]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm.c
target/i386: work around KVM_GET_MSRS bug for secondary execution controls
[mirror_qemu.git] / target / i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
da34e65c 16#include "qapi/error.h"
05330448 17#include <sys/ioctl.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
1814eab6 21#include "standard-headers/asm-x86/kvm_para.h"
05330448 22
33c11879 23#include "cpu.h"
9c17d615 24#include "sysemu/sysemu.h"
b3946626 25#include "sysemu/hw_accel.h"
6410848b 26#include "sysemu/kvm_int.h"
71e8a915 27#include "sysemu/reset.h"
54d31236 28#include "sysemu/runstate.h"
1d31f66b 29#include "kvm_i386.h"
50efe82c 30#include "hyperv.h"
5e953812 31#include "hyperv-proto.h"
50efe82c 32
022c62cb 33#include "exec/gdbstub.h"
1de7afc9 34#include "qemu/host-utils.h"
db725815 35#include "qemu/main-loop.h"
1de7afc9 36#include "qemu/config-file.h"
1c4a55db 37#include "qemu/error-report.h"
0d09e41a
PB
38#include "hw/i386/pc.h"
39#include "hw/i386/apic.h"
e0723c45
PB
40#include "hw/i386/apic_internal.h"
41#include "hw/i386/apic-msidef.h"
8b5ed7df 42#include "hw/i386/intel_iommu.h"
e1d4fb2d 43#include "hw/i386/x86-iommu.h"
d6d059ca 44#include "hw/i386/e820_memory_layout.h"
50efe82c 45
a2cb15b0 46#include "hw/pci/pci.h"
15eafc2e 47#include "hw/pci/msi.h"
fd563564 48#include "hw/pci/msix.h"
795c40b8 49#include "migration/blocker.h"
4c663752 50#include "exec/memattrs.h"
8b5ed7df 51#include "trace.h"
05330448
AL
52
53//#define DEBUG_KVM
54
55#ifdef DEBUG_KVM
8c0d577e 56#define DPRINTF(fmt, ...) \
05330448
AL
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58#else
8c0d577e 59#define DPRINTF(fmt, ...) \
05330448
AL
60 do { } while (0)
61#endif
62
1a03675d
GC
63#define MSR_KVM_WALL_CLOCK 0x11
64#define MSR_KVM_SYSTEM_TIME 0x12
65
d1138251
EH
66/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
67 * 255 kvm_msr_entry structs */
68#define MSR_BUF_SIZE 4096
d71b62a1 69
94a8d39a
JK
70const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
71 KVM_CAP_INFO(SET_TSS_ADDR),
72 KVM_CAP_INFO(EXT_CPUID),
73 KVM_CAP_INFO(MP_STATE),
74 KVM_CAP_LAST_INFO
75};
25d2e361 76
c3a3a7d3
JK
77static bool has_msr_star;
78static bool has_msr_hsave_pa;
c9b8f6b6 79static bool has_msr_tsc_aux;
f28558d3 80static bool has_msr_tsc_adjust;
aa82ba54 81static bool has_msr_tsc_deadline;
df67696e 82static bool has_msr_feature_control;
21e87c46 83static bool has_msr_misc_enable;
fc12d72e 84static bool has_msr_smbase;
79e9ebeb 85static bool has_msr_bndcfgs;
25d2e361 86static int lm_capable_kernel;
7bc3d711 87static bool has_msr_hv_hypercall;
f2a53c9e 88static bool has_msr_hv_crash;
744b8a94 89static bool has_msr_hv_reset;
8c145d7c 90static bool has_msr_hv_vpindex;
e9688fab 91static bool hv_vpindex_settable;
46eb8f98 92static bool has_msr_hv_runtime;
866eea9a 93static bool has_msr_hv_synic;
ff99aa64 94static bool has_msr_hv_stimer;
d72bc7f6 95static bool has_msr_hv_frequencies;
ba6a4fd9 96static bool has_msr_hv_reenlightenment;
18cd2c17 97static bool has_msr_xss;
a33a2cfe 98static bool has_msr_spec_ctrl;
cfeea0c0 99static bool has_msr_virt_ssbd;
e13713db 100static bool has_msr_smi_count;
aec5e9c3 101static bool has_msr_arch_capabs;
597360c0 102static bool has_msr_core_capabs;
20a78b02 103static bool has_msr_vmx_vmfunc;
b827df58 104
0b368a10
JD
105static uint32_t has_architectural_pmu_version;
106static uint32_t num_architectural_pmu_gp_counters;
107static uint32_t num_architectural_pmu_fixed_counters;
0d894367 108
28143b40
TH
109static int has_xsave;
110static int has_xcrs;
111static int has_pit_state2;
fd13f23b 112static int has_exception_payload;
28143b40 113
87f8b626
AR
114static bool has_msr_mcg_ext_ctl;
115
494e95e9 116static struct kvm_cpuid2 *cpuid_cache;
f57bceb6 117static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 118
28143b40
TH
119int kvm_has_pit_state2(void)
120{
121 return has_pit_state2;
122}
123
355023f2
PB
124bool kvm_has_smm(void)
125{
126 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
127}
128
6053a86f
MT
129bool kvm_has_adjust_clock_stable(void)
130{
131 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
132
133 return (ret == KVM_CLOCK_TSC_STABLE);
134}
135
79a197ab
LA
136bool kvm_has_exception_payload(void)
137{
138 return has_exception_payload;
139}
140
1d31f66b
PM
141bool kvm_allows_irq0_override(void)
142{
143 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
144}
145
fb506e70
RK
146static bool kvm_x2apic_api_set_flags(uint64_t flags)
147{
148 KVMState *s = KVM_STATE(current_machine->accelerator);
149
150 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
151}
152
e391c009 153#define MEMORIZE(fn, _result) \
2a138ec3 154 ({ \
2a138ec3
RK
155 static bool _memorized; \
156 \
157 if (_memorized) { \
158 return _result; \
159 } \
160 _memorized = true; \
161 _result = fn; \
162 })
163
e391c009
IM
164static bool has_x2apic_api;
165
166bool kvm_has_x2apic_api(void)
167{
168 return has_x2apic_api;
169}
170
fb506e70
RK
171bool kvm_enable_x2apic(void)
172{
2a138ec3
RK
173 return MEMORIZE(
174 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
175 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
176 has_x2apic_api);
fb506e70
RK
177}
178
e9688fab
RK
179bool kvm_hv_vpindex_settable(void)
180{
181 return hv_vpindex_settable;
182}
183
0fd7e098
LL
184static int kvm_get_tsc(CPUState *cs)
185{
186 X86CPU *cpu = X86_CPU(cs);
187 CPUX86State *env = &cpu->env;
188 struct {
189 struct kvm_msrs info;
190 struct kvm_msr_entry entries[1];
191 } msr_data;
192 int ret;
193
194 if (env->tsc_valid) {
195 return 0;
196 }
197
1f670a95 198 memset(&msr_data, 0, sizeof(msr_data));
0fd7e098
LL
199 msr_data.info.nmsrs = 1;
200 msr_data.entries[0].index = MSR_IA32_TSC;
201 env->tsc_valid = !runstate_is_running();
202
203 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
204 if (ret < 0) {
205 return ret;
206 }
207
48e1a45c 208 assert(ret == 1);
0fd7e098
LL
209 env->tsc = msr_data.entries[0].data;
210 return 0;
211}
212
14e6fe12 213static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 214{
0fd7e098
LL
215 kvm_get_tsc(cpu);
216}
217
218void kvm_synchronize_all_tsc(void)
219{
220 CPUState *cpu;
221
222 if (kvm_enabled()) {
223 CPU_FOREACH(cpu) {
14e6fe12 224 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
225 }
226 }
227}
228
b827df58
AK
229static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
230{
231 struct kvm_cpuid2 *cpuid;
232 int r, size;
233
234 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 235 cpuid = g_malloc0(size);
b827df58
AK
236 cpuid->nent = max;
237 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
238 if (r == 0 && cpuid->nent >= max) {
239 r = -E2BIG;
240 }
b827df58
AK
241 if (r < 0) {
242 if (r == -E2BIG) {
7267c094 243 g_free(cpuid);
b827df58
AK
244 return NULL;
245 } else {
246 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
247 strerror(-r));
248 exit(1);
249 }
250 }
251 return cpuid;
252}
253
dd87f8a6
EH
254/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
255 * for all entries.
256 */
257static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
258{
259 struct kvm_cpuid2 *cpuid;
260 int max = 1;
494e95e9
CP
261
262 if (cpuid_cache != NULL) {
263 return cpuid_cache;
264 }
dd87f8a6
EH
265 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
266 max *= 2;
267 }
494e95e9 268 cpuid_cache = cpuid;
dd87f8a6
EH
269 return cpuid;
270}
271
a443bc34 272static const struct kvm_para_features {
0c31b744
GC
273 int cap;
274 int feature;
275} para_features[] = {
276 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
277 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
278 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 279 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
280};
281
ba9bc59e 282static int get_para_features(KVMState *s)
0c31b744
GC
283{
284 int i, features = 0;
285
8e03c100 286 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 287 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
288 features |= (1 << para_features[i].feature);
289 }
290 }
291
292 return features;
293}
0c31b744 294
40e80ee4
EH
295static bool host_tsx_blacklisted(void)
296{
297 int family, model, stepping;\
298 char vendor[CPUID_VENDOR_SZ + 1];
299
300 host_vendor_fms(vendor, &family, &model, &stepping);
301
302 /* Check if we are running on a Haswell host known to have broken TSX */
303 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
304 (family == 6) &&
305 ((model == 63 && stepping < 4) ||
306 model == 60 || model == 69 || model == 70);
307}
0c31b744 308
829ae2f9
EH
309/* Returns the value for a specific register on the cpuid entry
310 */
311static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
312{
313 uint32_t ret = 0;
314 switch (reg) {
315 case R_EAX:
316 ret = entry->eax;
317 break;
318 case R_EBX:
319 ret = entry->ebx;
320 break;
321 case R_ECX:
322 ret = entry->ecx;
323 break;
324 case R_EDX:
325 ret = entry->edx;
326 break;
327 }
328 return ret;
329}
330
4fb73f1d
EH
331/* Find matching entry for function/index on kvm_cpuid2 struct
332 */
333static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334 uint32_t function,
335 uint32_t index)
336{
337 int i;
338 for (i = 0; i < cpuid->nent; ++i) {
339 if (cpuid->entries[i].function == function &&
340 cpuid->entries[i].index == index) {
341 return &cpuid->entries[i];
342 }
343 }
344 /* not found: */
345 return NULL;
346}
347
ba9bc59e 348uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 349 uint32_t index, int reg)
b827df58
AK
350{
351 struct kvm_cpuid2 *cpuid;
b827df58
AK
352 uint32_t ret = 0;
353 uint32_t cpuid_1_edx;
8c723b79 354 bool found = false;
b827df58 355
dd87f8a6 356 cpuid = get_supported_cpuid(s);
b827df58 357
4fb73f1d
EH
358 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
359 if (entry) {
360 found = true;
361 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
362 }
363
7b46e5ce
EH
364 /* Fixups for the data returned by KVM, below */
365
c2acb022
EH
366 if (function == 1 && reg == R_EDX) {
367 /* KVM before 2.6.30 misreports the following features */
368 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
369 } else if (function == 1 && reg == R_ECX) {
370 /* We can set the hypervisor flag, even if KVM does not return it on
371 * GET_SUPPORTED_CPUID
372 */
373 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
374 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
375 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
376 * and the irqchip is in the kernel.
377 */
378 if (kvm_irqchip_in_kernel() &&
379 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
380 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
381 }
41e5e76d
EH
382
383 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
384 * without the in-kernel irqchip
385 */
386 if (!kvm_irqchip_in_kernel()) {
387 ret &= ~CPUID_EXT_X2APIC;
b827df58 388 }
2266d443
MT
389
390 if (enable_cpu_pm) {
391 int disable_exits = kvm_check_extension(s,
392 KVM_CAP_X86_DISABLE_EXITS);
393
394 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
395 ret |= CPUID_EXT_MONITOR;
396 }
397 }
28b8e4d0
JK
398 } else if (function == 6 && reg == R_EAX) {
399 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4
EH
400 } else if (function == 7 && index == 0 && reg == R_EBX) {
401 if (host_tsx_blacklisted()) {
402 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
403 }
485b1d25
EH
404 } else if (function == 7 && index == 0 && reg == R_EDX) {
405 /*
406 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
407 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
408 * returned by KVM_GET_MSR_INDEX_LIST.
409 */
410 if (!has_msr_arch_capabs) {
411 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
412 }
f98bbd83
BM
413 } else if (function == 0x80000001 && reg == R_ECX) {
414 /*
415 * It's safe to enable TOPOEXT even if it's not returned by
416 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
417 * us to keep CPU models including TOPOEXT runnable on older kernels.
418 */
419 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
420 } else if (function == 0x80000001 && reg == R_EDX) {
421 /* On Intel, kvm returns cpuid according to the Intel spec,
422 * so add missing bits according to the AMD spec:
423 */
424 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
425 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
426 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
427 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
428 * be enabled without the in-kernel irqchip
429 */
430 if (!kvm_irqchip_in_kernel()) {
431 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
432 }
be777326 433 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 434 ret |= 1U << KVM_HINTS_REALTIME;
be777326 435 found = 1;
b827df58
AK
436 }
437
0c31b744 438 /* fallback for older kernels */
8c723b79 439 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 440 ret = get_para_features(s);
b9bec74b 441 }
0c31b744
GC
442
443 return ret;
bb0300dc 444}
bb0300dc 445
ede146c2 446uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
447{
448 struct {
449 struct kvm_msrs info;
450 struct kvm_msr_entry entries[1];
451 } msr_data;
20a78b02
PB
452 uint64_t value;
453 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
454
455 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
456 return 0;
457 }
458
459 /* Check if requested MSR is supported feature MSR */
460 int i;
461 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
462 if (kvm_feature_msrs->indices[i] == index) {
463 break;
464 }
465 if (i == kvm_feature_msrs->nmsrs) {
466 return 0; /* if the feature MSR is not supported, simply return 0 */
467 }
468
469 msr_data.info.nmsrs = 1;
470 msr_data.entries[0].index = index;
471
472 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
473 if (ret != 1) {
474 error_report("KVM get MSR (index=0x%x) feature failed, %s",
475 index, strerror(-ret));
476 exit(1);
477 }
478
20a78b02
PB
479 value = msr_data.entries[0].data;
480 switch (index) {
481 case MSR_IA32_VMX_PROCBASED_CTLS2:
048c9516
PB
482 /* KVM forgot to add these bits for some time, do this ourselves. */
483 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & CPUID_XSAVE_XSAVES) {
484 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
485 }
486 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & CPUID_EXT_RDRAND) {
487 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
488 }
489 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_INVPCID) {
490 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
491 }
492 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_RDSEED) {
493 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
494 }
495 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
496 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
497 }
498 /* fall through */
20a78b02
PB
499 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
500 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
501 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
502 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
503 /*
504 * Return true for bits that can be one, but do not have to be one.
505 * The SDM tells us which bits could have a "must be one" setting,
506 * so we can do the opposite transformation in make_vmx_msr_value.
507 */
508 must_be_one = (uint32_t)value;
509 can_be_one = (uint32_t)(value >> 32);
510 return can_be_one & ~must_be_one;
511
512 default:
513 return value;
514 }
f57bceb6
RH
515}
516
517
3c85e74f
HY
518typedef struct HWPoisonPage {
519 ram_addr_t ram_addr;
520 QLIST_ENTRY(HWPoisonPage) list;
521} HWPoisonPage;
522
523static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
524 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
525
526static void kvm_unpoison_all(void *param)
527{
528 HWPoisonPage *page, *next_page;
529
530 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
531 QLIST_REMOVE(page, list);
532 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 533 g_free(page);
3c85e74f
HY
534 }
535}
536
3c85e74f
HY
537static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
538{
539 HWPoisonPage *page;
540
541 QLIST_FOREACH(page, &hwpoison_page_list, list) {
542 if (page->ram_addr == ram_addr) {
543 return;
544 }
545 }
ab3ad07f 546 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
547 page->ram_addr = ram_addr;
548 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
549}
550
e7701825
MT
551static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
552 int *max_banks)
553{
554 int r;
555
14a09518 556 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
557 if (r > 0) {
558 *max_banks = r;
559 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
560 }
561 return -ENOSYS;
562}
563
bee615d4 564static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 565{
87f8b626 566 CPUState *cs = CPU(cpu);
bee615d4 567 CPUX86State *env = &cpu->env;
c34d440a
JK
568 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
569 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
570 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 571 int flags = 0;
e7701825 572
c34d440a
JK
573 if (code == BUS_MCEERR_AR) {
574 status |= MCI_STATUS_AR | 0x134;
575 mcg_status |= MCG_STATUS_EIPV;
576 } else {
577 status |= 0xc0;
578 mcg_status |= MCG_STATUS_RIPV;
419fb20a 579 }
87f8b626
AR
580
581 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
582 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
583 * guest kernel back into env->mcg_ext_ctl.
584 */
585 cpu_synchronize_state(cs);
586 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
587 mcg_status |= MCG_STATUS_LMCE;
588 flags = 0;
589 }
590
8c5cf3b6 591 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 592 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 593}
419fb20a
JK
594
595static void hardware_memory_error(void)
596{
597 fprintf(stderr, "Hardware memory error!\n");
598 exit(1);
599}
600
2ae41db2 601void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 602{
20d695a9
AF
603 X86CPU *cpu = X86_CPU(c);
604 CPUX86State *env = &cpu->env;
419fb20a 605 ram_addr_t ram_addr;
a8170e5e 606 hwaddr paddr;
419fb20a 607
4d39892c
PB
608 /* If we get an action required MCE, it has been injected by KVM
609 * while the VM was running. An action optional MCE instead should
610 * be coming from the main thread, which qemu_init_sigbus identifies
611 * as the "early kill" thread.
612 */
a16fc07e 613 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 614
20e0ff59 615 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 616 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
617 if (ram_addr != RAM_ADDR_INVALID &&
618 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
619 kvm_hwpoison_page_add(ram_addr);
620 kvm_mce_inject(cpu, paddr, code);
2ae41db2 621 return;
419fb20a 622 }
20e0ff59
PB
623
624 fprintf(stderr, "Hardware memory error for memory used by "
625 "QEMU itself instead of guest system!\n");
419fb20a 626 }
20e0ff59
PB
627
628 if (code == BUS_MCEERR_AR) {
629 hardware_memory_error();
630 }
631
632 /* Hope we are lucky for AO MCE */
419fb20a
JK
633}
634
fd13f23b
LA
635static void kvm_reset_exception(CPUX86State *env)
636{
637 env->exception_nr = -1;
638 env->exception_pending = 0;
639 env->exception_injected = 0;
640 env->exception_has_payload = false;
641 env->exception_payload = 0;
642}
643
644static void kvm_queue_exception(CPUX86State *env,
645 int32_t exception_nr,
646 uint8_t exception_has_payload,
647 uint64_t exception_payload)
648{
649 assert(env->exception_nr == -1);
650 assert(!env->exception_pending);
651 assert(!env->exception_injected);
652 assert(!env->exception_has_payload);
653
654 env->exception_nr = exception_nr;
655
656 if (has_exception_payload) {
657 env->exception_pending = 1;
658
659 env->exception_has_payload = exception_has_payload;
660 env->exception_payload = exception_payload;
661 } else {
662 env->exception_injected = 1;
663
664 if (exception_nr == EXCP01_DB) {
665 assert(exception_has_payload);
666 env->dr[6] = exception_payload;
667 } else if (exception_nr == EXCP0E_PAGE) {
668 assert(exception_has_payload);
669 env->cr[2] = exception_payload;
670 } else {
671 assert(!exception_has_payload);
672 }
673 }
674}
675
1bc22652 676static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 677{
1bc22652
AF
678 CPUX86State *env = &cpu->env;
679
fd13f23b 680 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
681 unsigned int bank, bank_num = env->mcg_cap & 0xff;
682 struct kvm_x86_mce mce;
683
fd13f23b 684 kvm_reset_exception(env);
ab443475
JK
685
686 /*
687 * There must be at least one bank in use if an MCE is pending.
688 * Find it and use its values for the event injection.
689 */
690 for (bank = 0; bank < bank_num; bank++) {
691 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
692 break;
693 }
694 }
695 assert(bank < bank_num);
696
697 mce.bank = bank;
698 mce.status = env->mce_banks[bank * 4 + 1];
699 mce.mcg_status = env->mcg_status;
700 mce.addr = env->mce_banks[bank * 4 + 2];
701 mce.misc = env->mce_banks[bank * 4 + 3];
702
1bc22652 703 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 704 }
ab443475
JK
705 return 0;
706}
707
1dfb4dd9 708static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 709{
317ac620 710 CPUX86State *env = opaque;
b8cc45d6
GC
711
712 if (running) {
713 env->tsc_valid = false;
714 }
715}
716
83b17af5 717unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 718{
83b17af5 719 X86CPU *cpu = X86_CPU(cs);
7e72a45c 720 return cpu->apic_id;
b164e48e
EH
721}
722
92067bf4
IM
723#ifndef KVM_CPUID_SIGNATURE_NEXT
724#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
725#endif
726
92067bf4
IM
727static bool hyperv_enabled(X86CPU *cpu)
728{
7bc3d711
PB
729 CPUState *cs = CPU(cpu);
730 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
2d384d7c 731 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
e48ddcc6 732 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
733}
734
5031283d
HZ
735static int kvm_arch_set_tsc_khz(CPUState *cs)
736{
737 X86CPU *cpu = X86_CPU(cs);
738 CPUX86State *env = &cpu->env;
739 int r;
740
741 if (!env->tsc_khz) {
742 return 0;
743 }
744
745 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
746 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
747 -ENOTSUP;
748 if (r < 0) {
749 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
750 * TSC frequency doesn't match the one we want.
751 */
752 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
753 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
754 -ENOTSUP;
755 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
756 warn_report("TSC frequency mismatch between "
757 "VM (%" PRId64 " kHz) and host (%d kHz), "
758 "and TSC scaling unavailable",
759 env->tsc_khz, cur_freq);
5031283d
HZ
760 return r;
761 }
762 }
763
764 return 0;
765}
766
4bb95b82
LP
767static bool tsc_is_stable_and_known(CPUX86State *env)
768{
769 if (!env->tsc_khz) {
770 return false;
771 }
772 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
773 || env->user_tsc_khz;
774}
775
6760bd20
VK
776static struct {
777 const char *desc;
778 struct {
779 uint32_t fw;
780 uint32_t bits;
781 } flags[2];
c6861930 782 uint64_t dependencies;
6760bd20
VK
783} kvm_hyperv_properties[] = {
784 [HYPERV_FEAT_RELAXED] = {
785 .desc = "relaxed timing (hv-relaxed)",
786 .flags = {
787 {.fw = FEAT_HYPERV_EAX,
788 .bits = HV_HYPERCALL_AVAILABLE},
789 {.fw = FEAT_HV_RECOMM_EAX,
790 .bits = HV_RELAXED_TIMING_RECOMMENDED}
791 }
792 },
793 [HYPERV_FEAT_VAPIC] = {
794 .desc = "virtual APIC (hv-vapic)",
795 .flags = {
796 {.fw = FEAT_HYPERV_EAX,
797 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
798 {.fw = FEAT_HV_RECOMM_EAX,
799 .bits = HV_APIC_ACCESS_RECOMMENDED}
800 }
801 },
802 [HYPERV_FEAT_TIME] = {
803 .desc = "clocksources (hv-time)",
804 .flags = {
805 {.fw = FEAT_HYPERV_EAX,
806 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
807 HV_REFERENCE_TSC_AVAILABLE}
808 }
809 },
810 [HYPERV_FEAT_CRASH] = {
811 .desc = "crash MSRs (hv-crash)",
812 .flags = {
813 {.fw = FEAT_HYPERV_EDX,
814 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
815 }
816 },
817 [HYPERV_FEAT_RESET] = {
818 .desc = "reset MSR (hv-reset)",
819 .flags = {
820 {.fw = FEAT_HYPERV_EAX,
821 .bits = HV_RESET_AVAILABLE}
822 }
823 },
824 [HYPERV_FEAT_VPINDEX] = {
825 .desc = "VP_INDEX MSR (hv-vpindex)",
826 .flags = {
827 {.fw = FEAT_HYPERV_EAX,
828 .bits = HV_VP_INDEX_AVAILABLE}
829 }
830 },
831 [HYPERV_FEAT_RUNTIME] = {
832 .desc = "VP_RUNTIME MSR (hv-runtime)",
833 .flags = {
834 {.fw = FEAT_HYPERV_EAX,
835 .bits = HV_VP_RUNTIME_AVAILABLE}
836 }
837 },
838 [HYPERV_FEAT_SYNIC] = {
839 .desc = "synthetic interrupt controller (hv-synic)",
840 .flags = {
841 {.fw = FEAT_HYPERV_EAX,
842 .bits = HV_SYNIC_AVAILABLE}
843 }
844 },
845 [HYPERV_FEAT_STIMER] = {
846 .desc = "synthetic timers (hv-stimer)",
847 .flags = {
848 {.fw = FEAT_HYPERV_EAX,
849 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
850 },
851 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
852 },
853 [HYPERV_FEAT_FREQUENCIES] = {
854 .desc = "frequency MSRs (hv-frequencies)",
855 .flags = {
856 {.fw = FEAT_HYPERV_EAX,
857 .bits = HV_ACCESS_FREQUENCY_MSRS},
858 {.fw = FEAT_HYPERV_EDX,
859 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
860 }
861 },
862 [HYPERV_FEAT_REENLIGHTENMENT] = {
863 .desc = "reenlightenment MSRs (hv-reenlightenment)",
864 .flags = {
865 {.fw = FEAT_HYPERV_EAX,
866 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
867 }
868 },
869 [HYPERV_FEAT_TLBFLUSH] = {
870 .desc = "paravirtualized TLB flush (hv-tlbflush)",
871 .flags = {
872 {.fw = FEAT_HV_RECOMM_EAX,
873 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
874 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
875 },
876 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
877 },
878 [HYPERV_FEAT_EVMCS] = {
879 .desc = "enlightened VMCS (hv-evmcs)",
880 .flags = {
881 {.fw = FEAT_HV_RECOMM_EAX,
882 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
883 },
884 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
885 },
886 [HYPERV_FEAT_IPI] = {
887 .desc = "paravirtualized IPI (hv-ipi)",
888 .flags = {
889 {.fw = FEAT_HV_RECOMM_EAX,
890 .bits = HV_CLUSTER_IPI_RECOMMENDED |
891 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
892 },
893 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 894 },
128531d9
VK
895 [HYPERV_FEAT_STIMER_DIRECT] = {
896 .desc = "direct mode synthetic timers (hv-stimer-direct)",
897 .flags = {
898 {.fw = FEAT_HYPERV_EDX,
899 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
900 },
901 .dependencies = BIT(HYPERV_FEAT_STIMER)
902 },
6760bd20
VK
903};
904
905static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
906{
907 struct kvm_cpuid2 *cpuid;
908 int r, size;
909
910 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
911 cpuid = g_malloc0(size);
912 cpuid->nent = max;
913
914 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
915 if (r == 0 && cpuid->nent >= max) {
916 r = -E2BIG;
917 }
918 if (r < 0) {
919 if (r == -E2BIG) {
920 g_free(cpuid);
921 return NULL;
922 } else {
923 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
924 strerror(-r));
925 exit(1);
926 }
927 }
928 return cpuid;
929}
930
931/*
932 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
933 * for all entries.
934 */
935static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
936{
937 struct kvm_cpuid2 *cpuid;
938 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
939
940 /*
941 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
942 * -E2BIG, however, it doesn't report back the right size. Keep increasing
943 * it and re-trying until we succeed.
944 */
945 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
946 max++;
947 }
948 return cpuid;
949}
950
951/*
952 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
953 * leaves from KVM_CAP_HYPERV* and present MSRs data.
954 */
955static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
956{
957 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
958 struct kvm_cpuid2 *cpuid;
959 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
960
961 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
962 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
963 cpuid->nent = 2;
964
965 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
966 entry_feat = &cpuid->entries[0];
967 entry_feat->function = HV_CPUID_FEATURES;
968
969 entry_recomm = &cpuid->entries[1];
970 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
971 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
972
973 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
974 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
975 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
976 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
977 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
978 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
979 }
c35bd19a 980
6760bd20
VK
981 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
982 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
983 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 984 }
6760bd20
VK
985
986 if (has_msr_hv_frequencies) {
987 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
988 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 989 }
6760bd20
VK
990
991 if (has_msr_hv_crash) {
992 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 993 }
6760bd20
VK
994
995 if (has_msr_hv_reenlightenment) {
996 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 997 }
6760bd20
VK
998
999 if (has_msr_hv_reset) {
1000 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1001 }
6760bd20
VK
1002
1003 if (has_msr_hv_vpindex) {
1004 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1005 }
6760bd20
VK
1006
1007 if (has_msr_hv_runtime) {
1008 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1009 }
6760bd20
VK
1010
1011 if (has_msr_hv_synic) {
1012 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1013 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1014
1015 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1016 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1017 }
c35bd19a 1018 }
6760bd20
VK
1019
1020 if (has_msr_hv_stimer) {
1021 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1022 }
9b4cf107 1023
6760bd20
VK
1024 if (kvm_check_extension(cs->kvm_state,
1025 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1026 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1027 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1028 }
c35bd19a 1029
6760bd20
VK
1030 if (kvm_check_extension(cs->kvm_state,
1031 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1032 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1033 }
6760bd20
VK
1034
1035 if (kvm_check_extension(cs->kvm_state,
1036 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1037 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1038 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1039 }
6760bd20
VK
1040
1041 return cpuid;
1042}
1043
1044static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1045{
1046 struct kvm_cpuid_entry2 *entry;
1047 uint32_t func;
1048 int reg;
1049
1050 switch (fw) {
1051 case FEAT_HYPERV_EAX:
1052 reg = R_EAX;
1053 func = HV_CPUID_FEATURES;
1054 break;
1055 case FEAT_HYPERV_EDX:
1056 reg = R_EDX;
1057 func = HV_CPUID_FEATURES;
1058 break;
1059 case FEAT_HV_RECOMM_EAX:
1060 reg = R_EAX;
1061 func = HV_CPUID_ENLIGHTMENT_INFO;
1062 break;
1063 default:
1064 return -EINVAL;
a2b107db 1065 }
6760bd20
VK
1066
1067 entry = cpuid_find_entry(cpuid, func, 0);
1068 if (!entry) {
1069 return -ENOENT;
a2b107db 1070 }
6760bd20
VK
1071
1072 switch (reg) {
1073 case R_EAX:
1074 *r = entry->eax;
1075 break;
1076 case R_EDX:
1077 *r = entry->edx;
1078 break;
1079 default:
1080 return -EINVAL;
a2b107db 1081 }
6760bd20
VK
1082
1083 return 0;
1084}
1085
1086static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1087 int feature)
1088{
1089 X86CPU *cpu = X86_CPU(cs);
1090 CPUX86State *env = &cpu->env;
e48ddcc6 1091 uint32_t r, fw, bits;
c6861930 1092 uint64_t deps;
9dc83cd9 1093 int i, dep_feat;
6760bd20 1094
e48ddcc6 1095 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
6760bd20
VK
1096 return 0;
1097 }
1098
c6861930 1099 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1100 while (deps) {
1101 dep_feat = ctz64(deps);
c6861930
VK
1102 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1103 fprintf(stderr,
1104 "Hyper-V %s requires Hyper-V %s\n",
1105 kvm_hyperv_properties[feature].desc,
1106 kvm_hyperv_properties[dep_feat].desc);
1107 return 1;
1108 }
9dc83cd9 1109 deps &= ~(1ull << dep_feat);
c6861930
VK
1110 }
1111
6760bd20
VK
1112 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1113 fw = kvm_hyperv_properties[feature].flags[i].fw;
1114 bits = kvm_hyperv_properties[feature].flags[i].bits;
1115
1116 if (!fw) {
1117 continue;
a2b107db 1118 }
6760bd20
VK
1119
1120 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
e48ddcc6
VK
1121 if (hyperv_feat_enabled(cpu, feature)) {
1122 fprintf(stderr,
1123 "Hyper-V %s is not supported by kernel\n",
1124 kvm_hyperv_properties[feature].desc);
1125 return 1;
1126 } else {
1127 return 0;
1128 }
6760bd20
VK
1129 }
1130
1131 env->features[fw] |= bits;
a2b107db 1132 }
6760bd20 1133
e48ddcc6
VK
1134 if (cpu->hyperv_passthrough) {
1135 cpu->hyperv_features |= BIT(feature);
1136 }
1137
6760bd20
VK
1138 return 0;
1139}
1140
2344d22e
VK
1141/*
1142 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1143 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1144 * extentions are enabled.
1145 */
1146static int hyperv_handle_properties(CPUState *cs,
1147 struct kvm_cpuid_entry2 *cpuid_ent)
6760bd20
VK
1148{
1149 X86CPU *cpu = X86_CPU(cs);
1150 CPUX86State *env = &cpu->env;
1151 struct kvm_cpuid2 *cpuid;
2344d22e
VK
1152 struct kvm_cpuid_entry2 *c;
1153 uint32_t signature[3];
1154 uint32_t cpuid_i = 0;
e48ddcc6 1155 int r;
6760bd20 1156
2344d22e
VK
1157 if (!hyperv_enabled(cpu))
1158 return 0;
1159
e48ddcc6
VK
1160 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1161 cpu->hyperv_passthrough) {
a2b107db
VK
1162 uint16_t evmcs_version;
1163
e48ddcc6
VK
1164 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1165 (uintptr_t)&evmcs_version);
1166
1167 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
6760bd20
VK
1168 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1169 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
a2b107db
VK
1170 return -ENOSYS;
1171 }
e48ddcc6
VK
1172
1173 if (!r) {
1174 env->features[FEAT_HV_RECOMM_EAX] |=
1175 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1176 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1177 }
a2b107db
VK
1178 }
1179
6760bd20
VK
1180 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1181 cpuid = get_supported_hv_cpuid(cs);
1182 } else {
1183 cpuid = get_supported_hv_cpuid_legacy(cs);
1184 }
1185
e48ddcc6
VK
1186 if (cpu->hyperv_passthrough) {
1187 memcpy(cpuid_ent, &cpuid->entries[0],
1188 cpuid->nent * sizeof(cpuid->entries[0]));
1189
1190 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1191 if (c) {
1192 env->features[FEAT_HYPERV_EAX] = c->eax;
1193 env->features[FEAT_HYPERV_EBX] = c->ebx;
1194 env->features[FEAT_HYPERV_EDX] = c->eax;
1195 }
1196 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1197 if (c) {
1198 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1199
1200 /* hv-spinlocks may have been overriden */
1201 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1202 c->ebx = cpu->hyperv_spinlock_attempts;
1203 }
1204 }
1205 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1206 if (c) {
1207 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1208 }
1209 }
1210
6760bd20 1211 /* Features */
e48ddcc6 1212 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
6760bd20
VK
1213 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1214 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1215 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1216 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1217 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1218 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1219 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1220 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1221 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1222 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1223 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1224 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1225 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
128531d9 1226 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
6760bd20 1227
c6861930 1228 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1229 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1230 !cpu->hyperv_synic_kvm_only &&
1231 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
c6861930 1232 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
6760bd20
VK
1233 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1234 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1235 r |= 1;
1236 }
1237
1238 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1239 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1240
2344d22e
VK
1241 if (r) {
1242 r = -ENOSYS;
1243 goto free;
1244 }
1245
e48ddcc6
VK
1246 if (cpu->hyperv_passthrough) {
1247 /* We already copied all feature words from KVM as is */
1248 r = cpuid->nent;
1249 goto free;
1250 }
1251
2344d22e
VK
1252 c = &cpuid_ent[cpuid_i++];
1253 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1254 if (!cpu->hyperv_vendor_id) {
1255 memcpy(signature, "Microsoft Hv", 12);
1256 } else {
1257 size_t len = strlen(cpu->hyperv_vendor_id);
1258
1259 if (len > 12) {
1260 error_report("hv-vendor-id truncated to 12 characters");
1261 len = 12;
1262 }
1263 memset(signature, 0, 12);
1264 memcpy(signature, cpu->hyperv_vendor_id, len);
1265 }
1266 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1267 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1268 c->ebx = signature[0];
1269 c->ecx = signature[1];
1270 c->edx = signature[2];
1271
1272 c = &cpuid_ent[cpuid_i++];
1273 c->function = HV_CPUID_INTERFACE;
1274 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1275 c->eax = signature[0];
1276 c->ebx = 0;
1277 c->ecx = 0;
1278 c->edx = 0;
1279
1280 c = &cpuid_ent[cpuid_i++];
1281 c->function = HV_CPUID_VERSION;
1282 c->eax = 0x00001bbc;
1283 c->ebx = 0x00060001;
1284
1285 c = &cpuid_ent[cpuid_i++];
1286 c->function = HV_CPUID_FEATURES;
1287 c->eax = env->features[FEAT_HYPERV_EAX];
1288 c->ebx = env->features[FEAT_HYPERV_EBX];
1289 c->edx = env->features[FEAT_HYPERV_EDX];
1290
1291 c = &cpuid_ent[cpuid_i++];
1292 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1293 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1294 c->ebx = cpu->hyperv_spinlock_attempts;
1295
1296 c = &cpuid_ent[cpuid_i++];
1297 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1298 c->eax = cpu->hv_max_vps;
1299 c->ebx = 0x40;
1300
1301 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1302 __u32 function;
1303
1304 /* Create zeroed 0x40000006..0x40000009 leaves */
1305 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1306 function < HV_CPUID_NESTED_FEATURES; function++) {
1307 c = &cpuid_ent[cpuid_i++];
1308 c->function = function;
1309 }
1310
1311 c = &cpuid_ent[cpuid_i++];
1312 c->function = HV_CPUID_NESTED_FEATURES;
1313 c->eax = env->features[FEAT_HV_NESTED_EAX];
1314 }
1315 r = cpuid_i;
1316
1317free:
6760bd20
VK
1318 g_free(cpuid);
1319
2344d22e 1320 return r;
c35bd19a
EY
1321}
1322
e48ddcc6
VK
1323static Error *hv_passthrough_mig_blocker;
1324
e9688fab
RK
1325static int hyperv_init_vcpu(X86CPU *cpu)
1326{
729ce7e1 1327 CPUState *cs = CPU(cpu);
e48ddcc6 1328 Error *local_err = NULL;
729ce7e1
RK
1329 int ret;
1330
e48ddcc6
VK
1331 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1332 error_setg(&hv_passthrough_mig_blocker,
1333 "'hv-passthrough' CPU flag prevents migration, use explicit"
1334 " set of hv-* flags instead");
1335 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1336 if (local_err) {
1337 error_report_err(local_err);
1338 error_free(hv_passthrough_mig_blocker);
1339 return ret;
1340 }
1341 }
1342
2d384d7c 1343 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1344 /*
1345 * the kernel doesn't support setting vp_index; assert that its value
1346 * is in sync
1347 */
e9688fab
RK
1348 struct {
1349 struct kvm_msrs info;
1350 struct kvm_msr_entry entries[1];
1351 } msr_data = {
1352 .info.nmsrs = 1,
1353 .entries[0].index = HV_X64_MSR_VP_INDEX,
1354 };
1355
729ce7e1 1356 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1357 if (ret < 0) {
1358 return ret;
1359 }
1360 assert(ret == 1);
1361
701189e3 1362 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1363 error_report("kernel's vp_index != QEMU's vp_index");
1364 return -ENXIO;
1365 }
1366 }
1367
2d384d7c 1368 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1369 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1370 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1371 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1372 if (ret < 0) {
1373 error_report("failed to turn on HyperV SynIC in KVM: %s",
1374 strerror(-ret));
1375 return ret;
1376 }
606c34bf 1377
9b4cf107
RK
1378 if (!cpu->hyperv_synic_kvm_only) {
1379 ret = hyperv_x86_synic_add(cpu);
1380 if (ret < 0) {
1381 error_report("failed to create HyperV SynIC: %s",
1382 strerror(-ret));
1383 return ret;
1384 }
606c34bf 1385 }
729ce7e1
RK
1386 }
1387
e9688fab
RK
1388 return 0;
1389}
1390
68bfd0ad
MT
1391static Error *invtsc_mig_blocker;
1392
f8bb0565 1393#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1394
20d695a9 1395int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1396{
1397 struct {
486bd5a2 1398 struct kvm_cpuid2 cpuid;
f8bb0565 1399 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1400 } cpuid_data;
1401 /*
1402 * The kernel defines these structs with padding fields so there
1403 * should be no extra padding in our cpuid_data struct.
1404 */
1405 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1406 sizeof(struct kvm_cpuid2) +
1407 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1408
20d695a9
AF
1409 X86CPU *cpu = X86_CPU(cs);
1410 CPUX86State *env = &cpu->env;
486bd5a2 1411 uint32_t limit, i, j, cpuid_i;
a33609ca 1412 uint32_t unused;
bb0300dc 1413 struct kvm_cpuid_entry2 *c;
bb0300dc 1414 uint32_t signature[3];
234cc647 1415 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1416 int max_nested_state_len;
e7429073 1417 int r;
fe44dc91 1418 Error *local_err = NULL;
05330448 1419
ef4cbe14
SW
1420 memset(&cpuid_data, 0, sizeof(cpuid_data));
1421
05330448
AL
1422 cpuid_i = 0;
1423
ddb98b5a
LP
1424 r = kvm_arch_set_tsc_khz(cs);
1425 if (r < 0) {
6b2341ee 1426 return r;
ddb98b5a
LP
1427 }
1428
1429 /* vcpu's TSC frequency is either specified by user, or following
1430 * the value used by KVM if the former is not present. In the
1431 * latter case, we query it from KVM and record in env->tsc_khz,
1432 * so that vcpu's TSC frequency can be migrated later via this field.
1433 */
1434 if (!env->tsc_khz) {
1435 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1436 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1437 -ENOTSUP;
1438 if (r > 0) {
1439 env->tsc_khz = r;
1440 }
1441 }
1442
bb0300dc 1443 /* Paravirtualization CPUIDs */
2344d22e
VK
1444 r = hyperv_handle_properties(cs, cpuid_data.entries);
1445 if (r < 0) {
1446 return r;
1447 } else if (r > 0) {
1448 cpuid_i = r;
234cc647 1449 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1450 has_msr_hv_hypercall = true;
eab70139
VR
1451 }
1452
f522d2ac
AW
1453 if (cpu->expose_kvm) {
1454 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1455 c = &cpuid_data.entries[cpuid_i++];
1456 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1457 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1458 c->ebx = signature[0];
1459 c->ecx = signature[1];
1460 c->edx = signature[2];
234cc647 1461
f522d2ac
AW
1462 c = &cpuid_data.entries[cpuid_i++];
1463 c->function = KVM_CPUID_FEATURES | kvm_base;
1464 c->eax = env->features[FEAT_KVM];
be777326 1465 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1466 }
917367aa 1467
a33609ca 1468 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
1469
1470 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1471 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1472 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1473 abort();
1474 }
bb0300dc 1475 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1476
1477 switch (i) {
a36b1029
AL
1478 case 2: {
1479 /* Keep reading function 2 till all the input is received */
1480 int times;
1481
a36b1029 1482 c->function = i;
a33609ca
AL
1483 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1484 KVM_CPUID_FLAG_STATE_READ_NEXT;
1485 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1486 times = c->eax & 0xff;
a36b1029
AL
1487
1488 for (j = 1; j < times; ++j) {
f8bb0565
IM
1489 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1490 fprintf(stderr, "cpuid_data is full, no space for "
1491 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1492 abort();
1493 }
a33609ca 1494 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1495 c->function = i;
a33609ca
AL
1496 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1497 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1498 }
1499 break;
1500 }
a94e1428
LX
1501 case 0x1f:
1502 if (env->nr_dies < 2) {
1503 break;
1504 }
486bd5a2
AL
1505 case 4:
1506 case 0xb:
1507 case 0xd:
1508 for (j = 0; ; j++) {
31e8c696
AP
1509 if (i == 0xd && j == 64) {
1510 break;
1511 }
a94e1428
LX
1512
1513 if (i == 0x1f && j == 64) {
1514 break;
1515 }
1516
486bd5a2
AL
1517 c->function = i;
1518 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1519 c->index = j;
a33609ca 1520 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1521
b9bec74b 1522 if (i == 4 && c->eax == 0) {
486bd5a2 1523 break;
b9bec74b
JK
1524 }
1525 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1526 break;
b9bec74b 1527 }
a94e1428
LX
1528 if (i == 0x1f && !(c->ecx & 0xff00)) {
1529 break;
1530 }
b9bec74b 1531 if (i == 0xd && c->eax == 0) {
31e8c696 1532 continue;
b9bec74b 1533 }
f8bb0565
IM
1534 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1535 fprintf(stderr, "cpuid_data is full, no space for "
1536 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1537 abort();
1538 }
a33609ca 1539 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1540 }
1541 break;
80db491d 1542 case 0x7:
e37a5c7f
CP
1543 case 0x14: {
1544 uint32_t times;
1545
1546 c->function = i;
1547 c->index = 0;
1548 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1549 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1550 times = c->eax;
1551
1552 for (j = 1; j <= times; ++j) {
1553 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1554 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1555 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1556 abort();
1557 }
1558 c = &cpuid_data.entries[cpuid_i++];
1559 c->function = i;
1560 c->index = j;
1561 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1562 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1563 }
1564 break;
1565 }
486bd5a2 1566 default:
486bd5a2 1567 c->function = i;
a33609ca
AL
1568 c->flags = 0;
1569 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
1570 break;
1571 }
05330448 1572 }
0d894367
PB
1573
1574 if (limit >= 0x0a) {
0b368a10 1575 uint32_t eax, edx;
0d894367 1576
0b368a10
JD
1577 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1578
1579 has_architectural_pmu_version = eax & 0xff;
1580 if (has_architectural_pmu_version > 0) {
1581 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1582
1583 /* Shouldn't be more than 32, since that's the number of bits
1584 * available in EBX to tell us _which_ counters are available.
1585 * Play it safe.
1586 */
0b368a10
JD
1587 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1588 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1589 }
1590
1591 if (has_architectural_pmu_version > 1) {
1592 num_architectural_pmu_fixed_counters = edx & 0x1f;
1593
1594 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1595 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1596 }
0d894367
PB
1597 }
1598 }
1599 }
1600
a33609ca 1601 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1602
1603 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1604 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1605 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1606 abort();
1607 }
bb0300dc 1608 c = &cpuid_data.entries[cpuid_i++];
05330448 1609
8f4202fb
BM
1610 switch (i) {
1611 case 0x8000001d:
1612 /* Query for all AMD cache information leaves */
1613 for (j = 0; ; j++) {
1614 c->function = i;
1615 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1616 c->index = j;
1617 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1618
1619 if (c->eax == 0) {
1620 break;
1621 }
1622 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1623 fprintf(stderr, "cpuid_data is full, no space for "
1624 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1625 abort();
1626 }
1627 c = &cpuid_data.entries[cpuid_i++];
1628 }
1629 break;
1630 default:
1631 c->function = i;
1632 c->flags = 0;
1633 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1634 break;
1635 }
05330448
AL
1636 }
1637
b3baa152
BW
1638 /* Call Centaur's CPUID instructions they are supported. */
1639 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1640 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1641
1642 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1643 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1644 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1645 abort();
1646 }
b3baa152
BW
1647 c = &cpuid_data.entries[cpuid_i++];
1648
1649 c->function = i;
1650 c->flags = 0;
1651 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1652 }
1653 }
1654
05330448
AL
1655 cpuid_data.cpuid.nent = cpuid_i;
1656
e7701825 1657 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1658 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1659 (CPUID_MCE | CPUID_MCA)
a60f24b5 1660 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1661 uint64_t mcg_cap, unsupported_caps;
e7701825 1662 int banks;
32a42024 1663 int ret;
e7701825 1664
a60f24b5 1665 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1666 if (ret < 0) {
1667 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1668 return ret;
e7701825 1669 }
75d49497 1670
2590f15b 1671 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1672 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1673 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1674 return -ENOTSUP;
75d49497 1675 }
49b69cbf 1676
5120901a
EH
1677 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1678 if (unsupported_caps) {
87f8b626
AR
1679 if (unsupported_caps & MCG_LMCE_P) {
1680 error_report("kvm: LMCE not supported");
1681 return -ENOTSUP;
1682 }
3dc6f869
AF
1683 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1684 unsupported_caps);
5120901a
EH
1685 }
1686
2590f15b
EH
1687 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1688 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1689 if (ret < 0) {
1690 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1691 return ret;
1692 }
e7701825 1693 }
e7701825 1694
b8cc45d6
GC
1695 qemu_add_vm_change_state_handler(cpu_update_state, env);
1696
df67696e
LJ
1697 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1698 if (c) {
1699 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1700 !!(c->ecx & CPUID_EXT_SMX);
1701 }
1702
87f8b626
AR
1703 if (env->mcg_cap & MCG_LMCE_P) {
1704 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1705 }
1706
d99569d9
EH
1707 if (!env->user_tsc_khz) {
1708 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1709 invtsc_mig_blocker == NULL) {
d99569d9
EH
1710 error_setg(&invtsc_mig_blocker,
1711 "State blocked by non-migratable CPU device"
1712 " (invtsc flag)");
fe44dc91
AA
1713 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1714 if (local_err) {
1715 error_report_err(local_err);
1716 error_free(invtsc_mig_blocker);
79a197ab 1717 return r;
fe44dc91 1718 }
d99569d9 1719 }
68bfd0ad
MT
1720 }
1721
9954a158
PDJ
1722 if (cpu->vmware_cpuid_freq
1723 /* Guests depend on 0x40000000 to detect this feature, so only expose
1724 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1725 && cpu->expose_kvm
1726 && kvm_base == KVM_CPUID_SIGNATURE
1727 /* TSC clock must be stable and known for this feature. */
4bb95b82 1728 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1729
1730 c = &cpuid_data.entries[cpuid_i++];
1731 c->function = KVM_CPUID_SIGNATURE | 0x10;
1732 c->eax = env->tsc_khz;
1733 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1734 * APIC_BUS_CYCLE_NS */
1735 c->ebx = 1000000;
1736 c->ecx = c->edx = 0;
1737
1738 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1739 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1740 }
1741
1742 cpuid_data.cpuid.nent = cpuid_i;
1743
1744 cpuid_data.cpuid.padding = 0;
1745 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1746 if (r) {
1747 goto fail;
1748 }
1749
28143b40 1750 if (has_xsave) {
5b8063c4 1751 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1f670a95 1752 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
fabacc0f 1753 }
ebbfef2f
LA
1754
1755 max_nested_state_len = kvm_max_nested_state_length();
1756 if (max_nested_state_len > 0) {
1757 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 1758
1e44f3ab
PB
1759 if (cpu_has_vmx(env)) {
1760 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 1761
1e44f3ab
PB
1762 env->nested_state = g_malloc0(max_nested_state_len);
1763 env->nested_state->size = max_nested_state_len;
ebbfef2f 1764 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1e44f3ab
PB
1765
1766 vmx_hdr = &env->nested_state->hdr.vmx;
ebbfef2f
LA
1767 vmx_hdr->vmxon_pa = -1ull;
1768 vmx_hdr->vmcs12_pa = -1ull;
1769 }
1770 }
1771
d71b62a1 1772 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1773
273c515c
PB
1774 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1775 has_msr_tsc_aux = false;
1776 }
d1ae67f6 1777
e9688fab
RK
1778 r = hyperv_init_vcpu(cpu);
1779 if (r) {
1780 goto fail;
1781 }
1782
e7429073 1783 return 0;
fe44dc91
AA
1784
1785 fail:
1786 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 1787
fe44dc91 1788 return r;
05330448
AL
1789}
1790
b1115c99
LA
1791int kvm_arch_destroy_vcpu(CPUState *cs)
1792{
1793 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 1794 CPUX86State *env = &cpu->env;
b1115c99
LA
1795
1796 if (cpu->kvm_msr_buf) {
1797 g_free(cpu->kvm_msr_buf);
1798 cpu->kvm_msr_buf = NULL;
1799 }
1800
ebbfef2f
LA
1801 if (env->nested_state) {
1802 g_free(env->nested_state);
1803 env->nested_state = NULL;
1804 }
1805
b1115c99
LA
1806 return 0;
1807}
1808
50a2c6e5 1809void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 1810{
20d695a9 1811 CPUX86State *env = &cpu->env;
dd673288 1812
1a5e9d2f 1813 env->xcr0 = 1;
ddced198 1814 if (kvm_irqchip_in_kernel()) {
dd673288 1815 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
1816 KVM_MP_STATE_UNINITIALIZED;
1817 } else {
1818 env->mp_state = KVM_MP_STATE_RUNNABLE;
1819 }
689141dd 1820
2d384d7c 1821 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
1822 int i;
1823 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1824 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1825 }
606c34bf
RK
1826
1827 hyperv_x86_synic_reset(cpu);
689141dd 1828 }
d645e132
MT
1829 /* enabled by default */
1830 env->poll_control_msr = 1;
caa5af0f
JK
1831}
1832
e0723c45
PB
1833void kvm_arch_do_init_vcpu(X86CPU *cpu)
1834{
1835 CPUX86State *env = &cpu->env;
1836
1837 /* APs get directly into wait-for-SIPI state. */
1838 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1839 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1840 }
1841}
1842
f57bceb6
RH
1843static int kvm_get_supported_feature_msrs(KVMState *s)
1844{
1845 int ret = 0;
1846
1847 if (kvm_feature_msrs != NULL) {
1848 return 0;
1849 }
1850
1851 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1852 return 0;
1853 }
1854
1855 struct kvm_msr_list msr_list;
1856
1857 msr_list.nmsrs = 0;
1858 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1859 if (ret < 0 && ret != -E2BIG) {
1860 error_report("Fetch KVM feature MSR list failed: %s",
1861 strerror(-ret));
1862 return ret;
1863 }
1864
1865 assert(msr_list.nmsrs > 0);
1866 kvm_feature_msrs = (struct kvm_msr_list *) \
1867 g_malloc0(sizeof(msr_list) +
1868 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1869
1870 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1871 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1872
1873 if (ret < 0) {
1874 error_report("Fetch KVM feature MSR list failed: %s",
1875 strerror(-ret));
1876 g_free(kvm_feature_msrs);
1877 kvm_feature_msrs = NULL;
1878 return ret;
1879 }
1880
1881 return 0;
1882}
1883
c3a3a7d3 1884static int kvm_get_supported_msrs(KVMState *s)
05330448 1885{
c3a3a7d3 1886 int ret = 0;
de428cea 1887 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 1888
de428cea
LQ
1889 /*
1890 * Obtain MSR list from KVM. These are the MSRs that we must
1891 * save/restore.
1892 */
1893 msr_list.nmsrs = 0;
1894 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1895 if (ret < 0 && ret != -E2BIG) {
1896 return ret;
1897 }
1898 /*
1899 * Old kernel modules had a bug and could write beyond the provided
1900 * memory. Allocate at least a safe amount of 1K.
1901 */
1902 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1903 msr_list.nmsrs *
1904 sizeof(msr_list.indices[0])));
05330448 1905
de428cea
LQ
1906 kvm_msr_list->nmsrs = msr_list.nmsrs;
1907 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1908 if (ret >= 0) {
1909 int i;
05330448 1910
de428cea
LQ
1911 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1912 switch (kvm_msr_list->indices[i]) {
1913 case MSR_STAR:
1914 has_msr_star = true;
1915 break;
1916 case MSR_VM_HSAVE_PA:
1917 has_msr_hsave_pa = true;
1918 break;
1919 case MSR_TSC_AUX:
1920 has_msr_tsc_aux = true;
1921 break;
1922 case MSR_TSC_ADJUST:
1923 has_msr_tsc_adjust = true;
1924 break;
1925 case MSR_IA32_TSCDEADLINE:
1926 has_msr_tsc_deadline = true;
1927 break;
1928 case MSR_IA32_SMBASE:
1929 has_msr_smbase = true;
1930 break;
1931 case MSR_SMI_COUNT:
1932 has_msr_smi_count = true;
1933 break;
1934 case MSR_IA32_MISC_ENABLE:
1935 has_msr_misc_enable = true;
1936 break;
1937 case MSR_IA32_BNDCFGS:
1938 has_msr_bndcfgs = true;
1939 break;
1940 case MSR_IA32_XSS:
1941 has_msr_xss = true;
1942 break;
1943 case HV_X64_MSR_CRASH_CTL:
1944 has_msr_hv_crash = true;
1945 break;
1946 case HV_X64_MSR_RESET:
1947 has_msr_hv_reset = true;
1948 break;
1949 case HV_X64_MSR_VP_INDEX:
1950 has_msr_hv_vpindex = true;
1951 break;
1952 case HV_X64_MSR_VP_RUNTIME:
1953 has_msr_hv_runtime = true;
1954 break;
1955 case HV_X64_MSR_SCONTROL:
1956 has_msr_hv_synic = true;
1957 break;
1958 case HV_X64_MSR_STIMER0_CONFIG:
1959 has_msr_hv_stimer = true;
1960 break;
1961 case HV_X64_MSR_TSC_FREQUENCY:
1962 has_msr_hv_frequencies = true;
1963 break;
1964 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1965 has_msr_hv_reenlightenment = true;
1966 break;
1967 case MSR_IA32_SPEC_CTRL:
1968 has_msr_spec_ctrl = true;
1969 break;
1970 case MSR_VIRT_SSBD:
1971 has_msr_virt_ssbd = true;
1972 break;
1973 case MSR_IA32_ARCH_CAPABILITIES:
1974 has_msr_arch_capabs = true;
1975 break;
1976 case MSR_IA32_CORE_CAPABILITY:
1977 has_msr_core_capabs = true;
1978 break;
20a78b02
PB
1979 case MSR_IA32_VMX_VMFUNC:
1980 has_msr_vmx_vmfunc = true;
1981 break;
05330448
AL
1982 }
1983 }
05330448
AL
1984 }
1985
de428cea
LQ
1986 g_free(kvm_msr_list);
1987
c3a3a7d3 1988 return ret;
05330448
AL
1989}
1990
6410848b
PB
1991static Notifier smram_machine_done;
1992static KVMMemoryListener smram_listener;
1993static AddressSpace smram_address_space;
1994static MemoryRegion smram_as_root;
1995static MemoryRegion smram_as_mem;
1996
1997static void register_smram_listener(Notifier *n, void *unused)
1998{
1999 MemoryRegion *smram =
2000 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2001
2002 /* Outer container... */
2003 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2004 memory_region_set_enabled(&smram_as_root, true);
2005
2006 /* ... with two regions inside: normal system memory with low
2007 * priority, and...
2008 */
2009 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2010 get_system_memory(), 0, ~0ull);
2011 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2012 memory_region_set_enabled(&smram_as_mem, true);
2013
2014 if (smram) {
2015 /* ... SMRAM with higher priority */
2016 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2017 memory_region_set_enabled(smram, true);
2018 }
2019
2020 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2021 kvm_memory_listener_register(kvm_state, &smram_listener,
2022 &smram_address_space, 1);
2023}
2024
b16565b3 2025int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2026{
11076198 2027 uint64_t identity_base = 0xfffbc000;
39d6960a 2028 uint64_t shadow_mem;
20420430 2029 int ret;
25d2e361 2030 struct utsname utsname;
20420430 2031
28143b40 2032 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2033 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2034 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 2035
e9688fab
RK
2036 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2037
fd13f23b
LA
2038 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2039 if (has_exception_payload) {
2040 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2041 if (ret < 0) {
2042 error_report("kvm: Failed to enable exception payload cap: %s",
2043 strerror(-ret));
2044 return ret;
2045 }
2046 }
2047
c3a3a7d3 2048 ret = kvm_get_supported_msrs(s);
20420430 2049 if (ret < 0) {
20420430
SY
2050 return ret;
2051 }
25d2e361 2052
f57bceb6
RH
2053 kvm_get_supported_feature_msrs(s);
2054
25d2e361
MT
2055 uname(&utsname);
2056 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2057
4c5b10b7 2058 /*
11076198
JK
2059 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2060 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2061 * Since these must be part of guest physical memory, we need to allocate
2062 * them, both by setting their start addresses in the kernel and by
2063 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2064 *
2065 * Older KVM versions may not support setting the identity map base. In
2066 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2067 * size.
4c5b10b7 2068 */
11076198
JK
2069 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2070 /* Allows up to 16M BIOSes. */
2071 identity_base = 0xfeffc000;
2072
2073 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2074 if (ret < 0) {
2075 return ret;
2076 }
4c5b10b7 2077 }
e56ff191 2078
11076198
JK
2079 /* Set TSS base one page after EPT identity map. */
2080 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2081 if (ret < 0) {
2082 return ret;
2083 }
2084
11076198
JK
2085 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2086 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2087 if (ret < 0) {
11076198 2088 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2089 return ret;
2090 }
3c85e74f 2091 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 2092
4689b77b 2093 shadow_mem = machine_kvm_shadow_mem(ms);
36ad0e94
MA
2094 if (shadow_mem != -1) {
2095 shadow_mem /= 4096;
2096 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2097 if (ret < 0) {
2098 return ret;
39d6960a
JK
2099 }
2100 }
6410848b 2101
d870cfde
GA
2102 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2103 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2104 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
6410848b
PB
2105 smram_machine_done.notify = register_smram_listener;
2106 qemu_add_machine_init_done_notifier(&smram_machine_done);
2107 }
6f131f13
MT
2108
2109 if (enable_cpu_pm) {
2110 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2111 int ret;
2112
2113/* Work around for kernel header with a typo. TODO: fix header and drop. */
2114#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2115#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2116#endif
2117 if (disable_exits) {
2118 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2119 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2120 KVM_X86_DISABLE_EXITS_PAUSE |
2121 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2122 }
2123
2124 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2125 disable_exits);
2126 if (ret < 0) {
2127 error_report("kvm: guest stopping CPU not supported: %s",
2128 strerror(-ret));
2129 }
2130 }
2131
11076198 2132 return 0;
05330448 2133}
b9bec74b 2134
05330448
AL
2135static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2136{
2137 lhs->selector = rhs->selector;
2138 lhs->base = rhs->base;
2139 lhs->limit = rhs->limit;
2140 lhs->type = 3;
2141 lhs->present = 1;
2142 lhs->dpl = 3;
2143 lhs->db = 0;
2144 lhs->s = 1;
2145 lhs->l = 0;
2146 lhs->g = 0;
2147 lhs->avl = 0;
2148 lhs->unusable = 0;
2149}
2150
2151static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2152{
2153 unsigned flags = rhs->flags;
2154 lhs->selector = rhs->selector;
2155 lhs->base = rhs->base;
2156 lhs->limit = rhs->limit;
2157 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2158 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2159 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2160 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2161 lhs->s = (flags & DESC_S_MASK) != 0;
2162 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2163 lhs->g = (flags & DESC_G_MASK) != 0;
2164 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2165 lhs->unusable = !lhs->present;
7e680753 2166 lhs->padding = 0;
05330448
AL
2167}
2168
2169static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2170{
2171 lhs->selector = rhs->selector;
2172 lhs->base = rhs->base;
2173 lhs->limit = rhs->limit;
d45fc087
RP
2174 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2175 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2176 (rhs->dpl << DESC_DPL_SHIFT) |
2177 (rhs->db << DESC_B_SHIFT) |
2178 (rhs->s * DESC_S_MASK) |
2179 (rhs->l << DESC_L_SHIFT) |
2180 (rhs->g * DESC_G_MASK) |
2181 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2182}
2183
2184static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2185{
b9bec74b 2186 if (set) {
05330448 2187 *kvm_reg = *qemu_reg;
b9bec74b 2188 } else {
05330448 2189 *qemu_reg = *kvm_reg;
b9bec74b 2190 }
05330448
AL
2191}
2192
1bc22652 2193static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2194{
1bc22652 2195 CPUX86State *env = &cpu->env;
05330448
AL
2196 struct kvm_regs regs;
2197 int ret = 0;
2198
2199 if (!set) {
1bc22652 2200 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2201 if (ret < 0) {
05330448 2202 return ret;
b9bec74b 2203 }
05330448
AL
2204 }
2205
2206 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2207 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2208 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2209 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2210 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2211 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2212 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2213 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2214#ifdef TARGET_X86_64
2215 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2216 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2217 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2218 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2219 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2220 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2221 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2222 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2223#endif
2224
2225 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2226 kvm_getput_reg(&regs.rip, &env->eip, set);
2227
b9bec74b 2228 if (set) {
1bc22652 2229 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2230 }
05330448
AL
2231
2232 return ret;
2233}
2234
1bc22652 2235static int kvm_put_fpu(X86CPU *cpu)
05330448 2236{
1bc22652 2237 CPUX86State *env = &cpu->env;
05330448
AL
2238 struct kvm_fpu fpu;
2239 int i;
2240
2241 memset(&fpu, 0, sizeof fpu);
2242 fpu.fsw = env->fpus & ~(7 << 11);
2243 fpu.fsw |= (env->fpstt & 7) << 11;
2244 fpu.fcw = env->fpuc;
42cc8fa6
JK
2245 fpu.last_opcode = env->fpop;
2246 fpu.last_ip = env->fpip;
2247 fpu.last_dp = env->fpdp;
b9bec74b
JK
2248 for (i = 0; i < 8; ++i) {
2249 fpu.ftwx |= (!env->fptags[i]) << i;
2250 }
05330448 2251 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2252 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2253 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2254 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2255 }
05330448
AL
2256 fpu.mxcsr = env->mxcsr;
2257
1bc22652 2258 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2259}
2260
6b42494b
JK
2261#define XSAVE_FCW_FSW 0
2262#define XSAVE_FTW_FOP 1
f1665b21
SY
2263#define XSAVE_CWD_RIP 2
2264#define XSAVE_CWD_RDP 4
2265#define XSAVE_MXCSR 6
2266#define XSAVE_ST_SPACE 8
2267#define XSAVE_XMM_SPACE 40
2268#define XSAVE_XSTATE_BV 128
2269#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
2270#define XSAVE_BNDREGS 240
2271#define XSAVE_BNDCSR 256
9aecd6f8
CP
2272#define XSAVE_OPMASK 272
2273#define XSAVE_ZMM_Hi256 288
2274#define XSAVE_Hi16_ZMM 416
f74eefe0 2275#define XSAVE_PKRU 672
f1665b21 2276
b503717d 2277#define XSAVE_BYTE_OFFSET(word_offset) \
f18793b0 2278 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
b503717d
EH
2279
2280#define ASSERT_OFFSET(word_offset, field) \
2281 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2282 offsetof(X86XSaveArea, field))
2283
2284ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2285ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2286ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2287ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2288ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2289ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2290ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2291ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2292ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2293ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2294ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2295ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2296ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2297ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2298ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2299
1bc22652 2300static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2301{
1bc22652 2302 CPUX86State *env = &cpu->env;
5b8063c4 2303 X86XSaveArea *xsave = env->xsave_buf;
f1665b21 2304
28143b40 2305 if (!has_xsave) {
1bc22652 2306 return kvm_put_fpu(cpu);
b9bec74b 2307 }
86a57621 2308 x86_cpu_xsave_all_areas(cpu, xsave);
f1665b21 2309
9be38598 2310 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2311}
2312
1bc22652 2313static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2314{
1bc22652 2315 CPUX86State *env = &cpu->env;
bdfc8480 2316 struct kvm_xcrs xcrs = {};
f1665b21 2317
28143b40 2318 if (!has_xcrs) {
f1665b21 2319 return 0;
b9bec74b 2320 }
f1665b21
SY
2321
2322 xcrs.nr_xcrs = 1;
2323 xcrs.flags = 0;
2324 xcrs.xcrs[0].xcr = 0;
2325 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2326 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2327}
2328
1bc22652 2329static int kvm_put_sregs(X86CPU *cpu)
05330448 2330{
1bc22652 2331 CPUX86State *env = &cpu->env;
05330448
AL
2332 struct kvm_sregs sregs;
2333
0e607a80
JK
2334 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2335 if (env->interrupt_injected >= 0) {
2336 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2337 (uint64_t)1 << (env->interrupt_injected % 64);
2338 }
05330448
AL
2339
2340 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2341 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2342 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2343 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2344 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2345 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2346 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2347 } else {
b9bec74b
JK
2348 set_seg(&sregs.cs, &env->segs[R_CS]);
2349 set_seg(&sregs.ds, &env->segs[R_DS]);
2350 set_seg(&sregs.es, &env->segs[R_ES]);
2351 set_seg(&sregs.fs, &env->segs[R_FS]);
2352 set_seg(&sregs.gs, &env->segs[R_GS]);
2353 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2354 }
2355
2356 set_seg(&sregs.tr, &env->tr);
2357 set_seg(&sregs.ldt, &env->ldt);
2358
2359 sregs.idt.limit = env->idt.limit;
2360 sregs.idt.base = env->idt.base;
7e680753 2361 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2362 sregs.gdt.limit = env->gdt.limit;
2363 sregs.gdt.base = env->gdt.base;
7e680753 2364 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2365
2366 sregs.cr0 = env->cr[0];
2367 sregs.cr2 = env->cr[2];
2368 sregs.cr3 = env->cr[3];
2369 sregs.cr4 = env->cr[4];
2370
02e51483
CF
2371 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2372 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2373
2374 sregs.efer = env->efer;
2375
1bc22652 2376 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2377}
2378
d71b62a1
EH
2379static void kvm_msr_buf_reset(X86CPU *cpu)
2380{
2381 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2382}
2383
9c600a84
EH
2384static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2385{
2386 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2387 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2388 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2389
2390 assert((void *)(entry + 1) <= limit);
2391
1abc2cae
EH
2392 entry->index = index;
2393 entry->reserved = 0;
2394 entry->data = value;
9c600a84
EH
2395 msrs->nmsrs++;
2396}
2397
73e1b8f2
PB
2398static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2399{
2400 kvm_msr_buf_reset(cpu);
2401 kvm_msr_entry_add(cpu, index, value);
2402
2403 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2404}
2405
f8d9ccf8
DDAG
2406void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2407{
2408 int ret;
2409
2410 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2411 assert(ret == 1);
2412}
2413
7477cd38
MT
2414static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2415{
2416 CPUX86State *env = &cpu->env;
48e1a45c 2417 int ret;
7477cd38
MT
2418
2419 if (!has_msr_tsc_deadline) {
2420 return 0;
2421 }
2422
73e1b8f2 2423 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2424 if (ret < 0) {
2425 return ret;
2426 }
2427
2428 assert(ret == 1);
2429 return 0;
7477cd38
MT
2430}
2431
6bdf863d
JK
2432/*
2433 * Provide a separate write service for the feature control MSR in order to
2434 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2435 * before writing any other state because forcibly leaving nested mode
2436 * invalidates the VCPU state.
2437 */
2438static int kvm_put_msr_feature_control(X86CPU *cpu)
2439{
48e1a45c
PB
2440 int ret;
2441
2442 if (!has_msr_feature_control) {
2443 return 0;
2444 }
6bdf863d 2445
73e1b8f2
PB
2446 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2447 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2448 if (ret < 0) {
2449 return ret;
2450 }
2451
2452 assert(ret == 1);
2453 return 0;
6bdf863d
JK
2454}
2455
20a78b02
PB
2456static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2457{
2458 uint32_t default1, can_be_one, can_be_zero;
2459 uint32_t must_be_one;
2460
2461 switch (index) {
2462 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2463 default1 = 0x00000016;
2464 break;
2465 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2466 default1 = 0x0401e172;
2467 break;
2468 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2469 default1 = 0x000011ff;
2470 break;
2471 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2472 default1 = 0x00036dff;
2473 break;
2474 case MSR_IA32_VMX_PROCBASED_CTLS2:
2475 default1 = 0;
2476 break;
2477 default:
2478 abort();
2479 }
2480
2481 /* If a feature bit is set, the control can be either set or clear.
2482 * Otherwise the value is limited to either 0 or 1 by default1.
2483 */
2484 can_be_one = features | default1;
2485 can_be_zero = features | ~default1;
2486 must_be_one = ~can_be_zero;
2487
2488 /*
2489 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2490 * Bit 32:63 -> 1 if the control bit can be one.
2491 */
2492 return must_be_one | (((uint64_t)can_be_one) << 32);
2493}
2494
2495#define VMCS12_MAX_FIELD_INDEX (0x17)
2496
2497static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2498{
2499 uint64_t kvm_vmx_basic =
2500 kvm_arch_get_supported_msr_feature(kvm_state,
2501 MSR_IA32_VMX_BASIC);
2502 uint64_t kvm_vmx_misc =
2503 kvm_arch_get_supported_msr_feature(kvm_state,
2504 MSR_IA32_VMX_MISC);
2505 uint64_t kvm_vmx_ept_vpid =
2506 kvm_arch_get_supported_msr_feature(kvm_state,
2507 MSR_IA32_VMX_EPT_VPID_CAP);
2508
2509 /*
2510 * If the guest is 64-bit, a value of 1 is allowed for the host address
2511 * space size vmexit control.
2512 */
2513 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2514 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2515
2516 /*
2517 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2518 * not change them for backwards compatibility.
2519 */
2520 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2521 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2522 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2523 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2524
2525 /*
2526 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2527 * change in the future but are always zero for now, clear them to be
2528 * future proof. Bits 32-63 in theory could change, though KVM does
2529 * not support dual-monitor treatment and probably never will; mask
2530 * them out as well.
2531 */
2532 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2533 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2534 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2535
2536 /*
2537 * EPT memory types should not change either, so we do not bother
2538 * adding features for them.
2539 */
2540 uint64_t fixed_vmx_ept_mask =
2541 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2542 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2543 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2544
2545 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2546 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2547 f[FEAT_VMX_PROCBASED_CTLS]));
2548 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2549 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2550 f[FEAT_VMX_PINBASED_CTLS]));
2551 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2552 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2553 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2554 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2555 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2556 f[FEAT_VMX_ENTRY_CTLS]));
2557 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2558 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2559 f[FEAT_VMX_SECONDARY_CTLS]));
2560 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2561 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2562 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2563 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2564 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2565 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2566 if (has_msr_vmx_vmfunc) {
2567 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2568 }
2569
2570 /*
2571 * Just to be safe, write these with constant values. The CRn_FIXED1
2572 * MSRs are generated by KVM based on the vCPU's CPUID.
2573 */
2574 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2575 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2576 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2577 CR4_VMXE_MASK);
2578 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2579 VMCS12_MAX_FIELD_INDEX << 1);
2580}
2581
1bc22652 2582static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 2583{
1bc22652 2584 CPUX86State *env = &cpu->env;
9c600a84 2585 int i;
48e1a45c 2586 int ret;
05330448 2587
d71b62a1
EH
2588 kvm_msr_buf_reset(cpu);
2589
9c600a84
EH
2590 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2591 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2592 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2593 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 2594 if (has_msr_star) {
9c600a84 2595 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 2596 }
c3a3a7d3 2597 if (has_msr_hsave_pa) {
9c600a84 2598 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2599 }
c9b8f6b6 2600 if (has_msr_tsc_aux) {
9c600a84 2601 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2602 }
f28558d3 2603 if (has_msr_tsc_adjust) {
9c600a84 2604 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2605 }
21e87c46 2606 if (has_msr_misc_enable) {
9c600a84 2607 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2608 env->msr_ia32_misc_enable);
2609 }
fc12d72e 2610 if (has_msr_smbase) {
9c600a84 2611 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2612 }
e13713db
LA
2613 if (has_msr_smi_count) {
2614 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2615 }
439d19f2 2616 if (has_msr_bndcfgs) {
9c600a84 2617 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2618 }
18cd2c17 2619 if (has_msr_xss) {
9c600a84 2620 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2621 }
a33a2cfe
PB
2622 if (has_msr_spec_ctrl) {
2623 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2624 }
cfeea0c0
KRW
2625 if (has_msr_virt_ssbd) {
2626 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2627 }
2628
05330448 2629#ifdef TARGET_X86_64
25d2e361 2630 if (lm_capable_kernel) {
9c600a84
EH
2631 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2632 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2633 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2634 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2635 }
05330448 2636#endif
a33a2cfe 2637
d86f9636 2638 /* If host supports feature MSR, write down. */
aec5e9c3
BD
2639 if (has_msr_arch_capabs) {
2640 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2641 env->features[FEAT_ARCH_CAPABILITIES]);
d86f9636
RH
2642 }
2643
597360c0
XL
2644 if (has_msr_core_capabs) {
2645 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2646 env->features[FEAT_CORE_CAPABILITY]);
2647 }
2648
ff5c186b 2649 /*
0d894367
PB
2650 * The following MSRs have side effects on the guest or are too heavy
2651 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
2652 */
2653 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
2654 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2655 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2656 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
55c911a5 2657 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2658 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 2659 }
55c911a5 2660 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2661 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 2662 }
55c911a5 2663 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2664 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 2665 }
d645e132
MT
2666
2667 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2668 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2669 }
2670
0b368a10
JD
2671 if (has_architectural_pmu_version > 0) {
2672 if (has_architectural_pmu_version > 1) {
2673 /* Stop the counter. */
2674 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2675 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2676 }
0d894367
PB
2677
2678 /* Set the counter values. */
0b368a10 2679 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2680 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
2681 env->msr_fixed_counters[i]);
2682 }
0b368a10 2683 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 2684 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 2685 env->msr_gp_counters[i]);
9c600a84 2686 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
2687 env->msr_gp_evtsel[i]);
2688 }
0b368a10
JD
2689 if (has_architectural_pmu_version > 1) {
2690 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2691 env->msr_global_status);
2692 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2693 env->msr_global_ovf_ctrl);
2694
2695 /* Now start the PMU. */
2696 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2697 env->msr_fixed_ctr_ctrl);
2698 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2699 env->msr_global_ctrl);
2700 }
0d894367 2701 }
da1cc323
EY
2702 /*
2703 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2704 * only sync them to KVM on the first cpu
2705 */
2706 if (current_cpu == first_cpu) {
2707 if (has_msr_hv_hypercall) {
2708 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2709 env->msr_hv_guest_os_id);
2710 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2711 env->msr_hv_hypercall);
2712 }
2d384d7c 2713 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
2714 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2715 env->msr_hv_tsc);
2716 }
2d384d7c 2717 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
2718 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2719 env->msr_hv_reenlightenment_control);
2720 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2721 env->msr_hv_tsc_emulation_control);
2722 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2723 env->msr_hv_tsc_emulation_status);
2724 }
eab70139 2725 }
2d384d7c 2726 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 2727 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 2728 env->msr_hv_vapic);
eab70139 2729 }
f2a53c9e
AS
2730 if (has_msr_hv_crash) {
2731 int j;
2732
5e953812 2733 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 2734 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
2735 env->msr_hv_crash_params[j]);
2736
5e953812 2737 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 2738 }
46eb8f98 2739 if (has_msr_hv_runtime) {
9c600a84 2740 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 2741 }
2d384d7c
VK
2742 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2743 && hv_vpindex_settable) {
701189e3
RK
2744 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2745 hyperv_vp_index(CPU(cpu)));
e9688fab 2746 }
2d384d7c 2747 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
2748 int j;
2749
09df29b6
RK
2750 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2751
9c600a84 2752 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 2753 env->msr_hv_synic_control);
9c600a84 2754 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 2755 env->msr_hv_synic_evt_page);
9c600a84 2756 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
2757 env->msr_hv_synic_msg_page);
2758
2759 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 2760 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
2761 env->msr_hv_synic_sint[j]);
2762 }
2763 }
ff99aa64
AS
2764 if (has_msr_hv_stimer) {
2765 int j;
2766
2767 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 2768 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
2769 env->msr_hv_stimer_config[j]);
2770 }
2771
2772 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 2773 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
2774 env->msr_hv_stimer_count[j]);
2775 }
2776 }
1eabfce6 2777 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
2778 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2779
9c600a84
EH
2780 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2781 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2782 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2783 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2784 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2785 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2786 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2787 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2788 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2789 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2790 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2791 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 2792 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
2793 /* The CPU GPs if we write to a bit above the physical limit of
2794 * the host CPU (and KVM emulates that)
2795 */
2796 uint64_t mask = env->mtrr_var[i].mask;
2797 mask &= phys_mask;
2798
9c600a84
EH
2799 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2800 env->mtrr_var[i].base);
112dad69 2801 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
2802 }
2803 }
b77146e9
CP
2804 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2805 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2806 0x14, 1, R_EAX) & 0x7;
2807
2808 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2809 env->msr_rtit_ctrl);
2810 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2811 env->msr_rtit_status);
2812 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2813 env->msr_rtit_output_base);
2814 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2815 env->msr_rtit_output_mask);
2816 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2817 env->msr_rtit_cr3_match);
2818 for (i = 0; i < addr_num; i++) {
2819 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2820 env->msr_rtit_addrs[i]);
2821 }
2822 }
6bdf863d
JK
2823
2824 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2825 * kvm_put_msr_feature_control. */
20a78b02
PB
2826
2827 /*
2828 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2829 * all kernels with MSR features should have them.
2830 */
2831 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2832 kvm_msr_entry_add_vmx(cpu, env->features);
2833 }
ea643051 2834 }
20a78b02 2835
57780495 2836 if (env->mcg_cap) {
d8da8574 2837 int i;
b9bec74b 2838
9c600a84
EH
2839 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2840 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
2841 if (has_msr_mcg_ext_ctl) {
2842 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2843 }
c34d440a 2844 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2845 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
2846 }
2847 }
1a03675d 2848
d71b62a1 2849 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
48e1a45c
PB
2850 if (ret < 0) {
2851 return ret;
2852 }
05330448 2853
c70b11d1
EH
2854 if (ret < cpu->kvm_msr_buf->nmsrs) {
2855 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2856 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2857 (uint32_t)e->index, (uint64_t)e->data);
2858 }
2859
9c600a84 2860 assert(ret == cpu->kvm_msr_buf->nmsrs);
48e1a45c 2861 return 0;
05330448
AL
2862}
2863
2864
1bc22652 2865static int kvm_get_fpu(X86CPU *cpu)
05330448 2866{
1bc22652 2867 CPUX86State *env = &cpu->env;
05330448
AL
2868 struct kvm_fpu fpu;
2869 int i, ret;
2870
1bc22652 2871 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 2872 if (ret < 0) {
05330448 2873 return ret;
b9bec74b 2874 }
05330448
AL
2875
2876 env->fpstt = (fpu.fsw >> 11) & 7;
2877 env->fpus = fpu.fsw;
2878 env->fpuc = fpu.fcw;
42cc8fa6
JK
2879 env->fpop = fpu.last_opcode;
2880 env->fpip = fpu.last_ip;
2881 env->fpdp = fpu.last_dp;
b9bec74b
JK
2882 for (i = 0; i < 8; ++i) {
2883 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2884 }
05330448 2885 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 2886 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2887 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2888 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 2889 }
05330448
AL
2890 env->mxcsr = fpu.mxcsr;
2891
2892 return 0;
2893}
2894
1bc22652 2895static int kvm_get_xsave(X86CPU *cpu)
f1665b21 2896{
1bc22652 2897 CPUX86State *env = &cpu->env;
5b8063c4 2898 X86XSaveArea *xsave = env->xsave_buf;
86a57621 2899 int ret;
f1665b21 2900
28143b40 2901 if (!has_xsave) {
1bc22652 2902 return kvm_get_fpu(cpu);
b9bec74b 2903 }
f1665b21 2904
1bc22652 2905 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 2906 if (ret < 0) {
f1665b21 2907 return ret;
0f53994f 2908 }
86a57621 2909 x86_cpu_xrstor_all_areas(cpu, xsave);
f1665b21 2910
f1665b21 2911 return 0;
f1665b21
SY
2912}
2913
1bc22652 2914static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 2915{
1bc22652 2916 CPUX86State *env = &cpu->env;
f1665b21
SY
2917 int i, ret;
2918 struct kvm_xcrs xcrs;
2919
28143b40 2920 if (!has_xcrs) {
f1665b21 2921 return 0;
b9bec74b 2922 }
f1665b21 2923
1bc22652 2924 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 2925 if (ret < 0) {
f1665b21 2926 return ret;
b9bec74b 2927 }
f1665b21 2928
b9bec74b 2929 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 2930 /* Only support xcr0 now */
0fd53fec
PB
2931 if (xcrs.xcrs[i].xcr == 0) {
2932 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
2933 break;
2934 }
b9bec74b 2935 }
f1665b21 2936 return 0;
f1665b21
SY
2937}
2938
1bc22652 2939static int kvm_get_sregs(X86CPU *cpu)
05330448 2940{
1bc22652 2941 CPUX86State *env = &cpu->env;
05330448 2942 struct kvm_sregs sregs;
0e607a80 2943 int bit, i, ret;
05330448 2944
1bc22652 2945 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 2946 if (ret < 0) {
05330448 2947 return ret;
b9bec74b 2948 }
05330448 2949
0e607a80
JK
2950 /* There can only be one pending IRQ set in the bitmap at a time, so try
2951 to find it and save its number instead (-1 for none). */
2952 env->interrupt_injected = -1;
2953 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2954 if (sregs.interrupt_bitmap[i]) {
2955 bit = ctz64(sregs.interrupt_bitmap[i]);
2956 env->interrupt_injected = i * 64 + bit;
2957 break;
2958 }
2959 }
05330448
AL
2960
2961 get_seg(&env->segs[R_CS], &sregs.cs);
2962 get_seg(&env->segs[R_DS], &sregs.ds);
2963 get_seg(&env->segs[R_ES], &sregs.es);
2964 get_seg(&env->segs[R_FS], &sregs.fs);
2965 get_seg(&env->segs[R_GS], &sregs.gs);
2966 get_seg(&env->segs[R_SS], &sregs.ss);
2967
2968 get_seg(&env->tr, &sregs.tr);
2969 get_seg(&env->ldt, &sregs.ldt);
2970
2971 env->idt.limit = sregs.idt.limit;
2972 env->idt.base = sregs.idt.base;
2973 env->gdt.limit = sregs.gdt.limit;
2974 env->gdt.base = sregs.gdt.base;
2975
2976 env->cr[0] = sregs.cr0;
2977 env->cr[2] = sregs.cr2;
2978 env->cr[3] = sregs.cr3;
2979 env->cr[4] = sregs.cr4;
2980
05330448 2981 env->efer = sregs.efer;
cce47516
JK
2982
2983 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 2984 x86_update_hflags(env);
05330448
AL
2985
2986 return 0;
2987}
2988
1bc22652 2989static int kvm_get_msrs(X86CPU *cpu)
05330448 2990{
1bc22652 2991 CPUX86State *env = &cpu->env;
d71b62a1 2992 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 2993 int ret, i;
fcc35e7c 2994 uint64_t mtrr_top_bits;
05330448 2995
d71b62a1
EH
2996 kvm_msr_buf_reset(cpu);
2997
9c600a84
EH
2998 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2999 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3000 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3001 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3002 if (has_msr_star) {
9c600a84 3003 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3004 }
c3a3a7d3 3005 if (has_msr_hsave_pa) {
9c600a84 3006 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3007 }
c9b8f6b6 3008 if (has_msr_tsc_aux) {
9c600a84 3009 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3010 }
f28558d3 3011 if (has_msr_tsc_adjust) {
9c600a84 3012 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3013 }
aa82ba54 3014 if (has_msr_tsc_deadline) {
9c600a84 3015 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3016 }
21e87c46 3017 if (has_msr_misc_enable) {
9c600a84 3018 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3019 }
fc12d72e 3020 if (has_msr_smbase) {
9c600a84 3021 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3022 }
e13713db
LA
3023 if (has_msr_smi_count) {
3024 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3025 }
df67696e 3026 if (has_msr_feature_control) {
9c600a84 3027 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3028 }
79e9ebeb 3029 if (has_msr_bndcfgs) {
9c600a84 3030 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3031 }
18cd2c17 3032 if (has_msr_xss) {
9c600a84 3033 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3034 }
a33a2cfe
PB
3035 if (has_msr_spec_ctrl) {
3036 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3037 }
cfeea0c0
KRW
3038 if (has_msr_virt_ssbd) {
3039 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3040 }
b8cc45d6 3041 if (!env->tsc_valid) {
9c600a84 3042 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3043 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3044 }
3045
05330448 3046#ifdef TARGET_X86_64
25d2e361 3047 if (lm_capable_kernel) {
9c600a84
EH
3048 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3049 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3050 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3051 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3052 }
05330448 3053#endif
9c600a84
EH
3054 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3055 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
55c911a5 3056 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 3057 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
c5999bfc 3058 }
55c911a5 3059 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3060 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3061 }
55c911a5 3062 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3063 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3064 }
d645e132
MT
3065 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3066 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3067 }
0b368a10
JD
3068 if (has_architectural_pmu_version > 0) {
3069 if (has_architectural_pmu_version > 1) {
3070 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3071 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3072 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3073 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3074 }
3075 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3076 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3077 }
0b368a10 3078 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3079 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3080 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3081 }
3082 }
1a03675d 3083
57780495 3084 if (env->mcg_cap) {
9c600a84
EH
3085 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3086 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3087 if (has_msr_mcg_ext_ctl) {
3088 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3089 }
b9bec74b 3090 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3091 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3092 }
57780495 3093 }
57780495 3094
1c90ef26 3095 if (has_msr_hv_hypercall) {
9c600a84
EH
3096 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3097 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3098 }
2d384d7c 3099 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3100 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3101 }
2d384d7c 3102 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3103 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3104 }
2d384d7c 3105 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3106 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3107 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3108 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3109 }
f2a53c9e
AS
3110 if (has_msr_hv_crash) {
3111 int j;
3112
5e953812 3113 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3114 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3115 }
3116 }
46eb8f98 3117 if (has_msr_hv_runtime) {
9c600a84 3118 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3119 }
2d384d7c 3120 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3121 uint32_t msr;
3122
9c600a84 3123 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3124 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3125 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3126 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3127 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3128 }
3129 }
ff99aa64
AS
3130 if (has_msr_hv_stimer) {
3131 uint32_t msr;
3132
3133 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3134 msr++) {
9c600a84 3135 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3136 }
3137 }
1eabfce6 3138 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3139 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3140 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3141 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3142 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3143 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3144 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3145 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3146 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3147 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3148 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3149 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3150 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3151 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3152 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3153 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3154 }
3155 }
5ef68987 3156
b77146e9
CP
3157 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3158 int addr_num =
3159 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3160
3161 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3162 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3163 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3164 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3165 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3166 for (i = 0; i < addr_num; i++) {
3167 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3168 }
3169 }
3170
d71b62a1 3171 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3172 if (ret < 0) {
05330448 3173 return ret;
b9bec74b 3174 }
05330448 3175
c70b11d1
EH
3176 if (ret < cpu->kvm_msr_buf->nmsrs) {
3177 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3178 error_report("error: failed to get MSR 0x%" PRIx32,
3179 (uint32_t)e->index);
3180 }
3181
9c600a84 3182 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3183 /*
3184 * MTRR masks: Each mask consists of 5 parts
3185 * a 10..0: must be zero
3186 * b 11 : valid bit
3187 * c n-1.12: actual mask bits
3188 * d 51..n: reserved must be zero
3189 * e 63.52: reserved must be zero
3190 *
3191 * 'n' is the number of physical bits supported by the CPU and is
3192 * apparently always <= 52. We know our 'n' but don't know what
3193 * the destinations 'n' is; it might be smaller, in which case
3194 * it masks (c) on loading. It might be larger, in which case
3195 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3196 * we're migrating to.
3197 */
3198
3199 if (cpu->fill_mtrr_mask) {
3200 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3201 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3202 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3203 } else {
3204 mtrr_top_bits = 0;
3205 }
3206
05330448 3207 for (i = 0; i < ret; i++) {
0d894367
PB
3208 uint32_t index = msrs[i].index;
3209 switch (index) {
05330448
AL
3210 case MSR_IA32_SYSENTER_CS:
3211 env->sysenter_cs = msrs[i].data;
3212 break;
3213 case MSR_IA32_SYSENTER_ESP:
3214 env->sysenter_esp = msrs[i].data;
3215 break;
3216 case MSR_IA32_SYSENTER_EIP:
3217 env->sysenter_eip = msrs[i].data;
3218 break;
0c03266a
JK
3219 case MSR_PAT:
3220 env->pat = msrs[i].data;
3221 break;
05330448
AL
3222 case MSR_STAR:
3223 env->star = msrs[i].data;
3224 break;
3225#ifdef TARGET_X86_64
3226 case MSR_CSTAR:
3227 env->cstar = msrs[i].data;
3228 break;
3229 case MSR_KERNELGSBASE:
3230 env->kernelgsbase = msrs[i].data;
3231 break;
3232 case MSR_FMASK:
3233 env->fmask = msrs[i].data;
3234 break;
3235 case MSR_LSTAR:
3236 env->lstar = msrs[i].data;
3237 break;
3238#endif
3239 case MSR_IA32_TSC:
3240 env->tsc = msrs[i].data;
3241 break;
c9b8f6b6
AS
3242 case MSR_TSC_AUX:
3243 env->tsc_aux = msrs[i].data;
3244 break;
f28558d3
WA
3245 case MSR_TSC_ADJUST:
3246 env->tsc_adjust = msrs[i].data;
3247 break;
aa82ba54
LJ
3248 case MSR_IA32_TSCDEADLINE:
3249 env->tsc_deadline = msrs[i].data;
3250 break;
aa851e36
MT
3251 case MSR_VM_HSAVE_PA:
3252 env->vm_hsave = msrs[i].data;
3253 break;
1a03675d
GC
3254 case MSR_KVM_SYSTEM_TIME:
3255 env->system_time_msr = msrs[i].data;
3256 break;
3257 case MSR_KVM_WALL_CLOCK:
3258 env->wall_clock_msr = msrs[i].data;
3259 break;
57780495
MT
3260 case MSR_MCG_STATUS:
3261 env->mcg_status = msrs[i].data;
3262 break;
3263 case MSR_MCG_CTL:
3264 env->mcg_ctl = msrs[i].data;
3265 break;
87f8b626
AR
3266 case MSR_MCG_EXT_CTL:
3267 env->mcg_ext_ctl = msrs[i].data;
3268 break;
21e87c46
AK
3269 case MSR_IA32_MISC_ENABLE:
3270 env->msr_ia32_misc_enable = msrs[i].data;
3271 break;
fc12d72e
PB
3272 case MSR_IA32_SMBASE:
3273 env->smbase = msrs[i].data;
3274 break;
e13713db
LA
3275 case MSR_SMI_COUNT:
3276 env->msr_smi_count = msrs[i].data;
3277 break;
0779caeb
ACL
3278 case MSR_IA32_FEATURE_CONTROL:
3279 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3280 break;
79e9ebeb
LJ
3281 case MSR_IA32_BNDCFGS:
3282 env->msr_bndcfgs = msrs[i].data;
3283 break;
18cd2c17
WL
3284 case MSR_IA32_XSS:
3285 env->xss = msrs[i].data;
3286 break;
57780495 3287 default:
57780495
MT
3288 if (msrs[i].index >= MSR_MC0_CTL &&
3289 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3290 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3291 }
d8da8574 3292 break;
f6584ee2
GN
3293 case MSR_KVM_ASYNC_PF_EN:
3294 env->async_pf_en_msr = msrs[i].data;
3295 break;
bc9a839d
MT
3296 case MSR_KVM_PV_EOI_EN:
3297 env->pv_eoi_en_msr = msrs[i].data;
3298 break;
917367aa
MT
3299 case MSR_KVM_STEAL_TIME:
3300 env->steal_time_msr = msrs[i].data;
3301 break;
d645e132
MT
3302 case MSR_KVM_POLL_CONTROL: {
3303 env->poll_control_msr = msrs[i].data;
3304 break;
3305 }
0d894367
PB
3306 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3307 env->msr_fixed_ctr_ctrl = msrs[i].data;
3308 break;
3309 case MSR_CORE_PERF_GLOBAL_CTRL:
3310 env->msr_global_ctrl = msrs[i].data;
3311 break;
3312 case MSR_CORE_PERF_GLOBAL_STATUS:
3313 env->msr_global_status = msrs[i].data;
3314 break;
3315 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3316 env->msr_global_ovf_ctrl = msrs[i].data;
3317 break;
3318 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3319 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3320 break;
3321 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3322 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3323 break;
3324 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3325 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3326 break;
1c90ef26
VR
3327 case HV_X64_MSR_HYPERCALL:
3328 env->msr_hv_hypercall = msrs[i].data;
3329 break;
3330 case HV_X64_MSR_GUEST_OS_ID:
3331 env->msr_hv_guest_os_id = msrs[i].data;
3332 break;
5ef68987
VR
3333 case HV_X64_MSR_APIC_ASSIST_PAGE:
3334 env->msr_hv_vapic = msrs[i].data;
3335 break;
48a5f3bc
VR
3336 case HV_X64_MSR_REFERENCE_TSC:
3337 env->msr_hv_tsc = msrs[i].data;
3338 break;
f2a53c9e
AS
3339 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3340 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3341 break;
46eb8f98
AS
3342 case HV_X64_MSR_VP_RUNTIME:
3343 env->msr_hv_runtime = msrs[i].data;
3344 break;
866eea9a
AS
3345 case HV_X64_MSR_SCONTROL:
3346 env->msr_hv_synic_control = msrs[i].data;
3347 break;
866eea9a
AS
3348 case HV_X64_MSR_SIEFP:
3349 env->msr_hv_synic_evt_page = msrs[i].data;
3350 break;
3351 case HV_X64_MSR_SIMP:
3352 env->msr_hv_synic_msg_page = msrs[i].data;
3353 break;
3354 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3355 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3356 break;
3357 case HV_X64_MSR_STIMER0_CONFIG:
3358 case HV_X64_MSR_STIMER1_CONFIG:
3359 case HV_X64_MSR_STIMER2_CONFIG:
3360 case HV_X64_MSR_STIMER3_CONFIG:
3361 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3362 msrs[i].data;
3363 break;
3364 case HV_X64_MSR_STIMER0_COUNT:
3365 case HV_X64_MSR_STIMER1_COUNT:
3366 case HV_X64_MSR_STIMER2_COUNT:
3367 case HV_X64_MSR_STIMER3_COUNT:
3368 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3369 msrs[i].data;
866eea9a 3370 break;
ba6a4fd9
VK
3371 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3372 env->msr_hv_reenlightenment_control = msrs[i].data;
3373 break;
3374 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3375 env->msr_hv_tsc_emulation_control = msrs[i].data;
3376 break;
3377 case HV_X64_MSR_TSC_EMULATION_STATUS:
3378 env->msr_hv_tsc_emulation_status = msrs[i].data;
3379 break;
d1ae67f6
AW
3380 case MSR_MTRRdefType:
3381 env->mtrr_deftype = msrs[i].data;
3382 break;
3383 case MSR_MTRRfix64K_00000:
3384 env->mtrr_fixed[0] = msrs[i].data;
3385 break;
3386 case MSR_MTRRfix16K_80000:
3387 env->mtrr_fixed[1] = msrs[i].data;
3388 break;
3389 case MSR_MTRRfix16K_A0000:
3390 env->mtrr_fixed[2] = msrs[i].data;
3391 break;
3392 case MSR_MTRRfix4K_C0000:
3393 env->mtrr_fixed[3] = msrs[i].data;
3394 break;
3395 case MSR_MTRRfix4K_C8000:
3396 env->mtrr_fixed[4] = msrs[i].data;
3397 break;
3398 case MSR_MTRRfix4K_D0000:
3399 env->mtrr_fixed[5] = msrs[i].data;
3400 break;
3401 case MSR_MTRRfix4K_D8000:
3402 env->mtrr_fixed[6] = msrs[i].data;
3403 break;
3404 case MSR_MTRRfix4K_E0000:
3405 env->mtrr_fixed[7] = msrs[i].data;
3406 break;
3407 case MSR_MTRRfix4K_E8000:
3408 env->mtrr_fixed[8] = msrs[i].data;
3409 break;
3410 case MSR_MTRRfix4K_F0000:
3411 env->mtrr_fixed[9] = msrs[i].data;
3412 break;
3413 case MSR_MTRRfix4K_F8000:
3414 env->mtrr_fixed[10] = msrs[i].data;
3415 break;
3416 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3417 if (index & 1) {
fcc35e7c
DDAG
3418 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3419 mtrr_top_bits;
d1ae67f6
AW
3420 } else {
3421 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3422 }
3423 break;
a33a2cfe
PB
3424 case MSR_IA32_SPEC_CTRL:
3425 env->spec_ctrl = msrs[i].data;
3426 break;
cfeea0c0
KRW
3427 case MSR_VIRT_SSBD:
3428 env->virt_ssbd = msrs[i].data;
3429 break;
b77146e9
CP
3430 case MSR_IA32_RTIT_CTL:
3431 env->msr_rtit_ctrl = msrs[i].data;
3432 break;
3433 case MSR_IA32_RTIT_STATUS:
3434 env->msr_rtit_status = msrs[i].data;
3435 break;
3436 case MSR_IA32_RTIT_OUTPUT_BASE:
3437 env->msr_rtit_output_base = msrs[i].data;
3438 break;
3439 case MSR_IA32_RTIT_OUTPUT_MASK:
3440 env->msr_rtit_output_mask = msrs[i].data;
3441 break;
3442 case MSR_IA32_RTIT_CR3_MATCH:
3443 env->msr_rtit_cr3_match = msrs[i].data;
3444 break;
3445 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3446 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3447 break;
05330448
AL
3448 }
3449 }
3450
3451 return 0;
3452}
3453
1bc22652 3454static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3455{
1bc22652 3456 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3457
1bc22652 3458 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3459}
3460
23d02d9b 3461static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3462{
259186a7 3463 CPUState *cs = CPU(cpu);
23d02d9b 3464 CPUX86State *env = &cpu->env;
9bdbe550
HB
3465 struct kvm_mp_state mp_state;
3466 int ret;
3467
259186a7 3468 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3469 if (ret < 0) {
3470 return ret;
3471 }
3472 env->mp_state = mp_state.mp_state;
c14750e8 3473 if (kvm_irqchip_in_kernel()) {
259186a7 3474 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3475 }
9bdbe550
HB
3476 return 0;
3477}
3478
1bc22652 3479static int kvm_get_apic(X86CPU *cpu)
680c1c6f 3480{
02e51483 3481 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
3482 struct kvm_lapic_state kapic;
3483 int ret;
3484
3d4b2649 3485 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 3486 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
3487 if (ret < 0) {
3488 return ret;
3489 }
3490
3491 kvm_get_apic_state(apic, &kapic);
3492 }
3493 return 0;
3494}
3495
1bc22652 3496static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 3497{
fc12d72e 3498 CPUState *cs = CPU(cpu);
1bc22652 3499 CPUX86State *env = &cpu->env;
076796f8 3500 struct kvm_vcpu_events events = {};
a0fb002c
JK
3501
3502 if (!kvm_has_vcpu_events()) {
3503 return 0;
3504 }
3505
fd13f23b
LA
3506 events.flags = 0;
3507
3508 if (has_exception_payload) {
3509 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3510 events.exception.pending = env->exception_pending;
3511 events.exception_has_payload = env->exception_has_payload;
3512 events.exception_payload = env->exception_payload;
3513 }
3514 events.exception.nr = env->exception_nr;
3515 events.exception.injected = env->exception_injected;
a0fb002c
JK
3516 events.exception.has_error_code = env->has_error_code;
3517 events.exception.error_code = env->error_code;
3518
3519 events.interrupt.injected = (env->interrupt_injected >= 0);
3520 events.interrupt.nr = env->interrupt_injected;
3521 events.interrupt.soft = env->soft_interrupt;
3522
3523 events.nmi.injected = env->nmi_injected;
3524 events.nmi.pending = env->nmi_pending;
3525 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3526
3527 events.sipi_vector = env->sipi_vector;
3528
fc12d72e
PB
3529 if (has_msr_smbase) {
3530 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3531 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3532 if (kvm_irqchip_in_kernel()) {
3533 /* As soon as these are moved to the kernel, remove them
3534 * from cs->interrupt_request.
3535 */
3536 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3537 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3538 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3539 } else {
3540 /* Keep these in cs->interrupt_request. */
3541 events.smi.pending = 0;
3542 events.smi.latched_init = 0;
3543 }
fc3a1fd7
DDAG
3544 /* Stop SMI delivery on old machine types to avoid a reboot
3545 * on an inward migration of an old VM.
3546 */
3547 if (!cpu->kvm_no_smi_migration) {
3548 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3549 }
fc12d72e
PB
3550 }
3551
ea643051 3552 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
3553 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3554 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3555 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3556 }
ea643051 3557 }
aee028b9 3558
1bc22652 3559 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
3560}
3561
1bc22652 3562static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 3563{
1bc22652 3564 CPUX86State *env = &cpu->env;
a0fb002c
JK
3565 struct kvm_vcpu_events events;
3566 int ret;
3567
3568 if (!kvm_has_vcpu_events()) {
3569 return 0;
3570 }
3571
fc12d72e 3572 memset(&events, 0, sizeof(events));
1bc22652 3573 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
3574 if (ret < 0) {
3575 return ret;
3576 }
fd13f23b
LA
3577
3578 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3579 env->exception_pending = events.exception.pending;
3580 env->exception_has_payload = events.exception_has_payload;
3581 env->exception_payload = events.exception_payload;
3582 } else {
3583 env->exception_pending = 0;
3584 env->exception_has_payload = false;
3585 }
3586 env->exception_injected = events.exception.injected;
3587 env->exception_nr =
3588 (env->exception_pending || env->exception_injected) ?
3589 events.exception.nr : -1;
a0fb002c
JK
3590 env->has_error_code = events.exception.has_error_code;
3591 env->error_code = events.exception.error_code;
3592
3593 env->interrupt_injected =
3594 events.interrupt.injected ? events.interrupt.nr : -1;
3595 env->soft_interrupt = events.interrupt.soft;
3596
3597 env->nmi_injected = events.nmi.injected;
3598 env->nmi_pending = events.nmi.pending;
3599 if (events.nmi.masked) {
3600 env->hflags2 |= HF2_NMI_MASK;
3601 } else {
3602 env->hflags2 &= ~HF2_NMI_MASK;
3603 }
3604
fc12d72e
PB
3605 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3606 if (events.smi.smm) {
3607 env->hflags |= HF_SMM_MASK;
3608 } else {
3609 env->hflags &= ~HF_SMM_MASK;
3610 }
3611 if (events.smi.pending) {
3612 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3613 } else {
3614 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3615 }
3616 if (events.smi.smm_inside_nmi) {
3617 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3618 } else {
3619 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3620 }
3621 if (events.smi.latched_init) {
3622 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3623 } else {
3624 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3625 }
3626 }
3627
a0fb002c 3628 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
3629
3630 return 0;
3631}
3632
1bc22652 3633static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 3634{
ed2803da 3635 CPUState *cs = CPU(cpu);
1bc22652 3636 CPUX86State *env = &cpu->env;
b0b1d690 3637 int ret = 0;
b0b1d690
JK
3638 unsigned long reinject_trap = 0;
3639
3640 if (!kvm_has_vcpu_events()) {
fd13f23b 3641 if (env->exception_nr == EXCP01_DB) {
b0b1d690 3642 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 3643 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
3644 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3645 }
fd13f23b 3646 kvm_reset_exception(env);
b0b1d690
JK
3647 }
3648
3649 /*
3650 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3651 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3652 * by updating the debug state once again if single-stepping is on.
3653 * Another reason to call kvm_update_guest_debug here is a pending debug
3654 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3655 * reinject them via SET_GUEST_DEBUG.
3656 */
3657 if (reinject_trap ||
ed2803da 3658 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 3659 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 3660 }
b0b1d690
JK
3661 return ret;
3662}
3663
1bc22652 3664static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 3665{
1bc22652 3666 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3667 struct kvm_debugregs dbgregs;
3668 int i;
3669
3670 if (!kvm_has_debugregs()) {
3671 return 0;
3672 }
3673
1f670a95 3674 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
3675 for (i = 0; i < 4; i++) {
3676 dbgregs.db[i] = env->dr[i];
3677 }
3678 dbgregs.dr6 = env->dr[6];
3679 dbgregs.dr7 = env->dr[7];
3680 dbgregs.flags = 0;
3681
1bc22652 3682 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
3683}
3684
1bc22652 3685static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 3686{
1bc22652 3687 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3688 struct kvm_debugregs dbgregs;
3689 int i, ret;
3690
3691 if (!kvm_has_debugregs()) {
3692 return 0;
3693 }
3694
1bc22652 3695 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 3696 if (ret < 0) {
b9bec74b 3697 return ret;
ff44f1a3
JK
3698 }
3699 for (i = 0; i < 4; i++) {
3700 env->dr[i] = dbgregs.db[i];
3701 }
3702 env->dr[4] = env->dr[6] = dbgregs.dr6;
3703 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
3704
3705 return 0;
3706}
3707
ebbfef2f
LA
3708static int kvm_put_nested_state(X86CPU *cpu)
3709{
3710 CPUX86State *env = &cpu->env;
3711 int max_nested_state_len = kvm_max_nested_state_length();
3712
1e44f3ab 3713 if (!env->nested_state) {
ebbfef2f
LA
3714 return 0;
3715 }
3716
3717 assert(env->nested_state->size <= max_nested_state_len);
3718 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3719}
3720
3721static int kvm_get_nested_state(X86CPU *cpu)
3722{
3723 CPUX86State *env = &cpu->env;
3724 int max_nested_state_len = kvm_max_nested_state_length();
3725 int ret;
3726
1e44f3ab 3727 if (!env->nested_state) {
ebbfef2f
LA
3728 return 0;
3729 }
3730
3731 /*
3732 * It is possible that migration restored a smaller size into
3733 * nested_state->hdr.size than what our kernel support.
3734 * We preserve migration origin nested_state->hdr.size for
3735 * call to KVM_SET_NESTED_STATE but wish that our next call
3736 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3737 */
3738 env->nested_state->size = max_nested_state_len;
3739
3740 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3741 if (ret < 0) {
3742 return ret;
3743 }
3744
3745 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3746 env->hflags |= HF_GUEST_MASK;
3747 } else {
3748 env->hflags &= ~HF_GUEST_MASK;
3749 }
3750
3751 return ret;
3752}
3753
20d695a9 3754int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 3755{
20d695a9 3756 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
3757 int ret;
3758
2fa45344 3759 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 3760
48e1a45c 3761 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
3762 ret = kvm_put_nested_state(x86_cpu);
3763 if (ret < 0) {
3764 return ret;
3765 }
3766
6bdf863d
JK
3767 ret = kvm_put_msr_feature_control(x86_cpu);
3768 if (ret < 0) {
3769 return ret;
3770 }
3771 }
3772
36f96c4b
HZ
3773 if (level == KVM_PUT_FULL_STATE) {
3774 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3775 * because TSC frequency mismatch shouldn't abort migration,
3776 * unless the user explicitly asked for a more strict TSC
3777 * setting (e.g. using an explicit "tsc-freq" option).
3778 */
3779 kvm_arch_set_tsc_khz(cpu);
3780 }
3781
1bc22652 3782 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 3783 if (ret < 0) {
05330448 3784 return ret;
b9bec74b 3785 }
1bc22652 3786 ret = kvm_put_xsave(x86_cpu);
b9bec74b 3787 if (ret < 0) {
f1665b21 3788 return ret;
b9bec74b 3789 }
1bc22652 3790 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 3791 if (ret < 0) {
05330448 3792 return ret;
b9bec74b 3793 }
1bc22652 3794 ret = kvm_put_sregs(x86_cpu);
b9bec74b 3795 if (ret < 0) {
05330448 3796 return ret;
b9bec74b 3797 }
ab443475 3798 /* must be before kvm_put_msrs */
1bc22652 3799 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
3800 if (ret < 0) {
3801 return ret;
3802 }
1bc22652 3803 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 3804 if (ret < 0) {
05330448 3805 return ret;
b9bec74b 3806 }
4fadfa00
PH
3807 ret = kvm_put_vcpu_events(x86_cpu, level);
3808 if (ret < 0) {
3809 return ret;
3810 }
ea643051 3811 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 3812 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 3813 if (ret < 0) {
680c1c6f
JK
3814 return ret;
3815 }
ea643051 3816 }
7477cd38
MT
3817
3818 ret = kvm_put_tscdeadline_msr(x86_cpu);
3819 if (ret < 0) {
3820 return ret;
3821 }
1bc22652 3822 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 3823 if (ret < 0) {
b0b1d690 3824 return ret;
b9bec74b 3825 }
b0b1d690 3826 /* must be last */
1bc22652 3827 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 3828 if (ret < 0) {
ff44f1a3 3829 return ret;
b9bec74b 3830 }
05330448
AL
3831 return 0;
3832}
3833
20d695a9 3834int kvm_arch_get_registers(CPUState *cs)
05330448 3835{
20d695a9 3836 X86CPU *cpu = X86_CPU(cs);
05330448
AL
3837 int ret;
3838
20d695a9 3839 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 3840
4fadfa00 3841 ret = kvm_get_vcpu_events(cpu);
b9bec74b 3842 if (ret < 0) {
f4f1110e 3843 goto out;
b9bec74b 3844 }
4fadfa00
PH
3845 /*
3846 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3847 * KVM_GET_REGS and KVM_GET_SREGS.
3848 */
3849 ret = kvm_get_mp_state(cpu);
b9bec74b 3850 if (ret < 0) {
f4f1110e 3851 goto out;
b9bec74b 3852 }
4fadfa00 3853 ret = kvm_getput_regs(cpu, 0);
b9bec74b 3854 if (ret < 0) {
f4f1110e 3855 goto out;
b9bec74b 3856 }
4fadfa00 3857 ret = kvm_get_xsave(cpu);
b9bec74b 3858 if (ret < 0) {
f4f1110e 3859 goto out;
b9bec74b 3860 }
4fadfa00 3861 ret = kvm_get_xcrs(cpu);
b9bec74b 3862 if (ret < 0) {
f4f1110e 3863 goto out;
b9bec74b 3864 }
4fadfa00 3865 ret = kvm_get_sregs(cpu);
b9bec74b 3866 if (ret < 0) {
f4f1110e 3867 goto out;
b9bec74b 3868 }
4fadfa00 3869 ret = kvm_get_msrs(cpu);
680c1c6f 3870 if (ret < 0) {
f4f1110e 3871 goto out;
680c1c6f 3872 }
4fadfa00 3873 ret = kvm_get_apic(cpu);
b9bec74b 3874 if (ret < 0) {
f4f1110e 3875 goto out;
b9bec74b 3876 }
1bc22652 3877 ret = kvm_get_debugregs(cpu);
b9bec74b 3878 if (ret < 0) {
f4f1110e 3879 goto out;
b9bec74b 3880 }
ebbfef2f
LA
3881 ret = kvm_get_nested_state(cpu);
3882 if (ret < 0) {
3883 goto out;
3884 }
f4f1110e
RH
3885 ret = 0;
3886 out:
3887 cpu_sync_bndcs_hflags(&cpu->env);
3888 return ret;
05330448
AL
3889}
3890
20d695a9 3891void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 3892{
20d695a9
AF
3893 X86CPU *x86_cpu = X86_CPU(cpu);
3894 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
3895 int ret;
3896
276ce815 3897 /* Inject NMI */
fc12d72e
PB
3898 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3899 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3900 qemu_mutex_lock_iothread();
3901 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3902 qemu_mutex_unlock_iothread();
3903 DPRINTF("injected NMI\n");
3904 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3905 if (ret < 0) {
3906 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3907 strerror(-ret));
3908 }
3909 }
3910 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3911 qemu_mutex_lock_iothread();
3912 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3913 qemu_mutex_unlock_iothread();
3914 DPRINTF("injected SMI\n");
3915 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3916 if (ret < 0) {
3917 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3918 strerror(-ret));
3919 }
ce377af3 3920 }
276ce815
LJ
3921 }
3922
15eafc2e 3923 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
3924 qemu_mutex_lock_iothread();
3925 }
3926
e0723c45
PB
3927 /* Force the VCPU out of its inner loop to process any INIT requests
3928 * or (for userspace APIC, but it is cheap to combine the checks here)
3929 * pending TPR access reports.
3930 */
3931 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
3932 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3933 !(env->hflags & HF_SMM_MASK)) {
3934 cpu->exit_request = 1;
3935 }
3936 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3937 cpu->exit_request = 1;
3938 }
e0723c45 3939 }
05330448 3940
15eafc2e 3941 if (!kvm_pic_in_kernel()) {
db1669bc
JK
3942 /* Try to inject an interrupt if the guest can accept it */
3943 if (run->ready_for_interrupt_injection &&
259186a7 3944 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
3945 (env->eflags & IF_MASK)) {
3946 int irq;
3947
259186a7 3948 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
3949 irq = cpu_get_pic_interrupt(env);
3950 if (irq >= 0) {
3951 struct kvm_interrupt intr;
3952
3953 intr.irq = irq;
db1669bc 3954 DPRINTF("injected interrupt %d\n", irq);
1bc22652 3955 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
3956 if (ret < 0) {
3957 fprintf(stderr,
3958 "KVM: injection failed, interrupt lost (%s)\n",
3959 strerror(-ret));
3960 }
db1669bc
JK
3961 }
3962 }
05330448 3963
db1669bc
JK
3964 /* If we have an interrupt but the guest is not ready to receive an
3965 * interrupt, request an interrupt window exit. This will
3966 * cause a return to userspace as soon as the guest is ready to
3967 * receive interrupts. */
259186a7 3968 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
3969 run->request_interrupt_window = 1;
3970 } else {
3971 run->request_interrupt_window = 0;
3972 }
3973
3974 DPRINTF("setting tpr\n");
02e51483 3975 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
3976
3977 qemu_mutex_unlock_iothread();
db1669bc 3978 }
05330448
AL
3979}
3980
4c663752 3981MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 3982{
20d695a9
AF
3983 X86CPU *x86_cpu = X86_CPU(cpu);
3984 CPUX86State *env = &x86_cpu->env;
3985
fc12d72e
PB
3986 if (run->flags & KVM_RUN_X86_SMM) {
3987 env->hflags |= HF_SMM_MASK;
3988 } else {
f5c052b9 3989 env->hflags &= ~HF_SMM_MASK;
fc12d72e 3990 }
b9bec74b 3991 if (run->if_flag) {
05330448 3992 env->eflags |= IF_MASK;
b9bec74b 3993 } else {
05330448 3994 env->eflags &= ~IF_MASK;
b9bec74b 3995 }
4b8523ee
JK
3996
3997 /* We need to protect the apic state against concurrent accesses from
3998 * different threads in case the userspace irqchip is used. */
3999 if (!kvm_irqchip_in_kernel()) {
4000 qemu_mutex_lock_iothread();
4001 }
02e51483
CF
4002 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4003 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4004 if (!kvm_irqchip_in_kernel()) {
4005 qemu_mutex_unlock_iothread();
4006 }
f794aa4a 4007 return cpu_get_mem_attrs(env);
05330448
AL
4008}
4009
20d695a9 4010int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4011{
20d695a9
AF
4012 X86CPU *cpu = X86_CPU(cs);
4013 CPUX86State *env = &cpu->env;
232fc23b 4014
259186a7 4015 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4016 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4017 assert(env->mcg_cap);
4018
259186a7 4019 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4020
dd1750d7 4021 kvm_cpu_synchronize_state(cs);
ab443475 4022
fd13f23b 4023 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4024 /* this means triple fault */
cf83f140 4025 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4026 cs->exit_request = 1;
ab443475
JK
4027 return 0;
4028 }
fd13f23b 4029 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4030 env->has_error_code = 0;
4031
259186a7 4032 cs->halted = 0;
ab443475
JK
4033 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4034 env->mp_state = KVM_MP_STATE_RUNNABLE;
4035 }
4036 }
4037
fc12d72e
PB
4038 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4039 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4040 kvm_cpu_synchronize_state(cs);
4041 do_cpu_init(cpu);
4042 }
4043
db1669bc
JK
4044 if (kvm_irqchip_in_kernel()) {
4045 return 0;
4046 }
4047
259186a7
AF
4048 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4049 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4050 apic_poll_irq(cpu->apic_state);
5d62c43a 4051 }
259186a7 4052 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4053 (env->eflags & IF_MASK)) ||
259186a7
AF
4054 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4055 cs->halted = 0;
6792a57b 4056 }
259186a7 4057 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4058 kvm_cpu_synchronize_state(cs);
232fc23b 4059 do_cpu_sipi(cpu);
0af691d7 4060 }
259186a7
AF
4061 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4062 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4063 kvm_cpu_synchronize_state(cs);
02e51483 4064 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4065 env->tpr_access_type);
4066 }
0af691d7 4067
259186a7 4068 return cs->halted;
0af691d7
MT
4069}
4070
839b5630 4071static int kvm_handle_halt(X86CPU *cpu)
05330448 4072{
259186a7 4073 CPUState *cs = CPU(cpu);
839b5630
AF
4074 CPUX86State *env = &cpu->env;
4075
259186a7 4076 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4077 (env->eflags & IF_MASK)) &&
259186a7
AF
4078 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4079 cs->halted = 1;
bb4ea393 4080 return EXCP_HLT;
05330448
AL
4081 }
4082
bb4ea393 4083 return 0;
05330448
AL
4084}
4085
f7575c96 4086static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4087{
f7575c96
AF
4088 CPUState *cs = CPU(cpu);
4089 struct kvm_run *run = cs->kvm_run;
d362e757 4090
02e51483 4091 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4092 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4093 : TPR_ACCESS_READ);
4094 return 1;
4095}
4096
f17ec444 4097int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4098{
38972938 4099 static const uint8_t int3 = 0xcc;
64bf3f4e 4100
f17ec444
AF
4101 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4102 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4103 return -EINVAL;
b9bec74b 4104 }
e22a25c9
AL
4105 return 0;
4106}
4107
f17ec444 4108int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4109{
4110 uint8_t int3;
4111
f17ec444
AF
4112 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4113 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4114 return -EINVAL;
b9bec74b 4115 }
e22a25c9
AL
4116 return 0;
4117}
4118
4119static struct {
4120 target_ulong addr;
4121 int len;
4122 int type;
4123} hw_breakpoint[4];
4124
4125static int nb_hw_breakpoint;
4126
4127static int find_hw_breakpoint(target_ulong addr, int len, int type)
4128{
4129 int n;
4130
b9bec74b 4131 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4132 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4133 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4134 return n;
b9bec74b
JK
4135 }
4136 }
e22a25c9
AL
4137 return -1;
4138}
4139
4140int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4141 target_ulong len, int type)
4142{
4143 switch (type) {
4144 case GDB_BREAKPOINT_HW:
4145 len = 1;
4146 break;
4147 case GDB_WATCHPOINT_WRITE:
4148 case GDB_WATCHPOINT_ACCESS:
4149 switch (len) {
4150 case 1:
4151 break;
4152 case 2:
4153 case 4:
4154 case 8:
b9bec74b 4155 if (addr & (len - 1)) {
e22a25c9 4156 return -EINVAL;
b9bec74b 4157 }
e22a25c9
AL
4158 break;
4159 default:
4160 return -EINVAL;
4161 }
4162 break;
4163 default:
4164 return -ENOSYS;
4165 }
4166
b9bec74b 4167 if (nb_hw_breakpoint == 4) {
e22a25c9 4168 return -ENOBUFS;
b9bec74b
JK
4169 }
4170 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4171 return -EEXIST;
b9bec74b 4172 }
e22a25c9
AL
4173 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4174 hw_breakpoint[nb_hw_breakpoint].len = len;
4175 hw_breakpoint[nb_hw_breakpoint].type = type;
4176 nb_hw_breakpoint++;
4177
4178 return 0;
4179}
4180
4181int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4182 target_ulong len, int type)
4183{
4184 int n;
4185
4186 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4187 if (n < 0) {
e22a25c9 4188 return -ENOENT;
b9bec74b 4189 }
e22a25c9
AL
4190 nb_hw_breakpoint--;
4191 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4192
4193 return 0;
4194}
4195
4196void kvm_arch_remove_all_hw_breakpoints(void)
4197{
4198 nb_hw_breakpoint = 0;
4199}
4200
4201static CPUWatchpoint hw_watchpoint;
4202
a60f24b5 4203static int kvm_handle_debug(X86CPU *cpu,
48405526 4204 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4205{
ed2803da 4206 CPUState *cs = CPU(cpu);
a60f24b5 4207 CPUX86State *env = &cpu->env;
f2574737 4208 int ret = 0;
e22a25c9
AL
4209 int n;
4210
37936ac7
LA
4211 if (arch_info->exception == EXCP01_DB) {
4212 if (arch_info->dr6 & DR6_BS) {
ed2803da 4213 if (cs->singlestep_enabled) {
f2574737 4214 ret = EXCP_DEBUG;
b9bec74b 4215 }
e22a25c9 4216 } else {
b9bec74b
JK
4217 for (n = 0; n < 4; n++) {
4218 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4219 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4220 case 0x0:
f2574737 4221 ret = EXCP_DEBUG;
e22a25c9
AL
4222 break;
4223 case 0x1:
f2574737 4224 ret = EXCP_DEBUG;
ff4700b0 4225 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4226 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4227 hw_watchpoint.flags = BP_MEM_WRITE;
4228 break;
4229 case 0x3:
f2574737 4230 ret = EXCP_DEBUG;
ff4700b0 4231 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4232 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4233 hw_watchpoint.flags = BP_MEM_ACCESS;
4234 break;
4235 }
b9bec74b
JK
4236 }
4237 }
e22a25c9 4238 }
ff4700b0 4239 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4240 ret = EXCP_DEBUG;
b9bec74b 4241 }
f2574737 4242 if (ret == 0) {
ff4700b0 4243 cpu_synchronize_state(cs);
fd13f23b 4244 assert(env->exception_nr == -1);
b0b1d690 4245
f2574737 4246 /* pass to guest */
fd13f23b
LA
4247 kvm_queue_exception(env, arch_info->exception,
4248 arch_info->exception == EXCP01_DB,
4249 arch_info->dr6);
48405526 4250 env->has_error_code = 0;
b0b1d690 4251 }
e22a25c9 4252
f2574737 4253 return ret;
e22a25c9
AL
4254}
4255
20d695a9 4256void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4257{
4258 const uint8_t type_code[] = {
4259 [GDB_BREAKPOINT_HW] = 0x0,
4260 [GDB_WATCHPOINT_WRITE] = 0x1,
4261 [GDB_WATCHPOINT_ACCESS] = 0x3
4262 };
4263 const uint8_t len_code[] = {
4264 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4265 };
4266 int n;
4267
a60f24b5 4268 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4269 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4270 }
e22a25c9
AL
4271 if (nb_hw_breakpoint > 0) {
4272 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4273 dbg->arch.debugreg[7] = 0x0600;
4274 for (n = 0; n < nb_hw_breakpoint; n++) {
4275 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4276 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4277 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4278 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4279 }
4280 }
4281}
4513d923 4282
2a4dac83
JK
4283static bool host_supports_vmx(void)
4284{
4285 uint32_t ecx, unused;
4286
4287 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4288 return ecx & CPUID_EXT_VMX;
4289}
4290
4291#define VMX_INVALID_GUEST_STATE 0x80000021
4292
20d695a9 4293int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4294{
20d695a9 4295 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4296 uint64_t code;
4297 int ret;
4298
4299 switch (run->exit_reason) {
4300 case KVM_EXIT_HLT:
4301 DPRINTF("handle_hlt\n");
4b8523ee 4302 qemu_mutex_lock_iothread();
839b5630 4303 ret = kvm_handle_halt(cpu);
4b8523ee 4304 qemu_mutex_unlock_iothread();
2a4dac83
JK
4305 break;
4306 case KVM_EXIT_SET_TPR:
4307 ret = 0;
4308 break;
d362e757 4309 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4310 qemu_mutex_lock_iothread();
f7575c96 4311 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4312 qemu_mutex_unlock_iothread();
d362e757 4313 break;
2a4dac83
JK
4314 case KVM_EXIT_FAIL_ENTRY:
4315 code = run->fail_entry.hardware_entry_failure_reason;
4316 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4317 code);
4318 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4319 fprintf(stderr,
12619721 4320 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4321 "unrestricted mode\n"
4322 "support, the failure can be most likely due to the guest "
4323 "entering an invalid\n"
4324 "state for Intel VT. For example, the guest maybe running "
4325 "in big real mode\n"
4326 "which is not supported on less recent Intel processors."
4327 "\n\n");
4328 }
4329 ret = -1;
4330 break;
4331 case KVM_EXIT_EXCEPTION:
4332 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4333 run->ex.exception, run->ex.error_code);
4334 ret = -1;
4335 break;
f2574737
JK
4336 case KVM_EXIT_DEBUG:
4337 DPRINTF("kvm_exit_debug\n");
4b8523ee 4338 qemu_mutex_lock_iothread();
a60f24b5 4339 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4340 qemu_mutex_unlock_iothread();
f2574737 4341 break;
50efe82c
AS
4342 case KVM_EXIT_HYPERV:
4343 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4344 break;
15eafc2e
PB
4345 case KVM_EXIT_IOAPIC_EOI:
4346 ioapic_eoi_broadcast(run->eoi.vector);
4347 ret = 0;
4348 break;
2a4dac83
JK
4349 default:
4350 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4351 ret = -1;
4352 break;
4353 }
4354
4355 return ret;
4356}
4357
20d695a9 4358bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4359{
20d695a9
AF
4360 X86CPU *cpu = X86_CPU(cs);
4361 CPUX86State *env = &cpu->env;
4362
dd1750d7 4363 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4364 return !(env->cr[0] & CR0_PE_MASK) ||
4365 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4366}
84b058d7
JK
4367
4368void kvm_arch_init_irq_routing(KVMState *s)
4369{
4370 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4371 /* If kernel can't do irq routing, interrupt source
4372 * override 0->2 cannot be set up as required by HPET.
4373 * So we have to disable it.
4374 */
4375 no_hpet = 1;
4376 }
cc7e0ddf 4377 /* We know at this point that we're using the in-kernel
614e41bc 4378 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4379 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4380 */
614e41bc 4381 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4382 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4383
4384 if (kvm_irqchip_is_split()) {
4385 int i;
4386
4387 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4388 MSI routes for signaling interrupts to the local apics. */
4389 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 4390 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
4391 error_report("Could not enable split IRQ mode.");
4392 exit(1);
4393 }
4394 }
4395 }
4396}
4397
4398int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4399{
4400 int ret;
4401 if (machine_kernel_irqchip_split(ms)) {
4402 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4403 if (ret) {
df3c286c 4404 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
4405 strerror(-ret));
4406 exit(1);
4407 } else {
4408 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4409 kvm_split_irqchip = true;
4410 return 1;
4411 }
4412 } else {
4413 return 0;
4414 }
84b058d7 4415}
b139bd30
JK
4416
4417/* Classic KVM device assignment interface. Will remain x86 only. */
4418int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4419 uint32_t flags, uint32_t *dev_id)
4420{
4421 struct kvm_assigned_pci_dev dev_data = {
4422 .segnr = dev_addr->domain,
4423 .busnr = dev_addr->bus,
4424 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4425 .flags = flags,
4426 };
4427 int ret;
4428
4429 dev_data.assigned_dev_id =
4430 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4431
4432 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4433 if (ret < 0) {
4434 return ret;
4435 }
4436
4437 *dev_id = dev_data.assigned_dev_id;
4438
4439 return 0;
4440}
4441
4442int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4443{
4444 struct kvm_assigned_pci_dev dev_data = {
4445 .assigned_dev_id = dev_id,
4446 };
4447
4448 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4449}
4450
4451static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4452 uint32_t irq_type, uint32_t guest_irq)
4453{
4454 struct kvm_assigned_irq assigned_irq = {
4455 .assigned_dev_id = dev_id,
4456 .guest_irq = guest_irq,
4457 .flags = irq_type,
4458 };
4459
4460 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4461 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4462 } else {
4463 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4464 }
4465}
4466
4467int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4468 uint32_t guest_irq)
4469{
4470 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4471 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4472
4473 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4474}
4475
4476int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4477{
4478 struct kvm_assigned_pci_dev dev_data = {
4479 .assigned_dev_id = dev_id,
4480 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4481 };
4482
4483 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4484}
4485
4486static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4487 uint32_t type)
4488{
4489 struct kvm_assigned_irq assigned_irq = {
4490 .assigned_dev_id = dev_id,
4491 .flags = type,
4492 };
4493
4494 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4495}
4496
4497int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4498{
4499 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4500 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4501}
4502
4503int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4504{
4505 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4506 KVM_DEV_IRQ_GUEST_MSI, virq);
4507}
4508
4509int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4510{
4511 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4512 KVM_DEV_IRQ_HOST_MSI);
4513}
4514
4515bool kvm_device_msix_supported(KVMState *s)
4516{
4517 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4518 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4519 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4520}
4521
4522int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4523 uint32_t nr_vectors)
4524{
4525 struct kvm_assigned_msix_nr msix_nr = {
4526 .assigned_dev_id = dev_id,
4527 .entry_nr = nr_vectors,
4528 };
4529
4530 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4531}
4532
4533int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4534 int virq)
4535{
4536 struct kvm_assigned_msix_entry msix_entry = {
4537 .assigned_dev_id = dev_id,
4538 .gsi = virq,
4539 .entry = vector,
4540 };
4541
4542 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4543}
4544
4545int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4546{
4547 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4548 KVM_DEV_IRQ_GUEST_MSIX, 0);
4549}
4550
4551int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4552{
4553 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4554 KVM_DEV_IRQ_HOST_MSIX);
4555}
9e03a040
FB
4556
4557int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 4558 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 4559{
8b5ed7df
PX
4560 X86IOMMUState *iommu = x86_iommu_get_default();
4561
4562 if (iommu) {
4563 int ret;
4564 MSIMessage src, dst;
4565 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4566
0ea1472d
JK
4567 if (!class->int_remap) {
4568 return 0;
4569 }
4570
8b5ed7df
PX
4571 src.address = route->u.msi.address_hi;
4572 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4573 src.address |= route->u.msi.address_lo;
4574 src.data = route->u.msi.data;
4575
4576 ret = class->int_remap(iommu, &src, &dst, dev ? \
4577 pci_requester_id(dev) : \
4578 X86_IOMMU_SID_INVALID);
4579 if (ret) {
4580 trace_kvm_x86_fixup_msi_error(route->gsi);
4581 return 1;
4582 }
4583
4584 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4585 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4586 route->u.msi.data = dst.data;
4587 }
4588
9e03a040
FB
4589 return 0;
4590}
1850b6b7 4591
38d87493
PX
4592typedef struct MSIRouteEntry MSIRouteEntry;
4593
4594struct MSIRouteEntry {
4595 PCIDevice *dev; /* Device pointer */
4596 int vector; /* MSI/MSIX vector index */
4597 int virq; /* Virtual IRQ index */
4598 QLIST_ENTRY(MSIRouteEntry) list;
4599};
4600
4601/* List of used GSI routes */
4602static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4603 QLIST_HEAD_INITIALIZER(msi_route_list);
4604
e1d4fb2d
PX
4605static void kvm_update_msi_routes_all(void *private, bool global,
4606 uint32_t index, uint32_t mask)
4607{
a56de056 4608 int cnt = 0, vector;
e1d4fb2d
PX
4609 MSIRouteEntry *entry;
4610 MSIMessage msg;
fd563564
PX
4611 PCIDevice *dev;
4612
e1d4fb2d
PX
4613 /* TODO: explicit route update */
4614 QLIST_FOREACH(entry, &msi_route_list, list) {
4615 cnt++;
a56de056 4616 vector = entry->vector;
fd563564 4617 dev = entry->dev;
a56de056
PX
4618 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4619 msg = msix_get_message(dev, vector);
4620 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4621 msg = msi_get_message(dev, vector);
4622 } else {
4623 /*
4624 * Either MSI/MSIX is disabled for the device, or the
4625 * specific message was masked out. Skip this one.
4626 */
fd563564
PX
4627 continue;
4628 }
fd563564 4629 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 4630 }
3f1fea0f 4631 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
4632 trace_kvm_x86_update_msi_routes(cnt);
4633}
4634
38d87493
PX
4635int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4636 int vector, PCIDevice *dev)
4637{
e1d4fb2d 4638 static bool notify_list_inited = false;
38d87493
PX
4639 MSIRouteEntry *entry;
4640
4641 if (!dev) {
4642 /* These are (possibly) IOAPIC routes only used for split
4643 * kernel irqchip mode, while what we are housekeeping are
4644 * PCI devices only. */
4645 return 0;
4646 }
4647
4648 entry = g_new0(MSIRouteEntry, 1);
4649 entry->dev = dev;
4650 entry->vector = vector;
4651 entry->virq = route->gsi;
4652 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4653
4654 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
4655
4656 if (!notify_list_inited) {
4657 /* For the first time we do add route, add ourselves into
4658 * IOMMU's IEC notify list if needed. */
4659 X86IOMMUState *iommu = x86_iommu_get_default();
4660 if (iommu) {
4661 x86_iommu_iec_register_notifier(iommu,
4662 kvm_update_msi_routes_all,
4663 NULL);
4664 }
4665 notify_list_inited = true;
4666 }
38d87493
PX
4667 return 0;
4668}
4669
4670int kvm_arch_release_virq_post(int virq)
4671{
4672 MSIRouteEntry *entry, *next;
4673 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4674 if (entry->virq == virq) {
4675 trace_kvm_x86_remove_msi_route(virq);
4676 QLIST_REMOVE(entry, list);
01960e6d 4677 g_free(entry);
38d87493
PX
4678 break;
4679 }
4680 }
9e03a040
FB
4681 return 0;
4682}
1850b6b7
EA
4683
4684int kvm_arch_msi_data_to_gsi(uint32_t data)
4685{
4686 abort();
4687}