]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
lift the "already marked killed" case into shrink_dentry_list()
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
789680d1
NP
398/**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413void __d_drop(struct dentry *dentry)
414{
dea3667b 415 if (!d_unhashed(dentry)) {
b61625d2 416 struct hlist_bl_head *b;
7632e465
BF
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
dea3667b 431 dentry_rcuwalk_barrier(dentry);
789680d1
NP
432 }
433}
434EXPORT_SYMBOL(__d_drop);
435
436void d_drop(struct dentry *dentry)
437{
789680d1
NP
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
789680d1
NP
441}
442EXPORT_SYMBOL(d_drop);
443
77812a1e
NP
444/*
445 * Finish off a dentry we've decided to kill.
446 * dentry->d_lock must be held, returns with it unlocked.
447 * If ref is non-zero, then decrement the refcount too.
448 * Returns dentry requiring refcount drop, or NULL if we're done.
449 */
358eec18 450static struct dentry *
dd1f6b2e 451dentry_kill(struct dentry *dentry, int unlock_on_failure)
77812a1e
NP
452 __releases(dentry->d_lock)
453{
873feea0 454 struct inode *inode;
41edf278
AV
455 struct dentry *parent = NULL;
456 bool can_free = true;
457
873feea0
NP
458 inode = dentry->d_inode;
459 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e 460relock:
dd1f6b2e
DC
461 if (unlock_on_failure) {
462 spin_unlock(&dentry->d_lock);
463 cpu_relax();
464 }
77812a1e
NP
465 return dentry; /* try again with same dentry */
466 }
41edf278 467 if (!IS_ROOT(dentry))
77812a1e
NP
468 parent = dentry->d_parent;
469 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
470 if (inode)
471 spin_unlock(&inode->i_lock);
77812a1e
NP
472 goto relock;
473 }
31e6b01f 474
0d98439e
LT
475 /*
476 * The dentry is now unrecoverably dead to the world.
477 */
478 lockref_mark_dead(&dentry->d_lockref);
479
f0023bc6 480 /*
f0023bc6
SW
481 * inform the fs via d_prune that this dentry is about to be
482 * unhashed and destroyed.
483 */
590fb51f 484 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
485 dentry->d_op->d_prune(dentry);
486
01b60351
AV
487 if (dentry->d_flags & DCACHE_LRU_LIST) {
488 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
489 d_lru_del(dentry);
01b60351 490 }
77812a1e
NP
491 /* if it was on the hash then remove it */
492 __d_drop(dentry);
03b3b889
AV
493 list_del(&dentry->d_u.d_child);
494 /*
495 * Inform d_walk() that we are no longer attached to the
496 * dentry tree
497 */
498 dentry->d_flags |= DCACHE_DENTRY_KILLED;
499 if (parent)
500 spin_unlock(&parent->d_lock);
501 dentry_iput(dentry);
502 /*
503 * dentry_iput drops the locks, at which point nobody (except
504 * transient RCU lookups) can reach this dentry.
505 */
506 BUG_ON((int)dentry->d_lockref.count > 0);
507 this_cpu_dec(nr_dentry);
508 if (dentry->d_op && dentry->d_op->d_release)
509 dentry->d_op->d_release(dentry);
510
41edf278
AV
511 spin_lock(&dentry->d_lock);
512 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
513 dentry->d_flags |= DCACHE_MAY_FREE;
514 can_free = false;
515 }
516 spin_unlock(&dentry->d_lock);
517out:
518 if (likely(can_free))
519 dentry_free(dentry);
03b3b889 520 return parent;
77812a1e
NP
521}
522
1da177e4
LT
523/*
524 * This is dput
525 *
526 * This is complicated by the fact that we do not want to put
527 * dentries that are no longer on any hash chain on the unused
528 * list: we'd much rather just get rid of them immediately.
529 *
530 * However, that implies that we have to traverse the dentry
531 * tree upwards to the parents which might _also_ now be
532 * scheduled for deletion (it may have been only waiting for
533 * its last child to go away).
534 *
535 * This tail recursion is done by hand as we don't want to depend
536 * on the compiler to always get this right (gcc generally doesn't).
537 * Real recursion would eat up our stack space.
538 */
539
540/*
541 * dput - release a dentry
542 * @dentry: dentry to release
543 *
544 * Release a dentry. This will drop the usage count and if appropriate
545 * call the dentry unlink method as well as removing it from the queues and
546 * releasing its resources. If the parent dentries were scheduled for release
547 * they too may now get deleted.
1da177e4 548 */
1da177e4
LT
549void dput(struct dentry *dentry)
550{
8aab6a27 551 if (unlikely(!dentry))
1da177e4
LT
552 return;
553
554repeat:
98474236 555 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 556 return;
1da177e4 557
8aab6a27
LT
558 /* Unreachable? Get rid of it */
559 if (unlikely(d_unhashed(dentry)))
560 goto kill_it;
561
562 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 563 if (dentry->d_op->d_delete(dentry))
61f3dee4 564 goto kill_it;
1da177e4 565 }
265ac902 566
358eec18
LT
567 if (!(dentry->d_flags & DCACHE_REFERENCED))
568 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 569 dentry_lru_add(dentry);
265ac902 570
98474236 571 dentry->d_lockref.count--;
61f3dee4 572 spin_unlock(&dentry->d_lock);
1da177e4
LT
573 return;
574
d52b9086 575kill_it:
dd1f6b2e 576 dentry = dentry_kill(dentry, 1);
d52b9086
MS
577 if (dentry)
578 goto repeat;
1da177e4 579}
ec4f8605 580EXPORT_SYMBOL(dput);
1da177e4
LT
581
582/**
583 * d_invalidate - invalidate a dentry
584 * @dentry: dentry to invalidate
585 *
586 * Try to invalidate the dentry if it turns out to be
587 * possible. If there are other dentries that can be
588 * reached through this one we can't delete it and we
589 * return -EBUSY. On success we return 0.
590 *
591 * no dcache lock.
592 */
593
594int d_invalidate(struct dentry * dentry)
595{
596 /*
597 * If it's already been dropped, return OK.
598 */
da502956 599 spin_lock(&dentry->d_lock);
1da177e4 600 if (d_unhashed(dentry)) {
da502956 601 spin_unlock(&dentry->d_lock);
1da177e4
LT
602 return 0;
603 }
604 /*
605 * Check whether to do a partial shrink_dcache
606 * to get rid of unused child entries.
607 */
608 if (!list_empty(&dentry->d_subdirs)) {
da502956 609 spin_unlock(&dentry->d_lock);
1da177e4 610 shrink_dcache_parent(dentry);
da502956 611 spin_lock(&dentry->d_lock);
1da177e4
LT
612 }
613
614 /*
615 * Somebody else still using it?
616 *
617 * If it's a directory, we can't drop it
618 * for fear of somebody re-populating it
619 * with children (even though dropping it
620 * would make it unreachable from the root,
621 * we might still populate it if it was a
622 * working directory or similar).
50e69630
AV
623 * We also need to leave mountpoints alone,
624 * directory or not.
1da177e4 625 */
98474236 626 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 627 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 628 spin_unlock(&dentry->d_lock);
1da177e4
LT
629 return -EBUSY;
630 }
631 }
632
633 __d_drop(dentry);
634 spin_unlock(&dentry->d_lock);
1da177e4
LT
635 return 0;
636}
ec4f8605 637EXPORT_SYMBOL(d_invalidate);
1da177e4 638
b5c84bf6 639/* This must be called with d_lock held */
dc0474be 640static inline void __dget_dlock(struct dentry *dentry)
23044507 641{
98474236 642 dentry->d_lockref.count++;
23044507
NP
643}
644
dc0474be 645static inline void __dget(struct dentry *dentry)
1da177e4 646{
98474236 647 lockref_get(&dentry->d_lockref);
1da177e4
LT
648}
649
b7ab39f6
NP
650struct dentry *dget_parent(struct dentry *dentry)
651{
df3d0bbc 652 int gotref;
b7ab39f6
NP
653 struct dentry *ret;
654
df3d0bbc
WL
655 /*
656 * Do optimistic parent lookup without any
657 * locking.
658 */
659 rcu_read_lock();
660 ret = ACCESS_ONCE(dentry->d_parent);
661 gotref = lockref_get_not_zero(&ret->d_lockref);
662 rcu_read_unlock();
663 if (likely(gotref)) {
664 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
665 return ret;
666 dput(ret);
667 }
668
b7ab39f6 669repeat:
a734eb45
NP
670 /*
671 * Don't need rcu_dereference because we re-check it was correct under
672 * the lock.
673 */
674 rcu_read_lock();
b7ab39f6 675 ret = dentry->d_parent;
a734eb45
NP
676 spin_lock(&ret->d_lock);
677 if (unlikely(ret != dentry->d_parent)) {
678 spin_unlock(&ret->d_lock);
679 rcu_read_unlock();
b7ab39f6
NP
680 goto repeat;
681 }
a734eb45 682 rcu_read_unlock();
98474236
WL
683 BUG_ON(!ret->d_lockref.count);
684 ret->d_lockref.count++;
b7ab39f6 685 spin_unlock(&ret->d_lock);
b7ab39f6
NP
686 return ret;
687}
688EXPORT_SYMBOL(dget_parent);
689
1da177e4
LT
690/**
691 * d_find_alias - grab a hashed alias of inode
692 * @inode: inode in question
32ba9c3f
LT
693 * @want_discon: flag, used by d_splice_alias, to request
694 * that only a DISCONNECTED alias be returned.
1da177e4
LT
695 *
696 * If inode has a hashed alias, or is a directory and has any alias,
697 * acquire the reference to alias and return it. Otherwise return NULL.
698 * Notice that if inode is a directory there can be only one alias and
699 * it can be unhashed only if it has no children, or if it is the root
700 * of a filesystem.
701 *
21c0d8fd 702 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
703 * any other hashed alias over that one unless @want_discon is set,
704 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 705 */
32ba9c3f 706static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 707{
da502956 708 struct dentry *alias, *discon_alias;
1da177e4 709
da502956
NP
710again:
711 discon_alias = NULL;
b67bfe0d 712 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 713 spin_lock(&alias->d_lock);
1da177e4 714 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 715 if (IS_ROOT(alias) &&
da502956 716 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 717 discon_alias = alias;
32ba9c3f 718 } else if (!want_discon) {
dc0474be 719 __dget_dlock(alias);
da502956
NP
720 spin_unlock(&alias->d_lock);
721 return alias;
722 }
723 }
724 spin_unlock(&alias->d_lock);
725 }
726 if (discon_alias) {
727 alias = discon_alias;
728 spin_lock(&alias->d_lock);
729 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
730 if (IS_ROOT(alias) &&
731 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 732 __dget_dlock(alias);
da502956 733 spin_unlock(&alias->d_lock);
1da177e4
LT
734 return alias;
735 }
736 }
da502956
NP
737 spin_unlock(&alias->d_lock);
738 goto again;
1da177e4 739 }
da502956 740 return NULL;
1da177e4
LT
741}
742
da502956 743struct dentry *d_find_alias(struct inode *inode)
1da177e4 744{
214fda1f
DH
745 struct dentry *de = NULL;
746
b3d9b7a3 747 if (!hlist_empty(&inode->i_dentry)) {
873feea0 748 spin_lock(&inode->i_lock);
32ba9c3f 749 de = __d_find_alias(inode, 0);
873feea0 750 spin_unlock(&inode->i_lock);
214fda1f 751 }
1da177e4
LT
752 return de;
753}
ec4f8605 754EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
755
756/*
757 * Try to kill dentries associated with this inode.
758 * WARNING: you must own a reference to inode.
759 */
760void d_prune_aliases(struct inode *inode)
761{
0cdca3f9 762 struct dentry *dentry;
1da177e4 763restart:
873feea0 764 spin_lock(&inode->i_lock);
b67bfe0d 765 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 766 spin_lock(&dentry->d_lock);
98474236 767 if (!dentry->d_lockref.count) {
590fb51f
YZ
768 /*
769 * inform the fs via d_prune that this dentry
770 * is about to be unhashed and destroyed.
771 */
772 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
773 !d_unhashed(dentry))
774 dentry->d_op->d_prune(dentry);
775
dc0474be 776 __dget_dlock(dentry);
1da177e4
LT
777 __d_drop(dentry);
778 spin_unlock(&dentry->d_lock);
873feea0 779 spin_unlock(&inode->i_lock);
1da177e4
LT
780 dput(dentry);
781 goto restart;
782 }
783 spin_unlock(&dentry->d_lock);
784 }
873feea0 785 spin_unlock(&inode->i_lock);
1da177e4 786}
ec4f8605 787EXPORT_SYMBOL(d_prune_aliases);
1da177e4 788
3049cfe2 789static void shrink_dentry_list(struct list_head *list)
1da177e4 790{
5c47e6d0 791 struct dentry *dentry, *parent;
da3bbdd4 792
60942f2f
MS
793 while (!list_empty(list)) {
794 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 795 spin_lock(&dentry->d_lock);
dd1f6b2e
DC
796 /*
797 * The dispose list is isolated and dentries are not accounted
798 * to the LRU here, so we can simply remove it from the list
799 * here regardless of whether it is referenced or not.
800 */
89dc77bc 801 d_shrink_del(dentry);
dd1f6b2e 802
1da177e4
LT
803 /*
804 * We found an inuse dentry which was not removed from
dd1f6b2e 805 * the LRU because of laziness during lookup. Do not free it.
1da177e4 806 */
41edf278 807 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 808 spin_unlock(&dentry->d_lock);
1da177e4
LT
809 continue;
810 }
77812a1e 811
64fd72e0
AV
812
813 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
814 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
815 spin_unlock(&dentry->d_lock);
816 if (can_free)
817 dentry_free(dentry);
818 continue;
819 }
820
5c47e6d0 821 parent = dentry_kill(dentry, 0);
89dc77bc 822 /*
5c47e6d0 823 * If dentry_kill returns NULL, we have nothing more to do.
89dc77bc 824 */
60942f2f 825 if (!parent)
5c47e6d0 826 continue;
60942f2f 827
5c47e6d0
AV
828 if (unlikely(parent == dentry)) {
829 /*
830 * trylocks have failed and d_lock has been held the
831 * whole time, so it could not have been added to any
832 * other lists. Just add it back to the shrink list.
833 */
89dc77bc 834 d_shrink_add(dentry, list);
dd1f6b2e 835 spin_unlock(&dentry->d_lock);
5c47e6d0 836 continue;
dd1f6b2e 837 }
5c47e6d0
AV
838 /*
839 * We need to prune ancestors too. This is necessary to prevent
840 * quadratic behavior of shrink_dcache_parent(), but is also
841 * expected to be beneficial in reducing dentry cache
842 * fragmentation.
843 */
844 dentry = parent;
845 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
846 dentry = dentry_kill(dentry, 1);
da3bbdd4 847 }
3049cfe2
CH
848}
849
f6041567
DC
850static enum lru_status
851dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
852{
853 struct list_head *freeable = arg;
854 struct dentry *dentry = container_of(item, struct dentry, d_lru);
855
856
857 /*
858 * we are inverting the lru lock/dentry->d_lock here,
859 * so use a trylock. If we fail to get the lock, just skip
860 * it
861 */
862 if (!spin_trylock(&dentry->d_lock))
863 return LRU_SKIP;
864
865 /*
866 * Referenced dentries are still in use. If they have active
867 * counts, just remove them from the LRU. Otherwise give them
868 * another pass through the LRU.
869 */
870 if (dentry->d_lockref.count) {
89dc77bc 871 d_lru_isolate(dentry);
f6041567
DC
872 spin_unlock(&dentry->d_lock);
873 return LRU_REMOVED;
874 }
875
876 if (dentry->d_flags & DCACHE_REFERENCED) {
877 dentry->d_flags &= ~DCACHE_REFERENCED;
878 spin_unlock(&dentry->d_lock);
879
880 /*
881 * The list move itself will be made by the common LRU code. At
882 * this point, we've dropped the dentry->d_lock but keep the
883 * lru lock. This is safe to do, since every list movement is
884 * protected by the lru lock even if both locks are held.
885 *
886 * This is guaranteed by the fact that all LRU management
887 * functions are intermediated by the LRU API calls like
888 * list_lru_add and list_lru_del. List movement in this file
889 * only ever occur through this functions or through callbacks
890 * like this one, that are called from the LRU API.
891 *
892 * The only exceptions to this are functions like
893 * shrink_dentry_list, and code that first checks for the
894 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
895 * operating only with stack provided lists after they are
896 * properly isolated from the main list. It is thus, always a
897 * local access.
898 */
899 return LRU_ROTATE;
900 }
901
89dc77bc 902 d_lru_shrink_move(dentry, freeable);
f6041567
DC
903 spin_unlock(&dentry->d_lock);
904
905 return LRU_REMOVED;
906}
907
3049cfe2 908/**
b48f03b3
DC
909 * prune_dcache_sb - shrink the dcache
910 * @sb: superblock
f6041567 911 * @nr_to_scan : number of entries to try to free
9b17c623 912 * @nid: which node to scan for freeable entities
b48f03b3 913 *
f6041567 914 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
915 * done when we need more memory an called from the superblock shrinker
916 * function.
3049cfe2 917 *
b48f03b3
DC
918 * This function may fail to free any resources if all the dentries are in
919 * use.
3049cfe2 920 */
9b17c623
DC
921long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
922 int nid)
3049cfe2 923{
f6041567
DC
924 LIST_HEAD(dispose);
925 long freed;
3049cfe2 926
9b17c623
DC
927 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
928 &dispose, &nr_to_scan);
f6041567 929 shrink_dentry_list(&dispose);
0a234c6d 930 return freed;
da3bbdd4 931}
23044507 932
4e717f5c
GC
933static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
934 spinlock_t *lru_lock, void *arg)
dd1f6b2e 935{
4e717f5c
GC
936 struct list_head *freeable = arg;
937 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 938
4e717f5c
GC
939 /*
940 * we are inverting the lru lock/dentry->d_lock here,
941 * so use a trylock. If we fail to get the lock, just skip
942 * it
943 */
944 if (!spin_trylock(&dentry->d_lock))
945 return LRU_SKIP;
946
89dc77bc 947 d_lru_shrink_move(dentry, freeable);
4e717f5c 948 spin_unlock(&dentry->d_lock);
ec33679d 949
4e717f5c 950 return LRU_REMOVED;
da3bbdd4
KM
951}
952
4e717f5c 953
1da177e4
LT
954/**
955 * shrink_dcache_sb - shrink dcache for a superblock
956 * @sb: superblock
957 *
3049cfe2
CH
958 * Shrink the dcache for the specified super block. This is used to free
959 * the dcache before unmounting a file system.
1da177e4 960 */
3049cfe2 961void shrink_dcache_sb(struct super_block *sb)
1da177e4 962{
4e717f5c
GC
963 long freed;
964
965 do {
966 LIST_HEAD(dispose);
967
968 freed = list_lru_walk(&sb->s_dentry_lru,
969 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 970
4e717f5c
GC
971 this_cpu_sub(nr_dentry_unused, freed);
972 shrink_dentry_list(&dispose);
973 } while (freed > 0);
1da177e4 974}
ec4f8605 975EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 976
db14fc3a
MS
977/**
978 * enum d_walk_ret - action to talke during tree walk
979 * @D_WALK_CONTINUE: contrinue walk
980 * @D_WALK_QUIT: quit walk
981 * @D_WALK_NORETRY: quit when retry is needed
982 * @D_WALK_SKIP: skip this dentry and its children
983 */
984enum d_walk_ret {
985 D_WALK_CONTINUE,
986 D_WALK_QUIT,
987 D_WALK_NORETRY,
988 D_WALK_SKIP,
989};
c826cb7d 990
1da177e4 991/**
db14fc3a
MS
992 * d_walk - walk the dentry tree
993 * @parent: start of walk
994 * @data: data passed to @enter() and @finish()
995 * @enter: callback when first entering the dentry
996 * @finish: callback when successfully finished the walk
1da177e4 997 *
db14fc3a 998 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 999 */
db14fc3a
MS
1000static void d_walk(struct dentry *parent, void *data,
1001 enum d_walk_ret (*enter)(void *, struct dentry *),
1002 void (*finish)(void *))
1da177e4 1003{
949854d0 1004 struct dentry *this_parent;
1da177e4 1005 struct list_head *next;
48f5ec21 1006 unsigned seq = 0;
db14fc3a
MS
1007 enum d_walk_ret ret;
1008 bool retry = true;
949854d0 1009
58db63d0 1010again:
48f5ec21 1011 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1012 this_parent = parent;
2fd6b7f5 1013 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1014
1015 ret = enter(data, this_parent);
1016 switch (ret) {
1017 case D_WALK_CONTINUE:
1018 break;
1019 case D_WALK_QUIT:
1020 case D_WALK_SKIP:
1021 goto out_unlock;
1022 case D_WALK_NORETRY:
1023 retry = false;
1024 break;
1025 }
1da177e4
LT
1026repeat:
1027 next = this_parent->d_subdirs.next;
1028resume:
1029 while (next != &this_parent->d_subdirs) {
1030 struct list_head *tmp = next;
5160ee6f 1031 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1032 next = tmp->next;
2fd6b7f5
NP
1033
1034 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1035
1036 ret = enter(data, dentry);
1037 switch (ret) {
1038 case D_WALK_CONTINUE:
1039 break;
1040 case D_WALK_QUIT:
2fd6b7f5 1041 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1042 goto out_unlock;
1043 case D_WALK_NORETRY:
1044 retry = false;
1045 break;
1046 case D_WALK_SKIP:
1047 spin_unlock(&dentry->d_lock);
1048 continue;
2fd6b7f5 1049 }
db14fc3a 1050
1da177e4 1051 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1052 spin_unlock(&this_parent->d_lock);
1053 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1054 this_parent = dentry;
2fd6b7f5 1055 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1056 goto repeat;
1057 }
2fd6b7f5 1058 spin_unlock(&dentry->d_lock);
1da177e4
LT
1059 }
1060 /*
1061 * All done at this level ... ascend and resume the search.
1062 */
1063 if (this_parent != parent) {
c826cb7d 1064 struct dentry *child = this_parent;
31dec132
AV
1065 this_parent = child->d_parent;
1066
1067 rcu_read_lock();
1068 spin_unlock(&child->d_lock);
1069 spin_lock(&this_parent->d_lock);
1070
1071 /*
1072 * might go back up the wrong parent if we have had a rename
1073 * or deletion
1074 */
1075 if (this_parent != child->d_parent ||
1076 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1077 need_seqretry(&rename_lock, seq)) {
1078 spin_unlock(&this_parent->d_lock);
1079 rcu_read_unlock();
949854d0 1080 goto rename_retry;
31dec132
AV
1081 }
1082 rcu_read_unlock();
949854d0 1083 next = child->d_u.d_child.next;
1da177e4
LT
1084 goto resume;
1085 }
48f5ec21 1086 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1087 spin_unlock(&this_parent->d_lock);
949854d0 1088 goto rename_retry;
db14fc3a
MS
1089 }
1090 if (finish)
1091 finish(data);
1092
1093out_unlock:
1094 spin_unlock(&this_parent->d_lock);
48f5ec21 1095 done_seqretry(&rename_lock, seq);
db14fc3a 1096 return;
58db63d0
NP
1097
1098rename_retry:
db14fc3a
MS
1099 if (!retry)
1100 return;
48f5ec21 1101 seq = 1;
58db63d0 1102 goto again;
1da177e4 1103}
db14fc3a
MS
1104
1105/*
1106 * Search for at least 1 mount point in the dentry's subdirs.
1107 * We descend to the next level whenever the d_subdirs
1108 * list is non-empty and continue searching.
1109 */
1110
db14fc3a
MS
1111static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1112{
1113 int *ret = data;
1114 if (d_mountpoint(dentry)) {
1115 *ret = 1;
1116 return D_WALK_QUIT;
1117 }
1118 return D_WALK_CONTINUE;
1119}
1120
69c88dc7
RD
1121/**
1122 * have_submounts - check for mounts over a dentry
1123 * @parent: dentry to check.
1124 *
1125 * Return true if the parent or its subdirectories contain
1126 * a mount point
1127 */
db14fc3a
MS
1128int have_submounts(struct dentry *parent)
1129{
1130 int ret = 0;
1131
1132 d_walk(parent, &ret, check_mount, NULL);
1133
1134 return ret;
1135}
ec4f8605 1136EXPORT_SYMBOL(have_submounts);
1da177e4 1137
eed81007
MS
1138/*
1139 * Called by mount code to set a mountpoint and check if the mountpoint is
1140 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1141 * subtree can become unreachable).
1142 *
1143 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1144 * this reason take rename_lock and d_lock on dentry and ancestors.
1145 */
1146int d_set_mounted(struct dentry *dentry)
1147{
1148 struct dentry *p;
1149 int ret = -ENOENT;
1150 write_seqlock(&rename_lock);
1151 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1152 /* Need exclusion wrt. check_submounts_and_drop() */
1153 spin_lock(&p->d_lock);
1154 if (unlikely(d_unhashed(p))) {
1155 spin_unlock(&p->d_lock);
1156 goto out;
1157 }
1158 spin_unlock(&p->d_lock);
1159 }
1160 spin_lock(&dentry->d_lock);
1161 if (!d_unlinked(dentry)) {
1162 dentry->d_flags |= DCACHE_MOUNTED;
1163 ret = 0;
1164 }
1165 spin_unlock(&dentry->d_lock);
1166out:
1167 write_sequnlock(&rename_lock);
1168 return ret;
1169}
1170
1da177e4 1171/*
fd517909 1172 * Search the dentry child list of the specified parent,
1da177e4
LT
1173 * and move any unused dentries to the end of the unused
1174 * list for prune_dcache(). We descend to the next level
1175 * whenever the d_subdirs list is non-empty and continue
1176 * searching.
1177 *
1178 * It returns zero iff there are no unused children,
1179 * otherwise it returns the number of children moved to
1180 * the end of the unused list. This may not be the total
1181 * number of unused children, because select_parent can
1182 * drop the lock and return early due to latency
1183 * constraints.
1184 */
1da177e4 1185
db14fc3a
MS
1186struct select_data {
1187 struct dentry *start;
1188 struct list_head dispose;
1189 int found;
1190};
23044507 1191
db14fc3a
MS
1192static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1193{
1194 struct select_data *data = _data;
1195 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1196
db14fc3a
MS
1197 if (data->start == dentry)
1198 goto out;
2fd6b7f5 1199
fe91522a 1200 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1201 data->found++;
fe91522a
AV
1202 } else {
1203 if (dentry->d_flags & DCACHE_LRU_LIST)
1204 d_lru_del(dentry);
1205 if (!dentry->d_lockref.count) {
1206 d_shrink_add(dentry, &data->dispose);
1207 data->found++;
1208 }
1da177e4 1209 }
db14fc3a
MS
1210 /*
1211 * We can return to the caller if we have found some (this
1212 * ensures forward progress). We'll be coming back to find
1213 * the rest.
1214 */
fe91522a
AV
1215 if (!list_empty(&data->dispose))
1216 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1217out:
db14fc3a 1218 return ret;
1da177e4
LT
1219}
1220
1221/**
1222 * shrink_dcache_parent - prune dcache
1223 * @parent: parent of entries to prune
1224 *
1225 * Prune the dcache to remove unused children of the parent dentry.
1226 */
db14fc3a 1227void shrink_dcache_parent(struct dentry *parent)
1da177e4 1228{
db14fc3a
MS
1229 for (;;) {
1230 struct select_data data;
1da177e4 1231
db14fc3a
MS
1232 INIT_LIST_HEAD(&data.dispose);
1233 data.start = parent;
1234 data.found = 0;
1235
1236 d_walk(parent, &data, select_collect, NULL);
1237 if (!data.found)
1238 break;
1239
1240 shrink_dentry_list(&data.dispose);
421348f1
GT
1241 cond_resched();
1242 }
1da177e4 1243}
ec4f8605 1244EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1245
9c8c10e2 1246static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1247{
9c8c10e2
AV
1248 /* it has busy descendents; complain about those instead */
1249 if (!list_empty(&dentry->d_subdirs))
1250 return D_WALK_CONTINUE;
42c32608 1251
9c8c10e2
AV
1252 /* root with refcount 1 is fine */
1253 if (dentry == _data && dentry->d_lockref.count == 1)
1254 return D_WALK_CONTINUE;
1255
1256 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1257 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1258 dentry,
1259 dentry->d_inode ?
1260 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1261 dentry,
42c32608
AV
1262 dentry->d_lockref.count,
1263 dentry->d_sb->s_type->name,
1264 dentry->d_sb->s_id);
9c8c10e2
AV
1265 WARN_ON(1);
1266 return D_WALK_CONTINUE;
1267}
1268
1269static void do_one_tree(struct dentry *dentry)
1270{
1271 shrink_dcache_parent(dentry);
1272 d_walk(dentry, dentry, umount_check, NULL);
1273 d_drop(dentry);
1274 dput(dentry);
42c32608
AV
1275}
1276
1277/*
1278 * destroy the dentries attached to a superblock on unmounting
1279 */
1280void shrink_dcache_for_umount(struct super_block *sb)
1281{
1282 struct dentry *dentry;
1283
9c8c10e2 1284 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1285
1286 dentry = sb->s_root;
1287 sb->s_root = NULL;
9c8c10e2 1288 do_one_tree(dentry);
42c32608
AV
1289
1290 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1291 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1292 do_one_tree(dentry);
42c32608
AV
1293 }
1294}
1295
848ac114
MS
1296static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1297{
1298 struct select_data *data = _data;
1299
1300 if (d_mountpoint(dentry)) {
1301 data->found = -EBUSY;
1302 return D_WALK_QUIT;
1303 }
1304
1305 return select_collect(_data, dentry);
1306}
1307
1308static void check_and_drop(void *_data)
1309{
1310 struct select_data *data = _data;
1311
1312 if (d_mountpoint(data->start))
1313 data->found = -EBUSY;
1314 if (!data->found)
1315 __d_drop(data->start);
1316}
1317
1318/**
1319 * check_submounts_and_drop - prune dcache, check for submounts and drop
1320 *
1321 * All done as a single atomic operation relative to has_unlinked_ancestor().
1322 * Returns 0 if successfully unhashed @parent. If there were submounts then
1323 * return -EBUSY.
1324 *
1325 * @dentry: dentry to prune and drop
1326 */
1327int check_submounts_and_drop(struct dentry *dentry)
1328{
1329 int ret = 0;
1330
1331 /* Negative dentries can be dropped without further checks */
1332 if (!dentry->d_inode) {
1333 d_drop(dentry);
1334 goto out;
1335 }
1336
1337 for (;;) {
1338 struct select_data data;
1339
1340 INIT_LIST_HEAD(&data.dispose);
1341 data.start = dentry;
1342 data.found = 0;
1343
1344 d_walk(dentry, &data, check_and_collect, check_and_drop);
1345 ret = data.found;
1346
1347 if (!list_empty(&data.dispose))
1348 shrink_dentry_list(&data.dispose);
1349
1350 if (ret <= 0)
1351 break;
1352
1353 cond_resched();
1354 }
1355
1356out:
1357 return ret;
1358}
1359EXPORT_SYMBOL(check_submounts_and_drop);
1360
1da177e4 1361/**
a4464dbc
AV
1362 * __d_alloc - allocate a dcache entry
1363 * @sb: filesystem it will belong to
1da177e4
LT
1364 * @name: qstr of the name
1365 *
1366 * Allocates a dentry. It returns %NULL if there is insufficient memory
1367 * available. On a success the dentry is returned. The name passed in is
1368 * copied and the copy passed in may be reused after this call.
1369 */
1370
a4464dbc 1371struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1372{
1373 struct dentry *dentry;
1374 char *dname;
1375
e12ba74d 1376 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1377 if (!dentry)
1378 return NULL;
1379
6326c71f
LT
1380 /*
1381 * We guarantee that the inline name is always NUL-terminated.
1382 * This way the memcpy() done by the name switching in rename
1383 * will still always have a NUL at the end, even if we might
1384 * be overwriting an internal NUL character
1385 */
1386 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1387 if (name->len > DNAME_INLINE_LEN-1) {
1388 dname = kmalloc(name->len + 1, GFP_KERNEL);
1389 if (!dname) {
1390 kmem_cache_free(dentry_cache, dentry);
1391 return NULL;
1392 }
1393 } else {
1394 dname = dentry->d_iname;
1395 }
1da177e4
LT
1396
1397 dentry->d_name.len = name->len;
1398 dentry->d_name.hash = name->hash;
1399 memcpy(dname, name->name, name->len);
1400 dname[name->len] = 0;
1401
6326c71f
LT
1402 /* Make sure we always see the terminating NUL character */
1403 smp_wmb();
1404 dentry->d_name.name = dname;
1405
98474236 1406 dentry->d_lockref.count = 1;
dea3667b 1407 dentry->d_flags = 0;
1da177e4 1408 spin_lock_init(&dentry->d_lock);
31e6b01f 1409 seqcount_init(&dentry->d_seq);
1da177e4 1410 dentry->d_inode = NULL;
a4464dbc
AV
1411 dentry->d_parent = dentry;
1412 dentry->d_sb = sb;
1da177e4
LT
1413 dentry->d_op = NULL;
1414 dentry->d_fsdata = NULL;
ceb5bdc2 1415 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1416 INIT_LIST_HEAD(&dentry->d_lru);
1417 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1418 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1419 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1420 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1421
3e880fb5 1422 this_cpu_inc(nr_dentry);
312d3ca8 1423
1da177e4
LT
1424 return dentry;
1425}
a4464dbc
AV
1426
1427/**
1428 * d_alloc - allocate a dcache entry
1429 * @parent: parent of entry to allocate
1430 * @name: qstr of the name
1431 *
1432 * Allocates a dentry. It returns %NULL if there is insufficient memory
1433 * available. On a success the dentry is returned. The name passed in is
1434 * copied and the copy passed in may be reused after this call.
1435 */
1436struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1437{
1438 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1439 if (!dentry)
1440 return NULL;
1441
1442 spin_lock(&parent->d_lock);
1443 /*
1444 * don't need child lock because it is not subject
1445 * to concurrency here
1446 */
1447 __dget_dlock(parent);
1448 dentry->d_parent = parent;
1449 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1450 spin_unlock(&parent->d_lock);
1451
1452 return dentry;
1453}
ec4f8605 1454EXPORT_SYMBOL(d_alloc);
1da177e4 1455
e1a24bb0
BF
1456/**
1457 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1458 * @sb: the superblock
1459 * @name: qstr of the name
1460 *
1461 * For a filesystem that just pins its dentries in memory and never
1462 * performs lookups at all, return an unhashed IS_ROOT dentry.
1463 */
4b936885
NP
1464struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1465{
e1a24bb0 1466 return __d_alloc(sb, name);
4b936885
NP
1467}
1468EXPORT_SYMBOL(d_alloc_pseudo);
1469
1da177e4
LT
1470struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1471{
1472 struct qstr q;
1473
1474 q.name = name;
1475 q.len = strlen(name);
1476 q.hash = full_name_hash(q.name, q.len);
1477 return d_alloc(parent, &q);
1478}
ef26ca97 1479EXPORT_SYMBOL(d_alloc_name);
1da177e4 1480
fb045adb
NP
1481void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1482{
6f7f7caa
LT
1483 WARN_ON_ONCE(dentry->d_op);
1484 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1485 DCACHE_OP_COMPARE |
1486 DCACHE_OP_REVALIDATE |
ecf3d1f1 1487 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1488 DCACHE_OP_DELETE ));
1489 dentry->d_op = op;
1490 if (!op)
1491 return;
1492 if (op->d_hash)
1493 dentry->d_flags |= DCACHE_OP_HASH;
1494 if (op->d_compare)
1495 dentry->d_flags |= DCACHE_OP_COMPARE;
1496 if (op->d_revalidate)
1497 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1498 if (op->d_weak_revalidate)
1499 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1500 if (op->d_delete)
1501 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1502 if (op->d_prune)
1503 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1504
1505}
1506EXPORT_SYMBOL(d_set_d_op);
1507
b18825a7
DH
1508static unsigned d_flags_for_inode(struct inode *inode)
1509{
1510 unsigned add_flags = DCACHE_FILE_TYPE;
1511
1512 if (!inode)
1513 return DCACHE_MISS_TYPE;
1514
1515 if (S_ISDIR(inode->i_mode)) {
1516 add_flags = DCACHE_DIRECTORY_TYPE;
1517 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1518 if (unlikely(!inode->i_op->lookup))
1519 add_flags = DCACHE_AUTODIR_TYPE;
1520 else
1521 inode->i_opflags |= IOP_LOOKUP;
1522 }
1523 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1524 if (unlikely(inode->i_op->follow_link))
1525 add_flags = DCACHE_SYMLINK_TYPE;
1526 else
1527 inode->i_opflags |= IOP_NOFOLLOW;
1528 }
1529
1530 if (unlikely(IS_AUTOMOUNT(inode)))
1531 add_flags |= DCACHE_NEED_AUTOMOUNT;
1532 return add_flags;
1533}
1534
360da900
OH
1535static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1536{
b18825a7
DH
1537 unsigned add_flags = d_flags_for_inode(inode);
1538
b23fb0a6 1539 spin_lock(&dentry->d_lock);
22213318 1540 __d_set_type(dentry, add_flags);
b18825a7 1541 if (inode)
b3d9b7a3 1542 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1543 dentry->d_inode = inode;
31e6b01f 1544 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1545 spin_unlock(&dentry->d_lock);
360da900
OH
1546 fsnotify_d_instantiate(dentry, inode);
1547}
1548
1da177e4
LT
1549/**
1550 * d_instantiate - fill in inode information for a dentry
1551 * @entry: dentry to complete
1552 * @inode: inode to attach to this dentry
1553 *
1554 * Fill in inode information in the entry.
1555 *
1556 * This turns negative dentries into productive full members
1557 * of society.
1558 *
1559 * NOTE! This assumes that the inode count has been incremented
1560 * (or otherwise set) by the caller to indicate that it is now
1561 * in use by the dcache.
1562 */
1563
1564void d_instantiate(struct dentry *entry, struct inode * inode)
1565{
b3d9b7a3 1566 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1567 if (inode)
1568 spin_lock(&inode->i_lock);
360da900 1569 __d_instantiate(entry, inode);
873feea0
NP
1570 if (inode)
1571 spin_unlock(&inode->i_lock);
1da177e4
LT
1572 security_d_instantiate(entry, inode);
1573}
ec4f8605 1574EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1575
1576/**
1577 * d_instantiate_unique - instantiate a non-aliased dentry
1578 * @entry: dentry to instantiate
1579 * @inode: inode to attach to this dentry
1580 *
1581 * Fill in inode information in the entry. On success, it returns NULL.
1582 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1583 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1584 *
1585 * Note that in order to avoid conflicts with rename() etc, the caller
1586 * had better be holding the parent directory semaphore.
e866cfa9
OD
1587 *
1588 * This also assumes that the inode count has been incremented
1589 * (or otherwise set) by the caller to indicate that it is now
1590 * in use by the dcache.
1da177e4 1591 */
770bfad8
DH
1592static struct dentry *__d_instantiate_unique(struct dentry *entry,
1593 struct inode *inode)
1da177e4
LT
1594{
1595 struct dentry *alias;
1596 int len = entry->d_name.len;
1597 const char *name = entry->d_name.name;
1598 unsigned int hash = entry->d_name.hash;
1599
770bfad8 1600 if (!inode) {
360da900 1601 __d_instantiate(entry, NULL);
770bfad8
DH
1602 return NULL;
1603 }
1604
b67bfe0d 1605 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1606 /*
1607 * Don't need alias->d_lock here, because aliases with
1608 * d_parent == entry->d_parent are not subject to name or
1609 * parent changes, because the parent inode i_mutex is held.
1610 */
12f8ad4b 1611 if (alias->d_name.hash != hash)
1da177e4
LT
1612 continue;
1613 if (alias->d_parent != entry->d_parent)
1614 continue;
ee983e89
LT
1615 if (alias->d_name.len != len)
1616 continue;
12f8ad4b 1617 if (dentry_cmp(alias, name, len))
1da177e4 1618 continue;
dc0474be 1619 __dget(alias);
1da177e4
LT
1620 return alias;
1621 }
770bfad8 1622
360da900 1623 __d_instantiate(entry, inode);
1da177e4
LT
1624 return NULL;
1625}
770bfad8
DH
1626
1627struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1628{
1629 struct dentry *result;
1630
b3d9b7a3 1631 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1632
873feea0
NP
1633 if (inode)
1634 spin_lock(&inode->i_lock);
770bfad8 1635 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1636 if (inode)
1637 spin_unlock(&inode->i_lock);
770bfad8
DH
1638
1639 if (!result) {
1640 security_d_instantiate(entry, inode);
1641 return NULL;
1642 }
1643
1644 BUG_ON(!d_unhashed(result));
1645 iput(inode);
1646 return result;
1647}
1648
1da177e4
LT
1649EXPORT_SYMBOL(d_instantiate_unique);
1650
b70a80e7
MS
1651/**
1652 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1653 * @entry: dentry to complete
1654 * @inode: inode to attach to this dentry
1655 *
1656 * Fill in inode information in the entry. If a directory alias is found, then
1657 * return an error (and drop inode). Together with d_materialise_unique() this
1658 * guarantees that a directory inode may never have more than one alias.
1659 */
1660int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1661{
1662 BUG_ON(!hlist_unhashed(&entry->d_alias));
1663
1664 spin_lock(&inode->i_lock);
1665 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1666 spin_unlock(&inode->i_lock);
1667 iput(inode);
1668 return -EBUSY;
1669 }
1670 __d_instantiate(entry, inode);
1671 spin_unlock(&inode->i_lock);
1672 security_d_instantiate(entry, inode);
1673
1674 return 0;
1675}
1676EXPORT_SYMBOL(d_instantiate_no_diralias);
1677
adc0e91a
AV
1678struct dentry *d_make_root(struct inode *root_inode)
1679{
1680 struct dentry *res = NULL;
1681
1682 if (root_inode) {
26fe5750 1683 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1684
1685 res = __d_alloc(root_inode->i_sb, &name);
1686 if (res)
1687 d_instantiate(res, root_inode);
1688 else
1689 iput(root_inode);
1690 }
1691 return res;
1692}
1693EXPORT_SYMBOL(d_make_root);
1694
d891eedb
BF
1695static struct dentry * __d_find_any_alias(struct inode *inode)
1696{
1697 struct dentry *alias;
1698
b3d9b7a3 1699 if (hlist_empty(&inode->i_dentry))
d891eedb 1700 return NULL;
b3d9b7a3 1701 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1702 __dget(alias);
1703 return alias;
1704}
1705
46f72b34
SW
1706/**
1707 * d_find_any_alias - find any alias for a given inode
1708 * @inode: inode to find an alias for
1709 *
1710 * If any aliases exist for the given inode, take and return a
1711 * reference for one of them. If no aliases exist, return %NULL.
1712 */
1713struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1714{
1715 struct dentry *de;
1716
1717 spin_lock(&inode->i_lock);
1718 de = __d_find_any_alias(inode);
1719 spin_unlock(&inode->i_lock);
1720 return de;
1721}
46f72b34 1722EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1723
4ea3ada2
CH
1724/**
1725 * d_obtain_alias - find or allocate a dentry for a given inode
1726 * @inode: inode to allocate the dentry for
1727 *
1728 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1729 * similar open by handle operations. The returned dentry may be anonymous,
1730 * or may have a full name (if the inode was already in the cache).
1731 *
1732 * When called on a directory inode, we must ensure that the inode only ever
1733 * has one dentry. If a dentry is found, that is returned instead of
1734 * allocating a new one.
1735 *
1736 * On successful return, the reference to the inode has been transferred
44003728
CH
1737 * to the dentry. In case of an error the reference on the inode is released.
1738 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1739 * be passed in and will be the error will be propagate to the return value,
1740 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1741 */
1742struct dentry *d_obtain_alias(struct inode *inode)
1743{
b911a6bd 1744 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1745 struct dentry *tmp;
1746 struct dentry *res;
b18825a7 1747 unsigned add_flags;
4ea3ada2
CH
1748
1749 if (!inode)
44003728 1750 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1751 if (IS_ERR(inode))
1752 return ERR_CAST(inode);
1753
d891eedb 1754 res = d_find_any_alias(inode);
9308a612
CH
1755 if (res)
1756 goto out_iput;
1757
a4464dbc 1758 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1759 if (!tmp) {
1760 res = ERR_PTR(-ENOMEM);
1761 goto out_iput;
4ea3ada2 1762 }
b5c84bf6 1763
873feea0 1764 spin_lock(&inode->i_lock);
d891eedb 1765 res = __d_find_any_alias(inode);
9308a612 1766 if (res) {
873feea0 1767 spin_unlock(&inode->i_lock);
9308a612
CH
1768 dput(tmp);
1769 goto out_iput;
1770 }
1771
1772 /* attach a disconnected dentry */
b18825a7
DH
1773 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1774
9308a612 1775 spin_lock(&tmp->d_lock);
9308a612 1776 tmp->d_inode = inode;
b18825a7 1777 tmp->d_flags |= add_flags;
b3d9b7a3 1778 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1779 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1780 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1781 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1782 spin_unlock(&tmp->d_lock);
873feea0 1783 spin_unlock(&inode->i_lock);
24ff6663 1784 security_d_instantiate(tmp, inode);
9308a612 1785
9308a612
CH
1786 return tmp;
1787
1788 out_iput:
24ff6663
JB
1789 if (res && !IS_ERR(res))
1790 security_d_instantiate(res, inode);
9308a612
CH
1791 iput(inode);
1792 return res;
4ea3ada2 1793}
adc48720 1794EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1795
1796/**
1797 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1798 * @inode: the inode which may have a disconnected dentry
1799 * @dentry: a negative dentry which we want to point to the inode.
1800 *
1801 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1802 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1803 * and return it, else simply d_add the inode to the dentry and return NULL.
1804 *
1805 * This is needed in the lookup routine of any filesystem that is exportable
1806 * (via knfsd) so that we can build dcache paths to directories effectively.
1807 *
1808 * If a dentry was found and moved, then it is returned. Otherwise NULL
1809 * is returned. This matches the expected return value of ->lookup.
1810 *
6d4ade98
SW
1811 * Cluster filesystems may call this function with a negative, hashed dentry.
1812 * In that case, we know that the inode will be a regular file, and also this
1813 * will only occur during atomic_open. So we need to check for the dentry
1814 * being already hashed only in the final case.
1da177e4
LT
1815 */
1816struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1817{
1818 struct dentry *new = NULL;
1819
a9049376
AV
1820 if (IS_ERR(inode))
1821 return ERR_CAST(inode);
1822
21c0d8fd 1823 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1824 spin_lock(&inode->i_lock);
32ba9c3f 1825 new = __d_find_alias(inode, 1);
1da177e4 1826 if (new) {
32ba9c3f 1827 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1828 spin_unlock(&inode->i_lock);
1da177e4 1829 security_d_instantiate(new, inode);
1da177e4
LT
1830 d_move(new, dentry);
1831 iput(inode);
1832 } else {
873feea0 1833 /* already taking inode->i_lock, so d_add() by hand */
360da900 1834 __d_instantiate(dentry, inode);
873feea0 1835 spin_unlock(&inode->i_lock);
1da177e4
LT
1836 security_d_instantiate(dentry, inode);
1837 d_rehash(dentry);
1838 }
6d4ade98
SW
1839 } else {
1840 d_instantiate(dentry, inode);
1841 if (d_unhashed(dentry))
1842 d_rehash(dentry);
1843 }
1da177e4
LT
1844 return new;
1845}
ec4f8605 1846EXPORT_SYMBOL(d_splice_alias);
1da177e4 1847
9403540c
BN
1848/**
1849 * d_add_ci - lookup or allocate new dentry with case-exact name
1850 * @inode: the inode case-insensitive lookup has found
1851 * @dentry: the negative dentry that was passed to the parent's lookup func
1852 * @name: the case-exact name to be associated with the returned dentry
1853 *
1854 * This is to avoid filling the dcache with case-insensitive names to the
1855 * same inode, only the actual correct case is stored in the dcache for
1856 * case-insensitive filesystems.
1857 *
1858 * For a case-insensitive lookup match and if the the case-exact dentry
1859 * already exists in in the dcache, use it and return it.
1860 *
1861 * If no entry exists with the exact case name, allocate new dentry with
1862 * the exact case, and return the spliced entry.
1863 */
e45b590b 1864struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1865 struct qstr *name)
1866{
9403540c
BN
1867 struct dentry *found;
1868 struct dentry *new;
1869
b6520c81
CH
1870 /*
1871 * First check if a dentry matching the name already exists,
1872 * if not go ahead and create it now.
1873 */
9403540c 1874 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1875 if (unlikely(IS_ERR(found)))
1876 goto err_out;
9403540c
BN
1877 if (!found) {
1878 new = d_alloc(dentry->d_parent, name);
1879 if (!new) {
4f522a24 1880 found = ERR_PTR(-ENOMEM);
9403540c
BN
1881 goto err_out;
1882 }
b6520c81 1883
9403540c
BN
1884 found = d_splice_alias(inode, new);
1885 if (found) {
1886 dput(new);
1887 return found;
1888 }
1889 return new;
1890 }
b6520c81
CH
1891
1892 /*
1893 * If a matching dentry exists, and it's not negative use it.
1894 *
1895 * Decrement the reference count to balance the iget() done
1896 * earlier on.
1897 */
9403540c
BN
1898 if (found->d_inode) {
1899 if (unlikely(found->d_inode != inode)) {
1900 /* This can't happen because bad inodes are unhashed. */
1901 BUG_ON(!is_bad_inode(inode));
1902 BUG_ON(!is_bad_inode(found->d_inode));
1903 }
9403540c
BN
1904 iput(inode);
1905 return found;
1906 }
b6520c81 1907
9403540c 1908 /*
9403540c 1909 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1910 * already has a dentry.
9403540c 1911 */
4513d899
AV
1912 new = d_splice_alias(inode, found);
1913 if (new) {
1914 dput(found);
1915 found = new;
9403540c 1916 }
4513d899 1917 return found;
9403540c
BN
1918
1919err_out:
1920 iput(inode);
4f522a24 1921 return found;
9403540c 1922}
ec4f8605 1923EXPORT_SYMBOL(d_add_ci);
1da177e4 1924
12f8ad4b
LT
1925/*
1926 * Do the slow-case of the dentry name compare.
1927 *
1928 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1929 * load the name and length information, so that the
12f8ad4b
LT
1930 * filesystem can rely on them, and can use the 'name' and
1931 * 'len' information without worrying about walking off the
1932 * end of memory etc.
1933 *
1934 * Thus the read_seqcount_retry() and the "duplicate" info
1935 * in arguments (the low-level filesystem should not look
1936 * at the dentry inode or name contents directly, since
1937 * rename can change them while we're in RCU mode).
1938 */
1939enum slow_d_compare {
1940 D_COMP_OK,
1941 D_COMP_NOMATCH,
1942 D_COMP_SEQRETRY,
1943};
1944
1945static noinline enum slow_d_compare slow_dentry_cmp(
1946 const struct dentry *parent,
12f8ad4b
LT
1947 struct dentry *dentry,
1948 unsigned int seq,
1949 const struct qstr *name)
1950{
1951 int tlen = dentry->d_name.len;
1952 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1953
1954 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1955 cpu_relax();
1956 return D_COMP_SEQRETRY;
1957 }
da53be12 1958 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1959 return D_COMP_NOMATCH;
1960 return D_COMP_OK;
1961}
1962
31e6b01f
NP
1963/**
1964 * __d_lookup_rcu - search for a dentry (racy, store-free)
1965 * @parent: parent dentry
1966 * @name: qstr of name we wish to find
1f1e6e52 1967 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1968 * Returns: dentry, or NULL
1969 *
1970 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1971 * resolution (store-free path walking) design described in
1972 * Documentation/filesystems/path-lookup.txt.
1973 *
1974 * This is not to be used outside core vfs.
1975 *
1976 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1977 * held, and rcu_read_lock held. The returned dentry must not be stored into
1978 * without taking d_lock and checking d_seq sequence count against @seq
1979 * returned here.
1980 *
15570086 1981 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
1982 * function.
1983 *
1984 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1985 * the returned dentry, so long as its parent's seqlock is checked after the
1986 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1987 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1988 *
1989 * NOTE! The caller *has* to check the resulting dentry against the sequence
1990 * number we've returned before using any of the resulting dentry state!
31e6b01f 1991 */
8966be90
LT
1992struct dentry *__d_lookup_rcu(const struct dentry *parent,
1993 const struct qstr *name,
da53be12 1994 unsigned *seqp)
31e6b01f 1995{
26fe5750 1996 u64 hashlen = name->hash_len;
31e6b01f 1997 const unsigned char *str = name->name;
26fe5750 1998 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1999 struct hlist_bl_node *node;
31e6b01f
NP
2000 struct dentry *dentry;
2001
2002 /*
2003 * Note: There is significant duplication with __d_lookup_rcu which is
2004 * required to prevent single threaded performance regressions
2005 * especially on architectures where smp_rmb (in seqcounts) are costly.
2006 * Keep the two functions in sync.
2007 */
2008
2009 /*
2010 * The hash list is protected using RCU.
2011 *
2012 * Carefully use d_seq when comparing a candidate dentry, to avoid
2013 * races with d_move().
2014 *
2015 * It is possible that concurrent renames can mess up our list
2016 * walk here and result in missing our dentry, resulting in the
2017 * false-negative result. d_lookup() protects against concurrent
2018 * renames using rename_lock seqlock.
2019 *
b0a4bb83 2020 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2021 */
b07ad996 2022 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2023 unsigned seq;
31e6b01f 2024
31e6b01f 2025seqretry:
12f8ad4b
LT
2026 /*
2027 * The dentry sequence count protects us from concurrent
da53be12 2028 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2029 *
2030 * The caller must perform a seqcount check in order
da53be12 2031 * to do anything useful with the returned dentry.
12f8ad4b
LT
2032 *
2033 * NOTE! We do a "raw" seqcount_begin here. That means that
2034 * we don't wait for the sequence count to stabilize if it
2035 * is in the middle of a sequence change. If we do the slow
2036 * dentry compare, we will do seqretries until it is stable,
2037 * and if we end up with a successful lookup, we actually
2038 * want to exit RCU lookup anyway.
2039 */
2040 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2041 if (dentry->d_parent != parent)
2042 continue;
2e321806
LT
2043 if (d_unhashed(dentry))
2044 continue;
12f8ad4b 2045
830c0f0e 2046 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2047 if (dentry->d_name.hash != hashlen_hash(hashlen))
2048 continue;
da53be12
LT
2049 *seqp = seq;
2050 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2051 case D_COMP_OK:
2052 return dentry;
2053 case D_COMP_NOMATCH:
31e6b01f 2054 continue;
12f8ad4b
LT
2055 default:
2056 goto seqretry;
2057 }
31e6b01f 2058 }
12f8ad4b 2059
26fe5750 2060 if (dentry->d_name.hash_len != hashlen)
ee983e89 2061 continue;
da53be12 2062 *seqp = seq;
26fe5750 2063 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2064 return dentry;
31e6b01f
NP
2065 }
2066 return NULL;
2067}
2068
1da177e4
LT
2069/**
2070 * d_lookup - search for a dentry
2071 * @parent: parent dentry
2072 * @name: qstr of name we wish to find
b04f784e 2073 * Returns: dentry, or NULL
1da177e4 2074 *
b04f784e
NP
2075 * d_lookup searches the children of the parent dentry for the name in
2076 * question. If the dentry is found its reference count is incremented and the
2077 * dentry is returned. The caller must use dput to free the entry when it has
2078 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2079 */
da2d8455 2080struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2081{
31e6b01f 2082 struct dentry *dentry;
949854d0 2083 unsigned seq;
1da177e4
LT
2084
2085 do {
2086 seq = read_seqbegin(&rename_lock);
2087 dentry = __d_lookup(parent, name);
2088 if (dentry)
2089 break;
2090 } while (read_seqretry(&rename_lock, seq));
2091 return dentry;
2092}
ec4f8605 2093EXPORT_SYMBOL(d_lookup);
1da177e4 2094
31e6b01f 2095/**
b04f784e
NP
2096 * __d_lookup - search for a dentry (racy)
2097 * @parent: parent dentry
2098 * @name: qstr of name we wish to find
2099 * Returns: dentry, or NULL
2100 *
2101 * __d_lookup is like d_lookup, however it may (rarely) return a
2102 * false-negative result due to unrelated rename activity.
2103 *
2104 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2105 * however it must be used carefully, eg. with a following d_lookup in
2106 * the case of failure.
2107 *
2108 * __d_lookup callers must be commented.
2109 */
a713ca2a 2110struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2111{
2112 unsigned int len = name->len;
2113 unsigned int hash = name->hash;
2114 const unsigned char *str = name->name;
b07ad996 2115 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2116 struct hlist_bl_node *node;
31e6b01f 2117 struct dentry *found = NULL;
665a7583 2118 struct dentry *dentry;
1da177e4 2119
31e6b01f
NP
2120 /*
2121 * Note: There is significant duplication with __d_lookup_rcu which is
2122 * required to prevent single threaded performance regressions
2123 * especially on architectures where smp_rmb (in seqcounts) are costly.
2124 * Keep the two functions in sync.
2125 */
2126
b04f784e
NP
2127 /*
2128 * The hash list is protected using RCU.
2129 *
2130 * Take d_lock when comparing a candidate dentry, to avoid races
2131 * with d_move().
2132 *
2133 * It is possible that concurrent renames can mess up our list
2134 * walk here and result in missing our dentry, resulting in the
2135 * false-negative result. d_lookup() protects against concurrent
2136 * renames using rename_lock seqlock.
2137 *
b0a4bb83 2138 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2139 */
1da177e4
LT
2140 rcu_read_lock();
2141
b07ad996 2142 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2143
1da177e4
LT
2144 if (dentry->d_name.hash != hash)
2145 continue;
1da177e4
LT
2146
2147 spin_lock(&dentry->d_lock);
1da177e4
LT
2148 if (dentry->d_parent != parent)
2149 goto next;
d0185c08
LT
2150 if (d_unhashed(dentry))
2151 goto next;
2152
1da177e4
LT
2153 /*
2154 * It is safe to compare names since d_move() cannot
2155 * change the qstr (protected by d_lock).
2156 */
fb045adb 2157 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2158 int tlen = dentry->d_name.len;
2159 const char *tname = dentry->d_name.name;
da53be12 2160 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2161 goto next;
2162 } else {
ee983e89
LT
2163 if (dentry->d_name.len != len)
2164 goto next;
12f8ad4b 2165 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2166 goto next;
2167 }
2168
98474236 2169 dentry->d_lockref.count++;
d0185c08 2170 found = dentry;
1da177e4
LT
2171 spin_unlock(&dentry->d_lock);
2172 break;
2173next:
2174 spin_unlock(&dentry->d_lock);
2175 }
2176 rcu_read_unlock();
2177
2178 return found;
2179}
2180
3e7e241f
EB
2181/**
2182 * d_hash_and_lookup - hash the qstr then search for a dentry
2183 * @dir: Directory to search in
2184 * @name: qstr of name we wish to find
2185 *
4f522a24 2186 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2187 */
2188struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2189{
3e7e241f
EB
2190 /*
2191 * Check for a fs-specific hash function. Note that we must
2192 * calculate the standard hash first, as the d_op->d_hash()
2193 * routine may choose to leave the hash value unchanged.
2194 */
2195 name->hash = full_name_hash(name->name, name->len);
fb045adb 2196 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2197 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2198 if (unlikely(err < 0))
2199 return ERR_PTR(err);
3e7e241f 2200 }
4f522a24 2201 return d_lookup(dir, name);
3e7e241f 2202}
4f522a24 2203EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2204
1da177e4 2205/**
786a5e15 2206 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2207 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2208 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2209 *
2210 * An insecure source has sent us a dentry, here we verify it and dget() it.
2211 * This is used by ncpfs in its readdir implementation.
2212 * Zero is returned in the dentry is invalid.
786a5e15
NP
2213 *
2214 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2215 */
d3a23e16 2216int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2217{
786a5e15 2218 struct dentry *child;
d3a23e16 2219
2fd6b7f5 2220 spin_lock(&dparent->d_lock);
786a5e15
NP
2221 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2222 if (dentry == child) {
2fd6b7f5 2223 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2224 __dget_dlock(dentry);
2fd6b7f5
NP
2225 spin_unlock(&dentry->d_lock);
2226 spin_unlock(&dparent->d_lock);
1da177e4
LT
2227 return 1;
2228 }
2229 }
2fd6b7f5 2230 spin_unlock(&dparent->d_lock);
786a5e15 2231
1da177e4
LT
2232 return 0;
2233}
ec4f8605 2234EXPORT_SYMBOL(d_validate);
1da177e4
LT
2235
2236/*
2237 * When a file is deleted, we have two options:
2238 * - turn this dentry into a negative dentry
2239 * - unhash this dentry and free it.
2240 *
2241 * Usually, we want to just turn this into
2242 * a negative dentry, but if anybody else is
2243 * currently using the dentry or the inode
2244 * we can't do that and we fall back on removing
2245 * it from the hash queues and waiting for
2246 * it to be deleted later when it has no users
2247 */
2248
2249/**
2250 * d_delete - delete a dentry
2251 * @dentry: The dentry to delete
2252 *
2253 * Turn the dentry into a negative dentry if possible, otherwise
2254 * remove it from the hash queues so it can be deleted later
2255 */
2256
2257void d_delete(struct dentry * dentry)
2258{
873feea0 2259 struct inode *inode;
7a91bf7f 2260 int isdir = 0;
1da177e4
LT
2261 /*
2262 * Are we the only user?
2263 */
357f8e65 2264again:
1da177e4 2265 spin_lock(&dentry->d_lock);
873feea0
NP
2266 inode = dentry->d_inode;
2267 isdir = S_ISDIR(inode->i_mode);
98474236 2268 if (dentry->d_lockref.count == 1) {
1fe0c023 2269 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2270 spin_unlock(&dentry->d_lock);
2271 cpu_relax();
2272 goto again;
2273 }
13e3c5e5 2274 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2275 dentry_unlink_inode(dentry);
7a91bf7f 2276 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2277 return;
2278 }
2279
2280 if (!d_unhashed(dentry))
2281 __d_drop(dentry);
2282
2283 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2284
2285 fsnotify_nameremove(dentry, isdir);
1da177e4 2286}
ec4f8605 2287EXPORT_SYMBOL(d_delete);
1da177e4 2288
b07ad996 2289static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2290{
ceb5bdc2 2291 BUG_ON(!d_unhashed(entry));
1879fd6a 2292 hlist_bl_lock(b);
dea3667b 2293 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2294 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2295 hlist_bl_unlock(b);
1da177e4
LT
2296}
2297
770bfad8
DH
2298static void _d_rehash(struct dentry * entry)
2299{
2300 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2301}
2302
1da177e4
LT
2303/**
2304 * d_rehash - add an entry back to the hash
2305 * @entry: dentry to add to the hash
2306 *
2307 * Adds a dentry to the hash according to its name.
2308 */
2309
2310void d_rehash(struct dentry * entry)
2311{
1da177e4 2312 spin_lock(&entry->d_lock);
770bfad8 2313 _d_rehash(entry);
1da177e4 2314 spin_unlock(&entry->d_lock);
1da177e4 2315}
ec4f8605 2316EXPORT_SYMBOL(d_rehash);
1da177e4 2317
fb2d5b86
NP
2318/**
2319 * dentry_update_name_case - update case insensitive dentry with a new name
2320 * @dentry: dentry to be updated
2321 * @name: new name
2322 *
2323 * Update a case insensitive dentry with new case of name.
2324 *
2325 * dentry must have been returned by d_lookup with name @name. Old and new
2326 * name lengths must match (ie. no d_compare which allows mismatched name
2327 * lengths).
2328 *
2329 * Parent inode i_mutex must be held over d_lookup and into this call (to
2330 * keep renames and concurrent inserts, and readdir(2) away).
2331 */
2332void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2333{
7ebfa57f 2334 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2335 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2336
fb2d5b86 2337 spin_lock(&dentry->d_lock);
31e6b01f 2338 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2339 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2340 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2341 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2342}
2343EXPORT_SYMBOL(dentry_update_name_case);
2344
1da177e4
LT
2345static void switch_names(struct dentry *dentry, struct dentry *target)
2346{
2347 if (dname_external(target)) {
2348 if (dname_external(dentry)) {
2349 /*
2350 * Both external: swap the pointers
2351 */
9a8d5bb4 2352 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2353 } else {
2354 /*
2355 * dentry:internal, target:external. Steal target's
2356 * storage and make target internal.
2357 */
321bcf92
BF
2358 memcpy(target->d_iname, dentry->d_name.name,
2359 dentry->d_name.len + 1);
1da177e4
LT
2360 dentry->d_name.name = target->d_name.name;
2361 target->d_name.name = target->d_iname;
2362 }
2363 } else {
2364 if (dname_external(dentry)) {
2365 /*
2366 * dentry:external, target:internal. Give dentry's
2367 * storage to target and make dentry internal
2368 */
2369 memcpy(dentry->d_iname, target->d_name.name,
2370 target->d_name.len + 1);
2371 target->d_name.name = dentry->d_name.name;
2372 dentry->d_name.name = dentry->d_iname;
2373 } else {
2374 /*
da1ce067 2375 * Both are internal.
1da177e4 2376 */
da1ce067
MS
2377 unsigned int i;
2378 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2379 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2380 swap(((long *) &dentry->d_iname)[i],
2381 ((long *) &target->d_iname)[i]);
2382 }
1da177e4
LT
2383 }
2384 }
9a8d5bb4 2385 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2386}
2387
2fd6b7f5
NP
2388static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2389{
2390 /*
2391 * XXXX: do we really need to take target->d_lock?
2392 */
2393 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2394 spin_lock(&target->d_parent->d_lock);
2395 else {
2396 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2397 spin_lock(&dentry->d_parent->d_lock);
2398 spin_lock_nested(&target->d_parent->d_lock,
2399 DENTRY_D_LOCK_NESTED);
2400 } else {
2401 spin_lock(&target->d_parent->d_lock);
2402 spin_lock_nested(&dentry->d_parent->d_lock,
2403 DENTRY_D_LOCK_NESTED);
2404 }
2405 }
2406 if (target < dentry) {
2407 spin_lock_nested(&target->d_lock, 2);
2408 spin_lock_nested(&dentry->d_lock, 3);
2409 } else {
2410 spin_lock_nested(&dentry->d_lock, 2);
2411 spin_lock_nested(&target->d_lock, 3);
2412 }
2413}
2414
2415static void dentry_unlock_parents_for_move(struct dentry *dentry,
2416 struct dentry *target)
2417{
2418 if (target->d_parent != dentry->d_parent)
2419 spin_unlock(&dentry->d_parent->d_lock);
2420 if (target->d_parent != target)
2421 spin_unlock(&target->d_parent->d_lock);
2422}
2423
1da177e4 2424/*
2fd6b7f5
NP
2425 * When switching names, the actual string doesn't strictly have to
2426 * be preserved in the target - because we're dropping the target
2427 * anyway. As such, we can just do a simple memcpy() to copy over
2428 * the new name before we switch.
2429 *
2430 * Note that we have to be a lot more careful about getting the hash
2431 * switched - we have to switch the hash value properly even if it
2432 * then no longer matches the actual (corrupted) string of the target.
2433 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2434 */
9eaef27b 2435/*
18367501 2436 * __d_move - move a dentry
1da177e4
LT
2437 * @dentry: entry to move
2438 * @target: new dentry
da1ce067 2439 * @exchange: exchange the two dentries
1da177e4
LT
2440 *
2441 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2442 * dcache entries should not be moved in this way. Caller must hold
2443 * rename_lock, the i_mutex of the source and target directories,
2444 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2445 */
da1ce067
MS
2446static void __d_move(struct dentry *dentry, struct dentry *target,
2447 bool exchange)
1da177e4 2448{
1da177e4
LT
2449 if (!dentry->d_inode)
2450 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2451
2fd6b7f5
NP
2452 BUG_ON(d_ancestor(dentry, target));
2453 BUG_ON(d_ancestor(target, dentry));
2454
2fd6b7f5 2455 dentry_lock_for_move(dentry, target);
1da177e4 2456
31e6b01f 2457 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2458 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2459
ceb5bdc2
NP
2460 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2461
2462 /*
2463 * Move the dentry to the target hash queue. Don't bother checking
2464 * for the same hash queue because of how unlikely it is.
2465 */
2466 __d_drop(dentry);
789680d1 2467 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2468
da1ce067
MS
2469 /*
2470 * Unhash the target (d_delete() is not usable here). If exchanging
2471 * the two dentries, then rehash onto the other's hash queue.
2472 */
1da177e4 2473 __d_drop(target);
da1ce067
MS
2474 if (exchange) {
2475 __d_rehash(target,
2476 d_hash(dentry->d_parent, dentry->d_name.hash));
2477 }
1da177e4 2478
5160ee6f
ED
2479 list_del(&dentry->d_u.d_child);
2480 list_del(&target->d_u.d_child);
1da177e4
LT
2481
2482 /* Switch the names.. */
2483 switch_names(dentry, target);
9a8d5bb4 2484 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2485
2486 /* ... and switch the parents */
2487 if (IS_ROOT(dentry)) {
2488 dentry->d_parent = target->d_parent;
2489 target->d_parent = target;
5160ee6f 2490 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2491 } else {
9a8d5bb4 2492 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2493
2494 /* And add them back to the (new) parent lists */
5160ee6f 2495 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2496 }
2497
5160ee6f 2498 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2499
31e6b01f
NP
2500 write_seqcount_end(&target->d_seq);
2501 write_seqcount_end(&dentry->d_seq);
2502
2fd6b7f5 2503 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2504 if (exchange)
2505 fsnotify_d_move(target);
1da177e4 2506 spin_unlock(&target->d_lock);
c32ccd87 2507 fsnotify_d_move(dentry);
1da177e4 2508 spin_unlock(&dentry->d_lock);
18367501
AV
2509}
2510
2511/*
2512 * d_move - move a dentry
2513 * @dentry: entry to move
2514 * @target: new dentry
2515 *
2516 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2517 * dcache entries should not be moved in this way. See the locking
2518 * requirements for __d_move.
18367501
AV
2519 */
2520void d_move(struct dentry *dentry, struct dentry *target)
2521{
2522 write_seqlock(&rename_lock);
da1ce067 2523 __d_move(dentry, target, false);
1da177e4 2524 write_sequnlock(&rename_lock);
9eaef27b 2525}
ec4f8605 2526EXPORT_SYMBOL(d_move);
1da177e4 2527
da1ce067
MS
2528/*
2529 * d_exchange - exchange two dentries
2530 * @dentry1: first dentry
2531 * @dentry2: second dentry
2532 */
2533void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2534{
2535 write_seqlock(&rename_lock);
2536
2537 WARN_ON(!dentry1->d_inode);
2538 WARN_ON(!dentry2->d_inode);
2539 WARN_ON(IS_ROOT(dentry1));
2540 WARN_ON(IS_ROOT(dentry2));
2541
2542 __d_move(dentry1, dentry2, true);
2543
2544 write_sequnlock(&rename_lock);
2545}
2546
e2761a11
OH
2547/**
2548 * d_ancestor - search for an ancestor
2549 * @p1: ancestor dentry
2550 * @p2: child dentry
2551 *
2552 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2553 * an ancestor of p2, else NULL.
9eaef27b 2554 */
e2761a11 2555struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2556{
2557 struct dentry *p;
2558
871c0067 2559 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2560 if (p->d_parent == p1)
e2761a11 2561 return p;
9eaef27b 2562 }
e2761a11 2563 return NULL;
9eaef27b
TM
2564}
2565
2566/*
2567 * This helper attempts to cope with remotely renamed directories
2568 *
2569 * It assumes that the caller is already holding
18367501 2570 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2571 *
2572 * Note: If ever the locking in lock_rename() changes, then please
2573 * remember to update this too...
9eaef27b 2574 */
873feea0
NP
2575static struct dentry *__d_unalias(struct inode *inode,
2576 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2577{
2578 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2579 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2580
2581 /* If alias and dentry share a parent, then no extra locks required */
2582 if (alias->d_parent == dentry->d_parent)
2583 goto out_unalias;
2584
9eaef27b 2585 /* See lock_rename() */
9eaef27b
TM
2586 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2587 goto out_err;
2588 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2589 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2590 goto out_err;
2591 m2 = &alias->d_parent->d_inode->i_mutex;
2592out_unalias:
ee3efa91 2593 if (likely(!d_mountpoint(alias))) {
da1ce067 2594 __d_move(alias, dentry, false);
ee3efa91
AV
2595 ret = alias;
2596 }
9eaef27b 2597out_err:
873feea0 2598 spin_unlock(&inode->i_lock);
9eaef27b
TM
2599 if (m2)
2600 mutex_unlock(m2);
2601 if (m1)
2602 mutex_unlock(m1);
2603 return ret;
2604}
2605
770bfad8
DH
2606/*
2607 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2608 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2609 * returns with anon->d_lock held!
770bfad8
DH
2610 */
2611static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2612{
740da42e 2613 struct dentry *dparent;
770bfad8 2614
2fd6b7f5 2615 dentry_lock_for_move(anon, dentry);
770bfad8 2616
31e6b01f 2617 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2618 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2619
770bfad8 2620 dparent = dentry->d_parent;
770bfad8 2621
2fd6b7f5
NP
2622 switch_names(dentry, anon);
2623 swap(dentry->d_name.hash, anon->d_name.hash);
2624
740da42e
AV
2625 dentry->d_parent = dentry;
2626 list_del_init(&dentry->d_u.d_child);
2627 anon->d_parent = dparent;
9ed53b12 2628 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2629
31e6b01f
NP
2630 write_seqcount_end(&dentry->d_seq);
2631 write_seqcount_end(&anon->d_seq);
2632
2fd6b7f5
NP
2633 dentry_unlock_parents_for_move(anon, dentry);
2634 spin_unlock(&dentry->d_lock);
2635
2636 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2637}
2638
2639/**
2640 * d_materialise_unique - introduce an inode into the tree
2641 * @dentry: candidate dentry
2642 * @inode: inode to bind to the dentry, to which aliases may be attached
2643 *
2644 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2645 * root directory alias in its place if there is one. Caller must hold the
2646 * i_mutex of the parent directory.
770bfad8
DH
2647 */
2648struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2649{
9eaef27b 2650 struct dentry *actual;
770bfad8
DH
2651
2652 BUG_ON(!d_unhashed(dentry));
2653
770bfad8
DH
2654 if (!inode) {
2655 actual = dentry;
360da900 2656 __d_instantiate(dentry, NULL);
357f8e65
NP
2657 d_rehash(actual);
2658 goto out_nolock;
770bfad8
DH
2659 }
2660
873feea0 2661 spin_lock(&inode->i_lock);
357f8e65 2662
9eaef27b
TM
2663 if (S_ISDIR(inode->i_mode)) {
2664 struct dentry *alias;
2665
2666 /* Does an aliased dentry already exist? */
32ba9c3f 2667 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2668 if (alias) {
2669 actual = alias;
18367501
AV
2670 write_seqlock(&rename_lock);
2671
2672 if (d_ancestor(alias, dentry)) {
2673 /* Check for loops */
2674 actual = ERR_PTR(-ELOOP);
b18dafc8 2675 spin_unlock(&inode->i_lock);
18367501
AV
2676 } else if (IS_ROOT(alias)) {
2677 /* Is this an anonymous mountpoint that we
2678 * could splice into our tree? */
9eaef27b 2679 __d_materialise_dentry(dentry, alias);
18367501 2680 write_sequnlock(&rename_lock);
9eaef27b
TM
2681 __d_drop(alias);
2682 goto found;
18367501
AV
2683 } else {
2684 /* Nope, but we must(!) avoid directory
b18dafc8 2685 * aliasing. This drops inode->i_lock */
18367501 2686 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2687 }
18367501 2688 write_sequnlock(&rename_lock);
dd179946
DH
2689 if (IS_ERR(actual)) {
2690 if (PTR_ERR(actual) == -ELOOP)
2691 pr_warn_ratelimited(
2692 "VFS: Lookup of '%s' in %s %s"
2693 " would have caused loop\n",
2694 dentry->d_name.name,
2695 inode->i_sb->s_type->name,
2696 inode->i_sb->s_id);
9eaef27b 2697 dput(alias);
dd179946 2698 }
9eaef27b
TM
2699 goto out_nolock;
2700 }
770bfad8
DH
2701 }
2702
2703 /* Add a unique reference */
2704 actual = __d_instantiate_unique(dentry, inode);
2705 if (!actual)
2706 actual = dentry;
357f8e65
NP
2707 else
2708 BUG_ON(!d_unhashed(actual));
770bfad8 2709
770bfad8
DH
2710 spin_lock(&actual->d_lock);
2711found:
2712 _d_rehash(actual);
2713 spin_unlock(&actual->d_lock);
873feea0 2714 spin_unlock(&inode->i_lock);
9eaef27b 2715out_nolock:
770bfad8
DH
2716 if (actual == dentry) {
2717 security_d_instantiate(dentry, inode);
2718 return NULL;
2719 }
2720
2721 iput(inode);
2722 return actual;
770bfad8 2723}
ec4f8605 2724EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2725
cdd16d02 2726static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2727{
2728 *buflen -= namelen;
2729 if (*buflen < 0)
2730 return -ENAMETOOLONG;
2731 *buffer -= namelen;
2732 memcpy(*buffer, str, namelen);
2733 return 0;
2734}
2735
232d2d60
WL
2736/**
2737 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2738 * @buffer: buffer pointer
2739 * @buflen: allocated length of the buffer
2740 * @name: name string and length qstr structure
232d2d60
WL
2741 *
2742 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2743 * make sure that either the old or the new name pointer and length are
2744 * fetched. However, there may be mismatch between length and pointer.
2745 * The length cannot be trusted, we need to copy it byte-by-byte until
2746 * the length is reached or a null byte is found. It also prepends "/" at
2747 * the beginning of the name. The sequence number check at the caller will
2748 * retry it again when a d_move() does happen. So any garbage in the buffer
2749 * due to mismatched pointer and length will be discarded.
2750 */
cdd16d02
MS
2751static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2752{
232d2d60
WL
2753 const char *dname = ACCESS_ONCE(name->name);
2754 u32 dlen = ACCESS_ONCE(name->len);
2755 char *p;
2756
232d2d60 2757 *buflen -= dlen + 1;
e825196d
AV
2758 if (*buflen < 0)
2759 return -ENAMETOOLONG;
232d2d60
WL
2760 p = *buffer -= dlen + 1;
2761 *p++ = '/';
2762 while (dlen--) {
2763 char c = *dname++;
2764 if (!c)
2765 break;
2766 *p++ = c;
2767 }
2768 return 0;
cdd16d02
MS
2769}
2770
1da177e4 2771/**
208898c1 2772 * prepend_path - Prepend path string to a buffer
9d1bc601 2773 * @path: the dentry/vfsmount to report
02125a82 2774 * @root: root vfsmnt/dentry
f2eb6575
MS
2775 * @buffer: pointer to the end of the buffer
2776 * @buflen: pointer to buffer length
552ce544 2777 *
18129977
WL
2778 * The function will first try to write out the pathname without taking any
2779 * lock other than the RCU read lock to make sure that dentries won't go away.
2780 * It only checks the sequence number of the global rename_lock as any change
2781 * in the dentry's d_seq will be preceded by changes in the rename_lock
2782 * sequence number. If the sequence number had been changed, it will restart
2783 * the whole pathname back-tracing sequence again by taking the rename_lock.
2784 * In this case, there is no need to take the RCU read lock as the recursive
2785 * parent pointer references will keep the dentry chain alive as long as no
2786 * rename operation is performed.
1da177e4 2787 */
02125a82
AV
2788static int prepend_path(const struct path *path,
2789 const struct path *root,
f2eb6575 2790 char **buffer, int *buflen)
1da177e4 2791{
ede4cebc
AV
2792 struct dentry *dentry;
2793 struct vfsmount *vfsmnt;
2794 struct mount *mnt;
f2eb6575 2795 int error = 0;
48a066e7 2796 unsigned seq, m_seq = 0;
232d2d60
WL
2797 char *bptr;
2798 int blen;
6092d048 2799
48f5ec21 2800 rcu_read_lock();
48a066e7
AV
2801restart_mnt:
2802 read_seqbegin_or_lock(&mount_lock, &m_seq);
2803 seq = 0;
4ec6c2ae 2804 rcu_read_lock();
232d2d60
WL
2805restart:
2806 bptr = *buffer;
2807 blen = *buflen;
48a066e7 2808 error = 0;
ede4cebc
AV
2809 dentry = path->dentry;
2810 vfsmnt = path->mnt;
2811 mnt = real_mount(vfsmnt);
232d2d60 2812 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2813 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2814 struct dentry * parent;
2815
1da177e4 2816 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2817 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2818 /* Global root? */
48a066e7
AV
2819 if (mnt != parent) {
2820 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2821 mnt = parent;
232d2d60
WL
2822 vfsmnt = &mnt->mnt;
2823 continue;
2824 }
2825 /*
2826 * Filesystems needing to implement special "root names"
2827 * should do so with ->d_dname()
2828 */
2829 if (IS_ROOT(dentry) &&
2830 (dentry->d_name.len != 1 ||
2831 dentry->d_name.name[0] != '/')) {
2832 WARN(1, "Root dentry has weird name <%.*s>\n",
2833 (int) dentry->d_name.len,
2834 dentry->d_name.name);
2835 }
2836 if (!error)
2837 error = is_mounted(vfsmnt) ? 1 : 2;
2838 break;
1da177e4
LT
2839 }
2840 parent = dentry->d_parent;
2841 prefetch(parent);
232d2d60 2842 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2843 if (error)
2844 break;
2845
1da177e4
LT
2846 dentry = parent;
2847 }
48f5ec21
AV
2848 if (!(seq & 1))
2849 rcu_read_unlock();
2850 if (need_seqretry(&rename_lock, seq)) {
2851 seq = 1;
232d2d60 2852 goto restart;
48f5ec21
AV
2853 }
2854 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2855
2856 if (!(m_seq & 1))
2857 rcu_read_unlock();
48a066e7
AV
2858 if (need_seqretry(&mount_lock, m_seq)) {
2859 m_seq = 1;
2860 goto restart_mnt;
2861 }
2862 done_seqretry(&mount_lock, m_seq);
1da177e4 2863
232d2d60
WL
2864 if (error >= 0 && bptr == *buffer) {
2865 if (--blen < 0)
2866 error = -ENAMETOOLONG;
2867 else
2868 *--bptr = '/';
2869 }
2870 *buffer = bptr;
2871 *buflen = blen;
7ea600b5 2872 return error;
f2eb6575 2873}
be285c71 2874
f2eb6575
MS
2875/**
2876 * __d_path - return the path of a dentry
2877 * @path: the dentry/vfsmount to report
02125a82 2878 * @root: root vfsmnt/dentry
cd956a1c 2879 * @buf: buffer to return value in
f2eb6575
MS
2880 * @buflen: buffer length
2881 *
ffd1f4ed 2882 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2883 *
2884 * Returns a pointer into the buffer or an error code if the
2885 * path was too long.
2886 *
be148247 2887 * "buflen" should be positive.
f2eb6575 2888 *
02125a82 2889 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2890 */
02125a82
AV
2891char *__d_path(const struct path *path,
2892 const struct path *root,
f2eb6575
MS
2893 char *buf, int buflen)
2894{
2895 char *res = buf + buflen;
2896 int error;
2897
2898 prepend(&res, &buflen, "\0", 1);
f2eb6575 2899 error = prepend_path(path, root, &res, &buflen);
be148247 2900
02125a82
AV
2901 if (error < 0)
2902 return ERR_PTR(error);
2903 if (error > 0)
2904 return NULL;
2905 return res;
2906}
2907
2908char *d_absolute_path(const struct path *path,
2909 char *buf, int buflen)
2910{
2911 struct path root = {};
2912 char *res = buf + buflen;
2913 int error;
2914
2915 prepend(&res, &buflen, "\0", 1);
02125a82 2916 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2917
2918 if (error > 1)
2919 error = -EINVAL;
2920 if (error < 0)
f2eb6575 2921 return ERR_PTR(error);
f2eb6575 2922 return res;
1da177e4
LT
2923}
2924
ffd1f4ed
MS
2925/*
2926 * same as __d_path but appends "(deleted)" for unlinked files.
2927 */
02125a82
AV
2928static int path_with_deleted(const struct path *path,
2929 const struct path *root,
2930 char **buf, int *buflen)
ffd1f4ed
MS
2931{
2932 prepend(buf, buflen, "\0", 1);
2933 if (d_unlinked(path->dentry)) {
2934 int error = prepend(buf, buflen, " (deleted)", 10);
2935 if (error)
2936 return error;
2937 }
2938
2939 return prepend_path(path, root, buf, buflen);
2940}
2941
8df9d1a4
MS
2942static int prepend_unreachable(char **buffer, int *buflen)
2943{
2944 return prepend(buffer, buflen, "(unreachable)", 13);
2945}
2946
68f0d9d9
LT
2947static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2948{
2949 unsigned seq;
2950
2951 do {
2952 seq = read_seqcount_begin(&fs->seq);
2953 *root = fs->root;
2954 } while (read_seqcount_retry(&fs->seq, seq));
2955}
2956
a03a8a70
JB
2957/**
2958 * d_path - return the path of a dentry
cf28b486 2959 * @path: path to report
a03a8a70
JB
2960 * @buf: buffer to return value in
2961 * @buflen: buffer length
2962 *
2963 * Convert a dentry into an ASCII path name. If the entry has been deleted
2964 * the string " (deleted)" is appended. Note that this is ambiguous.
2965 *
52afeefb
AV
2966 * Returns a pointer into the buffer or an error code if the path was
2967 * too long. Note: Callers should use the returned pointer, not the passed
2968 * in buffer, to use the name! The implementation often starts at an offset
2969 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2970 *
31f3e0b3 2971 * "buflen" should be positive.
a03a8a70 2972 */
20d4fdc1 2973char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2974{
ffd1f4ed 2975 char *res = buf + buflen;
6ac08c39 2976 struct path root;
ffd1f4ed 2977 int error;
1da177e4 2978
c23fbb6b
ED
2979 /*
2980 * We have various synthetic filesystems that never get mounted. On
2981 * these filesystems dentries are never used for lookup purposes, and
2982 * thus don't need to be hashed. They also don't need a name until a
2983 * user wants to identify the object in /proc/pid/fd/. The little hack
2984 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
2985 *
2986 * Some pseudo inodes are mountable. When they are mounted
2987 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2988 * and instead have d_path return the mounted path.
c23fbb6b 2989 */
f48cfddc
EB
2990 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
2991 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 2992 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2993
68f0d9d9
LT
2994 rcu_read_lock();
2995 get_fs_root_rcu(current->fs, &root);
02125a82 2996 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
2997 rcu_read_unlock();
2998
02125a82 2999 if (error < 0)
ffd1f4ed 3000 res = ERR_PTR(error);
1da177e4
LT
3001 return res;
3002}
ec4f8605 3003EXPORT_SYMBOL(d_path);
1da177e4 3004
c23fbb6b
ED
3005/*
3006 * Helper function for dentry_operations.d_dname() members
3007 */
3008char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3009 const char *fmt, ...)
3010{
3011 va_list args;
3012 char temp[64];
3013 int sz;
3014
3015 va_start(args, fmt);
3016 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3017 va_end(args);
3018
3019 if (sz > sizeof(temp) || sz > buflen)
3020 return ERR_PTR(-ENAMETOOLONG);
3021
3022 buffer += buflen - sz;
3023 return memcpy(buffer, temp, sz);
3024}
3025
118b2302
AV
3026char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3027{
3028 char *end = buffer + buflen;
3029 /* these dentries are never renamed, so d_lock is not needed */
3030 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3031 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3032 prepend(&end, &buflen, "/", 1))
3033 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3034 return end;
118b2302 3035}
31bbe16f 3036EXPORT_SYMBOL(simple_dname);
118b2302 3037
6092d048
RP
3038/*
3039 * Write full pathname from the root of the filesystem into the buffer.
3040 */
f6500801 3041static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3042{
f6500801 3043 struct dentry *dentry;
232d2d60
WL
3044 char *end, *retval;
3045 int len, seq = 0;
3046 int error = 0;
6092d048 3047
f6500801
AV
3048 if (buflen < 2)
3049 goto Elong;
3050
48f5ec21 3051 rcu_read_lock();
232d2d60 3052restart:
f6500801 3053 dentry = d;
232d2d60
WL
3054 end = buf + buflen;
3055 len = buflen;
3056 prepend(&end, &len, "\0", 1);
6092d048
RP
3057 /* Get '/' right */
3058 retval = end-1;
3059 *retval = '/';
232d2d60 3060 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3061 while (!IS_ROOT(dentry)) {
3062 struct dentry *parent = dentry->d_parent;
6092d048 3063
6092d048 3064 prefetch(parent);
232d2d60
WL
3065 error = prepend_name(&end, &len, &dentry->d_name);
3066 if (error)
3067 break;
6092d048
RP
3068
3069 retval = end;
3070 dentry = parent;
3071 }
48f5ec21
AV
3072 if (!(seq & 1))
3073 rcu_read_unlock();
3074 if (need_seqretry(&rename_lock, seq)) {
3075 seq = 1;
232d2d60 3076 goto restart;
48f5ec21
AV
3077 }
3078 done_seqretry(&rename_lock, seq);
232d2d60
WL
3079 if (error)
3080 goto Elong;
c103135c
AV
3081 return retval;
3082Elong:
3083 return ERR_PTR(-ENAMETOOLONG);
3084}
ec2447c2
NP
3085
3086char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3087{
232d2d60 3088 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3089}
3090EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3091
3092char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3093{
3094 char *p = NULL;
3095 char *retval;
3096
c103135c
AV
3097 if (d_unlinked(dentry)) {
3098 p = buf + buflen;
3099 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3100 goto Elong;
3101 buflen++;
3102 }
3103 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3104 if (!IS_ERR(retval) && p)
3105 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3106 return retval;
3107Elong:
6092d048
RP
3108 return ERR_PTR(-ENAMETOOLONG);
3109}
3110
8b19e341
LT
3111static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3112 struct path *pwd)
5762482f 3113{
8b19e341
LT
3114 unsigned seq;
3115
3116 do {
3117 seq = read_seqcount_begin(&fs->seq);
3118 *root = fs->root;
3119 *pwd = fs->pwd;
3120 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3121}
3122
1da177e4
LT
3123/*
3124 * NOTE! The user-level library version returns a
3125 * character pointer. The kernel system call just
3126 * returns the length of the buffer filled (which
3127 * includes the ending '\0' character), or a negative
3128 * error value. So libc would do something like
3129 *
3130 * char *getcwd(char * buf, size_t size)
3131 * {
3132 * int retval;
3133 *
3134 * retval = sys_getcwd(buf, size);
3135 * if (retval >= 0)
3136 * return buf;
3137 * errno = -retval;
3138 * return NULL;
3139 * }
3140 */
3cdad428 3141SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3142{
552ce544 3143 int error;
6ac08c39 3144 struct path pwd, root;
3272c544 3145 char *page = __getname();
1da177e4
LT
3146
3147 if (!page)
3148 return -ENOMEM;
3149
8b19e341
LT
3150 rcu_read_lock();
3151 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3152
552ce544 3153 error = -ENOENT;
f3da392e 3154 if (!d_unlinked(pwd.dentry)) {
552ce544 3155 unsigned long len;
3272c544
LT
3156 char *cwd = page + PATH_MAX;
3157 int buflen = PATH_MAX;
1da177e4 3158
8df9d1a4 3159 prepend(&cwd, &buflen, "\0", 1);
02125a82 3160 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3161 rcu_read_unlock();
552ce544 3162
02125a82 3163 if (error < 0)
552ce544
LT
3164 goto out;
3165
8df9d1a4 3166 /* Unreachable from current root */
02125a82 3167 if (error > 0) {
8df9d1a4
MS
3168 error = prepend_unreachable(&cwd, &buflen);
3169 if (error)
3170 goto out;
3171 }
3172
552ce544 3173 error = -ERANGE;
3272c544 3174 len = PATH_MAX + page - cwd;
552ce544
LT
3175 if (len <= size) {
3176 error = len;
3177 if (copy_to_user(buf, cwd, len))
3178 error = -EFAULT;
3179 }
949854d0 3180 } else {
ff812d72 3181 rcu_read_unlock();
949854d0 3182 }
1da177e4
LT
3183
3184out:
3272c544 3185 __putname(page);
1da177e4
LT
3186 return error;
3187}
3188
3189/*
3190 * Test whether new_dentry is a subdirectory of old_dentry.
3191 *
3192 * Trivially implemented using the dcache structure
3193 */
3194
3195/**
3196 * is_subdir - is new dentry a subdirectory of old_dentry
3197 * @new_dentry: new dentry
3198 * @old_dentry: old dentry
3199 *
3200 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3201 * Returns 0 otherwise.
3202 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3203 */
3204
e2761a11 3205int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3206{
3207 int result;
949854d0 3208 unsigned seq;
1da177e4 3209
e2761a11
OH
3210 if (new_dentry == old_dentry)
3211 return 1;
3212
e2761a11 3213 do {
1da177e4 3214 /* for restarting inner loop in case of seq retry */
1da177e4 3215 seq = read_seqbegin(&rename_lock);
949854d0
NP
3216 /*
3217 * Need rcu_readlock to protect against the d_parent trashing
3218 * due to d_move
3219 */
3220 rcu_read_lock();
e2761a11 3221 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3222 result = 1;
e2761a11
OH
3223 else
3224 result = 0;
949854d0 3225 rcu_read_unlock();
1da177e4 3226 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3227
3228 return result;
3229}
3230
db14fc3a 3231static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3232{
db14fc3a
MS
3233 struct dentry *root = data;
3234 if (dentry != root) {
3235 if (d_unhashed(dentry) || !dentry->d_inode)
3236 return D_WALK_SKIP;
1da177e4 3237
01ddc4ed
MS
3238 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3239 dentry->d_flags |= DCACHE_GENOCIDE;
3240 dentry->d_lockref.count--;
3241 }
1da177e4 3242 }
db14fc3a
MS
3243 return D_WALK_CONTINUE;
3244}
58db63d0 3245
db14fc3a
MS
3246void d_genocide(struct dentry *parent)
3247{
3248 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3249}
3250
60545d0d 3251void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3252{
60545d0d
AV
3253 inode_dec_link_count(inode);
3254 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3255 !hlist_unhashed(&dentry->d_alias) ||
3256 !d_unlinked(dentry));
3257 spin_lock(&dentry->d_parent->d_lock);
3258 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3259 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3260 (unsigned long long)inode->i_ino);
3261 spin_unlock(&dentry->d_lock);
3262 spin_unlock(&dentry->d_parent->d_lock);
3263 d_instantiate(dentry, inode);
1da177e4 3264}
60545d0d 3265EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3266
3267static __initdata unsigned long dhash_entries;
3268static int __init set_dhash_entries(char *str)
3269{
3270 if (!str)
3271 return 0;
3272 dhash_entries = simple_strtoul(str, &str, 0);
3273 return 1;
3274}
3275__setup("dhash_entries=", set_dhash_entries);
3276
3277static void __init dcache_init_early(void)
3278{
074b8517 3279 unsigned int loop;
1da177e4
LT
3280
3281 /* If hashes are distributed across NUMA nodes, defer
3282 * hash allocation until vmalloc space is available.
3283 */
3284 if (hashdist)
3285 return;
3286
3287 dentry_hashtable =
3288 alloc_large_system_hash("Dentry cache",
b07ad996 3289 sizeof(struct hlist_bl_head),
1da177e4
LT
3290 dhash_entries,
3291 13,
3292 HASH_EARLY,
3293 &d_hash_shift,
3294 &d_hash_mask,
31fe62b9 3295 0,
1da177e4
LT
3296 0);
3297
074b8517 3298 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3299 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3300}
3301
74bf17cf 3302static void __init dcache_init(void)
1da177e4 3303{
074b8517 3304 unsigned int loop;
1da177e4
LT
3305
3306 /*
3307 * A constructor could be added for stable state like the lists,
3308 * but it is probably not worth it because of the cache nature
3309 * of the dcache.
3310 */
0a31bd5f
CL
3311 dentry_cache = KMEM_CACHE(dentry,
3312 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3313
3314 /* Hash may have been set up in dcache_init_early */
3315 if (!hashdist)
3316 return;
3317
3318 dentry_hashtable =
3319 alloc_large_system_hash("Dentry cache",
b07ad996 3320 sizeof(struct hlist_bl_head),
1da177e4
LT
3321 dhash_entries,
3322 13,
3323 0,
3324 &d_hash_shift,
3325 &d_hash_mask,
31fe62b9 3326 0,
1da177e4
LT
3327 0);
3328
074b8517 3329 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3330 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3331}
3332
3333/* SLAB cache for __getname() consumers */
e18b890b 3334struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3335EXPORT_SYMBOL(names_cachep);
1da177e4 3336
1da177e4
LT
3337EXPORT_SYMBOL(d_genocide);
3338
1da177e4
LT
3339void __init vfs_caches_init_early(void)
3340{
3341 dcache_init_early();
3342 inode_init_early();
3343}
3344
3345void __init vfs_caches_init(unsigned long mempages)
3346{
3347 unsigned long reserve;
3348
3349 /* Base hash sizes on available memory, with a reserve equal to
3350 150% of current kernel size */
3351
3352 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3353 mempages -= reserve;
3354
3355 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3356 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3357
74bf17cf
DC
3358 dcache_init();
3359 inode_init();
1da177e4 3360 files_init(mempages);
74bf17cf 3361 mnt_init();
1da177e4
LT
3362 bdev_cache_init();
3363 chrdev_init();
3364}