]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Collect processors' CPUID & Platform ID info
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
9fc1b85f 4 Copyright (c) 2016 - 2019, Intel Corporation. All rights reserved.<BR>\r
0acd8697 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
3e8ad6bd
JF
6\r
7**/\r
8\r
9#include "MpLib.h"\r
10\r
93ca4c0f
JF
11EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
12\r
7c3f2a12
JF
13/**\r
14 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
15\r
16 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
17 get the status and sync up the settings.\r
18 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
19 not working actually.\r
7c3f2a12
JF
20\r
21 @retval TRUE BSP Execute Disable is enabled.\r
22 @retval FALSE BSP Execute Disable is not enabled.\r
23**/\r
24BOOLEAN\r
25IsBspExecuteDisableEnabled (\r
26 VOID\r
27 )\r
28{\r
29 UINT32 Eax;\r
30 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
31 MSR_IA32_EFER_REGISTER EferMsr;\r
32 BOOLEAN Enabled;\r
844b2d07 33 IA32_CR0 Cr0;\r
7c3f2a12
JF
34\r
35 Enabled = FALSE;\r
844b2d07
JF
36 Cr0.UintN = AsmReadCr0 ();\r
37 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 38 //\r
844b2d07 39 // If CR0 Paging bit is set\r
7c3f2a12 40 //\r
844b2d07
JF
41 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
42 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
43 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 44 //\r
844b2d07
JF
45 // CPUID 0x80000001\r
46 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 47 //\r
844b2d07
JF
48 if (Edx.Bits.NX != 0) {\r
49 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
50 //\r
51 // MSR 0xC0000080\r
52 // Bit 11: Execute Disable Bit enable.\r
53 //\r
54 if (EferMsr.Bits.NXE != 0) {\r
55 Enabled = TRUE;\r
56 }\r
7c3f2a12
JF
57 }\r
58 }\r
59 }\r
60\r
61 return Enabled;\r
62}\r
63\r
41be0da5
JF
64/**\r
65 Worker function for SwitchBSP().\r
66\r
67 Worker function for SwitchBSP(), assigned to the AP which is intended\r
68 to become BSP.\r
69\r
70 @param[in] Buffer Pointer to CPU MP Data\r
71**/\r
72VOID\r
73EFIAPI\r
74FutureBSPProc (\r
75 IN VOID *Buffer\r
76 )\r
77{\r
78 CPU_MP_DATA *DataInHob;\r
79\r
80 DataInHob = (CPU_MP_DATA *) Buffer;\r
81 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
82}\r
83\r
03a1a925
JF
84/**\r
85 Get the Application Processors state.\r
86\r
87 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
88\r
89 @return The AP status\r
90**/\r
91CPU_STATE\r
92GetApState (\r
93 IN CPU_AP_DATA *CpuData\r
94 )\r
95{\r
96 return CpuData->State;\r
97}\r
98\r
99/**\r
100 Set the Application Processors state.\r
101\r
102 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
103 @param[in] State The AP status\r
104**/\r
105VOID\r
106SetApState (\r
107 IN CPU_AP_DATA *CpuData,\r
108 IN CPU_STATE State\r
109 )\r
110{\r
111 AcquireSpinLock (&CpuData->ApLock);\r
112 CpuData->State = State;\r
113 ReleaseSpinLock (&CpuData->ApLock);\r
114}\r
3e8ad6bd 115\r
ffab2442 116/**\r
f70174d6 117 Save BSP's local APIC timer setting.\r
ffab2442
JF
118\r
119 @param[in] CpuMpData Pointer to CPU MP Data\r
120**/\r
121VOID\r
122SaveLocalApicTimerSetting (\r
123 IN CPU_MP_DATA *CpuMpData\r
124 )\r
125{\r
126 //\r
127 // Record the current local APIC timer setting of BSP\r
128 //\r
129 GetApicTimerState (\r
130 &CpuMpData->DivideValue,\r
131 &CpuMpData->PeriodicMode,\r
132 &CpuMpData->Vector\r
133 );\r
134 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
135 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
136}\r
137\r
138/**\r
139 Sync local APIC timer setting from BSP to AP.\r
140\r
141 @param[in] CpuMpData Pointer to CPU MP Data\r
142**/\r
143VOID\r
144SyncLocalApicTimerSetting (\r
145 IN CPU_MP_DATA *CpuMpData\r
146 )\r
147{\r
148 //\r
149 // Sync local APIC timer setting from BSP to AP\r
150 //\r
151 InitializeApicTimer (\r
152 CpuMpData->DivideValue,\r
153 CpuMpData->CurrentTimerCount,\r
154 CpuMpData->PeriodicMode,\r
155 CpuMpData->Vector\r
156 );\r
157 //\r
158 // Disable AP's local APIC timer interrupt\r
159 //\r
160 DisableApicTimerInterrupt ();\r
161}\r
162\r
68cb9330
JF
163/**\r
164 Save the volatile registers required to be restored following INIT IPI.\r
165\r
166 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
167**/\r
168VOID\r
169SaveVolatileRegisters (\r
170 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
171 )\r
172{\r
173 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
174\r
175 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
176 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
177 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
178\r
179 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
180 if (VersionInfoEdx.Bits.DE != 0) {\r
181 //\r
182 // If processor supports Debugging Extensions feature\r
183 // by CPUID.[EAX=01H]:EDX.BIT2\r
184 //\r
185 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
186 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
187 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
188 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
189 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
190 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
191 }\r
e9415e48
JW
192\r
193 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
194 AsmReadIdtr (&VolatileRegisters->Idtr);\r
195 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
196}\r
197\r
198/**\r
199 Restore the volatile registers following INIT IPI.\r
200\r
201 @param[in] VolatileRegisters Pointer to volatile resisters\r
202 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
203 FALSE: Do not restore DRx\r
204**/\r
205VOID\r
206RestoreVolatileRegisters (\r
207 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
208 IN BOOLEAN IsRestoreDr\r
209 )\r
210{\r
211 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 212 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330 213\r
68cb9330
JF
214 AsmWriteCr3 (VolatileRegisters->Cr3);\r
215 AsmWriteCr4 (VolatileRegisters->Cr4);\r
e09b6b59 216 AsmWriteCr0 (VolatileRegisters->Cr0);\r
68cb9330
JF
217\r
218 if (IsRestoreDr) {\r
219 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
220 if (VersionInfoEdx.Bits.DE != 0) {\r
221 //\r
222 // If processor supports Debugging Extensions feature\r
223 // by CPUID.[EAX=01H]:EDX.BIT2\r
224 //\r
225 AsmWriteDr0 (VolatileRegisters->Dr0);\r
226 AsmWriteDr1 (VolatileRegisters->Dr1);\r
227 AsmWriteDr2 (VolatileRegisters->Dr2);\r
228 AsmWriteDr3 (VolatileRegisters->Dr3);\r
229 AsmWriteDr6 (VolatileRegisters->Dr6);\r
230 AsmWriteDr7 (VolatileRegisters->Dr7);\r
231 }\r
232 }\r
e9415e48
JW
233\r
234 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
235 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
236 if (VolatileRegisters->Tr != 0 &&\r
237 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
238 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
239 VolatileRegisters->Tr);\r
d69ba6a7 240 if (Tss->Bits.P == 1) {\r
e9415e48
JW
241 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
242 AsmWriteTr (VolatileRegisters->Tr);\r
243 }\r
244 }\r
68cb9330
JF
245}\r
246\r
9ebcf0f4
JF
247/**\r
248 Detect whether Mwait-monitor feature is supported.\r
249\r
250 @retval TRUE Mwait-monitor feature is supported.\r
251 @retval FALSE Mwait-monitor feature is not supported.\r
252**/\r
253BOOLEAN\r
254IsMwaitSupport (\r
255 VOID\r
256 )\r
257{\r
258 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
259\r
260 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
261 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
262}\r
263\r
264/**\r
265 Get AP loop mode.\r
266\r
267 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
268\r
269 @return The AP loop mode.\r
270**/\r
271UINT8\r
272GetApLoopMode (\r
273 OUT UINT32 *MonitorFilterSize\r
274 )\r
275{\r
276 UINT8 ApLoopMode;\r
277 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
278\r
279 ASSERT (MonitorFilterSize != NULL);\r
280\r
281 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
282 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
283 if (ApLoopMode == ApInMwaitLoop) {\r
284 if (!IsMwaitSupport ()) {\r
285 //\r
286 // If processor does not support MONITOR/MWAIT feature,\r
287 // force AP in Hlt-loop mode\r
288 //\r
289 ApLoopMode = ApInHltLoop;\r
290 }\r
291 }\r
292\r
293 if (ApLoopMode != ApInMwaitLoop) {\r
294 *MonitorFilterSize = sizeof (UINT32);\r
295 } else {\r
296 //\r
297 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
298 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
299 //\r
300 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
301 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
302 }\r
303\r
304 return ApLoopMode;\r
305}\r
b8b04307 306\r
8a2d564b
JF
307/**\r
308 Sort the APIC ID of all processors.\r
309\r
310 This function sorts the APIC ID of all processors so that processor number is\r
311 assigned in the ascending order of APIC ID which eases MP debugging.\r
312\r
313 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
314**/\r
315VOID\r
316SortApicId (\r
317 IN CPU_MP_DATA *CpuMpData\r
318 )\r
319{\r
320 UINTN Index1;\r
321 UINTN Index2;\r
322 UINTN Index3;\r
323 UINT32 ApicId;\r
31a1e4da 324 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
325 UINT32 ApCount;\r
326 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 327 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
328\r
329 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 330 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
331 if (ApCount != 0) {\r
332 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
333 Index3 = Index1;\r
334 //\r
335 // Sort key is the hardware default APIC ID\r
336 //\r
31a1e4da 337 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 338 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 339 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 340 Index3 = Index2;\r
31a1e4da 341 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
342 }\r
343 }\r
344 if (Index3 != Index1) {\r
31a1e4da 345 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 346 CopyMem (\r
31a1e4da
JF
347 &CpuInfoInHob[Index3],\r
348 &CpuInfoInHob[Index1],\r
349 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 350 );\r
31a1e4da 351 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
352\r
353 //\r
354 // Also exchange the StartupApSignal.\r
355 //\r
356 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
357 CpuMpData->CpuData[Index3].StartupApSignal =\r
358 CpuMpData->CpuData[Index1].StartupApSignal;\r
359 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
360 }\r
361 }\r
362\r
363 //\r
364 // Get the processor number for the BSP\r
365 //\r
366 ApicId = GetInitialApicId ();\r
367 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 368 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
369 CpuMpData->BspNumber = (UINT32) Index1;\r
370 break;\r
371 }\r
372 }\r
8a2d564b
JF
373 }\r
374}\r
375\r
fe627769
JF
376/**\r
377 Enable x2APIC mode on APs.\r
378\r
379 @param[in, out] Buffer Pointer to private data buffer.\r
380**/\r
381VOID\r
382EFIAPI\r
383ApFuncEnableX2Apic (\r
384 IN OUT VOID *Buffer\r
385 )\r
386{\r
387 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
388}\r
389\r
b8b04307
JF
390/**\r
391 Do sync on APs.\r
392\r
393 @param[in, out] Buffer Pointer to private data buffer.\r
394**/\r
395VOID\r
396EFIAPI\r
397ApInitializeSync (\r
398 IN OUT VOID *Buffer\r
399 )\r
400{\r
401 CPU_MP_DATA *CpuMpData;\r
402\r
403 CpuMpData = (CPU_MP_DATA *) Buffer;\r
404 //\r
b8b04307
JF
405 // Load microcode on AP\r
406 //\r
2a089134 407 MicrocodeDetect (CpuMpData, FALSE);\r
cb811673
JF
408 //\r
409 // Sync BSP's MTRR table to AP\r
410 //\r
411 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
412}\r
413\r
414/**\r
415 Find the current Processor number by APIC ID.\r
416\r
367284e7
DB
417 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
418 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
419\r
420 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
421 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
422**/\r
423EFI_STATUS\r
424GetProcessorNumber (\r
425 IN CPU_MP_DATA *CpuMpData,\r
426 OUT UINTN *ProcessorNumber\r
427 )\r
428{\r
429 UINTN TotalProcessorNumber;\r
430 UINTN Index;\r
31a1e4da 431 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 432 UINT32 CurrentApicId;\r
31a1e4da
JF
433\r
434 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
435\r
436 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 437 CurrentApicId = GetApicId ();\r
b8b04307 438 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 439 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
440 *ProcessorNumber = Index;\r
441 return EFI_SUCCESS;\r
442 }\r
443 }\r
e52838d3 444\r
b8b04307
JF
445 return EFI_NOT_FOUND;\r
446}\r
447\r
03434dff
JF
448/**\r
449 This function will get CPU count in the system.\r
450\r
451 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
452\r
453 @return CPU count detected\r
454**/\r
455UINTN\r
456CollectProcessorCount (\r
457 IN CPU_MP_DATA *CpuMpData\r
458 )\r
459{\r
59a119f0 460 UINTN Index;\r
54d1e76f 461 CPU_INFO_IN_HOB *CpuInfoInHob;\r
fe3ca5fd 462 BOOLEAN X2Apic;\r
59a119f0 463\r
03434dff
JF
464 //\r
465 // Send 1st broadcast IPI to APs to wakeup APs\r
466 //\r
fe3ca5fd 467 CpuMpData->InitFlag = ApInitConfig;\r
cf4e79e4 468 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);\r
03434dff
JF
469 CpuMpData->InitFlag = ApInitDone;\r
470 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
471 //\r
472 // Wait for all APs finished the initialization\r
473 //\r
474 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
475 CpuPause ();\r
476 }\r
477\r
9c33f16f 478\r
54d1e76f
RN
479 //\r
480 // Enable x2APIC mode if\r
481 // 1. Number of CPU is greater than 255; or\r
482 // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater.\r
483 //\r
fe3ca5fd 484 X2Apic = FALSE;\r
71d8226a
JF
485 if (CpuMpData->CpuCount > 255) {\r
486 //\r
487 // If there are more than 255 processor found, force to enable X2APIC\r
488 //\r
fe3ca5fd 489 X2Apic = TRUE;\r
54d1e76f
RN
490 } else {\r
491 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
492 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
493 if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {\r
fe3ca5fd 494 X2Apic = TRUE;\r
54d1e76f
RN
495 break;\r
496 }\r
497 }\r
71d8226a 498 }\r
54d1e76f 499\r
fe3ca5fd 500 if (X2Apic) {\r
fe627769
JF
501 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
502 //\r
503 // Wakeup all APs to enable x2APIC mode\r
504 //\r
cf4e79e4 505 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);\r
fe627769
JF
506 //\r
507 // Wait for all known APs finished\r
508 //\r
509 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
510 CpuPause ();\r
511 }\r
512 //\r
513 // Enable x2APIC on BSP\r
514 //\r
515 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
516 //\r
517 // Set BSP/Aps state to IDLE\r
518 //\r
519 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
520 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
521 }\r
fe627769
JF
522 }\r
523 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
524 //\r
525 // Sort BSP/Aps by CPU APIC ID in ascending order\r
526 //\r
527 SortApicId (CpuMpData);\r
528\r
03434dff
JF
529 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
530\r
531 return CpuMpData->CpuCount;\r
532}\r
533\r
367284e7 534/**\r
03a1a925
JF
535 Initialize CPU AP Data when AP is wakeup at the first time.\r
536\r
537 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
538 @param[in] ProcessorNumber The handle number of processor\r
539 @param[in] BistData Processor BIST data\r
367284e7 540 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
541\r
542**/\r
543VOID\r
544InitializeApData (\r
545 IN OUT CPU_MP_DATA *CpuMpData,\r
546 IN UINTN ProcessorNumber,\r
845c5be1 547 IN UINT32 BistData,\r
dd3fa0cd 548 IN UINT64 ApTopOfStack\r
03a1a925
JF
549 )\r
550{\r
999463c8
HW
551 CPU_INFO_IN_HOB *CpuInfoInHob;\r
552 MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr;\r
31a1e4da
JF
553\r
554 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
555 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
556 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
557 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 558 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 559\r
03a1a925 560 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 561 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
03a1a925 562\r
999463c8
HW
563 PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);\r
564 CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8) PlatformIdMsr.Bits.PlatformId;\r
565\r
566 AsmCpuid (\r
567 CPUID_VERSION_INFO,\r
568 &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature,\r
569 NULL,\r
570 NULL,\r
571 NULL\r
572 );\r
573\r
03a1a925
JF
574 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
575 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
576}\r
577\r
b8b04307
JF
578/**\r
579 This function will be called from AP reset code if BSP uses WakeUpAP.\r
580\r
581 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 582 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
583**/\r
584VOID\r
585EFIAPI\r
586ApWakeupFunction (\r
587 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 588 IN UINTN ApIndex\r
b8b04307
JF
589 )\r
590{\r
591 CPU_MP_DATA *CpuMpData;\r
592 UINTN ProcessorNumber;\r
593 EFI_AP_PROCEDURE Procedure;\r
594 VOID *Parameter;\r
595 UINT32 BistData;\r
596 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 597 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 598 UINT64 ApTopOfStack;\r
c6b0feb3 599 UINTN CurrentApicMode;\r
b8b04307
JF
600\r
601 //\r
602 // AP finished assembly code and begin to execute C code\r
603 //\r
604 CpuMpData = ExchangeInfo->CpuMpData;\r
605\r
ffab2442
JF
606 //\r
607 // AP's local APIC settings will be lost after received INIT IPI\r
608 // We need to re-initialize them at here\r
609 //\r
610 ProgramVirtualWireMode ();\r
a2ea6894
RN
611 //\r
612 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
613 //\r
614 DisableLvtInterrupts ();\r
ffab2442 615 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 616\r
c6b0feb3 617 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
618 while (TRUE) {\r
619 if (CpuMpData->InitFlag == ApInitConfig) {\r
620 //\r
621 // Add CPU number\r
622 //\r
623 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 624 ProcessorNumber = ApIndex;\r
b8b04307
JF
625 //\r
626 // This is first time AP wakeup, get BIST information from AP stack\r
627 //\r
845c5be1 628 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 629 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
630 //\r
631 // Do some AP initialize sync\r
632 //\r
633 ApInitializeSync (CpuMpData);\r
634 //\r
c563077a
RN
635 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
636 // to initialize AP in InitConfig path.\r
637 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
638 //\r
639 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 640 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307 641 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
9fc1b85f
RN
642\r
643 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
644 } else {\r
645 //\r
646 // Execute AP function if AP is ready\r
647 //\r
648 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
649 //\r
650 // Clear AP start-up signal when AP waken up\r
651 //\r
652 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
653 InterlockedCompareExchange32 (\r
654 (UINT32 *) ApStartupSignalBuffer,\r
655 WAKEUP_AP_SIGNAL,\r
656 0\r
657 );\r
658 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
659 //\r
660 // Restore AP's volatile registers saved\r
661 //\r
662 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
663 } else {\r
664 //\r
665 // The CPU driver might not flush TLB for APs on spot after updating\r
666 // page attributes. AP in mwait loop mode needs to take care of it when\r
667 // woken up.\r
668 //\r
669 CpuFlushTlb ();\r
b8b04307
JF
670 }\r
671\r
672 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
673 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
674 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
675 if (Procedure != NULL) {\r
676 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
677 //\r
43c9fdcc 678 // Enable source debugging on AP function\r
7367cc6c 679 //\r
43c9fdcc
JF
680 EnableDebugAgent ();\r
681 //\r
b8b04307
JF
682 // Invoke AP function here\r
683 //\r
684 Procedure (Parameter);\r
31a1e4da 685 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
686 if (CpuMpData->SwitchBspFlag) {\r
687 //\r
688 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
689 //\r
690 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
691 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
692 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
693 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
694 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 695 } else {\r
c6b0feb3
JF
696 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
697 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
698 if (CurrentApicMode != GetApicMode ()) {\r
699 //\r
700 // If APIC mode change happened during AP function execution,\r
701 // we do not support APIC ID value changed.\r
702 //\r
703 ASSERT (FALSE);\r
704 CpuDeadLoop ();\r
705 } else {\r
706 //\r
707 // Re-get the CPU APICID and Initial APICID if they are changed\r
708 //\r
709 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
710 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
711 }\r
712 }\r
41be0da5 713 }\r
b8b04307 714 }\r
e048ce88 715 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
b8b04307
JF
716 }\r
717 }\r
718\r
719 //\r
720 // AP finished executing C code\r
721 //\r
722 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
723\r
724 //\r
725 // Place AP is specified loop mode\r
726 //\r
727 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
728 //\r
729 // Save AP volatile registers\r
730 //\r
731 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
732 //\r
733 // Place AP in HLT-loop\r
734 //\r
735 while (TRUE) {\r
736 DisableInterrupts ();\r
737 CpuSleep ();\r
738 CpuPause ();\r
739 }\r
740 }\r
741 while (TRUE) {\r
742 DisableInterrupts ();\r
743 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
744 //\r
745 // Place AP in MWAIT-loop\r
746 //\r
747 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
748 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
749 //\r
750 // Check AP start-up signal again.\r
751 // If AP start-up signal is not set, place AP into\r
752 // the specified C-state\r
753 //\r
754 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
755 }\r
756 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
757 //\r
758 // Place AP in Run-loop\r
759 //\r
760 CpuPause ();\r
761 } else {\r
762 ASSERT (FALSE);\r
763 }\r
764\r
765 //\r
766 // If AP start-up signal is written, AP is waken up\r
767 // otherwise place AP in loop again\r
768 //\r
769 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
770 break;\r
771 }\r
772 }\r
773 }\r
774}\r
775\r
96f5920d
JF
776/**\r
777 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
778\r
779 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
780**/\r
781VOID\r
782WaitApWakeup (\r
783 IN volatile UINT32 *ApStartupSignalBuffer\r
784 )\r
785{\r
786 //\r
787 // If AP is waken up, StartupApSignal should be cleared.\r
788 // Otherwise, write StartupApSignal again till AP waken up.\r
789 //\r
790 while (InterlockedCompareExchange32 (\r
791 (UINT32 *) ApStartupSignalBuffer,\r
792 WAKEUP_AP_SIGNAL,\r
793 WAKEUP_AP_SIGNAL\r
794 ) != 0) {\r
795 CpuPause ();\r
796 }\r
797}\r
798\r
7c3f2a12
JF
799/**\r
800 This function will fill the exchange info structure.\r
801\r
802 @param[in] CpuMpData Pointer to CPU MP Data\r
803\r
804**/\r
805VOID\r
806FillExchangeInfoData (\r
807 IN CPU_MP_DATA *CpuMpData\r
808 )\r
809{\r
810 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
811 UINTN Size;\r
812 IA32_SEGMENT_DESCRIPTOR *Selector;\r
09f69a87 813 IA32_CR4 Cr4;\r
7c3f2a12
JF
814\r
815 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
816 ExchangeInfo->Lock = 0;\r
817 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
818 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
819 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
820 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
821\r
822 ExchangeInfo->CodeSegment = AsmReadCs ();\r
823 ExchangeInfo->DataSegment = AsmReadDs ();\r
824\r
825 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
826\r
827 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 828 ExchangeInfo->ApIndex = 0;\r
0594ec41 829 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
830 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
831 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
832 ExchangeInfo->CpuMpData = CpuMpData;\r
833\r
834 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
835\r
3b2928b4
MK
836 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
837\r
09f69a87
RN
838 //\r
839 // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]\r
840 // to determin whether 5-Level Paging is enabled.\r
841 // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows\r
842 // current system setting.\r
843 // Using latter way is simpler because it also eliminates the needs to\r
844 // check whether platform wants to enable it.\r
845 //\r
846 Cr4.UintN = AsmReadCr4 ();\r
847 ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);\r
848 DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));\r
849\r
7c3f2a12
JF
850 //\r
851 // Get the BSP's data of GDT and IDT\r
852 //\r
853 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
854 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
855\r
856 //\r
857 // Find a 32-bit code segment\r
858 //\r
859 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
860 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
861 while (Size > 0) {\r
862 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
863 ExchangeInfo->ModeTransitionSegment =\r
864 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
865 break;\r
866 }\r
867 Selector += 1;\r
868 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
869 }\r
870\r
871 //\r
872 // Copy all 32-bit code and 64-bit code into memory with type of\r
873 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
874 //\r
66833b2a 875 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
876 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
877 CpuMpData->AddressMap.ModeTransitionOffset;\r
878 CopyMem (\r
66833b2a 879 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
880 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
881 CpuMpData->AddressMap.ModeTransitionOffset,\r
882 Size\r
883 );\r
884\r
66833b2a 885 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
886 } else {\r
887 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
888 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
889 }\r
69dfa8d8
JW
890\r
891 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
892 (UINT32)ExchangeInfo->ModeOffset -\r
893 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
894 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
895}\r
896\r
6e1987f1
LE
897/**\r
898 Helper function that waits until the finished AP count reaches the specified\r
899 limit, or the specified timeout elapses (whichever comes first).\r
900\r
901 @param[in] CpuMpData Pointer to CPU MP Data.\r
902 @param[in] FinishedApLimit The number of finished APs to wait for.\r
903 @param[in] TimeLimit The number of microseconds to wait for.\r
904**/\r
905VOID\r
906TimedWaitForApFinish (\r
907 IN CPU_MP_DATA *CpuMpData,\r
908 IN UINT32 FinishedApLimit,\r
909 IN UINT32 TimeLimit\r
910 );\r
911\r
a6b3d753
SZ
912/**\r
913 Get available system memory below 1MB by specified size.\r
914\r
915 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
916**/\r
917VOID\r
918BackupAndPrepareWakeupBuffer(\r
919 IN CPU_MP_DATA *CpuMpData\r
920 )\r
921{\r
922 CopyMem (\r
923 (VOID *) CpuMpData->BackupBuffer,\r
924 (VOID *) CpuMpData->WakeupBuffer,\r
925 CpuMpData->BackupBufferSize\r
926 );\r
927 CopyMem (\r
928 (VOID *) CpuMpData->WakeupBuffer,\r
929 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
930 CpuMpData->AddressMap.RendezvousFunnelSize\r
931 );\r
932}\r
933\r
934/**\r
935 Restore wakeup buffer data.\r
936\r
937 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
938**/\r
939VOID\r
940RestoreWakeupBuffer(\r
941 IN CPU_MP_DATA *CpuMpData\r
942 )\r
943{\r
944 CopyMem (\r
945 (VOID *) CpuMpData->WakeupBuffer,\r
946 (VOID *) CpuMpData->BackupBuffer,\r
947 CpuMpData->BackupBufferSize\r
948 );\r
949}\r
950\r
951/**\r
952 Allocate reset vector buffer.\r
953\r
954 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
955**/\r
956VOID\r
957AllocateResetVector (\r
958 IN OUT CPU_MP_DATA *CpuMpData\r
959 )\r
960{\r
961 UINTN ApResetVectorSize;\r
962\r
963 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
964 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
965 sizeof (MP_CPU_EXCHANGE_INFO);\r
966\r
967 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
968 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
969 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
970 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
971 CpuMpData->AddressMap.RendezvousFunnelSize -\r
972 CpuMpData->AddressMap.ModeTransitionOffset\r
973 );\r
a6b3d753
SZ
974 }\r
975 BackupAndPrepareWakeupBuffer (CpuMpData);\r
976}\r
977\r
978/**\r
979 Free AP reset vector buffer.\r
980\r
981 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
982**/\r
983VOID\r
984FreeResetVector (\r
985 IN CPU_MP_DATA *CpuMpData\r
986 )\r
987{\r
988 RestoreWakeupBuffer (CpuMpData);\r
989}\r
990\r
96f5920d
JF
991/**\r
992 This function will be called by BSP to wakeup AP.\r
993\r
994 @param[in] CpuMpData Pointer to CPU MP Data\r
995 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
996 FALSE: Send IPI to AP by ApicId\r
997 @param[in] ProcessorNumber The handle number of specified processor\r
998 @param[in] Procedure The function to be invoked by AP\r
999 @param[in] ProcedureArgument The argument to be passed into AP function\r
cf4e79e4 1000 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.\r
96f5920d
JF
1001**/\r
1002VOID\r
1003WakeUpAP (\r
1004 IN CPU_MP_DATA *CpuMpData,\r
1005 IN BOOLEAN Broadcast,\r
1006 IN UINTN ProcessorNumber,\r
1007 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
cf4e79e4
ED
1008 IN VOID *ProcedureArgument, OPTIONAL\r
1009 IN BOOLEAN WakeUpDisabledAps\r
96f5920d
JF
1010 )\r
1011{\r
1012 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
1013 UINTN Index;\r
1014 CPU_AP_DATA *CpuData;\r
1015 BOOLEAN ResetVectorRequired;\r
31a1e4da 1016 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
1017\r
1018 CpuMpData->FinishedCount = 0;\r
1019 ResetVectorRequired = FALSE;\r
1020\r
58942277 1021 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
1022 CpuMpData->InitFlag != ApInitDone) {\r
1023 ResetVectorRequired = TRUE;\r
1024 AllocateResetVector (CpuMpData);\r
1025 FillExchangeInfoData (CpuMpData);\r
ffab2442 1026 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
1027 }\r
1028\r
1029 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
1030 //\r
1031 // Get AP target C-state each time when waking up AP,\r
1032 // for it maybe updated by platform again\r
1033 //\r
1034 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1035 }\r
1036\r
1037 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1038\r
1039 if (Broadcast) {\r
1040 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1041 if (Index != CpuMpData->BspNumber) {\r
1042 CpuData = &CpuMpData->CpuData[Index];\r
cf4e79e4
ED
1043 //\r
1044 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but\r
e23d9c3e 1045 // the AP procedure will be skipped for disabled AP because AP state\r
cf4e79e4
ED
1046 // is not CpuStateReady.\r
1047 //\r
1048 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {\r
1049 continue;\r
1050 }\r
1051\r
96f5920d
JF
1052 CpuData->ApFunction = (UINTN) Procedure;\r
1053 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1054 SetApState (CpuData, CpuStateReady);\r
1055 if (CpuMpData->InitFlag != ApInitConfig) {\r
1056 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1057 }\r
1058 }\r
1059 }\r
1060 if (ResetVectorRequired) {\r
1061 //\r
1062 // Wakeup all APs\r
1063 //\r
1064 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1065 }\r
c1192210 1066 if (CpuMpData->InitFlag == ApInitConfig) {\r
778832bc
LE
1067 if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {\r
1068 //\r
1069 // The AP enumeration algorithm below is suitable only when the\r
1070 // platform can tell us the *exact* boot CPU count in advance.\r
1071 //\r
1072 // The wait below finishes only when the detected AP count reaches\r
1073 // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that\r
1074 // takes. If at least one AP fails to check in (meaning a platform\r
1075 // hardware bug), the detection hangs forever, by design. If the actual\r
1076 // boot CPU count in the system is higher than\r
1077 // PcdCpuBootLogicalProcessorNumber (meaning a platform\r
1078 // misconfiguration), then some APs may complete initialization after\r
1079 // the wait finishes, and cause undefined behavior.\r
1080 //\r
1081 TimedWaitForApFinish (\r
1082 CpuMpData,\r
1083 PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,\r
1084 MAX_UINT32 // approx. 71 minutes\r
1085 );\r
1086 } else {\r
1087 //\r
1088 // The AP enumeration algorithm below is suitable for two use cases.\r
1089 //\r
1090 // (1) The check-in time for an individual AP is bounded, and APs run\r
1091 // through their initialization routines strongly concurrently. In\r
1092 // particular, the number of concurrently running APs\r
1093 // ("NumApsExecuting") is never expected to fall to zero\r
1094 // *temporarily* -- it is expected to fall to zero only when all\r
1095 // APs have checked-in.\r
1096 //\r
1097 // In this case, the platform is supposed to set\r
1098 // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long\r
1099 // enough for one AP to start initialization). The timeout will be\r
1100 // reached soon, and remaining APs are collected by watching\r
1101 // NumApsExecuting fall to zero. If NumApsExecuting falls to zero\r
1102 // mid-process, while some APs have not completed initialization,\r
1103 // the behavior is undefined.\r
1104 //\r
1105 // (2) The check-in time for an individual AP is unbounded, and/or APs\r
1106 // may complete their initializations widely spread out. In\r
1107 // particular, some APs may finish initialization before some APs\r
1108 // even start.\r
1109 //\r
1110 // In this case, the platform is supposed to set\r
1111 // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP\r
1112 // enumeration will always take that long (except when the boot CPU\r
1113 // count happens to be maximal, that is,\r
1114 // PcdCpuMaxLogicalProcessorNumber). All APs are expected to\r
1115 // check-in before the timeout, and NumApsExecuting is assumed zero\r
1116 // at timeout. APs that miss the time-out may cause undefined\r
1117 // behavior.\r
1118 //\r
1119 TimedWaitForApFinish (\r
1120 CpuMpData,\r
1121 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1122 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1123 );\r
0594ec41 1124\r
778832bc
LE
1125 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1126 CpuPause();\r
1127 }\r
0594ec41 1128 }\r
c1192210 1129 } else {\r
96f5920d
JF
1130 //\r
1131 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1132 //\r
1133 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1134 CpuData = &CpuMpData->CpuData[Index];\r
1135 if (Index != CpuMpData->BspNumber) {\r
1136 WaitApWakeup (CpuData->StartupApSignal);\r
1137 }\r
1138 }\r
1139 }\r
1140 } else {\r
1141 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1142 CpuData->ApFunction = (UINTN) Procedure;\r
1143 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1144 SetApState (CpuData, CpuStateReady);\r
1145 //\r
1146 // Wakeup specified AP\r
1147 //\r
1148 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1149 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1150 if (ResetVectorRequired) {\r
31a1e4da 1151 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1152 SendInitSipiSipi (\r
31a1e4da 1153 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1154 (UINT32) ExchangeInfo->BufferStart\r
1155 );\r
1156 }\r
1157 //\r
1158 // Wait specified AP waken up\r
1159 //\r
1160 WaitApWakeup (CpuData->StartupApSignal);\r
1161 }\r
1162\r
1163 if (ResetVectorRequired) {\r
1164 FreeResetVector (CpuMpData);\r
1165 }\r
58942277
ED
1166\r
1167 //\r
1168 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1169 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1170 // S3SmmInitDone Ppi.\r
1171 //\r
1172 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1173}\r
1174\r
08085f08
JF
1175/**\r
1176 Calculate timeout value and return the current performance counter value.\r
1177\r
1178 Calculate the number of performance counter ticks required for a timeout.\r
1179 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1180 as infinity.\r
1181\r
1182 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1183 @param[out] CurrentTime Returns the current value of the performance counter.\r
1184\r
1185 @return Expected time stamp counter for timeout.\r
1186 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1187 as infinity.\r
1188\r
1189**/\r
1190UINT64\r
1191CalculateTimeout (\r
1192 IN UINTN TimeoutInMicroseconds,\r
1193 OUT UINT64 *CurrentTime\r
1194 )\r
1195{\r
48cfb7c0
ED
1196 UINT64 TimeoutInSeconds;\r
1197 UINT64 TimestampCounterFreq;\r
1198\r
08085f08
JF
1199 //\r
1200 // Read the current value of the performance counter\r
1201 //\r
1202 *CurrentTime = GetPerformanceCounter ();\r
1203\r
1204 //\r
1205 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1206 // as infinity.\r
1207 //\r
1208 if (TimeoutInMicroseconds == 0) {\r
1209 return 0;\r
1210 }\r
1211\r
1212 //\r
1213 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1214 // in Hz.\r
48cfb7c0
ED
1215 //\r
1216 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1217\r
08085f08 1218 //\r
48cfb7c0
ED
1219 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1220 //\r
1221 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1222 //\r
1223 // Convert microseconds into seconds if direct multiplication overflows\r
1224 //\r
1225 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1226 //\r
1227 // Assertion if the final tick count exceeds MAX_UINT64\r
1228 //\r
1229 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1230 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1231 } else {\r
1232 //\r
1233 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1234 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1235 //\r
1236 return DivU64x32 (\r
1237 MultU64x64 (\r
1238 TimestampCounterFreq,\r
1239 TimeoutInMicroseconds\r
1240 ),\r
1241 1000000\r
1242 );\r
1243 }\r
08085f08
JF
1244}\r
1245\r
1246/**\r
1247 Checks whether timeout expires.\r
1248\r
1249 Check whether the number of elapsed performance counter ticks required for\r
1250 a timeout condition has been reached.\r
1251 If Timeout is zero, which means infinity, return value is always FALSE.\r
1252\r
1253 @param[in, out] PreviousTime On input, the value of the performance counter\r
1254 when it was last read.\r
1255 On output, the current value of the performance\r
1256 counter\r
1257 @param[in] TotalTime The total amount of elapsed time in performance\r
1258 counter ticks.\r
1259 @param[in] Timeout The number of performance counter ticks required\r
1260 to reach a timeout condition.\r
1261\r
1262 @retval TRUE A timeout condition has been reached.\r
1263 @retval FALSE A timeout condition has not been reached.\r
1264\r
1265**/\r
1266BOOLEAN\r
1267CheckTimeout (\r
1268 IN OUT UINT64 *PreviousTime,\r
1269 IN UINT64 *TotalTime,\r
1270 IN UINT64 Timeout\r
1271 )\r
1272{\r
1273 UINT64 Start;\r
1274 UINT64 End;\r
1275 UINT64 CurrentTime;\r
1276 INT64 Delta;\r
1277 INT64 Cycle;\r
1278\r
1279 if (Timeout == 0) {\r
1280 return FALSE;\r
1281 }\r
1282 GetPerformanceCounterProperties (&Start, &End);\r
1283 Cycle = End - Start;\r
1284 if (Cycle < 0) {\r
1285 Cycle = -Cycle;\r
1286 }\r
1287 Cycle++;\r
1288 CurrentTime = GetPerformanceCounter();\r
1289 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1290 if (Start > End) {\r
1291 Delta = -Delta;\r
1292 }\r
1293 if (Delta < 0) {\r
1294 Delta += Cycle;\r
1295 }\r
1296 *TotalTime += Delta;\r
1297 *PreviousTime = CurrentTime;\r
1298 if (*TotalTime > Timeout) {\r
1299 return TRUE;\r
1300 }\r
1301 return FALSE;\r
1302}\r
1303\r
6e1987f1
LE
1304/**\r
1305 Helper function that waits until the finished AP count reaches the specified\r
1306 limit, or the specified timeout elapses (whichever comes first).\r
1307\r
1308 @param[in] CpuMpData Pointer to CPU MP Data.\r
1309 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1310 @param[in] TimeLimit The number of microseconds to wait for.\r
1311**/\r
1312VOID\r
1313TimedWaitForApFinish (\r
1314 IN CPU_MP_DATA *CpuMpData,\r
1315 IN UINT32 FinishedApLimit,\r
1316 IN UINT32 TimeLimit\r
1317 )\r
1318{\r
1319 //\r
1320 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1321 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1322 //\r
1323 if (TimeLimit == 0) {\r
1324 return;\r
1325 }\r
1326\r
1327 CpuMpData->TotalTime = 0;\r
1328 CpuMpData->ExpectedTime = CalculateTimeout (\r
1329 TimeLimit,\r
1330 &CpuMpData->CurrentTime\r
1331 );\r
1332 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1333 !CheckTimeout (\r
1334 &CpuMpData->CurrentTime,\r
1335 &CpuMpData->TotalTime,\r
1336 CpuMpData->ExpectedTime\r
1337 )) {\r
1338 CpuPause ();\r
1339 }\r
1340\r
1341 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1342 DEBUG ((\r
1343 DEBUG_VERBOSE,\r
1344 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1345 __FUNCTION__,\r
1346 FinishedApLimit,\r
1347 DivU64x64Remainder (\r
1348 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1349 GetPerformanceCounterProperties (NULL, NULL),\r
1350 NULL\r
1351 )\r
1352 ));\r
1353 }\r
1354}\r
1355\r
08085f08
JF
1356/**\r
1357 Reset an AP to Idle state.\r
1358\r
1359 Any task being executed by the AP will be aborted and the AP\r
1360 will be waiting for a new task in Wait-For-SIPI state.\r
1361\r
1362 @param[in] ProcessorNumber The handle number of processor.\r
1363**/\r
1364VOID\r
1365ResetProcessorToIdleState (\r
1366 IN UINTN ProcessorNumber\r
1367 )\r
1368{\r
1369 CPU_MP_DATA *CpuMpData;\r
1370\r
1371 CpuMpData = GetCpuMpData ();\r
1372\r
cb33bde4 1373 CpuMpData->InitFlag = ApInitReconfig;\r
cf4e79e4 1374 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);\r
cb33bde4
JF
1375 while (CpuMpData->FinishedCount < 1) {\r
1376 CpuPause ();\r
1377 }\r
1378 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1379\r
1380 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1381}\r
1382\r
1383/**\r
1384 Searches for the next waiting AP.\r
1385\r
1386 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1387\r
1388 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1389\r
1390 @retval EFI_SUCCESS The next waiting AP has been found.\r
1391 @retval EFI_NOT_FOUND No waiting AP exists.\r
1392\r
1393**/\r
1394EFI_STATUS\r
1395GetNextWaitingProcessorNumber (\r
1396 OUT UINTN *NextProcessorNumber\r
1397 )\r
1398{\r
1399 UINTN ProcessorNumber;\r
1400 CPU_MP_DATA *CpuMpData;\r
1401\r
1402 CpuMpData = GetCpuMpData ();\r
1403\r
1404 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1405 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1406 *NextProcessorNumber = ProcessorNumber;\r
1407 return EFI_SUCCESS;\r
1408 }\r
1409 }\r
1410\r
1411 return EFI_NOT_FOUND;\r
1412}\r
1413\r
1414/** Checks status of specified AP.\r
1415\r
1416 This function checks whether the specified AP has finished the task assigned\r
1417 by StartupThisAP(), and whether timeout expires.\r
1418\r
1419 @param[in] ProcessorNumber The handle number of processor.\r
1420\r
1421 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1422 @retval EFI_TIMEOUT The timeout expires.\r
1423 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1424**/\r
1425EFI_STATUS\r
1426CheckThisAP (\r
1427 IN UINTN ProcessorNumber\r
1428 )\r
1429{\r
1430 CPU_MP_DATA *CpuMpData;\r
1431 CPU_AP_DATA *CpuData;\r
1432\r
1433 CpuMpData = GetCpuMpData ();\r
1434 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1435\r
1436 //\r
2a5997f8 1437 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1438 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1439 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08
JF
1440 //\r
1441 //\r
1442 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1443 //\r
e048ce88 1444 if (GetApState(CpuData) == CpuStateFinished) {\r
08085f08
JF
1445 if (CpuData->Finished != NULL) {\r
1446 *(CpuData->Finished) = TRUE;\r
1447 }\r
e048ce88 1448 SetApState (CpuData, CpuStateIdle);\r
08085f08
JF
1449 return EFI_SUCCESS;\r
1450 } else {\r
1451 //\r
1452 // If timeout expires for StartupThisAP(), report timeout.\r
1453 //\r
1454 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1455 if (CpuData->Finished != NULL) {\r
1456 *(CpuData->Finished) = FALSE;\r
1457 }\r
1458 //\r
1459 // Reset failed AP to idle state\r
1460 //\r
1461 ResetProcessorToIdleState (ProcessorNumber);\r
1462\r
1463 return EFI_TIMEOUT;\r
1464 }\r
1465 }\r
1466 return EFI_NOT_READY;\r
1467}\r
1468\r
1469/**\r
1470 Checks status of all APs.\r
1471\r
1472 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1473 and whether timeout expires.\r
1474\r
1475 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1476 @retval EFI_TIMEOUT The timeout expires.\r
1477 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1478**/\r
1479EFI_STATUS\r
1480CheckAllAPs (\r
1481 VOID\r
1482 )\r
1483{\r
1484 UINTN ProcessorNumber;\r
1485 UINTN NextProcessorNumber;\r
1486 UINTN ListIndex;\r
1487 EFI_STATUS Status;\r
1488 CPU_MP_DATA *CpuMpData;\r
1489 CPU_AP_DATA *CpuData;\r
1490\r
1491 CpuMpData = GetCpuMpData ();\r
1492\r
1493 NextProcessorNumber = 0;\r
1494\r
1495 //\r
1496 // Go through all APs that are responsible for the StartupAllAPs().\r
1497 //\r
1498 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1499 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1500 continue;\r
1501 }\r
1502\r
1503 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1504 //\r
2a5997f8 1505 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1506 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1507 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08 1508 //\r
e048ce88 1509 if (GetApState(CpuData) == CpuStateFinished) {\r
2da3e96c 1510 CpuMpData->RunningCount --;\r
08085f08 1511 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
e048ce88 1512 SetApState(CpuData, CpuStateIdle);\r
08085f08
JF
1513\r
1514 //\r
1515 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1516 //\r
1517 if (CpuMpData->SingleThread) {\r
1518 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1519\r
1520 if (!EFI_ERROR (Status)) {\r
1521 WakeUpAP (\r
1522 CpuMpData,\r
1523 FALSE,\r
1524 (UINT32) NextProcessorNumber,\r
1525 CpuMpData->Procedure,\r
cf4e79e4
ED
1526 CpuMpData->ProcArguments,\r
1527 TRUE\r
08085f08
JF
1528 );\r
1529 }\r
1530 }\r
1531 }\r
1532 }\r
1533\r
1534 //\r
1535 // If all APs finish, return EFI_SUCCESS.\r
1536 //\r
2da3e96c 1537 if (CpuMpData->RunningCount == 0) {\r
08085f08
JF
1538 return EFI_SUCCESS;\r
1539 }\r
1540\r
1541 //\r
1542 // If timeout expires, report timeout.\r
1543 //\r
1544 if (CheckTimeout (\r
1545 &CpuMpData->CurrentTime,\r
1546 &CpuMpData->TotalTime,\r
1547 CpuMpData->ExpectedTime)\r
1548 ) {\r
1549 //\r
1550 // If FailedCpuList is not NULL, record all failed APs in it.\r
1551 //\r
1552 if (CpuMpData->FailedCpuList != NULL) {\r
1553 *CpuMpData->FailedCpuList =\r
2da3e96c 1554 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));\r
08085f08
JF
1555 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1556 }\r
1557 ListIndex = 0;\r
1558\r
1559 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1560 //\r
1561 // Check whether this processor is responsible for StartupAllAPs().\r
1562 //\r
1563 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1564 //\r
1565 // Reset failed APs to idle state\r
1566 //\r
1567 ResetProcessorToIdleState (ProcessorNumber);\r
1568 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1569 if (CpuMpData->FailedCpuList != NULL) {\r
1570 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1571 }\r
1572 }\r
1573 }\r
1574 if (CpuMpData->FailedCpuList != NULL) {\r
1575 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1576 }\r
1577 return EFI_TIMEOUT;\r
1578 }\r
1579 return EFI_NOT_READY;\r
1580}\r
1581\r
3e8ad6bd
JF
1582/**\r
1583 MP Initialize Library initialization.\r
1584\r
1585 This service will allocate AP reset vector and wakeup all APs to do APs\r
1586 initialization.\r
1587\r
1588 This service must be invoked before all other MP Initialize Library\r
1589 service are invoked.\r
1590\r
1591 @retval EFI_SUCCESS MP initialization succeeds.\r
1592 @retval Others MP initialization fails.\r
1593\r
1594**/\r
1595EFI_STATUS\r
1596EFIAPI\r
1597MpInitLibInitialize (\r
1598 VOID\r
1599 )\r
1600{\r
6a2ee2bb
JF
1601 CPU_MP_DATA *OldCpuMpData;\r
1602 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1603 UINT32 MaxLogicalProcessorNumber;\r
1604 UINT32 ApStackSize;\r
f7f85d83 1605 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1606 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1607 UINTN BufferSize;\r
9ebcf0f4 1608 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1609 VOID *MpBuffer;\r
1610 UINTN Buffer;\r
1611 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1612 UINT8 ApLoopMode;\r
e59f8f6b 1613 UINT8 *MonitorBuffer;\r
03a1a925 1614 UINTN Index;\r
f7f85d83 1615 UINTN ApResetVectorSize;\r
e59f8f6b 1616 UINTN BackupBufferAddr;\r
c563077a 1617 UINTN ApIdtBase;\r
6936ee03 1618 VOID *MicrocodePatchInRam;\r
6a2ee2bb
JF
1619\r
1620 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1621 if (OldCpuMpData == NULL) {\r
1622 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1623 } else {\r
1624 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1625 }\r
14e8137c 1626 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1627\r
1628 AsmGetAddressMap (&AddressMap);\r
1629 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1630 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1631 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1632\r
c563077a 1633 //\r
e09b6b59 1634 // Save BSP's Control registers for APs.\r
c563077a
RN
1635 //\r
1636 SaveVolatileRegisters (&VolatileRegisters);\r
1637\r
e59f8f6b
JF
1638 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1639 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1640 BufferSize += ApResetVectorSize;\r
c563077a
RN
1641 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1642 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1643 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1644 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1645 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1646 ASSERT (MpBuffer != NULL);\r
1647 ZeroMem (MpBuffer, BufferSize);\r
1648 Buffer = (UINTN) MpBuffer;\r
1649\r
c563077a
RN
1650 //\r
1651 // The layout of the Buffer is as below:\r
1652 //\r
1653 // +--------------------+ <-- Buffer\r
1654 // AP Stacks (N)\r
1655 // +--------------------+ <-- MonitorBuffer\r
1656 // AP Monitor Filters (N)\r
1657 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1658 // Backup Buffer\r
1659 // +--------------------+\r
1660 // Padding\r
1661 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1662 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1663 // +--------------------+ <-- CpuMpData\r
1664 // CPU_MP_DATA\r
1665 // +--------------------+ <-- CpuMpData->CpuData\r
1666 // CPU_AP_DATA (N)\r
1667 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1668 // CPU_INFO_IN_HOB (N)\r
1669 // +--------------------+\r
1670 //\r
e59f8f6b
JF
1671 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1672 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1673 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1674 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1675 CpuMpData->Buffer = Buffer;\r
1676 CpuMpData->CpuApStackSize = ApStackSize;\r
1677 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1678 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1679 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1680 CpuMpData->CpuCount = 1;\r
1681 CpuMpData->BspNumber = 0;\r
1682 CpuMpData->WaitEvent = NULL;\r
41be0da5 1683 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1684 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1685 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
89164bab
ED
1686 if (OldCpuMpData == NULL) {\r
1687 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
6936ee03 1688 //\r
89164bab
ED
1689 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1690 // loading microcode time.\r
6936ee03 1691 //\r
89164bab
ED
1692 MicrocodePatchInRam = NULL;\r
1693 if (MaxLogicalProcessorNumber > 1) {\r
1694 MicrocodePatchInRam = AllocatePages (\r
1695 EFI_SIZE_TO_PAGES (\r
1696 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1697 )\r
1698 );\r
1699 }\r
1700 if (MicrocodePatchInRam == NULL) {\r
1701 //\r
1702 // there is only one processor, or no microcode patch is available, or\r
1703 // memory allocation failed\r
1704 //\r
1705 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1706 } else {\r
1707 //\r
1708 // there are multiple processors, and a microcode patch is available, and\r
1709 // memory allocation succeeded\r
1710 //\r
1711 CopyMem (\r
1712 MicrocodePatchInRam,\r
1713 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1714 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1715 );\r
1716 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1717 }\r
1718 }else {\r
1719 CpuMpData->MicrocodePatchRegionSize = OldCpuMpData->MicrocodePatchRegionSize;\r
1720 CpuMpData->MicrocodePatchAddress = OldCpuMpData->MicrocodePatchAddress;\r
6936ee03 1721 }\r
e59f8f6b 1722 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1723\r
1724 //\r
1725 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1726 //\r
c563077a
RN
1727 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1728 Buffer + BufferSize);\r
1729\r
1730 //\r
1731 // Duplicate BSP's IDT to APs.\r
1732 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1733 //\r
c563077a
RN
1734 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1735 VolatileRegisters.Idtr.Base = ApIdtBase;\r
e09b6b59
JW
1736 //\r
1737 // Don't pass BSP's TR to APs to avoid AP init failure.\r
1738 //\r
1739 VolatileRegisters.Tr = 0;\r
c563077a 1740 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1741 //\r
03a1a925
JF
1742 // Set BSP basic information\r
1743 //\r
f2655dcf 1744 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1745 //\r
e59f8f6b
JF
1746 // Save assembly code information\r
1747 //\r
1748 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1749 //\r
1750 // Finally set AP loop mode\r
1751 //\r
1752 CpuMpData->ApLoopMode = ApLoopMode;\r
1753 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1754\r
1755 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1756\r
e59f8f6b 1757 //\r
03a1a925
JF
1758 // Set up APs wakeup signal buffer\r
1759 //\r
1760 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1761 CpuMpData->CpuData[Index].StartupApSignal =\r
1762 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1763 }\r
94f63c76
JF
1764 //\r
1765 // Load Microcode on BSP\r
1766 //\r
2a089134 1767 MicrocodeDetect (CpuMpData, TRUE);\r
94f63c76 1768 //\r
e59f8f6b
JF
1769 // Store BSP's MTRR setting\r
1770 //\r
1771 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1772 //\r
1773 // Enable the local APIC for Virtual Wire Mode.\r
1774 //\r
1775 ProgramVirtualWireMode ();\r
e59f8f6b 1776\r
6a2ee2bb 1777 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1778 if (MaxLogicalProcessorNumber > 1) {\r
1779 //\r
1780 // Wakeup all APs and calculate the processor count in system\r
1781 //\r
1782 CollectProcessorCount (CpuMpData);\r
1783 }\r
6a2ee2bb
JF
1784 } else {\r
1785 //\r
1786 // APs have been wakeup before, just get the CPU Information\r
1787 // from HOB\r
1788 //\r
1789 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1790 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1791 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1792 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1793 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1794 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1795 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
31a1e4da 1796 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1797 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1798 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1799 }\r
14e8137c
JF
1800 if (MaxLogicalProcessorNumber > 1) {\r
1801 //\r
1802 // Wakeup APs to do some AP initialize sync\r
1803 //\r
cf4e79e4 1804 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);\r
14e8137c
JF
1805 //\r
1806 // Wait for all APs finished initialization\r
1807 //\r
1808 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1809 CpuPause ();\r
1810 }\r
1811 CpuMpData->InitFlag = ApInitDone;\r
1812 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1813 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1814 }\r
6a2ee2bb
JF
1815 }\r
1816 }\r
93ca4c0f
JF
1817\r
1818 //\r
1819 // Initialize global data for MP support\r
1820 //\r
1821 InitMpGlobalData (CpuMpData);\r
1822\r
f7f85d83 1823 return EFI_SUCCESS;\r
3e8ad6bd
JF
1824}\r
1825\r
1826/**\r
1827 Gets detailed MP-related information on the requested processor at the\r
1828 instant this call is made. This service may only be called from the BSP.\r
1829\r
1830 @param[in] ProcessorNumber The handle number of processor.\r
1831 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1832 the requested processor is deposited.\r
1833 @param[out] HealthData Return processor health data.\r
1834\r
1835 @retval EFI_SUCCESS Processor information was returned.\r
1836 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1837 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1838 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1839 ProcessorNumber does not exist in the platform.\r
1840 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1841\r
1842**/\r
1843EFI_STATUS\r
1844EFIAPI\r
1845MpInitLibGetProcessorInfo (\r
1846 IN UINTN ProcessorNumber,\r
1847 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1848 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1849 )\r
1850{\r
ad52f25e
JF
1851 CPU_MP_DATA *CpuMpData;\r
1852 UINTN CallerNumber;\r
31a1e4da 1853 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1854\r
1855 CpuMpData = GetCpuMpData ();\r
31a1e4da 1856 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1857\r
1858 //\r
1859 // Check whether caller processor is BSP\r
1860 //\r
1861 MpInitLibWhoAmI (&CallerNumber);\r
1862 if (CallerNumber != CpuMpData->BspNumber) {\r
1863 return EFI_DEVICE_ERROR;\r
1864 }\r
1865\r
1866 if (ProcessorInfoBuffer == NULL) {\r
1867 return EFI_INVALID_PARAMETER;\r
1868 }\r
1869\r
1870 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1871 return EFI_NOT_FOUND;\r
1872 }\r
1873\r
31a1e4da 1874 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1875 ProcessorInfoBuffer->StatusFlag = 0;\r
1876 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1877 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1878 }\r
1879 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1880 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1881 }\r
1882 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1883 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1884 } else {\r
1885 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1886 }\r
1887\r
1888 //\r
1889 // Get processor location information\r
1890 //\r
262128e5 1891 GetProcessorLocationByApicId (\r
31a1e4da 1892 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1893 &ProcessorInfoBuffer->Location.Package,\r
1894 &ProcessorInfoBuffer->Location.Core,\r
1895 &ProcessorInfoBuffer->Location.Thread\r
1896 );\r
ad52f25e
JF
1897\r
1898 if (HealthData != NULL) {\r
31a1e4da 1899 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1900 }\r
1901\r
1902 return EFI_SUCCESS;\r
3e8ad6bd 1903}\r
ad52f25e 1904\r
41be0da5
JF
1905/**\r
1906 Worker function to switch the requested AP to be the BSP from that point onward.\r
1907\r
1908 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1909 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1910 enabled AP. Otherwise, it will be disabled.\r
1911\r
1912 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1913 @retval others Failed to switch BSP.\r
41be0da5
JF
1914\r
1915**/\r
1916EFI_STATUS\r
1917SwitchBSPWorker (\r
1918 IN UINTN ProcessorNumber,\r
1919 IN BOOLEAN EnableOldBSP\r
1920 )\r
1921{\r
1922 CPU_MP_DATA *CpuMpData;\r
1923 UINTN CallerNumber;\r
1924 CPU_STATE State;\r
1925 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1926 BOOLEAN OldInterruptState;\r
26b43433 1927 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1928\r
26b43433
JF
1929 //\r
1930 // Save and Disable Local APIC timer interrupt\r
1931 //\r
1932 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1933 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1934 //\r
1935 // Before send both BSP and AP to a procedure to exchange their roles,\r
1936 // interrupt must be disabled. This is because during the exchange role\r
1937 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1938 // be corrupted, since interrupt return address will be pushed to stack\r
1939 // by hardware.\r
1940 //\r
1941 OldInterruptState = SaveAndDisableInterrupts ();\r
1942\r
1943 //\r
1944 // Mask LINT0 & LINT1 for the old BSP\r
1945 //\r
1946 DisableLvtInterrupts ();\r
41be0da5
JF
1947\r
1948 CpuMpData = GetCpuMpData ();\r
1949\r
1950 //\r
1951 // Check whether caller processor is BSP\r
1952 //\r
1953 MpInitLibWhoAmI (&CallerNumber);\r
1954 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1955 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1956 }\r
1957\r
1958 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1959 return EFI_NOT_FOUND;\r
1960 }\r
1961\r
1962 //\r
1963 // Check whether specified AP is disabled\r
1964 //\r
1965 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1966 if (State == CpuStateDisabled) {\r
1967 return EFI_INVALID_PARAMETER;\r
1968 }\r
1969\r
1970 //\r
1971 // Check whether ProcessorNumber specifies the current BSP\r
1972 //\r
1973 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1974 return EFI_INVALID_PARAMETER;\r
1975 }\r
1976\r
1977 //\r
1978 // Check whether specified AP is busy\r
1979 //\r
1980 if (State == CpuStateBusy) {\r
1981 return EFI_NOT_READY;\r
1982 }\r
1983\r
1984 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1985 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1986 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1987 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1988\r
1989 //\r
1990 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1991 //\r
1992 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1993 ApicBaseMsr.Bits.BSP = 0;\r
1994 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1995\r
1996 //\r
1997 // Need to wakeUp AP (future BSP).\r
1998 //\r
cf4e79e4 1999 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);\r
41be0da5
JF
2000\r
2001 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
2002\r
2003 //\r
2004 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
2005 //\r
2006 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
2007 ApicBaseMsr.Bits.BSP = 1;\r
2008 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 2009 ProgramVirtualWireMode ();\r
41be0da5
JF
2010\r
2011 //\r
2012 // Wait for old BSP finished AP task\r
2013 //\r
e048ce88 2014 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
41be0da5
JF
2015 CpuPause ();\r
2016 }\r
2017\r
2018 CpuMpData->SwitchBspFlag = FALSE;\r
2019 //\r
2020 // Set old BSP enable state\r
2021 //\r
2022 if (!EnableOldBSP) {\r
2023 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
2024 } else {\r
2025 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
2026 }\r
2027 //\r
2028 // Save new BSP number\r
2029 //\r
2030 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
2031\r
a8d75a18
JF
2032 //\r
2033 // Restore interrupt state.\r
2034 //\r
2035 SetInterruptState (OldInterruptState);\r
2036\r
26b43433
JF
2037 if (OldTimerInterruptState) {\r
2038 EnableApicTimerInterrupt ();\r
2039 }\r
a8d75a18 2040\r
41be0da5
JF
2041 return EFI_SUCCESS;\r
2042}\r
ad52f25e 2043\r
e37109bc
JF
2044/**\r
2045 Worker function to let the caller enable or disable an AP from this point onward.\r
2046 This service may only be called from the BSP.\r
2047\r
2048 @param[in] ProcessorNumber The handle number of AP.\r
2049 @param[in] EnableAP Specifies the new state for the processor for\r
2050 enabled, FALSE for disabled.\r
2051 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
2052 the new health status of the AP.\r
2053\r
2054 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
2055 @retval others Failed to Enable/Disable AP.\r
2056\r
2057**/\r
2058EFI_STATUS\r
2059EnableDisableApWorker (\r
2060 IN UINTN ProcessorNumber,\r
2061 IN BOOLEAN EnableAP,\r
2062 IN UINT32 *HealthFlag OPTIONAL\r
2063 )\r
2064{\r
2065 CPU_MP_DATA *CpuMpData;\r
2066 UINTN CallerNumber;\r
2067\r
2068 CpuMpData = GetCpuMpData ();\r
2069\r
2070 //\r
2071 // Check whether caller processor is BSP\r
2072 //\r
2073 MpInitLibWhoAmI (&CallerNumber);\r
2074 if (CallerNumber != CpuMpData->BspNumber) {\r
2075 return EFI_DEVICE_ERROR;\r
2076 }\r
2077\r
2078 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2079 return EFI_INVALID_PARAMETER;\r
2080 }\r
2081\r
2082 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2083 return EFI_NOT_FOUND;\r
2084 }\r
2085\r
2086 if (!EnableAP) {\r
2087 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2088 } else {\r
d5fdae96 2089 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2090 }\r
2091\r
2092 if (HealthFlag != NULL) {\r
2093 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2094 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2095 }\r
2096\r
2097 return EFI_SUCCESS;\r
2098}\r
2099\r
3e8ad6bd
JF
2100/**\r
2101 This return the handle number for the calling processor. This service may be\r
2102 called from the BSP and APs.\r
2103\r
2104 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2105 The range is from 0 to the total number of\r
2106 logical processors minus 1. The total number of\r
2107 logical processors can be retrieved by\r
2108 MpInitLibGetNumberOfProcessors().\r
2109\r
2110 @retval EFI_SUCCESS The current processor handle number was returned\r
2111 in ProcessorNumber.\r
2112 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2113 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2114\r
2115**/\r
2116EFI_STATUS\r
2117EFIAPI\r
2118MpInitLibWhoAmI (\r
2119 OUT UINTN *ProcessorNumber\r
2120 )\r
2121{\r
5c9e0997
JF
2122 CPU_MP_DATA *CpuMpData;\r
2123\r
2124 if (ProcessorNumber == NULL) {\r
2125 return EFI_INVALID_PARAMETER;\r
2126 }\r
2127\r
2128 CpuMpData = GetCpuMpData ();\r
2129\r
2130 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2131}\r
809213a6 2132\r
3e8ad6bd
JF
2133/**\r
2134 Retrieves the number of logical processor in the platform and the number of\r
2135 those logical processors that are enabled on this boot. This service may only\r
2136 be called from the BSP.\r
2137\r
2138 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2139 processors in the system, including the BSP\r
2140 and disabled APs.\r
2141 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2142 processors that exist in system, including\r
2143 the BSP.\r
2144\r
2145 @retval EFI_SUCCESS The number of logical processors and enabled\r
2146 logical processors was retrieved.\r
2147 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2148 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2149 is NULL.\r
2150 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2151\r
2152**/\r
2153EFI_STATUS\r
2154EFIAPI\r
2155MpInitLibGetNumberOfProcessors (\r
2156 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2157 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2158 )\r
2159{\r
809213a6
JF
2160 CPU_MP_DATA *CpuMpData;\r
2161 UINTN CallerNumber;\r
2162 UINTN ProcessorNumber;\r
2163 UINTN EnabledProcessorNumber;\r
2164 UINTN Index;\r
2165\r
2166 CpuMpData = GetCpuMpData ();\r
2167\r
2168 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2169 return EFI_INVALID_PARAMETER;\r
2170 }\r
2171\r
2172 //\r
2173 // Check whether caller processor is BSP\r
2174 //\r
2175 MpInitLibWhoAmI (&CallerNumber);\r
2176 if (CallerNumber != CpuMpData->BspNumber) {\r
2177 return EFI_DEVICE_ERROR;\r
2178 }\r
2179\r
2180 ProcessorNumber = CpuMpData->CpuCount;\r
2181 EnabledProcessorNumber = 0;\r
2182 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2183 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2184 EnabledProcessorNumber ++;\r
2185 }\r
2186 }\r
2187\r
2188 if (NumberOfProcessors != NULL) {\r
2189 *NumberOfProcessors = ProcessorNumber;\r
2190 }\r
2191 if (NumberOfEnabledProcessors != NULL) {\r
2192 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2193 }\r
2194\r
2195 return EFI_SUCCESS;\r
3e8ad6bd 2196}\r
6a2ee2bb 2197\r
809213a6 2198\r
86efe976
JF
2199/**\r
2200 Worker function to execute a caller provided function on all enabled APs.\r
2201\r
2202 @param[in] Procedure A pointer to the function to be run on\r
2203 enabled APs of the system.\r
2204 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2205 the function specified by Procedure one by\r
2206 one, in ascending order of processor handle\r
2207 number. If FALSE, then all the enabled APs\r
2208 execute the function specified by Procedure\r
2209 simultaneously.\r
ee0c39fa 2210 @param[in] ExcludeBsp Whether let BSP also trig this task.\r
86efe976
JF
2211 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2212 service.\r
367284e7 2213 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2214 APs to return from Procedure, either for\r
2215 blocking or non-blocking mode.\r
2216 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2217 all APs.\r
2218 @param[out] FailedCpuList If all APs finish successfully, then its\r
2219 content is set to NULL. If not all APs\r
2220 finish before timeout expires, then its\r
2221 content is set to address of the buffer\r
2222 holding handle numbers of the failed APs.\r
2223\r
2224 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2225 the timeout expired.\r
2226 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2227 to all enabled APs.\r
2228 @retval others Failed to Startup all APs.\r
2229\r
2230**/\r
2231EFI_STATUS\r
ee0c39fa 2232StartupAllCPUsWorker (\r
86efe976
JF
2233 IN EFI_AP_PROCEDURE Procedure,\r
2234 IN BOOLEAN SingleThread,\r
ee0c39fa 2235 IN BOOLEAN ExcludeBsp,\r
86efe976
JF
2236 IN EFI_EVENT WaitEvent OPTIONAL,\r
2237 IN UINTN TimeoutInMicroseconds,\r
2238 IN VOID *ProcedureArgument OPTIONAL,\r
2239 OUT UINTN **FailedCpuList OPTIONAL\r
2240 )\r
2241{\r
2242 EFI_STATUS Status;\r
2243 CPU_MP_DATA *CpuMpData;\r
2244 UINTN ProcessorCount;\r
2245 UINTN ProcessorNumber;\r
2246 UINTN CallerNumber;\r
2247 CPU_AP_DATA *CpuData;\r
2248 BOOLEAN HasEnabledAp;\r
2249 CPU_STATE ApState;\r
2250\r
2251 CpuMpData = GetCpuMpData ();\r
2252\r
2253 if (FailedCpuList != NULL) {\r
2254 *FailedCpuList = NULL;\r
2255 }\r
2256\r
ee0c39fa 2257 if (CpuMpData->CpuCount == 1 && ExcludeBsp) {\r
86efe976
JF
2258 return EFI_NOT_STARTED;\r
2259 }\r
2260\r
2261 if (Procedure == NULL) {\r
2262 return EFI_INVALID_PARAMETER;\r
2263 }\r
2264\r
2265 //\r
2266 // Check whether caller processor is BSP\r
2267 //\r
2268 MpInitLibWhoAmI (&CallerNumber);\r
2269 if (CallerNumber != CpuMpData->BspNumber) {\r
2270 return EFI_DEVICE_ERROR;\r
2271 }\r
2272\r
2273 //\r
2274 // Update AP state\r
2275 //\r
2276 CheckAndUpdateApsStatus ();\r
2277\r
2278 ProcessorCount = CpuMpData->CpuCount;\r
2279 HasEnabledAp = FALSE;\r
2280 //\r
2281 // Check whether all enabled APs are idle.\r
2282 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2283 //\r
2284 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2285 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2286 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2287 ApState = GetApState (CpuData);\r
2288 if (ApState != CpuStateDisabled) {\r
2289 HasEnabledAp = TRUE;\r
2290 if (ApState != CpuStateIdle) {\r
2291 //\r
2292 // If any enabled APs are busy, return EFI_NOT_READY.\r
2293 //\r
2294 return EFI_NOT_READY;\r
2295 }\r
2296 }\r
2297 }\r
2298 }\r
2299\r
ee0c39fa 2300 if (!HasEnabledAp && ExcludeBsp) {\r
86efe976 2301 //\r
ee0c39fa 2302 // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.\r
86efe976
JF
2303 //\r
2304 return EFI_NOT_STARTED;\r
2305 }\r
2306\r
2da3e96c 2307 CpuMpData->RunningCount = 0;\r
86efe976
JF
2308 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2309 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2310 CpuData->Waiting = FALSE;\r
2311 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2312 if (CpuData->State == CpuStateIdle) {\r
2313 //\r
2314 // Mark this processor as responsible for current calling.\r
2315 //\r
2316 CpuData->Waiting = TRUE;\r
2da3e96c 2317 CpuMpData->RunningCount++;\r
86efe976
JF
2318 }\r
2319 }\r
2320 }\r
2321\r
2322 CpuMpData->Procedure = Procedure;\r
2323 CpuMpData->ProcArguments = ProcedureArgument;\r
2324 CpuMpData->SingleThread = SingleThread;\r
2325 CpuMpData->FinishedCount = 0;\r
86efe976
JF
2326 CpuMpData->FailedCpuList = FailedCpuList;\r
2327 CpuMpData->ExpectedTime = CalculateTimeout (\r
2328 TimeoutInMicroseconds,\r
2329 &CpuMpData->CurrentTime\r
2330 );\r
2331 CpuMpData->TotalTime = 0;\r
2332 CpuMpData->WaitEvent = WaitEvent;\r
2333\r
2334 if (!SingleThread) {\r
cf4e79e4 2335 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);\r
86efe976
JF
2336 } else {\r
2337 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2338 if (ProcessorNumber == CallerNumber) {\r
2339 continue;\r
2340 }\r
2341 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
cf4e79e4 2342 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
86efe976
JF
2343 break;\r
2344 }\r
2345 }\r
2346 }\r
2347\r
ee0c39fa
ED
2348 if (!ExcludeBsp) {\r
2349 //\r
2350 // Start BSP.\r
2351 //\r
2352 Procedure (ProcedureArgument);\r
2353 }\r
2354\r
86efe976
JF
2355 Status = EFI_SUCCESS;\r
2356 if (WaitEvent == NULL) {\r
2357 do {\r
2358 Status = CheckAllAPs ();\r
2359 } while (Status == EFI_NOT_READY);\r
2360 }\r
2361\r
2362 return Status;\r
2363}\r
2364\r
20ae5774
JF
2365/**\r
2366 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2367 function.\r
2368\r
2369 @param[in] Procedure A pointer to the function to be run on\r
2370 enabled APs of the system.\r
2371 @param[in] ProcessorNumber The handle number of the AP.\r
2372 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2373 service.\r
367284e7 2374 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2375 APs to return from Procedure, either for\r
2376 blocking or non-blocking mode.\r
2377 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2378 all APs.\r
2379 @param[out] Finished If AP returns from Procedure before the\r
2380 timeout expires, its content is set to TRUE.\r
2381 Otherwise, the value is set to FALSE.\r
2382\r
2383 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2384 the timeout expires.\r
2385 @retval others Failed to Startup AP.\r
2386\r
2387**/\r
2388EFI_STATUS\r
2389StartupThisAPWorker (\r
2390 IN EFI_AP_PROCEDURE Procedure,\r
2391 IN UINTN ProcessorNumber,\r
2392 IN EFI_EVENT WaitEvent OPTIONAL,\r
2393 IN UINTN TimeoutInMicroseconds,\r
2394 IN VOID *ProcedureArgument OPTIONAL,\r
2395 OUT BOOLEAN *Finished OPTIONAL\r
2396 )\r
2397{\r
2398 EFI_STATUS Status;\r
2399 CPU_MP_DATA *CpuMpData;\r
2400 CPU_AP_DATA *CpuData;\r
2401 UINTN CallerNumber;\r
2402\r
2403 CpuMpData = GetCpuMpData ();\r
2404\r
2405 if (Finished != NULL) {\r
2406 *Finished = FALSE;\r
2407 }\r
2408\r
2409 //\r
2410 // Check whether caller processor is BSP\r
2411 //\r
2412 MpInitLibWhoAmI (&CallerNumber);\r
2413 if (CallerNumber != CpuMpData->BspNumber) {\r
2414 return EFI_DEVICE_ERROR;\r
2415 }\r
2416\r
2417 //\r
2418 // Check whether processor with the handle specified by ProcessorNumber exists\r
2419 //\r
2420 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2421 return EFI_NOT_FOUND;\r
2422 }\r
2423\r
2424 //\r
2425 // Check whether specified processor is BSP\r
2426 //\r
2427 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2428 return EFI_INVALID_PARAMETER;\r
2429 }\r
2430\r
2431 //\r
2432 // Check parameter Procedure\r
2433 //\r
2434 if (Procedure == NULL) {\r
2435 return EFI_INVALID_PARAMETER;\r
2436 }\r
2437\r
2438 //\r
2439 // Update AP state\r
2440 //\r
2441 CheckAndUpdateApsStatus ();\r
2442\r
2443 //\r
2444 // Check whether specified AP is disabled\r
2445 //\r
2446 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2447 return EFI_INVALID_PARAMETER;\r
2448 }\r
2449\r
2450 //\r
2451 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2452 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2453 // CheckAPsStatus() will check completion and timeout periodically.\r
2454 //\r
2455 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2456 CpuData->WaitEvent = WaitEvent;\r
2457 CpuData->Finished = Finished;\r
2458 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2459 CpuData->TotalTime = 0;\r
2460\r
cf4e79e4 2461 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
20ae5774
JF
2462\r
2463 //\r
2464 // If WaitEvent is NULL, execute in blocking mode.\r
2465 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2466 //\r
2467 Status = EFI_SUCCESS;\r
2468 if (WaitEvent == NULL) {\r
2469 do {\r
2470 Status = CheckThisAP (ProcessorNumber);\r
2471 } while (Status == EFI_NOT_READY);\r
2472 }\r
2473\r
2474 return Status;\r
2475}\r
2476\r
93ca4c0f
JF
2477/**\r
2478 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2479\r
2480 @return The pointer to CPU MP Data structure.\r
2481**/\r
2482CPU_MP_DATA *\r
2483GetCpuMpDataFromGuidedHob (\r
2484 VOID\r
2485 )\r
2486{\r
2487 EFI_HOB_GUID_TYPE *GuidHob;\r
2488 VOID *DataInHob;\r
2489 CPU_MP_DATA *CpuMpData;\r
2490\r
2491 CpuMpData = NULL;\r
2492 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2493 if (GuidHob != NULL) {\r
2494 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2495 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2496 }\r
2497 return CpuMpData;\r
2498}\r
42c37b3b 2499\r
ee0c39fa
ED
2500/**\r
2501 This service executes a caller provided function on all enabled CPUs.\r
2502\r
2503 @param[in] Procedure A pointer to the function to be run on\r
2504 enabled APs of the system. See type\r
2505 EFI_AP_PROCEDURE.\r
2506 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
2507 APs to return from Procedure, either for\r
2508 blocking or non-blocking mode. Zero means\r
2509 infinity. TimeoutInMicroseconds is ignored\r
2510 for BSP.\r
2511 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2512 all APs.\r
2513\r
2514 @retval EFI_SUCCESS In blocking mode, all CPUs have finished before\r
2515 the timeout expired.\r
2516 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2517 to all enabled CPUs.\r
2518 @retval EFI_DEVICE_ERROR Caller processor is AP.\r
2519 @retval EFI_NOT_READY Any enabled APs are busy.\r
2520 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2521 @retval EFI_TIMEOUT In blocking mode, the timeout expired before\r
2522 all enabled APs have finished.\r
2523 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
2524\r
2525**/\r
2526EFI_STATUS\r
2527EFIAPI\r
2528MpInitLibStartupAllCPUs (\r
2529 IN EFI_AP_PROCEDURE Procedure,\r
2530 IN UINTN TimeoutInMicroseconds,\r
2531 IN VOID *ProcedureArgument OPTIONAL\r
2532 )\r
2533{\r
2534 return StartupAllCPUsWorker (\r
2535 Procedure,\r
2536 FALSE,\r
2537 FALSE,\r
2538 NULL,\r
2539 TimeoutInMicroseconds,\r
2540 ProcedureArgument,\r
2541 NULL\r
2542 );\r
2543}\r