]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/kvm.c
target/i386: log MCE guest and host addresses
[mirror_qemu.git] / target / i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
da34e65c 16#include "qapi/error.h"
05330448 17#include <sys/ioctl.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
1814eab6 21#include "standard-headers/asm-x86/kvm_para.h"
05330448 22
33c11879 23#include "cpu.h"
9c17d615 24#include "sysemu/sysemu.h"
b3946626 25#include "sysemu/hw_accel.h"
6410848b 26#include "sysemu/kvm_int.h"
71e8a915 27#include "sysemu/reset.h"
54d31236 28#include "sysemu/runstate.h"
1d31f66b 29#include "kvm_i386.h"
50efe82c 30#include "hyperv.h"
5e953812 31#include "hyperv-proto.h"
50efe82c 32
022c62cb 33#include "exec/gdbstub.h"
1de7afc9 34#include "qemu/host-utils.h"
db725815 35#include "qemu/main-loop.h"
1de7afc9 36#include "qemu/config-file.h"
1c4a55db 37#include "qemu/error-report.h"
0d09e41a
PB
38#include "hw/i386/pc.h"
39#include "hw/i386/apic.h"
e0723c45
PB
40#include "hw/i386/apic_internal.h"
41#include "hw/i386/apic-msidef.h"
8b5ed7df 42#include "hw/i386/intel_iommu.h"
e1d4fb2d 43#include "hw/i386/x86-iommu.h"
d6d059ca 44#include "hw/i386/e820_memory_layout.h"
50efe82c 45
a2cb15b0 46#include "hw/pci/pci.h"
15eafc2e 47#include "hw/pci/msi.h"
fd563564 48#include "hw/pci/msix.h"
795c40b8 49#include "migration/blocker.h"
4c663752 50#include "exec/memattrs.h"
8b5ed7df 51#include "trace.h"
05330448
AL
52
53//#define DEBUG_KVM
54
55#ifdef DEBUG_KVM
8c0d577e 56#define DPRINTF(fmt, ...) \
05330448
AL
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58#else
8c0d577e 59#define DPRINTF(fmt, ...) \
05330448
AL
60 do { } while (0)
61#endif
62
1a03675d
GC
63#define MSR_KVM_WALL_CLOCK 0x11
64#define MSR_KVM_SYSTEM_TIME 0x12
65
d1138251
EH
66/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
67 * 255 kvm_msr_entry structs */
68#define MSR_BUF_SIZE 4096
d71b62a1 69
94a8d39a
JK
70const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
71 KVM_CAP_INFO(SET_TSS_ADDR),
72 KVM_CAP_INFO(EXT_CPUID),
73 KVM_CAP_INFO(MP_STATE),
74 KVM_CAP_LAST_INFO
75};
25d2e361 76
c3a3a7d3
JK
77static bool has_msr_star;
78static bool has_msr_hsave_pa;
c9b8f6b6 79static bool has_msr_tsc_aux;
f28558d3 80static bool has_msr_tsc_adjust;
aa82ba54 81static bool has_msr_tsc_deadline;
df67696e 82static bool has_msr_feature_control;
21e87c46 83static bool has_msr_misc_enable;
fc12d72e 84static bool has_msr_smbase;
79e9ebeb 85static bool has_msr_bndcfgs;
25d2e361 86static int lm_capable_kernel;
7bc3d711 87static bool has_msr_hv_hypercall;
f2a53c9e 88static bool has_msr_hv_crash;
744b8a94 89static bool has_msr_hv_reset;
8c145d7c 90static bool has_msr_hv_vpindex;
e9688fab 91static bool hv_vpindex_settable;
46eb8f98 92static bool has_msr_hv_runtime;
866eea9a 93static bool has_msr_hv_synic;
ff99aa64 94static bool has_msr_hv_stimer;
d72bc7f6 95static bool has_msr_hv_frequencies;
ba6a4fd9 96static bool has_msr_hv_reenlightenment;
18cd2c17 97static bool has_msr_xss;
a33a2cfe 98static bool has_msr_spec_ctrl;
cfeea0c0 99static bool has_msr_virt_ssbd;
e13713db 100static bool has_msr_smi_count;
aec5e9c3 101static bool has_msr_arch_capabs;
597360c0 102static bool has_msr_core_capabs;
20a78b02 103static bool has_msr_vmx_vmfunc;
b827df58 104
0b368a10
JD
105static uint32_t has_architectural_pmu_version;
106static uint32_t num_architectural_pmu_gp_counters;
107static uint32_t num_architectural_pmu_fixed_counters;
0d894367 108
28143b40
TH
109static int has_xsave;
110static int has_xcrs;
111static int has_pit_state2;
fd13f23b 112static int has_exception_payload;
28143b40 113
87f8b626
AR
114static bool has_msr_mcg_ext_ctl;
115
494e95e9 116static struct kvm_cpuid2 *cpuid_cache;
f57bceb6 117static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 118
28143b40
TH
119int kvm_has_pit_state2(void)
120{
121 return has_pit_state2;
122}
123
355023f2
PB
124bool kvm_has_smm(void)
125{
126 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
127}
128
6053a86f
MT
129bool kvm_has_adjust_clock_stable(void)
130{
131 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
132
133 return (ret == KVM_CLOCK_TSC_STABLE);
134}
135
79a197ab
LA
136bool kvm_has_exception_payload(void)
137{
138 return has_exception_payload;
139}
140
1d31f66b
PM
141bool kvm_allows_irq0_override(void)
142{
143 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
144}
145
fb506e70
RK
146static bool kvm_x2apic_api_set_flags(uint64_t flags)
147{
148 KVMState *s = KVM_STATE(current_machine->accelerator);
149
150 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
151}
152
e391c009 153#define MEMORIZE(fn, _result) \
2a138ec3 154 ({ \
2a138ec3
RK
155 static bool _memorized; \
156 \
157 if (_memorized) { \
158 return _result; \
159 } \
160 _memorized = true; \
161 _result = fn; \
162 })
163
e391c009
IM
164static bool has_x2apic_api;
165
166bool kvm_has_x2apic_api(void)
167{
168 return has_x2apic_api;
169}
170
fb506e70
RK
171bool kvm_enable_x2apic(void)
172{
2a138ec3
RK
173 return MEMORIZE(
174 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
175 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
176 has_x2apic_api);
fb506e70
RK
177}
178
e9688fab
RK
179bool kvm_hv_vpindex_settable(void)
180{
181 return hv_vpindex_settable;
182}
183
0fd7e098
LL
184static int kvm_get_tsc(CPUState *cs)
185{
186 X86CPU *cpu = X86_CPU(cs);
187 CPUX86State *env = &cpu->env;
188 struct {
189 struct kvm_msrs info;
190 struct kvm_msr_entry entries[1];
a1834d97 191 } msr_data = {};
0fd7e098
LL
192 int ret;
193
194 if (env->tsc_valid) {
195 return 0;
196 }
197
1f670a95 198 memset(&msr_data, 0, sizeof(msr_data));
0fd7e098
LL
199 msr_data.info.nmsrs = 1;
200 msr_data.entries[0].index = MSR_IA32_TSC;
201 env->tsc_valid = !runstate_is_running();
202
203 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
204 if (ret < 0) {
205 return ret;
206 }
207
48e1a45c 208 assert(ret == 1);
0fd7e098
LL
209 env->tsc = msr_data.entries[0].data;
210 return 0;
211}
212
14e6fe12 213static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 214{
0fd7e098
LL
215 kvm_get_tsc(cpu);
216}
217
218void kvm_synchronize_all_tsc(void)
219{
220 CPUState *cpu;
221
222 if (kvm_enabled()) {
223 CPU_FOREACH(cpu) {
14e6fe12 224 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
225 }
226 }
227}
228
b827df58
AK
229static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
230{
231 struct kvm_cpuid2 *cpuid;
232 int r, size;
233
234 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 235 cpuid = g_malloc0(size);
b827df58
AK
236 cpuid->nent = max;
237 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
238 if (r == 0 && cpuid->nent >= max) {
239 r = -E2BIG;
240 }
b827df58
AK
241 if (r < 0) {
242 if (r == -E2BIG) {
7267c094 243 g_free(cpuid);
b827df58
AK
244 return NULL;
245 } else {
246 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
247 strerror(-r));
248 exit(1);
249 }
250 }
251 return cpuid;
252}
253
dd87f8a6
EH
254/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
255 * for all entries.
256 */
257static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
258{
259 struct kvm_cpuid2 *cpuid;
260 int max = 1;
494e95e9
CP
261
262 if (cpuid_cache != NULL) {
263 return cpuid_cache;
264 }
dd87f8a6
EH
265 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
266 max *= 2;
267 }
494e95e9 268 cpuid_cache = cpuid;
dd87f8a6
EH
269 return cpuid;
270}
271
a443bc34 272static const struct kvm_para_features {
0c31b744
GC
273 int cap;
274 int feature;
275} para_features[] = {
276 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
277 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
278 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 279 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
280};
281
ba9bc59e 282static int get_para_features(KVMState *s)
0c31b744
GC
283{
284 int i, features = 0;
285
8e03c100 286 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 287 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
288 features |= (1 << para_features[i].feature);
289 }
290 }
291
292 return features;
293}
0c31b744 294
40e80ee4
EH
295static bool host_tsx_blacklisted(void)
296{
297 int family, model, stepping;\
298 char vendor[CPUID_VENDOR_SZ + 1];
299
300 host_vendor_fms(vendor, &family, &model, &stepping);
301
302 /* Check if we are running on a Haswell host known to have broken TSX */
303 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
304 (family == 6) &&
305 ((model == 63 && stepping < 4) ||
306 model == 60 || model == 69 || model == 70);
307}
0c31b744 308
829ae2f9
EH
309/* Returns the value for a specific register on the cpuid entry
310 */
311static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
312{
313 uint32_t ret = 0;
314 switch (reg) {
315 case R_EAX:
316 ret = entry->eax;
317 break;
318 case R_EBX:
319 ret = entry->ebx;
320 break;
321 case R_ECX:
322 ret = entry->ecx;
323 break;
324 case R_EDX:
325 ret = entry->edx;
326 break;
327 }
328 return ret;
329}
330
4fb73f1d
EH
331/* Find matching entry for function/index on kvm_cpuid2 struct
332 */
333static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334 uint32_t function,
335 uint32_t index)
336{
337 int i;
338 for (i = 0; i < cpuid->nent; ++i) {
339 if (cpuid->entries[i].function == function &&
340 cpuid->entries[i].index == index) {
341 return &cpuid->entries[i];
342 }
343 }
344 /* not found: */
345 return NULL;
346}
347
ba9bc59e 348uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 349 uint32_t index, int reg)
b827df58
AK
350{
351 struct kvm_cpuid2 *cpuid;
b827df58
AK
352 uint32_t ret = 0;
353 uint32_t cpuid_1_edx;
8c723b79 354 bool found = false;
b827df58 355
dd87f8a6 356 cpuid = get_supported_cpuid(s);
b827df58 357
4fb73f1d
EH
358 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
359 if (entry) {
360 found = true;
361 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
362 }
363
7b46e5ce
EH
364 /* Fixups for the data returned by KVM, below */
365
c2acb022
EH
366 if (function == 1 && reg == R_EDX) {
367 /* KVM before 2.6.30 misreports the following features */
368 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
369 } else if (function == 1 && reg == R_ECX) {
370 /* We can set the hypervisor flag, even if KVM does not return it on
371 * GET_SUPPORTED_CPUID
372 */
373 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
374 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
375 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
376 * and the irqchip is in the kernel.
377 */
378 if (kvm_irqchip_in_kernel() &&
379 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
380 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
381 }
41e5e76d
EH
382
383 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
384 * without the in-kernel irqchip
385 */
386 if (!kvm_irqchip_in_kernel()) {
387 ret &= ~CPUID_EXT_X2APIC;
b827df58 388 }
2266d443
MT
389
390 if (enable_cpu_pm) {
391 int disable_exits = kvm_check_extension(s,
392 KVM_CAP_X86_DISABLE_EXITS);
393
394 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
395 ret |= CPUID_EXT_MONITOR;
396 }
397 }
28b8e4d0
JK
398 } else if (function == 6 && reg == R_EAX) {
399 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4
EH
400 } else if (function == 7 && index == 0 && reg == R_EBX) {
401 if (host_tsx_blacklisted()) {
402 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
403 }
485b1d25
EH
404 } else if (function == 7 && index == 0 && reg == R_EDX) {
405 /*
406 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
407 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
408 * returned by KVM_GET_MSR_INDEX_LIST.
409 */
410 if (!has_msr_arch_capabs) {
411 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
412 }
f98bbd83
BM
413 } else if (function == 0x80000001 && reg == R_ECX) {
414 /*
415 * It's safe to enable TOPOEXT even if it's not returned by
416 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
417 * us to keep CPU models including TOPOEXT runnable on older kernels.
418 */
419 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
420 } else if (function == 0x80000001 && reg == R_EDX) {
421 /* On Intel, kvm returns cpuid according to the Intel spec,
422 * so add missing bits according to the AMD spec:
423 */
424 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
425 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
426 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
427 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
428 * be enabled without the in-kernel irqchip
429 */
430 if (!kvm_irqchip_in_kernel()) {
431 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
432 }
be777326 433 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 434 ret |= 1U << KVM_HINTS_REALTIME;
be777326 435 found = 1;
b827df58
AK
436 }
437
0c31b744 438 /* fallback for older kernels */
8c723b79 439 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 440 ret = get_para_features(s);
b9bec74b 441 }
0c31b744
GC
442
443 return ret;
bb0300dc 444}
bb0300dc 445
ede146c2 446uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
447{
448 struct {
449 struct kvm_msrs info;
450 struct kvm_msr_entry entries[1];
a1834d97 451 } msr_data = {};
20a78b02
PB
452 uint64_t value;
453 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
454
455 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
456 return 0;
457 }
458
459 /* Check if requested MSR is supported feature MSR */
460 int i;
461 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
462 if (kvm_feature_msrs->indices[i] == index) {
463 break;
464 }
465 if (i == kvm_feature_msrs->nmsrs) {
466 return 0; /* if the feature MSR is not supported, simply return 0 */
467 }
468
469 msr_data.info.nmsrs = 1;
470 msr_data.entries[0].index = index;
471
472 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
473 if (ret != 1) {
474 error_report("KVM get MSR (index=0x%x) feature failed, %s",
475 index, strerror(-ret));
476 exit(1);
477 }
478
20a78b02
PB
479 value = msr_data.entries[0].data;
480 switch (index) {
481 case MSR_IA32_VMX_PROCBASED_CTLS2:
048c9516
PB
482 /* KVM forgot to add these bits for some time, do this ourselves. */
483 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & CPUID_XSAVE_XSAVES) {
484 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
485 }
486 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & CPUID_EXT_RDRAND) {
487 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
488 }
489 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_INVPCID) {
490 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
491 }
492 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_RDSEED) {
493 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
494 }
495 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
496 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
497 }
498 /* fall through */
20a78b02
PB
499 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
500 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
501 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
502 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
503 /*
504 * Return true for bits that can be one, but do not have to be one.
505 * The SDM tells us which bits could have a "must be one" setting,
506 * so we can do the opposite transformation in make_vmx_msr_value.
507 */
508 must_be_one = (uint32_t)value;
509 can_be_one = (uint32_t)(value >> 32);
510 return can_be_one & ~must_be_one;
511
512 default:
513 return value;
514 }
f57bceb6
RH
515}
516
517
3c85e74f
HY
518typedef struct HWPoisonPage {
519 ram_addr_t ram_addr;
520 QLIST_ENTRY(HWPoisonPage) list;
521} HWPoisonPage;
522
523static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
524 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
525
526static void kvm_unpoison_all(void *param)
527{
528 HWPoisonPage *page, *next_page;
529
530 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
531 QLIST_REMOVE(page, list);
532 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 533 g_free(page);
3c85e74f
HY
534 }
535}
536
3c85e74f
HY
537static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
538{
539 HWPoisonPage *page;
540
541 QLIST_FOREACH(page, &hwpoison_page_list, list) {
542 if (page->ram_addr == ram_addr) {
543 return;
544 }
545 }
ab3ad07f 546 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
547 page->ram_addr = ram_addr;
548 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
549}
550
e7701825
MT
551static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
552 int *max_banks)
553{
554 int r;
555
14a09518 556 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
557 if (r > 0) {
558 *max_banks = r;
559 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
560 }
561 return -ENOSYS;
562}
563
bee615d4 564static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 565{
87f8b626 566 CPUState *cs = CPU(cpu);
bee615d4 567 CPUX86State *env = &cpu->env;
c34d440a
JK
568 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
569 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
570 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 571 int flags = 0;
e7701825 572
c34d440a
JK
573 if (code == BUS_MCEERR_AR) {
574 status |= MCI_STATUS_AR | 0x134;
575 mcg_status |= MCG_STATUS_EIPV;
576 } else {
577 status |= 0xc0;
578 mcg_status |= MCG_STATUS_RIPV;
419fb20a 579 }
87f8b626
AR
580
581 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
582 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
583 * guest kernel back into env->mcg_ext_ctl.
584 */
585 cpu_synchronize_state(cs);
586 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
587 mcg_status |= MCG_STATUS_LMCE;
588 flags = 0;
589 }
590
8c5cf3b6 591 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 592 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 593}
419fb20a 594
73284563 595static void hardware_memory_error(void *host_addr)
419fb20a 596{
73284563 597 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
598 exit(1);
599}
600
2ae41db2 601void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 602{
20d695a9
AF
603 X86CPU *cpu = X86_CPU(c);
604 CPUX86State *env = &cpu->env;
419fb20a 605 ram_addr_t ram_addr;
a8170e5e 606 hwaddr paddr;
419fb20a 607
4d39892c
PB
608 /* If we get an action required MCE, it has been injected by KVM
609 * while the VM was running. An action optional MCE instead should
610 * be coming from the main thread, which qemu_init_sigbus identifies
611 * as the "early kill" thread.
612 */
a16fc07e 613 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 614
20e0ff59 615 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 616 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
617 if (ram_addr != RAM_ADDR_INVALID &&
618 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
619 kvm_hwpoison_page_add(ram_addr);
620 kvm_mce_inject(cpu, paddr, code);
73284563
MS
621
622 /*
623 * Use different logging severity based on error type.
624 * If there is additional MCE reporting on the hypervisor, QEMU VA
625 * could be another source to identify the PA and MCE details.
626 */
627 if (code == BUS_MCEERR_AR) {
628 error_report("Guest MCE Memory Error at QEMU addr %p and "
629 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
630 addr, paddr, "BUS_MCEERR_AR");
631 } else {
632 warn_report("Guest MCE Memory Error at QEMU addr %p and "
633 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
634 addr, paddr, "BUS_MCEERR_AO");
635 }
636
2ae41db2 637 return;
419fb20a 638 }
20e0ff59 639
73284563
MS
640 if (code == BUS_MCEERR_AO) {
641 warn_report("Hardware memory error at addr %p of type %s "
642 "for memory used by QEMU itself instead of guest system!",
643 addr, "BUS_MCEERR_AO");
644 }
419fb20a 645 }
20e0ff59
PB
646
647 if (code == BUS_MCEERR_AR) {
73284563 648 hardware_memory_error(addr);
20e0ff59
PB
649 }
650
651 /* Hope we are lucky for AO MCE */
419fb20a
JK
652}
653
fd13f23b
LA
654static void kvm_reset_exception(CPUX86State *env)
655{
656 env->exception_nr = -1;
657 env->exception_pending = 0;
658 env->exception_injected = 0;
659 env->exception_has_payload = false;
660 env->exception_payload = 0;
661}
662
663static void kvm_queue_exception(CPUX86State *env,
664 int32_t exception_nr,
665 uint8_t exception_has_payload,
666 uint64_t exception_payload)
667{
668 assert(env->exception_nr == -1);
669 assert(!env->exception_pending);
670 assert(!env->exception_injected);
671 assert(!env->exception_has_payload);
672
673 env->exception_nr = exception_nr;
674
675 if (has_exception_payload) {
676 env->exception_pending = 1;
677
678 env->exception_has_payload = exception_has_payload;
679 env->exception_payload = exception_payload;
680 } else {
681 env->exception_injected = 1;
682
683 if (exception_nr == EXCP01_DB) {
684 assert(exception_has_payload);
685 env->dr[6] = exception_payload;
686 } else if (exception_nr == EXCP0E_PAGE) {
687 assert(exception_has_payload);
688 env->cr[2] = exception_payload;
689 } else {
690 assert(!exception_has_payload);
691 }
692 }
693}
694
1bc22652 695static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 696{
1bc22652
AF
697 CPUX86State *env = &cpu->env;
698
fd13f23b 699 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
700 unsigned int bank, bank_num = env->mcg_cap & 0xff;
701 struct kvm_x86_mce mce;
702
fd13f23b 703 kvm_reset_exception(env);
ab443475
JK
704
705 /*
706 * There must be at least one bank in use if an MCE is pending.
707 * Find it and use its values for the event injection.
708 */
709 for (bank = 0; bank < bank_num; bank++) {
710 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
711 break;
712 }
713 }
714 assert(bank < bank_num);
715
716 mce.bank = bank;
717 mce.status = env->mce_banks[bank * 4 + 1];
718 mce.mcg_status = env->mcg_status;
719 mce.addr = env->mce_banks[bank * 4 + 2];
720 mce.misc = env->mce_banks[bank * 4 + 3];
721
1bc22652 722 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 723 }
ab443475
JK
724 return 0;
725}
726
1dfb4dd9 727static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 728{
317ac620 729 CPUX86State *env = opaque;
b8cc45d6
GC
730
731 if (running) {
732 env->tsc_valid = false;
733 }
734}
735
83b17af5 736unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 737{
83b17af5 738 X86CPU *cpu = X86_CPU(cs);
7e72a45c 739 return cpu->apic_id;
b164e48e
EH
740}
741
92067bf4
IM
742#ifndef KVM_CPUID_SIGNATURE_NEXT
743#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
744#endif
745
92067bf4
IM
746static bool hyperv_enabled(X86CPU *cpu)
747{
7bc3d711
PB
748 CPUState *cs = CPU(cpu);
749 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
2d384d7c 750 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
e48ddcc6 751 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
752}
753
5031283d
HZ
754static int kvm_arch_set_tsc_khz(CPUState *cs)
755{
756 X86CPU *cpu = X86_CPU(cs);
757 CPUX86State *env = &cpu->env;
758 int r;
759
760 if (!env->tsc_khz) {
761 return 0;
762 }
763
764 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
765 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
766 -ENOTSUP;
767 if (r < 0) {
768 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
769 * TSC frequency doesn't match the one we want.
770 */
771 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
772 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
773 -ENOTSUP;
774 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
775 warn_report("TSC frequency mismatch between "
776 "VM (%" PRId64 " kHz) and host (%d kHz), "
777 "and TSC scaling unavailable",
778 env->tsc_khz, cur_freq);
5031283d
HZ
779 return r;
780 }
781 }
782
783 return 0;
784}
785
4bb95b82
LP
786static bool tsc_is_stable_and_known(CPUX86State *env)
787{
788 if (!env->tsc_khz) {
789 return false;
790 }
791 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
792 || env->user_tsc_khz;
793}
794
6760bd20
VK
795static struct {
796 const char *desc;
797 struct {
798 uint32_t fw;
799 uint32_t bits;
800 } flags[2];
c6861930 801 uint64_t dependencies;
6760bd20
VK
802} kvm_hyperv_properties[] = {
803 [HYPERV_FEAT_RELAXED] = {
804 .desc = "relaxed timing (hv-relaxed)",
805 .flags = {
806 {.fw = FEAT_HYPERV_EAX,
807 .bits = HV_HYPERCALL_AVAILABLE},
808 {.fw = FEAT_HV_RECOMM_EAX,
809 .bits = HV_RELAXED_TIMING_RECOMMENDED}
810 }
811 },
812 [HYPERV_FEAT_VAPIC] = {
813 .desc = "virtual APIC (hv-vapic)",
814 .flags = {
815 {.fw = FEAT_HYPERV_EAX,
816 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
817 {.fw = FEAT_HV_RECOMM_EAX,
818 .bits = HV_APIC_ACCESS_RECOMMENDED}
819 }
820 },
821 [HYPERV_FEAT_TIME] = {
822 .desc = "clocksources (hv-time)",
823 .flags = {
824 {.fw = FEAT_HYPERV_EAX,
825 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
826 HV_REFERENCE_TSC_AVAILABLE}
827 }
828 },
829 [HYPERV_FEAT_CRASH] = {
830 .desc = "crash MSRs (hv-crash)",
831 .flags = {
832 {.fw = FEAT_HYPERV_EDX,
833 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
834 }
835 },
836 [HYPERV_FEAT_RESET] = {
837 .desc = "reset MSR (hv-reset)",
838 .flags = {
839 {.fw = FEAT_HYPERV_EAX,
840 .bits = HV_RESET_AVAILABLE}
841 }
842 },
843 [HYPERV_FEAT_VPINDEX] = {
844 .desc = "VP_INDEX MSR (hv-vpindex)",
845 .flags = {
846 {.fw = FEAT_HYPERV_EAX,
847 .bits = HV_VP_INDEX_AVAILABLE}
848 }
849 },
850 [HYPERV_FEAT_RUNTIME] = {
851 .desc = "VP_RUNTIME MSR (hv-runtime)",
852 .flags = {
853 {.fw = FEAT_HYPERV_EAX,
854 .bits = HV_VP_RUNTIME_AVAILABLE}
855 }
856 },
857 [HYPERV_FEAT_SYNIC] = {
858 .desc = "synthetic interrupt controller (hv-synic)",
859 .flags = {
860 {.fw = FEAT_HYPERV_EAX,
861 .bits = HV_SYNIC_AVAILABLE}
862 }
863 },
864 [HYPERV_FEAT_STIMER] = {
865 .desc = "synthetic timers (hv-stimer)",
866 .flags = {
867 {.fw = FEAT_HYPERV_EAX,
868 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
869 },
870 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
871 },
872 [HYPERV_FEAT_FREQUENCIES] = {
873 .desc = "frequency MSRs (hv-frequencies)",
874 .flags = {
875 {.fw = FEAT_HYPERV_EAX,
876 .bits = HV_ACCESS_FREQUENCY_MSRS},
877 {.fw = FEAT_HYPERV_EDX,
878 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
879 }
880 },
881 [HYPERV_FEAT_REENLIGHTENMENT] = {
882 .desc = "reenlightenment MSRs (hv-reenlightenment)",
883 .flags = {
884 {.fw = FEAT_HYPERV_EAX,
885 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
886 }
887 },
888 [HYPERV_FEAT_TLBFLUSH] = {
889 .desc = "paravirtualized TLB flush (hv-tlbflush)",
890 .flags = {
891 {.fw = FEAT_HV_RECOMM_EAX,
892 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
893 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
894 },
895 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
896 },
897 [HYPERV_FEAT_EVMCS] = {
898 .desc = "enlightened VMCS (hv-evmcs)",
899 .flags = {
900 {.fw = FEAT_HV_RECOMM_EAX,
901 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
902 },
903 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
904 },
905 [HYPERV_FEAT_IPI] = {
906 .desc = "paravirtualized IPI (hv-ipi)",
907 .flags = {
908 {.fw = FEAT_HV_RECOMM_EAX,
909 .bits = HV_CLUSTER_IPI_RECOMMENDED |
910 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
911 },
912 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 913 },
128531d9
VK
914 [HYPERV_FEAT_STIMER_DIRECT] = {
915 .desc = "direct mode synthetic timers (hv-stimer-direct)",
916 .flags = {
917 {.fw = FEAT_HYPERV_EDX,
918 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
919 },
920 .dependencies = BIT(HYPERV_FEAT_STIMER)
921 },
6760bd20
VK
922};
923
924static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
925{
926 struct kvm_cpuid2 *cpuid;
927 int r, size;
928
929 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
930 cpuid = g_malloc0(size);
931 cpuid->nent = max;
932
933 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
934 if (r == 0 && cpuid->nent >= max) {
935 r = -E2BIG;
936 }
937 if (r < 0) {
938 if (r == -E2BIG) {
939 g_free(cpuid);
940 return NULL;
941 } else {
942 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
943 strerror(-r));
944 exit(1);
945 }
946 }
947 return cpuid;
948}
949
950/*
951 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
952 * for all entries.
953 */
954static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
955{
956 struct kvm_cpuid2 *cpuid;
957 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
958
959 /*
960 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
961 * -E2BIG, however, it doesn't report back the right size. Keep increasing
962 * it and re-trying until we succeed.
963 */
964 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
965 max++;
966 }
967 return cpuid;
968}
969
970/*
971 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
972 * leaves from KVM_CAP_HYPERV* and present MSRs data.
973 */
974static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
975{
976 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
977 struct kvm_cpuid2 *cpuid;
978 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
979
980 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
981 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
982 cpuid->nent = 2;
983
984 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
985 entry_feat = &cpuid->entries[0];
986 entry_feat->function = HV_CPUID_FEATURES;
987
988 entry_recomm = &cpuid->entries[1];
989 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
990 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
991
992 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
993 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
994 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
995 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
996 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
997 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
998 }
c35bd19a 999
6760bd20
VK
1000 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1001 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1002 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1003 }
6760bd20
VK
1004
1005 if (has_msr_hv_frequencies) {
1006 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1007 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1008 }
6760bd20
VK
1009
1010 if (has_msr_hv_crash) {
1011 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1012 }
6760bd20
VK
1013
1014 if (has_msr_hv_reenlightenment) {
1015 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1016 }
6760bd20
VK
1017
1018 if (has_msr_hv_reset) {
1019 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1020 }
6760bd20
VK
1021
1022 if (has_msr_hv_vpindex) {
1023 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1024 }
6760bd20
VK
1025
1026 if (has_msr_hv_runtime) {
1027 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1028 }
6760bd20
VK
1029
1030 if (has_msr_hv_synic) {
1031 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1032 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1033
1034 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1035 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1036 }
c35bd19a 1037 }
6760bd20
VK
1038
1039 if (has_msr_hv_stimer) {
1040 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1041 }
9b4cf107 1042
6760bd20
VK
1043 if (kvm_check_extension(cs->kvm_state,
1044 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1045 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1046 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1047 }
c35bd19a 1048
6760bd20
VK
1049 if (kvm_check_extension(cs->kvm_state,
1050 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1051 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1052 }
6760bd20
VK
1053
1054 if (kvm_check_extension(cs->kvm_state,
1055 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1056 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1057 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1058 }
6760bd20
VK
1059
1060 return cpuid;
1061}
1062
1063static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1064{
1065 struct kvm_cpuid_entry2 *entry;
1066 uint32_t func;
1067 int reg;
1068
1069 switch (fw) {
1070 case FEAT_HYPERV_EAX:
1071 reg = R_EAX;
1072 func = HV_CPUID_FEATURES;
1073 break;
1074 case FEAT_HYPERV_EDX:
1075 reg = R_EDX;
1076 func = HV_CPUID_FEATURES;
1077 break;
1078 case FEAT_HV_RECOMM_EAX:
1079 reg = R_EAX;
1080 func = HV_CPUID_ENLIGHTMENT_INFO;
1081 break;
1082 default:
1083 return -EINVAL;
a2b107db 1084 }
6760bd20
VK
1085
1086 entry = cpuid_find_entry(cpuid, func, 0);
1087 if (!entry) {
1088 return -ENOENT;
a2b107db 1089 }
6760bd20
VK
1090
1091 switch (reg) {
1092 case R_EAX:
1093 *r = entry->eax;
1094 break;
1095 case R_EDX:
1096 *r = entry->edx;
1097 break;
1098 default:
1099 return -EINVAL;
a2b107db 1100 }
6760bd20
VK
1101
1102 return 0;
1103}
1104
1105static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1106 int feature)
1107{
1108 X86CPU *cpu = X86_CPU(cs);
1109 CPUX86State *env = &cpu->env;
e48ddcc6 1110 uint32_t r, fw, bits;
c6861930 1111 uint64_t deps;
9dc83cd9 1112 int i, dep_feat;
6760bd20 1113
e48ddcc6 1114 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
6760bd20
VK
1115 return 0;
1116 }
1117
c6861930 1118 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1119 while (deps) {
1120 dep_feat = ctz64(deps);
c6861930
VK
1121 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1122 fprintf(stderr,
1123 "Hyper-V %s requires Hyper-V %s\n",
1124 kvm_hyperv_properties[feature].desc,
1125 kvm_hyperv_properties[dep_feat].desc);
1126 return 1;
1127 }
9dc83cd9 1128 deps &= ~(1ull << dep_feat);
c6861930
VK
1129 }
1130
6760bd20
VK
1131 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1132 fw = kvm_hyperv_properties[feature].flags[i].fw;
1133 bits = kvm_hyperv_properties[feature].flags[i].bits;
1134
1135 if (!fw) {
1136 continue;
a2b107db 1137 }
6760bd20
VK
1138
1139 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
e48ddcc6
VK
1140 if (hyperv_feat_enabled(cpu, feature)) {
1141 fprintf(stderr,
1142 "Hyper-V %s is not supported by kernel\n",
1143 kvm_hyperv_properties[feature].desc);
1144 return 1;
1145 } else {
1146 return 0;
1147 }
6760bd20
VK
1148 }
1149
1150 env->features[fw] |= bits;
a2b107db 1151 }
6760bd20 1152
e48ddcc6
VK
1153 if (cpu->hyperv_passthrough) {
1154 cpu->hyperv_features |= BIT(feature);
1155 }
1156
6760bd20
VK
1157 return 0;
1158}
1159
2344d22e
VK
1160/*
1161 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1162 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1163 * extentions are enabled.
1164 */
1165static int hyperv_handle_properties(CPUState *cs,
1166 struct kvm_cpuid_entry2 *cpuid_ent)
6760bd20
VK
1167{
1168 X86CPU *cpu = X86_CPU(cs);
1169 CPUX86State *env = &cpu->env;
1170 struct kvm_cpuid2 *cpuid;
2344d22e
VK
1171 struct kvm_cpuid_entry2 *c;
1172 uint32_t signature[3];
1173 uint32_t cpuid_i = 0;
e48ddcc6 1174 int r;
6760bd20 1175
2344d22e
VK
1176 if (!hyperv_enabled(cpu))
1177 return 0;
1178
e48ddcc6
VK
1179 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1180 cpu->hyperv_passthrough) {
a2b107db
VK
1181 uint16_t evmcs_version;
1182
e48ddcc6
VK
1183 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1184 (uintptr_t)&evmcs_version);
1185
1186 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
6760bd20
VK
1187 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1188 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
a2b107db
VK
1189 return -ENOSYS;
1190 }
e48ddcc6
VK
1191
1192 if (!r) {
1193 env->features[FEAT_HV_RECOMM_EAX] |=
1194 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1195 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1196 }
a2b107db
VK
1197 }
1198
6760bd20
VK
1199 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1200 cpuid = get_supported_hv_cpuid(cs);
1201 } else {
1202 cpuid = get_supported_hv_cpuid_legacy(cs);
1203 }
1204
e48ddcc6
VK
1205 if (cpu->hyperv_passthrough) {
1206 memcpy(cpuid_ent, &cpuid->entries[0],
1207 cpuid->nent * sizeof(cpuid->entries[0]));
1208
1209 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1210 if (c) {
1211 env->features[FEAT_HYPERV_EAX] = c->eax;
1212 env->features[FEAT_HYPERV_EBX] = c->ebx;
1213 env->features[FEAT_HYPERV_EDX] = c->eax;
1214 }
1215 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1216 if (c) {
1217 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1218
1219 /* hv-spinlocks may have been overriden */
1220 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1221 c->ebx = cpu->hyperv_spinlock_attempts;
1222 }
1223 }
1224 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1225 if (c) {
1226 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1227 }
1228 }
1229
6760bd20 1230 /* Features */
e48ddcc6 1231 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
6760bd20
VK
1232 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1233 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1234 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1235 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1236 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1237 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1238 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1239 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1240 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1241 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1242 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1243 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1244 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
128531d9 1245 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
6760bd20 1246
c6861930 1247 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1248 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1249 !cpu->hyperv_synic_kvm_only &&
1250 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
c6861930 1251 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
6760bd20
VK
1252 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1253 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1254 r |= 1;
1255 }
1256
1257 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1258 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1259
2344d22e
VK
1260 if (r) {
1261 r = -ENOSYS;
1262 goto free;
1263 }
1264
e48ddcc6
VK
1265 if (cpu->hyperv_passthrough) {
1266 /* We already copied all feature words from KVM as is */
1267 r = cpuid->nent;
1268 goto free;
1269 }
1270
2344d22e
VK
1271 c = &cpuid_ent[cpuid_i++];
1272 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1273 if (!cpu->hyperv_vendor_id) {
1274 memcpy(signature, "Microsoft Hv", 12);
1275 } else {
1276 size_t len = strlen(cpu->hyperv_vendor_id);
1277
1278 if (len > 12) {
1279 error_report("hv-vendor-id truncated to 12 characters");
1280 len = 12;
1281 }
1282 memset(signature, 0, 12);
1283 memcpy(signature, cpu->hyperv_vendor_id, len);
1284 }
1285 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1286 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1287 c->ebx = signature[0];
1288 c->ecx = signature[1];
1289 c->edx = signature[2];
1290
1291 c = &cpuid_ent[cpuid_i++];
1292 c->function = HV_CPUID_INTERFACE;
1293 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1294 c->eax = signature[0];
1295 c->ebx = 0;
1296 c->ecx = 0;
1297 c->edx = 0;
1298
1299 c = &cpuid_ent[cpuid_i++];
1300 c->function = HV_CPUID_VERSION;
1301 c->eax = 0x00001bbc;
1302 c->ebx = 0x00060001;
1303
1304 c = &cpuid_ent[cpuid_i++];
1305 c->function = HV_CPUID_FEATURES;
1306 c->eax = env->features[FEAT_HYPERV_EAX];
1307 c->ebx = env->features[FEAT_HYPERV_EBX];
1308 c->edx = env->features[FEAT_HYPERV_EDX];
1309
1310 c = &cpuid_ent[cpuid_i++];
1311 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1312 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1313 c->ebx = cpu->hyperv_spinlock_attempts;
1314
1315 c = &cpuid_ent[cpuid_i++];
1316 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1317 c->eax = cpu->hv_max_vps;
1318 c->ebx = 0x40;
1319
1320 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1321 __u32 function;
1322
1323 /* Create zeroed 0x40000006..0x40000009 leaves */
1324 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1325 function < HV_CPUID_NESTED_FEATURES; function++) {
1326 c = &cpuid_ent[cpuid_i++];
1327 c->function = function;
1328 }
1329
1330 c = &cpuid_ent[cpuid_i++];
1331 c->function = HV_CPUID_NESTED_FEATURES;
1332 c->eax = env->features[FEAT_HV_NESTED_EAX];
1333 }
1334 r = cpuid_i;
1335
1336free:
6760bd20
VK
1337 g_free(cpuid);
1338
2344d22e 1339 return r;
c35bd19a
EY
1340}
1341
e48ddcc6
VK
1342static Error *hv_passthrough_mig_blocker;
1343
e9688fab
RK
1344static int hyperv_init_vcpu(X86CPU *cpu)
1345{
729ce7e1 1346 CPUState *cs = CPU(cpu);
e48ddcc6 1347 Error *local_err = NULL;
729ce7e1
RK
1348 int ret;
1349
e48ddcc6
VK
1350 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1351 error_setg(&hv_passthrough_mig_blocker,
1352 "'hv-passthrough' CPU flag prevents migration, use explicit"
1353 " set of hv-* flags instead");
1354 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1355 if (local_err) {
1356 error_report_err(local_err);
1357 error_free(hv_passthrough_mig_blocker);
1358 return ret;
1359 }
1360 }
1361
2d384d7c 1362 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1363 /*
1364 * the kernel doesn't support setting vp_index; assert that its value
1365 * is in sync
1366 */
e9688fab
RK
1367 struct {
1368 struct kvm_msrs info;
1369 struct kvm_msr_entry entries[1];
1370 } msr_data = {
1371 .info.nmsrs = 1,
1372 .entries[0].index = HV_X64_MSR_VP_INDEX,
1373 };
1374
729ce7e1 1375 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1376 if (ret < 0) {
1377 return ret;
1378 }
1379 assert(ret == 1);
1380
701189e3 1381 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1382 error_report("kernel's vp_index != QEMU's vp_index");
1383 return -ENXIO;
1384 }
1385 }
1386
2d384d7c 1387 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1388 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1389 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1390 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1391 if (ret < 0) {
1392 error_report("failed to turn on HyperV SynIC in KVM: %s",
1393 strerror(-ret));
1394 return ret;
1395 }
606c34bf 1396
9b4cf107
RK
1397 if (!cpu->hyperv_synic_kvm_only) {
1398 ret = hyperv_x86_synic_add(cpu);
1399 if (ret < 0) {
1400 error_report("failed to create HyperV SynIC: %s",
1401 strerror(-ret));
1402 return ret;
1403 }
606c34bf 1404 }
729ce7e1
RK
1405 }
1406
e9688fab
RK
1407 return 0;
1408}
1409
68bfd0ad
MT
1410static Error *invtsc_mig_blocker;
1411
f8bb0565 1412#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1413
20d695a9 1414int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1415{
1416 struct {
486bd5a2 1417 struct kvm_cpuid2 cpuid;
f8bb0565 1418 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1419 } cpuid_data;
1420 /*
1421 * The kernel defines these structs with padding fields so there
1422 * should be no extra padding in our cpuid_data struct.
1423 */
1424 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1425 sizeof(struct kvm_cpuid2) +
1426 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1427
20d695a9
AF
1428 X86CPU *cpu = X86_CPU(cs);
1429 CPUX86State *env = &cpu->env;
486bd5a2 1430 uint32_t limit, i, j, cpuid_i;
a33609ca 1431 uint32_t unused;
bb0300dc 1432 struct kvm_cpuid_entry2 *c;
bb0300dc 1433 uint32_t signature[3];
234cc647 1434 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1435 int max_nested_state_len;
e7429073 1436 int r;
fe44dc91 1437 Error *local_err = NULL;
05330448 1438
ef4cbe14
SW
1439 memset(&cpuid_data, 0, sizeof(cpuid_data));
1440
05330448
AL
1441 cpuid_i = 0;
1442
ddb98b5a
LP
1443 r = kvm_arch_set_tsc_khz(cs);
1444 if (r < 0) {
6b2341ee 1445 return r;
ddb98b5a
LP
1446 }
1447
1448 /* vcpu's TSC frequency is either specified by user, or following
1449 * the value used by KVM if the former is not present. In the
1450 * latter case, we query it from KVM and record in env->tsc_khz,
1451 * so that vcpu's TSC frequency can be migrated later via this field.
1452 */
1453 if (!env->tsc_khz) {
1454 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1455 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1456 -ENOTSUP;
1457 if (r > 0) {
1458 env->tsc_khz = r;
1459 }
1460 }
1461
bb0300dc 1462 /* Paravirtualization CPUIDs */
2344d22e
VK
1463 r = hyperv_handle_properties(cs, cpuid_data.entries);
1464 if (r < 0) {
1465 return r;
1466 } else if (r > 0) {
1467 cpuid_i = r;
234cc647 1468 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1469 has_msr_hv_hypercall = true;
eab70139
VR
1470 }
1471
f522d2ac
AW
1472 if (cpu->expose_kvm) {
1473 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1474 c = &cpuid_data.entries[cpuid_i++];
1475 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1476 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1477 c->ebx = signature[0];
1478 c->ecx = signature[1];
1479 c->edx = signature[2];
234cc647 1480
f522d2ac
AW
1481 c = &cpuid_data.entries[cpuid_i++];
1482 c->function = KVM_CPUID_FEATURES | kvm_base;
1483 c->eax = env->features[FEAT_KVM];
be777326 1484 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1485 }
917367aa 1486
a33609ca 1487 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
1488
1489 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1490 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1491 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1492 abort();
1493 }
bb0300dc 1494 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1495
1496 switch (i) {
a36b1029
AL
1497 case 2: {
1498 /* Keep reading function 2 till all the input is received */
1499 int times;
1500
a36b1029 1501 c->function = i;
a33609ca
AL
1502 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1503 KVM_CPUID_FLAG_STATE_READ_NEXT;
1504 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1505 times = c->eax & 0xff;
a36b1029
AL
1506
1507 for (j = 1; j < times; ++j) {
f8bb0565
IM
1508 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1509 fprintf(stderr, "cpuid_data is full, no space for "
1510 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1511 abort();
1512 }
a33609ca 1513 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1514 c->function = i;
a33609ca
AL
1515 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1516 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1517 }
1518 break;
1519 }
a94e1428
LX
1520 case 0x1f:
1521 if (env->nr_dies < 2) {
1522 break;
1523 }
486bd5a2
AL
1524 case 4:
1525 case 0xb:
1526 case 0xd:
1527 for (j = 0; ; j++) {
31e8c696
AP
1528 if (i == 0xd && j == 64) {
1529 break;
1530 }
a94e1428
LX
1531
1532 if (i == 0x1f && j == 64) {
1533 break;
1534 }
1535
486bd5a2
AL
1536 c->function = i;
1537 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1538 c->index = j;
a33609ca 1539 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1540
b9bec74b 1541 if (i == 4 && c->eax == 0) {
486bd5a2 1542 break;
b9bec74b
JK
1543 }
1544 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1545 break;
b9bec74b 1546 }
a94e1428
LX
1547 if (i == 0x1f && !(c->ecx & 0xff00)) {
1548 break;
1549 }
b9bec74b 1550 if (i == 0xd && c->eax == 0) {
31e8c696 1551 continue;
b9bec74b 1552 }
f8bb0565
IM
1553 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1554 fprintf(stderr, "cpuid_data is full, no space for "
1555 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1556 abort();
1557 }
a33609ca 1558 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1559 }
1560 break;
80db491d 1561 case 0x7:
e37a5c7f
CP
1562 case 0x14: {
1563 uint32_t times;
1564
1565 c->function = i;
1566 c->index = 0;
1567 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1568 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1569 times = c->eax;
1570
1571 for (j = 1; j <= times; ++j) {
1572 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1573 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1574 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1575 abort();
1576 }
1577 c = &cpuid_data.entries[cpuid_i++];
1578 c->function = i;
1579 c->index = j;
1580 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1581 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1582 }
1583 break;
1584 }
486bd5a2 1585 default:
486bd5a2 1586 c->function = i;
a33609ca
AL
1587 c->flags = 0;
1588 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1589 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1590 /*
1591 * KVM already returns all zeroes if a CPUID entry is missing,
1592 * so we can omit it and avoid hitting KVM's 80-entry limit.
1593 */
1594 cpuid_i--;
1595 }
486bd5a2
AL
1596 break;
1597 }
05330448 1598 }
0d894367
PB
1599
1600 if (limit >= 0x0a) {
0b368a10 1601 uint32_t eax, edx;
0d894367 1602
0b368a10
JD
1603 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1604
1605 has_architectural_pmu_version = eax & 0xff;
1606 if (has_architectural_pmu_version > 0) {
1607 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1608
1609 /* Shouldn't be more than 32, since that's the number of bits
1610 * available in EBX to tell us _which_ counters are available.
1611 * Play it safe.
1612 */
0b368a10
JD
1613 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1614 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1615 }
1616
1617 if (has_architectural_pmu_version > 1) {
1618 num_architectural_pmu_fixed_counters = edx & 0x1f;
1619
1620 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1621 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1622 }
0d894367
PB
1623 }
1624 }
1625 }
1626
a33609ca 1627 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1628
1629 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1630 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1631 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1632 abort();
1633 }
bb0300dc 1634 c = &cpuid_data.entries[cpuid_i++];
05330448 1635
8f4202fb
BM
1636 switch (i) {
1637 case 0x8000001d:
1638 /* Query for all AMD cache information leaves */
1639 for (j = 0; ; j++) {
1640 c->function = i;
1641 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1642 c->index = j;
1643 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1644
1645 if (c->eax == 0) {
1646 break;
1647 }
1648 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1649 fprintf(stderr, "cpuid_data is full, no space for "
1650 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1651 abort();
1652 }
1653 c = &cpuid_data.entries[cpuid_i++];
1654 }
1655 break;
1656 default:
1657 c->function = i;
1658 c->flags = 0;
1659 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1660 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1661 /*
1662 * KVM already returns all zeroes if a CPUID entry is missing,
1663 * so we can omit it and avoid hitting KVM's 80-entry limit.
1664 */
1665 cpuid_i--;
1666 }
8f4202fb
BM
1667 break;
1668 }
05330448
AL
1669 }
1670
b3baa152
BW
1671 /* Call Centaur's CPUID instructions they are supported. */
1672 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1673 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1674
1675 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1676 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1677 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1678 abort();
1679 }
b3baa152
BW
1680 c = &cpuid_data.entries[cpuid_i++];
1681
1682 c->function = i;
1683 c->flags = 0;
1684 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1685 }
1686 }
1687
05330448
AL
1688 cpuid_data.cpuid.nent = cpuid_i;
1689
e7701825 1690 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1691 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1692 (CPUID_MCE | CPUID_MCA)
a60f24b5 1693 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1694 uint64_t mcg_cap, unsupported_caps;
e7701825 1695 int banks;
32a42024 1696 int ret;
e7701825 1697
a60f24b5 1698 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1699 if (ret < 0) {
1700 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1701 return ret;
e7701825 1702 }
75d49497 1703
2590f15b 1704 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1705 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1706 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1707 return -ENOTSUP;
75d49497 1708 }
49b69cbf 1709
5120901a
EH
1710 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1711 if (unsupported_caps) {
87f8b626
AR
1712 if (unsupported_caps & MCG_LMCE_P) {
1713 error_report("kvm: LMCE not supported");
1714 return -ENOTSUP;
1715 }
3dc6f869
AF
1716 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1717 unsupported_caps);
5120901a
EH
1718 }
1719
2590f15b
EH
1720 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1721 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1722 if (ret < 0) {
1723 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1724 return ret;
1725 }
e7701825 1726 }
e7701825 1727
b8cc45d6
GC
1728 qemu_add_vm_change_state_handler(cpu_update_state, env);
1729
df67696e
LJ
1730 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1731 if (c) {
1732 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1733 !!(c->ecx & CPUID_EXT_SMX);
1734 }
1735
87f8b626
AR
1736 if (env->mcg_cap & MCG_LMCE_P) {
1737 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1738 }
1739
d99569d9
EH
1740 if (!env->user_tsc_khz) {
1741 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1742 invtsc_mig_blocker == NULL) {
d99569d9
EH
1743 error_setg(&invtsc_mig_blocker,
1744 "State blocked by non-migratable CPU device"
1745 " (invtsc flag)");
fe44dc91
AA
1746 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1747 if (local_err) {
1748 error_report_err(local_err);
1749 error_free(invtsc_mig_blocker);
79a197ab 1750 return r;
fe44dc91 1751 }
d99569d9 1752 }
68bfd0ad
MT
1753 }
1754
9954a158
PDJ
1755 if (cpu->vmware_cpuid_freq
1756 /* Guests depend on 0x40000000 to detect this feature, so only expose
1757 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1758 && cpu->expose_kvm
1759 && kvm_base == KVM_CPUID_SIGNATURE
1760 /* TSC clock must be stable and known for this feature. */
4bb95b82 1761 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1762
1763 c = &cpuid_data.entries[cpuid_i++];
1764 c->function = KVM_CPUID_SIGNATURE | 0x10;
1765 c->eax = env->tsc_khz;
1766 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1767 * APIC_BUS_CYCLE_NS */
1768 c->ebx = 1000000;
1769 c->ecx = c->edx = 0;
1770
1771 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1772 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1773 }
1774
1775 cpuid_data.cpuid.nent = cpuid_i;
1776
1777 cpuid_data.cpuid.padding = 0;
1778 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1779 if (r) {
1780 goto fail;
1781 }
1782
28143b40 1783 if (has_xsave) {
5b8063c4 1784 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1f670a95 1785 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
fabacc0f 1786 }
ebbfef2f
LA
1787
1788 max_nested_state_len = kvm_max_nested_state_length();
1789 if (max_nested_state_len > 0) {
1790 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 1791
1e44f3ab
PB
1792 if (cpu_has_vmx(env)) {
1793 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 1794
1e44f3ab
PB
1795 env->nested_state = g_malloc0(max_nested_state_len);
1796 env->nested_state->size = max_nested_state_len;
ebbfef2f 1797 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1e44f3ab
PB
1798
1799 vmx_hdr = &env->nested_state->hdr.vmx;
ebbfef2f
LA
1800 vmx_hdr->vmxon_pa = -1ull;
1801 vmx_hdr->vmcs12_pa = -1ull;
1802 }
1803 }
1804
d71b62a1 1805 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1806
273c515c
PB
1807 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1808 has_msr_tsc_aux = false;
1809 }
d1ae67f6 1810
e9688fab
RK
1811 r = hyperv_init_vcpu(cpu);
1812 if (r) {
1813 goto fail;
1814 }
1815
e7429073 1816 return 0;
fe44dc91
AA
1817
1818 fail:
1819 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 1820
fe44dc91 1821 return r;
05330448
AL
1822}
1823
b1115c99
LA
1824int kvm_arch_destroy_vcpu(CPUState *cs)
1825{
1826 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 1827 CPUX86State *env = &cpu->env;
b1115c99
LA
1828
1829 if (cpu->kvm_msr_buf) {
1830 g_free(cpu->kvm_msr_buf);
1831 cpu->kvm_msr_buf = NULL;
1832 }
1833
ebbfef2f
LA
1834 if (env->nested_state) {
1835 g_free(env->nested_state);
1836 env->nested_state = NULL;
1837 }
1838
b1115c99
LA
1839 return 0;
1840}
1841
50a2c6e5 1842void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 1843{
20d695a9 1844 CPUX86State *env = &cpu->env;
dd673288 1845
1a5e9d2f 1846 env->xcr0 = 1;
ddced198 1847 if (kvm_irqchip_in_kernel()) {
dd673288 1848 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
1849 KVM_MP_STATE_UNINITIALIZED;
1850 } else {
1851 env->mp_state = KVM_MP_STATE_RUNNABLE;
1852 }
689141dd 1853
2d384d7c 1854 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
1855 int i;
1856 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1857 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1858 }
606c34bf
RK
1859
1860 hyperv_x86_synic_reset(cpu);
689141dd 1861 }
d645e132
MT
1862 /* enabled by default */
1863 env->poll_control_msr = 1;
caa5af0f
JK
1864}
1865
e0723c45
PB
1866void kvm_arch_do_init_vcpu(X86CPU *cpu)
1867{
1868 CPUX86State *env = &cpu->env;
1869
1870 /* APs get directly into wait-for-SIPI state. */
1871 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1872 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1873 }
1874}
1875
f57bceb6
RH
1876static int kvm_get_supported_feature_msrs(KVMState *s)
1877{
1878 int ret = 0;
1879
1880 if (kvm_feature_msrs != NULL) {
1881 return 0;
1882 }
1883
1884 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1885 return 0;
1886 }
1887
1888 struct kvm_msr_list msr_list;
1889
1890 msr_list.nmsrs = 0;
1891 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1892 if (ret < 0 && ret != -E2BIG) {
1893 error_report("Fetch KVM feature MSR list failed: %s",
1894 strerror(-ret));
1895 return ret;
1896 }
1897
1898 assert(msr_list.nmsrs > 0);
1899 kvm_feature_msrs = (struct kvm_msr_list *) \
1900 g_malloc0(sizeof(msr_list) +
1901 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1902
1903 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1904 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1905
1906 if (ret < 0) {
1907 error_report("Fetch KVM feature MSR list failed: %s",
1908 strerror(-ret));
1909 g_free(kvm_feature_msrs);
1910 kvm_feature_msrs = NULL;
1911 return ret;
1912 }
1913
1914 return 0;
1915}
1916
c3a3a7d3 1917static int kvm_get_supported_msrs(KVMState *s)
05330448 1918{
c3a3a7d3 1919 int ret = 0;
de428cea 1920 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 1921
de428cea
LQ
1922 /*
1923 * Obtain MSR list from KVM. These are the MSRs that we must
1924 * save/restore.
1925 */
1926 msr_list.nmsrs = 0;
1927 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1928 if (ret < 0 && ret != -E2BIG) {
1929 return ret;
1930 }
1931 /*
1932 * Old kernel modules had a bug and could write beyond the provided
1933 * memory. Allocate at least a safe amount of 1K.
1934 */
1935 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1936 msr_list.nmsrs *
1937 sizeof(msr_list.indices[0])));
05330448 1938
de428cea
LQ
1939 kvm_msr_list->nmsrs = msr_list.nmsrs;
1940 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1941 if (ret >= 0) {
1942 int i;
05330448 1943
de428cea
LQ
1944 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1945 switch (kvm_msr_list->indices[i]) {
1946 case MSR_STAR:
1947 has_msr_star = true;
1948 break;
1949 case MSR_VM_HSAVE_PA:
1950 has_msr_hsave_pa = true;
1951 break;
1952 case MSR_TSC_AUX:
1953 has_msr_tsc_aux = true;
1954 break;
1955 case MSR_TSC_ADJUST:
1956 has_msr_tsc_adjust = true;
1957 break;
1958 case MSR_IA32_TSCDEADLINE:
1959 has_msr_tsc_deadline = true;
1960 break;
1961 case MSR_IA32_SMBASE:
1962 has_msr_smbase = true;
1963 break;
1964 case MSR_SMI_COUNT:
1965 has_msr_smi_count = true;
1966 break;
1967 case MSR_IA32_MISC_ENABLE:
1968 has_msr_misc_enable = true;
1969 break;
1970 case MSR_IA32_BNDCFGS:
1971 has_msr_bndcfgs = true;
1972 break;
1973 case MSR_IA32_XSS:
1974 has_msr_xss = true;
1975 break;
1976 case HV_X64_MSR_CRASH_CTL:
1977 has_msr_hv_crash = true;
1978 break;
1979 case HV_X64_MSR_RESET:
1980 has_msr_hv_reset = true;
1981 break;
1982 case HV_X64_MSR_VP_INDEX:
1983 has_msr_hv_vpindex = true;
1984 break;
1985 case HV_X64_MSR_VP_RUNTIME:
1986 has_msr_hv_runtime = true;
1987 break;
1988 case HV_X64_MSR_SCONTROL:
1989 has_msr_hv_synic = true;
1990 break;
1991 case HV_X64_MSR_STIMER0_CONFIG:
1992 has_msr_hv_stimer = true;
1993 break;
1994 case HV_X64_MSR_TSC_FREQUENCY:
1995 has_msr_hv_frequencies = true;
1996 break;
1997 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1998 has_msr_hv_reenlightenment = true;
1999 break;
2000 case MSR_IA32_SPEC_CTRL:
2001 has_msr_spec_ctrl = true;
2002 break;
2003 case MSR_VIRT_SSBD:
2004 has_msr_virt_ssbd = true;
2005 break;
2006 case MSR_IA32_ARCH_CAPABILITIES:
2007 has_msr_arch_capabs = true;
2008 break;
2009 case MSR_IA32_CORE_CAPABILITY:
2010 has_msr_core_capabs = true;
2011 break;
20a78b02
PB
2012 case MSR_IA32_VMX_VMFUNC:
2013 has_msr_vmx_vmfunc = true;
2014 break;
05330448
AL
2015 }
2016 }
05330448
AL
2017 }
2018
de428cea
LQ
2019 g_free(kvm_msr_list);
2020
c3a3a7d3 2021 return ret;
05330448
AL
2022}
2023
6410848b
PB
2024static Notifier smram_machine_done;
2025static KVMMemoryListener smram_listener;
2026static AddressSpace smram_address_space;
2027static MemoryRegion smram_as_root;
2028static MemoryRegion smram_as_mem;
2029
2030static void register_smram_listener(Notifier *n, void *unused)
2031{
2032 MemoryRegion *smram =
2033 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2034
2035 /* Outer container... */
2036 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2037 memory_region_set_enabled(&smram_as_root, true);
2038
2039 /* ... with two regions inside: normal system memory with low
2040 * priority, and...
2041 */
2042 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2043 get_system_memory(), 0, ~0ull);
2044 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2045 memory_region_set_enabled(&smram_as_mem, true);
2046
2047 if (smram) {
2048 /* ... SMRAM with higher priority */
2049 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2050 memory_region_set_enabled(smram, true);
2051 }
2052
2053 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2054 kvm_memory_listener_register(kvm_state, &smram_listener,
2055 &smram_address_space, 1);
2056}
2057
b16565b3 2058int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2059{
11076198 2060 uint64_t identity_base = 0xfffbc000;
39d6960a 2061 uint64_t shadow_mem;
20420430 2062 int ret;
25d2e361 2063 struct utsname utsname;
20420430 2064
28143b40 2065 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2066 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2067 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 2068
e9688fab
RK
2069 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2070
fd13f23b
LA
2071 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2072 if (has_exception_payload) {
2073 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2074 if (ret < 0) {
2075 error_report("kvm: Failed to enable exception payload cap: %s",
2076 strerror(-ret));
2077 return ret;
2078 }
2079 }
2080
c3a3a7d3 2081 ret = kvm_get_supported_msrs(s);
20420430 2082 if (ret < 0) {
20420430
SY
2083 return ret;
2084 }
25d2e361 2085
f57bceb6
RH
2086 kvm_get_supported_feature_msrs(s);
2087
25d2e361
MT
2088 uname(&utsname);
2089 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2090
4c5b10b7 2091 /*
11076198
JK
2092 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2093 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2094 * Since these must be part of guest physical memory, we need to allocate
2095 * them, both by setting their start addresses in the kernel and by
2096 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2097 *
2098 * Older KVM versions may not support setting the identity map base. In
2099 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2100 * size.
4c5b10b7 2101 */
11076198
JK
2102 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2103 /* Allows up to 16M BIOSes. */
2104 identity_base = 0xfeffc000;
2105
2106 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2107 if (ret < 0) {
2108 return ret;
2109 }
4c5b10b7 2110 }
e56ff191 2111
11076198
JK
2112 /* Set TSS base one page after EPT identity map. */
2113 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2114 if (ret < 0) {
2115 return ret;
2116 }
2117
11076198
JK
2118 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2119 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2120 if (ret < 0) {
11076198 2121 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2122 return ret;
2123 }
3c85e74f 2124 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 2125
4689b77b 2126 shadow_mem = machine_kvm_shadow_mem(ms);
36ad0e94
MA
2127 if (shadow_mem != -1) {
2128 shadow_mem /= 4096;
2129 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2130 if (ret < 0) {
2131 return ret;
39d6960a
JK
2132 }
2133 }
6410848b 2134
d870cfde
GA
2135 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2136 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2137 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
6410848b
PB
2138 smram_machine_done.notify = register_smram_listener;
2139 qemu_add_machine_init_done_notifier(&smram_machine_done);
2140 }
6f131f13
MT
2141
2142 if (enable_cpu_pm) {
2143 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2144 int ret;
2145
2146/* Work around for kernel header with a typo. TODO: fix header and drop. */
2147#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2148#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2149#endif
2150 if (disable_exits) {
2151 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2152 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2153 KVM_X86_DISABLE_EXITS_PAUSE |
2154 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2155 }
2156
2157 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2158 disable_exits);
2159 if (ret < 0) {
2160 error_report("kvm: guest stopping CPU not supported: %s",
2161 strerror(-ret));
2162 }
2163 }
2164
11076198 2165 return 0;
05330448 2166}
b9bec74b 2167
05330448
AL
2168static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2169{
2170 lhs->selector = rhs->selector;
2171 lhs->base = rhs->base;
2172 lhs->limit = rhs->limit;
2173 lhs->type = 3;
2174 lhs->present = 1;
2175 lhs->dpl = 3;
2176 lhs->db = 0;
2177 lhs->s = 1;
2178 lhs->l = 0;
2179 lhs->g = 0;
2180 lhs->avl = 0;
2181 lhs->unusable = 0;
2182}
2183
2184static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2185{
2186 unsigned flags = rhs->flags;
2187 lhs->selector = rhs->selector;
2188 lhs->base = rhs->base;
2189 lhs->limit = rhs->limit;
2190 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2191 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2192 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2193 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2194 lhs->s = (flags & DESC_S_MASK) != 0;
2195 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2196 lhs->g = (flags & DESC_G_MASK) != 0;
2197 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2198 lhs->unusable = !lhs->present;
7e680753 2199 lhs->padding = 0;
05330448
AL
2200}
2201
2202static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2203{
2204 lhs->selector = rhs->selector;
2205 lhs->base = rhs->base;
2206 lhs->limit = rhs->limit;
d45fc087
RP
2207 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2208 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2209 (rhs->dpl << DESC_DPL_SHIFT) |
2210 (rhs->db << DESC_B_SHIFT) |
2211 (rhs->s * DESC_S_MASK) |
2212 (rhs->l << DESC_L_SHIFT) |
2213 (rhs->g * DESC_G_MASK) |
2214 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2215}
2216
2217static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2218{
b9bec74b 2219 if (set) {
05330448 2220 *kvm_reg = *qemu_reg;
b9bec74b 2221 } else {
05330448 2222 *qemu_reg = *kvm_reg;
b9bec74b 2223 }
05330448
AL
2224}
2225
1bc22652 2226static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2227{
1bc22652 2228 CPUX86State *env = &cpu->env;
05330448
AL
2229 struct kvm_regs regs;
2230 int ret = 0;
2231
2232 if (!set) {
1bc22652 2233 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2234 if (ret < 0) {
05330448 2235 return ret;
b9bec74b 2236 }
05330448
AL
2237 }
2238
2239 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2240 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2241 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2242 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2243 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2244 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2245 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2246 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2247#ifdef TARGET_X86_64
2248 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2249 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2250 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2251 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2252 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2253 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2254 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2255 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2256#endif
2257
2258 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2259 kvm_getput_reg(&regs.rip, &env->eip, set);
2260
b9bec74b 2261 if (set) {
1bc22652 2262 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2263 }
05330448
AL
2264
2265 return ret;
2266}
2267
1bc22652 2268static int kvm_put_fpu(X86CPU *cpu)
05330448 2269{
1bc22652 2270 CPUX86State *env = &cpu->env;
05330448
AL
2271 struct kvm_fpu fpu;
2272 int i;
2273
2274 memset(&fpu, 0, sizeof fpu);
2275 fpu.fsw = env->fpus & ~(7 << 11);
2276 fpu.fsw |= (env->fpstt & 7) << 11;
2277 fpu.fcw = env->fpuc;
42cc8fa6
JK
2278 fpu.last_opcode = env->fpop;
2279 fpu.last_ip = env->fpip;
2280 fpu.last_dp = env->fpdp;
b9bec74b
JK
2281 for (i = 0; i < 8; ++i) {
2282 fpu.ftwx |= (!env->fptags[i]) << i;
2283 }
05330448 2284 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2285 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2286 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2287 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2288 }
05330448
AL
2289 fpu.mxcsr = env->mxcsr;
2290
1bc22652 2291 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2292}
2293
6b42494b
JK
2294#define XSAVE_FCW_FSW 0
2295#define XSAVE_FTW_FOP 1
f1665b21
SY
2296#define XSAVE_CWD_RIP 2
2297#define XSAVE_CWD_RDP 4
2298#define XSAVE_MXCSR 6
2299#define XSAVE_ST_SPACE 8
2300#define XSAVE_XMM_SPACE 40
2301#define XSAVE_XSTATE_BV 128
2302#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
2303#define XSAVE_BNDREGS 240
2304#define XSAVE_BNDCSR 256
9aecd6f8
CP
2305#define XSAVE_OPMASK 272
2306#define XSAVE_ZMM_Hi256 288
2307#define XSAVE_Hi16_ZMM 416
f74eefe0 2308#define XSAVE_PKRU 672
f1665b21 2309
b503717d 2310#define XSAVE_BYTE_OFFSET(word_offset) \
f18793b0 2311 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
b503717d
EH
2312
2313#define ASSERT_OFFSET(word_offset, field) \
2314 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2315 offsetof(X86XSaveArea, field))
2316
2317ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2318ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2319ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2320ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2321ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2322ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2323ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2324ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2325ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2326ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2327ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2328ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2329ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2330ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2331ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2332
1bc22652 2333static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2334{
1bc22652 2335 CPUX86State *env = &cpu->env;
5b8063c4 2336 X86XSaveArea *xsave = env->xsave_buf;
f1665b21 2337
28143b40 2338 if (!has_xsave) {
1bc22652 2339 return kvm_put_fpu(cpu);
b9bec74b 2340 }
86a57621 2341 x86_cpu_xsave_all_areas(cpu, xsave);
f1665b21 2342
9be38598 2343 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2344}
2345
1bc22652 2346static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2347{
1bc22652 2348 CPUX86State *env = &cpu->env;
bdfc8480 2349 struct kvm_xcrs xcrs = {};
f1665b21 2350
28143b40 2351 if (!has_xcrs) {
f1665b21 2352 return 0;
b9bec74b 2353 }
f1665b21
SY
2354
2355 xcrs.nr_xcrs = 1;
2356 xcrs.flags = 0;
2357 xcrs.xcrs[0].xcr = 0;
2358 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2359 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2360}
2361
1bc22652 2362static int kvm_put_sregs(X86CPU *cpu)
05330448 2363{
1bc22652 2364 CPUX86State *env = &cpu->env;
05330448
AL
2365 struct kvm_sregs sregs;
2366
0e607a80
JK
2367 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2368 if (env->interrupt_injected >= 0) {
2369 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2370 (uint64_t)1 << (env->interrupt_injected % 64);
2371 }
05330448
AL
2372
2373 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2374 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2375 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2376 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2377 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2378 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2379 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2380 } else {
b9bec74b
JK
2381 set_seg(&sregs.cs, &env->segs[R_CS]);
2382 set_seg(&sregs.ds, &env->segs[R_DS]);
2383 set_seg(&sregs.es, &env->segs[R_ES]);
2384 set_seg(&sregs.fs, &env->segs[R_FS]);
2385 set_seg(&sregs.gs, &env->segs[R_GS]);
2386 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2387 }
2388
2389 set_seg(&sregs.tr, &env->tr);
2390 set_seg(&sregs.ldt, &env->ldt);
2391
2392 sregs.idt.limit = env->idt.limit;
2393 sregs.idt.base = env->idt.base;
7e680753 2394 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2395 sregs.gdt.limit = env->gdt.limit;
2396 sregs.gdt.base = env->gdt.base;
7e680753 2397 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2398
2399 sregs.cr0 = env->cr[0];
2400 sregs.cr2 = env->cr[2];
2401 sregs.cr3 = env->cr[3];
2402 sregs.cr4 = env->cr[4];
2403
02e51483
CF
2404 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2405 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2406
2407 sregs.efer = env->efer;
2408
1bc22652 2409 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2410}
2411
d71b62a1
EH
2412static void kvm_msr_buf_reset(X86CPU *cpu)
2413{
2414 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2415}
2416
9c600a84
EH
2417static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2418{
2419 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2420 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2421 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2422
2423 assert((void *)(entry + 1) <= limit);
2424
1abc2cae
EH
2425 entry->index = index;
2426 entry->reserved = 0;
2427 entry->data = value;
9c600a84
EH
2428 msrs->nmsrs++;
2429}
2430
73e1b8f2
PB
2431static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2432{
2433 kvm_msr_buf_reset(cpu);
2434 kvm_msr_entry_add(cpu, index, value);
2435
2436 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2437}
2438
f8d9ccf8
DDAG
2439void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2440{
2441 int ret;
2442
2443 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2444 assert(ret == 1);
2445}
2446
7477cd38
MT
2447static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2448{
2449 CPUX86State *env = &cpu->env;
48e1a45c 2450 int ret;
7477cd38
MT
2451
2452 if (!has_msr_tsc_deadline) {
2453 return 0;
2454 }
2455
73e1b8f2 2456 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2457 if (ret < 0) {
2458 return ret;
2459 }
2460
2461 assert(ret == 1);
2462 return 0;
7477cd38
MT
2463}
2464
6bdf863d
JK
2465/*
2466 * Provide a separate write service for the feature control MSR in order to
2467 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2468 * before writing any other state because forcibly leaving nested mode
2469 * invalidates the VCPU state.
2470 */
2471static int kvm_put_msr_feature_control(X86CPU *cpu)
2472{
48e1a45c
PB
2473 int ret;
2474
2475 if (!has_msr_feature_control) {
2476 return 0;
2477 }
6bdf863d 2478
73e1b8f2
PB
2479 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2480 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2481 if (ret < 0) {
2482 return ret;
2483 }
2484
2485 assert(ret == 1);
2486 return 0;
6bdf863d
JK
2487}
2488
20a78b02
PB
2489static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2490{
2491 uint32_t default1, can_be_one, can_be_zero;
2492 uint32_t must_be_one;
2493
2494 switch (index) {
2495 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2496 default1 = 0x00000016;
2497 break;
2498 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2499 default1 = 0x0401e172;
2500 break;
2501 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2502 default1 = 0x000011ff;
2503 break;
2504 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2505 default1 = 0x00036dff;
2506 break;
2507 case MSR_IA32_VMX_PROCBASED_CTLS2:
2508 default1 = 0;
2509 break;
2510 default:
2511 abort();
2512 }
2513
2514 /* If a feature bit is set, the control can be either set or clear.
2515 * Otherwise the value is limited to either 0 or 1 by default1.
2516 */
2517 can_be_one = features | default1;
2518 can_be_zero = features | ~default1;
2519 must_be_one = ~can_be_zero;
2520
2521 /*
2522 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2523 * Bit 32:63 -> 1 if the control bit can be one.
2524 */
2525 return must_be_one | (((uint64_t)can_be_one) << 32);
2526}
2527
2528#define VMCS12_MAX_FIELD_INDEX (0x17)
2529
2530static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2531{
2532 uint64_t kvm_vmx_basic =
2533 kvm_arch_get_supported_msr_feature(kvm_state,
2534 MSR_IA32_VMX_BASIC);
2535 uint64_t kvm_vmx_misc =
2536 kvm_arch_get_supported_msr_feature(kvm_state,
2537 MSR_IA32_VMX_MISC);
2538 uint64_t kvm_vmx_ept_vpid =
2539 kvm_arch_get_supported_msr_feature(kvm_state,
2540 MSR_IA32_VMX_EPT_VPID_CAP);
2541
2542 /*
2543 * If the guest is 64-bit, a value of 1 is allowed for the host address
2544 * space size vmexit control.
2545 */
2546 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2547 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2548
2549 /*
2550 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2551 * not change them for backwards compatibility.
2552 */
2553 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2554 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2555 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2556 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2557
2558 /*
2559 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2560 * change in the future but are always zero for now, clear them to be
2561 * future proof. Bits 32-63 in theory could change, though KVM does
2562 * not support dual-monitor treatment and probably never will; mask
2563 * them out as well.
2564 */
2565 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2566 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2567 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2568
2569 /*
2570 * EPT memory types should not change either, so we do not bother
2571 * adding features for them.
2572 */
2573 uint64_t fixed_vmx_ept_mask =
2574 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2575 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2576 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2577
2578 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2579 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2580 f[FEAT_VMX_PROCBASED_CTLS]));
2581 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2582 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2583 f[FEAT_VMX_PINBASED_CTLS]));
2584 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2585 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2586 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2587 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2588 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2589 f[FEAT_VMX_ENTRY_CTLS]));
2590 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2591 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2592 f[FEAT_VMX_SECONDARY_CTLS]));
2593 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2594 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2595 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2596 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2597 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2598 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2599 if (has_msr_vmx_vmfunc) {
2600 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2601 }
2602
2603 /*
2604 * Just to be safe, write these with constant values. The CRn_FIXED1
2605 * MSRs are generated by KVM based on the vCPU's CPUID.
2606 */
2607 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2608 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2609 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2610 CR4_VMXE_MASK);
2611 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2612 VMCS12_MAX_FIELD_INDEX << 1);
2613}
2614
1bc22652 2615static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 2616{
1bc22652 2617 CPUX86State *env = &cpu->env;
9c600a84 2618 int i;
48e1a45c 2619 int ret;
05330448 2620
d71b62a1
EH
2621 kvm_msr_buf_reset(cpu);
2622
9c600a84
EH
2623 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2624 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2625 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2626 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 2627 if (has_msr_star) {
9c600a84 2628 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 2629 }
c3a3a7d3 2630 if (has_msr_hsave_pa) {
9c600a84 2631 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2632 }
c9b8f6b6 2633 if (has_msr_tsc_aux) {
9c600a84 2634 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2635 }
f28558d3 2636 if (has_msr_tsc_adjust) {
9c600a84 2637 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2638 }
21e87c46 2639 if (has_msr_misc_enable) {
9c600a84 2640 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2641 env->msr_ia32_misc_enable);
2642 }
fc12d72e 2643 if (has_msr_smbase) {
9c600a84 2644 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2645 }
e13713db
LA
2646 if (has_msr_smi_count) {
2647 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2648 }
439d19f2 2649 if (has_msr_bndcfgs) {
9c600a84 2650 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2651 }
18cd2c17 2652 if (has_msr_xss) {
9c600a84 2653 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2654 }
a33a2cfe
PB
2655 if (has_msr_spec_ctrl) {
2656 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2657 }
cfeea0c0
KRW
2658 if (has_msr_virt_ssbd) {
2659 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2660 }
2661
05330448 2662#ifdef TARGET_X86_64
25d2e361 2663 if (lm_capable_kernel) {
9c600a84
EH
2664 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2665 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2666 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2667 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2668 }
05330448 2669#endif
a33a2cfe 2670
d86f9636 2671 /* If host supports feature MSR, write down. */
aec5e9c3
BD
2672 if (has_msr_arch_capabs) {
2673 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2674 env->features[FEAT_ARCH_CAPABILITIES]);
d86f9636
RH
2675 }
2676
597360c0
XL
2677 if (has_msr_core_capabs) {
2678 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2679 env->features[FEAT_CORE_CAPABILITY]);
2680 }
2681
ff5c186b 2682 /*
0d894367
PB
2683 * The following MSRs have side effects on the guest or are too heavy
2684 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
2685 */
2686 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
2687 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2688 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2689 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
55c911a5 2690 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2691 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 2692 }
55c911a5 2693 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2694 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 2695 }
55c911a5 2696 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2697 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 2698 }
d645e132
MT
2699
2700 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2701 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2702 }
2703
0b368a10
JD
2704 if (has_architectural_pmu_version > 0) {
2705 if (has_architectural_pmu_version > 1) {
2706 /* Stop the counter. */
2707 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2708 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2709 }
0d894367
PB
2710
2711 /* Set the counter values. */
0b368a10 2712 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2713 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
2714 env->msr_fixed_counters[i]);
2715 }
0b368a10 2716 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 2717 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 2718 env->msr_gp_counters[i]);
9c600a84 2719 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
2720 env->msr_gp_evtsel[i]);
2721 }
0b368a10
JD
2722 if (has_architectural_pmu_version > 1) {
2723 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2724 env->msr_global_status);
2725 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2726 env->msr_global_ovf_ctrl);
2727
2728 /* Now start the PMU. */
2729 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2730 env->msr_fixed_ctr_ctrl);
2731 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2732 env->msr_global_ctrl);
2733 }
0d894367 2734 }
da1cc323
EY
2735 /*
2736 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2737 * only sync them to KVM on the first cpu
2738 */
2739 if (current_cpu == first_cpu) {
2740 if (has_msr_hv_hypercall) {
2741 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2742 env->msr_hv_guest_os_id);
2743 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2744 env->msr_hv_hypercall);
2745 }
2d384d7c 2746 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
2747 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2748 env->msr_hv_tsc);
2749 }
2d384d7c 2750 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
2751 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2752 env->msr_hv_reenlightenment_control);
2753 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2754 env->msr_hv_tsc_emulation_control);
2755 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2756 env->msr_hv_tsc_emulation_status);
2757 }
eab70139 2758 }
2d384d7c 2759 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 2760 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 2761 env->msr_hv_vapic);
eab70139 2762 }
f2a53c9e
AS
2763 if (has_msr_hv_crash) {
2764 int j;
2765
5e953812 2766 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 2767 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
2768 env->msr_hv_crash_params[j]);
2769
5e953812 2770 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 2771 }
46eb8f98 2772 if (has_msr_hv_runtime) {
9c600a84 2773 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 2774 }
2d384d7c
VK
2775 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2776 && hv_vpindex_settable) {
701189e3
RK
2777 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2778 hyperv_vp_index(CPU(cpu)));
e9688fab 2779 }
2d384d7c 2780 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
2781 int j;
2782
09df29b6
RK
2783 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2784
9c600a84 2785 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 2786 env->msr_hv_synic_control);
9c600a84 2787 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 2788 env->msr_hv_synic_evt_page);
9c600a84 2789 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
2790 env->msr_hv_synic_msg_page);
2791
2792 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 2793 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
2794 env->msr_hv_synic_sint[j]);
2795 }
2796 }
ff99aa64
AS
2797 if (has_msr_hv_stimer) {
2798 int j;
2799
2800 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 2801 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
2802 env->msr_hv_stimer_config[j]);
2803 }
2804
2805 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 2806 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
2807 env->msr_hv_stimer_count[j]);
2808 }
2809 }
1eabfce6 2810 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
2811 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2812
9c600a84
EH
2813 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2814 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2815 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2816 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2817 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2818 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2819 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2820 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2821 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2822 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2823 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2824 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 2825 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
2826 /* The CPU GPs if we write to a bit above the physical limit of
2827 * the host CPU (and KVM emulates that)
2828 */
2829 uint64_t mask = env->mtrr_var[i].mask;
2830 mask &= phys_mask;
2831
9c600a84
EH
2832 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2833 env->mtrr_var[i].base);
112dad69 2834 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
2835 }
2836 }
b77146e9
CP
2837 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2838 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2839 0x14, 1, R_EAX) & 0x7;
2840
2841 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2842 env->msr_rtit_ctrl);
2843 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2844 env->msr_rtit_status);
2845 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2846 env->msr_rtit_output_base);
2847 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2848 env->msr_rtit_output_mask);
2849 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2850 env->msr_rtit_cr3_match);
2851 for (i = 0; i < addr_num; i++) {
2852 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2853 env->msr_rtit_addrs[i]);
2854 }
2855 }
6bdf863d
JK
2856
2857 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2858 * kvm_put_msr_feature_control. */
20a78b02
PB
2859
2860 /*
2861 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2862 * all kernels with MSR features should have them.
2863 */
2864 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2865 kvm_msr_entry_add_vmx(cpu, env->features);
2866 }
ea643051 2867 }
20a78b02 2868
57780495 2869 if (env->mcg_cap) {
d8da8574 2870 int i;
b9bec74b 2871
9c600a84
EH
2872 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2873 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
2874 if (has_msr_mcg_ext_ctl) {
2875 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2876 }
c34d440a 2877 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2878 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
2879 }
2880 }
1a03675d 2881
d71b62a1 2882 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
48e1a45c
PB
2883 if (ret < 0) {
2884 return ret;
2885 }
05330448 2886
c70b11d1
EH
2887 if (ret < cpu->kvm_msr_buf->nmsrs) {
2888 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2889 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2890 (uint32_t)e->index, (uint64_t)e->data);
2891 }
2892
9c600a84 2893 assert(ret == cpu->kvm_msr_buf->nmsrs);
48e1a45c 2894 return 0;
05330448
AL
2895}
2896
2897
1bc22652 2898static int kvm_get_fpu(X86CPU *cpu)
05330448 2899{
1bc22652 2900 CPUX86State *env = &cpu->env;
05330448
AL
2901 struct kvm_fpu fpu;
2902 int i, ret;
2903
1bc22652 2904 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 2905 if (ret < 0) {
05330448 2906 return ret;
b9bec74b 2907 }
05330448
AL
2908
2909 env->fpstt = (fpu.fsw >> 11) & 7;
2910 env->fpus = fpu.fsw;
2911 env->fpuc = fpu.fcw;
42cc8fa6
JK
2912 env->fpop = fpu.last_opcode;
2913 env->fpip = fpu.last_ip;
2914 env->fpdp = fpu.last_dp;
b9bec74b
JK
2915 for (i = 0; i < 8; ++i) {
2916 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2917 }
05330448 2918 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 2919 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2920 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2921 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 2922 }
05330448
AL
2923 env->mxcsr = fpu.mxcsr;
2924
2925 return 0;
2926}
2927
1bc22652 2928static int kvm_get_xsave(X86CPU *cpu)
f1665b21 2929{
1bc22652 2930 CPUX86State *env = &cpu->env;
5b8063c4 2931 X86XSaveArea *xsave = env->xsave_buf;
86a57621 2932 int ret;
f1665b21 2933
28143b40 2934 if (!has_xsave) {
1bc22652 2935 return kvm_get_fpu(cpu);
b9bec74b 2936 }
f1665b21 2937
1bc22652 2938 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 2939 if (ret < 0) {
f1665b21 2940 return ret;
0f53994f 2941 }
86a57621 2942 x86_cpu_xrstor_all_areas(cpu, xsave);
f1665b21 2943
f1665b21 2944 return 0;
f1665b21
SY
2945}
2946
1bc22652 2947static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 2948{
1bc22652 2949 CPUX86State *env = &cpu->env;
f1665b21
SY
2950 int i, ret;
2951 struct kvm_xcrs xcrs;
2952
28143b40 2953 if (!has_xcrs) {
f1665b21 2954 return 0;
b9bec74b 2955 }
f1665b21 2956
1bc22652 2957 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 2958 if (ret < 0) {
f1665b21 2959 return ret;
b9bec74b 2960 }
f1665b21 2961
b9bec74b 2962 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 2963 /* Only support xcr0 now */
0fd53fec
PB
2964 if (xcrs.xcrs[i].xcr == 0) {
2965 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
2966 break;
2967 }
b9bec74b 2968 }
f1665b21 2969 return 0;
f1665b21
SY
2970}
2971
1bc22652 2972static int kvm_get_sregs(X86CPU *cpu)
05330448 2973{
1bc22652 2974 CPUX86State *env = &cpu->env;
05330448 2975 struct kvm_sregs sregs;
0e607a80 2976 int bit, i, ret;
05330448 2977
1bc22652 2978 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 2979 if (ret < 0) {
05330448 2980 return ret;
b9bec74b 2981 }
05330448 2982
0e607a80
JK
2983 /* There can only be one pending IRQ set in the bitmap at a time, so try
2984 to find it and save its number instead (-1 for none). */
2985 env->interrupt_injected = -1;
2986 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2987 if (sregs.interrupt_bitmap[i]) {
2988 bit = ctz64(sregs.interrupt_bitmap[i]);
2989 env->interrupt_injected = i * 64 + bit;
2990 break;
2991 }
2992 }
05330448
AL
2993
2994 get_seg(&env->segs[R_CS], &sregs.cs);
2995 get_seg(&env->segs[R_DS], &sregs.ds);
2996 get_seg(&env->segs[R_ES], &sregs.es);
2997 get_seg(&env->segs[R_FS], &sregs.fs);
2998 get_seg(&env->segs[R_GS], &sregs.gs);
2999 get_seg(&env->segs[R_SS], &sregs.ss);
3000
3001 get_seg(&env->tr, &sregs.tr);
3002 get_seg(&env->ldt, &sregs.ldt);
3003
3004 env->idt.limit = sregs.idt.limit;
3005 env->idt.base = sregs.idt.base;
3006 env->gdt.limit = sregs.gdt.limit;
3007 env->gdt.base = sregs.gdt.base;
3008
3009 env->cr[0] = sregs.cr0;
3010 env->cr[2] = sregs.cr2;
3011 env->cr[3] = sregs.cr3;
3012 env->cr[4] = sregs.cr4;
3013
05330448 3014 env->efer = sregs.efer;
cce47516
JK
3015
3016 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3017 x86_update_hflags(env);
05330448
AL
3018
3019 return 0;
3020}
3021
1bc22652 3022static int kvm_get_msrs(X86CPU *cpu)
05330448 3023{
1bc22652 3024 CPUX86State *env = &cpu->env;
d71b62a1 3025 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3026 int ret, i;
fcc35e7c 3027 uint64_t mtrr_top_bits;
05330448 3028
d71b62a1
EH
3029 kvm_msr_buf_reset(cpu);
3030
9c600a84
EH
3031 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3032 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3033 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3034 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3035 if (has_msr_star) {
9c600a84 3036 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3037 }
c3a3a7d3 3038 if (has_msr_hsave_pa) {
9c600a84 3039 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3040 }
c9b8f6b6 3041 if (has_msr_tsc_aux) {
9c600a84 3042 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3043 }
f28558d3 3044 if (has_msr_tsc_adjust) {
9c600a84 3045 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3046 }
aa82ba54 3047 if (has_msr_tsc_deadline) {
9c600a84 3048 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3049 }
21e87c46 3050 if (has_msr_misc_enable) {
9c600a84 3051 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3052 }
fc12d72e 3053 if (has_msr_smbase) {
9c600a84 3054 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3055 }
e13713db
LA
3056 if (has_msr_smi_count) {
3057 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3058 }
df67696e 3059 if (has_msr_feature_control) {
9c600a84 3060 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3061 }
79e9ebeb 3062 if (has_msr_bndcfgs) {
9c600a84 3063 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3064 }
18cd2c17 3065 if (has_msr_xss) {
9c600a84 3066 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3067 }
a33a2cfe
PB
3068 if (has_msr_spec_ctrl) {
3069 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3070 }
cfeea0c0
KRW
3071 if (has_msr_virt_ssbd) {
3072 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3073 }
b8cc45d6 3074 if (!env->tsc_valid) {
9c600a84 3075 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3076 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3077 }
3078
05330448 3079#ifdef TARGET_X86_64
25d2e361 3080 if (lm_capable_kernel) {
9c600a84
EH
3081 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3082 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3083 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3084 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3085 }
05330448 3086#endif
9c600a84
EH
3087 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3088 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
55c911a5 3089 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 3090 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
c5999bfc 3091 }
55c911a5 3092 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3093 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3094 }
55c911a5 3095 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3096 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3097 }
d645e132
MT
3098 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3099 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3100 }
0b368a10
JD
3101 if (has_architectural_pmu_version > 0) {
3102 if (has_architectural_pmu_version > 1) {
3103 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3104 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3105 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3106 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3107 }
3108 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3109 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3110 }
0b368a10 3111 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3112 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3113 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3114 }
3115 }
1a03675d 3116
57780495 3117 if (env->mcg_cap) {
9c600a84
EH
3118 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3119 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3120 if (has_msr_mcg_ext_ctl) {
3121 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3122 }
b9bec74b 3123 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3124 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3125 }
57780495 3126 }
57780495 3127
1c90ef26 3128 if (has_msr_hv_hypercall) {
9c600a84
EH
3129 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3130 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3131 }
2d384d7c 3132 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3133 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3134 }
2d384d7c 3135 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3136 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3137 }
2d384d7c 3138 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3139 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3140 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3141 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3142 }
f2a53c9e
AS
3143 if (has_msr_hv_crash) {
3144 int j;
3145
5e953812 3146 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3147 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3148 }
3149 }
46eb8f98 3150 if (has_msr_hv_runtime) {
9c600a84 3151 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3152 }
2d384d7c 3153 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3154 uint32_t msr;
3155
9c600a84 3156 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3157 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3158 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3159 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3160 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3161 }
3162 }
ff99aa64
AS
3163 if (has_msr_hv_stimer) {
3164 uint32_t msr;
3165
3166 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3167 msr++) {
9c600a84 3168 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3169 }
3170 }
1eabfce6 3171 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3172 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3173 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3174 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3175 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3176 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3177 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3178 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3179 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3180 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3181 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3182 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3183 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3184 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3185 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3186 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3187 }
3188 }
5ef68987 3189
b77146e9
CP
3190 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3191 int addr_num =
3192 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3193
3194 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3195 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3196 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3197 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3198 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3199 for (i = 0; i < addr_num; i++) {
3200 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3201 }
3202 }
3203
d71b62a1 3204 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3205 if (ret < 0) {
05330448 3206 return ret;
b9bec74b 3207 }
05330448 3208
c70b11d1
EH
3209 if (ret < cpu->kvm_msr_buf->nmsrs) {
3210 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3211 error_report("error: failed to get MSR 0x%" PRIx32,
3212 (uint32_t)e->index);
3213 }
3214
9c600a84 3215 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3216 /*
3217 * MTRR masks: Each mask consists of 5 parts
3218 * a 10..0: must be zero
3219 * b 11 : valid bit
3220 * c n-1.12: actual mask bits
3221 * d 51..n: reserved must be zero
3222 * e 63.52: reserved must be zero
3223 *
3224 * 'n' is the number of physical bits supported by the CPU and is
3225 * apparently always <= 52. We know our 'n' but don't know what
3226 * the destinations 'n' is; it might be smaller, in which case
3227 * it masks (c) on loading. It might be larger, in which case
3228 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3229 * we're migrating to.
3230 */
3231
3232 if (cpu->fill_mtrr_mask) {
3233 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3234 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3235 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3236 } else {
3237 mtrr_top_bits = 0;
3238 }
3239
05330448 3240 for (i = 0; i < ret; i++) {
0d894367
PB
3241 uint32_t index = msrs[i].index;
3242 switch (index) {
05330448
AL
3243 case MSR_IA32_SYSENTER_CS:
3244 env->sysenter_cs = msrs[i].data;
3245 break;
3246 case MSR_IA32_SYSENTER_ESP:
3247 env->sysenter_esp = msrs[i].data;
3248 break;
3249 case MSR_IA32_SYSENTER_EIP:
3250 env->sysenter_eip = msrs[i].data;
3251 break;
0c03266a
JK
3252 case MSR_PAT:
3253 env->pat = msrs[i].data;
3254 break;
05330448
AL
3255 case MSR_STAR:
3256 env->star = msrs[i].data;
3257 break;
3258#ifdef TARGET_X86_64
3259 case MSR_CSTAR:
3260 env->cstar = msrs[i].data;
3261 break;
3262 case MSR_KERNELGSBASE:
3263 env->kernelgsbase = msrs[i].data;
3264 break;
3265 case MSR_FMASK:
3266 env->fmask = msrs[i].data;
3267 break;
3268 case MSR_LSTAR:
3269 env->lstar = msrs[i].data;
3270 break;
3271#endif
3272 case MSR_IA32_TSC:
3273 env->tsc = msrs[i].data;
3274 break;
c9b8f6b6
AS
3275 case MSR_TSC_AUX:
3276 env->tsc_aux = msrs[i].data;
3277 break;
f28558d3
WA
3278 case MSR_TSC_ADJUST:
3279 env->tsc_adjust = msrs[i].data;
3280 break;
aa82ba54
LJ
3281 case MSR_IA32_TSCDEADLINE:
3282 env->tsc_deadline = msrs[i].data;
3283 break;
aa851e36
MT
3284 case MSR_VM_HSAVE_PA:
3285 env->vm_hsave = msrs[i].data;
3286 break;
1a03675d
GC
3287 case MSR_KVM_SYSTEM_TIME:
3288 env->system_time_msr = msrs[i].data;
3289 break;
3290 case MSR_KVM_WALL_CLOCK:
3291 env->wall_clock_msr = msrs[i].data;
3292 break;
57780495
MT
3293 case MSR_MCG_STATUS:
3294 env->mcg_status = msrs[i].data;
3295 break;
3296 case MSR_MCG_CTL:
3297 env->mcg_ctl = msrs[i].data;
3298 break;
87f8b626
AR
3299 case MSR_MCG_EXT_CTL:
3300 env->mcg_ext_ctl = msrs[i].data;
3301 break;
21e87c46
AK
3302 case MSR_IA32_MISC_ENABLE:
3303 env->msr_ia32_misc_enable = msrs[i].data;
3304 break;
fc12d72e
PB
3305 case MSR_IA32_SMBASE:
3306 env->smbase = msrs[i].data;
3307 break;
e13713db
LA
3308 case MSR_SMI_COUNT:
3309 env->msr_smi_count = msrs[i].data;
3310 break;
0779caeb
ACL
3311 case MSR_IA32_FEATURE_CONTROL:
3312 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3313 break;
79e9ebeb
LJ
3314 case MSR_IA32_BNDCFGS:
3315 env->msr_bndcfgs = msrs[i].data;
3316 break;
18cd2c17
WL
3317 case MSR_IA32_XSS:
3318 env->xss = msrs[i].data;
3319 break;
57780495 3320 default:
57780495
MT
3321 if (msrs[i].index >= MSR_MC0_CTL &&
3322 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3323 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3324 }
d8da8574 3325 break;
f6584ee2
GN
3326 case MSR_KVM_ASYNC_PF_EN:
3327 env->async_pf_en_msr = msrs[i].data;
3328 break;
bc9a839d
MT
3329 case MSR_KVM_PV_EOI_EN:
3330 env->pv_eoi_en_msr = msrs[i].data;
3331 break;
917367aa
MT
3332 case MSR_KVM_STEAL_TIME:
3333 env->steal_time_msr = msrs[i].data;
3334 break;
d645e132
MT
3335 case MSR_KVM_POLL_CONTROL: {
3336 env->poll_control_msr = msrs[i].data;
3337 break;
3338 }
0d894367
PB
3339 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3340 env->msr_fixed_ctr_ctrl = msrs[i].data;
3341 break;
3342 case MSR_CORE_PERF_GLOBAL_CTRL:
3343 env->msr_global_ctrl = msrs[i].data;
3344 break;
3345 case MSR_CORE_PERF_GLOBAL_STATUS:
3346 env->msr_global_status = msrs[i].data;
3347 break;
3348 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3349 env->msr_global_ovf_ctrl = msrs[i].data;
3350 break;
3351 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3352 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3353 break;
3354 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3355 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3356 break;
3357 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3358 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3359 break;
1c90ef26
VR
3360 case HV_X64_MSR_HYPERCALL:
3361 env->msr_hv_hypercall = msrs[i].data;
3362 break;
3363 case HV_X64_MSR_GUEST_OS_ID:
3364 env->msr_hv_guest_os_id = msrs[i].data;
3365 break;
5ef68987
VR
3366 case HV_X64_MSR_APIC_ASSIST_PAGE:
3367 env->msr_hv_vapic = msrs[i].data;
3368 break;
48a5f3bc
VR
3369 case HV_X64_MSR_REFERENCE_TSC:
3370 env->msr_hv_tsc = msrs[i].data;
3371 break;
f2a53c9e
AS
3372 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3373 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3374 break;
46eb8f98
AS
3375 case HV_X64_MSR_VP_RUNTIME:
3376 env->msr_hv_runtime = msrs[i].data;
3377 break;
866eea9a
AS
3378 case HV_X64_MSR_SCONTROL:
3379 env->msr_hv_synic_control = msrs[i].data;
3380 break;
866eea9a
AS
3381 case HV_X64_MSR_SIEFP:
3382 env->msr_hv_synic_evt_page = msrs[i].data;
3383 break;
3384 case HV_X64_MSR_SIMP:
3385 env->msr_hv_synic_msg_page = msrs[i].data;
3386 break;
3387 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3388 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3389 break;
3390 case HV_X64_MSR_STIMER0_CONFIG:
3391 case HV_X64_MSR_STIMER1_CONFIG:
3392 case HV_X64_MSR_STIMER2_CONFIG:
3393 case HV_X64_MSR_STIMER3_CONFIG:
3394 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3395 msrs[i].data;
3396 break;
3397 case HV_X64_MSR_STIMER0_COUNT:
3398 case HV_X64_MSR_STIMER1_COUNT:
3399 case HV_X64_MSR_STIMER2_COUNT:
3400 case HV_X64_MSR_STIMER3_COUNT:
3401 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3402 msrs[i].data;
866eea9a 3403 break;
ba6a4fd9
VK
3404 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3405 env->msr_hv_reenlightenment_control = msrs[i].data;
3406 break;
3407 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3408 env->msr_hv_tsc_emulation_control = msrs[i].data;
3409 break;
3410 case HV_X64_MSR_TSC_EMULATION_STATUS:
3411 env->msr_hv_tsc_emulation_status = msrs[i].data;
3412 break;
d1ae67f6
AW
3413 case MSR_MTRRdefType:
3414 env->mtrr_deftype = msrs[i].data;
3415 break;
3416 case MSR_MTRRfix64K_00000:
3417 env->mtrr_fixed[0] = msrs[i].data;
3418 break;
3419 case MSR_MTRRfix16K_80000:
3420 env->mtrr_fixed[1] = msrs[i].data;
3421 break;
3422 case MSR_MTRRfix16K_A0000:
3423 env->mtrr_fixed[2] = msrs[i].data;
3424 break;
3425 case MSR_MTRRfix4K_C0000:
3426 env->mtrr_fixed[3] = msrs[i].data;
3427 break;
3428 case MSR_MTRRfix4K_C8000:
3429 env->mtrr_fixed[4] = msrs[i].data;
3430 break;
3431 case MSR_MTRRfix4K_D0000:
3432 env->mtrr_fixed[5] = msrs[i].data;
3433 break;
3434 case MSR_MTRRfix4K_D8000:
3435 env->mtrr_fixed[6] = msrs[i].data;
3436 break;
3437 case MSR_MTRRfix4K_E0000:
3438 env->mtrr_fixed[7] = msrs[i].data;
3439 break;
3440 case MSR_MTRRfix4K_E8000:
3441 env->mtrr_fixed[8] = msrs[i].data;
3442 break;
3443 case MSR_MTRRfix4K_F0000:
3444 env->mtrr_fixed[9] = msrs[i].data;
3445 break;
3446 case MSR_MTRRfix4K_F8000:
3447 env->mtrr_fixed[10] = msrs[i].data;
3448 break;
3449 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3450 if (index & 1) {
fcc35e7c
DDAG
3451 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3452 mtrr_top_bits;
d1ae67f6
AW
3453 } else {
3454 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3455 }
3456 break;
a33a2cfe
PB
3457 case MSR_IA32_SPEC_CTRL:
3458 env->spec_ctrl = msrs[i].data;
3459 break;
cfeea0c0
KRW
3460 case MSR_VIRT_SSBD:
3461 env->virt_ssbd = msrs[i].data;
3462 break;
b77146e9
CP
3463 case MSR_IA32_RTIT_CTL:
3464 env->msr_rtit_ctrl = msrs[i].data;
3465 break;
3466 case MSR_IA32_RTIT_STATUS:
3467 env->msr_rtit_status = msrs[i].data;
3468 break;
3469 case MSR_IA32_RTIT_OUTPUT_BASE:
3470 env->msr_rtit_output_base = msrs[i].data;
3471 break;
3472 case MSR_IA32_RTIT_OUTPUT_MASK:
3473 env->msr_rtit_output_mask = msrs[i].data;
3474 break;
3475 case MSR_IA32_RTIT_CR3_MATCH:
3476 env->msr_rtit_cr3_match = msrs[i].data;
3477 break;
3478 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3479 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3480 break;
05330448
AL
3481 }
3482 }
3483
3484 return 0;
3485}
3486
1bc22652 3487static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3488{
1bc22652 3489 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3490
1bc22652 3491 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3492}
3493
23d02d9b 3494static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3495{
259186a7 3496 CPUState *cs = CPU(cpu);
23d02d9b 3497 CPUX86State *env = &cpu->env;
9bdbe550
HB
3498 struct kvm_mp_state mp_state;
3499 int ret;
3500
259186a7 3501 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3502 if (ret < 0) {
3503 return ret;
3504 }
3505 env->mp_state = mp_state.mp_state;
c14750e8 3506 if (kvm_irqchip_in_kernel()) {
259186a7 3507 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3508 }
9bdbe550
HB
3509 return 0;
3510}
3511
1bc22652 3512static int kvm_get_apic(X86CPU *cpu)
680c1c6f 3513{
02e51483 3514 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
3515 struct kvm_lapic_state kapic;
3516 int ret;
3517
3d4b2649 3518 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 3519 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
3520 if (ret < 0) {
3521 return ret;
3522 }
3523
3524 kvm_get_apic_state(apic, &kapic);
3525 }
3526 return 0;
3527}
3528
1bc22652 3529static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 3530{
fc12d72e 3531 CPUState *cs = CPU(cpu);
1bc22652 3532 CPUX86State *env = &cpu->env;
076796f8 3533 struct kvm_vcpu_events events = {};
a0fb002c
JK
3534
3535 if (!kvm_has_vcpu_events()) {
3536 return 0;
3537 }
3538
fd13f23b
LA
3539 events.flags = 0;
3540
3541 if (has_exception_payload) {
3542 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3543 events.exception.pending = env->exception_pending;
3544 events.exception_has_payload = env->exception_has_payload;
3545 events.exception_payload = env->exception_payload;
3546 }
3547 events.exception.nr = env->exception_nr;
3548 events.exception.injected = env->exception_injected;
a0fb002c
JK
3549 events.exception.has_error_code = env->has_error_code;
3550 events.exception.error_code = env->error_code;
3551
3552 events.interrupt.injected = (env->interrupt_injected >= 0);
3553 events.interrupt.nr = env->interrupt_injected;
3554 events.interrupt.soft = env->soft_interrupt;
3555
3556 events.nmi.injected = env->nmi_injected;
3557 events.nmi.pending = env->nmi_pending;
3558 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3559
3560 events.sipi_vector = env->sipi_vector;
3561
fc12d72e
PB
3562 if (has_msr_smbase) {
3563 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3564 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3565 if (kvm_irqchip_in_kernel()) {
3566 /* As soon as these are moved to the kernel, remove them
3567 * from cs->interrupt_request.
3568 */
3569 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3570 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3571 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3572 } else {
3573 /* Keep these in cs->interrupt_request. */
3574 events.smi.pending = 0;
3575 events.smi.latched_init = 0;
3576 }
fc3a1fd7
DDAG
3577 /* Stop SMI delivery on old machine types to avoid a reboot
3578 * on an inward migration of an old VM.
3579 */
3580 if (!cpu->kvm_no_smi_migration) {
3581 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3582 }
fc12d72e
PB
3583 }
3584
ea643051 3585 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
3586 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3587 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3588 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3589 }
ea643051 3590 }
aee028b9 3591
1bc22652 3592 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
3593}
3594
1bc22652 3595static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 3596{
1bc22652 3597 CPUX86State *env = &cpu->env;
a0fb002c
JK
3598 struct kvm_vcpu_events events;
3599 int ret;
3600
3601 if (!kvm_has_vcpu_events()) {
3602 return 0;
3603 }
3604
fc12d72e 3605 memset(&events, 0, sizeof(events));
1bc22652 3606 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
3607 if (ret < 0) {
3608 return ret;
3609 }
fd13f23b
LA
3610
3611 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3612 env->exception_pending = events.exception.pending;
3613 env->exception_has_payload = events.exception_has_payload;
3614 env->exception_payload = events.exception_payload;
3615 } else {
3616 env->exception_pending = 0;
3617 env->exception_has_payload = false;
3618 }
3619 env->exception_injected = events.exception.injected;
3620 env->exception_nr =
3621 (env->exception_pending || env->exception_injected) ?
3622 events.exception.nr : -1;
a0fb002c
JK
3623 env->has_error_code = events.exception.has_error_code;
3624 env->error_code = events.exception.error_code;
3625
3626 env->interrupt_injected =
3627 events.interrupt.injected ? events.interrupt.nr : -1;
3628 env->soft_interrupt = events.interrupt.soft;
3629
3630 env->nmi_injected = events.nmi.injected;
3631 env->nmi_pending = events.nmi.pending;
3632 if (events.nmi.masked) {
3633 env->hflags2 |= HF2_NMI_MASK;
3634 } else {
3635 env->hflags2 &= ~HF2_NMI_MASK;
3636 }
3637
fc12d72e
PB
3638 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3639 if (events.smi.smm) {
3640 env->hflags |= HF_SMM_MASK;
3641 } else {
3642 env->hflags &= ~HF_SMM_MASK;
3643 }
3644 if (events.smi.pending) {
3645 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3646 } else {
3647 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3648 }
3649 if (events.smi.smm_inside_nmi) {
3650 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3651 } else {
3652 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3653 }
3654 if (events.smi.latched_init) {
3655 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3656 } else {
3657 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3658 }
3659 }
3660
a0fb002c 3661 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
3662
3663 return 0;
3664}
3665
1bc22652 3666static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 3667{
ed2803da 3668 CPUState *cs = CPU(cpu);
1bc22652 3669 CPUX86State *env = &cpu->env;
b0b1d690 3670 int ret = 0;
b0b1d690
JK
3671 unsigned long reinject_trap = 0;
3672
3673 if (!kvm_has_vcpu_events()) {
fd13f23b 3674 if (env->exception_nr == EXCP01_DB) {
b0b1d690 3675 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 3676 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
3677 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3678 }
fd13f23b 3679 kvm_reset_exception(env);
b0b1d690
JK
3680 }
3681
3682 /*
3683 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3684 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3685 * by updating the debug state once again if single-stepping is on.
3686 * Another reason to call kvm_update_guest_debug here is a pending debug
3687 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3688 * reinject them via SET_GUEST_DEBUG.
3689 */
3690 if (reinject_trap ||
ed2803da 3691 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 3692 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 3693 }
b0b1d690
JK
3694 return ret;
3695}
3696
1bc22652 3697static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 3698{
1bc22652 3699 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3700 struct kvm_debugregs dbgregs;
3701 int i;
3702
3703 if (!kvm_has_debugregs()) {
3704 return 0;
3705 }
3706
1f670a95 3707 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
3708 for (i = 0; i < 4; i++) {
3709 dbgregs.db[i] = env->dr[i];
3710 }
3711 dbgregs.dr6 = env->dr[6];
3712 dbgregs.dr7 = env->dr[7];
3713 dbgregs.flags = 0;
3714
1bc22652 3715 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
3716}
3717
1bc22652 3718static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 3719{
1bc22652 3720 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3721 struct kvm_debugregs dbgregs;
3722 int i, ret;
3723
3724 if (!kvm_has_debugregs()) {
3725 return 0;
3726 }
3727
1bc22652 3728 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 3729 if (ret < 0) {
b9bec74b 3730 return ret;
ff44f1a3
JK
3731 }
3732 for (i = 0; i < 4; i++) {
3733 env->dr[i] = dbgregs.db[i];
3734 }
3735 env->dr[4] = env->dr[6] = dbgregs.dr6;
3736 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
3737
3738 return 0;
3739}
3740
ebbfef2f
LA
3741static int kvm_put_nested_state(X86CPU *cpu)
3742{
3743 CPUX86State *env = &cpu->env;
3744 int max_nested_state_len = kvm_max_nested_state_length();
3745
1e44f3ab 3746 if (!env->nested_state) {
ebbfef2f
LA
3747 return 0;
3748 }
3749
3750 assert(env->nested_state->size <= max_nested_state_len);
3751 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3752}
3753
3754static int kvm_get_nested_state(X86CPU *cpu)
3755{
3756 CPUX86State *env = &cpu->env;
3757 int max_nested_state_len = kvm_max_nested_state_length();
3758 int ret;
3759
1e44f3ab 3760 if (!env->nested_state) {
ebbfef2f
LA
3761 return 0;
3762 }
3763
3764 /*
3765 * It is possible that migration restored a smaller size into
3766 * nested_state->hdr.size than what our kernel support.
3767 * We preserve migration origin nested_state->hdr.size for
3768 * call to KVM_SET_NESTED_STATE but wish that our next call
3769 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3770 */
3771 env->nested_state->size = max_nested_state_len;
3772
3773 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3774 if (ret < 0) {
3775 return ret;
3776 }
3777
3778 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3779 env->hflags |= HF_GUEST_MASK;
3780 } else {
3781 env->hflags &= ~HF_GUEST_MASK;
3782 }
3783
3784 return ret;
3785}
3786
20d695a9 3787int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 3788{
20d695a9 3789 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
3790 int ret;
3791
2fa45344 3792 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 3793
48e1a45c 3794 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
3795 ret = kvm_put_nested_state(x86_cpu);
3796 if (ret < 0) {
3797 return ret;
3798 }
3799
6bdf863d
JK
3800 ret = kvm_put_msr_feature_control(x86_cpu);
3801 if (ret < 0) {
3802 return ret;
3803 }
3804 }
3805
36f96c4b
HZ
3806 if (level == KVM_PUT_FULL_STATE) {
3807 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3808 * because TSC frequency mismatch shouldn't abort migration,
3809 * unless the user explicitly asked for a more strict TSC
3810 * setting (e.g. using an explicit "tsc-freq" option).
3811 */
3812 kvm_arch_set_tsc_khz(cpu);
3813 }
3814
1bc22652 3815 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 3816 if (ret < 0) {
05330448 3817 return ret;
b9bec74b 3818 }
1bc22652 3819 ret = kvm_put_xsave(x86_cpu);
b9bec74b 3820 if (ret < 0) {
f1665b21 3821 return ret;
b9bec74b 3822 }
1bc22652 3823 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 3824 if (ret < 0) {
05330448 3825 return ret;
b9bec74b 3826 }
1bc22652 3827 ret = kvm_put_sregs(x86_cpu);
b9bec74b 3828 if (ret < 0) {
05330448 3829 return ret;
b9bec74b 3830 }
ab443475 3831 /* must be before kvm_put_msrs */
1bc22652 3832 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
3833 if (ret < 0) {
3834 return ret;
3835 }
1bc22652 3836 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 3837 if (ret < 0) {
05330448 3838 return ret;
b9bec74b 3839 }
4fadfa00
PH
3840 ret = kvm_put_vcpu_events(x86_cpu, level);
3841 if (ret < 0) {
3842 return ret;
3843 }
ea643051 3844 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 3845 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 3846 if (ret < 0) {
680c1c6f
JK
3847 return ret;
3848 }
ea643051 3849 }
7477cd38
MT
3850
3851 ret = kvm_put_tscdeadline_msr(x86_cpu);
3852 if (ret < 0) {
3853 return ret;
3854 }
1bc22652 3855 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 3856 if (ret < 0) {
b0b1d690 3857 return ret;
b9bec74b 3858 }
b0b1d690 3859 /* must be last */
1bc22652 3860 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 3861 if (ret < 0) {
ff44f1a3 3862 return ret;
b9bec74b 3863 }
05330448
AL
3864 return 0;
3865}
3866
20d695a9 3867int kvm_arch_get_registers(CPUState *cs)
05330448 3868{
20d695a9 3869 X86CPU *cpu = X86_CPU(cs);
05330448
AL
3870 int ret;
3871
20d695a9 3872 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 3873
4fadfa00 3874 ret = kvm_get_vcpu_events(cpu);
b9bec74b 3875 if (ret < 0) {
f4f1110e 3876 goto out;
b9bec74b 3877 }
4fadfa00
PH
3878 /*
3879 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3880 * KVM_GET_REGS and KVM_GET_SREGS.
3881 */
3882 ret = kvm_get_mp_state(cpu);
b9bec74b 3883 if (ret < 0) {
f4f1110e 3884 goto out;
b9bec74b 3885 }
4fadfa00 3886 ret = kvm_getput_regs(cpu, 0);
b9bec74b 3887 if (ret < 0) {
f4f1110e 3888 goto out;
b9bec74b 3889 }
4fadfa00 3890 ret = kvm_get_xsave(cpu);
b9bec74b 3891 if (ret < 0) {
f4f1110e 3892 goto out;
b9bec74b 3893 }
4fadfa00 3894 ret = kvm_get_xcrs(cpu);
b9bec74b 3895 if (ret < 0) {
f4f1110e 3896 goto out;
b9bec74b 3897 }
4fadfa00 3898 ret = kvm_get_sregs(cpu);
b9bec74b 3899 if (ret < 0) {
f4f1110e 3900 goto out;
b9bec74b 3901 }
4fadfa00 3902 ret = kvm_get_msrs(cpu);
680c1c6f 3903 if (ret < 0) {
f4f1110e 3904 goto out;
680c1c6f 3905 }
4fadfa00 3906 ret = kvm_get_apic(cpu);
b9bec74b 3907 if (ret < 0) {
f4f1110e 3908 goto out;
b9bec74b 3909 }
1bc22652 3910 ret = kvm_get_debugregs(cpu);
b9bec74b 3911 if (ret < 0) {
f4f1110e 3912 goto out;
b9bec74b 3913 }
ebbfef2f
LA
3914 ret = kvm_get_nested_state(cpu);
3915 if (ret < 0) {
3916 goto out;
3917 }
f4f1110e
RH
3918 ret = 0;
3919 out:
3920 cpu_sync_bndcs_hflags(&cpu->env);
3921 return ret;
05330448
AL
3922}
3923
20d695a9 3924void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 3925{
20d695a9
AF
3926 X86CPU *x86_cpu = X86_CPU(cpu);
3927 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
3928 int ret;
3929
276ce815 3930 /* Inject NMI */
fc12d72e
PB
3931 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3932 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3933 qemu_mutex_lock_iothread();
3934 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3935 qemu_mutex_unlock_iothread();
3936 DPRINTF("injected NMI\n");
3937 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3938 if (ret < 0) {
3939 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3940 strerror(-ret));
3941 }
3942 }
3943 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3944 qemu_mutex_lock_iothread();
3945 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3946 qemu_mutex_unlock_iothread();
3947 DPRINTF("injected SMI\n");
3948 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3949 if (ret < 0) {
3950 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3951 strerror(-ret));
3952 }
ce377af3 3953 }
276ce815
LJ
3954 }
3955
15eafc2e 3956 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
3957 qemu_mutex_lock_iothread();
3958 }
3959
e0723c45
PB
3960 /* Force the VCPU out of its inner loop to process any INIT requests
3961 * or (for userspace APIC, but it is cheap to combine the checks here)
3962 * pending TPR access reports.
3963 */
3964 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
3965 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3966 !(env->hflags & HF_SMM_MASK)) {
3967 cpu->exit_request = 1;
3968 }
3969 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3970 cpu->exit_request = 1;
3971 }
e0723c45 3972 }
05330448 3973
15eafc2e 3974 if (!kvm_pic_in_kernel()) {
db1669bc
JK
3975 /* Try to inject an interrupt if the guest can accept it */
3976 if (run->ready_for_interrupt_injection &&
259186a7 3977 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
3978 (env->eflags & IF_MASK)) {
3979 int irq;
3980
259186a7 3981 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
3982 irq = cpu_get_pic_interrupt(env);
3983 if (irq >= 0) {
3984 struct kvm_interrupt intr;
3985
3986 intr.irq = irq;
db1669bc 3987 DPRINTF("injected interrupt %d\n", irq);
1bc22652 3988 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
3989 if (ret < 0) {
3990 fprintf(stderr,
3991 "KVM: injection failed, interrupt lost (%s)\n",
3992 strerror(-ret));
3993 }
db1669bc
JK
3994 }
3995 }
05330448 3996
db1669bc
JK
3997 /* If we have an interrupt but the guest is not ready to receive an
3998 * interrupt, request an interrupt window exit. This will
3999 * cause a return to userspace as soon as the guest is ready to
4000 * receive interrupts. */
259186a7 4001 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4002 run->request_interrupt_window = 1;
4003 } else {
4004 run->request_interrupt_window = 0;
4005 }
4006
4007 DPRINTF("setting tpr\n");
02e51483 4008 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4009
4010 qemu_mutex_unlock_iothread();
db1669bc 4011 }
05330448
AL
4012}
4013
4c663752 4014MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4015{
20d695a9
AF
4016 X86CPU *x86_cpu = X86_CPU(cpu);
4017 CPUX86State *env = &x86_cpu->env;
4018
fc12d72e
PB
4019 if (run->flags & KVM_RUN_X86_SMM) {
4020 env->hflags |= HF_SMM_MASK;
4021 } else {
f5c052b9 4022 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4023 }
b9bec74b 4024 if (run->if_flag) {
05330448 4025 env->eflags |= IF_MASK;
b9bec74b 4026 } else {
05330448 4027 env->eflags &= ~IF_MASK;
b9bec74b 4028 }
4b8523ee
JK
4029
4030 /* We need to protect the apic state against concurrent accesses from
4031 * different threads in case the userspace irqchip is used. */
4032 if (!kvm_irqchip_in_kernel()) {
4033 qemu_mutex_lock_iothread();
4034 }
02e51483
CF
4035 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4036 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4037 if (!kvm_irqchip_in_kernel()) {
4038 qemu_mutex_unlock_iothread();
4039 }
f794aa4a 4040 return cpu_get_mem_attrs(env);
05330448
AL
4041}
4042
20d695a9 4043int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4044{
20d695a9
AF
4045 X86CPU *cpu = X86_CPU(cs);
4046 CPUX86State *env = &cpu->env;
232fc23b 4047
259186a7 4048 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4049 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4050 assert(env->mcg_cap);
4051
259186a7 4052 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4053
dd1750d7 4054 kvm_cpu_synchronize_state(cs);
ab443475 4055
fd13f23b 4056 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4057 /* this means triple fault */
cf83f140 4058 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4059 cs->exit_request = 1;
ab443475
JK
4060 return 0;
4061 }
fd13f23b 4062 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4063 env->has_error_code = 0;
4064
259186a7 4065 cs->halted = 0;
ab443475
JK
4066 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4067 env->mp_state = KVM_MP_STATE_RUNNABLE;
4068 }
4069 }
4070
fc12d72e
PB
4071 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4072 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4073 kvm_cpu_synchronize_state(cs);
4074 do_cpu_init(cpu);
4075 }
4076
db1669bc
JK
4077 if (kvm_irqchip_in_kernel()) {
4078 return 0;
4079 }
4080
259186a7
AF
4081 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4082 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4083 apic_poll_irq(cpu->apic_state);
5d62c43a 4084 }
259186a7 4085 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4086 (env->eflags & IF_MASK)) ||
259186a7
AF
4087 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4088 cs->halted = 0;
6792a57b 4089 }
259186a7 4090 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4091 kvm_cpu_synchronize_state(cs);
232fc23b 4092 do_cpu_sipi(cpu);
0af691d7 4093 }
259186a7
AF
4094 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4095 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4096 kvm_cpu_synchronize_state(cs);
02e51483 4097 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4098 env->tpr_access_type);
4099 }
0af691d7 4100
259186a7 4101 return cs->halted;
0af691d7
MT
4102}
4103
839b5630 4104static int kvm_handle_halt(X86CPU *cpu)
05330448 4105{
259186a7 4106 CPUState *cs = CPU(cpu);
839b5630
AF
4107 CPUX86State *env = &cpu->env;
4108
259186a7 4109 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4110 (env->eflags & IF_MASK)) &&
259186a7
AF
4111 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4112 cs->halted = 1;
bb4ea393 4113 return EXCP_HLT;
05330448
AL
4114 }
4115
bb4ea393 4116 return 0;
05330448
AL
4117}
4118
f7575c96 4119static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4120{
f7575c96
AF
4121 CPUState *cs = CPU(cpu);
4122 struct kvm_run *run = cs->kvm_run;
d362e757 4123
02e51483 4124 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4125 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4126 : TPR_ACCESS_READ);
4127 return 1;
4128}
4129
f17ec444 4130int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4131{
38972938 4132 static const uint8_t int3 = 0xcc;
64bf3f4e 4133
f17ec444
AF
4134 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4135 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4136 return -EINVAL;
b9bec74b 4137 }
e22a25c9
AL
4138 return 0;
4139}
4140
f17ec444 4141int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4142{
4143 uint8_t int3;
4144
f17ec444
AF
4145 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4146 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4147 return -EINVAL;
b9bec74b 4148 }
e22a25c9
AL
4149 return 0;
4150}
4151
4152static struct {
4153 target_ulong addr;
4154 int len;
4155 int type;
4156} hw_breakpoint[4];
4157
4158static int nb_hw_breakpoint;
4159
4160static int find_hw_breakpoint(target_ulong addr, int len, int type)
4161{
4162 int n;
4163
b9bec74b 4164 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4165 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4166 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4167 return n;
b9bec74b
JK
4168 }
4169 }
e22a25c9
AL
4170 return -1;
4171}
4172
4173int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4174 target_ulong len, int type)
4175{
4176 switch (type) {
4177 case GDB_BREAKPOINT_HW:
4178 len = 1;
4179 break;
4180 case GDB_WATCHPOINT_WRITE:
4181 case GDB_WATCHPOINT_ACCESS:
4182 switch (len) {
4183 case 1:
4184 break;
4185 case 2:
4186 case 4:
4187 case 8:
b9bec74b 4188 if (addr & (len - 1)) {
e22a25c9 4189 return -EINVAL;
b9bec74b 4190 }
e22a25c9
AL
4191 break;
4192 default:
4193 return -EINVAL;
4194 }
4195 break;
4196 default:
4197 return -ENOSYS;
4198 }
4199
b9bec74b 4200 if (nb_hw_breakpoint == 4) {
e22a25c9 4201 return -ENOBUFS;
b9bec74b
JK
4202 }
4203 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4204 return -EEXIST;
b9bec74b 4205 }
e22a25c9
AL
4206 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4207 hw_breakpoint[nb_hw_breakpoint].len = len;
4208 hw_breakpoint[nb_hw_breakpoint].type = type;
4209 nb_hw_breakpoint++;
4210
4211 return 0;
4212}
4213
4214int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4215 target_ulong len, int type)
4216{
4217 int n;
4218
4219 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4220 if (n < 0) {
e22a25c9 4221 return -ENOENT;
b9bec74b 4222 }
e22a25c9
AL
4223 nb_hw_breakpoint--;
4224 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4225
4226 return 0;
4227}
4228
4229void kvm_arch_remove_all_hw_breakpoints(void)
4230{
4231 nb_hw_breakpoint = 0;
4232}
4233
4234static CPUWatchpoint hw_watchpoint;
4235
a60f24b5 4236static int kvm_handle_debug(X86CPU *cpu,
48405526 4237 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4238{
ed2803da 4239 CPUState *cs = CPU(cpu);
a60f24b5 4240 CPUX86State *env = &cpu->env;
f2574737 4241 int ret = 0;
e22a25c9
AL
4242 int n;
4243
37936ac7
LA
4244 if (arch_info->exception == EXCP01_DB) {
4245 if (arch_info->dr6 & DR6_BS) {
ed2803da 4246 if (cs->singlestep_enabled) {
f2574737 4247 ret = EXCP_DEBUG;
b9bec74b 4248 }
e22a25c9 4249 } else {
b9bec74b
JK
4250 for (n = 0; n < 4; n++) {
4251 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4252 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4253 case 0x0:
f2574737 4254 ret = EXCP_DEBUG;
e22a25c9
AL
4255 break;
4256 case 0x1:
f2574737 4257 ret = EXCP_DEBUG;
ff4700b0 4258 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4259 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4260 hw_watchpoint.flags = BP_MEM_WRITE;
4261 break;
4262 case 0x3:
f2574737 4263 ret = EXCP_DEBUG;
ff4700b0 4264 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4265 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4266 hw_watchpoint.flags = BP_MEM_ACCESS;
4267 break;
4268 }
b9bec74b
JK
4269 }
4270 }
e22a25c9 4271 }
ff4700b0 4272 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4273 ret = EXCP_DEBUG;
b9bec74b 4274 }
f2574737 4275 if (ret == 0) {
ff4700b0 4276 cpu_synchronize_state(cs);
fd13f23b 4277 assert(env->exception_nr == -1);
b0b1d690 4278
f2574737 4279 /* pass to guest */
fd13f23b
LA
4280 kvm_queue_exception(env, arch_info->exception,
4281 arch_info->exception == EXCP01_DB,
4282 arch_info->dr6);
48405526 4283 env->has_error_code = 0;
b0b1d690 4284 }
e22a25c9 4285
f2574737 4286 return ret;
e22a25c9
AL
4287}
4288
20d695a9 4289void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4290{
4291 const uint8_t type_code[] = {
4292 [GDB_BREAKPOINT_HW] = 0x0,
4293 [GDB_WATCHPOINT_WRITE] = 0x1,
4294 [GDB_WATCHPOINT_ACCESS] = 0x3
4295 };
4296 const uint8_t len_code[] = {
4297 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4298 };
4299 int n;
4300
a60f24b5 4301 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4302 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4303 }
e22a25c9
AL
4304 if (nb_hw_breakpoint > 0) {
4305 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4306 dbg->arch.debugreg[7] = 0x0600;
4307 for (n = 0; n < nb_hw_breakpoint; n++) {
4308 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4309 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4310 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4311 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4312 }
4313 }
4314}
4513d923 4315
2a4dac83
JK
4316static bool host_supports_vmx(void)
4317{
4318 uint32_t ecx, unused;
4319
4320 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4321 return ecx & CPUID_EXT_VMX;
4322}
4323
4324#define VMX_INVALID_GUEST_STATE 0x80000021
4325
20d695a9 4326int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4327{
20d695a9 4328 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4329 uint64_t code;
4330 int ret;
4331
4332 switch (run->exit_reason) {
4333 case KVM_EXIT_HLT:
4334 DPRINTF("handle_hlt\n");
4b8523ee 4335 qemu_mutex_lock_iothread();
839b5630 4336 ret = kvm_handle_halt(cpu);
4b8523ee 4337 qemu_mutex_unlock_iothread();
2a4dac83
JK
4338 break;
4339 case KVM_EXIT_SET_TPR:
4340 ret = 0;
4341 break;
d362e757 4342 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4343 qemu_mutex_lock_iothread();
f7575c96 4344 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4345 qemu_mutex_unlock_iothread();
d362e757 4346 break;
2a4dac83
JK
4347 case KVM_EXIT_FAIL_ENTRY:
4348 code = run->fail_entry.hardware_entry_failure_reason;
4349 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4350 code);
4351 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4352 fprintf(stderr,
12619721 4353 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4354 "unrestricted mode\n"
4355 "support, the failure can be most likely due to the guest "
4356 "entering an invalid\n"
4357 "state for Intel VT. For example, the guest maybe running "
4358 "in big real mode\n"
4359 "which is not supported on less recent Intel processors."
4360 "\n\n");
4361 }
4362 ret = -1;
4363 break;
4364 case KVM_EXIT_EXCEPTION:
4365 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4366 run->ex.exception, run->ex.error_code);
4367 ret = -1;
4368 break;
f2574737
JK
4369 case KVM_EXIT_DEBUG:
4370 DPRINTF("kvm_exit_debug\n");
4b8523ee 4371 qemu_mutex_lock_iothread();
a60f24b5 4372 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4373 qemu_mutex_unlock_iothread();
f2574737 4374 break;
50efe82c
AS
4375 case KVM_EXIT_HYPERV:
4376 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4377 break;
15eafc2e
PB
4378 case KVM_EXIT_IOAPIC_EOI:
4379 ioapic_eoi_broadcast(run->eoi.vector);
4380 ret = 0;
4381 break;
2a4dac83
JK
4382 default:
4383 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4384 ret = -1;
4385 break;
4386 }
4387
4388 return ret;
4389}
4390
20d695a9 4391bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4392{
20d695a9
AF
4393 X86CPU *cpu = X86_CPU(cs);
4394 CPUX86State *env = &cpu->env;
4395
dd1750d7 4396 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4397 return !(env->cr[0] & CR0_PE_MASK) ||
4398 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4399}
84b058d7
JK
4400
4401void kvm_arch_init_irq_routing(KVMState *s)
4402{
4403 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4404 /* If kernel can't do irq routing, interrupt source
4405 * override 0->2 cannot be set up as required by HPET.
4406 * So we have to disable it.
4407 */
4408 no_hpet = 1;
4409 }
cc7e0ddf 4410 /* We know at this point that we're using the in-kernel
614e41bc 4411 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4412 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4413 */
614e41bc 4414 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4415 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4416
4417 if (kvm_irqchip_is_split()) {
4418 int i;
4419
4420 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4421 MSI routes for signaling interrupts to the local apics. */
4422 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 4423 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
4424 error_report("Could not enable split IRQ mode.");
4425 exit(1);
4426 }
4427 }
4428 }
4429}
4430
4431int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4432{
4433 int ret;
4434 if (machine_kernel_irqchip_split(ms)) {
4435 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4436 if (ret) {
df3c286c 4437 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
4438 strerror(-ret));
4439 exit(1);
4440 } else {
4441 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4442 kvm_split_irqchip = true;
4443 return 1;
4444 }
4445 } else {
4446 return 0;
4447 }
84b058d7 4448}
b139bd30
JK
4449
4450/* Classic KVM device assignment interface. Will remain x86 only. */
4451int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4452 uint32_t flags, uint32_t *dev_id)
4453{
4454 struct kvm_assigned_pci_dev dev_data = {
4455 .segnr = dev_addr->domain,
4456 .busnr = dev_addr->bus,
4457 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4458 .flags = flags,
4459 };
4460 int ret;
4461
4462 dev_data.assigned_dev_id =
4463 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4464
4465 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4466 if (ret < 0) {
4467 return ret;
4468 }
4469
4470 *dev_id = dev_data.assigned_dev_id;
4471
4472 return 0;
4473}
4474
4475int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4476{
4477 struct kvm_assigned_pci_dev dev_data = {
4478 .assigned_dev_id = dev_id,
4479 };
4480
4481 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4482}
4483
4484static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4485 uint32_t irq_type, uint32_t guest_irq)
4486{
4487 struct kvm_assigned_irq assigned_irq = {
4488 .assigned_dev_id = dev_id,
4489 .guest_irq = guest_irq,
4490 .flags = irq_type,
4491 };
4492
4493 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4494 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4495 } else {
4496 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4497 }
4498}
4499
4500int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4501 uint32_t guest_irq)
4502{
4503 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4504 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4505
4506 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4507}
4508
4509int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4510{
4511 struct kvm_assigned_pci_dev dev_data = {
4512 .assigned_dev_id = dev_id,
4513 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4514 };
4515
4516 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4517}
4518
4519static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4520 uint32_t type)
4521{
4522 struct kvm_assigned_irq assigned_irq = {
4523 .assigned_dev_id = dev_id,
4524 .flags = type,
4525 };
4526
4527 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4528}
4529
4530int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4531{
4532 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4533 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4534}
4535
4536int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4537{
4538 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4539 KVM_DEV_IRQ_GUEST_MSI, virq);
4540}
4541
4542int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4543{
4544 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4545 KVM_DEV_IRQ_HOST_MSI);
4546}
4547
4548bool kvm_device_msix_supported(KVMState *s)
4549{
4550 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4551 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4552 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4553}
4554
4555int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4556 uint32_t nr_vectors)
4557{
4558 struct kvm_assigned_msix_nr msix_nr = {
4559 .assigned_dev_id = dev_id,
4560 .entry_nr = nr_vectors,
4561 };
4562
4563 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4564}
4565
4566int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4567 int virq)
4568{
4569 struct kvm_assigned_msix_entry msix_entry = {
4570 .assigned_dev_id = dev_id,
4571 .gsi = virq,
4572 .entry = vector,
4573 };
4574
4575 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4576}
4577
4578int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4579{
4580 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4581 KVM_DEV_IRQ_GUEST_MSIX, 0);
4582}
4583
4584int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4585{
4586 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4587 KVM_DEV_IRQ_HOST_MSIX);
4588}
9e03a040
FB
4589
4590int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 4591 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 4592{
8b5ed7df
PX
4593 X86IOMMUState *iommu = x86_iommu_get_default();
4594
4595 if (iommu) {
4596 int ret;
4597 MSIMessage src, dst;
4598 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4599
0ea1472d
JK
4600 if (!class->int_remap) {
4601 return 0;
4602 }
4603
8b5ed7df
PX
4604 src.address = route->u.msi.address_hi;
4605 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4606 src.address |= route->u.msi.address_lo;
4607 src.data = route->u.msi.data;
4608
4609 ret = class->int_remap(iommu, &src, &dst, dev ? \
4610 pci_requester_id(dev) : \
4611 X86_IOMMU_SID_INVALID);
4612 if (ret) {
4613 trace_kvm_x86_fixup_msi_error(route->gsi);
4614 return 1;
4615 }
4616
4617 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4618 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4619 route->u.msi.data = dst.data;
4620 }
4621
9e03a040
FB
4622 return 0;
4623}
1850b6b7 4624
38d87493
PX
4625typedef struct MSIRouteEntry MSIRouteEntry;
4626
4627struct MSIRouteEntry {
4628 PCIDevice *dev; /* Device pointer */
4629 int vector; /* MSI/MSIX vector index */
4630 int virq; /* Virtual IRQ index */
4631 QLIST_ENTRY(MSIRouteEntry) list;
4632};
4633
4634/* List of used GSI routes */
4635static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4636 QLIST_HEAD_INITIALIZER(msi_route_list);
4637
e1d4fb2d
PX
4638static void kvm_update_msi_routes_all(void *private, bool global,
4639 uint32_t index, uint32_t mask)
4640{
a56de056 4641 int cnt = 0, vector;
e1d4fb2d
PX
4642 MSIRouteEntry *entry;
4643 MSIMessage msg;
fd563564
PX
4644 PCIDevice *dev;
4645
e1d4fb2d
PX
4646 /* TODO: explicit route update */
4647 QLIST_FOREACH(entry, &msi_route_list, list) {
4648 cnt++;
a56de056 4649 vector = entry->vector;
fd563564 4650 dev = entry->dev;
a56de056
PX
4651 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4652 msg = msix_get_message(dev, vector);
4653 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4654 msg = msi_get_message(dev, vector);
4655 } else {
4656 /*
4657 * Either MSI/MSIX is disabled for the device, or the
4658 * specific message was masked out. Skip this one.
4659 */
fd563564
PX
4660 continue;
4661 }
fd563564 4662 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 4663 }
3f1fea0f 4664 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
4665 trace_kvm_x86_update_msi_routes(cnt);
4666}
4667
38d87493
PX
4668int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4669 int vector, PCIDevice *dev)
4670{
e1d4fb2d 4671 static bool notify_list_inited = false;
38d87493
PX
4672 MSIRouteEntry *entry;
4673
4674 if (!dev) {
4675 /* These are (possibly) IOAPIC routes only used for split
4676 * kernel irqchip mode, while what we are housekeeping are
4677 * PCI devices only. */
4678 return 0;
4679 }
4680
4681 entry = g_new0(MSIRouteEntry, 1);
4682 entry->dev = dev;
4683 entry->vector = vector;
4684 entry->virq = route->gsi;
4685 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4686
4687 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
4688
4689 if (!notify_list_inited) {
4690 /* For the first time we do add route, add ourselves into
4691 * IOMMU's IEC notify list if needed. */
4692 X86IOMMUState *iommu = x86_iommu_get_default();
4693 if (iommu) {
4694 x86_iommu_iec_register_notifier(iommu,
4695 kvm_update_msi_routes_all,
4696 NULL);
4697 }
4698 notify_list_inited = true;
4699 }
38d87493
PX
4700 return 0;
4701}
4702
4703int kvm_arch_release_virq_post(int virq)
4704{
4705 MSIRouteEntry *entry, *next;
4706 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4707 if (entry->virq == virq) {
4708 trace_kvm_x86_remove_msi_route(virq);
4709 QLIST_REMOVE(entry, list);
01960e6d 4710 g_free(entry);
38d87493
PX
4711 break;
4712 }
4713 }
9e03a040
FB
4714 return 0;
4715}
1850b6b7
EA
4716
4717int kvm_arch_msi_data_to_gsi(uint32_t data)
4718{
4719 abort();
4720}