker);
0c2ed83f 1298 return r;
fe44dc91 1299 }
d99569d9 1300 }
68bfd0ad
MT
1301 }
1302
9954a158
PDJ
1303 if (cpu->vmware_cpuid_freq
1304 /* Guests depend on 0x40000000 to detect this feature, so only expose
1305 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1306 && cpu->expose_kvm
1307 && kvm_base == KVM_CPUID_SIGNATURE
1308 /* TSC clock must be stable and known for this feature. */
4bb95b82 1309 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1310
1311 c = &cpuid_data.entries[cpuid_i++];
1312 c->function = KVM_CPUID_SIGNATURE | 0x10;
1313 c->eax = env->tsc_khz;
1314 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1315 * APIC_BUS_CYCLE_NS */
1316 c->ebx = 1000000;
1317 c->ecx = c->edx = 0;
1318
1319 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1320 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1321 }
1322
1323 cpuid_data.cpuid.nent = cpuid_i;
1324
1325 cpuid_data.cpuid.padding = 0;
1326 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1327 if (r) {
1328 goto fail;
1329 }
1330
28143b40 1331 if (has_xsave) {
5b8063c4 1332 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
fabacc0f 1333 }
d71b62a1 1334 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1335
273c515c
PB
1336 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1337 has_msr_tsc_aux = false;
1338 }
d1ae67f6 1339
e9688fab
RK
1340 r = hyperv_init_vcpu(cpu);
1341 if (r) {
1342 goto fail;
1343 }
1344
e7429073 1345 return 0;
fe44dc91
AA
1346
1347 fail:
1348 migrate_del_blocker(invtsc_mig_blocker);
1349 return r;
05330448
AL
1350}
1351
50a2c6e5 1352void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 1353{
20d695a9 1354 CPUX86State *env = &cpu->env;
dd673288 1355
1a5e9d2f 1356 env->xcr0 = 1;
ddced198 1357 if (kvm_irqchip_in_kernel()) {
dd673288 1358 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
1359 KVM_MP_STATE_UNINITIALIZED;
1360 } else {
1361 env->mp_state = KVM_MP_STATE_RUNNABLE;
1362 }
689141dd
RK
1363
1364 if (cpu->hyperv_synic) {
1365 int i;
1366 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1367 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1368 }
606c34bf
RK
1369
1370 hyperv_x86_synic_reset(cpu);
689141dd 1371 }
caa5af0f
JK
1372}
1373
e0723c45
PB
1374void kvm_arch_do_init_vcpu(X86CPU *cpu)
1375{
1376 CPUX86State *env = &cpu->env;
1377
1378 /* APs get directly into wait-for-SIPI state. */
1379 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1380 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1381 }
1382}
1383
f57bceb6
RH
1384static int kvm_get_supported_feature_msrs(KVMState *s)
1385{
1386 int ret = 0;
1387
1388 if (kvm_feature_msrs != NULL) {
1389 return 0;
1390 }
1391
1392 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1393 return 0;
1394 }
1395
1396 struct kvm_msr_list msr_list;
1397
1398 msr_list.nmsrs = 0;
1399 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1400 if (ret < 0 && ret != -E2BIG) {
1401 error_report("Fetch KVM feature MSR list failed: %s",
1402 strerror(-ret));
1403 return ret;
1404 }
1405
1406 assert(msr_list.nmsrs > 0);
1407 kvm_feature_msrs = (struct kvm_msr_list *) \
1408 g_malloc0(sizeof(msr_list) +
1409 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1410
1411 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1412 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1413
1414 if (ret < 0) {
1415 error_report("Fetch KVM feature MSR list failed: %s",
1416 strerror(-ret));
1417 g_free(kvm_feature_msrs);
1418 kvm_feature_msrs = NULL;
1419 return ret;
1420 }
1421
1422 return 0;
1423}
1424
c3a3a7d3 1425static int kvm_get_supported_msrs(KVMState *s)
05330448 1426{
75b10c43 1427 static int kvm_supported_msrs;
c3a3a7d3 1428 int ret = 0;
05330448
AL
1429
1430 /* first time */
75b10c43 1431 if (kvm_supported_msrs == 0) {
05330448
AL
1432 struct kvm_msr_list msr_list, *kvm_msr_list;
1433
75b10c43 1434 kvm_supported_msrs = -1;
05330448
AL
1435
1436 /* Obtain MSR list from KVM. These are the MSRs that we must
1437 * save/restore */
4c9f7372 1438 msr_list.nmsrs = 0;
c3a3a7d3 1439 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 1440 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 1441 return ret;
6fb6d245 1442 }
d9db889f
JK
1443 /* Old kernel modules had a bug and could write beyond the provided
1444 memory. Allocate at least a safe amount of 1K. */
7267c094 1445 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
1446 msr_list.nmsrs *
1447 sizeof(msr_list.indices[0])));
05330448 1448
55308450 1449 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 1450 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
1451 if (ret >= 0) {
1452 int i;
1453
1454 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1d268dec
LP
1455 switch (kvm_msr_list->indices[i]) {
1456 case MSR_STAR:
c3a3a7d3 1457 has_msr_star = true;
1d268dec
LP
1458 break;
1459 case MSR_VM_HSAVE_PA:
c3a3a7d3 1460 has_msr_hsave_pa = true;
1d268dec
LP
1461 break;
1462 case MSR_TSC_AUX:
c9b8f6b6 1463 has_msr_tsc_aux = true;
1d268dec
LP
1464 break;
1465 case MSR_TSC_ADJUST:
f28558d3 1466 has_msr_tsc_adjust = true;
1d268dec
LP
1467 break;
1468 case MSR_IA32_TSCDEADLINE:
aa82ba54 1469 has_msr_tsc_deadline = true;
1d268dec
LP
1470 break;
1471 case MSR_IA32_SMBASE:
fc12d72e 1472 has_msr_smbase = true;
1d268dec 1473 break;
e13713db
LA
1474 case MSR_SMI_COUNT:
1475 has_msr_smi_count = true;
1476 break;
1d268dec 1477 case MSR_IA32_MISC_ENABLE:
21e87c46 1478 has_msr_misc_enable = true;
1d268dec
LP
1479 break;
1480 case MSR_IA32_BNDCFGS:
79e9ebeb 1481 has_msr_bndcfgs = true;
1d268dec
LP
1482 break;
1483 case MSR_IA32_XSS:
18cd2c17 1484 has_msr_xss = true;
3c254ab8 1485 break;
1d268dec 1486 case HV_X64_MSR_CRASH_CTL:
f2a53c9e 1487 has_msr_hv_crash = true;
1d268dec
LP
1488 break;
1489 case HV_X64_MSR_RESET:
744b8a94 1490 has_msr_hv_reset = true;
1d268dec
LP
1491 break;
1492 case HV_X64_MSR_VP_INDEX:
8c145d7c 1493 has_msr_hv_vpindex = true;
1d268dec
LP
1494 break;
1495 case HV_X64_MSR_VP_RUNTIME:
46eb8f98 1496 has_msr_hv_runtime = true;
1d268dec
LP
1497 break;
1498 case HV_X64_MSR_SCONTROL:
866eea9a 1499 has_msr_hv_synic = true;
1d268dec
LP
1500 break;
1501 case HV_X64_MSR_STIMER0_CONFIG:
ff99aa64 1502 has_msr_hv_stimer = true;
1d268dec 1503 break;
d72bc7f6
LP
1504 case HV_X64_MSR_TSC_FREQUENCY:
1505 has_msr_hv_frequencies = true;
1506 break;
ba6a4fd9
VK
1507 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1508 has_msr_hv_reenlightenment = true;
1509 break;
a33a2cfe
PB
1510 case MSR_IA32_SPEC_CTRL:
1511 has_msr_spec_ctrl = true;
1512 break;
cfeea0c0
KRW
1513 case MSR_VIRT_SSBD:
1514 has_msr_virt_ssbd = true;
1515 break;
aec5e9c3
BD
1516 case MSR_IA32_ARCH_CAPABILITIES:
1517 has_msr_arch_capabs = true;
1518 break;
ff99aa64 1519 }
05330448
AL
1520 }
1521 }
1522
7267c094 1523 g_free(kvm_msr_list);
05330448
AL
1524 }
1525
c3a3a7d3 1526 return ret;
05330448
AL
1527}
1528
6410848b
PB
1529static Notifier smram_machine_done;
1530static KVMMemoryListener smram_listener;
1531static AddressSpace smram_address_space;
1532static MemoryRegion smram_as_root;
1533static MemoryRegion smram_as_mem;
1534
1535static void register_smram_listener(Notifier *n, void *unused)
1536{
1537 MemoryRegion *smram =
1538 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1539
1540 /* Outer container... */
1541 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1542 memory_region_set_enabled(&smram_as_root, true);
1543
1544 /* ... with two regions inside: normal system memory with low
1545 * priority, and...
1546 */
1547 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1548 get_system_memory(), 0, ~0ull);
1549 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1550 memory_region_set_enabled(&smram_as_mem, true);
1551
1552 if (smram) {
1553 /* ... SMRAM with higher priority */
1554 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1555 memory_region_set_enabled(smram, true);
1556 }
1557
1558 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1559 kvm_memory_listener_register(kvm_state, &smram_listener,
1560 &smram_address_space, 1);
1561}
1562
b16565b3 1563int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 1564{
11076198 1565 uint64_t identity_base = 0xfffbc000;
39d6960a 1566 uint64_t shadow_mem;
20420430 1567 int ret;
25d2e361 1568 struct utsname utsname;
20420430 1569
28143b40 1570 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 1571 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 1572 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 1573
e9688fab
RK
1574 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1575
c3a3a7d3 1576 ret = kvm_get_supported_msrs(s);
20420430 1577 if (ret < 0) {
20420430
SY
1578 return ret;
1579 }
25d2e361 1580
f57bceb6
RH
1581 kvm_get_supported_feature_msrs(s);
1582
25d2e361
MT
1583 uname(&utsname);
1584 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1585
4c5b10b7 1586 /*
11076198
JK
1587 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1588 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1589 * Since these must be part of guest physical memory, we need to allocate
1590 * them, both by setting their start addresses in the kernel and by
1591 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1592 *
1593 * Older KVM versions may not support setting the identity map base. In
1594 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1595 * size.
4c5b10b7 1596 */
11076198
JK
1597 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1598 /* Allows up to 16M BIOSes. */
1599 identity_base = 0xfeffc000;
1600
1601 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1602 if (ret < 0) {
1603 return ret;
1604 }
4c5b10b7 1605 }
e56ff191 1606
11076198
JK
1607 /* Set TSS base one page after EPT identity map. */
1608 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
1609 if (ret < 0) {
1610 return ret;
1611 }
1612
11076198
JK
1613 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1614 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 1615 if (ret < 0) {
11076198 1616 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
1617 return ret;
1618 }
3c85e74f 1619 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 1620
4689b77b 1621 shadow_mem = machine_kvm_shadow_mem(ms);
36ad0e94
MA
1622 if (shadow_mem != -1) {
1623 shadow_mem /= 4096;
1624 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1625 if (ret < 0) {
1626 return ret;
39d6960a
JK
1627 }
1628 }
6410848b 1629
d870cfde
GA
1630 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
1631 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
1632 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
6410848b
PB
1633 smram_machine_done.notify = register_smram_listener;
1634 qemu_add_machine_init_done_notifier(&smram_machine_done);
1635 }
6f131f13
MT
1636
1637 if (enable_cpu_pm) {
1638 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
1639 int ret;
1640
1641/* Work around for kernel header with a typo. TODO: fix header and drop. */
1642#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
1643#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
1644#endif
1645 if (disable_exits) {
1646 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
1647 KVM_X86_DISABLE_EXITS_HLT |
1648 KVM_X86_DISABLE_EXITS_PAUSE);
1649 }
1650
1651 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
1652 disable_exits);
1653 if (ret < 0) {
1654 error_report("kvm: guest stopping CPU not supported: %s",
1655 strerror(-ret));
1656 }
1657 }
1658
11076198 1659 return 0;
05330448 1660}
b9bec74b 1661
05330448
AL
1662static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1663{
1664 lhs->selector = rhs->selector;
1665 lhs->base = rhs->base;
1666 lhs->limit = rhs->limit;
1667 lhs->type = 3;
1668 lhs->present = 1;
1669 lhs->dpl = 3;
1670 lhs->db = 0;
1671 lhs->s = 1;
1672 lhs->l = 0;
1673 lhs->g = 0;
1674 lhs->avl = 0;
1675 lhs->unusable = 0;
1676}
1677
1678static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1679{
1680 unsigned flags = rhs->flags;
1681 lhs->selector = rhs->selector;
1682 lhs->base = rhs->base;
1683 lhs->limit = rhs->limit;
1684 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1685 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 1686 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
1687 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1688 lhs->s = (flags & DESC_S_MASK) != 0;
1689 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1690 lhs->g = (flags & DESC_G_MASK) != 0;
1691 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 1692 lhs->unusable = !lhs->present;
7e680753 1693 lhs->padding = 0;
05330448
AL
1694}
1695
1696static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1697{
1698 lhs->selector = rhs->selector;
1699 lhs->base = rhs->base;
1700 lhs->limit = rhs->limit;
d45fc087
RP
1701 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1702 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
1703 (rhs->dpl << DESC_DPL_SHIFT) |
1704 (rhs->db << DESC_B_SHIFT) |
1705 (rhs->s * DESC_S_MASK) |
1706 (rhs->l << DESC_L_SHIFT) |
1707 (rhs->g * DESC_G_MASK) |
1708 (rhs->avl * DESC_AVL_MASK);
05330448
AL
1709}
1710
1711static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1712{
b9bec74b 1713 if (set) {
05330448 1714 *kvm_reg = *qemu_reg;
b9bec74b 1715 } else {
05330448 1716 *qemu_reg = *kvm_reg;
b9bec74b 1717 }
05330448
AL
1718}
1719
1bc22652 1720static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 1721{
1bc22652 1722 CPUX86State *env = &cpu->env;
05330448
AL
1723 struct kvm_regs regs;
1724 int ret = 0;
1725
1726 if (!set) {
1bc22652 1727 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 1728 if (ret < 0) {
05330448 1729 return ret;
b9bec74b 1730 }
05330448
AL
1731 }
1732
1733 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1734 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1735 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1736 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1737 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1738 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1739 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1740 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1741#ifdef TARGET_X86_64
1742 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1743 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1744 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1745 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1746 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1747 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1748 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1749 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1750#endif
1751
1752 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1753 kvm_getput_reg(&regs.rip, &env->eip, set);
1754
b9bec74b 1755 if (set) {
1bc22652 1756 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 1757 }
05330448
AL
1758
1759 return ret;
1760}
1761
1bc22652 1762static int kvm_put_fpu(X86CPU *cpu)
05330448 1763{
1bc22652 1764 CPUX86State *env = &cpu->env;
05330448
AL
1765 struct kvm_fpu fpu;
1766 int i;
1767
1768 memset(&fpu, 0, sizeof fpu);
1769 fpu.fsw = env->fpus & ~(7 << 11);
1770 fpu.fsw |= (env->fpstt & 7) << 11;
1771 fpu.fcw = env->fpuc;
42cc8fa6
JK
1772 fpu.last_opcode = env->fpop;
1773 fpu.last_ip = env->fpip;
1774 fpu.last_dp = env->fpdp;
b9bec74b
JK
1775 for (i = 0; i < 8; ++i) {
1776 fpu.ftwx |= (!env->fptags[i]) << i;
1777 }
05330448 1778 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 1779 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
1780 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1781 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 1782 }
05330448
AL
1783 fpu.mxcsr = env->mxcsr;
1784
1bc22652 1785 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
1786}
1787
6b42494b
JK
1788#define XSAVE_FCW_FSW 0
1789#define XSAVE_FTW_FOP 1
f1665b21
SY
1790#define XSAVE_CWD_RIP 2
1791#define XSAVE_CWD_RDP 4
1792#define XSAVE_MXCSR 6
1793#define XSAVE_ST_SPACE 8
1794#define XSAVE_XMM_SPACE 40
1795#define XSAVE_XSTATE_BV 128
1796#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
1797#define XSAVE_BNDREGS 240
1798#define XSAVE_BNDCSR 256
9aecd6f8
CP
1799#define XSAVE_OPMASK 272
1800#define XSAVE_ZMM_Hi256 288
1801#define XSAVE_Hi16_ZMM 416
f74eefe0 1802#define XSAVE_PKRU 672
f1665b21 1803
b503717d 1804#define XSAVE_BYTE_OFFSET(word_offset) \
f18793b0 1805 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
b503717d
EH
1806
1807#define ASSERT_OFFSET(word_offset, field) \
1808 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1809 offsetof(X86XSaveArea, field))
1810
1811ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1812ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1813ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1814ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1815ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1816ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1817ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1818ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1819ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1820ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1821ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1822ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1823ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1824ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1825ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1826
1bc22652 1827static int kvm_put_xsave(X86CPU *cpu)
f1665b21 1828{
1bc22652 1829 CPUX86State *env = &cpu->env;
5b8063c4 1830 X86XSaveArea *xsave = env->xsave_buf;
f1665b21 1831
28143b40 1832 if (!has_xsave) {
1bc22652 1833 return kvm_put_fpu(cpu);
b9bec74b 1834 }
86a57621 1835 x86_cpu_xsave_all_areas(cpu, xsave);
f1665b21 1836
9be38598 1837 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
1838}
1839
1bc22652 1840static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1841{
1bc22652 1842 CPUX86State *env = &cpu->env;
bdfc8480 1843 struct kvm_xcrs xcrs = {};
f1665b21 1844
28143b40 1845 if (!has_xcrs) {
f1665b21 1846 return 0;
b9bec74b 1847 }
f1665b21
SY
1848
1849 xcrs.nr_xcrs = 1;
1850 xcrs.flags = 0;
1851 xcrs.xcrs[0].xcr = 0;
1852 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1853 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1854}
1855
1bc22652 1856static int kvm_put_sregs(X86CPU *cpu)
05330448 1857{
1bc22652 1858 CPUX86State *env = &cpu->env;
05330448
AL
1859 struct kvm_sregs sregs;
1860
0e607a80
JK
1861 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1862 if (env->interrupt_injected >= 0) {
1863 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1864 (uint64_t)1 << (env->interrupt_injected % 64);
1865 }
05330448
AL
1866
1867 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1868 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1869 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1870 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1871 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1872 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1873 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1874 } else {
b9bec74b
JK
1875 set_seg(&sregs.cs, &env->segs[R_CS]);
1876 set_seg(&sregs.ds, &env->segs[R_DS]);
1877 set_seg(&sregs.es, &env->segs[R_ES]);
1878 set_seg(&sregs.fs, &env->segs[R_FS]);
1879 set_seg(&sregs.gs, &env->segs[R_GS]);
1880 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1881 }
1882
1883 set_seg(&sregs.tr, &env->tr);
1884 set_seg(&sregs.ldt, &env->ldt);
1885
1886 sregs.idt.limit = env->idt.limit;
1887 sregs.idt.base = env->idt.base;
7e680753 1888 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1889 sregs.gdt.limit = env->gdt.limit;
1890 sregs.gdt.base = env->gdt.base;
7e680753 1891 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1892
1893 sregs.cr0 = env->cr[0];
1894 sregs.cr2 = env->cr[2];
1895 sregs.cr3 = env->cr[3];
1896 sregs.cr4 = env->cr[4];
1897
02e51483
CF
1898 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1899 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
1900
1901 sregs.efer = env->efer;
1902
1bc22652 1903 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1904}
1905
d71b62a1
EH
1906static void kvm_msr_buf_reset(X86CPU *cpu)
1907{
1908 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1909}
1910
9c600a84
EH
1911static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1912{
1913 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1914 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1915 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1916
1917 assert((void *)(entry + 1) <= limit);
1918
1abc2cae
EH
1919 entry->index = index;
1920 entry->reserved = 0;
1921 entry->data = value;
9c600a84
EH
1922 msrs->nmsrs++;
1923}
1924
73e1b8f2
PB
1925static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1926{
1927 kvm_msr_buf_reset(cpu);
1928 kvm_msr_entry_add(cpu, index, value);
1929
1930 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1931}
1932
f8d9ccf8
DDAG
1933void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1934{
1935 int ret;
1936
1937 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1938 assert(ret == 1);
1939}
1940
7477cd38
MT
1941static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1942{
1943 CPUX86State *env = &cpu->env;
48e1a45c 1944 int ret;
7477cd38
MT
1945
1946 if (!has_msr_tsc_deadline) {
1947 return 0;
1948 }
1949
73e1b8f2 1950 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
1951 if (ret < 0) {
1952 return ret;
1953 }
1954
1955 assert(ret == 1);
1956 return 0;
7477cd38
MT
1957}
1958
6bdf863d
JK
1959/*
1960 * Provide a separate write service for the feature control MSR in order to
1961 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1962 * before writing any other state because forcibly leaving nested mode
1963 * invalidates the VCPU state.
1964 */
1965static int kvm_put_msr_feature_control(X86CPU *cpu)
1966{
48e1a45c
PB
1967 int ret;
1968
1969 if (!has_msr_feature_control) {
1970 return 0;
1971 }
6bdf863d 1972
73e1b8f2
PB
1973 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1974 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
1975 if (ret < 0) {
1976 return ret;
1977 }
1978
1979 assert(ret == 1);
1980 return 0;
6bdf863d
JK
1981}
1982
1bc22652 1983static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1984{
1bc22652 1985 CPUX86State *env = &cpu->env;
9c600a84 1986 int i;
48e1a45c 1987 int ret;
05330448 1988
d71b62a1
EH
1989 kvm_msr_buf_reset(cpu);
1990
9c600a84
EH
1991 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1992 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1993 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1994 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 1995 if (has_msr_star) {
9c600a84 1996 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 1997 }
c3a3a7d3 1998 if (has_msr_hsave_pa) {
9c600a84 1999 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2000 }
c9b8f6b6 2001 if (has_msr_tsc_aux) {
9c600a84 2002 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2003 }
f28558d3 2004 if (has_msr_tsc_adjust) {
9c600a84 2005 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2006 }
21e87c46 2007 if (has_msr_misc_enable) {
9c600a84 2008 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2009 env->msr_ia32_misc_enable);
2010 }
fc12d72e 2011 if (has_msr_smbase) {
9c600a84 2012 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2013 }
e13713db
LA
2014 if (has_msr_smi_count) {
2015 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2016 }
439d19f2 2017 if (has_msr_bndcfgs) {
9c600a84 2018 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2019 }
18cd2c17 2020 if (has_msr_xss) {
9c600a84 2021 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2022 }
a33a2cfe
PB
2023 if (has_msr_spec_ctrl) {
2024 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2025 }
cfeea0c0
KRW
2026 if (has_msr_virt_ssbd) {
2027 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2028 }
2029
05330448 2030#ifdef TARGET_X86_64
25d2e361 2031 if (lm_capable_kernel) {
9c600a84
EH
2032 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2033 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2034 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2035 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2036 }
05330448 2037#endif
a33a2cfe 2038
d86f9636 2039 /* If host supports feature MSR, write down. */
aec5e9c3
BD
2040 if (has_msr_arch_capabs) {
2041 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2042 env->features[FEAT_ARCH_CAPABILITIES]);
d86f9636
RH
2043 }
2044
ff5c186b 2045 /*
0d894367
PB
2046 * The following MSRs have side effects on the guest or are too heavy
2047 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
2048 */
2049 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
2050 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2051 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2052 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
55c911a5 2053 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2054 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 2055 }
55c911a5 2056 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2057 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 2058 }
55c911a5 2059 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2060 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 2061 }
0b368a10
JD
2062 if (has_architectural_pmu_version > 0) {
2063 if (has_architectural_pmu_version > 1) {
2064 /* Stop the counter. */
2065 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2066 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2067 }
0d894367
PB
2068
2069 /* Set the counter values. */
0b368a10 2070 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2071 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
2072 env->msr_fixed_counters[i]);
2073 }
0b368a10 2074 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 2075 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 2076 env->msr_gp_counters[i]);
9c600a84 2077 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
2078 env->msr_gp_evtsel[i]);
2079 }
0b368a10
JD
2080 if (has_architectural_pmu_version > 1) {
2081 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2082 env->msr_global_status);
2083 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2084 env->msr_global_ovf_ctrl);
2085
2086 /* Now start the PMU. */
2087 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2088 env->msr_fixed_ctr_ctrl);
2089 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2090 env->msr_global_ctrl);
2091 }
0d894367 2092 }
da1cc323
EY
2093 /*
2094 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2095 * only sync them to KVM on the first cpu
2096 */
2097 if (current_cpu == first_cpu) {
2098 if (has_msr_hv_hypercall) {
2099 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2100 env->msr_hv_guest_os_id);
2101 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2102 env->msr_hv_hypercall);
2103 }
2104 if (cpu->hyperv_time) {
2105 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2106 env->msr_hv_tsc);
2107 }
ba6a4fd9
VK
2108 if (cpu->hyperv_reenlightenment) {
2109 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2110 env->msr_hv_reenlightenment_control);
2111 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2112 env->msr_hv_tsc_emulation_control);
2113 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2114 env->msr_hv_tsc_emulation_status);
2115 }
eab70139 2116 }
2d5aa872 2117 if (cpu->hyperv_vapic) {
9c600a84 2118 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 2119 env->msr_hv_vapic);
eab70139 2120 }
f2a53c9e
AS
2121 if (has_msr_hv_crash) {
2122 int j;
2123
5e953812 2124 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 2125 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
2126 env->msr_hv_crash_params[j]);
2127
5e953812 2128 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 2129 }
46eb8f98 2130 if (has_msr_hv_runtime) {
9c600a84 2131 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 2132 }
e9688fab 2133 if (cpu->hyperv_vpindex && hv_vpindex_settable) {
701189e3
RK
2134 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2135 hyperv_vp_index(CPU(cpu)));
e9688fab 2136 }
866eea9a
AS
2137 if (cpu->hyperv_synic) {
2138 int j;
2139
09df29b6
RK
2140 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2141
9c600a84 2142 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 2143 env->msr_hv_synic_control);
9c600a84 2144 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 2145 env->msr_hv_synic_evt_page);
9c600a84 2146 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
2147 env->msr_hv_synic_msg_page);
2148
2149 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 2150 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
2151 env->msr_hv_synic_sint[j]);
2152 }
2153 }
ff99aa64
AS
2154 if (has_msr_hv_stimer) {
2155 int j;
2156
2157 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 2158 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
2159 env->msr_hv_stimer_config[j]);
2160 }
2161
2162 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 2163 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
2164 env->msr_hv_stimer_count[j]);
2165 }
2166 }
1eabfce6 2167 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
2168 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2169
9c600a84
EH
2170 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2171 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2172 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2173 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2174 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2175 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2176 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2177 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2178 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2179 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2180 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2181 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 2182 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
2183 /* The CPU GPs if we write to a bit above the physical limit of
2184 * the host CPU (and KVM emulates that)
2185 */
2186 uint64_t mask = env->mtrr_var[i].mask;
2187 mask &= phys_mask;
2188
9c600a84
EH
2189 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2190 env->mtrr_var[i].base);
112dad69 2191 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
2192 }
2193 }
b77146e9
CP
2194 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2195 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2196 0x14, 1, R_EAX) & 0x7;
2197
2198 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2199 env->msr_rtit_ctrl);
2200 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2201 env->msr_rtit_status);
2202 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2203 env->msr_rtit_output_base);
2204 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2205 env->msr_rtit_output_mask);
2206 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2207 env->msr_rtit_cr3_match);
2208 for (i = 0; i < addr_num; i++) {
2209 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2210 env->msr_rtit_addrs[i]);
2211 }
2212 }
6bdf863d
JK
2213
2214 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2215 * kvm_put_msr_feature_control. */
ea643051 2216 }
57780495 2217 if (env->mcg_cap) {
d8da8574 2218 int i;
b9bec74b 2219
9c600a84
EH
2220 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2221 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
2222 if (has_msr_mcg_ext_ctl) {
2223 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2224 }
c34d440a 2225 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2226 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
2227 }
2228 }
1a03675d 2229
d71b62a1 2230 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
48e1a45c
PB
2231 if (ret < 0) {
2232 return ret;
2233 }
05330448 2234
c70b11d1
EH
2235 if (ret < cpu->kvm_msr_buf->nmsrs) {
2236 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2237 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2238 (uint32_t)e->index, (uint64_t)e->data);
2239 }
2240
9c600a84 2241 assert(ret == cpu->kvm_msr_buf->nmsrs);
48e1a45c 2242 return 0;
05330448
AL
2243}
2244
2245
1bc22652 2246static int kvm_get_fpu(X86CPU *cpu)
05330448 2247{
1bc22652 2248 CPUX86State *env = &cpu->env;
05330448
AL
2249 struct kvm_fpu fpu;
2250 int i, ret;
2251
1bc22652 2252 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 2253 if (ret < 0) {
05330448 2254 return ret;
b9bec74b 2255 }
05330448
AL
2256
2257 env->fpstt = (fpu.fsw >> 11) & 7;
2258 env->fpus = fpu.fsw;
2259 env->fpuc = fpu.fcw;
42cc8fa6
JK
2260 env->fpop = fpu.last_opcode;
2261 env->fpip = fpu.last_ip;
2262 env->fpdp = fpu.last_dp;
b9bec74b
JK
2263 for (i = 0; i < 8; ++i) {
2264 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2265 }
05330448 2266 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 2267 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2268 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2269 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 2270 }
05330448
AL
2271 env->mxcsr = fpu.mxcsr;
2272
2273 return 0;
2274}
2275
1bc22652 2276static int kvm_get_xsave(X86CPU *cpu)
f1665b21 2277{
1bc22652 2278 CPUX86State *env = &cpu->env;
5b8063c4 2279 X86XSaveArea *xsave = env->xsave_buf;
86a57621 2280 int ret;
f1665b21 2281
28143b40 2282 if (!has_xsave) {
1bc22652 2283 return kvm_get_fpu(cpu);
b9bec74b 2284 }
f1665b21 2285
1bc22652 2286 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 2287 if (ret < 0) {
f1665b21 2288 return ret;
0f53994f 2289 }
86a57621 2290 x86_cpu_xrstor_all_areas(cpu, xsave);
f1665b21 2291
f1665b21 2292 return 0;
f1665b21
SY
2293}
2294
1bc22652 2295static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 2296{
1bc22652 2297 CPUX86State *env = &cpu->env;
f1665b21
SY
2298 int i, ret;
2299 struct kvm_xcrs xcrs;
2300
28143b40 2301 if (!has_xcrs) {
f1665b21 2302 return 0;
b9bec74b 2303 }
f1665b21 2304
1bc22652 2305 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 2306 if (ret < 0) {
f1665b21 2307 return ret;
b9bec74b 2308 }
f1665b21 2309
b9bec74b 2310 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 2311 /* Only support xcr0 now */
0fd53fec
PB
2312 if (xcrs.xcrs[i].xcr == 0) {
2313 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
2314 break;
2315 }
b9bec74b 2316 }
f1665b21 2317 return 0;
f1665b21
SY
2318}
2319
1bc22652 2320static int kvm_get_sregs(X86CPU *cpu)
05330448 2321{
1bc22652 2322 CPUX86State *env = &cpu->env;
05330448 2323 struct kvm_sregs sregs;
0e607a80 2324 int bit, i, ret;
05330448 2325
1bc22652 2326 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 2327 if (ret < 0) {
05330448 2328 return ret;
b9bec74b 2329 }
05330448 2330
0e607a80
JK
2331 /* There can only be one pending IRQ set in the bitmap at a time, so try
2332 to find it and save its number instead (-1 for none). */
2333 env->interrupt_injected = -1;
2334 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2335 if (sregs.interrupt_bitmap[i]) {
2336 bit = ctz64(sregs.interrupt_bitmap[i]);
2337 env->interrupt_injected = i * 64 + bit;
2338 break;
2339 }
2340 }
05330448
AL
2341
2342 get_seg(&env->segs[R_CS], &sregs.cs);
2343 get_seg(&env->segs[R_DS], &sregs.ds);
2344 get_seg(&env->segs[R_ES], &sregs.es);
2345 get_seg(&env->segs[R_FS], &sregs.fs);
2346 get_seg(&env->segs[R_GS], &sregs.gs);
2347 get_seg(&env->segs[R_SS], &sregs.ss);
2348
2349 get_seg(&env->tr, &sregs.tr);
2350 get_seg(&env->ldt, &sregs.ldt);
2351
2352 env->idt.limit = sregs.idt.limit;
2353 env->idt.base = sregs.idt.base;
2354 env->gdt.limit = sregs.gdt.limit;
2355 env->gdt.base = sregs.gdt.base;
2356
2357 env->cr[0] = sregs.cr0;
2358 env->cr[2] = sregs.cr2;
2359 env->cr[3] = sregs.cr3;
2360 env->cr[4] = sregs.cr4;
2361
05330448 2362 env->efer = sregs.efer;
cce47516
JK
2363
2364 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 2365 x86_update_hflags(env);
05330448
AL
2366
2367 return 0;
2368}
2369
1bc22652 2370static int kvm_get_msrs(X86CPU *cpu)
05330448 2371{
1bc22652 2372 CPUX86State *env = &cpu->env;
d71b62a1 2373 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 2374 int ret, i;
fcc35e7c 2375 uint64_t mtrr_top_bits;
05330448 2376
d71b62a1
EH
2377 kvm_msr_buf_reset(cpu);
2378
9c600a84
EH
2379 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2380 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2381 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2382 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 2383 if (has_msr_star) {
9c600a84 2384 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 2385 }
c3a3a7d3 2386 if (has_msr_hsave_pa) {
9c600a84 2387 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 2388 }
c9b8f6b6 2389 if (has_msr_tsc_aux) {
9c600a84 2390 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 2391 }
f28558d3 2392 if (has_msr_tsc_adjust) {
9c600a84 2393 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 2394 }
aa82ba54 2395 if (has_msr_tsc_deadline) {
9c600a84 2396 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 2397 }
21e87c46 2398 if (has_msr_misc_enable) {
9c600a84 2399 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 2400 }
fc12d72e 2401 if (has_msr_smbase) {
9c600a84 2402 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 2403 }
e13713db
LA
2404 if (has_msr_smi_count) {
2405 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2406 }
df67696e 2407 if (has_msr_feature_control) {
9c600a84 2408 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 2409 }
79e9ebeb 2410 if (has_msr_bndcfgs) {
9c600a84 2411 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 2412 }
18cd2c17 2413 if (has_msr_xss) {
9c600a84 2414 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 2415 }
a33a2cfe
PB
2416 if (has_msr_spec_ctrl) {
2417 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2418 }
cfeea0c0
KRW
2419 if (has_msr_virt_ssbd) {
2420 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2421 }
b8cc45d6 2422 if (!env->tsc_valid) {
9c600a84 2423 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 2424 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
2425 }
2426
05330448 2427#ifdef TARGET_X86_64
25d2e361 2428 if (lm_capable_kernel) {
9c600a84
EH
2429 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2430 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2431 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2432 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 2433 }
05330448 2434#endif
9c600a84
EH
2435 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2436 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
55c911a5 2437 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2438 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
c5999bfc 2439 }
55c911a5 2440 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2441 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 2442 }
55c911a5 2443 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2444 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 2445 }
0b368a10
JD
2446 if (has_architectural_pmu_version > 0) {
2447 if (has_architectural_pmu_version > 1) {
2448 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2449 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2450 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2451 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2452 }
2453 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2454 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 2455 }
0b368a10 2456 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
2457 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2458 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
2459 }
2460 }
1a03675d 2461
57780495 2462 if (env->mcg_cap) {
9c600a84
EH
2463 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2464 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
2465 if (has_msr_mcg_ext_ctl) {
2466 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2467 }
b9bec74b 2468 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2469 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 2470 }
57780495 2471 }
57780495 2472
1c90ef26 2473 if (has_msr_hv_hypercall) {
9c600a84
EH
2474 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2475 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 2476 }
2d5aa872 2477 if (cpu->hyperv_vapic) {
9c600a84 2478 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 2479 }
3ddcd2ed 2480 if (cpu->hyperv_time) {
9c600a84 2481 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 2482 }
ba6a4fd9
VK
2483 if (cpu->hyperv_reenlightenment) {
2484 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2485 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2486 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2487 }
f2a53c9e
AS
2488 if (has_msr_hv_crash) {
2489 int j;
2490
5e953812 2491 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 2492 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
2493 }
2494 }
46eb8f98 2495 if (has_msr_hv_runtime) {
9c600a84 2496 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 2497 }
866eea9a
AS
2498 if (cpu->hyperv_synic) {
2499 uint32_t msr;
2500
9c600a84 2501 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
2502 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2503 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 2504 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 2505 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
2506 }
2507 }
ff99aa64
AS
2508 if (has_msr_hv_stimer) {
2509 uint32_t msr;
2510
2511 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2512 msr++) {
9c600a84 2513 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
2514 }
2515 }
1eabfce6 2516 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
2517 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2518 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2519 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2520 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2521 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2522 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2523 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2524 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2525 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2526 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2527 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2528 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 2529 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
2530 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2531 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
2532 }
2533 }
5ef68987 2534
b77146e9
CP
2535 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2536 int addr_num =
2537 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2538
2539 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2540 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2541 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2542 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2543 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2544 for (i = 0; i < addr_num; i++) {
2545 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2546 }
2547 }
2548
d71b62a1 2549 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 2550 if (ret < 0) {
05330448 2551 return ret;
b9bec74b 2552 }
05330448 2553
c70b11d1
EH
2554 if (ret < cpu->kvm_msr_buf->nmsrs) {
2555 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2556 error_report("error: failed to get MSR 0x%" PRIx32,
2557 (uint32_t)e->index);
2558 }
2559
9c600a84 2560 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
2561 /*
2562 * MTRR masks: Each mask consists of 5 parts
2563 * a 10..0: must be zero
2564 * b 11 : valid bit
2565 * c n-1.12: actual mask bits
2566 * d 51..n: reserved must be zero
2567 * e 63.52: reserved must be zero
2568 *
2569 * 'n' is the number of physical bits supported by the CPU and is
2570 * apparently always <= 52. We know our 'n' but don't know what
2571 * the destinations 'n' is; it might be smaller, in which case
2572 * it masks (c) on loading. It might be larger, in which case
2573 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2574 * we're migrating to.
2575 */
2576
2577 if (cpu->fill_mtrr_mask) {
2578 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2579 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2580 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2581 } else {
2582 mtrr_top_bits = 0;
2583 }
2584
05330448 2585 for (i = 0; i < ret; i++) {
0d894367
PB
2586 uint32_t index = msrs[i].index;
2587 switch (index) {
05330448
AL
2588 case MSR_IA32_SYSENTER_CS:
2589 env->sysenter_cs = msrs[i].data;
2590 break;
2591 case MSR_IA32_SYSENTER_ESP:
2592 env->sysenter_esp = msrs[i].data;
2593 break;
2594 case MSR_IA32_SYSENTER_EIP:
2595 env->sysenter_eip = msrs[i].data;
2596 break;
0c03266a
JK
2597 case MSR_PAT:
2598 env->pat = msrs[i].data;
2599 break;
05330448
AL
2600 case MSR_STAR:
2601 env->star = msrs[i].data;
2602 break;
2603#ifdef TARGET_X86_64
2604 case MSR_CSTAR:
2605 env->cstar = msrs[i].data;
2606 break;
2607 case MSR_KERNELGSBASE:
2608 env->kernelgsbase = msrs[i].data;
2609 break;
2610 case MSR_FMASK:
2611 env->fmask = msrs[i].data;
2612 break;
2613 case MSR_LSTAR:
2614 env->lstar = msrs[i].data;
2615 break;
2616#endif
2617 case MSR_IA32_TSC:
2618 env->tsc = msrs[i].data;
2619 break;
c9b8f6b6
AS
2620 case MSR_TSC_AUX:
2621 env->tsc_aux = msrs[i].data;
2622 break;
f28558d3
WA
2623 case MSR_TSC_ADJUST:
2624 env->tsc_adjust = msrs[i].data;
2625 break;
aa82ba54
LJ
2626 case MSR_IA32_TSCDEADLINE:
2627 env->tsc_deadline = msrs[i].data;
2628 break;
aa851e36
MT
2629 case MSR_VM_HSAVE_PA:
2630 env->vm_hsave = msrs[i].data;
2631 break;
1a03675d
GC
2632 case MSR_KVM_SYSTEM_TIME:
2633 env->system_time_msr = msrs[i].data;
2634 break;
2635 case MSR_KVM_WALL_CLOCK:
2636 env->wall_clock_msr = msrs[i].data;
2637 break;
57780495
MT
2638 case MSR_MCG_STATUS:
2639 env->mcg_status = msrs[i].data;
2640 break;
2641 case MSR_MCG_CTL:
2642 env->mcg_ctl = msrs[i].data;
2643 break;
87f8b626
AR
2644 case MSR_MCG_EXT_CTL:
2645 env->mcg_ext_ctl = msrs[i].data;
2646 break;
21e87c46
AK
2647 case MSR_IA32_MISC_ENABLE:
2648 env->msr_ia32_misc_enable = msrs[i].data;
2649 break;
fc12d72e
PB
2650 case MSR_IA32_SMBASE:
2651 env->smbase = msrs[i].data;
2652 break;
e13713db
LA
2653 case MSR_SMI_COUNT:
2654 env->msr_smi_count = msrs[i].data;
2655 break;
0779caeb
ACL
2656 case MSR_IA32_FEATURE_CONTROL:
2657 env->msr_ia32_feature_control = msrs[i].data;
df67696e 2658 break;
79e9ebeb
LJ
2659 case MSR_IA32_BNDCFGS:
2660 env->msr_bndcfgs = msrs[i].data;
2661 break;
18cd2c17
WL
2662 case MSR_IA32_XSS:
2663 env->xss = msrs[i].data;
2664 break;
57780495 2665 default:
57780495
MT
2666 if (msrs[i].index >= MSR_MC0_CTL &&
2667 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2668 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 2669 }
d8da8574 2670 break;
f6584ee2
GN
2671 case MSR_KVM_ASYNC_PF_EN:
2672 env->async_pf_en_msr = msrs[i].data;
2673 break;
bc9a839d
MT
2674 case MSR_KVM_PV_EOI_EN:
2675 env->pv_eoi_en_msr = msrs[i].data;
2676 break;
917367aa
MT
2677 case MSR_KVM_STEAL_TIME:
2678 env->steal_time_msr = msrs[i].data;
2679 break;
0d894367
PB
2680 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2681 env->msr_fixed_ctr_ctrl = msrs[i].data;
2682 break;
2683 case MSR_CORE_PERF_GLOBAL_CTRL:
2684 env->msr_global_ctrl = msrs[i].data;
2685 break;
2686 case MSR_CORE_PERF_GLOBAL_STATUS:
2687 env->msr_global_status = msrs[i].data;
2688 break;
2689 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2690 env->msr_global_ovf_ctrl = msrs[i].data;
2691 break;
2692 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2693 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2694 break;
2695 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2696 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2697 break;
2698 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2699 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2700 break;
1c90ef26
VR
2701 case HV_X64_MSR_HYPERCALL:
2702 env->msr_hv_hypercall = msrs[i].data;
2703 break;
2704 case HV_X64_MSR_GUEST_OS_ID:
2705 env->msr_hv_guest_os_id = msrs[i].data;
2706 break;
5ef68987
VR
2707 case HV_X64_MSR_APIC_ASSIST_PAGE:
2708 env->msr_hv_vapic = msrs[i].data;
2709 break;
48a5f3bc
VR
2710 case HV_X64_MSR_REFERENCE_TSC:
2711 env->msr_hv_tsc = msrs[i].data;
2712 break;
f2a53c9e
AS
2713 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2714 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2715 break;
46eb8f98
AS
2716 case HV_X64_MSR_VP_RUNTIME:
2717 env->msr_hv_runtime = msrs[i].data;
2718 break;
866eea9a
AS
2719 case HV_X64_MSR_SCONTROL:
2720 env->msr_hv_synic_control = msrs[i].data;
2721 break;
866eea9a
AS
2722 case HV_X64_MSR_SIEFP:
2723 env->msr_hv_synic_evt_page = msrs[i].data;
2724 break;
2725 case HV_X64_MSR_SIMP:
2726 env->msr_hv_synic_msg_page = msrs[i].data;
2727 break;
2728 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2729 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
2730 break;
2731 case HV_X64_MSR_STIMER0_CONFIG:
2732 case HV_X64_MSR_STIMER1_CONFIG:
2733 case HV_X64_MSR_STIMER2_CONFIG:
2734 case HV_X64_MSR_STIMER3_CONFIG:
2735 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2736 msrs[i].data;
2737 break;
2738 case HV_X64_MSR_STIMER0_COUNT:
2739 case HV_X64_MSR_STIMER1_COUNT:
2740 case HV_X64_MSR_STIMER2_COUNT:
2741 case HV_X64_MSR_STIMER3_COUNT:
2742 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2743 msrs[i].data;
866eea9a 2744 break;
ba6a4fd9
VK
2745 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2746 env->msr_hv_reenlightenment_control = msrs[i].data;
2747 break;
2748 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2749 env->msr_hv_tsc_emulation_control = msrs[i].data;
2750 break;
2751 case HV_X64_MSR_TSC_EMULATION_STATUS:
2752 env->msr_hv_tsc_emulation_status = msrs[i].data;
2753 break;
d1ae67f6
AW
2754 case MSR_MTRRdefType:
2755 env->mtrr_deftype = msrs[i].data;
2756 break;
2757 case MSR_MTRRfix64K_00000:
2758 env->mtrr_fixed[0] = msrs[i].data;
2759 break;
2760 case MSR_MTRRfix16K_80000:
2761 env->mtrr_fixed[1] = msrs[i].data;
2762 break;
2763 case MSR_MTRRfix16K_A0000:
2764 env->mtrr_fixed[2] = msrs[i].data;
2765 break;
2766 case MSR_MTRRfix4K_C0000:
2767 env->mtrr_fixed[3] = msrs[i].data;
2768 break;
2769 case MSR_MTRRfix4K_C8000:
2770 env->mtrr_fixed[4] = msrs[i].data;
2771 break;
2772 case MSR_MTRRfix4K_D0000:
2773 env->mtrr_fixed[5] = msrs[i].data;
2774 break;
2775 case MSR_MTRRfix4K_D8000:
2776 env->mtrr_fixed[6] = msrs[i].data;
2777 break;
2778 case MSR_MTRRfix4K_E0000:
2779 env->mtrr_fixed[7] = msrs[i].data;
2780 break;
2781 case MSR_MTRRfix4K_E8000:
2782 env->mtrr_fixed[8] = msrs[i].data;
2783 break;
2784 case MSR_MTRRfix4K_F0000:
2785 env->mtrr_fixed[9] = msrs[i].data;
2786 break;
2787 case MSR_MTRRfix4K_F8000:
2788 env->mtrr_fixed[10] = msrs[i].data;
2789 break;
2790 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2791 if (index & 1) {
fcc35e7c
DDAG
2792 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2793 mtrr_top_bits;
d1ae67f6
AW
2794 } else {
2795 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2796 }
2797 break;
a33a2cfe
PB
2798 case MSR_IA32_SPEC_CTRL:
2799 env->spec_ctrl = msrs[i].data;
2800 break;
cfeea0c0
KRW
2801 case MSR_VIRT_SSBD:
2802 env->virt_ssbd = msrs[i].data;
2803 break;
b77146e9
CP
2804 case MSR_IA32_RTIT_CTL:
2805 env->msr_rtit_ctrl = msrs[i].data;
2806 break;
2807 case MSR_IA32_RTIT_STATUS:
2808 env->msr_rtit_status = msrs[i].data;
2809 break;
2810 case MSR_IA32_RTIT_OUTPUT_BASE:
2811 env->msr_rtit_output_base = msrs[i].data;
2812 break;
2813 case MSR_IA32_RTIT_OUTPUT_MASK:
2814 env->msr_rtit_output_mask = msrs[i].data;
2815 break;
2816 case MSR_IA32_RTIT_CR3_MATCH:
2817 env->msr_rtit_cr3_match = msrs[i].data;
2818 break;
2819 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2820 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
2821 break;
05330448
AL
2822 }
2823 }
2824
2825 return 0;
2826}
2827
1bc22652 2828static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 2829{
1bc22652 2830 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 2831
1bc22652 2832 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
2833}
2834
23d02d9b 2835static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 2836{
259186a7 2837 CPUState *cs = CPU(cpu);
23d02d9b 2838 CPUX86State *env = &cpu->env;
9bdbe550
HB
2839 struct kvm_mp_state mp_state;
2840 int ret;
2841
259186a7 2842 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
2843 if (ret < 0) {
2844 return ret;
2845 }
2846 env->mp_state = mp_state.mp_state;
c14750e8 2847 if (kvm_irqchip_in_kernel()) {
259186a7 2848 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 2849 }
9bdbe550
HB
2850 return 0;
2851}
2852
1bc22652 2853static int kvm_get_apic(X86CPU *cpu)
680c1c6f 2854{
02e51483 2855 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
2856 struct kvm_lapic_state kapic;
2857 int ret;
2858
3d4b2649 2859 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 2860 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
2861 if (ret < 0) {
2862 return ret;
2863 }
2864
2865 kvm_get_apic_state(apic, &kapic);
2866 }
2867 return 0;
2868}
2869
1bc22652 2870static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 2871{
fc12d72e 2872 CPUState *cs = CPU(cpu);
1bc22652 2873 CPUX86State *env = &cpu->env;
076796f8 2874 struct kvm_vcpu_events events = {};
a0fb002c
JK
2875
2876 if (!kvm_has_vcpu_events()) {
2877 return 0;
2878 }
2879
31827373
JK
2880 events.exception.injected = (env->exception_injected >= 0);
2881 events.exception.nr = env->exception_injected;
a0fb002c
JK
2882 events.exception.has_error_code = env->has_error_code;
2883 events.exception.error_code = env->error_code;
2884
2885 events.interrupt.injected = (env->interrupt_injected >= 0);
2886 events.interrupt.nr = env->interrupt_injected;
2887 events.interrupt.soft = env->soft_interrupt;
2888
2889 events.nmi.injected = env->nmi_injected;
2890 events.nmi.pending = env->nmi_pending;
2891 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2892
2893 events.sipi_vector = env->sipi_vector;
68c6efe0 2894 events.flags = 0;
a0fb002c 2895
fc12d72e
PB
2896 if (has_msr_smbase) {
2897 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2898 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2899 if (kvm_irqchip_in_kernel()) {
2900 /* As soon as these are moved to the kernel, remove them
2901 * from cs->interrupt_request.
2902 */
2903 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2904 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2905 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2906 } else {
2907 /* Keep these in cs->interrupt_request. */
2908 events.smi.pending = 0;
2909 events.smi.latched_init = 0;
2910 }
fc3a1fd7
DDAG
2911 /* Stop SMI delivery on old machine types to avoid a reboot
2912 * on an inward migration of an old VM.
2913 */
2914 if (!cpu->kvm_no_smi_migration) {
2915 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2916 }
fc12d72e
PB
2917 }
2918
ea643051 2919 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
2920 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2921 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
2922 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2923 }
ea643051 2924 }
aee028b9 2925
1bc22652 2926 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
2927}
2928
1bc22652 2929static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 2930{
1bc22652 2931 CPUX86State *env = &cpu->env;
a0fb002c
JK
2932 struct kvm_vcpu_events events;
2933 int ret;
2934
2935 if (!kvm_has_vcpu_events()) {
2936 return 0;
2937 }
2938
fc12d72e 2939 memset(&events, 0, sizeof(events));
1bc22652 2940 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
2941 if (ret < 0) {
2942 return ret;
2943 }
31827373 2944 env->exception_injected =
a0fb002c
JK
2945 events.exception.injected ? events.exception.nr : -1;
2946 env->has_error_code = events.exception.has_error_code;
2947 env->error_code = events.exception.error_code;
2948
2949 env->interrupt_injected =
2950 events.interrupt.injected ? events.interrupt.nr : -1;
2951 env->soft_interrupt = events.interrupt.soft;
2952
2953 env->nmi_injected = events.nmi.injected;
2954 env->nmi_pending = events.nmi.pending;
2955 if (events.nmi.masked) {
2956 env->hflags2 |= HF2_NMI_MASK;
2957 } else {
2958 env->hflags2 &= ~HF2_NMI_MASK;
2959 }
2960
fc12d72e
PB
2961 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2962 if (events.smi.smm) {
2963 env->hflags |= HF_SMM_MASK;
2964 } else {
2965 env->hflags &= ~HF_SMM_MASK;
2966 }
2967 if (events.smi.pending) {
2968 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2969 } else {
2970 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2971 }
2972 if (events.smi.smm_inside_nmi) {
2973 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2974 } else {
2975 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2976 }
2977 if (events.smi.latched_init) {
2978 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2979 } else {
2980 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2981 }
2982 }
2983
a0fb002c 2984 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
2985
2986 return 0;
2987}
2988
1bc22652 2989static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 2990{
ed2803da 2991 CPUState *cs = CPU(cpu);
1bc22652 2992 CPUX86State *env = &cpu->env;
b0b1d690 2993 int ret = 0;
b0b1d690
JK
2994 unsigned long reinject_trap = 0;
2995
2996 if (!kvm_has_vcpu_events()) {
2997 if (env->exception_injected == 1) {
2998 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2999 } else if (env->exception_injected == 3) {
3000 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3001 }
3002 env->exception_injected = -1;
3003 }
3004
3005 /*
3006 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3007 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3008 * by updating the debug state once again if single-stepping is on.
3009 * Another reason to call kvm_update_guest_debug here is a pending debug
3010 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3011 * reinject them via SET_GUEST_DEBUG.
3012 */
3013 if (reinject_trap ||
ed2803da 3014 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 3015 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 3016 }
b0b1d690
JK
3017 return ret;
3018}
3019
1bc22652 3020static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 3021{
1bc22652 3022 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3023 struct kvm_debugregs dbgregs;
3024 int i;
3025
3026 if (!kvm_has_debugregs()) {
3027 return 0;
3028 }
3029
3030 for (i = 0; i < 4; i++) {
3031 dbgregs.db[i] = env->dr[i];
3032 }
3033 dbgregs.dr6 = env->dr[6];
3034 dbgregs.dr7 = env->dr[7];
3035 dbgregs.flags = 0;
3036
1bc22652 3037 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
3038}
3039
1bc22652 3040static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 3041{
1bc22652 3042 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3043 struct kvm_debugregs dbgregs;
3044 int i, ret;
3045
3046 if (!kvm_has_debugregs()) {
3047 return 0;
3048 }
3049
1bc22652 3050 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 3051 if (ret < 0) {
b9bec74b 3052 return ret;
ff44f1a3
JK
3053 }
3054 for (i = 0; i < 4; i++) {
3055 env->dr[i] = dbgregs.db[i];
3056 }
3057 env->dr[4] = env->dr[6] = dbgregs.dr6;
3058 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
3059
3060 return 0;
3061}
3062
20d695a9 3063int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 3064{
20d695a9 3065 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
3066 int ret;
3067
2fa45344 3068 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 3069
48e1a45c 3070 if (level >= KVM_PUT_RESET_STATE) {
6bdf863d
JK
3071 ret = kvm_put_msr_feature_control(x86_cpu);
3072 if (ret < 0) {
3073 return ret;
3074 }
3075 }
3076
36f96c4b
HZ
3077 if (level == KVM_PUT_FULL_STATE) {
3078 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3079 * because TSC frequency mismatch shouldn't abort migration,
3080 * unless the user explicitly asked for a more strict TSC
3081 * setting (e.g. using an explicit "tsc-freq" option).
3082 */
3083 kvm_arch_set_tsc_khz(cpu);
3084 }
3085
1bc22652 3086 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 3087 if (ret < 0) {
05330448 3088 return ret;
b9bec74b 3089 }
1bc22652 3090 ret = kvm_put_xsave(x86_cpu);
b9bec74b 3091 if (ret < 0) {
f1665b21 3092 return ret;
b9bec74b 3093 }
1bc22652 3094 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 3095 if (ret < 0) {
05330448 3096 return ret;
b9bec74b 3097 }
1bc22652 3098 ret = kvm_put_sregs(x86_cpu);
b9bec74b 3099 if (ret < 0) {
05330448 3100 return ret;
b9bec74b 3101 }
ab443475 3102 /* must be before kvm_put_msrs */
1bc22652 3103 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
3104 if (ret < 0) {
3105 return ret;
3106 }
1bc22652 3107 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 3108 if (ret < 0) {
05330448 3109 return ret;
b9bec74b 3110 }
4fadfa00
PH
3111 ret = kvm_put_vcpu_events(x86_cpu, level);
3112 if (ret < 0) {
3113 return ret;
3114 }
ea643051 3115 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 3116 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 3117 if (ret < 0) {
680c1c6f
JK
3118 return ret;
3119 }
ea643051 3120 }
7477cd38
MT
3121
3122 ret = kvm_put_tscdeadline_msr(x86_cpu);
3123 if (ret < 0) {
3124 return ret;
3125 }
1bc22652 3126 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 3127 if (ret < 0) {
b0b1d690 3128 return ret;
b9bec74b 3129 }
b0b1d690 3130 /* must be last */
1bc22652 3131 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 3132 if (ret < 0) {
ff44f1a3 3133 return ret;
b9bec74b 3134 }
05330448
AL
3135 return 0;
3136}
3137
20d695a9 3138int kvm_arch_get_registers(CPUState *cs)
05330448 3139{
20d695a9 3140 X86CPU *cpu = X86_CPU(cs);
05330448
AL
3141 int ret;
3142
20d695a9 3143 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 3144
4fadfa00 3145 ret = kvm_get_vcpu_events(cpu);
b9bec74b 3146 if (ret < 0) {
f4f1110e 3147 goto out;
b9bec74b 3148 }
4fadfa00
PH
3149 /*
3150 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3151 * KVM_GET_REGS and KVM_GET_SREGS.
3152 */
3153 ret = kvm_get_mp_state(cpu);
b9bec74b 3154 if (ret < 0) {
f4f1110e 3155 goto out;
b9bec74b 3156 }
4fadfa00 3157 ret = kvm_getput_regs(cpu, 0);
b9bec74b 3158 if (ret < 0) {
f4f1110e 3159 goto out;
b9bec74b 3160 }
4fadfa00 3161 ret = kvm_get_xsave(cpu);
b9bec74b 3162 if (ret < 0) {
f4f1110e 3163 goto out;
b9bec74b 3164 }
4fadfa00 3165 ret = kvm_get_xcrs(cpu);
b9bec74b 3166 if (ret < 0) {
f4f1110e 3167 goto out;
b9bec74b 3168 }
4fadfa00 3169 ret = kvm_get_sregs(cpu);
b9bec74b 3170 if (ret < 0) {
f4f1110e 3171 goto out;
b9bec74b 3172 }
4fadfa00 3173 ret = kvm_get_msrs(cpu);
680c1c6f 3174 if (ret < 0) {
f4f1110e 3175 goto out;
680c1c6f 3176 }
4fadfa00 3177 ret = kvm_get_apic(cpu);
b9bec74b 3178 if (ret < 0) {
f4f1110e 3179 goto out;
b9bec74b 3180 }
1bc22652 3181 ret = kvm_get_debugregs(cpu);
b9bec74b 3182 if (ret < 0) {
f4f1110e 3183 goto out;
b9bec74b 3184 }
f4f1110e
RH
3185 ret = 0;
3186 out:
3187 cpu_sync_bndcs_hflags(&cpu->env);
3188 return ret;
05330448
AL
3189}
3190
20d695a9 3191void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 3192{
20d695a9
AF
3193 X86CPU *x86_cpu = X86_CPU(cpu);
3194 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
3195 int ret;
3196
276ce815 3197 /* Inject NMI */
fc12d72e
PB
3198 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3199 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3200 qemu_mutex_lock_iothread();
3201 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3202 qemu_mutex_unlock_iothread();
3203 DPRINTF("injected NMI\n");
3204 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3205 if (ret < 0) {
3206 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3207 strerror(-ret));
3208 }
3209 }
3210 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3211 qemu_mutex_lock_iothread();
3212 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3213 qemu_mutex_unlock_iothread();
3214 DPRINTF("injected SMI\n");
3215 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3216 if (ret < 0) {
3217 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3218 strerror(-ret));
3219 }
ce377af3 3220 }
276ce815
LJ
3221 }
3222
15eafc2e 3223 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
3224 qemu_mutex_lock_iothread();
3225 }
3226
e0723c45
PB
3227 /* Force the VCPU out of its inner loop to process any INIT requests
3228 * or (for userspace APIC, but it is cheap to combine the checks here)
3229 * pending TPR access reports.
3230 */
3231 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
3232 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3233 !(env->hflags & HF_SMM_MASK)) {
3234 cpu->exit_request = 1;
3235 }
3236 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3237 cpu->exit_request = 1;
3238 }
e0723c45 3239 }
05330448 3240
15eafc2e 3241 if (!kvm_pic_in_kernel()) {
db1669bc
JK
3242 /* Try to inject an interrupt if the guest can accept it */
3243 if (run->ready_for_interrupt_injection &&
259186a7 3244 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
3245 (env->eflags & IF_MASK)) {
3246 int irq;
3247
259186a7 3248 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
3249 irq = cpu_get_pic_interrupt(env);
3250 if (irq >= 0) {
3251 struct kvm_interrupt intr;
3252
3253 intr.irq = irq;
db1669bc 3254 DPRINTF("injected interrupt %d\n", irq);
1bc22652 3255 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
3256 if (ret < 0) {
3257 fprintf(stderr,
3258 "KVM: injection failed, interrupt lost (%s)\n",
3259 strerror(-ret));
3260 }
db1669bc
JK
3261 }
3262 }
05330448 3263
db1669bc
JK
3264 /* If we have an interrupt but the guest is not ready to receive an
3265 * interrupt, request an interrupt window exit. This will
3266 * cause a return to userspace as soon as the guest is ready to
3267 * receive interrupts. */
259186a7 3268 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
3269 run->request_interrupt_window = 1;
3270 } else {
3271 run->request_interrupt_window = 0;
3272 }
3273
3274 DPRINTF("setting tpr\n");
02e51483 3275 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
3276
3277 qemu_mutex_unlock_iothread();
db1669bc 3278 }
05330448
AL
3279}
3280
4c663752 3281MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 3282{
20d695a9
AF
3283 X86CPU *x86_cpu = X86_CPU(cpu);
3284 CPUX86State *env = &x86_cpu->env;
3285
fc12d72e
PB
3286 if (run->flags & KVM_RUN_X86_SMM) {
3287 env->hflags |= HF_SMM_MASK;
3288 } else {
f5c052b9 3289 env->hflags &= ~HF_SMM_MASK;
fc12d72e 3290 }
b9bec74b 3291 if (run->if_flag) {
05330448 3292 env->eflags |= IF_MASK;
b9bec74b 3293 } else {
05330448 3294 env->eflags &= ~IF_MASK;
b9bec74b 3295 }
4b8523ee
JK
3296
3297 /* We need to protect the apic state against concurrent accesses from
3298 * different threads in case the userspace irqchip is used. */
3299 if (!kvm_irqchip_in_kernel()) {
3300 qemu_mutex_lock_iothread();
3301 }
02e51483
CF
3302 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3303 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
3304 if (!kvm_irqchip_in_kernel()) {
3305 qemu_mutex_unlock_iothread();
3306 }
f794aa4a 3307 return cpu_get_mem_attrs(env);
05330448
AL
3308}
3309
20d695a9 3310int kvm_arch_process_async_events(CPUState *cs)
0af691d7 3311{
20d695a9
AF
3312 X86CPU *cpu = X86_CPU(cs);
3313 CPUX86State *env = &cpu->env;
232fc23b 3314
259186a7 3315 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
3316 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3317 assert(env->mcg_cap);
3318
259186a7 3319 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 3320
dd1750d7 3321 kvm_cpu_synchronize_state(cs);
ab443475
JK
3322
3323 if (env->exception_injected == EXCP08_DBLE) {
3324 /* this means triple fault */
cf83f140 3325 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 3326 cs->exit_request = 1;
ab443475
JK
3327 return 0;
3328 }
3329 env->exception_injected = EXCP12_MCHK;
3330 env->has_error_code = 0;
3331
259186a7 3332 cs->halted = 0;
ab443475
JK
3333 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3334 env->mp_state = KVM_MP_STATE_RUNNABLE;
3335 }
3336 }
3337
fc12d72e
PB
3338 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3339 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
3340 kvm_cpu_synchronize_state(cs);
3341 do_cpu_init(cpu);
3342 }
3343
db1669bc
JK
3344 if (kvm_irqchip_in_kernel()) {
3345 return 0;
3346 }
3347
259186a7
AF
3348 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3349 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 3350 apic_poll_irq(cpu->apic_state);
5d62c43a 3351 }
259186a7 3352 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 3353 (env->eflags & IF_MASK)) ||
259186a7
AF
3354 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3355 cs->halted = 0;
6792a57b 3356 }
259186a7 3357 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 3358 kvm_cpu_synchronize_state(cs);
232fc23b 3359 do_cpu_sipi(cpu);
0af691d7 3360 }
259186a7
AF
3361 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3362 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 3363 kvm_cpu_synchronize_state(cs);
02e51483 3364 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
3365 env->tpr_access_type);
3366 }
0af691d7 3367
259186a7 3368 return cs->halted;
0af691d7
MT
3369}
3370
839b5630 3371static int kvm_handle_halt(X86CPU *cpu)
05330448 3372{
259186a7 3373 CPUState *cs = CPU(cpu);
839b5630
AF
3374 CPUX86State *env = &cpu->env;
3375
259186a7 3376 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 3377 (env->eflags & IF_MASK)) &&
259186a7
AF
3378 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3379 cs->halted = 1;
bb4ea393 3380 return EXCP_HLT;
05330448
AL
3381 }
3382
bb4ea393 3383 return 0;
05330448
AL
3384}
3385
f7575c96 3386static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 3387{
f7575c96
AF
3388 CPUState *cs = CPU(cpu);
3389 struct kvm_run *run = cs->kvm_run;
d362e757 3390
02e51483 3391 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
3392 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3393 : TPR_ACCESS_READ);
3394 return 1;
3395}
3396
f17ec444 3397int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 3398{
38972938 3399 static const uint8_t int3 = 0xcc;
64bf3f4e 3400
f17ec444
AF
3401 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3402 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 3403 return -EINVAL;
b9bec74b 3404 }
e22a25c9
AL
3405 return 0;
3406}
3407
f17ec444 3408int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
3409{
3410 uint8_t int3;
3411
f17ec444
AF
3412 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3413 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 3414 return -EINVAL;
b9bec74b 3415 }
e22a25c9
AL
3416 return 0;
3417}
3418
3419static struct {
3420 target_ulong addr;
3421 int len;
3422 int type;
3423} hw_breakpoint[4];
3424
3425static int nb_hw_breakpoint;
3426
3427static int find_hw_breakpoint(target_ulong addr, int len, int type)
3428{
3429 int n;
3430
b9bec74b 3431 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 3432 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 3433 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 3434 return n;
b9bec74b
JK
3435 }
3436 }
e22a25c9
AL
3437 return -1;
3438}
3439
3440int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3441 target_ulong len, int type)
3442{
3443 switch (type) {
3444 case GDB_BREAKPOINT_HW:
3445 len = 1;
3446 break;
3447 case GDB_WATCHPOINT_WRITE:
3448 case GDB_WATCHPOINT_ACCESS:
3449 switch (len) {
3450 case 1:
3451 break;
3452 case 2:
3453 case 4:
3454 case 8:
b9bec74b 3455 if (addr & (len - 1)) {
e22a25c9 3456 return -EINVAL;
b9bec74b 3457 }
e22a25c9
AL
3458 break;
3459 default:
3460 return -EINVAL;
3461 }
3462 break;
3463 default:
3464 return -ENOSYS;
3465 }
3466
b9bec74b 3467 if (nb_hw_breakpoint == 4) {
e22a25c9 3468 return -ENOBUFS;
b9bec74b
JK
3469 }
3470 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 3471 return -EEXIST;
b9bec74b 3472 }
e22a25c9
AL
3473 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3474 hw_breakpoint[nb_hw_breakpoint].len = len;
3475 hw_breakpoint[nb_hw_breakpoint].type = type;
3476 nb_hw_breakpoint++;
3477
3478 return 0;
3479}
3480
3481int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3482 target_ulong len, int type)
3483{
3484 int n;
3485
3486 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 3487 if (n < 0) {
e22a25c9 3488 return -ENOENT;
b9bec74b 3489 }
e22a25c9
AL
3490 nb_hw_breakpoint--;
3491 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3492
3493 return 0;
3494}
3495
3496void kvm_arch_remove_all_hw_breakpoints(void)
3497{
3498 nb_hw_breakpoint = 0;
3499}
3500
3501static CPUWatchpoint hw_watchpoint;
3502
a60f24b5 3503static int kvm_handle_debug(X86CPU *cpu,
48405526 3504 struct kvm_debug_exit_arch *arch_info)
e22a25c9 3505{
ed2803da 3506 CPUState *cs = CPU(cpu);
a60f24b5 3507 CPUX86State *env = &cpu->env;
f2574737 3508 int ret = 0;
e22a25c9
AL
3509 int n;
3510
3511 if (arch_info->exception == 1) {
3512 if (arch_info->dr6 & (1 << 14)) {
ed2803da 3513 if (cs->singlestep_enabled) {
f2574737 3514 ret = EXCP_DEBUG;
b9bec74b 3515 }
e22a25c9 3516 } else {
b9bec74b
JK
3517 for (n = 0; n < 4; n++) {
3518 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
3519 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3520 case 0x0:
f2574737 3521 ret = EXCP_DEBUG;
e22a25c9
AL
3522 break;
3523 case 0x1:
f2574737 3524 ret = EXCP_DEBUG;
ff4700b0 3525 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
3526 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3527 hw_watchpoint.flags = BP_MEM_WRITE;
3528 break;
3529 case 0x3:
f2574737 3530 ret = EXCP_DEBUG;
ff4700b0 3531 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
3532 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3533 hw_watchpoint.flags = BP_MEM_ACCESS;
3534 break;
3535 }
b9bec74b
JK
3536 }
3537 }
e22a25c9 3538 }
ff4700b0 3539 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 3540 ret = EXCP_DEBUG;
b9bec74b 3541 }
f2574737 3542 if (ret == 0) {
ff4700b0 3543 cpu_synchronize_state(cs);
48405526 3544 assert(env->exception_injected == -1);
b0b1d690 3545
f2574737 3546 /* pass to guest */
48405526
BS
3547 env->exception_injected = arch_info->exception;
3548 env->has_error_code = 0;
b0b1d690 3549 }
e22a25c9 3550
f2574737 3551 return ret;
e22a25c9
AL
3552}
3553
20d695a9 3554void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
3555{
3556 const uint8_t type_code[] = {
3557 [GDB_BREAKPOINT_HW] = 0x0,
3558 [GDB_WATCHPOINT_WRITE] = 0x1,
3559 [GDB_WATCHPOINT_ACCESS] = 0x3
3560 };
3561 const uint8_t len_code[] = {
3562 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3563 };
3564 int n;
3565
a60f24b5 3566 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 3567 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 3568 }
e22a25c9
AL
3569 if (nb_hw_breakpoint > 0) {
3570 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3571 dbg->arch.debugreg[7] = 0x0600;
3572 for (n = 0; n < nb_hw_breakpoint; n++) {
3573 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3574 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3575 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 3576 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
3577 }
3578 }
3579}
4513d923 3580
2a4dac83
JK
3581static bool host_supports_vmx(void)
3582{
3583 uint32_t ecx, unused;
3584
3585 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3586 return ecx & CPUID_EXT_VMX;
3587}
3588
3589#define VMX_INVALID_GUEST_STATE 0x80000021
3590
20d695a9 3591int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 3592{
20d695a9 3593 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
3594 uint64_t code;
3595 int ret;
3596
3597 switch (run->exit_reason) {
3598 case KVM_EXIT_HLT:
3599 DPRINTF("handle_hlt\n");
4b8523ee 3600 qemu_mutex_lock_iothread();
839b5630 3601 ret = kvm_handle_halt(cpu);
4b8523ee 3602 qemu_mutex_unlock_iothread();
2a4dac83
JK
3603 break;
3604 case KVM_EXIT_SET_TPR:
3605 ret = 0;
3606 break;
d362e757 3607 case KVM_EXIT_TPR_ACCESS:
4b8523ee 3608 qemu_mutex_lock_iothread();
f7575c96 3609 ret = kvm_handle_tpr_access(cpu);
4b8523ee 3610 qemu_mutex_unlock_iothread();
d362e757 3611 break;
2a4dac83
JK
3612 case KVM_EXIT_FAIL_ENTRY:
3613 code = run->fail_entry.hardware_entry_failure_reason;
3614 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3615 code);
3616 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3617 fprintf(stderr,
12619721 3618 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
3619 "unrestricted mode\n"
3620 "support, the failure can be most likely due to the guest "
3621 "entering an invalid\n"
3622 "state for Intel VT. For example, the guest maybe running "
3623 "in big real mode\n"
3624 "which is not supported on less recent Intel processors."
3625 "\n\n");
3626 }
3627 ret = -1;
3628 break;
3629 case KVM_EXIT_EXCEPTION:
3630 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3631 run->ex.exception, run->ex.error_code);
3632 ret = -1;
3633 break;
f2574737
JK
3634 case KVM_EXIT_DEBUG:
3635 DPRINTF("kvm_exit_debug\n");
4b8523ee 3636 qemu_mutex_lock_iothread();
a60f24b5 3637 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 3638 qemu_mutex_unlock_iothread();
f2574737 3639 break;
50efe82c
AS
3640 case KVM_EXIT_HYPERV:
3641 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3642 break;
15eafc2e
PB
3643 case KVM_EXIT_IOAPIC_EOI:
3644 ioapic_eoi_broadcast(run->eoi.vector);
3645 ret = 0;
3646 break;
2a4dac83
JK
3647 default:
3648 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3649 ret = -1;
3650 break;
3651 }
3652
3653 return ret;
3654}
3655
20d695a9 3656bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 3657{
20d695a9
AF
3658 X86CPU *cpu = X86_CPU(cs);
3659 CPUX86State *env = &cpu->env;
3660
dd1750d7 3661 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
3662 return !(env->cr[0] & CR0_PE_MASK) ||
3663 ((env->segs[R_CS].selector & 3) != 3);
4513d923 3664}
84b058d7
JK
3665
3666void kvm_arch_init_irq_routing(KVMState *s)
3667{
3668 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3669 /* If kernel can't do irq routing, interrupt source
3670 * override 0->2 cannot be set up as required by HPET.
3671 * So we have to disable it.
3672 */
3673 no_hpet = 1;
3674 }
cc7e0ddf 3675 /* We know at this point that we're using the in-kernel
614e41bc 3676 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 3677 * we can use msi via irqfd and GSI routing.
cc7e0ddf 3678 */
614e41bc 3679 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 3680 kvm_gsi_routing_allowed = true;
15eafc2e
PB
3681
3682 if (kvm_irqchip_is_split()) {
3683 int i;
3684
3685 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3686 MSI routes for signaling interrupts to the local apics. */
3687 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 3688 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
3689 error_report("Could not enable split IRQ mode.");
3690 exit(1);
3691 }
3692 }
3693 }
3694}
3695
3696int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3697{
3698 int ret;
3699 if (machine_kernel_irqchip_split(ms)) {
3700 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3701 if (ret) {
df3c286c 3702 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
3703 strerror(-ret));
3704 exit(1);
3705 } else {
3706 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3707 kvm_split_irqchip = true;
3708 return 1;
3709 }
3710 } else {
3711 return 0;
3712 }
84b058d7 3713}
b139bd30
JK
3714
3715/* Classic KVM device assignment interface. Will remain x86 only. */
3716int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3717 uint32_t flags, uint32_t *dev_id)
3718{
3719 struct kvm_assigned_pci_dev dev_data = {
3720 .segnr = dev_addr->domain,
3721 .busnr = dev_addr->bus,
3722 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3723 .flags = flags,
3724 };
3725 int ret;
3726
3727 dev_data.assigned_dev_id =
3728 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3729
3730 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3731 if (ret < 0) {
3732 return ret;
3733 }
3734
3735 *dev_id = dev_data.assigned_dev_id;
3736
3737 return 0;
3738}
3739
3740int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3741{
3742 struct kvm_assigned_pci_dev dev_data = {
3743 .assigned_dev_id = dev_id,
3744 };
3745
3746 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3747}
3748
3749static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3750 uint32_t irq_type, uint32_t guest_irq)
3751{
3752 struct kvm_assigned_irq assigned_irq = {
3753 .assigned_dev_id = dev_id,
3754 .guest_irq = guest_irq,
3755 .flags = irq_type,
3756 };
3757
3758 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3759 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3760 } else {
3761 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3762 }
3763}
3764
3765int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3766 uint32_t guest_irq)
3767{
3768 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3769 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3770
3771 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3772}
3773
3774int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3775{
3776 struct kvm_assigned_pci_dev dev_data = {
3777 .assigned_dev_id = dev_id,
3778 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3779 };
3780
3781 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3782}
3783
3784static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3785 uint32_t type)
3786{
3787 struct kvm_assigned_irq assigned_irq = {
3788 .assigned_dev_id = dev_id,
3789 .flags = type,
3790 };
3791
3792 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3793}
3794
3795int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3796{
3797 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3798 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3799}
3800
3801int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3802{
3803 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3804 KVM_DEV_IRQ_GUEST_MSI, virq);
3805}
3806
3807int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3808{
3809 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3810 KVM_DEV_IRQ_HOST_MSI);
3811}
3812
3813bool kvm_device_msix_supported(KVMState *s)
3814{
3815 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3816 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3817 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3818}
3819
3820int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3821 uint32_t nr_vectors)
3822{
3823 struct kvm_assigned_msix_nr msix_nr = {
3824 .assigned_dev_id = dev_id,
3825 .entry_nr = nr_vectors,
3826 };
3827
3828 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3829}
3830
3831int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3832 int virq)
3833{
3834 struct kvm_assigned_msix_entry msix_entry = {
3835 .assigned_dev_id = dev_id,
3836 .gsi = virq,
3837 .entry = vector,
3838 };
3839
3840 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3841}
3842
3843int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3844{
3845 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3846 KVM_DEV_IRQ_GUEST_MSIX, 0);
3847}
3848
3849int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3850{
3851 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3852 KVM_DEV_IRQ_HOST_MSIX);
3853}
9e03a040
FB
3854
3855int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 3856 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 3857{
8b5ed7df
PX
3858 X86IOMMUState *iommu = x86_iommu_get_default();
3859
3860 if (iommu) {
3861 int ret;
3862 MSIMessage src, dst;
3863 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3864
0ea1472d
JK
3865 if (!class->int_remap) {
3866 return 0;
3867 }
3868
8b5ed7df
PX
3869 src.address = route->u.msi.address_hi;
3870 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3871 src.address |= route->u.msi.address_lo;
3872 src.data = route->u.msi.data;
3873
3874 ret = class->int_remap(iommu, &src, &dst, dev ? \
3875 pci_requester_id(dev) : \
3876 X86_IOMMU_SID_INVALID);
3877 if (ret) {
3878 trace_kvm_x86_fixup_msi_error(route->gsi);
3879 return 1;
3880 }
3881
3882 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3883 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3884 route->u.msi.data = dst.data;
3885 }
3886
9e03a040
FB
3887 return 0;
3888}
1850b6b7 3889
38d87493
PX
3890typedef struct MSIRouteEntry MSIRouteEntry;
3891
3892struct MSIRouteEntry {
3893 PCIDevice *dev; /* Device pointer */
3894 int vector; /* MSI/MSIX vector index */
3895 int virq; /* Virtual IRQ index */
3896 QLIST_ENTRY(MSIRouteEntry) list;
3897};
3898
3899/* List of used GSI routes */
3900static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3901 QLIST_HEAD_INITIALIZER(msi_route_list);
3902
e1d4fb2d
PX
3903static void kvm_update_msi_routes_all(void *private, bool global,
3904 uint32_t index, uint32_t mask)
3905{
a56de056 3906 int cnt = 0, vector;
e1d4fb2d
PX
3907 MSIRouteEntry *entry;
3908 MSIMessage msg;
fd563564
PX
3909 PCIDevice *dev;
3910
e1d4fb2d
PX
3911 /* TODO: explicit route update */
3912 QLIST_FOREACH(entry, &msi_route_list, list) {
3913 cnt++;
a56de056 3914 vector = entry->vector;
fd563564 3915 dev = entry->dev;
a56de056
PX
3916 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
3917 msg = msix_get_message(dev, vector);
3918 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
3919 msg = msi_get_message(dev, vector);
3920 } else {
3921 /*
3922 * Either MSI/MSIX is disabled for the device, or the
3923 * specific message was masked out. Skip this one.
3924 */
fd563564
PX
3925 continue;
3926 }
fd563564 3927 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 3928 }
3f1fea0f 3929 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
3930 trace_kvm_x86_update_msi_routes(cnt);
3931}
3932
38d87493
PX
3933int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3934 int vector, PCIDevice *dev)
3935{
e1d4fb2d 3936 static bool notify_list_inited = false;
38d87493
PX
3937 MSIRouteEntry *entry;
3938
3939 if (!dev) {
3940 /* These are (possibly) IOAPIC routes only used for split
3941 * kernel irqchip mode, while what we are housekeeping are
3942 * PCI devices only. */
3943 return 0;
3944 }
3945
3946 entry = g_new0(MSIRouteEntry, 1);
3947 entry->dev = dev;
3948 entry->vector = vector;
3949 entry->virq = route->gsi;
3950 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3951
3952 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
3953
3954 if (!notify_list_inited) {
3955 /* For the first time we do add route, add ourselves into
3956 * IOMMU's IEC notify list if needed. */
3957 X86IOMMUState *iommu = x86_iommu_get_default();
3958 if (iommu) {
3959 x86_iommu_iec_register_notifier(iommu,
3960 kvm_update_msi_routes_all,
3961 NULL);
3962 }
3963 notify_list_inited = true;
3964 }
38d87493
PX
3965 return 0;
3966}
3967
3968int kvm_arch_release_virq_post(int virq)
3969{
3970 MSIRouteEntry *entry, *next;
3971 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3972 if (entry->virq == virq) {
3973 trace_kvm_x86_remove_msi_route(virq);
3974 QLIST_REMOVE(entry, list);
01960e6d 3975 g_free(entry);
38d87493
PX
3976 break;
3977 }
3978 }
9e03a040
FB
3979 return 0;
3980}
1850b6b7
EA
3981
3982int kvm_arch_msi_data_to_gsi(uint32_t data)
3983{
3984 abort();
3985}