]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm.c
x86/cpu: Add support for UMONITOR/UMWAIT/TPAUSE
[mirror_qemu.git] / target / i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
da34e65c 16#include "qapi/error.h"
05330448 17#include <sys/ioctl.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
1814eab6 21#include "standard-headers/asm-x86/kvm_para.h"
05330448 22
33c11879 23#include "cpu.h"
9c17d615 24#include "sysemu/sysemu.h"
b3946626 25#include "sysemu/hw_accel.h"
6410848b 26#include "sysemu/kvm_int.h"
71e8a915 27#include "sysemu/reset.h"
54d31236 28#include "sysemu/runstate.h"
1d31f66b 29#include "kvm_i386.h"
50efe82c 30#include "hyperv.h"
5e953812 31#include "hyperv-proto.h"
50efe82c 32
022c62cb 33#include "exec/gdbstub.h"
1de7afc9 34#include "qemu/host-utils.h"
db725815 35#include "qemu/main-loop.h"
1de7afc9 36#include "qemu/config-file.h"
1c4a55db 37#include "qemu/error-report.h"
0d09e41a
PB
38#include "hw/i386/pc.h"
39#include "hw/i386/apic.h"
e0723c45
PB
40#include "hw/i386/apic_internal.h"
41#include "hw/i386/apic-msidef.h"
8b5ed7df 42#include "hw/i386/intel_iommu.h"
e1d4fb2d 43#include "hw/i386/x86-iommu.h"
d6d059ca 44#include "hw/i386/e820_memory_layout.h"
50efe82c 45
a2cb15b0 46#include "hw/pci/pci.h"
15eafc2e 47#include "hw/pci/msi.h"
fd563564 48#include "hw/pci/msix.h"
795c40b8 49#include "migration/blocker.h"
4c663752 50#include "exec/memattrs.h"
8b5ed7df 51#include "trace.h"
05330448
AL
52
53//#define DEBUG_KVM
54
55#ifdef DEBUG_KVM
8c0d577e 56#define DPRINTF(fmt, ...) \
05330448
AL
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58#else
8c0d577e 59#define DPRINTF(fmt, ...) \
05330448
AL
60 do { } while (0)
61#endif
62
1a03675d
GC
63#define MSR_KVM_WALL_CLOCK 0x11
64#define MSR_KVM_SYSTEM_TIME 0x12
65
d1138251
EH
66/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
67 * 255 kvm_msr_entry structs */
68#define MSR_BUF_SIZE 4096
d71b62a1 69
94a8d39a
JK
70const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
71 KVM_CAP_INFO(SET_TSS_ADDR),
72 KVM_CAP_INFO(EXT_CPUID),
73 KVM_CAP_INFO(MP_STATE),
74 KVM_CAP_LAST_INFO
75};
25d2e361 76
c3a3a7d3
JK
77static bool has_msr_star;
78static bool has_msr_hsave_pa;
c9b8f6b6 79static bool has_msr_tsc_aux;
f28558d3 80static bool has_msr_tsc_adjust;
aa82ba54 81static bool has_msr_tsc_deadline;
df67696e 82static bool has_msr_feature_control;
21e87c46 83static bool has_msr_misc_enable;
fc12d72e 84static bool has_msr_smbase;
79e9ebeb 85static bool has_msr_bndcfgs;
25d2e361 86static int lm_capable_kernel;
7bc3d711 87static bool has_msr_hv_hypercall;
f2a53c9e 88static bool has_msr_hv_crash;
744b8a94 89static bool has_msr_hv_reset;
8c145d7c 90static bool has_msr_hv_vpindex;
e9688fab 91static bool hv_vpindex_settable;
46eb8f98 92static bool has_msr_hv_runtime;
866eea9a 93static bool has_msr_hv_synic;
ff99aa64 94static bool has_msr_hv_stimer;
d72bc7f6 95static bool has_msr_hv_frequencies;
ba6a4fd9 96static bool has_msr_hv_reenlightenment;
18cd2c17 97static bool has_msr_xss;
a33a2cfe 98static bool has_msr_spec_ctrl;
cfeea0c0 99static bool has_msr_virt_ssbd;
e13713db 100static bool has_msr_smi_count;
aec5e9c3 101static bool has_msr_arch_capabs;
597360c0 102static bool has_msr_core_capabs;
20a78b02 103static bool has_msr_vmx_vmfunc;
b827df58 104
0b368a10
JD
105static uint32_t has_architectural_pmu_version;
106static uint32_t num_architectural_pmu_gp_counters;
107static uint32_t num_architectural_pmu_fixed_counters;
0d894367 108
28143b40
TH
109static int has_xsave;
110static int has_xcrs;
111static int has_pit_state2;
fd13f23b 112static int has_exception_payload;
28143b40 113
87f8b626
AR
114static bool has_msr_mcg_ext_ctl;
115
494e95e9 116static struct kvm_cpuid2 *cpuid_cache;
f57bceb6 117static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 118
28143b40
TH
119int kvm_has_pit_state2(void)
120{
121 return has_pit_state2;
122}
123
355023f2
PB
124bool kvm_has_smm(void)
125{
126 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
127}
128
6053a86f
MT
129bool kvm_has_adjust_clock_stable(void)
130{
131 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
132
133 return (ret == KVM_CLOCK_TSC_STABLE);
134}
135
79a197ab
LA
136bool kvm_has_exception_payload(void)
137{
138 return has_exception_payload;
139}
140
1d31f66b
PM
141bool kvm_allows_irq0_override(void)
142{
143 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
144}
145
fb506e70
RK
146static bool kvm_x2apic_api_set_flags(uint64_t flags)
147{
148 KVMState *s = KVM_STATE(current_machine->accelerator);
149
150 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
151}
152
e391c009 153#define MEMORIZE(fn, _result) \
2a138ec3 154 ({ \
2a138ec3
RK
155 static bool _memorized; \
156 \
157 if (_memorized) { \
158 return _result; \
159 } \
160 _memorized = true; \
161 _result = fn; \
162 })
163
e391c009
IM
164static bool has_x2apic_api;
165
166bool kvm_has_x2apic_api(void)
167{
168 return has_x2apic_api;
169}
170
fb506e70
RK
171bool kvm_enable_x2apic(void)
172{
2a138ec3
RK
173 return MEMORIZE(
174 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
175 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
176 has_x2apic_api);
fb506e70
RK
177}
178
e9688fab
RK
179bool kvm_hv_vpindex_settable(void)
180{
181 return hv_vpindex_settable;
182}
183
0fd7e098
LL
184static int kvm_get_tsc(CPUState *cs)
185{
186 X86CPU *cpu = X86_CPU(cs);
187 CPUX86State *env = &cpu->env;
188 struct {
189 struct kvm_msrs info;
190 struct kvm_msr_entry entries[1];
a1834d97 191 } msr_data = {};
0fd7e098
LL
192 int ret;
193
194 if (env->tsc_valid) {
195 return 0;
196 }
197
1f670a95 198 memset(&msr_data, 0, sizeof(msr_data));
0fd7e098
LL
199 msr_data.info.nmsrs = 1;
200 msr_data.entries[0].index = MSR_IA32_TSC;
201 env->tsc_valid = !runstate_is_running();
202
203 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
204 if (ret < 0) {
205 return ret;
206 }
207
48e1a45c 208 assert(ret == 1);
0fd7e098
LL
209 env->tsc = msr_data.entries[0].data;
210 return 0;
211}
212
14e6fe12 213static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 214{
0fd7e098
LL
215 kvm_get_tsc(cpu);
216}
217
218void kvm_synchronize_all_tsc(void)
219{
220 CPUState *cpu;
221
222 if (kvm_enabled()) {
223 CPU_FOREACH(cpu) {
14e6fe12 224 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
225 }
226 }
227}
228
b827df58
AK
229static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
230{
231 struct kvm_cpuid2 *cpuid;
232 int r, size;
233
234 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 235 cpuid = g_malloc0(size);
b827df58
AK
236 cpuid->nent = max;
237 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
238 if (r == 0 && cpuid->nent >= max) {
239 r = -E2BIG;
240 }
b827df58
AK
241 if (r < 0) {
242 if (r == -E2BIG) {
7267c094 243 g_free(cpuid);
b827df58
AK
244 return NULL;
245 } else {
246 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
247 strerror(-r));
248 exit(1);
249 }
250 }
251 return cpuid;
252}
253
dd87f8a6
EH
254/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
255 * for all entries.
256 */
257static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
258{
259 struct kvm_cpuid2 *cpuid;
260 int max = 1;
494e95e9
CP
261
262 if (cpuid_cache != NULL) {
263 return cpuid_cache;
264 }
dd87f8a6
EH
265 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
266 max *= 2;
267 }
494e95e9 268 cpuid_cache = cpuid;
dd87f8a6
EH
269 return cpuid;
270}
271
a443bc34 272static const struct kvm_para_features {
0c31b744
GC
273 int cap;
274 int feature;
275} para_features[] = {
276 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
277 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
278 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 279 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
280};
281
ba9bc59e 282static int get_para_features(KVMState *s)
0c31b744
GC
283{
284 int i, features = 0;
285
8e03c100 286 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 287 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
288 features |= (1 << para_features[i].feature);
289 }
290 }
291
292 return features;
293}
0c31b744 294
40e80ee4
EH
295static bool host_tsx_blacklisted(void)
296{
297 int family, model, stepping;\
298 char vendor[CPUID_VENDOR_SZ + 1];
299
300 host_vendor_fms(vendor, &family, &model, &stepping);
301
302 /* Check if we are running on a Haswell host known to have broken TSX */
303 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
304 (family == 6) &&
305 ((model == 63 && stepping < 4) ||
306 model == 60 || model == 69 || model == 70);
307}
0c31b744 308
829ae2f9
EH
309/* Returns the value for a specific register on the cpuid entry
310 */
311static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
312{
313 uint32_t ret = 0;
314 switch (reg) {
315 case R_EAX:
316 ret = entry->eax;
317 break;
318 case R_EBX:
319 ret = entry->ebx;
320 break;
321 case R_ECX:
322 ret = entry->ecx;
323 break;
324 case R_EDX:
325 ret = entry->edx;
326 break;
327 }
328 return ret;
329}
330
4fb73f1d
EH
331/* Find matching entry for function/index on kvm_cpuid2 struct
332 */
333static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334 uint32_t function,
335 uint32_t index)
336{
337 int i;
338 for (i = 0; i < cpuid->nent; ++i) {
339 if (cpuid->entries[i].function == function &&
340 cpuid->entries[i].index == index) {
341 return &cpuid->entries[i];
342 }
343 }
344 /* not found: */
345 return NULL;
346}
347
ba9bc59e 348uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 349 uint32_t index, int reg)
b827df58
AK
350{
351 struct kvm_cpuid2 *cpuid;
b827df58
AK
352 uint32_t ret = 0;
353 uint32_t cpuid_1_edx;
8c723b79 354 bool found = false;
b827df58 355
dd87f8a6 356 cpuid = get_supported_cpuid(s);
b827df58 357
4fb73f1d
EH
358 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
359 if (entry) {
360 found = true;
361 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
362 }
363
7b46e5ce
EH
364 /* Fixups for the data returned by KVM, below */
365
c2acb022
EH
366 if (function == 1 && reg == R_EDX) {
367 /* KVM before 2.6.30 misreports the following features */
368 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
369 } else if (function == 1 && reg == R_ECX) {
370 /* We can set the hypervisor flag, even if KVM does not return it on
371 * GET_SUPPORTED_CPUID
372 */
373 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
374 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
375 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
376 * and the irqchip is in the kernel.
377 */
378 if (kvm_irqchip_in_kernel() &&
379 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
380 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
381 }
41e5e76d
EH
382
383 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
384 * without the in-kernel irqchip
385 */
386 if (!kvm_irqchip_in_kernel()) {
387 ret &= ~CPUID_EXT_X2APIC;
b827df58 388 }
2266d443
MT
389
390 if (enable_cpu_pm) {
391 int disable_exits = kvm_check_extension(s,
392 KVM_CAP_X86_DISABLE_EXITS);
393
394 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
395 ret |= CPUID_EXT_MONITOR;
396 }
397 }
28b8e4d0
JK
398 } else if (function == 6 && reg == R_EAX) {
399 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4
EH
400 } else if (function == 7 && index == 0 && reg == R_EBX) {
401 if (host_tsx_blacklisted()) {
402 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
403 }
67192a29
TX
404 } else if (function == 7 && index == 0 && reg == R_ECX) {
405 if (enable_cpu_pm) {
406 ret |= CPUID_7_0_ECX_WAITPKG;
407 } else {
408 ret &= ~CPUID_7_0_ECX_WAITPKG;
409 }
485b1d25
EH
410 } else if (function == 7 && index == 0 && reg == R_EDX) {
411 /*
412 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
413 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
414 * returned by KVM_GET_MSR_INDEX_LIST.
415 */
416 if (!has_msr_arch_capabs) {
417 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
418 }
f98bbd83
BM
419 } else if (function == 0x80000001 && reg == R_ECX) {
420 /*
421 * It's safe to enable TOPOEXT even if it's not returned by
422 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
423 * us to keep CPU models including TOPOEXT runnable on older kernels.
424 */
425 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
426 } else if (function == 0x80000001 && reg == R_EDX) {
427 /* On Intel, kvm returns cpuid according to the Intel spec,
428 * so add missing bits according to the AMD spec:
429 */
430 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
431 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
432 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
433 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
434 * be enabled without the in-kernel irqchip
435 */
436 if (!kvm_irqchip_in_kernel()) {
437 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
438 }
be777326 439 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 440 ret |= 1U << KVM_HINTS_REALTIME;
be777326 441 found = 1;
b827df58
AK
442 }
443
0c31b744 444 /* fallback for older kernels */
8c723b79 445 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 446 ret = get_para_features(s);
b9bec74b 447 }
0c31b744
GC
448
449 return ret;
bb0300dc 450}
bb0300dc 451
ede146c2 452uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
453{
454 struct {
455 struct kvm_msrs info;
456 struct kvm_msr_entry entries[1];
a1834d97 457 } msr_data = {};
20a78b02
PB
458 uint64_t value;
459 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
460
461 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
462 return 0;
463 }
464
465 /* Check if requested MSR is supported feature MSR */
466 int i;
467 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
468 if (kvm_feature_msrs->indices[i] == index) {
469 break;
470 }
471 if (i == kvm_feature_msrs->nmsrs) {
472 return 0; /* if the feature MSR is not supported, simply return 0 */
473 }
474
475 msr_data.info.nmsrs = 1;
476 msr_data.entries[0].index = index;
477
478 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
479 if (ret != 1) {
480 error_report("KVM get MSR (index=0x%x) feature failed, %s",
481 index, strerror(-ret));
482 exit(1);
483 }
484
20a78b02
PB
485 value = msr_data.entries[0].data;
486 switch (index) {
487 case MSR_IA32_VMX_PROCBASED_CTLS2:
048c9516
PB
488 /* KVM forgot to add these bits for some time, do this ourselves. */
489 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & CPUID_XSAVE_XSAVES) {
490 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
491 }
492 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & CPUID_EXT_RDRAND) {
493 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
494 }
495 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_INVPCID) {
496 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
497 }
498 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_RDSEED) {
499 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
500 }
501 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
502 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
503 }
504 /* fall through */
20a78b02
PB
505 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
506 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
507 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
508 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
509 /*
510 * Return true for bits that can be one, but do not have to be one.
511 * The SDM tells us which bits could have a "must be one" setting,
512 * so we can do the opposite transformation in make_vmx_msr_value.
513 */
514 must_be_one = (uint32_t)value;
515 can_be_one = (uint32_t)(value >> 32);
516 return can_be_one & ~must_be_one;
517
518 default:
519 return value;
520 }
f57bceb6
RH
521}
522
523
3c85e74f
HY
524typedef struct HWPoisonPage {
525 ram_addr_t ram_addr;
526 QLIST_ENTRY(HWPoisonPage) list;
527} HWPoisonPage;
528
529static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
530 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
531
532static void kvm_unpoison_all(void *param)
533{
534 HWPoisonPage *page, *next_page;
535
536 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
537 QLIST_REMOVE(page, list);
538 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 539 g_free(page);
3c85e74f
HY
540 }
541}
542
3c85e74f
HY
543static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
544{
545 HWPoisonPage *page;
546
547 QLIST_FOREACH(page, &hwpoison_page_list, list) {
548 if (page->ram_addr == ram_addr) {
549 return;
550 }
551 }
ab3ad07f 552 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
553 page->ram_addr = ram_addr;
554 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
555}
556
e7701825
MT
557static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
558 int *max_banks)
559{
560 int r;
561
14a09518 562 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
563 if (r > 0) {
564 *max_banks = r;
565 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
566 }
567 return -ENOSYS;
568}
569
bee615d4 570static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 571{
87f8b626 572 CPUState *cs = CPU(cpu);
bee615d4 573 CPUX86State *env = &cpu->env;
c34d440a
JK
574 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
575 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
576 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 577 int flags = 0;
e7701825 578
c34d440a
JK
579 if (code == BUS_MCEERR_AR) {
580 status |= MCI_STATUS_AR | 0x134;
581 mcg_status |= MCG_STATUS_EIPV;
582 } else {
583 status |= 0xc0;
584 mcg_status |= MCG_STATUS_RIPV;
419fb20a 585 }
87f8b626
AR
586
587 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
588 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
589 * guest kernel back into env->mcg_ext_ctl.
590 */
591 cpu_synchronize_state(cs);
592 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
593 mcg_status |= MCG_STATUS_LMCE;
594 flags = 0;
595 }
596
8c5cf3b6 597 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 598 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 599}
419fb20a 600
73284563 601static void hardware_memory_error(void *host_addr)
419fb20a 602{
73284563 603 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
604 exit(1);
605}
606
2ae41db2 607void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 608{
20d695a9
AF
609 X86CPU *cpu = X86_CPU(c);
610 CPUX86State *env = &cpu->env;
419fb20a 611 ram_addr_t ram_addr;
a8170e5e 612 hwaddr paddr;
419fb20a 613
4d39892c
PB
614 /* If we get an action required MCE, it has been injected by KVM
615 * while the VM was running. An action optional MCE instead should
616 * be coming from the main thread, which qemu_init_sigbus identifies
617 * as the "early kill" thread.
618 */
a16fc07e 619 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 620
20e0ff59 621 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 622 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
623 if (ram_addr != RAM_ADDR_INVALID &&
624 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
625 kvm_hwpoison_page_add(ram_addr);
626 kvm_mce_inject(cpu, paddr, code);
73284563
MS
627
628 /*
629 * Use different logging severity based on error type.
630 * If there is additional MCE reporting on the hypervisor, QEMU VA
631 * could be another source to identify the PA and MCE details.
632 */
633 if (code == BUS_MCEERR_AR) {
634 error_report("Guest MCE Memory Error at QEMU addr %p and "
635 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
636 addr, paddr, "BUS_MCEERR_AR");
637 } else {
638 warn_report("Guest MCE Memory Error at QEMU addr %p and "
639 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
640 addr, paddr, "BUS_MCEERR_AO");
641 }
642
2ae41db2 643 return;
419fb20a 644 }
20e0ff59 645
73284563
MS
646 if (code == BUS_MCEERR_AO) {
647 warn_report("Hardware memory error at addr %p of type %s "
648 "for memory used by QEMU itself instead of guest system!",
649 addr, "BUS_MCEERR_AO");
650 }
419fb20a 651 }
20e0ff59
PB
652
653 if (code == BUS_MCEERR_AR) {
73284563 654 hardware_memory_error(addr);
20e0ff59
PB
655 }
656
657 /* Hope we are lucky for AO MCE */
419fb20a
JK
658}
659
fd13f23b
LA
660static void kvm_reset_exception(CPUX86State *env)
661{
662 env->exception_nr = -1;
663 env->exception_pending = 0;
664 env->exception_injected = 0;
665 env->exception_has_payload = false;
666 env->exception_payload = 0;
667}
668
669static void kvm_queue_exception(CPUX86State *env,
670 int32_t exception_nr,
671 uint8_t exception_has_payload,
672 uint64_t exception_payload)
673{
674 assert(env->exception_nr == -1);
675 assert(!env->exception_pending);
676 assert(!env->exception_injected);
677 assert(!env->exception_has_payload);
678
679 env->exception_nr = exception_nr;
680
681 if (has_exception_payload) {
682 env->exception_pending = 1;
683
684 env->exception_has_payload = exception_has_payload;
685 env->exception_payload = exception_payload;
686 } else {
687 env->exception_injected = 1;
688
689 if (exception_nr == EXCP01_DB) {
690 assert(exception_has_payload);
691 env->dr[6] = exception_payload;
692 } else if (exception_nr == EXCP0E_PAGE) {
693 assert(exception_has_payload);
694 env->cr[2] = exception_payload;
695 } else {
696 assert(!exception_has_payload);
697 }
698 }
699}
700
1bc22652 701static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 702{
1bc22652
AF
703 CPUX86State *env = &cpu->env;
704
fd13f23b 705 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
706 unsigned int bank, bank_num = env->mcg_cap & 0xff;
707 struct kvm_x86_mce mce;
708
fd13f23b 709 kvm_reset_exception(env);
ab443475
JK
710
711 /*
712 * There must be at least one bank in use if an MCE is pending.
713 * Find it and use its values for the event injection.
714 */
715 for (bank = 0; bank < bank_num; bank++) {
716 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
717 break;
718 }
719 }
720 assert(bank < bank_num);
721
722 mce.bank = bank;
723 mce.status = env->mce_banks[bank * 4 + 1];
724 mce.mcg_status = env->mcg_status;
725 mce.addr = env->mce_banks[bank * 4 + 2];
726 mce.misc = env->mce_banks[bank * 4 + 3];
727
1bc22652 728 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 729 }
ab443475
JK
730 return 0;
731}
732
1dfb4dd9 733static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 734{
317ac620 735 CPUX86State *env = opaque;
b8cc45d6
GC
736
737 if (running) {
738 env->tsc_valid = false;
739 }
740}
741
83b17af5 742unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 743{
83b17af5 744 X86CPU *cpu = X86_CPU(cs);
7e72a45c 745 return cpu->apic_id;
b164e48e
EH
746}
747
92067bf4
IM
748#ifndef KVM_CPUID_SIGNATURE_NEXT
749#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
750#endif
751
92067bf4
IM
752static bool hyperv_enabled(X86CPU *cpu)
753{
7bc3d711
PB
754 CPUState *cs = CPU(cpu);
755 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
2d384d7c 756 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
e48ddcc6 757 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
758}
759
5031283d
HZ
760static int kvm_arch_set_tsc_khz(CPUState *cs)
761{
762 X86CPU *cpu = X86_CPU(cs);
763 CPUX86State *env = &cpu->env;
764 int r;
765
766 if (!env->tsc_khz) {
767 return 0;
768 }
769
770 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
771 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
772 -ENOTSUP;
773 if (r < 0) {
774 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
775 * TSC frequency doesn't match the one we want.
776 */
777 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
778 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
779 -ENOTSUP;
780 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
781 warn_report("TSC frequency mismatch between "
782 "VM (%" PRId64 " kHz) and host (%d kHz), "
783 "and TSC scaling unavailable",
784 env->tsc_khz, cur_freq);
5031283d
HZ
785 return r;
786 }
787 }
788
789 return 0;
790}
791
4bb95b82
LP
792static bool tsc_is_stable_and_known(CPUX86State *env)
793{
794 if (!env->tsc_khz) {
795 return false;
796 }
797 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
798 || env->user_tsc_khz;
799}
800
6760bd20
VK
801static struct {
802 const char *desc;
803 struct {
804 uint32_t fw;
805 uint32_t bits;
806 } flags[2];
c6861930 807 uint64_t dependencies;
6760bd20
VK
808} kvm_hyperv_properties[] = {
809 [HYPERV_FEAT_RELAXED] = {
810 .desc = "relaxed timing (hv-relaxed)",
811 .flags = {
812 {.fw = FEAT_HYPERV_EAX,
813 .bits = HV_HYPERCALL_AVAILABLE},
814 {.fw = FEAT_HV_RECOMM_EAX,
815 .bits = HV_RELAXED_TIMING_RECOMMENDED}
816 }
817 },
818 [HYPERV_FEAT_VAPIC] = {
819 .desc = "virtual APIC (hv-vapic)",
820 .flags = {
821 {.fw = FEAT_HYPERV_EAX,
822 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
823 {.fw = FEAT_HV_RECOMM_EAX,
824 .bits = HV_APIC_ACCESS_RECOMMENDED}
825 }
826 },
827 [HYPERV_FEAT_TIME] = {
828 .desc = "clocksources (hv-time)",
829 .flags = {
830 {.fw = FEAT_HYPERV_EAX,
831 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
832 HV_REFERENCE_TSC_AVAILABLE}
833 }
834 },
835 [HYPERV_FEAT_CRASH] = {
836 .desc = "crash MSRs (hv-crash)",
837 .flags = {
838 {.fw = FEAT_HYPERV_EDX,
839 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
840 }
841 },
842 [HYPERV_FEAT_RESET] = {
843 .desc = "reset MSR (hv-reset)",
844 .flags = {
845 {.fw = FEAT_HYPERV_EAX,
846 .bits = HV_RESET_AVAILABLE}
847 }
848 },
849 [HYPERV_FEAT_VPINDEX] = {
850 .desc = "VP_INDEX MSR (hv-vpindex)",
851 .flags = {
852 {.fw = FEAT_HYPERV_EAX,
853 .bits = HV_VP_INDEX_AVAILABLE}
854 }
855 },
856 [HYPERV_FEAT_RUNTIME] = {
857 .desc = "VP_RUNTIME MSR (hv-runtime)",
858 .flags = {
859 {.fw = FEAT_HYPERV_EAX,
860 .bits = HV_VP_RUNTIME_AVAILABLE}
861 }
862 },
863 [HYPERV_FEAT_SYNIC] = {
864 .desc = "synthetic interrupt controller (hv-synic)",
865 .flags = {
866 {.fw = FEAT_HYPERV_EAX,
867 .bits = HV_SYNIC_AVAILABLE}
868 }
869 },
870 [HYPERV_FEAT_STIMER] = {
871 .desc = "synthetic timers (hv-stimer)",
872 .flags = {
873 {.fw = FEAT_HYPERV_EAX,
874 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
875 },
876 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
877 },
878 [HYPERV_FEAT_FREQUENCIES] = {
879 .desc = "frequency MSRs (hv-frequencies)",
880 .flags = {
881 {.fw = FEAT_HYPERV_EAX,
882 .bits = HV_ACCESS_FREQUENCY_MSRS},
883 {.fw = FEAT_HYPERV_EDX,
884 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
885 }
886 },
887 [HYPERV_FEAT_REENLIGHTENMENT] = {
888 .desc = "reenlightenment MSRs (hv-reenlightenment)",
889 .flags = {
890 {.fw = FEAT_HYPERV_EAX,
891 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
892 }
893 },
894 [HYPERV_FEAT_TLBFLUSH] = {
895 .desc = "paravirtualized TLB flush (hv-tlbflush)",
896 .flags = {
897 {.fw = FEAT_HV_RECOMM_EAX,
898 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
899 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
900 },
901 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
902 },
903 [HYPERV_FEAT_EVMCS] = {
904 .desc = "enlightened VMCS (hv-evmcs)",
905 .flags = {
906 {.fw = FEAT_HV_RECOMM_EAX,
907 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
908 },
909 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
910 },
911 [HYPERV_FEAT_IPI] = {
912 .desc = "paravirtualized IPI (hv-ipi)",
913 .flags = {
914 {.fw = FEAT_HV_RECOMM_EAX,
915 .bits = HV_CLUSTER_IPI_RECOMMENDED |
916 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
917 },
918 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 919 },
128531d9
VK
920 [HYPERV_FEAT_STIMER_DIRECT] = {
921 .desc = "direct mode synthetic timers (hv-stimer-direct)",
922 .flags = {
923 {.fw = FEAT_HYPERV_EDX,
924 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
925 },
926 .dependencies = BIT(HYPERV_FEAT_STIMER)
927 },
6760bd20
VK
928};
929
930static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
931{
932 struct kvm_cpuid2 *cpuid;
933 int r, size;
934
935 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
936 cpuid = g_malloc0(size);
937 cpuid->nent = max;
938
939 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
940 if (r == 0 && cpuid->nent >= max) {
941 r = -E2BIG;
942 }
943 if (r < 0) {
944 if (r == -E2BIG) {
945 g_free(cpuid);
946 return NULL;
947 } else {
948 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
949 strerror(-r));
950 exit(1);
951 }
952 }
953 return cpuid;
954}
955
956/*
957 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
958 * for all entries.
959 */
960static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
961{
962 struct kvm_cpuid2 *cpuid;
963 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
964
965 /*
966 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
967 * -E2BIG, however, it doesn't report back the right size. Keep increasing
968 * it and re-trying until we succeed.
969 */
970 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
971 max++;
972 }
973 return cpuid;
974}
975
976/*
977 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
978 * leaves from KVM_CAP_HYPERV* and present MSRs data.
979 */
980static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
981{
982 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
983 struct kvm_cpuid2 *cpuid;
984 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
985
986 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
987 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
988 cpuid->nent = 2;
989
990 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
991 entry_feat = &cpuid->entries[0];
992 entry_feat->function = HV_CPUID_FEATURES;
993
994 entry_recomm = &cpuid->entries[1];
995 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
996 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
997
998 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
999 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1000 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1001 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1002 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1003 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1004 }
c35bd19a 1005
6760bd20
VK
1006 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1007 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1008 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1009 }
6760bd20
VK
1010
1011 if (has_msr_hv_frequencies) {
1012 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1013 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1014 }
6760bd20
VK
1015
1016 if (has_msr_hv_crash) {
1017 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1018 }
6760bd20
VK
1019
1020 if (has_msr_hv_reenlightenment) {
1021 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1022 }
6760bd20
VK
1023
1024 if (has_msr_hv_reset) {
1025 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1026 }
6760bd20
VK
1027
1028 if (has_msr_hv_vpindex) {
1029 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1030 }
6760bd20
VK
1031
1032 if (has_msr_hv_runtime) {
1033 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1034 }
6760bd20
VK
1035
1036 if (has_msr_hv_synic) {
1037 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1038 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1039
1040 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1041 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1042 }
c35bd19a 1043 }
6760bd20
VK
1044
1045 if (has_msr_hv_stimer) {
1046 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1047 }
9b4cf107 1048
6760bd20
VK
1049 if (kvm_check_extension(cs->kvm_state,
1050 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1051 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1052 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1053 }
c35bd19a 1054
6760bd20
VK
1055 if (kvm_check_extension(cs->kvm_state,
1056 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1057 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1058 }
6760bd20
VK
1059
1060 if (kvm_check_extension(cs->kvm_state,
1061 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1062 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1063 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1064 }
6760bd20
VK
1065
1066 return cpuid;
1067}
1068
1069static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1070{
1071 struct kvm_cpuid_entry2 *entry;
1072 uint32_t func;
1073 int reg;
1074
1075 switch (fw) {
1076 case FEAT_HYPERV_EAX:
1077 reg = R_EAX;
1078 func = HV_CPUID_FEATURES;
1079 break;
1080 case FEAT_HYPERV_EDX:
1081 reg = R_EDX;
1082 func = HV_CPUID_FEATURES;
1083 break;
1084 case FEAT_HV_RECOMM_EAX:
1085 reg = R_EAX;
1086 func = HV_CPUID_ENLIGHTMENT_INFO;
1087 break;
1088 default:
1089 return -EINVAL;
a2b107db 1090 }
6760bd20
VK
1091
1092 entry = cpuid_find_entry(cpuid, func, 0);
1093 if (!entry) {
1094 return -ENOENT;
a2b107db 1095 }
6760bd20
VK
1096
1097 switch (reg) {
1098 case R_EAX:
1099 *r = entry->eax;
1100 break;
1101 case R_EDX:
1102 *r = entry->edx;
1103 break;
1104 default:
1105 return -EINVAL;
a2b107db 1106 }
6760bd20
VK
1107
1108 return 0;
1109}
1110
1111static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1112 int feature)
1113{
1114 X86CPU *cpu = X86_CPU(cs);
1115 CPUX86State *env = &cpu->env;
e48ddcc6 1116 uint32_t r, fw, bits;
c6861930 1117 uint64_t deps;
9dc83cd9 1118 int i, dep_feat;
6760bd20 1119
e48ddcc6 1120 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
6760bd20
VK
1121 return 0;
1122 }
1123
c6861930 1124 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1125 while (deps) {
1126 dep_feat = ctz64(deps);
c6861930
VK
1127 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1128 fprintf(stderr,
1129 "Hyper-V %s requires Hyper-V %s\n",
1130 kvm_hyperv_properties[feature].desc,
1131 kvm_hyperv_properties[dep_feat].desc);
1132 return 1;
1133 }
9dc83cd9 1134 deps &= ~(1ull << dep_feat);
c6861930
VK
1135 }
1136
6760bd20
VK
1137 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1138 fw = kvm_hyperv_properties[feature].flags[i].fw;
1139 bits = kvm_hyperv_properties[feature].flags[i].bits;
1140
1141 if (!fw) {
1142 continue;
a2b107db 1143 }
6760bd20
VK
1144
1145 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
e48ddcc6
VK
1146 if (hyperv_feat_enabled(cpu, feature)) {
1147 fprintf(stderr,
1148 "Hyper-V %s is not supported by kernel\n",
1149 kvm_hyperv_properties[feature].desc);
1150 return 1;
1151 } else {
1152 return 0;
1153 }
6760bd20
VK
1154 }
1155
1156 env->features[fw] |= bits;
a2b107db 1157 }
6760bd20 1158
e48ddcc6
VK
1159 if (cpu->hyperv_passthrough) {
1160 cpu->hyperv_features |= BIT(feature);
1161 }
1162
6760bd20
VK
1163 return 0;
1164}
1165
2344d22e
VK
1166/*
1167 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1168 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1169 * extentions are enabled.
1170 */
1171static int hyperv_handle_properties(CPUState *cs,
1172 struct kvm_cpuid_entry2 *cpuid_ent)
6760bd20
VK
1173{
1174 X86CPU *cpu = X86_CPU(cs);
1175 CPUX86State *env = &cpu->env;
1176 struct kvm_cpuid2 *cpuid;
2344d22e
VK
1177 struct kvm_cpuid_entry2 *c;
1178 uint32_t signature[3];
1179 uint32_t cpuid_i = 0;
e48ddcc6 1180 int r;
6760bd20 1181
2344d22e
VK
1182 if (!hyperv_enabled(cpu))
1183 return 0;
1184
e48ddcc6
VK
1185 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1186 cpu->hyperv_passthrough) {
a2b107db
VK
1187 uint16_t evmcs_version;
1188
e48ddcc6
VK
1189 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1190 (uintptr_t)&evmcs_version);
1191
1192 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
6760bd20
VK
1193 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1194 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
a2b107db
VK
1195 return -ENOSYS;
1196 }
e48ddcc6
VK
1197
1198 if (!r) {
1199 env->features[FEAT_HV_RECOMM_EAX] |=
1200 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1201 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1202 }
a2b107db
VK
1203 }
1204
6760bd20
VK
1205 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1206 cpuid = get_supported_hv_cpuid(cs);
1207 } else {
1208 cpuid = get_supported_hv_cpuid_legacy(cs);
1209 }
1210
e48ddcc6
VK
1211 if (cpu->hyperv_passthrough) {
1212 memcpy(cpuid_ent, &cpuid->entries[0],
1213 cpuid->nent * sizeof(cpuid->entries[0]));
1214
1215 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1216 if (c) {
1217 env->features[FEAT_HYPERV_EAX] = c->eax;
1218 env->features[FEAT_HYPERV_EBX] = c->ebx;
1219 env->features[FEAT_HYPERV_EDX] = c->eax;
1220 }
1221 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1222 if (c) {
1223 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1224
1225 /* hv-spinlocks may have been overriden */
1226 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1227 c->ebx = cpu->hyperv_spinlock_attempts;
1228 }
1229 }
1230 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1231 if (c) {
1232 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1233 }
1234 }
1235
30d6ff66
VK
1236 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1237 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1238 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1239 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1240 if (c) {
1241 env->features[FEAT_HV_RECOMM_EAX] |=
1242 c->eax & HV_NO_NONARCH_CORESHARING;
1243 }
1244 }
1245
6760bd20 1246 /* Features */
e48ddcc6 1247 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
6760bd20
VK
1248 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1249 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1250 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1251 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1252 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1253 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1254 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1255 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1256 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1257 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1258 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1259 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1260 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
128531d9 1261 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
6760bd20 1262
c6861930 1263 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1264 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1265 !cpu->hyperv_synic_kvm_only &&
1266 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
c6861930 1267 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
6760bd20
VK
1268 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1269 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1270 r |= 1;
1271 }
1272
1273 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1274 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1275
2344d22e
VK
1276 if (r) {
1277 r = -ENOSYS;
1278 goto free;
1279 }
1280
e48ddcc6
VK
1281 if (cpu->hyperv_passthrough) {
1282 /* We already copied all feature words from KVM as is */
1283 r = cpuid->nent;
1284 goto free;
1285 }
1286
2344d22e
VK
1287 c = &cpuid_ent[cpuid_i++];
1288 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1289 if (!cpu->hyperv_vendor_id) {
1290 memcpy(signature, "Microsoft Hv", 12);
1291 } else {
1292 size_t len = strlen(cpu->hyperv_vendor_id);
1293
1294 if (len > 12) {
1295 error_report("hv-vendor-id truncated to 12 characters");
1296 len = 12;
1297 }
1298 memset(signature, 0, 12);
1299 memcpy(signature, cpu->hyperv_vendor_id, len);
1300 }
1301 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1302 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1303 c->ebx = signature[0];
1304 c->ecx = signature[1];
1305 c->edx = signature[2];
1306
1307 c = &cpuid_ent[cpuid_i++];
1308 c->function = HV_CPUID_INTERFACE;
1309 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1310 c->eax = signature[0];
1311 c->ebx = 0;
1312 c->ecx = 0;
1313 c->edx = 0;
1314
1315 c = &cpuid_ent[cpuid_i++];
1316 c->function = HV_CPUID_VERSION;
1317 c->eax = 0x00001bbc;
1318 c->ebx = 0x00060001;
1319
1320 c = &cpuid_ent[cpuid_i++];
1321 c->function = HV_CPUID_FEATURES;
1322 c->eax = env->features[FEAT_HYPERV_EAX];
1323 c->ebx = env->features[FEAT_HYPERV_EBX];
1324 c->edx = env->features[FEAT_HYPERV_EDX];
1325
1326 c = &cpuid_ent[cpuid_i++];
1327 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1328 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1329 c->ebx = cpu->hyperv_spinlock_attempts;
1330
1331 c = &cpuid_ent[cpuid_i++];
1332 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1333 c->eax = cpu->hv_max_vps;
1334 c->ebx = 0x40;
1335
1336 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1337 __u32 function;
1338
1339 /* Create zeroed 0x40000006..0x40000009 leaves */
1340 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1341 function < HV_CPUID_NESTED_FEATURES; function++) {
1342 c = &cpuid_ent[cpuid_i++];
1343 c->function = function;
1344 }
1345
1346 c = &cpuid_ent[cpuid_i++];
1347 c->function = HV_CPUID_NESTED_FEATURES;
1348 c->eax = env->features[FEAT_HV_NESTED_EAX];
1349 }
1350 r = cpuid_i;
1351
1352free:
6760bd20
VK
1353 g_free(cpuid);
1354
2344d22e 1355 return r;
c35bd19a
EY
1356}
1357
e48ddcc6 1358static Error *hv_passthrough_mig_blocker;
30d6ff66 1359static Error *hv_no_nonarch_cs_mig_blocker;
e48ddcc6 1360
e9688fab
RK
1361static int hyperv_init_vcpu(X86CPU *cpu)
1362{
729ce7e1 1363 CPUState *cs = CPU(cpu);
e48ddcc6 1364 Error *local_err = NULL;
729ce7e1
RK
1365 int ret;
1366
e48ddcc6
VK
1367 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1368 error_setg(&hv_passthrough_mig_blocker,
1369 "'hv-passthrough' CPU flag prevents migration, use explicit"
1370 " set of hv-* flags instead");
1371 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1372 if (local_err) {
1373 error_report_err(local_err);
1374 error_free(hv_passthrough_mig_blocker);
1375 return ret;
1376 }
1377 }
1378
30d6ff66
VK
1379 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1380 hv_no_nonarch_cs_mig_blocker == NULL) {
1381 error_setg(&hv_no_nonarch_cs_mig_blocker,
1382 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1383 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1384 " make sure SMT is disabled and/or that vCPUs are properly"
1385 " pinned)");
1386 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1387 if (local_err) {
1388 error_report_err(local_err);
1389 error_free(hv_no_nonarch_cs_mig_blocker);
1390 return ret;
1391 }
1392 }
1393
2d384d7c 1394 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1395 /*
1396 * the kernel doesn't support setting vp_index; assert that its value
1397 * is in sync
1398 */
e9688fab
RK
1399 struct {
1400 struct kvm_msrs info;
1401 struct kvm_msr_entry entries[1];
1402 } msr_data = {
1403 .info.nmsrs = 1,
1404 .entries[0].index = HV_X64_MSR_VP_INDEX,
1405 };
1406
729ce7e1 1407 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1408 if (ret < 0) {
1409 return ret;
1410 }
1411 assert(ret == 1);
1412
701189e3 1413 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1414 error_report("kernel's vp_index != QEMU's vp_index");
1415 return -ENXIO;
1416 }
1417 }
1418
2d384d7c 1419 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1420 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1421 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1422 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1423 if (ret < 0) {
1424 error_report("failed to turn on HyperV SynIC in KVM: %s",
1425 strerror(-ret));
1426 return ret;
1427 }
606c34bf 1428
9b4cf107
RK
1429 if (!cpu->hyperv_synic_kvm_only) {
1430 ret = hyperv_x86_synic_add(cpu);
1431 if (ret < 0) {
1432 error_report("failed to create HyperV SynIC: %s",
1433 strerror(-ret));
1434 return ret;
1435 }
606c34bf 1436 }
729ce7e1
RK
1437 }
1438
e9688fab
RK
1439 return 0;
1440}
1441
68bfd0ad
MT
1442static Error *invtsc_mig_blocker;
1443
f8bb0565 1444#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1445
20d695a9 1446int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1447{
1448 struct {
486bd5a2 1449 struct kvm_cpuid2 cpuid;
f8bb0565 1450 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1451 } cpuid_data;
1452 /*
1453 * The kernel defines these structs with padding fields so there
1454 * should be no extra padding in our cpuid_data struct.
1455 */
1456 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1457 sizeof(struct kvm_cpuid2) +
1458 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1459
20d695a9
AF
1460 X86CPU *cpu = X86_CPU(cs);
1461 CPUX86State *env = &cpu->env;
486bd5a2 1462 uint32_t limit, i, j, cpuid_i;
a33609ca 1463 uint32_t unused;
bb0300dc 1464 struct kvm_cpuid_entry2 *c;
bb0300dc 1465 uint32_t signature[3];
234cc647 1466 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1467 int max_nested_state_len;
e7429073 1468 int r;
fe44dc91 1469 Error *local_err = NULL;
05330448 1470
ef4cbe14
SW
1471 memset(&cpuid_data, 0, sizeof(cpuid_data));
1472
05330448
AL
1473 cpuid_i = 0;
1474
ddb98b5a
LP
1475 r = kvm_arch_set_tsc_khz(cs);
1476 if (r < 0) {
6b2341ee 1477 return r;
ddb98b5a
LP
1478 }
1479
1480 /* vcpu's TSC frequency is either specified by user, or following
1481 * the value used by KVM if the former is not present. In the
1482 * latter case, we query it from KVM and record in env->tsc_khz,
1483 * so that vcpu's TSC frequency can be migrated later via this field.
1484 */
1485 if (!env->tsc_khz) {
1486 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1487 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1488 -ENOTSUP;
1489 if (r > 0) {
1490 env->tsc_khz = r;
1491 }
1492 }
1493
bb0300dc 1494 /* Paravirtualization CPUIDs */
2344d22e
VK
1495 r = hyperv_handle_properties(cs, cpuid_data.entries);
1496 if (r < 0) {
1497 return r;
1498 } else if (r > 0) {
1499 cpuid_i = r;
234cc647 1500 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1501 has_msr_hv_hypercall = true;
eab70139
VR
1502 }
1503
f522d2ac
AW
1504 if (cpu->expose_kvm) {
1505 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1506 c = &cpuid_data.entries[cpuid_i++];
1507 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1508 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1509 c->ebx = signature[0];
1510 c->ecx = signature[1];
1511 c->edx = signature[2];
234cc647 1512
f522d2ac
AW
1513 c = &cpuid_data.entries[cpuid_i++];
1514 c->function = KVM_CPUID_FEATURES | kvm_base;
1515 c->eax = env->features[FEAT_KVM];
be777326 1516 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1517 }
917367aa 1518
a33609ca 1519 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
1520
1521 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1522 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1523 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1524 abort();
1525 }
bb0300dc 1526 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1527
1528 switch (i) {
a36b1029
AL
1529 case 2: {
1530 /* Keep reading function 2 till all the input is received */
1531 int times;
1532
a36b1029 1533 c->function = i;
a33609ca
AL
1534 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1535 KVM_CPUID_FLAG_STATE_READ_NEXT;
1536 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1537 times = c->eax & 0xff;
a36b1029
AL
1538
1539 for (j = 1; j < times; ++j) {
f8bb0565
IM
1540 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1541 fprintf(stderr, "cpuid_data is full, no space for "
1542 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1543 abort();
1544 }
a33609ca 1545 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1546 c->function = i;
a33609ca
AL
1547 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1548 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1549 }
1550 break;
1551 }
a94e1428
LX
1552 case 0x1f:
1553 if (env->nr_dies < 2) {
1554 break;
1555 }
486bd5a2
AL
1556 case 4:
1557 case 0xb:
1558 case 0xd:
1559 for (j = 0; ; j++) {
31e8c696
AP
1560 if (i == 0xd && j == 64) {
1561 break;
1562 }
a94e1428
LX
1563
1564 if (i == 0x1f && j == 64) {
1565 break;
1566 }
1567
486bd5a2
AL
1568 c->function = i;
1569 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1570 c->index = j;
a33609ca 1571 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1572
b9bec74b 1573 if (i == 4 && c->eax == 0) {
486bd5a2 1574 break;
b9bec74b
JK
1575 }
1576 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1577 break;
b9bec74b 1578 }
a94e1428
LX
1579 if (i == 0x1f && !(c->ecx & 0xff00)) {
1580 break;
1581 }
b9bec74b 1582 if (i == 0xd && c->eax == 0) {
31e8c696 1583 continue;
b9bec74b 1584 }
f8bb0565
IM
1585 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1586 fprintf(stderr, "cpuid_data is full, no space for "
1587 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1588 abort();
1589 }
a33609ca 1590 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1591 }
1592 break;
80db491d 1593 case 0x7:
e37a5c7f
CP
1594 case 0x14: {
1595 uint32_t times;
1596
1597 c->function = i;
1598 c->index = 0;
1599 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1600 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1601 times = c->eax;
1602
1603 for (j = 1; j <= times; ++j) {
1604 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1605 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1606 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1607 abort();
1608 }
1609 c = &cpuid_data.entries[cpuid_i++];
1610 c->function = i;
1611 c->index = j;
1612 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1613 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1614 }
1615 break;
1616 }
486bd5a2 1617 default:
486bd5a2 1618 c->function = i;
a33609ca
AL
1619 c->flags = 0;
1620 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1621 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1622 /*
1623 * KVM already returns all zeroes if a CPUID entry is missing,
1624 * so we can omit it and avoid hitting KVM's 80-entry limit.
1625 */
1626 cpuid_i--;
1627 }
486bd5a2
AL
1628 break;
1629 }
05330448 1630 }
0d894367
PB
1631
1632 if (limit >= 0x0a) {
0b368a10 1633 uint32_t eax, edx;
0d894367 1634
0b368a10
JD
1635 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1636
1637 has_architectural_pmu_version = eax & 0xff;
1638 if (has_architectural_pmu_version > 0) {
1639 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1640
1641 /* Shouldn't be more than 32, since that's the number of bits
1642 * available in EBX to tell us _which_ counters are available.
1643 * Play it safe.
1644 */
0b368a10
JD
1645 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1646 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1647 }
1648
1649 if (has_architectural_pmu_version > 1) {
1650 num_architectural_pmu_fixed_counters = edx & 0x1f;
1651
1652 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1653 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1654 }
0d894367
PB
1655 }
1656 }
1657 }
1658
a33609ca 1659 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1660
1661 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1662 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1663 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1664 abort();
1665 }
bb0300dc 1666 c = &cpuid_data.entries[cpuid_i++];
05330448 1667
8f4202fb
BM
1668 switch (i) {
1669 case 0x8000001d:
1670 /* Query for all AMD cache information leaves */
1671 for (j = 0; ; j++) {
1672 c->function = i;
1673 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1674 c->index = j;
1675 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1676
1677 if (c->eax == 0) {
1678 break;
1679 }
1680 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1681 fprintf(stderr, "cpuid_data is full, no space for "
1682 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1683 abort();
1684 }
1685 c = &cpuid_data.entries[cpuid_i++];
1686 }
1687 break;
1688 default:
1689 c->function = i;
1690 c->flags = 0;
1691 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1692 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1693 /*
1694 * KVM already returns all zeroes if a CPUID entry is missing,
1695 * so we can omit it and avoid hitting KVM's 80-entry limit.
1696 */
1697 cpuid_i--;
1698 }
8f4202fb
BM
1699 break;
1700 }
05330448
AL
1701 }
1702
b3baa152
BW
1703 /* Call Centaur's CPUID instructions they are supported. */
1704 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1705 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1706
1707 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1708 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1709 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1710 abort();
1711 }
b3baa152
BW
1712 c = &cpuid_data.entries[cpuid_i++];
1713
1714 c->function = i;
1715 c->flags = 0;
1716 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1717 }
1718 }
1719
05330448
AL
1720 cpuid_data.cpuid.nent = cpuid_i;
1721
e7701825 1722 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1723 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1724 (CPUID_MCE | CPUID_MCA)
a60f24b5 1725 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1726 uint64_t mcg_cap, unsupported_caps;
e7701825 1727 int banks;
32a42024 1728 int ret;
e7701825 1729
a60f24b5 1730 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1731 if (ret < 0) {
1732 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1733 return ret;
e7701825 1734 }
75d49497 1735
2590f15b 1736 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1737 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1738 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1739 return -ENOTSUP;
75d49497 1740 }
49b69cbf 1741
5120901a
EH
1742 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1743 if (unsupported_caps) {
87f8b626
AR
1744 if (unsupported_caps & MCG_LMCE_P) {
1745 error_report("kvm: LMCE not supported");
1746 return -ENOTSUP;
1747 }
3dc6f869
AF
1748 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1749 unsupported_caps);
5120901a
EH
1750 }
1751
2590f15b
EH
1752 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1753 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1754 if (ret < 0) {
1755 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1756 return ret;
1757 }
e7701825 1758 }
e7701825 1759
b8cc45d6
GC
1760 qemu_add_vm_change_state_handler(cpu_update_state, env);
1761
df67696e
LJ
1762 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1763 if (c) {
1764 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1765 !!(c->ecx & CPUID_EXT_SMX);
1766 }
1767
87f8b626
AR
1768 if (env->mcg_cap & MCG_LMCE_P) {
1769 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1770 }
1771
d99569d9
EH
1772 if (!env->user_tsc_khz) {
1773 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1774 invtsc_mig_blocker == NULL) {
d99569d9
EH
1775 error_setg(&invtsc_mig_blocker,
1776 "State blocked by non-migratable CPU device"
1777 " (invtsc flag)");
fe44dc91
AA
1778 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1779 if (local_err) {
1780 error_report_err(local_err);
1781 error_free(invtsc_mig_blocker);
79a197ab 1782 return r;
fe44dc91 1783 }
d99569d9 1784 }
68bfd0ad
MT
1785 }
1786
9954a158
PDJ
1787 if (cpu->vmware_cpuid_freq
1788 /* Guests depend on 0x40000000 to detect this feature, so only expose
1789 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1790 && cpu->expose_kvm
1791 && kvm_base == KVM_CPUID_SIGNATURE
1792 /* TSC clock must be stable and known for this feature. */
4bb95b82 1793 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1794
1795 c = &cpuid_data.entries[cpuid_i++];
1796 c->function = KVM_CPUID_SIGNATURE | 0x10;
1797 c->eax = env->tsc_khz;
1798 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1799 * APIC_BUS_CYCLE_NS */
1800 c->ebx = 1000000;
1801 c->ecx = c->edx = 0;
1802
1803 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1804 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1805 }
1806
1807 cpuid_data.cpuid.nent = cpuid_i;
1808
1809 cpuid_data.cpuid.padding = 0;
1810 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1811 if (r) {
1812 goto fail;
1813 }
1814
28143b40 1815 if (has_xsave) {
5b8063c4 1816 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1f670a95 1817 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
fabacc0f 1818 }
ebbfef2f
LA
1819
1820 max_nested_state_len = kvm_max_nested_state_length();
1821 if (max_nested_state_len > 0) {
1822 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 1823
1e44f3ab
PB
1824 if (cpu_has_vmx(env)) {
1825 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 1826
1e44f3ab
PB
1827 env->nested_state = g_malloc0(max_nested_state_len);
1828 env->nested_state->size = max_nested_state_len;
ebbfef2f 1829 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1e44f3ab
PB
1830
1831 vmx_hdr = &env->nested_state->hdr.vmx;
ebbfef2f
LA
1832 vmx_hdr->vmxon_pa = -1ull;
1833 vmx_hdr->vmcs12_pa = -1ull;
1834 }
1835 }
1836
d71b62a1 1837 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1838
273c515c
PB
1839 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1840 has_msr_tsc_aux = false;
1841 }
d1ae67f6 1842
e9688fab
RK
1843 r = hyperv_init_vcpu(cpu);
1844 if (r) {
1845 goto fail;
1846 }
1847
e7429073 1848 return 0;
fe44dc91
AA
1849
1850 fail:
1851 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 1852
fe44dc91 1853 return r;
05330448
AL
1854}
1855
b1115c99
LA
1856int kvm_arch_destroy_vcpu(CPUState *cs)
1857{
1858 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 1859 CPUX86State *env = &cpu->env;
b1115c99
LA
1860
1861 if (cpu->kvm_msr_buf) {
1862 g_free(cpu->kvm_msr_buf);
1863 cpu->kvm_msr_buf = NULL;
1864 }
1865
ebbfef2f
LA
1866 if (env->nested_state) {
1867 g_free(env->nested_state);
1868 env->nested_state = NULL;
1869 }
1870
b1115c99
LA
1871 return 0;
1872}
1873
50a2c6e5 1874void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 1875{
20d695a9 1876 CPUX86State *env = &cpu->env;
dd673288 1877
1a5e9d2f 1878 env->xcr0 = 1;
ddced198 1879 if (kvm_irqchip_in_kernel()) {
dd673288 1880 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
1881 KVM_MP_STATE_UNINITIALIZED;
1882 } else {
1883 env->mp_state = KVM_MP_STATE_RUNNABLE;
1884 }
689141dd 1885
2d384d7c 1886 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
1887 int i;
1888 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1889 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1890 }
606c34bf
RK
1891
1892 hyperv_x86_synic_reset(cpu);
689141dd 1893 }
d645e132
MT
1894 /* enabled by default */
1895 env->poll_control_msr = 1;
caa5af0f
JK
1896}
1897
e0723c45
PB
1898void kvm_arch_do_init_vcpu(X86CPU *cpu)
1899{
1900 CPUX86State *env = &cpu->env;
1901
1902 /* APs get directly into wait-for-SIPI state. */
1903 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1904 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1905 }
1906}
1907
f57bceb6
RH
1908static int kvm_get_supported_feature_msrs(KVMState *s)
1909{
1910 int ret = 0;
1911
1912 if (kvm_feature_msrs != NULL) {
1913 return 0;
1914 }
1915
1916 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1917 return 0;
1918 }
1919
1920 struct kvm_msr_list msr_list;
1921
1922 msr_list.nmsrs = 0;
1923 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1924 if (ret < 0 && ret != -E2BIG) {
1925 error_report("Fetch KVM feature MSR list failed: %s",
1926 strerror(-ret));
1927 return ret;
1928 }
1929
1930 assert(msr_list.nmsrs > 0);
1931 kvm_feature_msrs = (struct kvm_msr_list *) \
1932 g_malloc0(sizeof(msr_list) +
1933 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1934
1935 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1936 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1937
1938 if (ret < 0) {
1939 error_report("Fetch KVM feature MSR list failed: %s",
1940 strerror(-ret));
1941 g_free(kvm_feature_msrs);
1942 kvm_feature_msrs = NULL;
1943 return ret;
1944 }
1945
1946 return 0;
1947}
1948
c3a3a7d3 1949static int kvm_get_supported_msrs(KVMState *s)
05330448 1950{
c3a3a7d3 1951 int ret = 0;
de428cea 1952 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 1953
de428cea
LQ
1954 /*
1955 * Obtain MSR list from KVM. These are the MSRs that we must
1956 * save/restore.
1957 */
1958 msr_list.nmsrs = 0;
1959 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1960 if (ret < 0 && ret != -E2BIG) {
1961 return ret;
1962 }
1963 /*
1964 * Old kernel modules had a bug and could write beyond the provided
1965 * memory. Allocate at least a safe amount of 1K.
1966 */
1967 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1968 msr_list.nmsrs *
1969 sizeof(msr_list.indices[0])));
05330448 1970
de428cea
LQ
1971 kvm_msr_list->nmsrs = msr_list.nmsrs;
1972 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1973 if (ret >= 0) {
1974 int i;
05330448 1975
de428cea
LQ
1976 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1977 switch (kvm_msr_list->indices[i]) {
1978 case MSR_STAR:
1979 has_msr_star = true;
1980 break;
1981 case MSR_VM_HSAVE_PA:
1982 has_msr_hsave_pa = true;
1983 break;
1984 case MSR_TSC_AUX:
1985 has_msr_tsc_aux = true;
1986 break;
1987 case MSR_TSC_ADJUST:
1988 has_msr_tsc_adjust = true;
1989 break;
1990 case MSR_IA32_TSCDEADLINE:
1991 has_msr_tsc_deadline = true;
1992 break;
1993 case MSR_IA32_SMBASE:
1994 has_msr_smbase = true;
1995 break;
1996 case MSR_SMI_COUNT:
1997 has_msr_smi_count = true;
1998 break;
1999 case MSR_IA32_MISC_ENABLE:
2000 has_msr_misc_enable = true;
2001 break;
2002 case MSR_IA32_BNDCFGS:
2003 has_msr_bndcfgs = true;
2004 break;
2005 case MSR_IA32_XSS:
2006 has_msr_xss = true;
2007 break;
2008 case HV_X64_MSR_CRASH_CTL:
2009 has_msr_hv_crash = true;
2010 break;
2011 case HV_X64_MSR_RESET:
2012 has_msr_hv_reset = true;
2013 break;
2014 case HV_X64_MSR_VP_INDEX:
2015 has_msr_hv_vpindex = true;
2016 break;
2017 case HV_X64_MSR_VP_RUNTIME:
2018 has_msr_hv_runtime = true;
2019 break;
2020 case HV_X64_MSR_SCONTROL:
2021 has_msr_hv_synic = true;
2022 break;
2023 case HV_X64_MSR_STIMER0_CONFIG:
2024 has_msr_hv_stimer = true;
2025 break;
2026 case HV_X64_MSR_TSC_FREQUENCY:
2027 has_msr_hv_frequencies = true;
2028 break;
2029 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2030 has_msr_hv_reenlightenment = true;
2031 break;
2032 case MSR_IA32_SPEC_CTRL:
2033 has_msr_spec_ctrl = true;
2034 break;
2035 case MSR_VIRT_SSBD:
2036 has_msr_virt_ssbd = true;
2037 break;
2038 case MSR_IA32_ARCH_CAPABILITIES:
2039 has_msr_arch_capabs = true;
2040 break;
2041 case MSR_IA32_CORE_CAPABILITY:
2042 has_msr_core_capabs = true;
2043 break;
20a78b02
PB
2044 case MSR_IA32_VMX_VMFUNC:
2045 has_msr_vmx_vmfunc = true;
2046 break;
05330448
AL
2047 }
2048 }
05330448
AL
2049 }
2050
de428cea
LQ
2051 g_free(kvm_msr_list);
2052
c3a3a7d3 2053 return ret;
05330448
AL
2054}
2055
6410848b
PB
2056static Notifier smram_machine_done;
2057static KVMMemoryListener smram_listener;
2058static AddressSpace smram_address_space;
2059static MemoryRegion smram_as_root;
2060static MemoryRegion smram_as_mem;
2061
2062static void register_smram_listener(Notifier *n, void *unused)
2063{
2064 MemoryRegion *smram =
2065 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2066
2067 /* Outer container... */
2068 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2069 memory_region_set_enabled(&smram_as_root, true);
2070
2071 /* ... with two regions inside: normal system memory with low
2072 * priority, and...
2073 */
2074 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2075 get_system_memory(), 0, ~0ull);
2076 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2077 memory_region_set_enabled(&smram_as_mem, true);
2078
2079 if (smram) {
2080 /* ... SMRAM with higher priority */
2081 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2082 memory_region_set_enabled(smram, true);
2083 }
2084
2085 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2086 kvm_memory_listener_register(kvm_state, &smram_listener,
2087 &smram_address_space, 1);
2088}
2089
b16565b3 2090int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2091{
11076198 2092 uint64_t identity_base = 0xfffbc000;
39d6960a 2093 uint64_t shadow_mem;
20420430 2094 int ret;
25d2e361 2095 struct utsname utsname;
20420430 2096
28143b40 2097 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2098 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2099 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 2100
e9688fab
RK
2101 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2102
fd13f23b
LA
2103 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2104 if (has_exception_payload) {
2105 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2106 if (ret < 0) {
2107 error_report("kvm: Failed to enable exception payload cap: %s",
2108 strerror(-ret));
2109 return ret;
2110 }
2111 }
2112
c3a3a7d3 2113 ret = kvm_get_supported_msrs(s);
20420430 2114 if (ret < 0) {
20420430
SY
2115 return ret;
2116 }
25d2e361 2117
f57bceb6
RH
2118 kvm_get_supported_feature_msrs(s);
2119
25d2e361
MT
2120 uname(&utsname);
2121 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2122
4c5b10b7 2123 /*
11076198
JK
2124 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2125 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2126 * Since these must be part of guest physical memory, we need to allocate
2127 * them, both by setting their start addresses in the kernel and by
2128 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2129 *
2130 * Older KVM versions may not support setting the identity map base. In
2131 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2132 * size.
4c5b10b7 2133 */
11076198
JK
2134 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2135 /* Allows up to 16M BIOSes. */
2136 identity_base = 0xfeffc000;
2137
2138 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2139 if (ret < 0) {
2140 return ret;
2141 }
4c5b10b7 2142 }
e56ff191 2143
11076198
JK
2144 /* Set TSS base one page after EPT identity map. */
2145 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2146 if (ret < 0) {
2147 return ret;
2148 }
2149
11076198
JK
2150 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2151 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2152 if (ret < 0) {
11076198 2153 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2154 return ret;
2155 }
3c85e74f 2156 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 2157
4689b77b 2158 shadow_mem = machine_kvm_shadow_mem(ms);
36ad0e94
MA
2159 if (shadow_mem != -1) {
2160 shadow_mem /= 4096;
2161 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2162 if (ret < 0) {
2163 return ret;
39d6960a
JK
2164 }
2165 }
6410848b 2166
d870cfde
GA
2167 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2168 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2169 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
6410848b
PB
2170 smram_machine_done.notify = register_smram_listener;
2171 qemu_add_machine_init_done_notifier(&smram_machine_done);
2172 }
6f131f13
MT
2173
2174 if (enable_cpu_pm) {
2175 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2176 int ret;
2177
2178/* Work around for kernel header with a typo. TODO: fix header and drop. */
2179#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2180#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2181#endif
2182 if (disable_exits) {
2183 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2184 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2185 KVM_X86_DISABLE_EXITS_PAUSE |
2186 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2187 }
2188
2189 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2190 disable_exits);
2191 if (ret < 0) {
2192 error_report("kvm: guest stopping CPU not supported: %s",
2193 strerror(-ret));
2194 }
2195 }
2196
11076198 2197 return 0;
05330448 2198}
b9bec74b 2199
05330448
AL
2200static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2201{
2202 lhs->selector = rhs->selector;
2203 lhs->base = rhs->base;
2204 lhs->limit = rhs->limit;
2205 lhs->type = 3;
2206 lhs->present = 1;
2207 lhs->dpl = 3;
2208 lhs->db = 0;
2209 lhs->s = 1;
2210 lhs->l = 0;
2211 lhs->g = 0;
2212 lhs->avl = 0;
2213 lhs->unusable = 0;
2214}
2215
2216static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2217{
2218 unsigned flags = rhs->flags;
2219 lhs->selector = rhs->selector;
2220 lhs->base = rhs->base;
2221 lhs->limit = rhs->limit;
2222 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2223 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2224 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2225 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2226 lhs->s = (flags & DESC_S_MASK) != 0;
2227 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2228 lhs->g = (flags & DESC_G_MASK) != 0;
2229 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2230 lhs->unusable = !lhs->present;
7e680753 2231 lhs->padding = 0;
05330448
AL
2232}
2233
2234static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2235{
2236 lhs->selector = rhs->selector;
2237 lhs->base = rhs->base;
2238 lhs->limit = rhs->limit;
d45fc087
RP
2239 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2240 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2241 (rhs->dpl << DESC_DPL_SHIFT) |
2242 (rhs->db << DESC_B_SHIFT) |
2243 (rhs->s * DESC_S_MASK) |
2244 (rhs->l << DESC_L_SHIFT) |
2245 (rhs->g * DESC_G_MASK) |
2246 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2247}
2248
2249static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2250{
b9bec74b 2251 if (set) {
05330448 2252 *kvm_reg = *qemu_reg;
b9bec74b 2253 } else {
05330448 2254 *qemu_reg = *kvm_reg;
b9bec74b 2255 }
05330448
AL
2256}
2257
1bc22652 2258static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2259{
1bc22652 2260 CPUX86State *env = &cpu->env;
05330448
AL
2261 struct kvm_regs regs;
2262 int ret = 0;
2263
2264 if (!set) {
1bc22652 2265 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2266 if (ret < 0) {
05330448 2267 return ret;
b9bec74b 2268 }
05330448
AL
2269 }
2270
2271 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2272 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2273 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2274 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2275 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2276 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2277 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2278 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2279#ifdef TARGET_X86_64
2280 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2281 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2282 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2283 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2284 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2285 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2286 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2287 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2288#endif
2289
2290 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2291 kvm_getput_reg(&regs.rip, &env->eip, set);
2292
b9bec74b 2293 if (set) {
1bc22652 2294 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2295 }
05330448
AL
2296
2297 return ret;
2298}
2299
1bc22652 2300static int kvm_put_fpu(X86CPU *cpu)
05330448 2301{
1bc22652 2302 CPUX86State *env = &cpu->env;
05330448
AL
2303 struct kvm_fpu fpu;
2304 int i;
2305
2306 memset(&fpu, 0, sizeof fpu);
2307 fpu.fsw = env->fpus & ~(7 << 11);
2308 fpu.fsw |= (env->fpstt & 7) << 11;
2309 fpu.fcw = env->fpuc;
42cc8fa6
JK
2310 fpu.last_opcode = env->fpop;
2311 fpu.last_ip = env->fpip;
2312 fpu.last_dp = env->fpdp;
b9bec74b
JK
2313 for (i = 0; i < 8; ++i) {
2314 fpu.ftwx |= (!env->fptags[i]) << i;
2315 }
05330448 2316 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2317 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2318 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2319 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2320 }
05330448
AL
2321 fpu.mxcsr = env->mxcsr;
2322
1bc22652 2323 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2324}
2325
6b42494b
JK
2326#define XSAVE_FCW_FSW 0
2327#define XSAVE_FTW_FOP 1
f1665b21
SY
2328#define XSAVE_CWD_RIP 2
2329#define XSAVE_CWD_RDP 4
2330#define XSAVE_MXCSR 6
2331#define XSAVE_ST_SPACE 8
2332#define XSAVE_XMM_SPACE 40
2333#define XSAVE_XSTATE_BV 128
2334#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
2335#define XSAVE_BNDREGS 240
2336#define XSAVE_BNDCSR 256
9aecd6f8
CP
2337#define XSAVE_OPMASK 272
2338#define XSAVE_ZMM_Hi256 288
2339#define XSAVE_Hi16_ZMM 416
f74eefe0 2340#define XSAVE_PKRU 672
f1665b21 2341
b503717d 2342#define XSAVE_BYTE_OFFSET(word_offset) \
f18793b0 2343 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
b503717d
EH
2344
2345#define ASSERT_OFFSET(word_offset, field) \
2346 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2347 offsetof(X86XSaveArea, field))
2348
2349ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2350ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2351ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2352ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2353ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2354ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2355ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2356ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2357ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2358ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2359ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2360ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2361ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2362ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2363ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2364
1bc22652 2365static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2366{
1bc22652 2367 CPUX86State *env = &cpu->env;
5b8063c4 2368 X86XSaveArea *xsave = env->xsave_buf;
f1665b21 2369
28143b40 2370 if (!has_xsave) {
1bc22652 2371 return kvm_put_fpu(cpu);
b9bec74b 2372 }
86a57621 2373 x86_cpu_xsave_all_areas(cpu, xsave);
f1665b21 2374
9be38598 2375 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2376}
2377
1bc22652 2378static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2379{
1bc22652 2380 CPUX86State *env = &cpu->env;
bdfc8480 2381 struct kvm_xcrs xcrs = {};
f1665b21 2382
28143b40 2383 if (!has_xcrs) {
f1665b21 2384 return 0;
b9bec74b 2385 }
f1665b21
SY
2386
2387 xcrs.nr_xcrs = 1;
2388 xcrs.flags = 0;
2389 xcrs.xcrs[0].xcr = 0;
2390 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2391 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2392}
2393
1bc22652 2394static int kvm_put_sregs(X86CPU *cpu)
05330448 2395{
1bc22652 2396 CPUX86State *env = &cpu->env;
05330448
AL
2397 struct kvm_sregs sregs;
2398
0e607a80
JK
2399 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2400 if (env->interrupt_injected >= 0) {
2401 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2402 (uint64_t)1 << (env->interrupt_injected % 64);
2403 }
05330448
AL
2404
2405 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2406 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2407 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2408 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2409 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2410 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2411 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2412 } else {
b9bec74b
JK
2413 set_seg(&sregs.cs, &env->segs[R_CS]);
2414 set_seg(&sregs.ds, &env->segs[R_DS]);
2415 set_seg(&sregs.es, &env->segs[R_ES]);
2416 set_seg(&sregs.fs, &env->segs[R_FS]);
2417 set_seg(&sregs.gs, &env->segs[R_GS]);
2418 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2419 }
2420
2421 set_seg(&sregs.tr, &env->tr);
2422 set_seg(&sregs.ldt, &env->ldt);
2423
2424 sregs.idt.limit = env->idt.limit;
2425 sregs.idt.base = env->idt.base;
7e680753 2426 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2427 sregs.gdt.limit = env->gdt.limit;
2428 sregs.gdt.base = env->gdt.base;
7e680753 2429 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2430
2431 sregs.cr0 = env->cr[0];
2432 sregs.cr2 = env->cr[2];
2433 sregs.cr3 = env->cr[3];
2434 sregs.cr4 = env->cr[4];
2435
02e51483
CF
2436 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2437 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2438
2439 sregs.efer = env->efer;
2440
1bc22652 2441 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2442}
2443
d71b62a1
EH
2444static void kvm_msr_buf_reset(X86CPU *cpu)
2445{
2446 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2447}
2448
9c600a84
EH
2449static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2450{
2451 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2452 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2453 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2454
2455 assert((void *)(entry + 1) <= limit);
2456
1abc2cae
EH
2457 entry->index = index;
2458 entry->reserved = 0;
2459 entry->data = value;
9c600a84
EH
2460 msrs->nmsrs++;
2461}
2462
73e1b8f2
PB
2463static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2464{
2465 kvm_msr_buf_reset(cpu);
2466 kvm_msr_entry_add(cpu, index, value);
2467
2468 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2469}
2470
f8d9ccf8
DDAG
2471void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2472{
2473 int ret;
2474
2475 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2476 assert(ret == 1);
2477}
2478
7477cd38
MT
2479static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2480{
2481 CPUX86State *env = &cpu->env;
48e1a45c 2482 int ret;
7477cd38
MT
2483
2484 if (!has_msr_tsc_deadline) {
2485 return 0;
2486 }
2487
73e1b8f2 2488 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2489 if (ret < 0) {
2490 return ret;
2491 }
2492
2493 assert(ret == 1);
2494 return 0;
7477cd38
MT
2495}
2496
6bdf863d
JK
2497/*
2498 * Provide a separate write service for the feature control MSR in order to
2499 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2500 * before writing any other state because forcibly leaving nested mode
2501 * invalidates the VCPU state.
2502 */
2503static int kvm_put_msr_feature_control(X86CPU *cpu)
2504{
48e1a45c
PB
2505 int ret;
2506
2507 if (!has_msr_feature_control) {
2508 return 0;
2509 }
6bdf863d 2510
73e1b8f2
PB
2511 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2512 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2513 if (ret < 0) {
2514 return ret;
2515 }
2516
2517 assert(ret == 1);
2518 return 0;
6bdf863d
JK
2519}
2520
20a78b02
PB
2521static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2522{
2523 uint32_t default1, can_be_one, can_be_zero;
2524 uint32_t must_be_one;
2525
2526 switch (index) {
2527 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2528 default1 = 0x00000016;
2529 break;
2530 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2531 default1 = 0x0401e172;
2532 break;
2533 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2534 default1 = 0x000011ff;
2535 break;
2536 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2537 default1 = 0x00036dff;
2538 break;
2539 case MSR_IA32_VMX_PROCBASED_CTLS2:
2540 default1 = 0;
2541 break;
2542 default:
2543 abort();
2544 }
2545
2546 /* If a feature bit is set, the control can be either set or clear.
2547 * Otherwise the value is limited to either 0 or 1 by default1.
2548 */
2549 can_be_one = features | default1;
2550 can_be_zero = features | ~default1;
2551 must_be_one = ~can_be_zero;
2552
2553 /*
2554 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2555 * Bit 32:63 -> 1 if the control bit can be one.
2556 */
2557 return must_be_one | (((uint64_t)can_be_one) << 32);
2558}
2559
2560#define VMCS12_MAX_FIELD_INDEX (0x17)
2561
2562static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2563{
2564 uint64_t kvm_vmx_basic =
2565 kvm_arch_get_supported_msr_feature(kvm_state,
2566 MSR_IA32_VMX_BASIC);
2567 uint64_t kvm_vmx_misc =
2568 kvm_arch_get_supported_msr_feature(kvm_state,
2569 MSR_IA32_VMX_MISC);
2570 uint64_t kvm_vmx_ept_vpid =
2571 kvm_arch_get_supported_msr_feature(kvm_state,
2572 MSR_IA32_VMX_EPT_VPID_CAP);
2573
2574 /*
2575 * If the guest is 64-bit, a value of 1 is allowed for the host address
2576 * space size vmexit control.
2577 */
2578 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2579 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2580
2581 /*
2582 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2583 * not change them for backwards compatibility.
2584 */
2585 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2586 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2587 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2588 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2589
2590 /*
2591 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2592 * change in the future but are always zero for now, clear them to be
2593 * future proof. Bits 32-63 in theory could change, though KVM does
2594 * not support dual-monitor treatment and probably never will; mask
2595 * them out as well.
2596 */
2597 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2598 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2599 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2600
2601 /*
2602 * EPT memory types should not change either, so we do not bother
2603 * adding features for them.
2604 */
2605 uint64_t fixed_vmx_ept_mask =
2606 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2607 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2608 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2609
2610 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2611 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2612 f[FEAT_VMX_PROCBASED_CTLS]));
2613 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2614 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2615 f[FEAT_VMX_PINBASED_CTLS]));
2616 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2617 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2618 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2619 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2620 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2621 f[FEAT_VMX_ENTRY_CTLS]));
2622 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2623 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2624 f[FEAT_VMX_SECONDARY_CTLS]));
2625 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2626 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2627 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2628 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2629 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2630 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2631 if (has_msr_vmx_vmfunc) {
2632 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2633 }
2634
2635 /*
2636 * Just to be safe, write these with constant values. The CRn_FIXED1
2637 * MSRs are generated by KVM based on the vCPU's CPUID.
2638 */
2639 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2640 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2641 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2642 CR4_VMXE_MASK);
2643 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2644 VMCS12_MAX_FIELD_INDEX << 1);
2645}
2646
1bc22652 2647static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 2648{
1bc22652 2649 CPUX86State *env = &cpu->env;
9c600a84 2650 int i;
48e1a45c 2651 int ret;
05330448 2652
d71b62a1
EH
2653 kvm_msr_buf_reset(cpu);
2654
9c600a84
EH
2655 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2656 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2657 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2658 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 2659 if (has_msr_star) {
9c600a84 2660 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 2661 }
c3a3a7d3 2662 if (has_msr_hsave_pa) {
9c600a84 2663 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2664 }
c9b8f6b6 2665 if (has_msr_tsc_aux) {
9c600a84 2666 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2667 }
f28558d3 2668 if (has_msr_tsc_adjust) {
9c600a84 2669 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2670 }
21e87c46 2671 if (has_msr_misc_enable) {
9c600a84 2672 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2673 env->msr_ia32_misc_enable);
2674 }
fc12d72e 2675 if (has_msr_smbase) {
9c600a84 2676 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2677 }
e13713db
LA
2678 if (has_msr_smi_count) {
2679 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2680 }
439d19f2 2681 if (has_msr_bndcfgs) {
9c600a84 2682 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2683 }
18cd2c17 2684 if (has_msr_xss) {
9c600a84 2685 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2686 }
a33a2cfe
PB
2687 if (has_msr_spec_ctrl) {
2688 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2689 }
cfeea0c0
KRW
2690 if (has_msr_virt_ssbd) {
2691 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2692 }
2693
05330448 2694#ifdef TARGET_X86_64
25d2e361 2695 if (lm_capable_kernel) {
9c600a84
EH
2696 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2697 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2698 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2699 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2700 }
05330448 2701#endif
a33a2cfe 2702
d86f9636 2703 /* If host supports feature MSR, write down. */
aec5e9c3
BD
2704 if (has_msr_arch_capabs) {
2705 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2706 env->features[FEAT_ARCH_CAPABILITIES]);
d86f9636
RH
2707 }
2708
597360c0
XL
2709 if (has_msr_core_capabs) {
2710 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2711 env->features[FEAT_CORE_CAPABILITY]);
2712 }
2713
ff5c186b 2714 /*
0d894367
PB
2715 * The following MSRs have side effects on the guest or are too heavy
2716 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
2717 */
2718 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
2719 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2720 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2721 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
55c911a5 2722 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2723 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 2724 }
55c911a5 2725 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2726 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 2727 }
55c911a5 2728 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2729 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 2730 }
d645e132
MT
2731
2732 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2733 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2734 }
2735
0b368a10
JD
2736 if (has_architectural_pmu_version > 0) {
2737 if (has_architectural_pmu_version > 1) {
2738 /* Stop the counter. */
2739 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2740 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2741 }
0d894367
PB
2742
2743 /* Set the counter values. */
0b368a10 2744 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2745 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
2746 env->msr_fixed_counters[i]);
2747 }
0b368a10 2748 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 2749 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 2750 env->msr_gp_counters[i]);
9c600a84 2751 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
2752 env->msr_gp_evtsel[i]);
2753 }
0b368a10
JD
2754 if (has_architectural_pmu_version > 1) {
2755 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2756 env->msr_global_status);
2757 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2758 env->msr_global_ovf_ctrl);
2759
2760 /* Now start the PMU. */
2761 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2762 env->msr_fixed_ctr_ctrl);
2763 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2764 env->msr_global_ctrl);
2765 }
0d894367 2766 }
da1cc323
EY
2767 /*
2768 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2769 * only sync them to KVM on the first cpu
2770 */
2771 if (current_cpu == first_cpu) {
2772 if (has_msr_hv_hypercall) {
2773 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2774 env->msr_hv_guest_os_id);
2775 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2776 env->msr_hv_hypercall);
2777 }
2d384d7c 2778 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
2779 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2780 env->msr_hv_tsc);
2781 }
2d384d7c 2782 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
2783 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2784 env->msr_hv_reenlightenment_control);
2785 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2786 env->msr_hv_tsc_emulation_control);
2787 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2788 env->msr_hv_tsc_emulation_status);
2789 }
eab70139 2790 }
2d384d7c 2791 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 2792 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 2793 env->msr_hv_vapic);
eab70139 2794 }
f2a53c9e
AS
2795 if (has_msr_hv_crash) {
2796 int j;
2797
5e953812 2798 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 2799 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
2800 env->msr_hv_crash_params[j]);
2801
5e953812 2802 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 2803 }
46eb8f98 2804 if (has_msr_hv_runtime) {
9c600a84 2805 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 2806 }
2d384d7c
VK
2807 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2808 && hv_vpindex_settable) {
701189e3
RK
2809 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2810 hyperv_vp_index(CPU(cpu)));
e9688fab 2811 }
2d384d7c 2812 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
2813 int j;
2814
09df29b6
RK
2815 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2816
9c600a84 2817 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 2818 env->msr_hv_synic_control);
9c600a84 2819 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 2820 env->msr_hv_synic_evt_page);
9c600a84 2821 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
2822 env->msr_hv_synic_msg_page);
2823
2824 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 2825 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
2826 env->msr_hv_synic_sint[j]);
2827 }
2828 }
ff99aa64
AS
2829 if (has_msr_hv_stimer) {
2830 int j;
2831
2832 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 2833 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
2834 env->msr_hv_stimer_config[j]);
2835 }
2836
2837 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 2838 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
2839 env->msr_hv_stimer_count[j]);
2840 }
2841 }
1eabfce6 2842 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
2843 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2844
9c600a84
EH
2845 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2846 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2847 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2848 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2849 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2850 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2851 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2852 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2853 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2854 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2855 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2856 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 2857 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
2858 /* The CPU GPs if we write to a bit above the physical limit of
2859 * the host CPU (and KVM emulates that)
2860 */
2861 uint64_t mask = env->mtrr_var[i].mask;
2862 mask &= phys_mask;
2863
9c600a84
EH
2864 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2865 env->mtrr_var[i].base);
112dad69 2866 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
2867 }
2868 }
b77146e9
CP
2869 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2870 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2871 0x14, 1, R_EAX) & 0x7;
2872
2873 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2874 env->msr_rtit_ctrl);
2875 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2876 env->msr_rtit_status);
2877 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2878 env->msr_rtit_output_base);
2879 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2880 env->msr_rtit_output_mask);
2881 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2882 env->msr_rtit_cr3_match);
2883 for (i = 0; i < addr_num; i++) {
2884 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2885 env->msr_rtit_addrs[i]);
2886 }
2887 }
6bdf863d
JK
2888
2889 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2890 * kvm_put_msr_feature_control. */
20a78b02
PB
2891
2892 /*
2893 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2894 * all kernels with MSR features should have them.
2895 */
2896 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2897 kvm_msr_entry_add_vmx(cpu, env->features);
2898 }
ea643051 2899 }
20a78b02 2900
57780495 2901 if (env->mcg_cap) {
d8da8574 2902 int i;
b9bec74b 2903
9c600a84
EH
2904 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2905 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
2906 if (has_msr_mcg_ext_ctl) {
2907 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2908 }
c34d440a 2909 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2910 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
2911 }
2912 }
1a03675d 2913
d71b62a1 2914 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
48e1a45c
PB
2915 if (ret < 0) {
2916 return ret;
2917 }
05330448 2918
c70b11d1
EH
2919 if (ret < cpu->kvm_msr_buf->nmsrs) {
2920 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2921 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2922 (uint32_t)e->index, (uint64_t)e->data);
2923 }
2924
9c600a84 2925 assert(ret == cpu->kvm_msr_buf->nmsrs);
48e1a45c 2926 return 0;
05330448
AL
2927}
2928
2929
1bc22652 2930static int kvm_get_fpu(X86CPU *cpu)
05330448 2931{
1bc22652 2932 CPUX86State *env = &cpu->env;
05330448
AL
2933 struct kvm_fpu fpu;
2934 int i, ret;
2935
1bc22652 2936 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 2937 if (ret < 0) {
05330448 2938 return ret;
b9bec74b 2939 }
05330448
AL
2940
2941 env->fpstt = (fpu.fsw >> 11) & 7;
2942 env->fpus = fpu.fsw;
2943 env->fpuc = fpu.fcw;
42cc8fa6
JK
2944 env->fpop = fpu.last_opcode;
2945 env->fpip = fpu.last_ip;
2946 env->fpdp = fpu.last_dp;
b9bec74b
JK
2947 for (i = 0; i < 8; ++i) {
2948 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2949 }
05330448 2950 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 2951 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2952 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2953 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 2954 }
05330448
AL
2955 env->mxcsr = fpu.mxcsr;
2956
2957 return 0;
2958}
2959
1bc22652 2960static int kvm_get_xsave(X86CPU *cpu)
f1665b21 2961{
1bc22652 2962 CPUX86State *env = &cpu->env;
5b8063c4 2963 X86XSaveArea *xsave = env->xsave_buf;
86a57621 2964 int ret;
f1665b21 2965
28143b40 2966 if (!has_xsave) {
1bc22652 2967 return kvm_get_fpu(cpu);
b9bec74b 2968 }
f1665b21 2969
1bc22652 2970 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 2971 if (ret < 0) {
f1665b21 2972 return ret;
0f53994f 2973 }
86a57621 2974 x86_cpu_xrstor_all_areas(cpu, xsave);
f1665b21 2975
f1665b21 2976 return 0;
f1665b21
SY
2977}
2978
1bc22652 2979static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 2980{
1bc22652 2981 CPUX86State *env = &cpu->env;
f1665b21
SY
2982 int i, ret;
2983 struct kvm_xcrs xcrs;
2984
28143b40 2985 if (!has_xcrs) {
f1665b21 2986 return 0;
b9bec74b 2987 }
f1665b21 2988
1bc22652 2989 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 2990 if (ret < 0) {
f1665b21 2991 return ret;
b9bec74b 2992 }
f1665b21 2993
b9bec74b 2994 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 2995 /* Only support xcr0 now */
0fd53fec
PB
2996 if (xcrs.xcrs[i].xcr == 0) {
2997 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
2998 break;
2999 }
b9bec74b 3000 }
f1665b21 3001 return 0;
f1665b21
SY
3002}
3003
1bc22652 3004static int kvm_get_sregs(X86CPU *cpu)
05330448 3005{
1bc22652 3006 CPUX86State *env = &cpu->env;
05330448 3007 struct kvm_sregs sregs;
0e607a80 3008 int bit, i, ret;
05330448 3009
1bc22652 3010 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 3011 if (ret < 0) {
05330448 3012 return ret;
b9bec74b 3013 }
05330448 3014
0e607a80
JK
3015 /* There can only be one pending IRQ set in the bitmap at a time, so try
3016 to find it and save its number instead (-1 for none). */
3017 env->interrupt_injected = -1;
3018 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3019 if (sregs.interrupt_bitmap[i]) {
3020 bit = ctz64(sregs.interrupt_bitmap[i]);
3021 env->interrupt_injected = i * 64 + bit;
3022 break;
3023 }
3024 }
05330448
AL
3025
3026 get_seg(&env->segs[R_CS], &sregs.cs);
3027 get_seg(&env->segs[R_DS], &sregs.ds);
3028 get_seg(&env->segs[R_ES], &sregs.es);
3029 get_seg(&env->segs[R_FS], &sregs.fs);
3030 get_seg(&env->segs[R_GS], &sregs.gs);
3031 get_seg(&env->segs[R_SS], &sregs.ss);
3032
3033 get_seg(&env->tr, &sregs.tr);
3034 get_seg(&env->ldt, &sregs.ldt);
3035
3036 env->idt.limit = sregs.idt.limit;
3037 env->idt.base = sregs.idt.base;
3038 env->gdt.limit = sregs.gdt.limit;
3039 env->gdt.base = sregs.gdt.base;
3040
3041 env->cr[0] = sregs.cr0;
3042 env->cr[2] = sregs.cr2;
3043 env->cr[3] = sregs.cr3;
3044 env->cr[4] = sregs.cr4;
3045
05330448 3046 env->efer = sregs.efer;
cce47516
JK
3047
3048 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3049 x86_update_hflags(env);
05330448
AL
3050
3051 return 0;
3052}
3053
1bc22652 3054static int kvm_get_msrs(X86CPU *cpu)
05330448 3055{
1bc22652 3056 CPUX86State *env = &cpu->env;
d71b62a1 3057 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3058 int ret, i;
fcc35e7c 3059 uint64_t mtrr_top_bits;
05330448 3060
d71b62a1
EH
3061 kvm_msr_buf_reset(cpu);
3062
9c600a84
EH
3063 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3064 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3065 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3066 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3067 if (has_msr_star) {
9c600a84 3068 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3069 }
c3a3a7d3 3070 if (has_msr_hsave_pa) {
9c600a84 3071 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3072 }
c9b8f6b6 3073 if (has_msr_tsc_aux) {
9c600a84 3074 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3075 }
f28558d3 3076 if (has_msr_tsc_adjust) {
9c600a84 3077 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3078 }
aa82ba54 3079 if (has_msr_tsc_deadline) {
9c600a84 3080 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3081 }
21e87c46 3082 if (has_msr_misc_enable) {
9c600a84 3083 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3084 }
fc12d72e 3085 if (has_msr_smbase) {
9c600a84 3086 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3087 }
e13713db
LA
3088 if (has_msr_smi_count) {
3089 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3090 }
df67696e 3091 if (has_msr_feature_control) {
9c600a84 3092 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3093 }
79e9ebeb 3094 if (has_msr_bndcfgs) {
9c600a84 3095 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3096 }
18cd2c17 3097 if (has_msr_xss) {
9c600a84 3098 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3099 }
a33a2cfe
PB
3100 if (has_msr_spec_ctrl) {
3101 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3102 }
cfeea0c0
KRW
3103 if (has_msr_virt_ssbd) {
3104 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3105 }
b8cc45d6 3106 if (!env->tsc_valid) {
9c600a84 3107 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3108 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3109 }
3110
05330448 3111#ifdef TARGET_X86_64
25d2e361 3112 if (lm_capable_kernel) {
9c600a84
EH
3113 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3114 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3115 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3116 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3117 }
05330448 3118#endif
9c600a84
EH
3119 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3120 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
55c911a5 3121 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 3122 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
c5999bfc 3123 }
55c911a5 3124 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3125 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3126 }
55c911a5 3127 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3128 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3129 }
d645e132
MT
3130 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3131 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3132 }
0b368a10
JD
3133 if (has_architectural_pmu_version > 0) {
3134 if (has_architectural_pmu_version > 1) {
3135 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3136 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3137 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3138 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3139 }
3140 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3141 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3142 }
0b368a10 3143 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3144 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3145 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3146 }
3147 }
1a03675d 3148
57780495 3149 if (env->mcg_cap) {
9c600a84
EH
3150 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3151 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3152 if (has_msr_mcg_ext_ctl) {
3153 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3154 }
b9bec74b 3155 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3156 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3157 }
57780495 3158 }
57780495 3159
1c90ef26 3160 if (has_msr_hv_hypercall) {
9c600a84
EH
3161 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3162 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3163 }
2d384d7c 3164 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3165 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3166 }
2d384d7c 3167 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3168 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3169 }
2d384d7c 3170 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3171 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3172 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3173 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3174 }
f2a53c9e
AS
3175 if (has_msr_hv_crash) {
3176 int j;
3177
5e953812 3178 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3179 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3180 }
3181 }
46eb8f98 3182 if (has_msr_hv_runtime) {
9c600a84 3183 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3184 }
2d384d7c 3185 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3186 uint32_t msr;
3187
9c600a84 3188 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3189 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3190 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3191 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3192 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3193 }
3194 }
ff99aa64
AS
3195 if (has_msr_hv_stimer) {
3196 uint32_t msr;
3197
3198 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3199 msr++) {
9c600a84 3200 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3201 }
3202 }
1eabfce6 3203 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3204 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3205 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3206 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3207 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3208 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3209 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3210 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3211 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3212 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3213 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3214 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3215 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3216 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3217 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3218 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3219 }
3220 }
5ef68987 3221
b77146e9
CP
3222 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3223 int addr_num =
3224 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3225
3226 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3227 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3228 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3229 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3230 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3231 for (i = 0; i < addr_num; i++) {
3232 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3233 }
3234 }
3235
d71b62a1 3236 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3237 if (ret < 0) {
05330448 3238 return ret;
b9bec74b 3239 }
05330448 3240
c70b11d1
EH
3241 if (ret < cpu->kvm_msr_buf->nmsrs) {
3242 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3243 error_report("error: failed to get MSR 0x%" PRIx32,
3244 (uint32_t)e->index);
3245 }
3246
9c600a84 3247 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3248 /*
3249 * MTRR masks: Each mask consists of 5 parts
3250 * a 10..0: must be zero
3251 * b 11 : valid bit
3252 * c n-1.12: actual mask bits
3253 * d 51..n: reserved must be zero
3254 * e 63.52: reserved must be zero
3255 *
3256 * 'n' is the number of physical bits supported by the CPU and is
3257 * apparently always <= 52. We know our 'n' but don't know what
3258 * the destinations 'n' is; it might be smaller, in which case
3259 * it masks (c) on loading. It might be larger, in which case
3260 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3261 * we're migrating to.
3262 */
3263
3264 if (cpu->fill_mtrr_mask) {
3265 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3266 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3267 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3268 } else {
3269 mtrr_top_bits = 0;
3270 }
3271
05330448 3272 for (i = 0; i < ret; i++) {
0d894367
PB
3273 uint32_t index = msrs[i].index;
3274 switch (index) {
05330448
AL
3275 case MSR_IA32_SYSENTER_CS:
3276 env->sysenter_cs = msrs[i].data;
3277 break;
3278 case MSR_IA32_SYSENTER_ESP:
3279 env->sysenter_esp = msrs[i].data;
3280 break;
3281 case MSR_IA32_SYSENTER_EIP:
3282 env->sysenter_eip = msrs[i].data;
3283 break;
0c03266a
JK
3284 case MSR_PAT:
3285 env->pat = msrs[i].data;
3286 break;
05330448
AL
3287 case MSR_STAR:
3288 env->star = msrs[i].data;
3289 break;
3290#ifdef TARGET_X86_64
3291 case MSR_CSTAR:
3292 env->cstar = msrs[i].data;
3293 break;
3294 case MSR_KERNELGSBASE:
3295 env->kernelgsbase = msrs[i].data;
3296 break;
3297 case MSR_FMASK:
3298 env->fmask = msrs[i].data;
3299 break;
3300 case MSR_LSTAR:
3301 env->lstar = msrs[i].data;
3302 break;
3303#endif
3304 case MSR_IA32_TSC:
3305 env->tsc = msrs[i].data;
3306 break;
c9b8f6b6
AS
3307 case MSR_TSC_AUX:
3308 env->tsc_aux = msrs[i].data;
3309 break;
f28558d3
WA
3310 case MSR_TSC_ADJUST:
3311 env->tsc_adjust = msrs[i].data;
3312 break;
aa82ba54
LJ
3313 case MSR_IA32_TSCDEADLINE:
3314 env->tsc_deadline = msrs[i].data;
3315 break;
aa851e36
MT
3316 case MSR_VM_HSAVE_PA:
3317 env->vm_hsave = msrs[i].data;
3318 break;
1a03675d
GC
3319 case MSR_KVM_SYSTEM_TIME:
3320 env->system_time_msr = msrs[i].data;
3321 break;
3322 case MSR_KVM_WALL_CLOCK:
3323 env->wall_clock_msr = msrs[i].data;
3324 break;
57780495
MT
3325 case MSR_MCG_STATUS:
3326 env->mcg_status = msrs[i].data;
3327 break;
3328 case MSR_MCG_CTL:
3329 env->mcg_ctl = msrs[i].data;
3330 break;
87f8b626
AR
3331 case MSR_MCG_EXT_CTL:
3332 env->mcg_ext_ctl = msrs[i].data;
3333 break;
21e87c46
AK
3334 case MSR_IA32_MISC_ENABLE:
3335 env->msr_ia32_misc_enable = msrs[i].data;
3336 break;
fc12d72e
PB
3337 case MSR_IA32_SMBASE:
3338 env->smbase = msrs[i].data;
3339 break;
e13713db
LA
3340 case MSR_SMI_COUNT:
3341 env->msr_smi_count = msrs[i].data;
3342 break;
0779caeb
ACL
3343 case MSR_IA32_FEATURE_CONTROL:
3344 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3345 break;
79e9ebeb
LJ
3346 case MSR_IA32_BNDCFGS:
3347 env->msr_bndcfgs = msrs[i].data;
3348 break;
18cd2c17
WL
3349 case MSR_IA32_XSS:
3350 env->xss = msrs[i].data;
3351 break;
57780495 3352 default:
57780495
MT
3353 if (msrs[i].index >= MSR_MC0_CTL &&
3354 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3355 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3356 }
d8da8574 3357 break;
f6584ee2
GN
3358 case MSR_KVM_ASYNC_PF_EN:
3359 env->async_pf_en_msr = msrs[i].data;
3360 break;
bc9a839d
MT
3361 case MSR_KVM_PV_EOI_EN:
3362 env->pv_eoi_en_msr = msrs[i].data;
3363 break;
917367aa
MT
3364 case MSR_KVM_STEAL_TIME:
3365 env->steal_time_msr = msrs[i].data;
3366 break;
d645e132
MT
3367 case MSR_KVM_POLL_CONTROL: {
3368 env->poll_control_msr = msrs[i].data;
3369 break;
3370 }
0d894367
PB
3371 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3372 env->msr_fixed_ctr_ctrl = msrs[i].data;
3373 break;
3374 case MSR_CORE_PERF_GLOBAL_CTRL:
3375 env->msr_global_ctrl = msrs[i].data;
3376 break;
3377 case MSR_CORE_PERF_GLOBAL_STATUS:
3378 env->msr_global_status = msrs[i].data;
3379 break;
3380 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3381 env->msr_global_ovf_ctrl = msrs[i].data;
3382 break;
3383 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3384 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3385 break;
3386 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3387 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3388 break;
3389 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3390 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3391 break;
1c90ef26
VR
3392 case HV_X64_MSR_HYPERCALL:
3393 env->msr_hv_hypercall = msrs[i].data;
3394 break;
3395 case HV_X64_MSR_GUEST_OS_ID:
3396 env->msr_hv_guest_os_id = msrs[i].data;
3397 break;
5ef68987
VR
3398 case HV_X64_MSR_APIC_ASSIST_PAGE:
3399 env->msr_hv_vapic = msrs[i].data;
3400 break;
48a5f3bc
VR
3401 case HV_X64_MSR_REFERENCE_TSC:
3402 env->msr_hv_tsc = msrs[i].data;
3403 break;
f2a53c9e
AS
3404 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3405 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3406 break;
46eb8f98
AS
3407 case HV_X64_MSR_VP_RUNTIME:
3408 env->msr_hv_runtime = msrs[i].data;
3409 break;
866eea9a
AS
3410 case HV_X64_MSR_SCONTROL:
3411 env->msr_hv_synic_control = msrs[i].data;
3412 break;
866eea9a
AS
3413 case HV_X64_MSR_SIEFP:
3414 env->msr_hv_synic_evt_page = msrs[i].data;
3415 break;
3416 case HV_X64_MSR_SIMP:
3417 env->msr_hv_synic_msg_page = msrs[i].data;
3418 break;
3419 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3420 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3421 break;
3422 case HV_X64_MSR_STIMER0_CONFIG:
3423 case HV_X64_MSR_STIMER1_CONFIG:
3424 case HV_X64_MSR_STIMER2_CONFIG:
3425 case HV_X64_MSR_STIMER3_CONFIG:
3426 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3427 msrs[i].data;
3428 break;
3429 case HV_X64_MSR_STIMER0_COUNT:
3430 case HV_X64_MSR_STIMER1_COUNT:
3431 case HV_X64_MSR_STIMER2_COUNT:
3432 case HV_X64_MSR_STIMER3_COUNT:
3433 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3434 msrs[i].data;
866eea9a 3435 break;
ba6a4fd9
VK
3436 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3437 env->msr_hv_reenlightenment_control = msrs[i].data;
3438 break;
3439 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3440 env->msr_hv_tsc_emulation_control = msrs[i].data;
3441 break;
3442 case HV_X64_MSR_TSC_EMULATION_STATUS:
3443 env->msr_hv_tsc_emulation_status = msrs[i].data;
3444 break;
d1ae67f6
AW
3445 case MSR_MTRRdefType:
3446 env->mtrr_deftype = msrs[i].data;
3447 break;
3448 case MSR_MTRRfix64K_00000:
3449 env->mtrr_fixed[0] = msrs[i].data;
3450 break;
3451 case MSR_MTRRfix16K_80000:
3452 env->mtrr_fixed[1] = msrs[i].data;
3453 break;
3454 case MSR_MTRRfix16K_A0000:
3455 env->mtrr_fixed[2] = msrs[i].data;
3456 break;
3457 case MSR_MTRRfix4K_C0000:
3458 env->mtrr_fixed[3] = msrs[i].data;
3459 break;
3460 case MSR_MTRRfix4K_C8000:
3461 env->mtrr_fixed[4] = msrs[i].data;
3462 break;
3463 case MSR_MTRRfix4K_D0000:
3464 env->mtrr_fixed[5] = msrs[i].data;
3465 break;
3466 case MSR_MTRRfix4K_D8000:
3467 env->mtrr_fixed[6] = msrs[i].data;
3468 break;
3469 case MSR_MTRRfix4K_E0000:
3470 env->mtrr_fixed[7] = msrs[i].data;
3471 break;
3472 case MSR_MTRRfix4K_E8000:
3473 env->mtrr_fixed[8] = msrs[i].data;
3474 break;
3475 case MSR_MTRRfix4K_F0000:
3476 env->mtrr_fixed[9] = msrs[i].data;
3477 break;
3478 case MSR_MTRRfix4K_F8000:
3479 env->mtrr_fixed[10] = msrs[i].data;
3480 break;
3481 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3482 if (index & 1) {
fcc35e7c
DDAG
3483 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3484 mtrr_top_bits;
d1ae67f6
AW
3485 } else {
3486 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3487 }
3488 break;
a33a2cfe
PB
3489 case MSR_IA32_SPEC_CTRL:
3490 env->spec_ctrl = msrs[i].data;
3491 break;
cfeea0c0
KRW
3492 case MSR_VIRT_SSBD:
3493 env->virt_ssbd = msrs[i].data;
3494 break;
b77146e9
CP
3495 case MSR_IA32_RTIT_CTL:
3496 env->msr_rtit_ctrl = msrs[i].data;
3497 break;
3498 case MSR_IA32_RTIT_STATUS:
3499 env->msr_rtit_status = msrs[i].data;
3500 break;
3501 case MSR_IA32_RTIT_OUTPUT_BASE:
3502 env->msr_rtit_output_base = msrs[i].data;
3503 break;
3504 case MSR_IA32_RTIT_OUTPUT_MASK:
3505 env->msr_rtit_output_mask = msrs[i].data;
3506 break;
3507 case MSR_IA32_RTIT_CR3_MATCH:
3508 env->msr_rtit_cr3_match = msrs[i].data;
3509 break;
3510 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3511 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3512 break;
05330448
AL
3513 }
3514 }
3515
3516 return 0;
3517}
3518
1bc22652 3519static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3520{
1bc22652 3521 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3522
1bc22652 3523 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3524}
3525
23d02d9b 3526static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3527{
259186a7 3528 CPUState *cs = CPU(cpu);
23d02d9b 3529 CPUX86State *env = &cpu->env;
9bdbe550
HB
3530 struct kvm_mp_state mp_state;
3531 int ret;
3532
259186a7 3533 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3534 if (ret < 0) {
3535 return ret;
3536 }
3537 env->mp_state = mp_state.mp_state;
c14750e8 3538 if (kvm_irqchip_in_kernel()) {
259186a7 3539 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3540 }
9bdbe550
HB
3541 return 0;
3542}
3543
1bc22652 3544static int kvm_get_apic(X86CPU *cpu)
680c1c6f 3545{
02e51483 3546 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
3547 struct kvm_lapic_state kapic;
3548 int ret;
3549
3d4b2649 3550 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 3551 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
3552 if (ret < 0) {
3553 return ret;
3554 }
3555
3556 kvm_get_apic_state(apic, &kapic);
3557 }
3558 return 0;
3559}
3560
1bc22652 3561static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 3562{
fc12d72e 3563 CPUState *cs = CPU(cpu);
1bc22652 3564 CPUX86State *env = &cpu->env;
076796f8 3565 struct kvm_vcpu_events events = {};
a0fb002c
JK
3566
3567 if (!kvm_has_vcpu_events()) {
3568 return 0;
3569 }
3570
fd13f23b
LA
3571 events.flags = 0;
3572
3573 if (has_exception_payload) {
3574 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3575 events.exception.pending = env->exception_pending;
3576 events.exception_has_payload = env->exception_has_payload;
3577 events.exception_payload = env->exception_payload;
3578 }
3579 events.exception.nr = env->exception_nr;
3580 events.exception.injected = env->exception_injected;
a0fb002c
JK
3581 events.exception.has_error_code = env->has_error_code;
3582 events.exception.error_code = env->error_code;
3583
3584 events.interrupt.injected = (env->interrupt_injected >= 0);
3585 events.interrupt.nr = env->interrupt_injected;
3586 events.interrupt.soft = env->soft_interrupt;
3587
3588 events.nmi.injected = env->nmi_injected;
3589 events.nmi.pending = env->nmi_pending;
3590 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3591
3592 events.sipi_vector = env->sipi_vector;
3593
fc12d72e
PB
3594 if (has_msr_smbase) {
3595 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3596 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3597 if (kvm_irqchip_in_kernel()) {
3598 /* As soon as these are moved to the kernel, remove them
3599 * from cs->interrupt_request.
3600 */
3601 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3602 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3603 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3604 } else {
3605 /* Keep these in cs->interrupt_request. */
3606 events.smi.pending = 0;
3607 events.smi.latched_init = 0;
3608 }
fc3a1fd7
DDAG
3609 /* Stop SMI delivery on old machine types to avoid a reboot
3610 * on an inward migration of an old VM.
3611 */
3612 if (!cpu->kvm_no_smi_migration) {
3613 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3614 }
fc12d72e
PB
3615 }
3616
ea643051 3617 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
3618 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3619 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3620 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3621 }
ea643051 3622 }
aee028b9 3623
1bc22652 3624 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
3625}
3626
1bc22652 3627static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 3628{
1bc22652 3629 CPUX86State *env = &cpu->env;
a0fb002c
JK
3630 struct kvm_vcpu_events events;
3631 int ret;
3632
3633 if (!kvm_has_vcpu_events()) {
3634 return 0;
3635 }
3636
fc12d72e 3637 memset(&events, 0, sizeof(events));
1bc22652 3638 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
3639 if (ret < 0) {
3640 return ret;
3641 }
fd13f23b
LA
3642
3643 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3644 env->exception_pending = events.exception.pending;
3645 env->exception_has_payload = events.exception_has_payload;
3646 env->exception_payload = events.exception_payload;
3647 } else {
3648 env->exception_pending = 0;
3649 env->exception_has_payload = false;
3650 }
3651 env->exception_injected = events.exception.injected;
3652 env->exception_nr =
3653 (env->exception_pending || env->exception_injected) ?
3654 events.exception.nr : -1;
a0fb002c
JK
3655 env->has_error_code = events.exception.has_error_code;
3656 env->error_code = events.exception.error_code;
3657
3658 env->interrupt_injected =
3659 events.interrupt.injected ? events.interrupt.nr : -1;
3660 env->soft_interrupt = events.interrupt.soft;
3661
3662 env->nmi_injected = events.nmi.injected;
3663 env->nmi_pending = events.nmi.pending;
3664 if (events.nmi.masked) {
3665 env->hflags2 |= HF2_NMI_MASK;
3666 } else {
3667 env->hflags2 &= ~HF2_NMI_MASK;
3668 }
3669
fc12d72e
PB
3670 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3671 if (events.smi.smm) {
3672 env->hflags |= HF_SMM_MASK;
3673 } else {
3674 env->hflags &= ~HF_SMM_MASK;
3675 }
3676 if (events.smi.pending) {
3677 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3678 } else {
3679 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3680 }
3681 if (events.smi.smm_inside_nmi) {
3682 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3683 } else {
3684 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3685 }
3686 if (events.smi.latched_init) {
3687 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3688 } else {
3689 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3690 }
3691 }
3692
a0fb002c 3693 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
3694
3695 return 0;
3696}
3697
1bc22652 3698static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 3699{
ed2803da 3700 CPUState *cs = CPU(cpu);
1bc22652 3701 CPUX86State *env = &cpu->env;
b0b1d690 3702 int ret = 0;
b0b1d690
JK
3703 unsigned long reinject_trap = 0;
3704
3705 if (!kvm_has_vcpu_events()) {
fd13f23b 3706 if (env->exception_nr == EXCP01_DB) {
b0b1d690 3707 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 3708 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
3709 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3710 }
fd13f23b 3711 kvm_reset_exception(env);
b0b1d690
JK
3712 }
3713
3714 /*
3715 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3716 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3717 * by updating the debug state once again if single-stepping is on.
3718 * Another reason to call kvm_update_guest_debug here is a pending debug
3719 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3720 * reinject them via SET_GUEST_DEBUG.
3721 */
3722 if (reinject_trap ||
ed2803da 3723 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 3724 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 3725 }
b0b1d690
JK
3726 return ret;
3727}
3728
1bc22652 3729static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 3730{
1bc22652 3731 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3732 struct kvm_debugregs dbgregs;
3733 int i;
3734
3735 if (!kvm_has_debugregs()) {
3736 return 0;
3737 }
3738
1f670a95 3739 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
3740 for (i = 0; i < 4; i++) {
3741 dbgregs.db[i] = env->dr[i];
3742 }
3743 dbgregs.dr6 = env->dr[6];
3744 dbgregs.dr7 = env->dr[7];
3745 dbgregs.flags = 0;
3746
1bc22652 3747 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
3748}
3749
1bc22652 3750static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 3751{
1bc22652 3752 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3753 struct kvm_debugregs dbgregs;
3754 int i, ret;
3755
3756 if (!kvm_has_debugregs()) {
3757 return 0;
3758 }
3759
1bc22652 3760 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 3761 if (ret < 0) {
b9bec74b 3762 return ret;
ff44f1a3
JK
3763 }
3764 for (i = 0; i < 4; i++) {
3765 env->dr[i] = dbgregs.db[i];
3766 }
3767 env->dr[4] = env->dr[6] = dbgregs.dr6;
3768 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
3769
3770 return 0;
3771}
3772
ebbfef2f
LA
3773static int kvm_put_nested_state(X86CPU *cpu)
3774{
3775 CPUX86State *env = &cpu->env;
3776 int max_nested_state_len = kvm_max_nested_state_length();
3777
1e44f3ab 3778 if (!env->nested_state) {
ebbfef2f
LA
3779 return 0;
3780 }
3781
3782 assert(env->nested_state->size <= max_nested_state_len);
3783 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3784}
3785
3786static int kvm_get_nested_state(X86CPU *cpu)
3787{
3788 CPUX86State *env = &cpu->env;
3789 int max_nested_state_len = kvm_max_nested_state_length();
3790 int ret;
3791
1e44f3ab 3792 if (!env->nested_state) {
ebbfef2f
LA
3793 return 0;
3794 }
3795
3796 /*
3797 * It is possible that migration restored a smaller size into
3798 * nested_state->hdr.size than what our kernel support.
3799 * We preserve migration origin nested_state->hdr.size for
3800 * call to KVM_SET_NESTED_STATE but wish that our next call
3801 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3802 */
3803 env->nested_state->size = max_nested_state_len;
3804
3805 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3806 if (ret < 0) {
3807 return ret;
3808 }
3809
3810 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3811 env->hflags |= HF_GUEST_MASK;
3812 } else {
3813 env->hflags &= ~HF_GUEST_MASK;
3814 }
3815
3816 return ret;
3817}
3818
20d695a9 3819int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 3820{
20d695a9 3821 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
3822 int ret;
3823
2fa45344 3824 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 3825
48e1a45c 3826 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
3827 ret = kvm_put_nested_state(x86_cpu);
3828 if (ret < 0) {
3829 return ret;
3830 }
3831
6bdf863d
JK
3832 ret = kvm_put_msr_feature_control(x86_cpu);
3833 if (ret < 0) {
3834 return ret;
3835 }
3836 }
3837
36f96c4b
HZ
3838 if (level == KVM_PUT_FULL_STATE) {
3839 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3840 * because TSC frequency mismatch shouldn't abort migration,
3841 * unless the user explicitly asked for a more strict TSC
3842 * setting (e.g. using an explicit "tsc-freq" option).
3843 */
3844 kvm_arch_set_tsc_khz(cpu);
3845 }
3846
1bc22652 3847 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 3848 if (ret < 0) {
05330448 3849 return ret;
b9bec74b 3850 }
1bc22652 3851 ret = kvm_put_xsave(x86_cpu);
b9bec74b 3852 if (ret < 0) {
f1665b21 3853 return ret;
b9bec74b 3854 }
1bc22652 3855 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 3856 if (ret < 0) {
05330448 3857 return ret;
b9bec74b 3858 }
1bc22652 3859 ret = kvm_put_sregs(x86_cpu);
b9bec74b 3860 if (ret < 0) {
05330448 3861 return ret;
b9bec74b 3862 }
ab443475 3863 /* must be before kvm_put_msrs */
1bc22652 3864 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
3865 if (ret < 0) {
3866 return ret;
3867 }
1bc22652 3868 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 3869 if (ret < 0) {
05330448 3870 return ret;
b9bec74b 3871 }
4fadfa00
PH
3872 ret = kvm_put_vcpu_events(x86_cpu, level);
3873 if (ret < 0) {
3874 return ret;
3875 }
ea643051 3876 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 3877 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 3878 if (ret < 0) {
680c1c6f
JK
3879 return ret;
3880 }
ea643051 3881 }
7477cd38
MT
3882
3883 ret = kvm_put_tscdeadline_msr(x86_cpu);
3884 if (ret < 0) {
3885 return ret;
3886 }
1bc22652 3887 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 3888 if (ret < 0) {
b0b1d690 3889 return ret;
b9bec74b 3890 }
b0b1d690 3891 /* must be last */
1bc22652 3892 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 3893 if (ret < 0) {
ff44f1a3 3894 return ret;
b9bec74b 3895 }
05330448
AL
3896 return 0;
3897}
3898
20d695a9 3899int kvm_arch_get_registers(CPUState *cs)
05330448 3900{
20d695a9 3901 X86CPU *cpu = X86_CPU(cs);
05330448
AL
3902 int ret;
3903
20d695a9 3904 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 3905
4fadfa00 3906 ret = kvm_get_vcpu_events(cpu);
b9bec74b 3907 if (ret < 0) {
f4f1110e 3908 goto out;
b9bec74b 3909 }
4fadfa00
PH
3910 /*
3911 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3912 * KVM_GET_REGS and KVM_GET_SREGS.
3913 */
3914 ret = kvm_get_mp_state(cpu);
b9bec74b 3915 if (ret < 0) {
f4f1110e 3916 goto out;
b9bec74b 3917 }
4fadfa00 3918 ret = kvm_getput_regs(cpu, 0);
b9bec74b 3919 if (ret < 0) {
f4f1110e 3920 goto out;
b9bec74b 3921 }
4fadfa00 3922 ret = kvm_get_xsave(cpu);
b9bec74b 3923 if (ret < 0) {
f4f1110e 3924 goto out;
b9bec74b 3925 }
4fadfa00 3926 ret = kvm_get_xcrs(cpu);
b9bec74b 3927 if (ret < 0) {
f4f1110e 3928 goto out;
b9bec74b 3929 }
4fadfa00 3930 ret = kvm_get_sregs(cpu);
b9bec74b 3931 if (ret < 0) {
f4f1110e 3932 goto out;
b9bec74b 3933 }
4fadfa00 3934 ret = kvm_get_msrs(cpu);
680c1c6f 3935 if (ret < 0) {
f4f1110e 3936 goto out;
680c1c6f 3937 }
4fadfa00 3938 ret = kvm_get_apic(cpu);
b9bec74b 3939 if (ret < 0) {
f4f1110e 3940 goto out;
b9bec74b 3941 }
1bc22652 3942 ret = kvm_get_debugregs(cpu);
b9bec74b 3943 if (ret < 0) {
f4f1110e 3944 goto out;
b9bec74b 3945 }
ebbfef2f
LA
3946 ret = kvm_get_nested_state(cpu);
3947 if (ret < 0) {
3948 goto out;
3949 }
f4f1110e
RH
3950 ret = 0;
3951 out:
3952 cpu_sync_bndcs_hflags(&cpu->env);
3953 return ret;
05330448
AL
3954}
3955
20d695a9 3956void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 3957{
20d695a9
AF
3958 X86CPU *x86_cpu = X86_CPU(cpu);
3959 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
3960 int ret;
3961
276ce815 3962 /* Inject NMI */
fc12d72e
PB
3963 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3964 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3965 qemu_mutex_lock_iothread();
3966 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3967 qemu_mutex_unlock_iothread();
3968 DPRINTF("injected NMI\n");
3969 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3970 if (ret < 0) {
3971 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3972 strerror(-ret));
3973 }
3974 }
3975 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3976 qemu_mutex_lock_iothread();
3977 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3978 qemu_mutex_unlock_iothread();
3979 DPRINTF("injected SMI\n");
3980 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3981 if (ret < 0) {
3982 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3983 strerror(-ret));
3984 }
ce377af3 3985 }
276ce815
LJ
3986 }
3987
15eafc2e 3988 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
3989 qemu_mutex_lock_iothread();
3990 }
3991
e0723c45
PB
3992 /* Force the VCPU out of its inner loop to process any INIT requests
3993 * or (for userspace APIC, but it is cheap to combine the checks here)
3994 * pending TPR access reports.
3995 */
3996 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
3997 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3998 !(env->hflags & HF_SMM_MASK)) {
3999 cpu->exit_request = 1;
4000 }
4001 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4002 cpu->exit_request = 1;
4003 }
e0723c45 4004 }
05330448 4005
15eafc2e 4006 if (!kvm_pic_in_kernel()) {
db1669bc
JK
4007 /* Try to inject an interrupt if the guest can accept it */
4008 if (run->ready_for_interrupt_injection &&
259186a7 4009 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
4010 (env->eflags & IF_MASK)) {
4011 int irq;
4012
259186a7 4013 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
4014 irq = cpu_get_pic_interrupt(env);
4015 if (irq >= 0) {
4016 struct kvm_interrupt intr;
4017
4018 intr.irq = irq;
db1669bc 4019 DPRINTF("injected interrupt %d\n", irq);
1bc22652 4020 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
4021 if (ret < 0) {
4022 fprintf(stderr,
4023 "KVM: injection failed, interrupt lost (%s)\n",
4024 strerror(-ret));
4025 }
db1669bc
JK
4026 }
4027 }
05330448 4028
db1669bc
JK
4029 /* If we have an interrupt but the guest is not ready to receive an
4030 * interrupt, request an interrupt window exit. This will
4031 * cause a return to userspace as soon as the guest is ready to
4032 * receive interrupts. */
259186a7 4033 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4034 run->request_interrupt_window = 1;
4035 } else {
4036 run->request_interrupt_window = 0;
4037 }
4038
4039 DPRINTF("setting tpr\n");
02e51483 4040 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4041
4042 qemu_mutex_unlock_iothread();
db1669bc 4043 }
05330448
AL
4044}
4045
4c663752 4046MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4047{
20d695a9
AF
4048 X86CPU *x86_cpu = X86_CPU(cpu);
4049 CPUX86State *env = &x86_cpu->env;
4050
fc12d72e
PB
4051 if (run->flags & KVM_RUN_X86_SMM) {
4052 env->hflags |= HF_SMM_MASK;
4053 } else {
f5c052b9 4054 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4055 }
b9bec74b 4056 if (run->if_flag) {
05330448 4057 env->eflags |= IF_MASK;
b9bec74b 4058 } else {
05330448 4059 env->eflags &= ~IF_MASK;
b9bec74b 4060 }
4b8523ee
JK
4061
4062 /* We need to protect the apic state against concurrent accesses from
4063 * different threads in case the userspace irqchip is used. */
4064 if (!kvm_irqchip_in_kernel()) {
4065 qemu_mutex_lock_iothread();
4066 }
02e51483
CF
4067 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4068 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4069 if (!kvm_irqchip_in_kernel()) {
4070 qemu_mutex_unlock_iothread();
4071 }
f794aa4a 4072 return cpu_get_mem_attrs(env);
05330448
AL
4073}
4074
20d695a9 4075int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4076{
20d695a9
AF
4077 X86CPU *cpu = X86_CPU(cs);
4078 CPUX86State *env = &cpu->env;
232fc23b 4079
259186a7 4080 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4081 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4082 assert(env->mcg_cap);
4083
259186a7 4084 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4085
dd1750d7 4086 kvm_cpu_synchronize_state(cs);
ab443475 4087
fd13f23b 4088 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4089 /* this means triple fault */
cf83f140 4090 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4091 cs->exit_request = 1;
ab443475
JK
4092 return 0;
4093 }
fd13f23b 4094 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4095 env->has_error_code = 0;
4096
259186a7 4097 cs->halted = 0;
ab443475
JK
4098 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4099 env->mp_state = KVM_MP_STATE_RUNNABLE;
4100 }
4101 }
4102
fc12d72e
PB
4103 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4104 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4105 kvm_cpu_synchronize_state(cs);
4106 do_cpu_init(cpu);
4107 }
4108
db1669bc
JK
4109 if (kvm_irqchip_in_kernel()) {
4110 return 0;
4111 }
4112
259186a7
AF
4113 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4114 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4115 apic_poll_irq(cpu->apic_state);
5d62c43a 4116 }
259186a7 4117 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4118 (env->eflags & IF_MASK)) ||
259186a7
AF
4119 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4120 cs->halted = 0;
6792a57b 4121 }
259186a7 4122 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4123 kvm_cpu_synchronize_state(cs);
232fc23b 4124 do_cpu_sipi(cpu);
0af691d7 4125 }
259186a7
AF
4126 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4127 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4128 kvm_cpu_synchronize_state(cs);
02e51483 4129 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4130 env->tpr_access_type);
4131 }
0af691d7 4132
259186a7 4133 return cs->halted;
0af691d7
MT
4134}
4135
839b5630 4136static int kvm_handle_halt(X86CPU *cpu)
05330448 4137{
259186a7 4138 CPUState *cs = CPU(cpu);
839b5630
AF
4139 CPUX86State *env = &cpu->env;
4140
259186a7 4141 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4142 (env->eflags & IF_MASK)) &&
259186a7
AF
4143 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4144 cs->halted = 1;
bb4ea393 4145 return EXCP_HLT;
05330448
AL
4146 }
4147
bb4ea393 4148 return 0;
05330448
AL
4149}
4150
f7575c96 4151static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4152{
f7575c96
AF
4153 CPUState *cs = CPU(cpu);
4154 struct kvm_run *run = cs->kvm_run;
d362e757 4155
02e51483 4156 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4157 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4158 : TPR_ACCESS_READ);
4159 return 1;
4160}
4161
f17ec444 4162int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4163{
38972938 4164 static const uint8_t int3 = 0xcc;
64bf3f4e 4165
f17ec444
AF
4166 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4167 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4168 return -EINVAL;
b9bec74b 4169 }
e22a25c9
AL
4170 return 0;
4171}
4172
f17ec444 4173int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4174{
4175 uint8_t int3;
4176
f17ec444
AF
4177 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4178 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4179 return -EINVAL;
b9bec74b 4180 }
e22a25c9
AL
4181 return 0;
4182}
4183
4184static struct {
4185 target_ulong addr;
4186 int len;
4187 int type;
4188} hw_breakpoint[4];
4189
4190static int nb_hw_breakpoint;
4191
4192static int find_hw_breakpoint(target_ulong addr, int len, int type)
4193{
4194 int n;
4195
b9bec74b 4196 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4197 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4198 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4199 return n;
b9bec74b
JK
4200 }
4201 }
e22a25c9
AL
4202 return -1;
4203}
4204
4205int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4206 target_ulong len, int type)
4207{
4208 switch (type) {
4209 case GDB_BREAKPOINT_HW:
4210 len = 1;
4211 break;
4212 case GDB_WATCHPOINT_WRITE:
4213 case GDB_WATCHPOINT_ACCESS:
4214 switch (len) {
4215 case 1:
4216 break;
4217 case 2:
4218 case 4:
4219 case 8:
b9bec74b 4220 if (addr & (len - 1)) {
e22a25c9 4221 return -EINVAL;
b9bec74b 4222 }
e22a25c9
AL
4223 break;
4224 default:
4225 return -EINVAL;
4226 }
4227 break;
4228 default:
4229 return -ENOSYS;
4230 }
4231
b9bec74b 4232 if (nb_hw_breakpoint == 4) {
e22a25c9 4233 return -ENOBUFS;
b9bec74b
JK
4234 }
4235 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4236 return -EEXIST;
b9bec74b 4237 }
e22a25c9
AL
4238 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4239 hw_breakpoint[nb_hw_breakpoint].len = len;
4240 hw_breakpoint[nb_hw_breakpoint].type = type;
4241 nb_hw_breakpoint++;
4242
4243 return 0;
4244}
4245
4246int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4247 target_ulong len, int type)
4248{
4249 int n;
4250
4251 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4252 if (n < 0) {
e22a25c9 4253 return -ENOENT;
b9bec74b 4254 }
e22a25c9
AL
4255 nb_hw_breakpoint--;
4256 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4257
4258 return 0;
4259}
4260
4261void kvm_arch_remove_all_hw_breakpoints(void)
4262{
4263 nb_hw_breakpoint = 0;
4264}
4265
4266static CPUWatchpoint hw_watchpoint;
4267
a60f24b5 4268static int kvm_handle_debug(X86CPU *cpu,
48405526 4269 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4270{
ed2803da 4271 CPUState *cs = CPU(cpu);
a60f24b5 4272 CPUX86State *env = &cpu->env;
f2574737 4273 int ret = 0;
e22a25c9
AL
4274 int n;
4275
37936ac7
LA
4276 if (arch_info->exception == EXCP01_DB) {
4277 if (arch_info->dr6 & DR6_BS) {
ed2803da 4278 if (cs->singlestep_enabled) {
f2574737 4279 ret = EXCP_DEBUG;
b9bec74b 4280 }
e22a25c9 4281 } else {
b9bec74b
JK
4282 for (n = 0; n < 4; n++) {
4283 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4284 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4285 case 0x0:
f2574737 4286 ret = EXCP_DEBUG;
e22a25c9
AL
4287 break;
4288 case 0x1:
f2574737 4289 ret = EXCP_DEBUG;
ff4700b0 4290 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4291 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4292 hw_watchpoint.flags = BP_MEM_WRITE;
4293 break;
4294 case 0x3:
f2574737 4295 ret = EXCP_DEBUG;
ff4700b0 4296 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4297 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4298 hw_watchpoint.flags = BP_MEM_ACCESS;
4299 break;
4300 }
b9bec74b
JK
4301 }
4302 }
e22a25c9 4303 }
ff4700b0 4304 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4305 ret = EXCP_DEBUG;
b9bec74b 4306 }
f2574737 4307 if (ret == 0) {
ff4700b0 4308 cpu_synchronize_state(cs);
fd13f23b 4309 assert(env->exception_nr == -1);
b0b1d690 4310
f2574737 4311 /* pass to guest */
fd13f23b
LA
4312 kvm_queue_exception(env, arch_info->exception,
4313 arch_info->exception == EXCP01_DB,
4314 arch_info->dr6);
48405526 4315 env->has_error_code = 0;
b0b1d690 4316 }
e22a25c9 4317
f2574737 4318 return ret;
e22a25c9
AL
4319}
4320
20d695a9 4321void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4322{
4323 const uint8_t type_code[] = {
4324 [GDB_BREAKPOINT_HW] = 0x0,
4325 [GDB_WATCHPOINT_WRITE] = 0x1,
4326 [GDB_WATCHPOINT_ACCESS] = 0x3
4327 };
4328 const uint8_t len_code[] = {
4329 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4330 };
4331 int n;
4332
a60f24b5 4333 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4334 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4335 }
e22a25c9
AL
4336 if (nb_hw_breakpoint > 0) {
4337 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4338 dbg->arch.debugreg[7] = 0x0600;
4339 for (n = 0; n < nb_hw_breakpoint; n++) {
4340 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4341 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4342 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4343 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4344 }
4345 }
4346}
4513d923 4347
2a4dac83
JK
4348static bool host_supports_vmx(void)
4349{
4350 uint32_t ecx, unused;
4351
4352 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4353 return ecx & CPUID_EXT_VMX;
4354}
4355
4356#define VMX_INVALID_GUEST_STATE 0x80000021
4357
20d695a9 4358int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4359{
20d695a9 4360 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4361 uint64_t code;
4362 int ret;
4363
4364 switch (run->exit_reason) {
4365 case KVM_EXIT_HLT:
4366 DPRINTF("handle_hlt\n");
4b8523ee 4367 qemu_mutex_lock_iothread();
839b5630 4368 ret = kvm_handle_halt(cpu);
4b8523ee 4369 qemu_mutex_unlock_iothread();
2a4dac83
JK
4370 break;
4371 case KVM_EXIT_SET_TPR:
4372 ret = 0;
4373 break;
d362e757 4374 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4375 qemu_mutex_lock_iothread();
f7575c96 4376 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4377 qemu_mutex_unlock_iothread();
d362e757 4378 break;
2a4dac83
JK
4379 case KVM_EXIT_FAIL_ENTRY:
4380 code = run->fail_entry.hardware_entry_failure_reason;
4381 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4382 code);
4383 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4384 fprintf(stderr,
12619721 4385 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4386 "unrestricted mode\n"
4387 "support, the failure can be most likely due to the guest "
4388 "entering an invalid\n"
4389 "state for Intel VT. For example, the guest maybe running "
4390 "in big real mode\n"
4391 "which is not supported on less recent Intel processors."
4392 "\n\n");
4393 }
4394 ret = -1;
4395 break;
4396 case KVM_EXIT_EXCEPTION:
4397 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4398 run->ex.exception, run->ex.error_code);
4399 ret = -1;
4400 break;
f2574737
JK
4401 case KVM_EXIT_DEBUG:
4402 DPRINTF("kvm_exit_debug\n");
4b8523ee 4403 qemu_mutex_lock_iothread();
a60f24b5 4404 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4405 qemu_mutex_unlock_iothread();
f2574737 4406 break;
50efe82c
AS
4407 case KVM_EXIT_HYPERV:
4408 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4409 break;
15eafc2e
PB
4410 case KVM_EXIT_IOAPIC_EOI:
4411 ioapic_eoi_broadcast(run->eoi.vector);
4412 ret = 0;
4413 break;
2a4dac83
JK
4414 default:
4415 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4416 ret = -1;
4417 break;
4418 }
4419
4420 return ret;
4421}
4422
20d695a9 4423bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4424{
20d695a9
AF
4425 X86CPU *cpu = X86_CPU(cs);
4426 CPUX86State *env = &cpu->env;
4427
dd1750d7 4428 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4429 return !(env->cr[0] & CR0_PE_MASK) ||
4430 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4431}
84b058d7
JK
4432
4433void kvm_arch_init_irq_routing(KVMState *s)
4434{
4435 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4436 /* If kernel can't do irq routing, interrupt source
4437 * override 0->2 cannot be set up as required by HPET.
4438 * So we have to disable it.
4439 */
4440 no_hpet = 1;
4441 }
cc7e0ddf 4442 /* We know at this point that we're using the in-kernel
614e41bc 4443 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4444 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4445 */
614e41bc 4446 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4447 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4448
4449 if (kvm_irqchip_is_split()) {
4450 int i;
4451
4452 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4453 MSI routes for signaling interrupts to the local apics. */
4454 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 4455 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
4456 error_report("Could not enable split IRQ mode.");
4457 exit(1);
4458 }
4459 }
4460 }
4461}
4462
4463int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4464{
4465 int ret;
4466 if (machine_kernel_irqchip_split(ms)) {
4467 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4468 if (ret) {
df3c286c 4469 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
4470 strerror(-ret));
4471 exit(1);
4472 } else {
4473 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4474 kvm_split_irqchip = true;
4475 return 1;
4476 }
4477 } else {
4478 return 0;
4479 }
84b058d7 4480}
b139bd30
JK
4481
4482/* Classic KVM device assignment interface. Will remain x86 only. */
4483int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4484 uint32_t flags, uint32_t *dev_id)
4485{
4486 struct kvm_assigned_pci_dev dev_data = {
4487 .segnr = dev_addr->domain,
4488 .busnr = dev_addr->bus,
4489 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4490 .flags = flags,
4491 };
4492 int ret;
4493
4494 dev_data.assigned_dev_id =
4495 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4496
4497 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4498 if (ret < 0) {
4499 return ret;
4500 }
4501
4502 *dev_id = dev_data.assigned_dev_id;
4503
4504 return 0;
4505}
4506
4507int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4508{
4509 struct kvm_assigned_pci_dev dev_data = {
4510 .assigned_dev_id = dev_id,
4511 };
4512
4513 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4514}
4515
4516static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4517 uint32_t irq_type, uint32_t guest_irq)
4518{
4519 struct kvm_assigned_irq assigned_irq = {
4520 .assigned_dev_id = dev_id,
4521 .guest_irq = guest_irq,
4522 .flags = irq_type,
4523 };
4524
4525 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4526 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4527 } else {
4528 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4529 }
4530}
4531
4532int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4533 uint32_t guest_irq)
4534{
4535 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4536 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4537
4538 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4539}
4540
4541int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4542{
4543 struct kvm_assigned_pci_dev dev_data = {
4544 .assigned_dev_id = dev_id,
4545 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4546 };
4547
4548 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4549}
4550
4551static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4552 uint32_t type)
4553{
4554 struct kvm_assigned_irq assigned_irq = {
4555 .assigned_dev_id = dev_id,
4556 .flags = type,
4557 };
4558
4559 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4560}
4561
4562int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4563{
4564 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4565 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4566}
4567
4568int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4569{
4570 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4571 KVM_DEV_IRQ_GUEST_MSI, virq);
4572}
4573
4574int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4575{
4576 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4577 KVM_DEV_IRQ_HOST_MSI);
4578}
4579
4580bool kvm_device_msix_supported(KVMState *s)
4581{
4582 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4583 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4584 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4585}
4586
4587int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4588 uint32_t nr_vectors)
4589{
4590 struct kvm_assigned_msix_nr msix_nr = {
4591 .assigned_dev_id = dev_id,
4592 .entry_nr = nr_vectors,
4593 };
4594
4595 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4596}
4597
4598int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4599 int virq)
4600{
4601 struct kvm_assigned_msix_entry msix_entry = {
4602 .assigned_dev_id = dev_id,
4603 .gsi = virq,
4604 .entry = vector,
4605 };
4606
4607 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4608}
4609
4610int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4611{
4612 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4613 KVM_DEV_IRQ_GUEST_MSIX, 0);
4614}
4615
4616int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4617{
4618 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4619 KVM_DEV_IRQ_HOST_MSIX);
4620}
9e03a040
FB
4621
4622int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 4623 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 4624{
8b5ed7df
PX
4625 X86IOMMUState *iommu = x86_iommu_get_default();
4626
4627 if (iommu) {
4628 int ret;
4629 MSIMessage src, dst;
4630 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4631
0ea1472d
JK
4632 if (!class->int_remap) {
4633 return 0;
4634 }
4635
8b5ed7df
PX
4636 src.address = route->u.msi.address_hi;
4637 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4638 src.address |= route->u.msi.address_lo;
4639 src.data = route->u.msi.data;
4640
4641 ret = class->int_remap(iommu, &src, &dst, dev ? \
4642 pci_requester_id(dev) : \
4643 X86_IOMMU_SID_INVALID);
4644 if (ret) {
4645 trace_kvm_x86_fixup_msi_error(route->gsi);
4646 return 1;
4647 }
4648
4649 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4650 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4651 route->u.msi.data = dst.data;
4652 }
4653
9e03a040
FB
4654 return 0;
4655}
1850b6b7 4656
38d87493
PX
4657typedef struct MSIRouteEntry MSIRouteEntry;
4658
4659struct MSIRouteEntry {
4660 PCIDevice *dev; /* Device pointer */
4661 int vector; /* MSI/MSIX vector index */
4662 int virq; /* Virtual IRQ index */
4663 QLIST_ENTRY(MSIRouteEntry) list;
4664};
4665
4666/* List of used GSI routes */
4667static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4668 QLIST_HEAD_INITIALIZER(msi_route_list);
4669
e1d4fb2d
PX
4670static void kvm_update_msi_routes_all(void *private, bool global,
4671 uint32_t index, uint32_t mask)
4672{
a56de056 4673 int cnt = 0, vector;
e1d4fb2d
PX
4674 MSIRouteEntry *entry;
4675 MSIMessage msg;
fd563564
PX
4676 PCIDevice *dev;
4677
e1d4fb2d
PX
4678 /* TODO: explicit route update */
4679 QLIST_FOREACH(entry, &msi_route_list, list) {
4680 cnt++;
a56de056 4681 vector = entry->vector;
fd563564 4682 dev = entry->dev;
a56de056
PX
4683 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4684 msg = msix_get_message(dev, vector);
4685 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4686 msg = msi_get_message(dev, vector);
4687 } else {
4688 /*
4689 * Either MSI/MSIX is disabled for the device, or the
4690 * specific message was masked out. Skip this one.
4691 */
fd563564
PX
4692 continue;
4693 }
fd563564 4694 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 4695 }
3f1fea0f 4696 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
4697 trace_kvm_x86_update_msi_routes(cnt);
4698}
4699
38d87493
PX
4700int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4701 int vector, PCIDevice *dev)
4702{
e1d4fb2d 4703 static bool notify_list_inited = false;
38d87493
PX
4704 MSIRouteEntry *entry;
4705
4706 if (!dev) {
4707 /* These are (possibly) IOAPIC routes only used for split
4708 * kernel irqchip mode, while what we are housekeeping are
4709 * PCI devices only. */
4710 return 0;
4711 }
4712
4713 entry = g_new0(MSIRouteEntry, 1);
4714 entry->dev = dev;
4715 entry->vector = vector;
4716 entry->virq = route->gsi;
4717 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4718
4719 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
4720
4721 if (!notify_list_inited) {
4722 /* For the first time we do add route, add ourselves into
4723 * IOMMU's IEC notify list if needed. */
4724 X86IOMMUState *iommu = x86_iommu_get_default();
4725 if (iommu) {
4726 x86_iommu_iec_register_notifier(iommu,
4727 kvm_update_msi_routes_all,
4728 NULL);
4729 }
4730 notify_list_inited = true;
4731 }
38d87493
PX
4732 return 0;
4733}
4734
4735int kvm_arch_release_virq_post(int virq)
4736{
4737 MSIRouteEntry *entry, *next;
4738 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4739 if (entry->virq == virq) {
4740 trace_kvm_x86_remove_msi_route(virq);
4741 QLIST_REMOVE(entry, list);
01960e6d 4742 g_free(entry);
38d87493
PX
4743 break;
4744 }
4745 }
9e03a040
FB
4746 return 0;
4747}
1850b6b7
EA
4748
4749int kvm_arch_msi_data_to_gsi(uint32_t data)
4750{
4751 abort();
4752}