]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
pci: Implement BusInfo.get_dev_path()
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
74576198 113static int in_migration;
94a6b54f 114
f471a17e 115RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 116#endif
9fa3e853 117
6a00d601
FB
118CPUState *first_cpu;
119/* current CPU in the current thread. It is only valid inside
120 cpu_exec() */
5fafdf24 121CPUState *cpu_single_env;
2e70f6ef 122/* 0 = Do not count executed instructions.
bf20dc07 123 1 = Precise instruction counting.
2e70f6ef
PB
124 2 = Adaptive rate instruction counting. */
125int use_icount = 0;
126/* Current instruction counter. While executing translated code this may
127 include some instructions that have not yet been executed. */
128int64_t qemu_icount;
6a00d601 129
54936004 130typedef struct PageDesc {
92e873b9 131 /* list of TBs intersecting this ram page */
fd6ce8f6 132 TranslationBlock *first_tb;
9fa3e853
FB
133 /* in order to optimize self modifying code, we count the number
134 of lookups we do to a given page to use a bitmap */
135 unsigned int code_write_count;
136 uint8_t *code_bitmap;
137#if defined(CONFIG_USER_ONLY)
138 unsigned long flags;
139#endif
54936004
FB
140} PageDesc;
141
41c1b1c9 142/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
143 while in user mode we want it to be based on virtual addresses. */
144#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
145#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
146# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
147#else
5cd2c5b6 148# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 149#endif
bedb69ea 150#else
5cd2c5b6 151# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 152#endif
54936004 153
5cd2c5b6
RH
154/* Size of the L2 (and L3, etc) page tables. */
155#define L2_BITS 10
54936004
FB
156#define L2_SIZE (1 << L2_BITS)
157
5cd2c5b6
RH
158/* The bits remaining after N lower levels of page tables. */
159#define P_L1_BITS_REM \
160 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
161#define V_L1_BITS_REM \
162 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163
164/* Size of the L1 page table. Avoid silly small sizes. */
165#if P_L1_BITS_REM < 4
166#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
167#else
168#define P_L1_BITS P_L1_BITS_REM
169#endif
170
171#if V_L1_BITS_REM < 4
172#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
173#else
174#define V_L1_BITS V_L1_BITS_REM
175#endif
176
177#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
178#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
179
180#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
181#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
182
83fb7adf
FB
183unsigned long qemu_real_host_page_size;
184unsigned long qemu_host_page_bits;
185unsigned long qemu_host_page_size;
186unsigned long qemu_host_page_mask;
54936004 187
5cd2c5b6
RH
188/* This is a multi-level map on the virtual address space.
189 The bottom level has pointers to PageDesc. */
190static void *l1_map[V_L1_SIZE];
54936004 191
e2eef170 192#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
193typedef struct PhysPageDesc {
194 /* offset in host memory of the page + io_index in the low bits */
195 ram_addr_t phys_offset;
196 ram_addr_t region_offset;
197} PhysPageDesc;
198
5cd2c5b6
RH
199/* This is a multi-level map on the physical address space.
200 The bottom level has pointers to PhysPageDesc. */
201static void *l1_phys_map[P_L1_SIZE];
6d9a1304 202
e2eef170
PB
203static void io_mem_init(void);
204
33417e70 205/* io memory support */
33417e70
FB
206CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
207CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 208void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 209static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
210static int io_mem_watch;
211#endif
33417e70 212
34865134 213/* log support */
1e8b27ca
JR
214#ifdef WIN32
215static const char *logfilename = "qemu.log";
216#else
d9b630fd 217static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 218#endif
34865134
FB
219FILE *logfile;
220int loglevel;
e735b91c 221static int log_append = 0;
34865134 222
e3db7226 223/* statistics */
b3755a91 224#if !defined(CONFIG_USER_ONLY)
e3db7226 225static int tlb_flush_count;
b3755a91 226#endif
e3db7226
FB
227static int tb_flush_count;
228static int tb_phys_invalidate_count;
229
7cb69cae
FB
230#ifdef _WIN32
231static void map_exec(void *addr, long size)
232{
233 DWORD old_protect;
234 VirtualProtect(addr, size,
235 PAGE_EXECUTE_READWRITE, &old_protect);
236
237}
238#else
239static void map_exec(void *addr, long size)
240{
4369415f 241 unsigned long start, end, page_size;
7cb69cae 242
4369415f 243 page_size = getpagesize();
7cb69cae 244 start = (unsigned long)addr;
4369415f 245 start &= ~(page_size - 1);
7cb69cae
FB
246
247 end = (unsigned long)addr + size;
4369415f
FB
248 end += page_size - 1;
249 end &= ~(page_size - 1);
7cb69cae
FB
250
251 mprotect((void *)start, end - start,
252 PROT_READ | PROT_WRITE | PROT_EXEC);
253}
254#endif
255
b346ff46 256static void page_init(void)
54936004 257{
83fb7adf 258 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 259 TARGET_PAGE_SIZE */
c2b48b69
AL
260#ifdef _WIN32
261 {
262 SYSTEM_INFO system_info;
263
264 GetSystemInfo(&system_info);
265 qemu_real_host_page_size = system_info.dwPageSize;
266 }
267#else
268 qemu_real_host_page_size = getpagesize();
269#endif
83fb7adf
FB
270 if (qemu_host_page_size == 0)
271 qemu_host_page_size = qemu_real_host_page_size;
272 if (qemu_host_page_size < TARGET_PAGE_SIZE)
273 qemu_host_page_size = TARGET_PAGE_SIZE;
274 qemu_host_page_bits = 0;
275 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
276 qemu_host_page_bits++;
277 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 278
2e9a5713 279#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 280 {
f01576f1
JL
281#ifdef HAVE_KINFO_GETVMMAP
282 struct kinfo_vmentry *freep;
283 int i, cnt;
284
285 freep = kinfo_getvmmap(getpid(), &cnt);
286 if (freep) {
287 mmap_lock();
288 for (i = 0; i < cnt; i++) {
289 unsigned long startaddr, endaddr;
290
291 startaddr = freep[i].kve_start;
292 endaddr = freep[i].kve_end;
293 if (h2g_valid(startaddr)) {
294 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
295
296 if (h2g_valid(endaddr)) {
297 endaddr = h2g(endaddr);
fd436907 298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
299 } else {
300#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
301 endaddr = ~0ul;
fd436907 302 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
303#endif
304 }
305 }
306 }
307 free(freep);
308 mmap_unlock();
309 }
310#else
50a9569b 311 FILE *f;
50a9569b 312
0776590d 313 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 314
fd436907 315 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 316 if (f) {
5cd2c5b6
RH
317 mmap_lock();
318
50a9569b 319 do {
5cd2c5b6
RH
320 unsigned long startaddr, endaddr;
321 int n;
322
323 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
324
325 if (n == 2 && h2g_valid(startaddr)) {
326 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
327
328 if (h2g_valid(endaddr)) {
329 endaddr = h2g(endaddr);
330 } else {
331 endaddr = ~0ul;
332 }
333 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
334 }
335 } while (!feof(f));
5cd2c5b6 336
50a9569b 337 fclose(f);
5cd2c5b6 338 mmap_unlock();
50a9569b 339 }
f01576f1 340#endif
50a9569b
AZ
341 }
342#endif
54936004
FB
343}
344
41c1b1c9 345static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 346{
41c1b1c9
PB
347 PageDesc *pd;
348 void **lp;
349 int i;
350
5cd2c5b6 351#if defined(CONFIG_USER_ONLY)
2e9a5713 352 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
353# define ALLOC(P, SIZE) \
354 do { \
355 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
356 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
357 } while (0)
358#else
359# define ALLOC(P, SIZE) \
360 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 361#endif
434929bf 362
5cd2c5b6
RH
363 /* Level 1. Always allocated. */
364 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
365
366 /* Level 2..N-1. */
367 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
368 void **p = *lp;
369
370 if (p == NULL) {
371 if (!alloc) {
372 return NULL;
373 }
374 ALLOC(p, sizeof(void *) * L2_SIZE);
375 *lp = p;
17e2377a 376 }
5cd2c5b6
RH
377
378 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
379 }
380
381 pd = *lp;
382 if (pd == NULL) {
383 if (!alloc) {
384 return NULL;
385 }
386 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
387 *lp = pd;
54936004 388 }
5cd2c5b6
RH
389
390#undef ALLOC
5cd2c5b6
RH
391
392 return pd + (index & (L2_SIZE - 1));
54936004
FB
393}
394
41c1b1c9 395static inline PageDesc *page_find(tb_page_addr_t index)
54936004 396{
5cd2c5b6 397 return page_find_alloc(index, 0);
fd6ce8f6
FB
398}
399
6d9a1304 400#if !defined(CONFIG_USER_ONLY)
c227f099 401static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 402{
e3f4e2a4 403 PhysPageDesc *pd;
5cd2c5b6
RH
404 void **lp;
405 int i;
92e873b9 406
5cd2c5b6
RH
407 /* Level 1. Always allocated. */
408 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 409
5cd2c5b6
RH
410 /* Level 2..N-1. */
411 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
412 void **p = *lp;
413 if (p == NULL) {
414 if (!alloc) {
415 return NULL;
416 }
417 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
418 }
419 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 420 }
5cd2c5b6 421
e3f4e2a4 422 pd = *lp;
5cd2c5b6 423 if (pd == NULL) {
e3f4e2a4 424 int i;
5cd2c5b6
RH
425
426 if (!alloc) {
108c49b8 427 return NULL;
5cd2c5b6
RH
428 }
429
430 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
431
67c4d23c 432 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
433 pd[i].phys_offset = IO_MEM_UNASSIGNED;
434 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 435 }
92e873b9 436 }
5cd2c5b6
RH
437
438 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
439}
440
c227f099 441static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 442{
108c49b8 443 return phys_page_find_alloc(index, 0);
92e873b9
FB
444}
445
c227f099
AL
446static void tlb_protect_code(ram_addr_t ram_addr);
447static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 448 target_ulong vaddr);
c8a706fe
PB
449#define mmap_lock() do { } while(0)
450#define mmap_unlock() do { } while(0)
9fa3e853 451#endif
fd6ce8f6 452
4369415f
FB
453#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
454
455#if defined(CONFIG_USER_ONLY)
ccbb4d44 456/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
457 user mode. It will change when a dedicated libc will be used */
458#define USE_STATIC_CODE_GEN_BUFFER
459#endif
460
461#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
462static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
463 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
464#endif
465
8fcd3692 466static void code_gen_alloc(unsigned long tb_size)
26a5f13b 467{
4369415f
FB
468#ifdef USE_STATIC_CODE_GEN_BUFFER
469 code_gen_buffer = static_code_gen_buffer;
470 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
471 map_exec(code_gen_buffer, code_gen_buffer_size);
472#else
26a5f13b
FB
473 code_gen_buffer_size = tb_size;
474 if (code_gen_buffer_size == 0) {
4369415f
FB
475#if defined(CONFIG_USER_ONLY)
476 /* in user mode, phys_ram_size is not meaningful */
477 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
478#else
ccbb4d44 479 /* XXX: needs adjustments */
94a6b54f 480 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 481#endif
26a5f13b
FB
482 }
483 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
484 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
485 /* The code gen buffer location may have constraints depending on
486 the host cpu and OS */
487#if defined(__linux__)
488 {
489 int flags;
141ac468
BS
490 void *start = NULL;
491
26a5f13b
FB
492 flags = MAP_PRIVATE | MAP_ANONYMOUS;
493#if defined(__x86_64__)
494 flags |= MAP_32BIT;
495 /* Cannot map more than that */
496 if (code_gen_buffer_size > (800 * 1024 * 1024))
497 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
498#elif defined(__sparc_v9__)
499 // Map the buffer below 2G, so we can use direct calls and branches
500 flags |= MAP_FIXED;
501 start = (void *) 0x60000000UL;
502 if (code_gen_buffer_size > (512 * 1024 * 1024))
503 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 504#elif defined(__arm__)
63d41246 505 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
506 flags |= MAP_FIXED;
507 start = (void *) 0x01000000UL;
508 if (code_gen_buffer_size > 16 * 1024 * 1024)
509 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
510#elif defined(__s390x__)
511 /* Map the buffer so that we can use direct calls and branches. */
512 /* We have a +- 4GB range on the branches; leave some slop. */
513 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
514 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
515 }
516 start = (void *)0x90000000UL;
26a5f13b 517#endif
141ac468
BS
518 code_gen_buffer = mmap(start, code_gen_buffer_size,
519 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
520 flags, -1, 0);
521 if (code_gen_buffer == MAP_FAILED) {
522 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
523 exit(1);
524 }
525 }
a167ba50 526#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
527 {
528 int flags;
529 void *addr = NULL;
530 flags = MAP_PRIVATE | MAP_ANONYMOUS;
531#if defined(__x86_64__)
532 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
533 * 0x40000000 is free */
534 flags |= MAP_FIXED;
535 addr = (void *)0x40000000;
536 /* Cannot map more than that */
537 if (code_gen_buffer_size > (800 * 1024 * 1024))
538 code_gen_buffer_size = (800 * 1024 * 1024);
539#endif
540 code_gen_buffer = mmap(addr, code_gen_buffer_size,
541 PROT_WRITE | PROT_READ | PROT_EXEC,
542 flags, -1, 0);
543 if (code_gen_buffer == MAP_FAILED) {
544 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
545 exit(1);
546 }
547 }
26a5f13b
FB
548#else
549 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
550 map_exec(code_gen_buffer, code_gen_buffer_size);
551#endif
4369415f 552#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
553 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
554 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 555 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
556 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
557 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
558}
559
560/* Must be called before using the QEMU cpus. 'tb_size' is the size
561 (in bytes) allocated to the translation buffer. Zero means default
562 size. */
563void cpu_exec_init_all(unsigned long tb_size)
564{
26a5f13b
FB
565 cpu_gen_init();
566 code_gen_alloc(tb_size);
567 code_gen_ptr = code_gen_buffer;
4369415f 568 page_init();
e2eef170 569#if !defined(CONFIG_USER_ONLY)
26a5f13b 570 io_mem_init();
e2eef170 571#endif
9002ec79
RH
572#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
573 /* There's no guest base to take into account, so go ahead and
574 initialize the prologue now. */
575 tcg_prologue_init(&tcg_ctx);
576#endif
26a5f13b
FB
577}
578
9656f324
PB
579#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
580
e59fb374 581static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
582{
583 CPUState *env = opaque;
9656f324 584
3098dba0
AJ
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env->interrupt_request &= ~0x01;
9656f324
PB
588 tlb_flush(env, 1);
589
590 return 0;
591}
e7f4eff7
JQ
592
593static const VMStateDescription vmstate_cpu_common = {
594 .name = "cpu_common",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .minimum_version_id_old = 1,
e7f4eff7
JQ
598 .post_load = cpu_common_post_load,
599 .fields = (VMStateField []) {
600 VMSTATE_UINT32(halted, CPUState),
601 VMSTATE_UINT32(interrupt_request, CPUState),
602 VMSTATE_END_OF_LIST()
603 }
604};
9656f324
PB
605#endif
606
950f1472
GC
607CPUState *qemu_get_cpu(int cpu)
608{
609 CPUState *env = first_cpu;
610
611 while (env) {
612 if (env->cpu_index == cpu)
613 break;
614 env = env->next_cpu;
615 }
616
617 return env;
618}
619
6a00d601 620void cpu_exec_init(CPUState *env)
fd6ce8f6 621{
6a00d601
FB
622 CPUState **penv;
623 int cpu_index;
624
c2764719
PB
625#if defined(CONFIG_USER_ONLY)
626 cpu_list_lock();
627#endif
6a00d601
FB
628 env->next_cpu = NULL;
629 penv = &first_cpu;
630 cpu_index = 0;
631 while (*penv != NULL) {
1e9fa730 632 penv = &(*penv)->next_cpu;
6a00d601
FB
633 cpu_index++;
634 }
635 env->cpu_index = cpu_index;
268a362c 636 env->numa_node = 0;
72cf2d4f
BS
637 QTAILQ_INIT(&env->breakpoints);
638 QTAILQ_INIT(&env->watchpoints);
6a00d601 639 *penv = env;
c2764719
PB
640#if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642#endif
b3c7724c 643#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 644 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
645 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, env);
647#endif
fd6ce8f6
FB
648}
649
9fa3e853
FB
650static inline void invalidate_page_bitmap(PageDesc *p)
651{
652 if (p->code_bitmap) {
59817ccb 653 qemu_free(p->code_bitmap);
9fa3e853
FB
654 p->code_bitmap = NULL;
655 }
656 p->code_write_count = 0;
657}
658
5cd2c5b6
RH
659/* Set to NULL all the 'first_tb' fields in all PageDescs. */
660
661static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 662{
5cd2c5b6 663 int i;
fd6ce8f6 664
5cd2c5b6
RH
665 if (*lp == NULL) {
666 return;
667 }
668 if (level == 0) {
669 PageDesc *pd = *lp;
7296abac 670 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
671 pd[i].first_tb = NULL;
672 invalidate_page_bitmap(pd + i);
fd6ce8f6 673 }
5cd2c5b6
RH
674 } else {
675 void **pp = *lp;
7296abac 676 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
677 page_flush_tb_1 (level - 1, pp + i);
678 }
679 }
680}
681
682static void page_flush_tb(void)
683{
684 int i;
685 for (i = 0; i < V_L1_SIZE; i++) {
686 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
687 }
688}
689
690/* flush all the translation blocks */
d4e8164f 691/* XXX: tb_flush is currently not thread safe */
6a00d601 692void tb_flush(CPUState *env1)
fd6ce8f6 693{
6a00d601 694 CPUState *env;
0124311e 695#if defined(DEBUG_FLUSH)
ab3d1727
BS
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr - code_gen_buffer),
698 nb_tbs, nb_tbs > 0 ?
699 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 700#endif
26a5f13b 701 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
703
fd6ce8f6 704 nb_tbs = 0;
3b46e624 705
6a00d601
FB
706 for(env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
708 }
9fa3e853 709
8a8a608f 710 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 711 page_flush_tb();
9fa3e853 712
fd6ce8f6 713 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
e3db7226 716 tb_flush_count++;
fd6ce8f6
FB
717}
718
719#ifdef DEBUG_TB_CHECK
720
bc98a7ef 721static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
722{
723 TranslationBlock *tb;
724 int i;
725 address &= TARGET_PAGE_MASK;
99773bd4
PB
726 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
727 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
728 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
729 address >= tb->pc + tb->size)) {
0bf9e31a
BS
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
99773bd4 732 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
733 }
734 }
735 }
736}
737
738/* verify that all the pages have correct rights for code */
739static void tb_page_check(void)
740{
741 TranslationBlock *tb;
742 int i, flags1, flags2;
3b46e624 743
99773bd4
PB
744 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
745 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
746 flags1 = page_get_flags(tb->pc);
747 flags2 = page_get_flags(tb->pc + tb->size - 1);
748 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 750 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
751 }
752 }
753 }
754}
755
756#endif
757
758/* invalidate one TB */
759static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
760 int next_offset)
761{
762 TranslationBlock *tb1;
763 for(;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
767 break;
768 }
769 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
770 }
771}
772
9fa3e853
FB
773static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
774{
775 TranslationBlock *tb1;
776 unsigned int n1;
777
778 for(;;) {
779 tb1 = *ptb;
780 n1 = (long)tb1 & 3;
781 tb1 = (TranslationBlock *)((long)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
785 }
786 ptb = &tb1->page_next[n1];
787 }
788}
789
d4e8164f
FB
790static inline void tb_jmp_remove(TranslationBlock *tb, int n)
791{
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
794
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for(;;) {
800 tb1 = *ptb;
801 n1 = (long)tb1 & 3;
802 tb1 = (TranslationBlock *)((long)tb1 & ~3);
803 if (n1 == n && tb1 == tb)
804 break;
805 if (n1 == 2) {
806 ptb = &tb1->jmp_first;
807 } else {
808 ptb = &tb1->jmp_next[n1];
809 }
810 }
811 /* now we can suppress tb(n) from the list */
812 *ptb = tb->jmp_next[n];
813
814 tb->jmp_next[n] = NULL;
815 }
816}
817
818/* reset the jump entry 'n' of a TB so that it is not chained to
819 another TB */
820static inline void tb_reset_jump(TranslationBlock *tb, int n)
821{
822 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
823}
824
41c1b1c9 825void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 826{
6a00d601 827 CPUState *env;
8a40a180 828 PageDesc *p;
d4e8164f 829 unsigned int h, n1;
41c1b1c9 830 tb_page_addr_t phys_pc;
8a40a180 831 TranslationBlock *tb1, *tb2;
3b46e624 832
8a40a180
FB
833 /* remove the TB from the hash list */
834 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
835 h = tb_phys_hash_func(phys_pc);
5fafdf24 836 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
837 offsetof(TranslationBlock, phys_hash_next));
838
839 /* remove the TB from the page list */
840 if (tb->page_addr[0] != page_addr) {
841 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
842 tb_page_remove(&p->first_tb, tb);
843 invalidate_page_bitmap(p);
844 }
845 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
846 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
847 tb_page_remove(&p->first_tb, tb);
848 invalidate_page_bitmap(p);
849 }
850
36bdbe54 851 tb_invalidated_flag = 1;
59817ccb 852
fd6ce8f6 853 /* remove the TB from the hash list */
8a40a180 854 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
856 if (env->tb_jmp_cache[h] == tb)
857 env->tb_jmp_cache[h] = NULL;
858 }
d4e8164f
FB
859
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb, 0);
862 tb_jmp_remove(tb, 1);
863
864 /* suppress any remaining jumps to this TB */
865 tb1 = tb->jmp_first;
866 for(;;) {
867 n1 = (long)tb1 & 3;
868 if (n1 == 2)
869 break;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 tb2 = tb1->jmp_next[n1];
872 tb_reset_jump(tb1, n1);
873 tb1->jmp_next[n1] = NULL;
874 tb1 = tb2;
875 }
876 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 877
e3db7226 878 tb_phys_invalidate_count++;
9fa3e853
FB
879}
880
881static inline void set_bits(uint8_t *tab, int start, int len)
882{
883 int end, mask, end1;
884
885 end = start + len;
886 tab += start >> 3;
887 mask = 0xff << (start & 7);
888 if ((start & ~7) == (end & ~7)) {
889 if (start < end) {
890 mask &= ~(0xff << (end & 7));
891 *tab |= mask;
892 }
893 } else {
894 *tab++ |= mask;
895 start = (start + 8) & ~7;
896 end1 = end & ~7;
897 while (start < end1) {
898 *tab++ = 0xff;
899 start += 8;
900 }
901 if (start < end) {
902 mask = ~(0xff << (end & 7));
903 *tab |= mask;
904 }
905 }
906}
907
908static void build_page_bitmap(PageDesc *p)
909{
910 int n, tb_start, tb_end;
911 TranslationBlock *tb;
3b46e624 912
b2a7081a 913 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
914
915 tb = p->first_tb;
916 while (tb != NULL) {
917 n = (long)tb & 3;
918 tb = (TranslationBlock *)((long)tb & ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->pc & ~TARGET_PAGE_MASK;
924 tb_end = tb_start + tb->size;
925 if (tb_end > TARGET_PAGE_SIZE)
926 tb_end = TARGET_PAGE_SIZE;
927 } else {
928 tb_start = 0;
929 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
930 }
931 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
932 tb = tb->page_next[n];
933 }
934}
935
2e70f6ef
PB
936TranslationBlock *tb_gen_code(CPUState *env,
937 target_ulong pc, target_ulong cs_base,
938 int flags, int cflags)
d720b93d
FB
939{
940 TranslationBlock *tb;
941 uint8_t *tc_ptr;
41c1b1c9
PB
942 tb_page_addr_t phys_pc, phys_page2;
943 target_ulong virt_page2;
d720b93d
FB
944 int code_gen_size;
945
41c1b1c9 946 phys_pc = get_page_addr_code(env, pc);
c27004ec 947 tb = tb_alloc(pc);
d720b93d
FB
948 if (!tb) {
949 /* flush must be done */
950 tb_flush(env);
951 /* cannot fail at this point */
c27004ec 952 tb = tb_alloc(pc);
2e70f6ef
PB
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag = 1;
d720b93d
FB
955 }
956 tc_ptr = code_gen_ptr;
957 tb->tc_ptr = tc_ptr;
958 tb->cs_base = cs_base;
959 tb->flags = flags;
960 tb->cflags = cflags;
d07bde88 961 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 962 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 963
d720b93d 964 /* check next page if needed */
c27004ec 965 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 966 phys_page2 = -1;
c27004ec 967 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 968 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 969 }
41c1b1c9 970 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 971 return tb;
d720b93d 972}
3b46e624 973
9fa3e853
FB
974/* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
41c1b1c9 979void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
980 int is_cpu_write_access)
981{
6b917547 982 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 983 CPUState *env = cpu_single_env;
41c1b1c9 984 tb_page_addr_t tb_start, tb_end;
6b917547
AL
985 PageDesc *p;
986 int n;
987#ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found = is_cpu_write_access;
989 TranslationBlock *current_tb = NULL;
990 int current_tb_modified = 0;
991 target_ulong current_pc = 0;
992 target_ulong current_cs_base = 0;
993 int current_flags = 0;
994#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
995
996 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 997 if (!p)
9fa3e853 998 return;
5fafdf24 999 if (!p->code_bitmap &&
d720b93d
FB
1000 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1001 is_cpu_write_access) {
9fa3e853
FB
1002 /* build code bitmap */
1003 build_page_bitmap(p);
1004 }
1005
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (long)tb & 3;
1011 tb = (TranslationBlock *)((long)tb & ~3);
1012 tb_next = tb->page_next[n];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1014 if (n == 0) {
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1018 tb_end = tb_start + tb->size;
1019 } else {
1020 tb_start = tb->page_addr[1];
1021 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1022 }
1023 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1024#ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found) {
1026 current_tb_not_found = 0;
1027 current_tb = NULL;
2e70f6ef 1028 if (env->mem_io_pc) {
d720b93d 1029 /* now we have a real cpu fault */
2e70f6ef 1030 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1031 }
1032 }
1033 if (current_tb == tb &&
2e70f6ef 1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
3b46e624 1040
d720b93d 1041 current_tb_modified = 1;
5fafdf24 1042 cpu_restore_state(current_tb, env,
2e70f6ef 1043 env->mem_io_pc, NULL);
6b917547
AL
1044 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1045 &current_flags);
d720b93d
FB
1046 }
1047#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1050 saved_tb = NULL;
1051 if (env) {
1052 saved_tb = env->current_tb;
1053 env->current_tb = NULL;
1054 }
9fa3e853 1055 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1056 if (env) {
1057 env->current_tb = saved_tb;
1058 if (env->interrupt_request && env->current_tb)
1059 cpu_interrupt(env, env->interrupt_request);
1060 }
9fa3e853
FB
1061 }
1062 tb = tb_next;
1063 }
1064#if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1066 if (!p->first_tb) {
1067 invalidate_page_bitmap(p);
d720b93d 1068 if (is_cpu_write_access) {
2e70f6ef 1069 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1070 }
1071 }
1072#endif
1073#ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1077 itself */
ea1c1802 1078 env->current_tb = NULL;
2e70f6ef 1079 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1080 cpu_resume_from_signal(env, NULL);
9fa3e853 1081 }
fd6ce8f6 1082#endif
9fa3e853 1083}
fd6ce8f6 1084
9fa3e853 1085/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1086static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1087{
1088 PageDesc *p;
1089 int offset, b;
59817ccb 1090#if 0
a4193c8a 1091 if (1) {
93fcfe39
AL
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env->mem_io_vaddr, len,
1094 cpu_single_env->eip,
1095 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1096 }
1097#endif
9fa3e853 1098 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1099 if (!p)
9fa3e853
FB
1100 return;
1101 if (p->code_bitmap) {
1102 offset = start & ~TARGET_PAGE_MASK;
1103 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1104 if (b & ((1 << len) - 1))
1105 goto do_invalidate;
1106 } else {
1107 do_invalidate:
d720b93d 1108 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1109 }
1110}
1111
9fa3e853 1112#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1113static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1114 unsigned long pc, void *puc)
9fa3e853 1115{
6b917547 1116 TranslationBlock *tb;
9fa3e853 1117 PageDesc *p;
6b917547 1118 int n;
d720b93d 1119#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1120 TranslationBlock *current_tb = NULL;
d720b93d 1121 CPUState *env = cpu_single_env;
6b917547
AL
1122 int current_tb_modified = 0;
1123 target_ulong current_pc = 0;
1124 target_ulong current_cs_base = 0;
1125 int current_flags = 0;
d720b93d 1126#endif
9fa3e853
FB
1127
1128 addr &= TARGET_PAGE_MASK;
1129 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1130 if (!p)
9fa3e853
FB
1131 return;
1132 tb = p->first_tb;
d720b93d
FB
1133#ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb && pc != 0) {
1135 current_tb = tb_find_pc(pc);
1136 }
1137#endif
9fa3e853
FB
1138 while (tb != NULL) {
1139 n = (long)tb & 3;
1140 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1141#ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb == tb &&
2e70f6ef 1143 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
3b46e624 1149
d720b93d
FB
1150 current_tb_modified = 1;
1151 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1152 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1153 &current_flags);
d720b93d
FB
1154 }
1155#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1156 tb_phys_invalidate(tb, addr);
1157 tb = tb->page_next[n];
1158 }
fd6ce8f6 1159 p->first_tb = NULL;
d720b93d
FB
1160#ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
ea1c1802 1165 env->current_tb = NULL;
2e70f6ef 1166 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1167 cpu_resume_from_signal(env, puc);
1168 }
1169#endif
fd6ce8f6 1170}
9fa3e853 1171#endif
fd6ce8f6
FB
1172
1173/* add the tb in the target page and protect it if necessary */
5fafdf24 1174static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1175 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1176{
1177 PageDesc *p;
9fa3e853
FB
1178 TranslationBlock *last_first_tb;
1179
1180 tb->page_addr[n] = page_addr;
5cd2c5b6 1181 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1182 tb->page_next[n] = p->first_tb;
1183 last_first_tb = p->first_tb;
1184 p->first_tb = (TranslationBlock *)((long)tb | n);
1185 invalidate_page_bitmap(p);
fd6ce8f6 1186
107db443 1187#if defined(TARGET_HAS_SMC) || 1
d720b93d 1188
9fa3e853 1189#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1190 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1191 target_ulong addr;
1192 PageDesc *p2;
9fa3e853
FB
1193 int prot;
1194
fd6ce8f6
FB
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
53a5960a 1197 page_addr &= qemu_host_page_mask;
fd6ce8f6 1198 prot = 0;
53a5960a
PB
1199 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1200 addr += TARGET_PAGE_SIZE) {
1201
1202 p2 = page_find (addr >> TARGET_PAGE_BITS);
1203 if (!p2)
1204 continue;
1205 prot |= p2->flags;
1206 p2->flags &= ~PAGE_WRITE;
53a5960a 1207 }
5fafdf24 1208 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1209 (prot & PAGE_BITS) & ~PAGE_WRITE);
1210#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1211 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1212 page_addr);
fd6ce8f6 1213#endif
fd6ce8f6 1214 }
9fa3e853
FB
1215#else
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb) {
6a00d601 1220 tlb_protect_code(page_addr);
9fa3e853
FB
1221 }
1222#endif
d720b93d
FB
1223
1224#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1225}
1226
1227/* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
c27004ec 1229TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1230{
1231 TranslationBlock *tb;
fd6ce8f6 1232
26a5f13b
FB
1233 if (nb_tbs >= code_gen_max_blocks ||
1234 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1235 return NULL;
fd6ce8f6
FB
1236 tb = &tbs[nb_tbs++];
1237 tb->pc = pc;
b448f2f3 1238 tb->cflags = 0;
d4e8164f
FB
1239 return tb;
1240}
1241
2e70f6ef
PB
1242void tb_free(TranslationBlock *tb)
1243{
bf20dc07 1244 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1248 code_gen_ptr = tb->tc_ptr;
1249 nb_tbs--;
1250 }
1251}
1252
9fa3e853
FB
1253/* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1255void tb_link_page(TranslationBlock *tb,
1256 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1257{
9fa3e853
FB
1258 unsigned int h;
1259 TranslationBlock **ptb;
1260
c8a706fe
PB
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1263 mmap_lock();
9fa3e853
FB
1264 /* add in the physical hash table */
1265 h = tb_phys_hash_func(phys_pc);
1266 ptb = &tb_phys_hash[h];
1267 tb->phys_hash_next = *ptb;
1268 *ptb = tb;
fd6ce8f6
FB
1269
1270 /* add in the page list */
9fa3e853
FB
1271 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1272 if (phys_page2 != -1)
1273 tb_alloc_page(tb, 1, phys_page2);
1274 else
1275 tb->page_addr[1] = -1;
9fa3e853 1276
d4e8164f
FB
1277 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1278 tb->jmp_next[0] = NULL;
1279 tb->jmp_next[1] = NULL;
1280
1281 /* init original jump addresses */
1282 if (tb->tb_next_offset[0] != 0xffff)
1283 tb_reset_jump(tb, 0);
1284 if (tb->tb_next_offset[1] != 0xffff)
1285 tb_reset_jump(tb, 1);
8a40a180
FB
1286
1287#ifdef DEBUG_TB_CHECK
1288 tb_page_check();
1289#endif
c8a706fe 1290 mmap_unlock();
fd6ce8f6
FB
1291}
1292
9fa3e853
FB
1293/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1296{
9fa3e853
FB
1297 int m_min, m_max, m;
1298 unsigned long v;
1299 TranslationBlock *tb;
a513fe19
FB
1300
1301 if (nb_tbs <= 0)
1302 return NULL;
1303 if (tc_ptr < (unsigned long)code_gen_buffer ||
1304 tc_ptr >= (unsigned long)code_gen_ptr)
1305 return NULL;
1306 /* binary search (cf Knuth) */
1307 m_min = 0;
1308 m_max = nb_tbs - 1;
1309 while (m_min <= m_max) {
1310 m = (m_min + m_max) >> 1;
1311 tb = &tbs[m];
1312 v = (unsigned long)tb->tc_ptr;
1313 if (v == tc_ptr)
1314 return tb;
1315 else if (tc_ptr < v) {
1316 m_max = m - 1;
1317 } else {
1318 m_min = m + 1;
1319 }
5fafdf24 1320 }
a513fe19
FB
1321 return &tbs[m_max];
1322}
7501267e 1323
ea041c0e
FB
1324static void tb_reset_jump_recursive(TranslationBlock *tb);
1325
1326static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1327{
1328 TranslationBlock *tb1, *tb_next, **ptb;
1329 unsigned int n1;
1330
1331 tb1 = tb->jmp_next[n];
1332 if (tb1 != NULL) {
1333 /* find head of list */
1334 for(;;) {
1335 n1 = (long)tb1 & 3;
1336 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1337 if (n1 == 2)
1338 break;
1339 tb1 = tb1->jmp_next[n1];
1340 }
1341 /* we are now sure now that tb jumps to tb1 */
1342 tb_next = tb1;
1343
1344 /* remove tb from the jmp_first list */
1345 ptb = &tb_next->jmp_first;
1346 for(;;) {
1347 tb1 = *ptb;
1348 n1 = (long)tb1 & 3;
1349 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1350 if (n1 == n && tb1 == tb)
1351 break;
1352 ptb = &tb1->jmp_next[n1];
1353 }
1354 *ptb = tb->jmp_next[n];
1355 tb->jmp_next[n] = NULL;
3b46e624 1356
ea041c0e
FB
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb, n);
1359
0124311e 1360 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1361 tb_reset_jump_recursive(tb_next);
1362 }
1363}
1364
1365static void tb_reset_jump_recursive(TranslationBlock *tb)
1366{
1367 tb_reset_jump_recursive2(tb, 0);
1368 tb_reset_jump_recursive2(tb, 1);
1369}
1370
1fddef4b 1371#if defined(TARGET_HAS_ICE)
94df27fd
PB
1372#if defined(CONFIG_USER_ONLY)
1373static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1374{
1375 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1376}
1377#else
d720b93d
FB
1378static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1379{
c227f099 1380 target_phys_addr_t addr;
9b3c35e0 1381 target_ulong pd;
c227f099 1382 ram_addr_t ram_addr;
c2f07f81 1383 PhysPageDesc *p;
d720b93d 1384
c2f07f81
PB
1385 addr = cpu_get_phys_page_debug(env, pc);
1386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1387 if (!p) {
1388 pd = IO_MEM_UNASSIGNED;
1389 } else {
1390 pd = p->phys_offset;
1391 }
1392 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1393 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1394}
c27004ec 1395#endif
94df27fd 1396#endif /* TARGET_HAS_ICE */
d720b93d 1397
c527ee8f
PB
1398#if defined(CONFIG_USER_ONLY)
1399void cpu_watchpoint_remove_all(CPUState *env, int mask)
1400
1401{
1402}
1403
1404int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1405 int flags, CPUWatchpoint **watchpoint)
1406{
1407 return -ENOSYS;
1408}
1409#else
6658ffb8 1410/* Add a watchpoint. */
a1d1bb31
AL
1411int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1413{
b4051334 1414 target_ulong len_mask = ~(len - 1);
c0ce998e 1415 CPUWatchpoint *wp;
6658ffb8 1416
b4051334
AL
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1419 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1421 return -EINVAL;
1422 }
a1d1bb31 1423 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1424
1425 wp->vaddr = addr;
b4051334 1426 wp->len_mask = len_mask;
a1d1bb31
AL
1427 wp->flags = flags;
1428
2dc9f411 1429 /* keep all GDB-injected watchpoints in front */
c0ce998e 1430 if (flags & BP_GDB)
72cf2d4f 1431 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1432 else
72cf2d4f 1433 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1434
6658ffb8 1435 tlb_flush_page(env, addr);
a1d1bb31
AL
1436
1437 if (watchpoint)
1438 *watchpoint = wp;
1439 return 0;
6658ffb8
PB
1440}
1441
a1d1bb31
AL
1442/* Remove a specific watchpoint. */
1443int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1444 int flags)
6658ffb8 1445{
b4051334 1446 target_ulong len_mask = ~(len - 1);
a1d1bb31 1447 CPUWatchpoint *wp;
6658ffb8 1448
72cf2d4f 1449 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1450 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1451 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1452 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1453 return 0;
1454 }
1455 }
a1d1bb31 1456 return -ENOENT;
6658ffb8
PB
1457}
1458
a1d1bb31
AL
1459/* Remove a specific watchpoint by reference. */
1460void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1461{
72cf2d4f 1462 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1463
a1d1bb31
AL
1464 tlb_flush_page(env, watchpoint->vaddr);
1465
1466 qemu_free(watchpoint);
1467}
1468
1469/* Remove all matching watchpoints. */
1470void cpu_watchpoint_remove_all(CPUState *env, int mask)
1471{
c0ce998e 1472 CPUWatchpoint *wp, *next;
a1d1bb31 1473
72cf2d4f 1474 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1475 if (wp->flags & mask)
1476 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1477 }
7d03f82f 1478}
c527ee8f 1479#endif
7d03f82f 1480
a1d1bb31
AL
1481/* Add a breakpoint. */
1482int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1483 CPUBreakpoint **breakpoint)
4c3a88a2 1484{
1fddef4b 1485#if defined(TARGET_HAS_ICE)
c0ce998e 1486 CPUBreakpoint *bp;
3b46e624 1487
a1d1bb31 1488 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1489
a1d1bb31
AL
1490 bp->pc = pc;
1491 bp->flags = flags;
1492
2dc9f411 1493 /* keep all GDB-injected breakpoints in front */
c0ce998e 1494 if (flags & BP_GDB)
72cf2d4f 1495 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1496 else
72cf2d4f 1497 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1498
d720b93d 1499 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1500
1501 if (breakpoint)
1502 *breakpoint = bp;
4c3a88a2
FB
1503 return 0;
1504#else
a1d1bb31 1505 return -ENOSYS;
4c3a88a2
FB
1506#endif
1507}
1508
a1d1bb31
AL
1509/* Remove a specific breakpoint. */
1510int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1511{
7d03f82f 1512#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1513 CPUBreakpoint *bp;
1514
72cf2d4f 1515 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1516 if (bp->pc == pc && bp->flags == flags) {
1517 cpu_breakpoint_remove_by_ref(env, bp);
1518 return 0;
1519 }
7d03f82f 1520 }
a1d1bb31
AL
1521 return -ENOENT;
1522#else
1523 return -ENOSYS;
7d03f82f
EI
1524#endif
1525}
1526
a1d1bb31
AL
1527/* Remove a specific breakpoint by reference. */
1528void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1529{
1fddef4b 1530#if defined(TARGET_HAS_ICE)
72cf2d4f 1531 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1532
a1d1bb31
AL
1533 breakpoint_invalidate(env, breakpoint->pc);
1534
1535 qemu_free(breakpoint);
1536#endif
1537}
1538
1539/* Remove all matching breakpoints. */
1540void cpu_breakpoint_remove_all(CPUState *env, int mask)
1541{
1542#if defined(TARGET_HAS_ICE)
c0ce998e 1543 CPUBreakpoint *bp, *next;
a1d1bb31 1544
72cf2d4f 1545 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1546 if (bp->flags & mask)
1547 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1548 }
4c3a88a2
FB
1549#endif
1550}
1551
c33a346e
FB
1552/* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554void cpu_single_step(CPUState *env, int enabled)
1555{
1fddef4b 1556#if defined(TARGET_HAS_ICE)
c33a346e
FB
1557 if (env->singlestep_enabled != enabled) {
1558 env->singlestep_enabled = enabled;
e22a25c9
AL
1559 if (kvm_enabled())
1560 kvm_update_guest_debug(env, 0);
1561 else {
ccbb4d44 1562 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1563 /* XXX: only flush what is necessary */
1564 tb_flush(env);
1565 }
c33a346e
FB
1566 }
1567#endif
1568}
1569
34865134
FB
1570/* enable or disable low levels log */
1571void cpu_set_log(int log_flags)
1572{
1573 loglevel = log_flags;
1574 if (loglevel && !logfile) {
11fcfab4 1575 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1576 if (!logfile) {
1577 perror(logfilename);
1578 _exit(1);
1579 }
9fa3e853
FB
1580#if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1582 {
b55266b5 1583 static char logfile_buf[4096];
9fa3e853
FB
1584 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1585 }
bf65f53f
FN
1586#elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1588 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1589#endif
e735b91c
PB
1590 log_append = 1;
1591 }
1592 if (!loglevel && logfile) {
1593 fclose(logfile);
1594 logfile = NULL;
34865134
FB
1595 }
1596}
1597
1598void cpu_set_log_filename(const char *filename)
1599{
1600 logfilename = strdup(filename);
e735b91c
PB
1601 if (logfile) {
1602 fclose(logfile);
1603 logfile = NULL;
1604 }
1605 cpu_set_log(loglevel);
34865134 1606}
c33a346e 1607
3098dba0 1608static void cpu_unlink_tb(CPUState *env)
ea041c0e 1609{
3098dba0
AJ
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1614 TranslationBlock *tb;
c227f099 1615 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1616
cab1b4bd 1617 spin_lock(&interrupt_lock);
3098dba0
AJ
1618 tb = env->current_tb;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
f76cfe56 1621 if (tb) {
3098dba0
AJ
1622 env->current_tb = NULL;
1623 tb_reset_jump_recursive(tb);
be214e6c 1624 }
cab1b4bd 1625 spin_unlock(&interrupt_lock);
3098dba0
AJ
1626}
1627
1628/* mask must never be zero, except for A20 change call */
1629void cpu_interrupt(CPUState *env, int mask)
1630{
1631 int old_mask;
be214e6c 1632
2e70f6ef 1633 old_mask = env->interrupt_request;
68a79315 1634 env->interrupt_request |= mask;
3098dba0 1635
8edac960
AL
1636#ifndef CONFIG_USER_ONLY
1637 /*
1638 * If called from iothread context, wake the target cpu in
1639 * case its halted.
1640 */
1641 if (!qemu_cpu_self(env)) {
1642 qemu_cpu_kick(env);
1643 return;
1644 }
1645#endif
1646
2e70f6ef 1647 if (use_icount) {
266910c4 1648 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1649#ifndef CONFIG_USER_ONLY
2e70f6ef 1650 if (!can_do_io(env)
be214e6c 1651 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1652 cpu_abort(env, "Raised interrupt while not in I/O function");
1653 }
1654#endif
1655 } else {
3098dba0 1656 cpu_unlink_tb(env);
ea041c0e
FB
1657 }
1658}
1659
b54ad049
FB
1660void cpu_reset_interrupt(CPUState *env, int mask)
1661{
1662 env->interrupt_request &= ~mask;
1663}
1664
3098dba0
AJ
1665void cpu_exit(CPUState *env)
1666{
1667 env->exit_request = 1;
1668 cpu_unlink_tb(env);
1669}
1670
c7cd6a37 1671const CPULogItem cpu_log_items[] = {
5fafdf24 1672 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM, "in_asm",
1675 "show target assembly code for each compiled TB" },
5fafdf24 1676 { CPU_LOG_TB_OP, "op",
57fec1fe 1677 "show micro ops for each compiled TB" },
f193c797 1678 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1679 "show micro ops "
1680#ifdef TARGET_I386
1681 "before eflags optimization and "
f193c797 1682#endif
e01a1157 1683 "after liveness analysis" },
f193c797
FB
1684 { CPU_LOG_INT, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC, "exec",
1687 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1688 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1689 "show CPU state before block translation" },
f193c797
FB
1690#ifdef TARGET_I386
1691 { CPU_LOG_PCALL, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1693 { CPU_LOG_RESET, "cpu_reset",
1694 "show CPU state before CPU resets" },
f193c797 1695#endif
8e3a9fd2 1696#ifdef DEBUG_IOPORT
fd872598
FB
1697 { CPU_LOG_IOPORT, "ioport",
1698 "show all i/o ports accesses" },
8e3a9fd2 1699#endif
f193c797
FB
1700 { 0, NULL, NULL },
1701};
1702
f6f3fbca
MT
1703#ifndef CONFIG_USER_ONLY
1704static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list);
1706
1707static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1708 ram_addr_t size,
1709 ram_addr_t phys_offset)
1710{
1711 CPUPhysMemoryClient *client;
1712 QLIST_FOREACH(client, &memory_client_list, list) {
1713 client->set_memory(client, start_addr, size, phys_offset);
1714 }
1715}
1716
1717static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1718 target_phys_addr_t end)
1719{
1720 CPUPhysMemoryClient *client;
1721 QLIST_FOREACH(client, &memory_client_list, list) {
1722 int r = client->sync_dirty_bitmap(client, start, end);
1723 if (r < 0)
1724 return r;
1725 }
1726 return 0;
1727}
1728
1729static int cpu_notify_migration_log(int enable)
1730{
1731 CPUPhysMemoryClient *client;
1732 QLIST_FOREACH(client, &memory_client_list, list) {
1733 int r = client->migration_log(client, enable);
1734 if (r < 0)
1735 return r;
1736 }
1737 return 0;
1738}
1739
5cd2c5b6
RH
1740static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1741 int level, void **lp)
f6f3fbca 1742{
5cd2c5b6 1743 int i;
f6f3fbca 1744
5cd2c5b6
RH
1745 if (*lp == NULL) {
1746 return;
1747 }
1748 if (level == 0) {
1749 PhysPageDesc *pd = *lp;
7296abac 1750 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1751 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1752 client->set_memory(client, pd[i].region_offset,
1753 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1754 }
5cd2c5b6
RH
1755 }
1756 } else {
1757 void **pp = *lp;
7296abac 1758 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1759 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1760 }
1761 }
1762}
1763
1764static void phys_page_for_each(CPUPhysMemoryClient *client)
1765{
5cd2c5b6
RH
1766 int i;
1767 for (i = 0; i < P_L1_SIZE; ++i) {
1768 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1769 l1_phys_map + 1);
f6f3fbca 1770 }
f6f3fbca
MT
1771}
1772
1773void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1774{
1775 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1776 phys_page_for_each(client);
1777}
1778
1779void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1780{
1781 QLIST_REMOVE(client, list);
1782}
1783#endif
1784
f193c797
FB
1785static int cmp1(const char *s1, int n, const char *s2)
1786{
1787 if (strlen(s2) != n)
1788 return 0;
1789 return memcmp(s1, s2, n) == 0;
1790}
3b46e624 1791
f193c797
FB
1792/* takes a comma separated list of log masks. Return 0 if error. */
1793int cpu_str_to_log_mask(const char *str)
1794{
c7cd6a37 1795 const CPULogItem *item;
f193c797
FB
1796 int mask;
1797 const char *p, *p1;
1798
1799 p = str;
1800 mask = 0;
1801 for(;;) {
1802 p1 = strchr(p, ',');
1803 if (!p1)
1804 p1 = p + strlen(p);
8e3a9fd2
FB
1805 if(cmp1(p,p1-p,"all")) {
1806 for(item = cpu_log_items; item->mask != 0; item++) {
1807 mask |= item->mask;
1808 }
1809 } else {
f193c797
FB
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 if (cmp1(p, p1 - p, item->name))
1812 goto found;
1813 }
1814 return 0;
8e3a9fd2 1815 }
f193c797
FB
1816 found:
1817 mask |= item->mask;
1818 if (*p1 != ',')
1819 break;
1820 p = p1 + 1;
1821 }
1822 return mask;
1823}
ea041c0e 1824
7501267e
FB
1825void cpu_abort(CPUState *env, const char *fmt, ...)
1826{
1827 va_list ap;
493ae1f0 1828 va_list ap2;
7501267e
FB
1829
1830 va_start(ap, fmt);
493ae1f0 1831 va_copy(ap2, ap);
7501267e
FB
1832 fprintf(stderr, "qemu: fatal: ");
1833 vfprintf(stderr, fmt, ap);
1834 fprintf(stderr, "\n");
1835#ifdef TARGET_I386
7fe48483
FB
1836 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1837#else
1838 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1839#endif
93fcfe39
AL
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt, ap2);
1843 qemu_log("\n");
f9373291 1844#ifdef TARGET_I386
93fcfe39 1845 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1846#else
93fcfe39 1847 log_cpu_state(env, 0);
f9373291 1848#endif
31b1a7b4 1849 qemu_log_flush();
93fcfe39 1850 qemu_log_close();
924edcae 1851 }
493ae1f0 1852 va_end(ap2);
f9373291 1853 va_end(ap);
fd052bf6
RV
1854#if defined(CONFIG_USER_ONLY)
1855 {
1856 struct sigaction act;
1857 sigfillset(&act.sa_mask);
1858 act.sa_handler = SIG_DFL;
1859 sigaction(SIGABRT, &act, NULL);
1860 }
1861#endif
7501267e
FB
1862 abort();
1863}
1864
c5be9f08
TS
1865CPUState *cpu_copy(CPUState *env)
1866{
01ba9816 1867 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1868 CPUState *next_cpu = new_env->next_cpu;
1869 int cpu_index = new_env->cpu_index;
5a38f081
AL
1870#if defined(TARGET_HAS_ICE)
1871 CPUBreakpoint *bp;
1872 CPUWatchpoint *wp;
1873#endif
1874
c5be9f08 1875 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1876
1877 /* Preserve chaining and index. */
c5be9f08
TS
1878 new_env->next_cpu = next_cpu;
1879 new_env->cpu_index = cpu_index;
5a38f081
AL
1880
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1884 QTAILQ_INIT(&env->breakpoints);
1885 QTAILQ_INIT(&env->watchpoints);
5a38f081 1886#if defined(TARGET_HAS_ICE)
72cf2d4f 1887 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1888 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1889 }
72cf2d4f 1890 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1891 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1892 wp->flags, NULL);
1893 }
1894#endif
1895
c5be9f08
TS
1896 return new_env;
1897}
1898
0124311e
FB
1899#if !defined(CONFIG_USER_ONLY)
1900
5c751e99
EI
1901static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1902{
1903 unsigned int i;
1904
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1908 memset (&env->tb_jmp_cache[i], 0,
1909 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1910
1911 i = tb_jmp_cache_hash_page(addr);
1912 memset (&env->tb_jmp_cache[i], 0,
1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1914}
1915
08738984
IK
1916static CPUTLBEntry s_cputlb_empty_entry = {
1917 .addr_read = -1,
1918 .addr_write = -1,
1919 .addr_code = -1,
1920 .addend = -1,
1921};
1922
ee8b7021
FB
1923/* NOTE: if flush_global is true, also flush global entries (not
1924 implemented yet) */
1925void tlb_flush(CPUState *env, int flush_global)
33417e70 1926{
33417e70 1927 int i;
0124311e 1928
9fa3e853
FB
1929#if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1931#endif
0124311e
FB
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env->current_tb = NULL;
1935
33417e70 1936 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1939 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1940 }
33417e70 1941 }
9fa3e853 1942
8a40a180 1943 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1944
d4c430a8
PB
1945 env->tlb_flush_addr = -1;
1946 env->tlb_flush_mask = 0;
e3db7226 1947 tlb_flush_count++;
33417e70
FB
1948}
1949
274da6b2 1950static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1951{
5fafdf24 1952 if (addr == (tlb_entry->addr_read &
84b7b8e7 1953 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1954 addr == (tlb_entry->addr_write &
84b7b8e7 1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1956 addr == (tlb_entry->addr_code &
84b7b8e7 1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1958 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1959 }
61382a50
FB
1960}
1961
2e12669a 1962void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1963{
8a40a180 1964 int i;
cfde4bd9 1965 int mmu_idx;
0124311e 1966
9fa3e853 1967#if defined(DEBUG_TLB)
108c49b8 1968 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1969#endif
d4c430a8
PB
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1972#if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1975 env->tlb_flush_addr, env->tlb_flush_mask);
1976#endif
1977 tlb_flush(env, 1);
1978 return;
1979 }
0124311e
FB
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
61382a50
FB
1983
1984 addr &= TARGET_PAGE_MASK;
1985 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1987 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1988
5c751e99 1989 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1990}
1991
9fa3e853
FB
1992/* update the TLBs so that writes to code in the virtual page 'addr'
1993 can be detected */
c227f099 1994static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1995{
5fafdf24 1996 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1997 ram_addr + TARGET_PAGE_SIZE,
1998 CODE_DIRTY_FLAG);
9fa3e853
FB
1999}
2000
9fa3e853 2001/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2002 tested for self modifying code */
c227f099 2003static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2004 target_ulong vaddr)
9fa3e853 2005{
f7c11b53 2006 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2007}
2008
5fafdf24 2009static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2010 unsigned long start, unsigned long length)
2011{
2012 unsigned long addr;
84b7b8e7
FB
2013 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2014 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2015 if ((addr - start) < length) {
0f459d16 2016 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2017 }
2018 }
2019}
2020
5579c7f3 2021/* Note: start and end must be within the same ram block. */
c227f099 2022void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2023 int dirty_flags)
1ccde1cb
FB
2024{
2025 CPUState *env;
4f2ac237 2026 unsigned long length, start1;
f7c11b53 2027 int i;
1ccde1cb
FB
2028
2029 start &= TARGET_PAGE_MASK;
2030 end = TARGET_PAGE_ALIGN(end);
2031
2032 length = end - start;
2033 if (length == 0)
2034 return;
f7c11b53 2035 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2036
1ccde1cb
FB
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
5579c7f3
PB
2039 start1 = (unsigned long)qemu_get_ram_ptr(start);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2043 != (end - 1) - start) {
2044 abort();
2045 }
2046
6a00d601 2047 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2048 int mmu_idx;
2049 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2050 for(i = 0; i < CPU_TLB_SIZE; i++)
2051 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2052 start1, length);
2053 }
6a00d601 2054 }
1ccde1cb
FB
2055}
2056
74576198
AL
2057int cpu_physical_memory_set_dirty_tracking(int enable)
2058{
f6f3fbca 2059 int ret = 0;
74576198 2060 in_migration = enable;
f6f3fbca
MT
2061 ret = cpu_notify_migration_log(!!enable);
2062 return ret;
74576198
AL
2063}
2064
2065int cpu_physical_memory_get_dirty_tracking(void)
2066{
2067 return in_migration;
2068}
2069
c227f099
AL
2070int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2071 target_phys_addr_t end_addr)
2bec46dc 2072{
7b8f3b78 2073 int ret;
151f7749 2074
f6f3fbca 2075 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2076 return ret;
2bec46dc
AL
2077}
2078
3a7d929e
FB
2079static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2080{
c227f099 2081 ram_addr_t ram_addr;
5579c7f3 2082 void *p;
3a7d929e 2083
84b7b8e7 2084 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2085 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2086 + tlb_entry->addend);
2087 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2088 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2089 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2090 }
2091 }
2092}
2093
2094/* update the TLB according to the current state of the dirty bits */
2095void cpu_tlb_update_dirty(CPUState *env)
2096{
2097 int i;
cfde4bd9
IY
2098 int mmu_idx;
2099 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2100 for(i = 0; i < CPU_TLB_SIZE; i++)
2101 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2102 }
3a7d929e
FB
2103}
2104
0f459d16 2105static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2106{
0f459d16
PB
2107 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2108 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2109}
2110
0f459d16
PB
2111/* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2114{
1ccde1cb 2115 int i;
cfde4bd9 2116 int mmu_idx;
1ccde1cb 2117
0f459d16 2118 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2119 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2121 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2122}
2123
d4c430a8
PB
2124/* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2127 target_ulong size)
2128{
2129 target_ulong mask = ~(size - 1);
2130
2131 if (env->tlb_flush_addr == (target_ulong)-1) {
2132 env->tlb_flush_addr = vaddr & mask;
2133 env->tlb_flush_mask = mask;
2134 return;
2135 }
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask &= env->tlb_flush_mask;
2140 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2141 mask <<= 1;
2142 }
2143 env->tlb_flush_addr &= mask;
2144 env->tlb_flush_mask = mask;
2145}
2146
2147/* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150void tlb_set_page(CPUState *env, target_ulong vaddr,
2151 target_phys_addr_t paddr, int prot,
2152 int mmu_idx, target_ulong size)
9fa3e853 2153{
92e873b9 2154 PhysPageDesc *p;
4f2ac237 2155 unsigned long pd;
9fa3e853 2156 unsigned int index;
4f2ac237 2157 target_ulong address;
0f459d16 2158 target_ulong code_address;
355b1943 2159 unsigned long addend;
84b7b8e7 2160 CPUTLBEntry *te;
a1d1bb31 2161 CPUWatchpoint *wp;
c227f099 2162 target_phys_addr_t iotlb;
9fa3e853 2163
d4c430a8
PB
2164 assert(size >= TARGET_PAGE_SIZE);
2165 if (size != TARGET_PAGE_SIZE) {
2166 tlb_add_large_page(env, vaddr, size);
2167 }
92e873b9 2168 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2169 if (!p) {
2170 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2171 } else {
2172 pd = p->phys_offset;
9fa3e853
FB
2173 }
2174#if defined(DEBUG_TLB)
6ebbf390
JM
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2177#endif
2178
0f459d16
PB
2179 address = vaddr;
2180 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2181 /* IO memory case (romd handled later) */
2182 address |= TLB_MMIO;
2183 }
5579c7f3 2184 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2185 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2186 /* Normal RAM. */
2187 iotlb = pd & TARGET_PAGE_MASK;
2188 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2189 iotlb |= IO_MEM_NOTDIRTY;
2190 else
2191 iotlb |= IO_MEM_ROM;
2192 } else {
ccbb4d44 2193 /* IO handlers are currently passed a physical address.
0f459d16
PB
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2199 iotlb = (pd & ~TARGET_PAGE_MASK);
2200 if (p) {
8da3ff18
PB
2201 iotlb += p->region_offset;
2202 } else {
2203 iotlb += paddr;
2204 }
0f459d16
PB
2205 }
2206
2207 code_address = address;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
72cf2d4f 2210 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2211 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2212 /* Avoid trapping reads of pages with a write breakpoint. */
2213 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2214 iotlb = io_mem_watch + paddr;
2215 address |= TLB_MMIO;
2216 break;
2217 }
6658ffb8 2218 }
0f459d16 2219 }
d79acba4 2220
0f459d16
PB
2221 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2222 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2223 te = &env->tlb_table[mmu_idx][index];
2224 te->addend = addend - vaddr;
2225 if (prot & PAGE_READ) {
2226 te->addr_read = address;
2227 } else {
2228 te->addr_read = -1;
2229 }
5c751e99 2230
0f459d16
PB
2231 if (prot & PAGE_EXEC) {
2232 te->addr_code = code_address;
2233 } else {
2234 te->addr_code = -1;
2235 }
2236 if (prot & PAGE_WRITE) {
2237 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2238 (pd & IO_MEM_ROMD)) {
2239 /* Write access calls the I/O callback. */
2240 te->addr_write = address | TLB_MMIO;
2241 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2242 !cpu_physical_memory_is_dirty(pd)) {
2243 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2244 } else {
0f459d16 2245 te->addr_write = address;
9fa3e853 2246 }
0f459d16
PB
2247 } else {
2248 te->addr_write = -1;
9fa3e853 2249 }
9fa3e853
FB
2250}
2251
0124311e
FB
2252#else
2253
ee8b7021 2254void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2255{
2256}
2257
2e12669a 2258void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2259{
2260}
2261
edf8e2af
MW
2262/*
2263 * Walks guest process memory "regions" one by one
2264 * and calls callback function 'fn' for each region.
2265 */
5cd2c5b6
RH
2266
2267struct walk_memory_regions_data
2268{
2269 walk_memory_regions_fn fn;
2270 void *priv;
2271 unsigned long start;
2272 int prot;
2273};
2274
2275static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2276 abi_ulong end, int new_prot)
5cd2c5b6
RH
2277{
2278 if (data->start != -1ul) {
2279 int rc = data->fn(data->priv, data->start, end, data->prot);
2280 if (rc != 0) {
2281 return rc;
2282 }
2283 }
2284
2285 data->start = (new_prot ? end : -1ul);
2286 data->prot = new_prot;
2287
2288 return 0;
2289}
2290
2291static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2292 abi_ulong base, int level, void **lp)
5cd2c5b6 2293{
b480d9b7 2294 abi_ulong pa;
5cd2c5b6
RH
2295 int i, rc;
2296
2297 if (*lp == NULL) {
2298 return walk_memory_regions_end(data, base, 0);
2299 }
2300
2301 if (level == 0) {
2302 PageDesc *pd = *lp;
7296abac 2303 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2304 int prot = pd[i].flags;
2305
2306 pa = base | (i << TARGET_PAGE_BITS);
2307 if (prot != data->prot) {
2308 rc = walk_memory_regions_end(data, pa, prot);
2309 if (rc != 0) {
2310 return rc;
9fa3e853 2311 }
9fa3e853 2312 }
5cd2c5b6
RH
2313 }
2314 } else {
2315 void **pp = *lp;
7296abac 2316 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2317 pa = base | ((abi_ulong)i <<
2318 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2319 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2320 if (rc != 0) {
2321 return rc;
2322 }
2323 }
2324 }
2325
2326 return 0;
2327}
2328
2329int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2330{
2331 struct walk_memory_regions_data data;
2332 unsigned long i;
2333
2334 data.fn = fn;
2335 data.priv = priv;
2336 data.start = -1ul;
2337 data.prot = 0;
2338
2339 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2340 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2341 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2342 if (rc != 0) {
2343 return rc;
9fa3e853 2344 }
33417e70 2345 }
5cd2c5b6
RH
2346
2347 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2348}
2349
b480d9b7
PB
2350static int dump_region(void *priv, abi_ulong start,
2351 abi_ulong end, unsigned long prot)
edf8e2af
MW
2352{
2353 FILE *f = (FILE *)priv;
2354
b480d9b7
PB
2355 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2356 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2357 start, end, end - start,
2358 ((prot & PAGE_READ) ? 'r' : '-'),
2359 ((prot & PAGE_WRITE) ? 'w' : '-'),
2360 ((prot & PAGE_EXEC) ? 'x' : '-'));
2361
2362 return (0);
2363}
2364
2365/* dump memory mappings */
2366void page_dump(FILE *f)
2367{
2368 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2369 "start", "end", "size", "prot");
2370 walk_memory_regions(f, dump_region);
33417e70
FB
2371}
2372
53a5960a 2373int page_get_flags(target_ulong address)
33417e70 2374{
9fa3e853
FB
2375 PageDesc *p;
2376
2377 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2378 if (!p)
9fa3e853
FB
2379 return 0;
2380 return p->flags;
2381}
2382
376a7909
RH
2383/* Modify the flags of a page and invalidate the code if necessary.
2384 The flag PAGE_WRITE_ORG is positioned automatically depending
2385 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2386void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2387{
376a7909
RH
2388 target_ulong addr, len;
2389
2390 /* This function should never be called with addresses outside the
2391 guest address space. If this assert fires, it probably indicates
2392 a missing call to h2g_valid. */
b480d9b7
PB
2393#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2394 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2395#endif
2396 assert(start < end);
9fa3e853
FB
2397
2398 start = start & TARGET_PAGE_MASK;
2399 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2400
2401 if (flags & PAGE_WRITE) {
9fa3e853 2402 flags |= PAGE_WRITE_ORG;
376a7909
RH
2403 }
2404
2405 for (addr = start, len = end - start;
2406 len != 0;
2407 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2408 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2409
2410 /* If the write protection bit is set, then we invalidate
2411 the code inside. */
5fafdf24 2412 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2413 (flags & PAGE_WRITE) &&
2414 p->first_tb) {
d720b93d 2415 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2416 }
2417 p->flags = flags;
2418 }
33417e70
FB
2419}
2420
3d97b40b
TS
2421int page_check_range(target_ulong start, target_ulong len, int flags)
2422{
2423 PageDesc *p;
2424 target_ulong end;
2425 target_ulong addr;
2426
376a7909
RH
2427 /* This function should never be called with addresses outside the
2428 guest address space. If this assert fires, it probably indicates
2429 a missing call to h2g_valid. */
338e9e6c
BS
2430#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2431 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2432#endif
2433
3e0650a9
RH
2434 if (len == 0) {
2435 return 0;
2436 }
376a7909
RH
2437 if (start + len - 1 < start) {
2438 /* We've wrapped around. */
55f280c9 2439 return -1;
376a7909 2440 }
55f280c9 2441
3d97b40b
TS
2442 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2443 start = start & TARGET_PAGE_MASK;
2444
376a7909
RH
2445 for (addr = start, len = end - start;
2446 len != 0;
2447 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2448 p = page_find(addr >> TARGET_PAGE_BITS);
2449 if( !p )
2450 return -1;
2451 if( !(p->flags & PAGE_VALID) )
2452 return -1;
2453
dae3270c 2454 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2455 return -1;
dae3270c
FB
2456 if (flags & PAGE_WRITE) {
2457 if (!(p->flags & PAGE_WRITE_ORG))
2458 return -1;
2459 /* unprotect the page if it was put read-only because it
2460 contains translated code */
2461 if (!(p->flags & PAGE_WRITE)) {
2462 if (!page_unprotect(addr, 0, NULL))
2463 return -1;
2464 }
2465 return 0;
2466 }
3d97b40b
TS
2467 }
2468 return 0;
2469}
2470
9fa3e853 2471/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2472 page. Return TRUE if the fault was successfully handled. */
53a5960a 2473int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2474{
45d679d6
AJ
2475 unsigned int prot;
2476 PageDesc *p;
53a5960a 2477 target_ulong host_start, host_end, addr;
9fa3e853 2478
c8a706fe
PB
2479 /* Technically this isn't safe inside a signal handler. However we
2480 know this only ever happens in a synchronous SEGV handler, so in
2481 practice it seems to be ok. */
2482 mmap_lock();
2483
45d679d6
AJ
2484 p = page_find(address >> TARGET_PAGE_BITS);
2485 if (!p) {
c8a706fe 2486 mmap_unlock();
9fa3e853 2487 return 0;
c8a706fe 2488 }
45d679d6 2489
9fa3e853
FB
2490 /* if the page was really writable, then we change its
2491 protection back to writable */
45d679d6
AJ
2492 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2493 host_start = address & qemu_host_page_mask;
2494 host_end = host_start + qemu_host_page_size;
2495
2496 prot = 0;
2497 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2498 p = page_find(addr >> TARGET_PAGE_BITS);
2499 p->flags |= PAGE_WRITE;
2500 prot |= p->flags;
2501
9fa3e853
FB
2502 /* and since the content will be modified, we must invalidate
2503 the corresponding translated code. */
45d679d6 2504 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2505#ifdef DEBUG_TB_CHECK
45d679d6 2506 tb_invalidate_check(addr);
9fa3e853 2507#endif
9fa3e853 2508 }
45d679d6
AJ
2509 mprotect((void *)g2h(host_start), qemu_host_page_size,
2510 prot & PAGE_BITS);
2511
2512 mmap_unlock();
2513 return 1;
9fa3e853 2514 }
c8a706fe 2515 mmap_unlock();
9fa3e853
FB
2516 return 0;
2517}
2518
6a00d601
FB
2519static inline void tlb_set_dirty(CPUState *env,
2520 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2521{
2522}
9fa3e853
FB
2523#endif /* defined(CONFIG_USER_ONLY) */
2524
e2eef170 2525#if !defined(CONFIG_USER_ONLY)
8da3ff18 2526
c04b2b78
PB
2527#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2528typedef struct subpage_t {
2529 target_phys_addr_t base;
f6405247
RH
2530 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2531 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2532} subpage_t;
2533
c227f099
AL
2534static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2535 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2536static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2537 ram_addr_t orig_memory,
2538 ram_addr_t region_offset);
db7b5426
BS
2539#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2540 need_subpage) \
2541 do { \
2542 if (addr > start_addr) \
2543 start_addr2 = 0; \
2544 else { \
2545 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2546 if (start_addr2 > 0) \
2547 need_subpage = 1; \
2548 } \
2549 \
49e9fba2 2550 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2551 end_addr2 = TARGET_PAGE_SIZE - 1; \
2552 else { \
2553 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2554 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2555 need_subpage = 1; \
2556 } \
2557 } while (0)
2558
8f2498f9
MT
2559/* register physical memory.
2560 For RAM, 'size' must be a multiple of the target page size.
2561 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2562 io memory page. The address used when calling the IO function is
2563 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2564 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2565 before calculating this offset. This should not be a problem unless
2566 the low bits of start_addr and region_offset differ. */
c227f099
AL
2567void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2568 ram_addr_t size,
2569 ram_addr_t phys_offset,
2570 ram_addr_t region_offset)
33417e70 2571{
c227f099 2572 target_phys_addr_t addr, end_addr;
92e873b9 2573 PhysPageDesc *p;
9d42037b 2574 CPUState *env;
c227f099 2575 ram_addr_t orig_size = size;
f6405247 2576 subpage_t *subpage;
33417e70 2577
f6f3fbca
MT
2578 cpu_notify_set_memory(start_addr, size, phys_offset);
2579
67c4d23c
PB
2580 if (phys_offset == IO_MEM_UNASSIGNED) {
2581 region_offset = start_addr;
2582 }
8da3ff18 2583 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2584 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2585 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2586 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2587 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2588 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2589 ram_addr_t orig_memory = p->phys_offset;
2590 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2591 int need_subpage = 0;
2592
2593 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2594 need_subpage);
f6405247 2595 if (need_subpage) {
db7b5426
BS
2596 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2597 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2598 &p->phys_offset, orig_memory,
2599 p->region_offset);
db7b5426
BS
2600 } else {
2601 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2602 >> IO_MEM_SHIFT];
2603 }
8da3ff18
PB
2604 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2605 region_offset);
2606 p->region_offset = 0;
db7b5426
BS
2607 } else {
2608 p->phys_offset = phys_offset;
2609 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2610 (phys_offset & IO_MEM_ROMD))
2611 phys_offset += TARGET_PAGE_SIZE;
2612 }
2613 } else {
2614 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2615 p->phys_offset = phys_offset;
8da3ff18 2616 p->region_offset = region_offset;
db7b5426 2617 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2618 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2619 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2620 } else {
c227f099 2621 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2622 int need_subpage = 0;
2623
2624 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2625 end_addr2, need_subpage);
2626
f6405247 2627 if (need_subpage) {
db7b5426 2628 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2629 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2630 addr & TARGET_PAGE_MASK);
db7b5426 2631 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2632 phys_offset, region_offset);
2633 p->region_offset = 0;
db7b5426
BS
2634 }
2635 }
2636 }
8da3ff18 2637 region_offset += TARGET_PAGE_SIZE;
33417e70 2638 }
3b46e624 2639
9d42037b
FB
2640 /* since each CPU stores ram addresses in its TLB cache, we must
2641 reset the modified entries */
2642 /* XXX: slow ! */
2643 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2644 tlb_flush(env, 1);
2645 }
33417e70
FB
2646}
2647
ba863458 2648/* XXX: temporary until new memory mapping API */
c227f099 2649ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2650{
2651 PhysPageDesc *p;
2652
2653 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2654 if (!p)
2655 return IO_MEM_UNASSIGNED;
2656 return p->phys_offset;
2657}
2658
c227f099 2659void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2660{
2661 if (kvm_enabled())
2662 kvm_coalesce_mmio_region(addr, size);
2663}
2664
c227f099 2665void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2666{
2667 if (kvm_enabled())
2668 kvm_uncoalesce_mmio_region(addr, size);
2669}
2670
62a2744c
SY
2671void qemu_flush_coalesced_mmio_buffer(void)
2672{
2673 if (kvm_enabled())
2674 kvm_flush_coalesced_mmio_buffer();
2675}
2676
c902760f
MT
2677#if defined(__linux__) && !defined(TARGET_S390X)
2678
2679#include <sys/vfs.h>
2680
2681#define HUGETLBFS_MAGIC 0x958458f6
2682
2683static long gethugepagesize(const char *path)
2684{
2685 struct statfs fs;
2686 int ret;
2687
2688 do {
2689 ret = statfs(path, &fs);
2690 } while (ret != 0 && errno == EINTR);
2691
2692 if (ret != 0) {
6adc0549 2693 perror(path);
c902760f
MT
2694 return 0;
2695 }
2696
2697 if (fs.f_type != HUGETLBFS_MAGIC)
2698 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2699
2700 return fs.f_bsize;
2701}
2702
2703static void *file_ram_alloc(ram_addr_t memory, const char *path)
2704{
2705 char *filename;
2706 void *area;
2707 int fd;
2708#ifdef MAP_POPULATE
2709 int flags;
2710#endif
2711 unsigned long hpagesize;
2712
2713 hpagesize = gethugepagesize(path);
2714 if (!hpagesize) {
2715 return NULL;
2716 }
2717
2718 if (memory < hpagesize) {
2719 return NULL;
2720 }
2721
2722 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2723 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2724 return NULL;
2725 }
2726
2727 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2728 return NULL;
2729 }
2730
2731 fd = mkstemp(filename);
2732 if (fd < 0) {
6adc0549 2733 perror("unable to create backing store for hugepages");
c902760f
MT
2734 free(filename);
2735 return NULL;
2736 }
2737 unlink(filename);
2738 free(filename);
2739
2740 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2741
2742 /*
2743 * ftruncate is not supported by hugetlbfs in older
2744 * hosts, so don't bother bailing out on errors.
2745 * If anything goes wrong with it under other filesystems,
2746 * mmap will fail.
2747 */
2748 if (ftruncate(fd, memory))
2749 perror("ftruncate");
2750
2751#ifdef MAP_POPULATE
2752 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2753 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2754 * to sidestep this quirk.
2755 */
2756 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2757 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2758#else
2759 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2760#endif
2761 if (area == MAP_FAILED) {
2762 perror("file_ram_alloc: can't mmap RAM pages");
2763 close(fd);
2764 return (NULL);
2765 }
2766 return area;
2767}
2768#endif
2769
d17b5288
AW
2770static ram_addr_t find_ram_offset(ram_addr_t size)
2771{
2772 RAMBlock *block;
2773 ram_addr_t last = 0;
2774
2775 QLIST_FOREACH(block, &ram_list.blocks, next)
2776 last = MAX(last, block->offset + block->length);
2777
2778 return last;
2779}
2780
c227f099 2781ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2782{
2783 RAMBlock *new_block;
2784
94a6b54f
PB
2785 size = TARGET_PAGE_ALIGN(size);
2786 new_block = qemu_malloc(sizeof(*new_block));
2787
c902760f
MT
2788 if (mem_path) {
2789#if defined (__linux__) && !defined(TARGET_S390X)
2790 new_block->host = file_ram_alloc(size, mem_path);
618a568d
MT
2791 if (!new_block->host) {
2792 new_block->host = qemu_vmalloc(size);
2793#ifdef MADV_MERGEABLE
2794 madvise(new_block->host, size, MADV_MERGEABLE);
2795#endif
2796 }
c902760f
MT
2797#else
2798 fprintf(stderr, "-mem-path option unsupported\n");
2799 exit(1);
2800#endif
2801 } else {
6b02494d 2802#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2803 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2804 new_block->host = mmap((void*)0x1000000, size,
2805 PROT_EXEC|PROT_READ|PROT_WRITE,
2806 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2807#else
c902760f 2808 new_block->host = qemu_vmalloc(size);
6b02494d 2809#endif
ccb167e9 2810#ifdef MADV_MERGEABLE
c902760f 2811 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2812#endif
c902760f 2813 }
d17b5288 2814 new_block->offset = find_ram_offset(size);
94a6b54f
PB
2815 new_block->length = size;
2816
f471a17e 2817 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2818
f471a17e 2819 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
d17b5288
AW
2820 (new_block->offset + size) >> TARGET_PAGE_BITS);
2821 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2822 0xff, size >> TARGET_PAGE_BITS);
2823
6f0437e8
JK
2824 if (kvm_enabled())
2825 kvm_setup_guest_memory(new_block->host, size);
2826
94a6b54f
PB
2827 return new_block->offset;
2828}
e9a1ab19 2829
c227f099 2830void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2831{
94a6b54f 2832 /* TODO: implement this. */
e9a1ab19
FB
2833}
2834
dc828ca1 2835/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2836 With the exception of the softmmu code in this file, this should
2837 only be used for local memory (e.g. video ram) that the device owns,
2838 and knows it isn't going to access beyond the end of the block.
2839
2840 It should not be used for general purpose DMA.
2841 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2842 */
c227f099 2843void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2844{
94a6b54f
PB
2845 RAMBlock *block;
2846
f471a17e
AW
2847 QLIST_FOREACH(block, &ram_list.blocks, next) {
2848 if (addr - block->offset < block->length) {
2849 QLIST_REMOVE(block, next);
2850 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2851 return block->host + (addr - block->offset);
2852 }
94a6b54f 2853 }
f471a17e
AW
2854
2855 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2856 abort();
2857
2858 return NULL;
dc828ca1
PB
2859}
2860
5579c7f3
PB
2861/* Some of the softmmu routines need to translate from a host pointer
2862 (typically a TLB entry) back to a ram offset. */
c227f099 2863ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2864{
94a6b54f
PB
2865 RAMBlock *block;
2866 uint8_t *host = ptr;
2867
f471a17e
AW
2868 QLIST_FOREACH(block, &ram_list.blocks, next) {
2869 if (host - block->host < block->length) {
2870 return block->offset + (host - block->host);
2871 }
94a6b54f 2872 }
f471a17e
AW
2873
2874 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2875 abort();
2876
2877 return 0;
5579c7f3
PB
2878}
2879
c227f099 2880static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2881{
67d3b957 2882#ifdef DEBUG_UNASSIGNED
ab3d1727 2883 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2884#endif
faed1c2a 2885#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2886 do_unassigned_access(addr, 0, 0, 0, 1);
2887#endif
2888 return 0;
2889}
2890
c227f099 2891static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2892{
2893#ifdef DEBUG_UNASSIGNED
2894 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2895#endif
faed1c2a 2896#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2897 do_unassigned_access(addr, 0, 0, 0, 2);
2898#endif
2899 return 0;
2900}
2901
c227f099 2902static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2903{
2904#ifdef DEBUG_UNASSIGNED
2905 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2906#endif
faed1c2a 2907#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2908 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2909#endif
33417e70
FB
2910 return 0;
2911}
2912
c227f099 2913static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2914{
67d3b957 2915#ifdef DEBUG_UNASSIGNED
ab3d1727 2916 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2917#endif
faed1c2a 2918#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2919 do_unassigned_access(addr, 1, 0, 0, 1);
2920#endif
2921}
2922
c227f099 2923static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2924{
2925#ifdef DEBUG_UNASSIGNED
2926 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2927#endif
faed1c2a 2928#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2929 do_unassigned_access(addr, 1, 0, 0, 2);
2930#endif
2931}
2932
c227f099 2933static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2934{
2935#ifdef DEBUG_UNASSIGNED
2936 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2937#endif
faed1c2a 2938#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2939 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2940#endif
33417e70
FB
2941}
2942
d60efc6b 2943static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2944 unassigned_mem_readb,
e18231a3
BS
2945 unassigned_mem_readw,
2946 unassigned_mem_readl,
33417e70
FB
2947};
2948
d60efc6b 2949static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2950 unassigned_mem_writeb,
e18231a3
BS
2951 unassigned_mem_writew,
2952 unassigned_mem_writel,
33417e70
FB
2953};
2954
c227f099 2955static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2956 uint32_t val)
9fa3e853 2957{
3a7d929e 2958 int dirty_flags;
f7c11b53 2959 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2960 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2961#if !defined(CONFIG_USER_ONLY)
3a7d929e 2962 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 2963 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2964#endif
3a7d929e 2965 }
5579c7f3 2966 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2967 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2968 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2969 /* we remove the notdirty callback only if the code has been
2970 flushed */
2971 if (dirty_flags == 0xff)
2e70f6ef 2972 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2973}
2974
c227f099 2975static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2976 uint32_t val)
9fa3e853 2977{
3a7d929e 2978 int dirty_flags;
f7c11b53 2979 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2980 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2981#if !defined(CONFIG_USER_ONLY)
3a7d929e 2982 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 2983 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2984#endif
3a7d929e 2985 }
5579c7f3 2986 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2987 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2988 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2989 /* we remove the notdirty callback only if the code has been
2990 flushed */
2991 if (dirty_flags == 0xff)
2e70f6ef 2992 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2993}
2994
c227f099 2995static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2996 uint32_t val)
9fa3e853 2997{
3a7d929e 2998 int dirty_flags;
f7c11b53 2999 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3000 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3001#if !defined(CONFIG_USER_ONLY)
3a7d929e 3002 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3003 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3004#endif
3a7d929e 3005 }
5579c7f3 3006 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3007 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3008 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3009 /* we remove the notdirty callback only if the code has been
3010 flushed */
3011 if (dirty_flags == 0xff)
2e70f6ef 3012 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3013}
3014
d60efc6b 3015static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3016 NULL, /* never used */
3017 NULL, /* never used */
3018 NULL, /* never used */
3019};
3020
d60efc6b 3021static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3022 notdirty_mem_writeb,
3023 notdirty_mem_writew,
3024 notdirty_mem_writel,
3025};
3026
0f459d16 3027/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3028static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3029{
3030 CPUState *env = cpu_single_env;
06d55cc1
AL
3031 target_ulong pc, cs_base;
3032 TranslationBlock *tb;
0f459d16 3033 target_ulong vaddr;
a1d1bb31 3034 CPUWatchpoint *wp;
06d55cc1 3035 int cpu_flags;
0f459d16 3036
06d55cc1
AL
3037 if (env->watchpoint_hit) {
3038 /* We re-entered the check after replacing the TB. Now raise
3039 * the debug interrupt so that is will trigger after the
3040 * current instruction. */
3041 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3042 return;
3043 }
2e70f6ef 3044 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3045 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3046 if ((vaddr == (wp->vaddr & len_mask) ||
3047 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3048 wp->flags |= BP_WATCHPOINT_HIT;
3049 if (!env->watchpoint_hit) {
3050 env->watchpoint_hit = wp;
3051 tb = tb_find_pc(env->mem_io_pc);
3052 if (!tb) {
3053 cpu_abort(env, "check_watchpoint: could not find TB for "
3054 "pc=%p", (void *)env->mem_io_pc);
3055 }
3056 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3057 tb_phys_invalidate(tb, -1);
3058 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3059 env->exception_index = EXCP_DEBUG;
3060 } else {
3061 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3062 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3063 }
3064 cpu_resume_from_signal(env, NULL);
06d55cc1 3065 }
6e140f28
AL
3066 } else {
3067 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3068 }
3069 }
3070}
3071
6658ffb8
PB
3072/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3073 so these check for a hit then pass through to the normal out-of-line
3074 phys routines. */
c227f099 3075static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3076{
b4051334 3077 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3078 return ldub_phys(addr);
3079}
3080
c227f099 3081static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3082{
b4051334 3083 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3084 return lduw_phys(addr);
3085}
3086
c227f099 3087static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3088{
b4051334 3089 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3090 return ldl_phys(addr);
3091}
3092
c227f099 3093static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3094 uint32_t val)
3095{
b4051334 3096 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3097 stb_phys(addr, val);
3098}
3099
c227f099 3100static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3101 uint32_t val)
3102{
b4051334 3103 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3104 stw_phys(addr, val);
3105}
3106
c227f099 3107static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3108 uint32_t val)
3109{
b4051334 3110 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3111 stl_phys(addr, val);
3112}
3113
d60efc6b 3114static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3115 watch_mem_readb,
3116 watch_mem_readw,
3117 watch_mem_readl,
3118};
3119
d60efc6b 3120static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3121 watch_mem_writeb,
3122 watch_mem_writew,
3123 watch_mem_writel,
3124};
6658ffb8 3125
f6405247
RH
3126static inline uint32_t subpage_readlen (subpage_t *mmio,
3127 target_phys_addr_t addr,
3128 unsigned int len)
db7b5426 3129{
f6405247 3130 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3131#if defined(DEBUG_SUBPAGE)
3132 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3133 mmio, len, addr, idx);
3134#endif
db7b5426 3135
f6405247
RH
3136 addr += mmio->region_offset[idx];
3137 idx = mmio->sub_io_index[idx];
3138 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3139}
3140
c227f099 3141static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3142 uint32_t value, unsigned int len)
db7b5426 3143{
f6405247 3144 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3145#if defined(DEBUG_SUBPAGE)
f6405247
RH
3146 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3147 __func__, mmio, len, addr, idx, value);
db7b5426 3148#endif
f6405247
RH
3149
3150 addr += mmio->region_offset[idx];
3151 idx = mmio->sub_io_index[idx];
3152 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3153}
3154
c227f099 3155static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3156{
db7b5426
BS
3157 return subpage_readlen(opaque, addr, 0);
3158}
3159
c227f099 3160static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3161 uint32_t value)
3162{
db7b5426
BS
3163 subpage_writelen(opaque, addr, value, 0);
3164}
3165
c227f099 3166static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3167{
db7b5426
BS
3168 return subpage_readlen(opaque, addr, 1);
3169}
3170
c227f099 3171static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3172 uint32_t value)
3173{
db7b5426
BS
3174 subpage_writelen(opaque, addr, value, 1);
3175}
3176
c227f099 3177static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3178{
db7b5426
BS
3179 return subpage_readlen(opaque, addr, 2);
3180}
3181
f6405247
RH
3182static void subpage_writel (void *opaque, target_phys_addr_t addr,
3183 uint32_t value)
db7b5426 3184{
db7b5426
BS
3185 subpage_writelen(opaque, addr, value, 2);
3186}
3187
d60efc6b 3188static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3189 &subpage_readb,
3190 &subpage_readw,
3191 &subpage_readl,
3192};
3193
d60efc6b 3194static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3195 &subpage_writeb,
3196 &subpage_writew,
3197 &subpage_writel,
3198};
3199
c227f099
AL
3200static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3201 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3202{
3203 int idx, eidx;
3204
3205 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3206 return -1;
3207 idx = SUBPAGE_IDX(start);
3208 eidx = SUBPAGE_IDX(end);
3209#if defined(DEBUG_SUBPAGE)
0bf9e31a 3210 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3211 mmio, start, end, idx, eidx, memory);
3212#endif
f6405247 3213 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3214 for (; idx <= eidx; idx++) {
f6405247
RH
3215 mmio->sub_io_index[idx] = memory;
3216 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3217 }
3218
3219 return 0;
3220}
3221
f6405247
RH
3222static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3223 ram_addr_t orig_memory,
3224 ram_addr_t region_offset)
db7b5426 3225{
c227f099 3226 subpage_t *mmio;
db7b5426
BS
3227 int subpage_memory;
3228
c227f099 3229 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3230
3231 mmio->base = base;
1eed09cb 3232 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3233#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3234 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3235 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3236#endif
1eec614b 3237 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3238 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3239
3240 return mmio;
3241}
3242
88715657
AL
3243static int get_free_io_mem_idx(void)
3244{
3245 int i;
3246
3247 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3248 if (!io_mem_used[i]) {
3249 io_mem_used[i] = 1;
3250 return i;
3251 }
c6703b47 3252 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3253 return -1;
3254}
3255
33417e70
FB
3256/* mem_read and mem_write are arrays of functions containing the
3257 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3258 2). Functions can be omitted with a NULL function pointer.
3ee89922 3259 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3260 modified. If it is zero, a new io zone is allocated. The return
3261 value can be used with cpu_register_physical_memory(). (-1) is
3262 returned if error. */
1eed09cb 3263static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3264 CPUReadMemoryFunc * const *mem_read,
3265 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3266 void *opaque)
33417e70 3267{
3cab721d
RH
3268 int i;
3269
33417e70 3270 if (io_index <= 0) {
88715657
AL
3271 io_index = get_free_io_mem_idx();
3272 if (io_index == -1)
3273 return io_index;
33417e70 3274 } else {
1eed09cb 3275 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3276 if (io_index >= IO_MEM_NB_ENTRIES)
3277 return -1;
3278 }
b5ff1b31 3279
3cab721d
RH
3280 for (i = 0; i < 3; ++i) {
3281 io_mem_read[io_index][i]
3282 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3283 }
3284 for (i = 0; i < 3; ++i) {
3285 io_mem_write[io_index][i]
3286 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3287 }
a4193c8a 3288 io_mem_opaque[io_index] = opaque;
f6405247
RH
3289
3290 return (io_index << IO_MEM_SHIFT);
33417e70 3291}
61382a50 3292
d60efc6b
BS
3293int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3294 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3295 void *opaque)
3296{
3297 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3298}
3299
88715657
AL
3300void cpu_unregister_io_memory(int io_table_address)
3301{
3302 int i;
3303 int io_index = io_table_address >> IO_MEM_SHIFT;
3304
3305 for (i=0;i < 3; i++) {
3306 io_mem_read[io_index][i] = unassigned_mem_read[i];
3307 io_mem_write[io_index][i] = unassigned_mem_write[i];
3308 }
3309 io_mem_opaque[io_index] = NULL;
3310 io_mem_used[io_index] = 0;
3311}
3312
e9179ce1
AK
3313static void io_mem_init(void)
3314{
3315 int i;
3316
3317 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3318 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3319 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3320 for (i=0; i<5; i++)
3321 io_mem_used[i] = 1;
3322
3323 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3324 watch_mem_write, NULL);
e9179ce1
AK
3325}
3326
e2eef170
PB
3327#endif /* !defined(CONFIG_USER_ONLY) */
3328
13eb76e0
FB
3329/* physical memory access (slow version, mainly for debug) */
3330#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3331int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3332 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3333{
3334 int l, flags;
3335 target_ulong page;
53a5960a 3336 void * p;
13eb76e0
FB
3337
3338 while (len > 0) {
3339 page = addr & TARGET_PAGE_MASK;
3340 l = (page + TARGET_PAGE_SIZE) - addr;
3341 if (l > len)
3342 l = len;
3343 flags = page_get_flags(page);
3344 if (!(flags & PAGE_VALID))
a68fe89c 3345 return -1;
13eb76e0
FB
3346 if (is_write) {
3347 if (!(flags & PAGE_WRITE))
a68fe89c 3348 return -1;
579a97f7 3349 /* XXX: this code should not depend on lock_user */
72fb7daa 3350 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3351 return -1;
72fb7daa
AJ
3352 memcpy(p, buf, l);
3353 unlock_user(p, addr, l);
13eb76e0
FB
3354 } else {
3355 if (!(flags & PAGE_READ))
a68fe89c 3356 return -1;
579a97f7 3357 /* XXX: this code should not depend on lock_user */
72fb7daa 3358 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3359 return -1;
72fb7daa 3360 memcpy(buf, p, l);
5b257578 3361 unlock_user(p, addr, 0);
13eb76e0
FB
3362 }
3363 len -= l;
3364 buf += l;
3365 addr += l;
3366 }
a68fe89c 3367 return 0;
13eb76e0 3368}
8df1cd07 3369
13eb76e0 3370#else
c227f099 3371void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3372 int len, int is_write)
3373{
3374 int l, io_index;
3375 uint8_t *ptr;
3376 uint32_t val;
c227f099 3377 target_phys_addr_t page;
2e12669a 3378 unsigned long pd;
92e873b9 3379 PhysPageDesc *p;
3b46e624 3380
13eb76e0
FB
3381 while (len > 0) {
3382 page = addr & TARGET_PAGE_MASK;
3383 l = (page + TARGET_PAGE_SIZE) - addr;
3384 if (l > len)
3385 l = len;
92e873b9 3386 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3387 if (!p) {
3388 pd = IO_MEM_UNASSIGNED;
3389 } else {
3390 pd = p->phys_offset;
3391 }
3b46e624 3392
13eb76e0 3393 if (is_write) {
3a7d929e 3394 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3395 target_phys_addr_t addr1 = addr;
13eb76e0 3396 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3397 if (p)
6c2934db 3398 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3399 /* XXX: could force cpu_single_env to NULL to avoid
3400 potential bugs */
6c2934db 3401 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3402 /* 32 bit write access */
c27004ec 3403 val = ldl_p(buf);
6c2934db 3404 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3405 l = 4;
6c2934db 3406 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3407 /* 16 bit write access */
c27004ec 3408 val = lduw_p(buf);
6c2934db 3409 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3410 l = 2;
3411 } else {
1c213d19 3412 /* 8 bit write access */
c27004ec 3413 val = ldub_p(buf);
6c2934db 3414 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3415 l = 1;
3416 }
3417 } else {
b448f2f3
FB
3418 unsigned long addr1;
3419 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3420 /* RAM case */
5579c7f3 3421 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3422 memcpy(ptr, buf, l);
3a7d929e
FB
3423 if (!cpu_physical_memory_is_dirty(addr1)) {
3424 /* invalidate code */
3425 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3426 /* set dirty bit */
f7c11b53
YT
3427 cpu_physical_memory_set_dirty_flags(
3428 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3429 }
13eb76e0
FB
3430 }
3431 } else {
5fafdf24 3432 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3433 !(pd & IO_MEM_ROMD)) {
c227f099 3434 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3435 /* I/O case */
3436 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3437 if (p)
6c2934db
AJ
3438 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3439 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3440 /* 32 bit read access */
6c2934db 3441 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3442 stl_p(buf, val);
13eb76e0 3443 l = 4;
6c2934db 3444 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3445 /* 16 bit read access */
6c2934db 3446 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3447 stw_p(buf, val);
13eb76e0
FB
3448 l = 2;
3449 } else {
1c213d19 3450 /* 8 bit read access */
6c2934db 3451 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3452 stb_p(buf, val);
13eb76e0
FB
3453 l = 1;
3454 }
3455 } else {
3456 /* RAM case */
5579c7f3 3457 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3458 (addr & ~TARGET_PAGE_MASK);
3459 memcpy(buf, ptr, l);
3460 }
3461 }
3462 len -= l;
3463 buf += l;
3464 addr += l;
3465 }
3466}
8df1cd07 3467
d0ecd2aa 3468/* used for ROM loading : can write in RAM and ROM */
c227f099 3469void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3470 const uint8_t *buf, int len)
3471{
3472 int l;
3473 uint8_t *ptr;
c227f099 3474 target_phys_addr_t page;
d0ecd2aa
FB
3475 unsigned long pd;
3476 PhysPageDesc *p;
3b46e624 3477
d0ecd2aa
FB
3478 while (len > 0) {
3479 page = addr & TARGET_PAGE_MASK;
3480 l = (page + TARGET_PAGE_SIZE) - addr;
3481 if (l > len)
3482 l = len;
3483 p = phys_page_find(page >> TARGET_PAGE_BITS);
3484 if (!p) {
3485 pd = IO_MEM_UNASSIGNED;
3486 } else {
3487 pd = p->phys_offset;
3488 }
3b46e624 3489
d0ecd2aa 3490 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3491 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3492 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3493 /* do nothing */
3494 } else {
3495 unsigned long addr1;
3496 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3497 /* ROM/RAM case */
5579c7f3 3498 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3499 memcpy(ptr, buf, l);
3500 }
3501 len -= l;
3502 buf += l;
3503 addr += l;
3504 }
3505}
3506
6d16c2f8
AL
3507typedef struct {
3508 void *buffer;
c227f099
AL
3509 target_phys_addr_t addr;
3510 target_phys_addr_t len;
6d16c2f8
AL
3511} BounceBuffer;
3512
3513static BounceBuffer bounce;
3514
ba223c29
AL
3515typedef struct MapClient {
3516 void *opaque;
3517 void (*callback)(void *opaque);
72cf2d4f 3518 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3519} MapClient;
3520
72cf2d4f
BS
3521static QLIST_HEAD(map_client_list, MapClient) map_client_list
3522 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3523
3524void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3525{
3526 MapClient *client = qemu_malloc(sizeof(*client));
3527
3528 client->opaque = opaque;
3529 client->callback = callback;
72cf2d4f 3530 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3531 return client;
3532}
3533
3534void cpu_unregister_map_client(void *_client)
3535{
3536 MapClient *client = (MapClient *)_client;
3537
72cf2d4f 3538 QLIST_REMOVE(client, link);
34d5e948 3539 qemu_free(client);
ba223c29
AL
3540}
3541
3542static void cpu_notify_map_clients(void)
3543{
3544 MapClient *client;
3545
72cf2d4f
BS
3546 while (!QLIST_EMPTY(&map_client_list)) {
3547 client = QLIST_FIRST(&map_client_list);
ba223c29 3548 client->callback(client->opaque);
34d5e948 3549 cpu_unregister_map_client(client);
ba223c29
AL
3550 }
3551}
3552
6d16c2f8
AL
3553/* Map a physical memory region into a host virtual address.
3554 * May map a subset of the requested range, given by and returned in *plen.
3555 * May return NULL if resources needed to perform the mapping are exhausted.
3556 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3557 * Use cpu_register_map_client() to know when retrying the map operation is
3558 * likely to succeed.
6d16c2f8 3559 */
c227f099
AL
3560void *cpu_physical_memory_map(target_phys_addr_t addr,
3561 target_phys_addr_t *plen,
6d16c2f8
AL
3562 int is_write)
3563{
c227f099
AL
3564 target_phys_addr_t len = *plen;
3565 target_phys_addr_t done = 0;
6d16c2f8
AL
3566 int l;
3567 uint8_t *ret = NULL;
3568 uint8_t *ptr;
c227f099 3569 target_phys_addr_t page;
6d16c2f8
AL
3570 unsigned long pd;
3571 PhysPageDesc *p;
3572 unsigned long addr1;
3573
3574 while (len > 0) {
3575 page = addr & TARGET_PAGE_MASK;
3576 l = (page + TARGET_PAGE_SIZE) - addr;
3577 if (l > len)
3578 l = len;
3579 p = phys_page_find(page >> TARGET_PAGE_BITS);
3580 if (!p) {
3581 pd = IO_MEM_UNASSIGNED;
3582 } else {
3583 pd = p->phys_offset;
3584 }
3585
3586 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3587 if (done || bounce.buffer) {
3588 break;
3589 }
3590 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3591 bounce.addr = addr;
3592 bounce.len = l;
3593 if (!is_write) {
3594 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3595 }
3596 ptr = bounce.buffer;
3597 } else {
3598 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3599 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3600 }
3601 if (!done) {
3602 ret = ptr;
3603 } else if (ret + done != ptr) {
3604 break;
3605 }
3606
3607 len -= l;
3608 addr += l;
3609 done += l;
3610 }
3611 *plen = done;
3612 return ret;
3613}
3614
3615/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3616 * Will also mark the memory as dirty if is_write == 1. access_len gives
3617 * the amount of memory that was actually read or written by the caller.
3618 */
c227f099
AL
3619void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3620 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3621{
3622 if (buffer != bounce.buffer) {
3623 if (is_write) {
c227f099 3624 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3625 while (access_len) {
3626 unsigned l;
3627 l = TARGET_PAGE_SIZE;
3628 if (l > access_len)
3629 l = access_len;
3630 if (!cpu_physical_memory_is_dirty(addr1)) {
3631 /* invalidate code */
3632 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3633 /* set dirty bit */
f7c11b53
YT
3634 cpu_physical_memory_set_dirty_flags(
3635 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3636 }
3637 addr1 += l;
3638 access_len -= l;
3639 }
3640 }
3641 return;
3642 }
3643 if (is_write) {
3644 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3645 }
f8a83245 3646 qemu_vfree(bounce.buffer);
6d16c2f8 3647 bounce.buffer = NULL;
ba223c29 3648 cpu_notify_map_clients();
6d16c2f8 3649}
d0ecd2aa 3650
8df1cd07 3651/* warning: addr must be aligned */
c227f099 3652uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3653{
3654 int io_index;
3655 uint8_t *ptr;
3656 uint32_t val;
3657 unsigned long pd;
3658 PhysPageDesc *p;
3659
3660 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3661 if (!p) {
3662 pd = IO_MEM_UNASSIGNED;
3663 } else {
3664 pd = p->phys_offset;
3665 }
3b46e624 3666
5fafdf24 3667 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3668 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3669 /* I/O case */
3670 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3671 if (p)
3672 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3673 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3674 } else {
3675 /* RAM case */
5579c7f3 3676 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3677 (addr & ~TARGET_PAGE_MASK);
3678 val = ldl_p(ptr);
3679 }
3680 return val;
3681}
3682
84b7b8e7 3683/* warning: addr must be aligned */
c227f099 3684uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3685{
3686 int io_index;
3687 uint8_t *ptr;
3688 uint64_t val;
3689 unsigned long pd;
3690 PhysPageDesc *p;
3691
3692 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3693 if (!p) {
3694 pd = IO_MEM_UNASSIGNED;
3695 } else {
3696 pd = p->phys_offset;
3697 }
3b46e624 3698
2a4188a3
FB
3699 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3700 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3701 /* I/O case */
3702 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3703 if (p)
3704 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3705#ifdef TARGET_WORDS_BIGENDIAN
3706 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3707 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3708#else
3709 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3710 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3711#endif
3712 } else {
3713 /* RAM case */
5579c7f3 3714 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3715 (addr & ~TARGET_PAGE_MASK);
3716 val = ldq_p(ptr);
3717 }
3718 return val;
3719}
3720
aab33094 3721/* XXX: optimize */
c227f099 3722uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3723{
3724 uint8_t val;
3725 cpu_physical_memory_read(addr, &val, 1);
3726 return val;
3727}
3728
733f0b02 3729/* warning: addr must be aligned */
c227f099 3730uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 3731{
733f0b02
MT
3732 int io_index;
3733 uint8_t *ptr;
3734 uint64_t val;
3735 unsigned long pd;
3736 PhysPageDesc *p;
3737
3738 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3739 if (!p) {
3740 pd = IO_MEM_UNASSIGNED;
3741 } else {
3742 pd = p->phys_offset;
3743 }
3744
3745 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3746 !(pd & IO_MEM_ROMD)) {
3747 /* I/O case */
3748 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3749 if (p)
3750 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3751 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3752 } else {
3753 /* RAM case */
3754 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3755 (addr & ~TARGET_PAGE_MASK);
3756 val = lduw_p(ptr);
3757 }
3758 return val;
aab33094
FB
3759}
3760
8df1cd07
FB
3761/* warning: addr must be aligned. The ram page is not masked as dirty
3762 and the code inside is not invalidated. It is useful if the dirty
3763 bits are used to track modified PTEs */
c227f099 3764void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3765{
3766 int io_index;
3767 uint8_t *ptr;
3768 unsigned long pd;
3769 PhysPageDesc *p;
3770
3771 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3772 if (!p) {
3773 pd = IO_MEM_UNASSIGNED;
3774 } else {
3775 pd = p->phys_offset;
3776 }
3b46e624 3777
3a7d929e 3778 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3779 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3780 if (p)
3781 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3782 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3783 } else {
74576198 3784 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3785 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3786 stl_p(ptr, val);
74576198
AL
3787
3788 if (unlikely(in_migration)) {
3789 if (!cpu_physical_memory_is_dirty(addr1)) {
3790 /* invalidate code */
3791 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3792 /* set dirty bit */
f7c11b53
YT
3793 cpu_physical_memory_set_dirty_flags(
3794 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3795 }
3796 }
8df1cd07
FB
3797 }
3798}
3799
c227f099 3800void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3801{
3802 int io_index;
3803 uint8_t *ptr;
3804 unsigned long pd;
3805 PhysPageDesc *p;
3806
3807 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3808 if (!p) {
3809 pd = IO_MEM_UNASSIGNED;
3810 } else {
3811 pd = p->phys_offset;
3812 }
3b46e624 3813
bc98a7ef
JM
3814 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3815 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3816 if (p)
3817 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3818#ifdef TARGET_WORDS_BIGENDIAN
3819 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3821#else
3822 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3823 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3824#endif
3825 } else {
5579c7f3 3826 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3827 (addr & ~TARGET_PAGE_MASK);
3828 stq_p(ptr, val);
3829 }
3830}
3831
8df1cd07 3832/* warning: addr must be aligned */
c227f099 3833void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3834{
3835 int io_index;
3836 uint8_t *ptr;
3837 unsigned long pd;
3838 PhysPageDesc *p;
3839
3840 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3841 if (!p) {
3842 pd = IO_MEM_UNASSIGNED;
3843 } else {
3844 pd = p->phys_offset;
3845 }
3b46e624 3846
3a7d929e 3847 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3848 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3849 if (p)
3850 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3851 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3852 } else {
3853 unsigned long addr1;
3854 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3855 /* RAM case */
5579c7f3 3856 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3857 stl_p(ptr, val);
3a7d929e
FB
3858 if (!cpu_physical_memory_is_dirty(addr1)) {
3859 /* invalidate code */
3860 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3861 /* set dirty bit */
f7c11b53
YT
3862 cpu_physical_memory_set_dirty_flags(addr1,
3863 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3864 }
8df1cd07
FB
3865 }
3866}
3867
aab33094 3868/* XXX: optimize */
c227f099 3869void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3870{
3871 uint8_t v = val;
3872 cpu_physical_memory_write(addr, &v, 1);
3873}
3874
733f0b02 3875/* warning: addr must be aligned */
c227f099 3876void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 3877{
733f0b02
MT
3878 int io_index;
3879 uint8_t *ptr;
3880 unsigned long pd;
3881 PhysPageDesc *p;
3882
3883 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3884 if (!p) {
3885 pd = IO_MEM_UNASSIGNED;
3886 } else {
3887 pd = p->phys_offset;
3888 }
3889
3890 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3891 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3892 if (p)
3893 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3894 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3895 } else {
3896 unsigned long addr1;
3897 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3898 /* RAM case */
3899 ptr = qemu_get_ram_ptr(addr1);
3900 stw_p(ptr, val);
3901 if (!cpu_physical_memory_is_dirty(addr1)) {
3902 /* invalidate code */
3903 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3904 /* set dirty bit */
3905 cpu_physical_memory_set_dirty_flags(addr1,
3906 (0xff & ~CODE_DIRTY_FLAG));
3907 }
3908 }
aab33094
FB
3909}
3910
3911/* XXX: optimize */
c227f099 3912void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3913{
3914 val = tswap64(val);
3915 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3916}
3917
5e2972fd 3918/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3919int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3920 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3921{
3922 int l;
c227f099 3923 target_phys_addr_t phys_addr;
9b3c35e0 3924 target_ulong page;
13eb76e0
FB
3925
3926 while (len > 0) {
3927 page = addr & TARGET_PAGE_MASK;
3928 phys_addr = cpu_get_phys_page_debug(env, page);
3929 /* if no physical page mapped, return an error */
3930 if (phys_addr == -1)
3931 return -1;
3932 l = (page + TARGET_PAGE_SIZE) - addr;
3933 if (l > len)
3934 l = len;
5e2972fd 3935 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3936 if (is_write)
3937 cpu_physical_memory_write_rom(phys_addr, buf, l);
3938 else
5e2972fd 3939 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3940 len -= l;
3941 buf += l;
3942 addr += l;
3943 }
3944 return 0;
3945}
a68fe89c 3946#endif
13eb76e0 3947
2e70f6ef
PB
3948/* in deterministic execution mode, instructions doing device I/Os
3949 must be at the end of the TB */
3950void cpu_io_recompile(CPUState *env, void *retaddr)
3951{
3952 TranslationBlock *tb;
3953 uint32_t n, cflags;
3954 target_ulong pc, cs_base;
3955 uint64_t flags;
3956
3957 tb = tb_find_pc((unsigned long)retaddr);
3958 if (!tb) {
3959 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3960 retaddr);
3961 }
3962 n = env->icount_decr.u16.low + tb->icount;
3963 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3964 /* Calculate how many instructions had been executed before the fault
bf20dc07 3965 occurred. */
2e70f6ef
PB
3966 n = n - env->icount_decr.u16.low;
3967 /* Generate a new TB ending on the I/O insn. */
3968 n++;
3969 /* On MIPS and SH, delay slot instructions can only be restarted if
3970 they were already the first instruction in the TB. If this is not
bf20dc07 3971 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3972 branch. */
3973#if defined(TARGET_MIPS)
3974 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3975 env->active_tc.PC -= 4;
3976 env->icount_decr.u16.low++;
3977 env->hflags &= ~MIPS_HFLAG_BMASK;
3978 }
3979#elif defined(TARGET_SH4)
3980 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3981 && n > 1) {
3982 env->pc -= 2;
3983 env->icount_decr.u16.low++;
3984 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3985 }
3986#endif
3987 /* This should never happen. */
3988 if (n > CF_COUNT_MASK)
3989 cpu_abort(env, "TB too big during recompile");
3990
3991 cflags = n | CF_LAST_IO;
3992 pc = tb->pc;
3993 cs_base = tb->cs_base;
3994 flags = tb->flags;
3995 tb_phys_invalidate(tb, -1);
3996 /* FIXME: In theory this could raise an exception. In practice
3997 we have already translated the block once so it's probably ok. */
3998 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3999 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4000 the first in the TB) then we end up generating a whole new TB and
4001 repeating the fault, which is horribly inefficient.
4002 Better would be to execute just this insn uncached, or generate a
4003 second new TB. */
4004 cpu_resume_from_signal(env, NULL);
4005}
4006
b3755a91
PB
4007#if !defined(CONFIG_USER_ONLY)
4008
e3db7226
FB
4009void dump_exec_info(FILE *f,
4010 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4011{
4012 int i, target_code_size, max_target_code_size;
4013 int direct_jmp_count, direct_jmp2_count, cross_page;
4014 TranslationBlock *tb;
3b46e624 4015
e3db7226
FB
4016 target_code_size = 0;
4017 max_target_code_size = 0;
4018 cross_page = 0;
4019 direct_jmp_count = 0;
4020 direct_jmp2_count = 0;
4021 for(i = 0; i < nb_tbs; i++) {
4022 tb = &tbs[i];
4023 target_code_size += tb->size;
4024 if (tb->size > max_target_code_size)
4025 max_target_code_size = tb->size;
4026 if (tb->page_addr[1] != -1)
4027 cross_page++;
4028 if (tb->tb_next_offset[0] != 0xffff) {
4029 direct_jmp_count++;
4030 if (tb->tb_next_offset[1] != 0xffff) {
4031 direct_jmp2_count++;
4032 }
4033 }
4034 }
4035 /* XXX: avoid using doubles ? */
57fec1fe 4036 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4037 cpu_fprintf(f, "gen code size %ld/%ld\n",
4038 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4039 cpu_fprintf(f, "TB count %d/%d\n",
4040 nb_tbs, code_gen_max_blocks);
5fafdf24 4041 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4042 nb_tbs ? target_code_size / nb_tbs : 0,
4043 max_target_code_size);
5fafdf24 4044 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4045 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4046 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4047 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4048 cross_page,
e3db7226
FB
4049 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4050 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4051 direct_jmp_count,
e3db7226
FB
4052 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4053 direct_jmp2_count,
4054 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4055 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4056 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4057 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4058 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4059 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4060}
4061
61382a50
FB
4062#define MMUSUFFIX _cmmu
4063#define GETPC() NULL
4064#define env cpu_single_env
b769d8fe 4065#define SOFTMMU_CODE_ACCESS
61382a50
FB
4066
4067#define SHIFT 0
4068#include "softmmu_template.h"
4069
4070#define SHIFT 1
4071#include "softmmu_template.h"
4072
4073#define SHIFT 2
4074#include "softmmu_template.h"
4075
4076#define SHIFT 3
4077#include "softmmu_template.h"
4078
4079#undef env
4080
4081#endif