]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
vfs: Keep a list of mounts on a mount point
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
229#ifdef CONFIG_FSNOTIFY
230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 231#endif
1da177e4 232 }
c63181e6 233 return mnt;
88b38782 234
d3ef3d73 235#ifdef CONFIG_SMP
236out_free_devname:
c63181e6 237 kfree(mnt->mnt_devname);
d3ef3d73 238#endif
88b38782 239out_free_id:
c63181e6 240 mnt_free_id(mnt);
88b38782 241out_free_cache:
c63181e6 242 kmem_cache_free(mnt_cache, mnt);
88b38782 243 return NULL;
1da177e4
LT
244}
245
3d733633
DH
246/*
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
252 * a filesystem.
253 */
254/*
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
257 *
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
263 * r/w.
264 */
265int __mnt_is_readonly(struct vfsmount *mnt)
266{
2e4b7fcd
DH
267 if (mnt->mnt_flags & MNT_READONLY)
268 return 1;
269 if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 return 1;
271 return 0;
3d733633
DH
272}
273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
83adc753 275static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 276{
277#ifdef CONFIG_SMP
68e8a9fe 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 279#else
68e8a9fe 280 mnt->mnt_writers++;
d3ef3d73 281#endif
282}
3d733633 283
83adc753 284static inline void mnt_dec_writers(struct mount *mnt)
3d733633 285{
d3ef3d73 286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers--;
d3ef3d73 290#endif
3d733633 291}
3d733633 292
83adc753 293static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
296 unsigned int count = 0;
3d733633 297 int cpu;
3d733633
DH
298
299 for_each_possible_cpu(cpu) {
68e8a9fe 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 301 }
3d733633 302
d3ef3d73 303 return count;
304#else
305 return mnt->mnt_writers;
306#endif
3d733633
DH
307}
308
4ed5e82f
MS
309static int mnt_is_readonly(struct vfsmount *mnt)
310{
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316}
317
8366025e 318/*
eb04c282
JK
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
8366025e
DH
323 */
324/**
eb04c282 325 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 326 * @m: the mount on which to take a write
8366025e 327 *
eb04c282
JK
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
8366025e 333 */
eb04c282 334int __mnt_want_write(struct vfsmount *m)
8366025e 335{
83adc753 336 struct mount *mnt = real_mount(m);
3d733633 337 int ret = 0;
3d733633 338
d3ef3d73 339 preempt_disable();
c6653a83 340 mnt_inc_writers(mnt);
d3ef3d73 341 /*
c6653a83 342 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
1e75529e 347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
4ed5e82f 355 if (mnt_is_readonly(m)) {
c6653a83 356 mnt_dec_writers(mnt);
3d733633 357 ret = -EROFS;
3d733633 358 }
d3ef3d73 359 preempt_enable();
eb04c282
JK
360
361 return ret;
362}
363
364/**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
373int mnt_want_write(struct vfsmount *m)
374{
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
3d733633 381 return ret;
8366025e
DH
382}
383EXPORT_SYMBOL_GPL(mnt_want_write);
384
96029c4e 385/**
386 * mnt_clone_write - get write access to a mount
387 * @mnt: the mount on which to take a write
388 *
389 * This is effectively like mnt_want_write, except
390 * it must only be used to take an extra write reference
391 * on a mountpoint that we already know has a write reference
392 * on it. This allows some optimisation.
393 *
394 * After finished, mnt_drop_write must be called as usual to
395 * drop the reference.
396 */
397int mnt_clone_write(struct vfsmount *mnt)
398{
399 /* superblock may be r/o */
400 if (__mnt_is_readonly(mnt))
401 return -EROFS;
402 preempt_disable();
83adc753 403 mnt_inc_writers(real_mount(mnt));
96029c4e 404 preempt_enable();
405 return 0;
406}
407EXPORT_SYMBOL_GPL(mnt_clone_write);
408
409/**
eb04c282 410 * __mnt_want_write_file - get write access to a file's mount
96029c4e 411 * @file: the file who's mount on which to take a write
412 *
eb04c282 413 * This is like __mnt_want_write, but it takes a file and can
96029c4e 414 * do some optimisations if the file is open for write already
415 */
eb04c282 416int __mnt_want_write_file(struct file *file)
96029c4e 417{
83f936c7 418 if (!(file->f_mode & FMODE_WRITER))
eb04c282 419 return __mnt_want_write(file->f_path.mnt);
96029c4e 420 else
421 return mnt_clone_write(file->f_path.mnt);
422}
eb04c282
JK
423
424/**
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
427 *
428 * This is like mnt_want_write, but it takes a file and can
429 * do some optimisations if the file is open for write already
430 */
431int mnt_want_write_file(struct file *file)
432{
433 int ret;
434
435 sb_start_write(file->f_path.mnt->mnt_sb);
436 ret = __mnt_want_write_file(file);
437 if (ret)
438 sb_end_write(file->f_path.mnt->mnt_sb);
439 return ret;
440}
96029c4e 441EXPORT_SYMBOL_GPL(mnt_want_write_file);
442
8366025e 443/**
eb04c282 444 * __mnt_drop_write - give up write access to a mount
8366025e
DH
445 * @mnt: the mount on which to give up write access
446 *
447 * Tells the low-level filesystem that we are done
448 * performing writes to it. Must be matched with
eb04c282 449 * __mnt_want_write() call above.
8366025e 450 */
eb04c282 451void __mnt_drop_write(struct vfsmount *mnt)
8366025e 452{
d3ef3d73 453 preempt_disable();
83adc753 454 mnt_dec_writers(real_mount(mnt));
d3ef3d73 455 preempt_enable();
8366025e 456}
eb04c282
JK
457
458/**
459 * mnt_drop_write - give up write access to a mount
460 * @mnt: the mount on which to give up write access
461 *
462 * Tells the low-level filesystem that we are done performing writes to it and
463 * also allows filesystem to be frozen again. Must be matched with
464 * mnt_want_write() call above.
465 */
466void mnt_drop_write(struct vfsmount *mnt)
467{
468 __mnt_drop_write(mnt);
469 sb_end_write(mnt->mnt_sb);
470}
8366025e
DH
471EXPORT_SYMBOL_GPL(mnt_drop_write);
472
eb04c282
JK
473void __mnt_drop_write_file(struct file *file)
474{
475 __mnt_drop_write(file->f_path.mnt);
476}
477
2a79f17e
AV
478void mnt_drop_write_file(struct file *file)
479{
480 mnt_drop_write(file->f_path.mnt);
481}
482EXPORT_SYMBOL(mnt_drop_write_file);
483
83adc753 484static int mnt_make_readonly(struct mount *mnt)
8366025e 485{
3d733633
DH
486 int ret = 0;
487
719ea2fb 488 lock_mount_hash();
83adc753 489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 490 /*
d3ef3d73 491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 * should be visible before we do.
3d733633 493 */
d3ef3d73 494 smp_mb();
495
3d733633 496 /*
d3ef3d73 497 * With writers on hold, if this value is zero, then there are
498 * definitely no active writers (although held writers may subsequently
499 * increment the count, they'll have to wait, and decrement it after
500 * seeing MNT_READONLY).
501 *
502 * It is OK to have counter incremented on one CPU and decremented on
503 * another: the sum will add up correctly. The danger would be when we
504 * sum up each counter, if we read a counter before it is incremented,
505 * but then read another CPU's count which it has been subsequently
506 * decremented from -- we would see more decrements than we should.
507 * MNT_WRITE_HOLD protects against this scenario, because
508 * mnt_want_write first increments count, then smp_mb, then spins on
509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 * we're counting up here.
3d733633 511 */
c6653a83 512 if (mnt_get_writers(mnt) > 0)
d3ef3d73 513 ret = -EBUSY;
514 else
83adc753 515 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 516 /*
517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 * that become unheld will see MNT_READONLY.
519 */
520 smp_wmb();
83adc753 521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 522 unlock_mount_hash();
3d733633 523 return ret;
8366025e 524}
8366025e 525
83adc753 526static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 527{
719ea2fb 528 lock_mount_hash();
83adc753 529 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 530 unlock_mount_hash();
2e4b7fcd
DH
531}
532
4ed5e82f
MS
533int sb_prepare_remount_readonly(struct super_block *sb)
534{
535 struct mount *mnt;
536 int err = 0;
537
8e8b8796
MS
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
540 return -EBUSY;
541
719ea2fb 542 lock_mount_hash();
4ed5e82f
MS
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 smp_mb();
547 if (mnt_get_writers(mnt) > 0) {
548 err = -EBUSY;
549 break;
550 }
551 }
552 }
8e8b8796
MS
553 if (!err && atomic_long_read(&sb->s_remove_count))
554 err = -EBUSY;
555
4ed5e82f
MS
556 if (!err) {
557 sb->s_readonly_remount = 1;
558 smp_wmb();
559 }
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 }
719ea2fb 564 unlock_mount_hash();
4ed5e82f
MS
565
566 return err;
567}
568
b105e270 569static void free_vfsmnt(struct mount *mnt)
1da177e4 570{
52ba1621 571 kfree(mnt->mnt_devname);
d3ef3d73 572#ifdef CONFIG_SMP
68e8a9fe 573 free_percpu(mnt->mnt_pcp);
d3ef3d73 574#endif
b105e270 575 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
576}
577
8ffcb32e
DH
578static void delayed_free_vfsmnt(struct rcu_head *head)
579{
580 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581}
582
48a066e7
AV
583/* call under rcu_read_lock */
584bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585{
586 struct mount *mnt;
587 if (read_seqretry(&mount_lock, seq))
588 return false;
589 if (bastard == NULL)
590 return true;
591 mnt = real_mount(bastard);
592 mnt_add_count(mnt, 1);
593 if (likely(!read_seqretry(&mount_lock, seq)))
594 return true;
595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 mnt_add_count(mnt, -1);
597 return false;
598 }
599 rcu_read_unlock();
600 mntput(bastard);
601 rcu_read_lock();
602 return false;
603}
604
1da177e4 605/*
474279dc 606 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 607 * call under rcu_read_lock()
1da177e4 608 */
474279dc 609struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 610{
38129a13 611 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
612 struct mount *p;
613
38129a13 614 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618}
619
620/*
621 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 622 * mount_lock must be held.
474279dc
AV
623 */
624struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625{
38129a13
AV
626 struct mount *p, *res;
627 res = p = __lookup_mnt(mnt, dentry);
628 if (!p)
629 goto out;
630 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 break;
633 res = p;
634 }
38129a13 635out:
1d6a32ac 636 return res;
1da177e4
LT
637}
638
a05964f3 639/*
f015f126
DH
640 * lookup_mnt - Return the first child mount mounted at path
641 *
642 * "First" means first mounted chronologically. If you create the
643 * following mounts:
644 *
645 * mount /dev/sda1 /mnt
646 * mount /dev/sda2 /mnt
647 * mount /dev/sda3 /mnt
648 *
649 * Then lookup_mnt() on the base /mnt dentry in the root mount will
650 * return successively the root dentry and vfsmount of /dev/sda1, then
651 * /dev/sda2, then /dev/sda3, then NULL.
652 *
653 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 654 */
1c755af4 655struct vfsmount *lookup_mnt(struct path *path)
a05964f3 656{
c7105365 657 struct mount *child_mnt;
48a066e7
AV
658 struct vfsmount *m;
659 unsigned seq;
99b7db7b 660
48a066e7
AV
661 rcu_read_lock();
662 do {
663 seq = read_seqbegin(&mount_lock);
664 child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 m = child_mnt ? &child_mnt->mnt : NULL;
666 } while (!legitimize_mnt(m, seq));
667 rcu_read_unlock();
668 return m;
a05964f3
RP
669}
670
7af1364f
EB
671/*
672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673 * current mount namespace.
674 *
675 * The common case is dentries are not mountpoints at all and that
676 * test is handled inline. For the slow case when we are actually
677 * dealing with a mountpoint of some kind, walk through all of the
678 * mounts in the current mount namespace and test to see if the dentry
679 * is a mountpoint.
680 *
681 * The mount_hashtable is not usable in the context because we
682 * need to identify all mounts that may be in the current mount
683 * namespace not just a mount that happens to have some specified
684 * parent mount.
685 */
686bool __is_local_mountpoint(struct dentry *dentry)
687{
688 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 struct mount *mnt;
690 bool is_covered = false;
691
692 if (!d_mountpoint(dentry))
693 goto out;
694
695 down_read(&namespace_sem);
696 list_for_each_entry(mnt, &ns->list, mnt_list) {
697 is_covered = (mnt->mnt_mountpoint == dentry);
698 if (is_covered)
699 break;
700 }
701 up_read(&namespace_sem);
702out:
703 return is_covered;
704}
705
84d17192
AV
706static struct mountpoint *new_mountpoint(struct dentry *dentry)
707{
0818bf27 708 struct hlist_head *chain = mp_hash(dentry);
84d17192 709 struct mountpoint *mp;
eed81007 710 int ret;
84d17192 711
0818bf27 712 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
713 if (mp->m_dentry == dentry) {
714 /* might be worth a WARN_ON() */
715 if (d_unlinked(dentry))
716 return ERR_PTR(-ENOENT);
717 mp->m_count++;
718 return mp;
719 }
720 }
721
722 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
723 if (!mp)
724 return ERR_PTR(-ENOMEM);
725
eed81007
MS
726 ret = d_set_mounted(dentry);
727 if (ret) {
84d17192 728 kfree(mp);
eed81007 729 return ERR_PTR(ret);
84d17192 730 }
eed81007 731
84d17192
AV
732 mp->m_dentry = dentry;
733 mp->m_count = 1;
0818bf27 734 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 735 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
736 return mp;
737}
738
739static void put_mountpoint(struct mountpoint *mp)
740{
741 if (!--mp->m_count) {
742 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 743 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
744 spin_lock(&dentry->d_lock);
745 dentry->d_flags &= ~DCACHE_MOUNTED;
746 spin_unlock(&dentry->d_lock);
0818bf27 747 hlist_del(&mp->m_hash);
84d17192
AV
748 kfree(mp);
749 }
750}
751
143c8c91 752static inline int check_mnt(struct mount *mnt)
1da177e4 753{
6b3286ed 754 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
755}
756
99b7db7b
NP
757/*
758 * vfsmount lock must be held for write
759 */
6b3286ed 760static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
761{
762 if (ns) {
763 ns->event = ++event;
764 wake_up_interruptible(&ns->poll);
765 }
766}
767
99b7db7b
NP
768/*
769 * vfsmount lock must be held for write
770 */
6b3286ed 771static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
772{
773 if (ns && ns->event != event) {
774 ns->event = event;
775 wake_up_interruptible(&ns->poll);
776 }
777}
778
99b7db7b
NP
779/*
780 * vfsmount lock must be held for write
781 */
419148da
AV
782static void detach_mnt(struct mount *mnt, struct path *old_path)
783{
a73324da 784 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
785 old_path->mnt = &mnt->mnt_parent->mnt;
786 mnt->mnt_parent = mnt;
a73324da 787 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 788 list_del_init(&mnt->mnt_child);
38129a13 789 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 790 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
791 put_mountpoint(mnt->mnt_mp);
792 mnt->mnt_mp = NULL;
1da177e4
LT
793}
794
99b7db7b
NP
795/*
796 * vfsmount lock must be held for write
797 */
84d17192
AV
798void mnt_set_mountpoint(struct mount *mnt,
799 struct mountpoint *mp,
44d964d6 800 struct mount *child_mnt)
b90fa9ae 801{
84d17192 802 mp->m_count++;
3a2393d7 803 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 804 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 805 child_mnt->mnt_parent = mnt;
84d17192 806 child_mnt->mnt_mp = mp;
0a5eb7c8 807 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
808}
809
99b7db7b
NP
810/*
811 * vfsmount lock must be held for write
812 */
84d17192
AV
813static void attach_mnt(struct mount *mnt,
814 struct mount *parent,
815 struct mountpoint *mp)
1da177e4 816{
84d17192 817 mnt_set_mountpoint(parent, mp, mnt);
38129a13 818 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 819 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
820}
821
12a5b529
AV
822static void attach_shadowed(struct mount *mnt,
823 struct mount *parent,
824 struct mount *shadows)
825{
826 if (shadows) {
f6f99332 827 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
828 list_add(&mnt->mnt_child, &shadows->mnt_child);
829 } else {
830 hlist_add_head_rcu(&mnt->mnt_hash,
831 m_hash(&parent->mnt, mnt->mnt_mountpoint));
832 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
833 }
834}
835
b90fa9ae 836/*
99b7db7b 837 * vfsmount lock must be held for write
b90fa9ae 838 */
1d6a32ac 839static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 840{
0714a533 841 struct mount *parent = mnt->mnt_parent;
83adc753 842 struct mount *m;
b90fa9ae 843 LIST_HEAD(head);
143c8c91 844 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 845
0714a533 846 BUG_ON(parent == mnt);
b90fa9ae 847
1a4eeaf2 848 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 849 list_for_each_entry(m, &head, mnt_list)
143c8c91 850 m->mnt_ns = n;
f03c6599 851
b90fa9ae
RP
852 list_splice(&head, n->list.prev);
853
12a5b529 854 attach_shadowed(mnt, parent, shadows);
6b3286ed 855 touch_mnt_namespace(n);
1da177e4
LT
856}
857
909b0a88 858static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 859{
6b41d536
AV
860 struct list_head *next = p->mnt_mounts.next;
861 if (next == &p->mnt_mounts) {
1da177e4 862 while (1) {
909b0a88 863 if (p == root)
1da177e4 864 return NULL;
6b41d536
AV
865 next = p->mnt_child.next;
866 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 867 break;
0714a533 868 p = p->mnt_parent;
1da177e4
LT
869 }
870 }
6b41d536 871 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
872}
873
315fc83e 874static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 875{
6b41d536
AV
876 struct list_head *prev = p->mnt_mounts.prev;
877 while (prev != &p->mnt_mounts) {
878 p = list_entry(prev, struct mount, mnt_child);
879 prev = p->mnt_mounts.prev;
9676f0c6
RP
880 }
881 return p;
882}
883
9d412a43
AV
884struct vfsmount *
885vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
886{
b105e270 887 struct mount *mnt;
9d412a43
AV
888 struct dentry *root;
889
890 if (!type)
891 return ERR_PTR(-ENODEV);
892
893 mnt = alloc_vfsmnt(name);
894 if (!mnt)
895 return ERR_PTR(-ENOMEM);
896
897 if (flags & MS_KERNMOUNT)
b105e270 898 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
899
900 root = mount_fs(type, flags, name, data);
901 if (IS_ERR(root)) {
8ffcb32e 902 mnt_free_id(mnt);
9d412a43
AV
903 free_vfsmnt(mnt);
904 return ERR_CAST(root);
905 }
906
b105e270
AV
907 mnt->mnt.mnt_root = root;
908 mnt->mnt.mnt_sb = root->d_sb;
a73324da 909 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 910 mnt->mnt_parent = mnt;
719ea2fb 911 lock_mount_hash();
39f7c4db 912 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 913 unlock_mount_hash();
b105e270 914 return &mnt->mnt;
9d412a43
AV
915}
916EXPORT_SYMBOL_GPL(vfs_kern_mount);
917
87129cc0 918static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 919 int flag)
1da177e4 920{
87129cc0 921 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
922 struct mount *mnt;
923 int err;
1da177e4 924
be34d1a3
DH
925 mnt = alloc_vfsmnt(old->mnt_devname);
926 if (!mnt)
927 return ERR_PTR(-ENOMEM);
719f5d7f 928
7a472ef4 929 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
930 mnt->mnt_group_id = 0; /* not a peer of original */
931 else
932 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 933
be34d1a3
DH
934 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
935 err = mnt_alloc_group_id(mnt);
936 if (err)
937 goto out_free;
1da177e4 938 }
be34d1a3 939
f2ebb3a9 940 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 941 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
942 if (flag & CL_UNPRIVILEGED) {
943 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
944
945 if (mnt->mnt.mnt_flags & MNT_READONLY)
946 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
947
948 if (mnt->mnt.mnt_flags & MNT_NODEV)
949 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
950
951 if (mnt->mnt.mnt_flags & MNT_NOSUID)
952 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
953
954 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
955 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
956 }
132c94e3 957
5ff9d8a6
EB
958 /* Don't allow unprivileged users to reveal what is under a mount */
959 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
960 mnt->mnt.mnt_flags |= MNT_LOCKED;
961
be34d1a3
DH
962 atomic_inc(&sb->s_active);
963 mnt->mnt.mnt_sb = sb;
964 mnt->mnt.mnt_root = dget(root);
965 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
966 mnt->mnt_parent = mnt;
719ea2fb 967 lock_mount_hash();
be34d1a3 968 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 969 unlock_mount_hash();
be34d1a3 970
7a472ef4
EB
971 if ((flag & CL_SLAVE) ||
972 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
973 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
974 mnt->mnt_master = old;
975 CLEAR_MNT_SHARED(mnt);
976 } else if (!(flag & CL_PRIVATE)) {
977 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
978 list_add(&mnt->mnt_share, &old->mnt_share);
979 if (IS_MNT_SLAVE(old))
980 list_add(&mnt->mnt_slave, &old->mnt_slave);
981 mnt->mnt_master = old->mnt_master;
982 }
983 if (flag & CL_MAKE_SHARED)
984 set_mnt_shared(mnt);
985
986 /* stick the duplicate mount on the same expiry list
987 * as the original if that was on one */
988 if (flag & CL_EXPIRE) {
989 if (!list_empty(&old->mnt_expire))
990 list_add(&mnt->mnt_expire, &old->mnt_expire);
991 }
992
cb338d06 993 return mnt;
719f5d7f
MS
994
995 out_free:
8ffcb32e 996 mnt_free_id(mnt);
719f5d7f 997 free_vfsmnt(mnt);
be34d1a3 998 return ERR_PTR(err);
1da177e4
LT
999}
1000
9ea459e1
AV
1001static void cleanup_mnt(struct mount *mnt)
1002{
1003 /*
1004 * This probably indicates that somebody messed
1005 * up a mnt_want/drop_write() pair. If this
1006 * happens, the filesystem was probably unable
1007 * to make r/w->r/o transitions.
1008 */
1009 /*
1010 * The locking used to deal with mnt_count decrement provides barriers,
1011 * so mnt_get_writers() below is safe.
1012 */
1013 WARN_ON(mnt_get_writers(mnt));
1014 if (unlikely(mnt->mnt_pins.first))
1015 mnt_pin_kill(mnt);
1016 fsnotify_vfsmount_delete(&mnt->mnt);
1017 dput(mnt->mnt.mnt_root);
1018 deactivate_super(mnt->mnt.mnt_sb);
1019 mnt_free_id(mnt);
1020 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1021}
1022
1023static void __cleanup_mnt(struct rcu_head *head)
1024{
1025 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1026}
1027
1028static LLIST_HEAD(delayed_mntput_list);
1029static void delayed_mntput(struct work_struct *unused)
1030{
1031 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1032 struct llist_node *next;
1033
1034 for (; node; node = next) {
1035 next = llist_next(node);
1036 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1037 }
1038}
1039static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1040
900148dc 1041static void mntput_no_expire(struct mount *mnt)
b3e19d92 1042{
48a066e7
AV
1043 rcu_read_lock();
1044 mnt_add_count(mnt, -1);
1045 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1046 rcu_read_unlock();
f03c6599 1047 return;
b3e19d92 1048 }
719ea2fb 1049 lock_mount_hash();
b3e19d92 1050 if (mnt_get_count(mnt)) {
48a066e7 1051 rcu_read_unlock();
719ea2fb 1052 unlock_mount_hash();
99b7db7b
NP
1053 return;
1054 }
48a066e7
AV
1055 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1056 rcu_read_unlock();
1057 unlock_mount_hash();
1058 return;
1059 }
1060 mnt->mnt.mnt_flags |= MNT_DOOMED;
1061 rcu_read_unlock();
962830df 1062
39f7c4db 1063 list_del(&mnt->mnt_instance);
719ea2fb 1064 unlock_mount_hash();
649a795a 1065
9ea459e1
AV
1066 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1067 struct task_struct *task = current;
1068 if (likely(!(task->flags & PF_KTHREAD))) {
1069 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1070 if (!task_work_add(task, &mnt->mnt_rcu, true))
1071 return;
1072 }
1073 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1074 schedule_delayed_work(&delayed_mntput_work, 1);
1075 return;
1076 }
1077 cleanup_mnt(mnt);
b3e19d92 1078}
b3e19d92
NP
1079
1080void mntput(struct vfsmount *mnt)
1081{
1082 if (mnt) {
863d684f 1083 struct mount *m = real_mount(mnt);
b3e19d92 1084 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1085 if (unlikely(m->mnt_expiry_mark))
1086 m->mnt_expiry_mark = 0;
1087 mntput_no_expire(m);
b3e19d92
NP
1088 }
1089}
1090EXPORT_SYMBOL(mntput);
1091
1092struct vfsmount *mntget(struct vfsmount *mnt)
1093{
1094 if (mnt)
83adc753 1095 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1096 return mnt;
1097}
1098EXPORT_SYMBOL(mntget);
1099
3064c356 1100struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1101{
3064c356
AV
1102 struct mount *p;
1103 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1104 if (IS_ERR(p))
1105 return ERR_CAST(p);
1106 p->mnt.mnt_flags |= MNT_INTERNAL;
1107 return &p->mnt;
7b7b1ace 1108}
1da177e4 1109
b3b304a2
MS
1110static inline void mangle(struct seq_file *m, const char *s)
1111{
1112 seq_escape(m, s, " \t\n\\");
1113}
1114
1115/*
1116 * Simple .show_options callback for filesystems which don't want to
1117 * implement more complex mount option showing.
1118 *
1119 * See also save_mount_options().
1120 */
34c80b1d 1121int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1122{
2a32cebd
AV
1123 const char *options;
1124
1125 rcu_read_lock();
34c80b1d 1126 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1127
1128 if (options != NULL && options[0]) {
1129 seq_putc(m, ',');
1130 mangle(m, options);
1131 }
2a32cebd 1132 rcu_read_unlock();
b3b304a2
MS
1133
1134 return 0;
1135}
1136EXPORT_SYMBOL(generic_show_options);
1137
1138/*
1139 * If filesystem uses generic_show_options(), this function should be
1140 * called from the fill_super() callback.
1141 *
1142 * The .remount_fs callback usually needs to be handled in a special
1143 * way, to make sure, that previous options are not overwritten if the
1144 * remount fails.
1145 *
1146 * Also note, that if the filesystem's .remount_fs function doesn't
1147 * reset all options to their default value, but changes only newly
1148 * given options, then the displayed options will not reflect reality
1149 * any more.
1150 */
1151void save_mount_options(struct super_block *sb, char *options)
1152{
2a32cebd
AV
1153 BUG_ON(sb->s_options);
1154 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1155}
1156EXPORT_SYMBOL(save_mount_options);
1157
2a32cebd
AV
1158void replace_mount_options(struct super_block *sb, char *options)
1159{
1160 char *old = sb->s_options;
1161 rcu_assign_pointer(sb->s_options, options);
1162 if (old) {
1163 synchronize_rcu();
1164 kfree(old);
1165 }
1166}
1167EXPORT_SYMBOL(replace_mount_options);
1168
a1a2c409 1169#ifdef CONFIG_PROC_FS
0226f492 1170/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1171static void *m_start(struct seq_file *m, loff_t *pos)
1172{
6ce6e24e 1173 struct proc_mounts *p = proc_mounts(m);
1da177e4 1174
390c6843 1175 down_read(&namespace_sem);
c7999c36
AV
1176 if (p->cached_event == p->ns->event) {
1177 void *v = p->cached_mount;
1178 if (*pos == p->cached_index)
1179 return v;
1180 if (*pos == p->cached_index + 1) {
1181 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1182 return p->cached_mount = v;
1183 }
1184 }
1185
1186 p->cached_event = p->ns->event;
1187 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1188 p->cached_index = *pos;
1189 return p->cached_mount;
1da177e4
LT
1190}
1191
1192static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1193{
6ce6e24e 1194 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1195
c7999c36
AV
1196 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1197 p->cached_index = *pos;
1198 return p->cached_mount;
1da177e4
LT
1199}
1200
1201static void m_stop(struct seq_file *m, void *v)
1202{
390c6843 1203 up_read(&namespace_sem);
1da177e4
LT
1204}
1205
0226f492 1206static int m_show(struct seq_file *m, void *v)
2d4d4864 1207{
6ce6e24e 1208 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1209 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1210 return p->show(m, &r->mnt);
1da177e4
LT
1211}
1212
a1a2c409 1213const struct seq_operations mounts_op = {
1da177e4
LT
1214 .start = m_start,
1215 .next = m_next,
1216 .stop = m_stop,
0226f492 1217 .show = m_show,
b4629fe2 1218};
a1a2c409 1219#endif /* CONFIG_PROC_FS */
b4629fe2 1220
1da177e4
LT
1221/**
1222 * may_umount_tree - check if a mount tree is busy
1223 * @mnt: root of mount tree
1224 *
1225 * This is called to check if a tree of mounts has any
1226 * open files, pwds, chroots or sub mounts that are
1227 * busy.
1228 */
909b0a88 1229int may_umount_tree(struct vfsmount *m)
1da177e4 1230{
909b0a88 1231 struct mount *mnt = real_mount(m);
36341f64
RP
1232 int actual_refs = 0;
1233 int minimum_refs = 0;
315fc83e 1234 struct mount *p;
909b0a88 1235 BUG_ON(!m);
1da177e4 1236
b3e19d92 1237 /* write lock needed for mnt_get_count */
719ea2fb 1238 lock_mount_hash();
909b0a88 1239 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1240 actual_refs += mnt_get_count(p);
1da177e4 1241 minimum_refs += 2;
1da177e4 1242 }
719ea2fb 1243 unlock_mount_hash();
1da177e4
LT
1244
1245 if (actual_refs > minimum_refs)
e3474a8e 1246 return 0;
1da177e4 1247
e3474a8e 1248 return 1;
1da177e4
LT
1249}
1250
1251EXPORT_SYMBOL(may_umount_tree);
1252
1253/**
1254 * may_umount - check if a mount point is busy
1255 * @mnt: root of mount
1256 *
1257 * This is called to check if a mount point has any
1258 * open files, pwds, chroots or sub mounts. If the
1259 * mount has sub mounts this will return busy
1260 * regardless of whether the sub mounts are busy.
1261 *
1262 * Doesn't take quota and stuff into account. IOW, in some cases it will
1263 * give false negatives. The main reason why it's here is that we need
1264 * a non-destructive way to look for easily umountable filesystems.
1265 */
1266int may_umount(struct vfsmount *mnt)
1267{
e3474a8e 1268 int ret = 1;
8ad08d8a 1269 down_read(&namespace_sem);
719ea2fb 1270 lock_mount_hash();
1ab59738 1271 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1272 ret = 0;
719ea2fb 1273 unlock_mount_hash();
8ad08d8a 1274 up_read(&namespace_sem);
a05964f3 1275 return ret;
1da177e4
LT
1276}
1277
1278EXPORT_SYMBOL(may_umount);
1279
38129a13 1280static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1281
97216be0 1282static void namespace_unlock(void)
70fbcdf4 1283{
d5e50f74 1284 struct mount *mnt;
38129a13 1285 struct hlist_head head = unmounted;
97216be0 1286
38129a13 1287 if (likely(hlist_empty(&head))) {
97216be0
AV
1288 up_write(&namespace_sem);
1289 return;
1290 }
1291
38129a13
AV
1292 head.first->pprev = &head.first;
1293 INIT_HLIST_HEAD(&unmounted);
1294
81b6b061
AV
1295 /* undo decrements we'd done in umount_tree() */
1296 hlist_for_each_entry(mnt, &head, mnt_hash)
1297 if (mnt->mnt_ex_mountpoint.mnt)
1298 mntget(mnt->mnt_ex_mountpoint.mnt);
1299
97216be0
AV
1300 up_write(&namespace_sem);
1301
48a066e7
AV
1302 synchronize_rcu();
1303
38129a13
AV
1304 while (!hlist_empty(&head)) {
1305 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1306 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1307 if (mnt->mnt_ex_mountpoint.mnt)
1308 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1309 mntput(&mnt->mnt);
70fbcdf4
RP
1310 }
1311}
1312
97216be0 1313static inline void namespace_lock(void)
e3197d83 1314{
97216be0 1315 down_write(&namespace_sem);
e3197d83
AV
1316}
1317
99b7db7b 1318/*
48a066e7 1319 * mount_lock must be held
99b7db7b 1320 * namespace_sem must be held for write
48a066e7
AV
1321 * how = 0 => just this tree, don't propagate
1322 * how = 1 => propagate; we know that nobody else has reference to any victims
1323 * how = 2 => lazy umount
99b7db7b 1324 */
48a066e7 1325void umount_tree(struct mount *mnt, int how)
1da177e4 1326{
38129a13 1327 HLIST_HEAD(tmp_list);
315fc83e 1328 struct mount *p;
38129a13 1329 struct mount *last = NULL;
1da177e4 1330
38129a13
AV
1331 for (p = mnt; p; p = next_mnt(p, mnt)) {
1332 hlist_del_init_rcu(&p->mnt_hash);
1333 hlist_add_head(&p->mnt_hash, &tmp_list);
1334 }
1da177e4 1335
88b368f2
AV
1336 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1337 list_del_init(&p->mnt_child);
1338
48a066e7 1339 if (how)
7b8a53fd 1340 propagate_umount(&tmp_list);
a05964f3 1341
38129a13 1342 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1343 list_del_init(&p->mnt_expire);
1a4eeaf2 1344 list_del_init(&p->mnt_list);
143c8c91
AV
1345 __touch_mnt_namespace(p->mnt_ns);
1346 p->mnt_ns = NULL;
48a066e7
AV
1347 if (how < 2)
1348 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
676da58d 1349 if (mnt_has_parent(p)) {
0a5eb7c8 1350 hlist_del_init(&p->mnt_mp_list);
84d17192 1351 put_mountpoint(p->mnt_mp);
81b6b061 1352 mnt_add_count(p->mnt_parent, -1);
aba809cf
AV
1353 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1354 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1355 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1356 p->mnt_mountpoint = p->mnt.mnt_root;
1357 p->mnt_parent = p;
84d17192 1358 p->mnt_mp = NULL;
7c4b93d8 1359 }
0f0afb1d 1360 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1361 last = p;
1362 }
1363 if (last) {
1364 last->mnt_hash.next = unmounted.first;
1365 unmounted.first = tmp_list.first;
1366 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1367 }
1368}
1369
b54b9be7 1370static void shrink_submounts(struct mount *mnt);
c35038be 1371
1ab59738 1372static int do_umount(struct mount *mnt, int flags)
1da177e4 1373{
1ab59738 1374 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1375 int retval;
1376
1ab59738 1377 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1378 if (retval)
1379 return retval;
1380
1381 /*
1382 * Allow userspace to request a mountpoint be expired rather than
1383 * unmounting unconditionally. Unmount only happens if:
1384 * (1) the mark is already set (the mark is cleared by mntput())
1385 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1386 */
1387 if (flags & MNT_EXPIRE) {
1ab59738 1388 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1389 flags & (MNT_FORCE | MNT_DETACH))
1390 return -EINVAL;
1391
b3e19d92
NP
1392 /*
1393 * probably don't strictly need the lock here if we examined
1394 * all race cases, but it's a slowpath.
1395 */
719ea2fb 1396 lock_mount_hash();
83adc753 1397 if (mnt_get_count(mnt) != 2) {
719ea2fb 1398 unlock_mount_hash();
1da177e4 1399 return -EBUSY;
b3e19d92 1400 }
719ea2fb 1401 unlock_mount_hash();
1da177e4 1402
863d684f 1403 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1404 return -EAGAIN;
1405 }
1406
1407 /*
1408 * If we may have to abort operations to get out of this
1409 * mount, and they will themselves hold resources we must
1410 * allow the fs to do things. In the Unix tradition of
1411 * 'Gee thats tricky lets do it in userspace' the umount_begin
1412 * might fail to complete on the first run through as other tasks
1413 * must return, and the like. Thats for the mount program to worry
1414 * about for the moment.
1415 */
1416
42faad99 1417 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1418 sb->s_op->umount_begin(sb);
42faad99 1419 }
1da177e4
LT
1420
1421 /*
1422 * No sense to grab the lock for this test, but test itself looks
1423 * somewhat bogus. Suggestions for better replacement?
1424 * Ho-hum... In principle, we might treat that as umount + switch
1425 * to rootfs. GC would eventually take care of the old vfsmount.
1426 * Actually it makes sense, especially if rootfs would contain a
1427 * /reboot - static binary that would close all descriptors and
1428 * call reboot(9). Then init(8) could umount root and exec /reboot.
1429 */
1ab59738 1430 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1431 /*
1432 * Special case for "unmounting" root ...
1433 * we just try to remount it readonly.
1434 */
1435 down_write(&sb->s_umount);
4aa98cf7 1436 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1437 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1438 up_write(&sb->s_umount);
1439 return retval;
1440 }
1441
97216be0 1442 namespace_lock();
719ea2fb 1443 lock_mount_hash();
5addc5dd 1444 event++;
1da177e4 1445
48a066e7 1446 if (flags & MNT_DETACH) {
1a4eeaf2 1447 if (!list_empty(&mnt->mnt_list))
48a066e7 1448 umount_tree(mnt, 2);
1da177e4 1449 retval = 0;
48a066e7
AV
1450 } else {
1451 shrink_submounts(mnt);
1452 retval = -EBUSY;
1453 if (!propagate_mount_busy(mnt, 2)) {
1454 if (!list_empty(&mnt->mnt_list))
1455 umount_tree(mnt, 1);
1456 retval = 0;
1457 }
1da177e4 1458 }
719ea2fb 1459 unlock_mount_hash();
e3197d83 1460 namespace_unlock();
1da177e4
LT
1461 return retval;
1462}
1463
9b40bc90
AV
1464/*
1465 * Is the caller allowed to modify his namespace?
1466 */
1467static inline bool may_mount(void)
1468{
1469 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1470}
1471
1da177e4
LT
1472/*
1473 * Now umount can handle mount points as well as block devices.
1474 * This is important for filesystems which use unnamed block devices.
1475 *
1476 * We now support a flag for forced unmount like the other 'big iron'
1477 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1478 */
1479
bdc480e3 1480SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1481{
2d8f3038 1482 struct path path;
900148dc 1483 struct mount *mnt;
1da177e4 1484 int retval;
db1f05bb 1485 int lookup_flags = 0;
1da177e4 1486
db1f05bb
MS
1487 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1488 return -EINVAL;
1489
9b40bc90
AV
1490 if (!may_mount())
1491 return -EPERM;
1492
db1f05bb
MS
1493 if (!(flags & UMOUNT_NOFOLLOW))
1494 lookup_flags |= LOOKUP_FOLLOW;
1495
197df04c 1496 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1497 if (retval)
1498 goto out;
900148dc 1499 mnt = real_mount(path.mnt);
1da177e4 1500 retval = -EINVAL;
2d8f3038 1501 if (path.dentry != path.mnt->mnt_root)
1da177e4 1502 goto dput_and_out;
143c8c91 1503 if (!check_mnt(mnt))
1da177e4 1504 goto dput_and_out;
5ff9d8a6
EB
1505 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1506 goto dput_and_out;
1da177e4 1507
900148dc 1508 retval = do_umount(mnt, flags);
1da177e4 1509dput_and_out:
429731b1 1510 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1511 dput(path.dentry);
900148dc 1512 mntput_no_expire(mnt);
1da177e4
LT
1513out:
1514 return retval;
1515}
1516
1517#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1518
1519/*
b58fed8b 1520 * The 2.0 compatible umount. No flags.
1da177e4 1521 */
bdc480e3 1522SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1523{
b58fed8b 1524 return sys_umount(name, 0);
1da177e4
LT
1525}
1526
1527#endif
1528
4ce5d2b1 1529static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1530{
4ce5d2b1
EB
1531 /* Is this a proxy for a mount namespace? */
1532 struct inode *inode = dentry->d_inode;
0bb80f24 1533 struct proc_ns *ei;
8823c079
EB
1534
1535 if (!proc_ns_inode(inode))
1536 return false;
1537
0bb80f24 1538 ei = get_proc_ns(inode);
8823c079
EB
1539 if (ei->ns_ops != &mntns_operations)
1540 return false;
1541
4ce5d2b1
EB
1542 return true;
1543}
1544
1545static bool mnt_ns_loop(struct dentry *dentry)
1546{
1547 /* Could bind mounting the mount namespace inode cause a
1548 * mount namespace loop?
1549 */
1550 struct mnt_namespace *mnt_ns;
1551 if (!is_mnt_ns_file(dentry))
1552 return false;
1553
1554 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1555 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1556}
1557
87129cc0 1558struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1559 int flag)
1da177e4 1560{
84d17192 1561 struct mount *res, *p, *q, *r, *parent;
1da177e4 1562
4ce5d2b1
EB
1563 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1564 return ERR_PTR(-EINVAL);
1565
1566 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1567 return ERR_PTR(-EINVAL);
9676f0c6 1568
36341f64 1569 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1570 if (IS_ERR(q))
1571 return q;
1572
5ff9d8a6 1573 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1574 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1575
1576 p = mnt;
6b41d536 1577 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1578 struct mount *s;
7ec02ef1 1579 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1580 continue;
1581
909b0a88 1582 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1583 struct mount *t = NULL;
4ce5d2b1
EB
1584 if (!(flag & CL_COPY_UNBINDABLE) &&
1585 IS_MNT_UNBINDABLE(s)) {
1586 s = skip_mnt_tree(s);
1587 continue;
1588 }
1589 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1590 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1591 s = skip_mnt_tree(s);
1592 continue;
1593 }
0714a533
AV
1594 while (p != s->mnt_parent) {
1595 p = p->mnt_parent;
1596 q = q->mnt_parent;
1da177e4 1597 }
87129cc0 1598 p = s;
84d17192 1599 parent = q;
87129cc0 1600 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1601 if (IS_ERR(q))
1602 goto out;
719ea2fb 1603 lock_mount_hash();
1a4eeaf2 1604 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1605 mnt_set_mountpoint(parent, p->mnt_mp, q);
1606 if (!list_empty(&parent->mnt_mounts)) {
1607 t = list_last_entry(&parent->mnt_mounts,
1608 struct mount, mnt_child);
1609 if (t->mnt_mp != p->mnt_mp)
1610 t = NULL;
1611 }
1612 attach_shadowed(q, parent, t);
719ea2fb 1613 unlock_mount_hash();
1da177e4
LT
1614 }
1615 }
1616 return res;
be34d1a3 1617out:
1da177e4 1618 if (res) {
719ea2fb 1619 lock_mount_hash();
328e6d90 1620 umount_tree(res, 0);
719ea2fb 1621 unlock_mount_hash();
1da177e4 1622 }
be34d1a3 1623 return q;
1da177e4
LT
1624}
1625
be34d1a3
DH
1626/* Caller should check returned pointer for errors */
1627
589ff870 1628struct vfsmount *collect_mounts(struct path *path)
8aec0809 1629{
cb338d06 1630 struct mount *tree;
97216be0 1631 namespace_lock();
87129cc0
AV
1632 tree = copy_tree(real_mount(path->mnt), path->dentry,
1633 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1634 namespace_unlock();
be34d1a3 1635 if (IS_ERR(tree))
52e220d3 1636 return ERR_CAST(tree);
be34d1a3 1637 return &tree->mnt;
8aec0809
AV
1638}
1639
1640void drop_collected_mounts(struct vfsmount *mnt)
1641{
97216be0 1642 namespace_lock();
719ea2fb 1643 lock_mount_hash();
328e6d90 1644 umount_tree(real_mount(mnt), 0);
719ea2fb 1645 unlock_mount_hash();
3ab6abee 1646 namespace_unlock();
8aec0809
AV
1647}
1648
1f707137
AV
1649int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1650 struct vfsmount *root)
1651{
1a4eeaf2 1652 struct mount *mnt;
1f707137
AV
1653 int res = f(root, arg);
1654 if (res)
1655 return res;
1a4eeaf2
AV
1656 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1657 res = f(&mnt->mnt, arg);
1f707137
AV
1658 if (res)
1659 return res;
1660 }
1661 return 0;
1662}
1663
4b8b21f4 1664static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1665{
315fc83e 1666 struct mount *p;
719f5d7f 1667
909b0a88 1668 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1669 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1670 mnt_release_group_id(p);
719f5d7f
MS
1671 }
1672}
1673
4b8b21f4 1674static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1675{
315fc83e 1676 struct mount *p;
719f5d7f 1677
909b0a88 1678 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1679 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1680 int err = mnt_alloc_group_id(p);
719f5d7f 1681 if (err) {
4b8b21f4 1682 cleanup_group_ids(mnt, p);
719f5d7f
MS
1683 return err;
1684 }
1685 }
1686 }
1687
1688 return 0;
1689}
1690
b90fa9ae
RP
1691/*
1692 * @source_mnt : mount tree to be attached
21444403
RP
1693 * @nd : place the mount tree @source_mnt is attached
1694 * @parent_nd : if non-null, detach the source_mnt from its parent and
1695 * store the parent mount and mountpoint dentry.
1696 * (done when source_mnt is moved)
b90fa9ae
RP
1697 *
1698 * NOTE: in the table below explains the semantics when a source mount
1699 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1700 * ---------------------------------------------------------------------------
1701 * | BIND MOUNT OPERATION |
1702 * |**************************************************************************
1703 * | source-->| shared | private | slave | unbindable |
1704 * | dest | | | | |
1705 * | | | | | | |
1706 * | v | | | | |
1707 * |**************************************************************************
1708 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1709 * | | | | | |
1710 * |non-shared| shared (+) | private | slave (*) | invalid |
1711 * ***************************************************************************
b90fa9ae
RP
1712 * A bind operation clones the source mount and mounts the clone on the
1713 * destination mount.
1714 *
1715 * (++) the cloned mount is propagated to all the mounts in the propagation
1716 * tree of the destination mount and the cloned mount is added to
1717 * the peer group of the source mount.
1718 * (+) the cloned mount is created under the destination mount and is marked
1719 * as shared. The cloned mount is added to the peer group of the source
1720 * mount.
5afe0022
RP
1721 * (+++) the mount is propagated to all the mounts in the propagation tree
1722 * of the destination mount and the cloned mount is made slave
1723 * of the same master as that of the source mount. The cloned mount
1724 * is marked as 'shared and slave'.
1725 * (*) the cloned mount is made a slave of the same master as that of the
1726 * source mount.
1727 *
9676f0c6
RP
1728 * ---------------------------------------------------------------------------
1729 * | MOVE MOUNT OPERATION |
1730 * |**************************************************************************
1731 * | source-->| shared | private | slave | unbindable |
1732 * | dest | | | | |
1733 * | | | | | | |
1734 * | v | | | | |
1735 * |**************************************************************************
1736 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1737 * | | | | | |
1738 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1739 * ***************************************************************************
5afe0022
RP
1740 *
1741 * (+) the mount is moved to the destination. And is then propagated to
1742 * all the mounts in the propagation tree of the destination mount.
21444403 1743 * (+*) the mount is moved to the destination.
5afe0022
RP
1744 * (+++) the mount is moved to the destination and is then propagated to
1745 * all the mounts belonging to the destination mount's propagation tree.
1746 * the mount is marked as 'shared and slave'.
1747 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1748 *
1749 * if the source mount is a tree, the operations explained above is
1750 * applied to each mount in the tree.
1751 * Must be called without spinlocks held, since this function can sleep
1752 * in allocations.
1753 */
0fb54e50 1754static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1755 struct mount *dest_mnt,
1756 struct mountpoint *dest_mp,
1757 struct path *parent_path)
b90fa9ae 1758{
38129a13 1759 HLIST_HEAD(tree_list);
315fc83e 1760 struct mount *child, *p;
38129a13 1761 struct hlist_node *n;
719f5d7f 1762 int err;
b90fa9ae 1763
fc7be130 1764 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1765 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1766 if (err)
1767 goto out;
0b1b901b 1768 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1769 lock_mount_hash();
0b1b901b
AV
1770 if (err)
1771 goto out_cleanup_ids;
909b0a88 1772 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1773 set_mnt_shared(p);
0b1b901b
AV
1774 } else {
1775 lock_mount_hash();
b90fa9ae 1776 }
1a390689 1777 if (parent_path) {
0fb54e50 1778 detach_mnt(source_mnt, parent_path);
84d17192 1779 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1780 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1781 } else {
84d17192 1782 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1783 commit_tree(source_mnt, NULL);
21444403 1784 }
b90fa9ae 1785
38129a13 1786 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1787 struct mount *q;
38129a13 1788 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1789 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1790 child->mnt_mountpoint);
1791 commit_tree(child, q);
b90fa9ae 1792 }
719ea2fb 1793 unlock_mount_hash();
99b7db7b 1794
b90fa9ae 1795 return 0;
719f5d7f
MS
1796
1797 out_cleanup_ids:
f2ebb3a9
AV
1798 while (!hlist_empty(&tree_list)) {
1799 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1800 umount_tree(child, 0);
1801 }
1802 unlock_mount_hash();
0b1b901b 1803 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1804 out:
1805 return err;
b90fa9ae
RP
1806}
1807
84d17192 1808static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1809{
1810 struct vfsmount *mnt;
84d17192 1811 struct dentry *dentry = path->dentry;
b12cea91 1812retry:
84d17192
AV
1813 mutex_lock(&dentry->d_inode->i_mutex);
1814 if (unlikely(cant_mount(dentry))) {
1815 mutex_unlock(&dentry->d_inode->i_mutex);
1816 return ERR_PTR(-ENOENT);
b12cea91 1817 }
97216be0 1818 namespace_lock();
b12cea91 1819 mnt = lookup_mnt(path);
84d17192
AV
1820 if (likely(!mnt)) {
1821 struct mountpoint *mp = new_mountpoint(dentry);
1822 if (IS_ERR(mp)) {
97216be0 1823 namespace_unlock();
84d17192
AV
1824 mutex_unlock(&dentry->d_inode->i_mutex);
1825 return mp;
1826 }
1827 return mp;
1828 }
97216be0 1829 namespace_unlock();
b12cea91
AV
1830 mutex_unlock(&path->dentry->d_inode->i_mutex);
1831 path_put(path);
1832 path->mnt = mnt;
84d17192 1833 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1834 goto retry;
1835}
1836
84d17192 1837static void unlock_mount(struct mountpoint *where)
b12cea91 1838{
84d17192
AV
1839 struct dentry *dentry = where->m_dentry;
1840 put_mountpoint(where);
328e6d90 1841 namespace_unlock();
84d17192 1842 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1843}
1844
84d17192 1845static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1846{
95bc5f25 1847 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1848 return -EINVAL;
1849
84d17192 1850 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1851 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1852 return -ENOTDIR;
1853
84d17192 1854 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1855}
1856
7a2e8a8f
VA
1857/*
1858 * Sanity check the flags to change_mnt_propagation.
1859 */
1860
1861static int flags_to_propagation_type(int flags)
1862{
7c6e984d 1863 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1864
1865 /* Fail if any non-propagation flags are set */
1866 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1867 return 0;
1868 /* Only one propagation flag should be set */
1869 if (!is_power_of_2(type))
1870 return 0;
1871 return type;
1872}
1873
07b20889
RP
1874/*
1875 * recursively change the type of the mountpoint.
1876 */
0a0d8a46 1877static int do_change_type(struct path *path, int flag)
07b20889 1878{
315fc83e 1879 struct mount *m;
4b8b21f4 1880 struct mount *mnt = real_mount(path->mnt);
07b20889 1881 int recurse = flag & MS_REC;
7a2e8a8f 1882 int type;
719f5d7f 1883 int err = 0;
07b20889 1884
2d92ab3c 1885 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1886 return -EINVAL;
1887
7a2e8a8f
VA
1888 type = flags_to_propagation_type(flag);
1889 if (!type)
1890 return -EINVAL;
1891
97216be0 1892 namespace_lock();
719f5d7f
MS
1893 if (type == MS_SHARED) {
1894 err = invent_group_ids(mnt, recurse);
1895 if (err)
1896 goto out_unlock;
1897 }
1898
719ea2fb 1899 lock_mount_hash();
909b0a88 1900 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1901 change_mnt_propagation(m, type);
719ea2fb 1902 unlock_mount_hash();
719f5d7f
MS
1903
1904 out_unlock:
97216be0 1905 namespace_unlock();
719f5d7f 1906 return err;
07b20889
RP
1907}
1908
5ff9d8a6
EB
1909static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1910{
1911 struct mount *child;
1912 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1913 if (!is_subdir(child->mnt_mountpoint, dentry))
1914 continue;
1915
1916 if (child->mnt.mnt_flags & MNT_LOCKED)
1917 return true;
1918 }
1919 return false;
1920}
1921
1da177e4
LT
1922/*
1923 * do loopback mount.
1924 */
808d4e3c 1925static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1926 int recurse)
1da177e4 1927{
2d92ab3c 1928 struct path old_path;
84d17192
AV
1929 struct mount *mnt = NULL, *old, *parent;
1930 struct mountpoint *mp;
57eccb83 1931 int err;
1da177e4
LT
1932 if (!old_name || !*old_name)
1933 return -EINVAL;
815d405c 1934 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1935 if (err)
1936 return err;
1937
8823c079 1938 err = -EINVAL;
4ce5d2b1 1939 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1940 goto out;
1941
84d17192
AV
1942 mp = lock_mount(path);
1943 err = PTR_ERR(mp);
1944 if (IS_ERR(mp))
b12cea91
AV
1945 goto out;
1946
87129cc0 1947 old = real_mount(old_path.mnt);
84d17192 1948 parent = real_mount(path->mnt);
87129cc0 1949
1da177e4 1950 err = -EINVAL;
fc7be130 1951 if (IS_MNT_UNBINDABLE(old))
b12cea91 1952 goto out2;
9676f0c6 1953
84d17192 1954 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1955 goto out2;
1da177e4 1956
5ff9d8a6
EB
1957 if (!recurse && has_locked_children(old, old_path.dentry))
1958 goto out2;
1959
ccd48bc7 1960 if (recurse)
4ce5d2b1 1961 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1962 else
87129cc0 1963 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1964
be34d1a3
DH
1965 if (IS_ERR(mnt)) {
1966 err = PTR_ERR(mnt);
e9c5d8a5 1967 goto out2;
be34d1a3 1968 }
ccd48bc7 1969
5ff9d8a6
EB
1970 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1971
84d17192 1972 err = graft_tree(mnt, parent, mp);
ccd48bc7 1973 if (err) {
719ea2fb 1974 lock_mount_hash();
328e6d90 1975 umount_tree(mnt, 0);
719ea2fb 1976 unlock_mount_hash();
5b83d2c5 1977 }
b12cea91 1978out2:
84d17192 1979 unlock_mount(mp);
ccd48bc7 1980out:
2d92ab3c 1981 path_put(&old_path);
1da177e4
LT
1982 return err;
1983}
1984
2e4b7fcd
DH
1985static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1986{
1987 int error = 0;
1988 int readonly_request = 0;
1989
1990 if (ms_flags & MS_RDONLY)
1991 readonly_request = 1;
1992 if (readonly_request == __mnt_is_readonly(mnt))
1993 return 0;
1994
1995 if (readonly_request)
83adc753 1996 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1997 else
83adc753 1998 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1999 return error;
2000}
2001
1da177e4
LT
2002/*
2003 * change filesystem flags. dir should be a physical root of filesystem.
2004 * If you've mounted a non-root directory somewhere and want to do remount
2005 * on it - tough luck.
2006 */
0a0d8a46 2007static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2008 void *data)
2009{
2010 int err;
2d92ab3c 2011 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2012 struct mount *mnt = real_mount(path->mnt);
1da177e4 2013
143c8c91 2014 if (!check_mnt(mnt))
1da177e4
LT
2015 return -EINVAL;
2016
2d92ab3c 2017 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2018 return -EINVAL;
2019
07b64558
EB
2020 /* Don't allow changing of locked mnt flags.
2021 *
2022 * No locks need to be held here while testing the various
2023 * MNT_LOCK flags because those flags can never be cleared
2024 * once they are set.
2025 */
2026 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2027 !(mnt_flags & MNT_READONLY)) {
2028 return -EPERM;
2029 }
9566d674
EB
2030 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2031 !(mnt_flags & MNT_NODEV)) {
2032 return -EPERM;
2033 }
2034 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2035 !(mnt_flags & MNT_NOSUID)) {
2036 return -EPERM;
2037 }
2038 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2039 !(mnt_flags & MNT_NOEXEC)) {
2040 return -EPERM;
2041 }
2042 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2043 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2044 return -EPERM;
2045 }
2046
ff36fe2c
EP
2047 err = security_sb_remount(sb, data);
2048 if (err)
2049 return err;
2050
1da177e4 2051 down_write(&sb->s_umount);
2e4b7fcd 2052 if (flags & MS_BIND)
2d92ab3c 2053 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2054 else if (!capable(CAP_SYS_ADMIN))
2055 err = -EPERM;
4aa98cf7 2056 else
2e4b7fcd 2057 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2058 if (!err) {
719ea2fb 2059 lock_mount_hash();
a6138db8 2060 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2061 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2062 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2063 unlock_mount_hash();
0e55a7cc 2064 }
6339dab8 2065 up_write(&sb->s_umount);
1da177e4
LT
2066 return err;
2067}
2068
cbbe362c 2069static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2070{
315fc83e 2071 struct mount *p;
909b0a88 2072 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2073 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2074 return 1;
2075 }
2076 return 0;
2077}
2078
808d4e3c 2079static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2080{
2d92ab3c 2081 struct path old_path, parent_path;
676da58d 2082 struct mount *p;
0fb54e50 2083 struct mount *old;
84d17192 2084 struct mountpoint *mp;
57eccb83 2085 int err;
1da177e4
LT
2086 if (!old_name || !*old_name)
2087 return -EINVAL;
2d92ab3c 2088 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2089 if (err)
2090 return err;
2091
84d17192
AV
2092 mp = lock_mount(path);
2093 err = PTR_ERR(mp);
2094 if (IS_ERR(mp))
cc53ce53
DH
2095 goto out;
2096
143c8c91 2097 old = real_mount(old_path.mnt);
fc7be130 2098 p = real_mount(path->mnt);
143c8c91 2099
1da177e4 2100 err = -EINVAL;
fc7be130 2101 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2102 goto out1;
2103
5ff9d8a6
EB
2104 if (old->mnt.mnt_flags & MNT_LOCKED)
2105 goto out1;
2106
1da177e4 2107 err = -EINVAL;
2d92ab3c 2108 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2109 goto out1;
1da177e4 2110
676da58d 2111 if (!mnt_has_parent(old))
21444403 2112 goto out1;
1da177e4 2113
2d92ab3c
AV
2114 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2115 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2116 goto out1;
2117 /*
2118 * Don't move a mount residing in a shared parent.
2119 */
fc7be130 2120 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2121 goto out1;
9676f0c6
RP
2122 /*
2123 * Don't move a mount tree containing unbindable mounts to a destination
2124 * mount which is shared.
2125 */
fc7be130 2126 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2127 goto out1;
1da177e4 2128 err = -ELOOP;
fc7be130 2129 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2130 if (p == old)
21444403 2131 goto out1;
1da177e4 2132
84d17192 2133 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2134 if (err)
21444403 2135 goto out1;
1da177e4
LT
2136
2137 /* if the mount is moved, it should no longer be expire
2138 * automatically */
6776db3d 2139 list_del_init(&old->mnt_expire);
1da177e4 2140out1:
84d17192 2141 unlock_mount(mp);
1da177e4 2142out:
1da177e4 2143 if (!err)
1a390689 2144 path_put(&parent_path);
2d92ab3c 2145 path_put(&old_path);
1da177e4
LT
2146 return err;
2147}
2148
9d412a43
AV
2149static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2150{
2151 int err;
2152 const char *subtype = strchr(fstype, '.');
2153 if (subtype) {
2154 subtype++;
2155 err = -EINVAL;
2156 if (!subtype[0])
2157 goto err;
2158 } else
2159 subtype = "";
2160
2161 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2162 err = -ENOMEM;
2163 if (!mnt->mnt_sb->s_subtype)
2164 goto err;
2165 return mnt;
2166
2167 err:
2168 mntput(mnt);
2169 return ERR_PTR(err);
2170}
2171
9d412a43
AV
2172/*
2173 * add a mount into a namespace's mount tree
2174 */
95bc5f25 2175static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2176{
84d17192
AV
2177 struct mountpoint *mp;
2178 struct mount *parent;
9d412a43
AV
2179 int err;
2180
f2ebb3a9 2181 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2182
84d17192
AV
2183 mp = lock_mount(path);
2184 if (IS_ERR(mp))
2185 return PTR_ERR(mp);
9d412a43 2186
84d17192 2187 parent = real_mount(path->mnt);
9d412a43 2188 err = -EINVAL;
84d17192 2189 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2190 /* that's acceptable only for automounts done in private ns */
2191 if (!(mnt_flags & MNT_SHRINKABLE))
2192 goto unlock;
2193 /* ... and for those we'd better have mountpoint still alive */
84d17192 2194 if (!parent->mnt_ns)
156cacb1
AV
2195 goto unlock;
2196 }
9d412a43
AV
2197
2198 /* Refuse the same filesystem on the same mount point */
2199 err = -EBUSY;
95bc5f25 2200 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2201 path->mnt->mnt_root == path->dentry)
2202 goto unlock;
2203
2204 err = -EINVAL;
95bc5f25 2205 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2206 goto unlock;
2207
95bc5f25 2208 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2209 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2210
2211unlock:
84d17192 2212 unlock_mount(mp);
9d412a43
AV
2213 return err;
2214}
b1e75df4 2215
1da177e4
LT
2216/*
2217 * create a new mount for userspace and request it to be added into the
2218 * namespace's tree
2219 */
0c55cfc4 2220static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2221 int mnt_flags, const char *name, void *data)
1da177e4 2222{
0c55cfc4 2223 struct file_system_type *type;
9b40bc90 2224 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2225 struct vfsmount *mnt;
15f9a3f3 2226 int err;
1da177e4 2227
0c55cfc4 2228 if (!fstype)
1da177e4
LT
2229 return -EINVAL;
2230
0c55cfc4
EB
2231 type = get_fs_type(fstype);
2232 if (!type)
2233 return -ENODEV;
2234
2235 if (user_ns != &init_user_ns) {
2236 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2237 put_filesystem(type);
2238 return -EPERM;
2239 }
2240 /* Only in special cases allow devices from mounts
2241 * created outside the initial user namespace.
2242 */
2243 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2244 flags |= MS_NODEV;
9566d674 2245 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2246 }
2247 }
2248
2249 mnt = vfs_kern_mount(type, flags, name, data);
2250 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2251 !mnt->mnt_sb->s_subtype)
2252 mnt = fs_set_subtype(mnt, fstype);
2253
2254 put_filesystem(type);
1da177e4
LT
2255 if (IS_ERR(mnt))
2256 return PTR_ERR(mnt);
2257
95bc5f25 2258 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2259 if (err)
2260 mntput(mnt);
2261 return err;
1da177e4
LT
2262}
2263
19a167af
AV
2264int finish_automount(struct vfsmount *m, struct path *path)
2265{
6776db3d 2266 struct mount *mnt = real_mount(m);
19a167af
AV
2267 int err;
2268 /* The new mount record should have at least 2 refs to prevent it being
2269 * expired before we get a chance to add it
2270 */
6776db3d 2271 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2272
2273 if (m->mnt_sb == path->mnt->mnt_sb &&
2274 m->mnt_root == path->dentry) {
b1e75df4
AV
2275 err = -ELOOP;
2276 goto fail;
19a167af
AV
2277 }
2278
95bc5f25 2279 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2280 if (!err)
2281 return 0;
2282fail:
2283 /* remove m from any expiration list it may be on */
6776db3d 2284 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2285 namespace_lock();
6776db3d 2286 list_del_init(&mnt->mnt_expire);
97216be0 2287 namespace_unlock();
19a167af 2288 }
b1e75df4
AV
2289 mntput(m);
2290 mntput(m);
19a167af
AV
2291 return err;
2292}
2293
ea5b778a
DH
2294/**
2295 * mnt_set_expiry - Put a mount on an expiration list
2296 * @mnt: The mount to list.
2297 * @expiry_list: The list to add the mount to.
2298 */
2299void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2300{
97216be0 2301 namespace_lock();
ea5b778a 2302
6776db3d 2303 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2304
97216be0 2305 namespace_unlock();
ea5b778a
DH
2306}
2307EXPORT_SYMBOL(mnt_set_expiry);
2308
1da177e4
LT
2309/*
2310 * process a list of expirable mountpoints with the intent of discarding any
2311 * mountpoints that aren't in use and haven't been touched since last we came
2312 * here
2313 */
2314void mark_mounts_for_expiry(struct list_head *mounts)
2315{
761d5c38 2316 struct mount *mnt, *next;
1da177e4
LT
2317 LIST_HEAD(graveyard);
2318
2319 if (list_empty(mounts))
2320 return;
2321
97216be0 2322 namespace_lock();
719ea2fb 2323 lock_mount_hash();
1da177e4
LT
2324
2325 /* extract from the expiration list every vfsmount that matches the
2326 * following criteria:
2327 * - only referenced by its parent vfsmount
2328 * - still marked for expiry (marked on the last call here; marks are
2329 * cleared by mntput())
2330 */
6776db3d 2331 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2332 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2333 propagate_mount_busy(mnt, 1))
1da177e4 2334 continue;
6776db3d 2335 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2336 }
bcc5c7d2 2337 while (!list_empty(&graveyard)) {
6776db3d 2338 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2339 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2340 umount_tree(mnt, 1);
bcc5c7d2 2341 }
719ea2fb 2342 unlock_mount_hash();
3ab6abee 2343 namespace_unlock();
5528f911
TM
2344}
2345
2346EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2347
2348/*
2349 * Ripoff of 'select_parent()'
2350 *
2351 * search the list of submounts for a given mountpoint, and move any
2352 * shrinkable submounts to the 'graveyard' list.
2353 */
692afc31 2354static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2355{
692afc31 2356 struct mount *this_parent = parent;
5528f911
TM
2357 struct list_head *next;
2358 int found = 0;
2359
2360repeat:
6b41d536 2361 next = this_parent->mnt_mounts.next;
5528f911 2362resume:
6b41d536 2363 while (next != &this_parent->mnt_mounts) {
5528f911 2364 struct list_head *tmp = next;
6b41d536 2365 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2366
2367 next = tmp->next;
692afc31 2368 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2369 continue;
5528f911
TM
2370 /*
2371 * Descend a level if the d_mounts list is non-empty.
2372 */
6b41d536 2373 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2374 this_parent = mnt;
2375 goto repeat;
2376 }
1da177e4 2377
1ab59738 2378 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2379 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2380 found++;
2381 }
1da177e4 2382 }
5528f911
TM
2383 /*
2384 * All done at this level ... ascend and resume the search
2385 */
2386 if (this_parent != parent) {
6b41d536 2387 next = this_parent->mnt_child.next;
0714a533 2388 this_parent = this_parent->mnt_parent;
5528f911
TM
2389 goto resume;
2390 }
2391 return found;
2392}
2393
2394/*
2395 * process a list of expirable mountpoints with the intent of discarding any
2396 * submounts of a specific parent mountpoint
99b7db7b 2397 *
48a066e7 2398 * mount_lock must be held for write
5528f911 2399 */
b54b9be7 2400static void shrink_submounts(struct mount *mnt)
5528f911
TM
2401{
2402 LIST_HEAD(graveyard);
761d5c38 2403 struct mount *m;
5528f911 2404
5528f911 2405 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2406 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2407 while (!list_empty(&graveyard)) {
761d5c38 2408 m = list_first_entry(&graveyard, struct mount,
6776db3d 2409 mnt_expire);
143c8c91 2410 touch_mnt_namespace(m->mnt_ns);
328e6d90 2411 umount_tree(m, 1);
bcc5c7d2
AV
2412 }
2413 }
1da177e4
LT
2414}
2415
1da177e4
LT
2416/*
2417 * Some copy_from_user() implementations do not return the exact number of
2418 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2419 * Note that this function differs from copy_from_user() in that it will oops
2420 * on bad values of `to', rather than returning a short copy.
2421 */
b58fed8b
RP
2422static long exact_copy_from_user(void *to, const void __user * from,
2423 unsigned long n)
1da177e4
LT
2424{
2425 char *t = to;
2426 const char __user *f = from;
2427 char c;
2428
2429 if (!access_ok(VERIFY_READ, from, n))
2430 return n;
2431
2432 while (n) {
2433 if (__get_user(c, f)) {
2434 memset(t, 0, n);
2435 break;
2436 }
2437 *t++ = c;
2438 f++;
2439 n--;
2440 }
2441 return n;
2442}
2443
b58fed8b 2444int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2445{
2446 int i;
2447 unsigned long page;
2448 unsigned long size;
b58fed8b 2449
1da177e4
LT
2450 *where = 0;
2451 if (!data)
2452 return 0;
2453
2454 if (!(page = __get_free_page(GFP_KERNEL)))
2455 return -ENOMEM;
2456
2457 /* We only care that *some* data at the address the user
2458 * gave us is valid. Just in case, we'll zero
2459 * the remainder of the page.
2460 */
2461 /* copy_from_user cannot cross TASK_SIZE ! */
2462 size = TASK_SIZE - (unsigned long)data;
2463 if (size > PAGE_SIZE)
2464 size = PAGE_SIZE;
2465
2466 i = size - exact_copy_from_user((void *)page, data, size);
2467 if (!i) {
b58fed8b 2468 free_page(page);
1da177e4
LT
2469 return -EFAULT;
2470 }
2471 if (i != PAGE_SIZE)
2472 memset((char *)page + i, 0, PAGE_SIZE - i);
2473 *where = page;
2474 return 0;
2475}
2476
eca6f534
VN
2477int copy_mount_string(const void __user *data, char **where)
2478{
2479 char *tmp;
2480
2481 if (!data) {
2482 *where = NULL;
2483 return 0;
2484 }
2485
2486 tmp = strndup_user(data, PAGE_SIZE);
2487 if (IS_ERR(tmp))
2488 return PTR_ERR(tmp);
2489
2490 *where = tmp;
2491 return 0;
2492}
2493
1da177e4
LT
2494/*
2495 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2496 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2497 *
2498 * data is a (void *) that can point to any structure up to
2499 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2500 * information (or be NULL).
2501 *
2502 * Pre-0.97 versions of mount() didn't have a flags word.
2503 * When the flags word was introduced its top half was required
2504 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2505 * Therefore, if this magic number is present, it carries no information
2506 * and must be discarded.
2507 */
808d4e3c
AV
2508long do_mount(const char *dev_name, const char *dir_name,
2509 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2510{
2d92ab3c 2511 struct path path;
1da177e4
LT
2512 int retval = 0;
2513 int mnt_flags = 0;
2514
2515 /* Discard magic */
2516 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2517 flags &= ~MS_MGC_MSK;
2518
2519 /* Basic sanity checks */
2520
2521 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2522 return -EINVAL;
1da177e4
LT
2523
2524 if (data_page)
2525 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2526
a27ab9f2
TH
2527 /* ... and get the mountpoint */
2528 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2529 if (retval)
2530 return retval;
2531
2532 retval = security_sb_mount(dev_name, &path,
2533 type_page, flags, data_page);
0d5cadb8
AV
2534 if (!retval && !may_mount())
2535 retval = -EPERM;
a27ab9f2
TH
2536 if (retval)
2537 goto dput_out;
2538
613cbe3d
AK
2539 /* Default to relatime unless overriden */
2540 if (!(flags & MS_NOATIME))
2541 mnt_flags |= MNT_RELATIME;
0a1c01c9 2542
1da177e4
LT
2543 /* Separate the per-mountpoint flags */
2544 if (flags & MS_NOSUID)
2545 mnt_flags |= MNT_NOSUID;
2546 if (flags & MS_NODEV)
2547 mnt_flags |= MNT_NODEV;
2548 if (flags & MS_NOEXEC)
2549 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2550 if (flags & MS_NOATIME)
2551 mnt_flags |= MNT_NOATIME;
2552 if (flags & MS_NODIRATIME)
2553 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2554 if (flags & MS_STRICTATIME)
2555 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2556 if (flags & MS_RDONLY)
2557 mnt_flags |= MNT_READONLY;
fc33a7bb 2558
ffbc6f0e
EB
2559 /* The default atime for remount is preservation */
2560 if ((flags & MS_REMOUNT) &&
2561 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2562 MS_STRICTATIME)) == 0)) {
2563 mnt_flags &= ~MNT_ATIME_MASK;
2564 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2565 }
2566
7a4dec53 2567 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2568 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2569 MS_STRICTATIME);
1da177e4 2570
1da177e4 2571 if (flags & MS_REMOUNT)
2d92ab3c 2572 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2573 data_page);
2574 else if (flags & MS_BIND)
2d92ab3c 2575 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2576 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2577 retval = do_change_type(&path, flags);
1da177e4 2578 else if (flags & MS_MOVE)
2d92ab3c 2579 retval = do_move_mount(&path, dev_name);
1da177e4 2580 else
2d92ab3c 2581 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2582 dev_name, data_page);
2583dput_out:
2d92ab3c 2584 path_put(&path);
1da177e4
LT
2585 return retval;
2586}
2587
771b1371
EB
2588static void free_mnt_ns(struct mnt_namespace *ns)
2589{
98f842e6 2590 proc_free_inum(ns->proc_inum);
771b1371
EB
2591 put_user_ns(ns->user_ns);
2592 kfree(ns);
2593}
2594
8823c079
EB
2595/*
2596 * Assign a sequence number so we can detect when we attempt to bind
2597 * mount a reference to an older mount namespace into the current
2598 * mount namespace, preventing reference counting loops. A 64bit
2599 * number incrementing at 10Ghz will take 12,427 years to wrap which
2600 * is effectively never, so we can ignore the possibility.
2601 */
2602static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2603
771b1371 2604static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2605{
2606 struct mnt_namespace *new_ns;
98f842e6 2607 int ret;
cf8d2c11
TM
2608
2609 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2610 if (!new_ns)
2611 return ERR_PTR(-ENOMEM);
98f842e6
EB
2612 ret = proc_alloc_inum(&new_ns->proc_inum);
2613 if (ret) {
2614 kfree(new_ns);
2615 return ERR_PTR(ret);
2616 }
8823c079 2617 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2618 atomic_set(&new_ns->count, 1);
2619 new_ns->root = NULL;
2620 INIT_LIST_HEAD(&new_ns->list);
2621 init_waitqueue_head(&new_ns->poll);
2622 new_ns->event = 0;
771b1371 2623 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2624 return new_ns;
2625}
2626
9559f689
AV
2627struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2628 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2629{
6b3286ed 2630 struct mnt_namespace *new_ns;
7f2da1e7 2631 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2632 struct mount *p, *q;
9559f689 2633 struct mount *old;
cb338d06 2634 struct mount *new;
7a472ef4 2635 int copy_flags;
1da177e4 2636
9559f689
AV
2637 BUG_ON(!ns);
2638
2639 if (likely(!(flags & CLONE_NEWNS))) {
2640 get_mnt_ns(ns);
2641 return ns;
2642 }
2643
2644 old = ns->root;
2645
771b1371 2646 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2647 if (IS_ERR(new_ns))
2648 return new_ns;
1da177e4 2649
97216be0 2650 namespace_lock();
1da177e4 2651 /* First pass: copy the tree topology */
4ce5d2b1 2652 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2653 if (user_ns != ns->user_ns)
132c94e3 2654 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2655 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2656 if (IS_ERR(new)) {
328e6d90 2657 namespace_unlock();
771b1371 2658 free_mnt_ns(new_ns);
be34d1a3 2659 return ERR_CAST(new);
1da177e4 2660 }
be08d6d2 2661 new_ns->root = new;
1a4eeaf2 2662 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2663
2664 /*
2665 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2666 * as belonging to new namespace. We have already acquired a private
2667 * fs_struct, so tsk->fs->lock is not needed.
2668 */
909b0a88 2669 p = old;
cb338d06 2670 q = new;
1da177e4 2671 while (p) {
143c8c91 2672 q->mnt_ns = new_ns;
9559f689
AV
2673 if (new_fs) {
2674 if (&p->mnt == new_fs->root.mnt) {
2675 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2676 rootmnt = &p->mnt;
1da177e4 2677 }
9559f689
AV
2678 if (&p->mnt == new_fs->pwd.mnt) {
2679 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2680 pwdmnt = &p->mnt;
1da177e4 2681 }
1da177e4 2682 }
909b0a88
AV
2683 p = next_mnt(p, old);
2684 q = next_mnt(q, new);
4ce5d2b1
EB
2685 if (!q)
2686 break;
2687 while (p->mnt.mnt_root != q->mnt.mnt_root)
2688 p = next_mnt(p, old);
1da177e4 2689 }
328e6d90 2690 namespace_unlock();
1da177e4 2691
1da177e4 2692 if (rootmnt)
f03c6599 2693 mntput(rootmnt);
1da177e4 2694 if (pwdmnt)
f03c6599 2695 mntput(pwdmnt);
1da177e4 2696
741a2951 2697 return new_ns;
1da177e4
LT
2698}
2699
cf8d2c11
TM
2700/**
2701 * create_mnt_ns - creates a private namespace and adds a root filesystem
2702 * @mnt: pointer to the new root filesystem mountpoint
2703 */
1a4eeaf2 2704static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2705{
771b1371 2706 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2707 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2708 struct mount *mnt = real_mount(m);
2709 mnt->mnt_ns = new_ns;
be08d6d2 2710 new_ns->root = mnt;
b1983cd8 2711 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2712 } else {
1a4eeaf2 2713 mntput(m);
cf8d2c11
TM
2714 }
2715 return new_ns;
2716}
cf8d2c11 2717
ea441d11
AV
2718struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2719{
2720 struct mnt_namespace *ns;
d31da0f0 2721 struct super_block *s;
ea441d11
AV
2722 struct path path;
2723 int err;
2724
2725 ns = create_mnt_ns(mnt);
2726 if (IS_ERR(ns))
2727 return ERR_CAST(ns);
2728
2729 err = vfs_path_lookup(mnt->mnt_root, mnt,
2730 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2731
2732 put_mnt_ns(ns);
2733
2734 if (err)
2735 return ERR_PTR(err);
2736
2737 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2738 s = path.mnt->mnt_sb;
2739 atomic_inc(&s->s_active);
ea441d11
AV
2740 mntput(path.mnt);
2741 /* lock the sucker */
d31da0f0 2742 down_write(&s->s_umount);
ea441d11
AV
2743 /* ... and return the root of (sub)tree on it */
2744 return path.dentry;
2745}
2746EXPORT_SYMBOL(mount_subtree);
2747
bdc480e3
HC
2748SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2749 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2750{
eca6f534
VN
2751 int ret;
2752 char *kernel_type;
91a27b2a 2753 struct filename *kernel_dir;
eca6f534 2754 char *kernel_dev;
1da177e4 2755 unsigned long data_page;
1da177e4 2756
eca6f534
VN
2757 ret = copy_mount_string(type, &kernel_type);
2758 if (ret < 0)
2759 goto out_type;
1da177e4 2760
eca6f534
VN
2761 kernel_dir = getname(dir_name);
2762 if (IS_ERR(kernel_dir)) {
2763 ret = PTR_ERR(kernel_dir);
2764 goto out_dir;
2765 }
1da177e4 2766
eca6f534
VN
2767 ret = copy_mount_string(dev_name, &kernel_dev);
2768 if (ret < 0)
2769 goto out_dev;
1da177e4 2770
eca6f534
VN
2771 ret = copy_mount_options(data, &data_page);
2772 if (ret < 0)
2773 goto out_data;
1da177e4 2774
91a27b2a 2775 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2776 (void *) data_page);
1da177e4 2777
eca6f534
VN
2778 free_page(data_page);
2779out_data:
2780 kfree(kernel_dev);
2781out_dev:
2782 putname(kernel_dir);
2783out_dir:
2784 kfree(kernel_type);
2785out_type:
2786 return ret;
1da177e4
LT
2787}
2788
afac7cba
AV
2789/*
2790 * Return true if path is reachable from root
2791 *
48a066e7 2792 * namespace_sem or mount_lock is held
afac7cba 2793 */
643822b4 2794bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2795 const struct path *root)
2796{
643822b4 2797 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2798 dentry = mnt->mnt_mountpoint;
0714a533 2799 mnt = mnt->mnt_parent;
afac7cba 2800 }
643822b4 2801 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2802}
2803
2804int path_is_under(struct path *path1, struct path *path2)
2805{
2806 int res;
48a066e7 2807 read_seqlock_excl(&mount_lock);
643822b4 2808 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2809 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2810 return res;
2811}
2812EXPORT_SYMBOL(path_is_under);
2813
1da177e4
LT
2814/*
2815 * pivot_root Semantics:
2816 * Moves the root file system of the current process to the directory put_old,
2817 * makes new_root as the new root file system of the current process, and sets
2818 * root/cwd of all processes which had them on the current root to new_root.
2819 *
2820 * Restrictions:
2821 * The new_root and put_old must be directories, and must not be on the
2822 * same file system as the current process root. The put_old must be
2823 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2824 * pointed to by put_old must yield the same directory as new_root. No other
2825 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2826 *
4a0d11fa
NB
2827 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2828 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2829 * in this situation.
2830 *
1da177e4
LT
2831 * Notes:
2832 * - we don't move root/cwd if they are not at the root (reason: if something
2833 * cared enough to change them, it's probably wrong to force them elsewhere)
2834 * - it's okay to pick a root that isn't the root of a file system, e.g.
2835 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2836 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2837 * first.
2838 */
3480b257
HC
2839SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2840 const char __user *, put_old)
1da177e4 2841{
2d8f3038 2842 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2843 struct mount *new_mnt, *root_mnt, *old_mnt;
2844 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2845 int error;
2846
9b40bc90 2847 if (!may_mount())
1da177e4
LT
2848 return -EPERM;
2849
2d8f3038 2850 error = user_path_dir(new_root, &new);
1da177e4
LT
2851 if (error)
2852 goto out0;
1da177e4 2853
2d8f3038 2854 error = user_path_dir(put_old, &old);
1da177e4
LT
2855 if (error)
2856 goto out1;
2857
2d8f3038 2858 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2859 if (error)
2860 goto out2;
1da177e4 2861
f7ad3c6b 2862 get_fs_root(current->fs, &root);
84d17192
AV
2863 old_mp = lock_mount(&old);
2864 error = PTR_ERR(old_mp);
2865 if (IS_ERR(old_mp))
b12cea91
AV
2866 goto out3;
2867
1da177e4 2868 error = -EINVAL;
419148da
AV
2869 new_mnt = real_mount(new.mnt);
2870 root_mnt = real_mount(root.mnt);
84d17192
AV
2871 old_mnt = real_mount(old.mnt);
2872 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2873 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2874 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2875 goto out4;
143c8c91 2876 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2877 goto out4;
5ff9d8a6
EB
2878 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2879 goto out4;
1da177e4 2880 error = -ENOENT;
f3da392e 2881 if (d_unlinked(new.dentry))
b12cea91 2882 goto out4;
1da177e4 2883 error = -EBUSY;
84d17192 2884 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2885 goto out4; /* loop, on the same file system */
1da177e4 2886 error = -EINVAL;
8c3ee42e 2887 if (root.mnt->mnt_root != root.dentry)
b12cea91 2888 goto out4; /* not a mountpoint */
676da58d 2889 if (!mnt_has_parent(root_mnt))
b12cea91 2890 goto out4; /* not attached */
84d17192 2891 root_mp = root_mnt->mnt_mp;
2d8f3038 2892 if (new.mnt->mnt_root != new.dentry)
b12cea91 2893 goto out4; /* not a mountpoint */
676da58d 2894 if (!mnt_has_parent(new_mnt))
b12cea91 2895 goto out4; /* not attached */
4ac91378 2896 /* make sure we can reach put_old from new_root */
84d17192 2897 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2898 goto out4;
84d17192 2899 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2900 lock_mount_hash();
419148da
AV
2901 detach_mnt(new_mnt, &parent_path);
2902 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2903 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2904 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2905 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2906 }
4ac91378 2907 /* mount old root on put_old */
84d17192 2908 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2909 /* mount new_root on / */
84d17192 2910 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2911 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2912 unlock_mount_hash();
2d8f3038 2913 chroot_fs_refs(&root, &new);
84d17192 2914 put_mountpoint(root_mp);
1da177e4 2915 error = 0;
b12cea91 2916out4:
84d17192 2917 unlock_mount(old_mp);
b12cea91
AV
2918 if (!error) {
2919 path_put(&root_parent);
2920 path_put(&parent_path);
2921 }
2922out3:
8c3ee42e 2923 path_put(&root);
b12cea91 2924out2:
2d8f3038 2925 path_put(&old);
1da177e4 2926out1:
2d8f3038 2927 path_put(&new);
1da177e4 2928out0:
1da177e4 2929 return error;
1da177e4
LT
2930}
2931
2932static void __init init_mount_tree(void)
2933{
2934 struct vfsmount *mnt;
6b3286ed 2935 struct mnt_namespace *ns;
ac748a09 2936 struct path root;
0c55cfc4 2937 struct file_system_type *type;
1da177e4 2938
0c55cfc4
EB
2939 type = get_fs_type("rootfs");
2940 if (!type)
2941 panic("Can't find rootfs type");
2942 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2943 put_filesystem(type);
1da177e4
LT
2944 if (IS_ERR(mnt))
2945 panic("Can't create rootfs");
b3e19d92 2946
3b22edc5
TM
2947 ns = create_mnt_ns(mnt);
2948 if (IS_ERR(ns))
1da177e4 2949 panic("Can't allocate initial namespace");
6b3286ed
KK
2950
2951 init_task.nsproxy->mnt_ns = ns;
2952 get_mnt_ns(ns);
2953
be08d6d2
AV
2954 root.mnt = mnt;
2955 root.dentry = mnt->mnt_root;
ac748a09
JB
2956
2957 set_fs_pwd(current->fs, &root);
2958 set_fs_root(current->fs, &root);
1da177e4
LT
2959}
2960
74bf17cf 2961void __init mnt_init(void)
1da177e4 2962{
13f14b4d 2963 unsigned u;
15a67dd8 2964 int err;
1da177e4 2965
7d6fec45 2966 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2967 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2968
0818bf27 2969 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 2970 sizeof(struct hlist_head),
0818bf27
AV
2971 mhash_entries, 19,
2972 0,
2973 &m_hash_shift, &m_hash_mask, 0, 0);
2974 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2975 sizeof(struct hlist_head),
2976 mphash_entries, 19,
2977 0,
2978 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2979
84d17192 2980 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2981 panic("Failed to allocate mount hash table\n");
2982
0818bf27 2983 for (u = 0; u <= m_hash_mask; u++)
38129a13 2984 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2985 for (u = 0; u <= mp_hash_mask; u++)
2986 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2987
4b93dc9b
TH
2988 kernfs_init();
2989
15a67dd8
RD
2990 err = sysfs_init();
2991 if (err)
2992 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2993 __func__, err);
00d26666
GKH
2994 fs_kobj = kobject_create_and_add("fs", NULL);
2995 if (!fs_kobj)
8e24eea7 2996 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2997 init_rootfs();
2998 init_mount_tree();
2999}
3000
616511d0 3001void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3002{
d498b25a 3003 if (!atomic_dec_and_test(&ns->count))
616511d0 3004 return;
7b00ed6f 3005 drop_collected_mounts(&ns->root->mnt);
771b1371 3006 free_mnt_ns(ns);
1da177e4 3007}
9d412a43
AV
3008
3009struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3010{
423e0ab0
TC
3011 struct vfsmount *mnt;
3012 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3013 if (!IS_ERR(mnt)) {
3014 /*
3015 * it is a longterm mount, don't release mnt until
3016 * we unmount before file sys is unregistered
3017 */
f7a99c5b 3018 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3019 }
3020 return mnt;
9d412a43
AV
3021}
3022EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3023
3024void kern_unmount(struct vfsmount *mnt)
3025{
3026 /* release long term mount so mount point can be released */
3027 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3028 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3029 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3030 mntput(mnt);
3031 }
3032}
3033EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3034
3035bool our_mnt(struct vfsmount *mnt)
3036{
143c8c91 3037 return check_mnt(real_mount(mnt));
02125a82 3038}
8823c079 3039
3151527e
EB
3040bool current_chrooted(void)
3041{
3042 /* Does the current process have a non-standard root */
3043 struct path ns_root;
3044 struct path fs_root;
3045 bool chrooted;
3046
3047 /* Find the namespace root */
3048 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3049 ns_root.dentry = ns_root.mnt->mnt_root;
3050 path_get(&ns_root);
3051 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3052 ;
3053
3054 get_fs_root(current->fs, &fs_root);
3055
3056 chrooted = !path_equal(&fs_root, &ns_root);
3057
3058 path_put(&fs_root);
3059 path_put(&ns_root);
3060
3061 return chrooted;
3062}
3063
e51db735 3064bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3065{
3066 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3067 struct mount *mnt;
e51db735 3068 bool visible = false;
87a8ebd6 3069
e51db735
EB
3070 if (unlikely(!ns))
3071 return false;
3072
44bb4385 3073 down_read(&namespace_sem);
87a8ebd6 3074 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3075 struct mount *child;
3076 if (mnt->mnt.mnt_sb->s_type != type)
3077 continue;
3078
3079 /* This mount is not fully visible if there are any child mounts
3080 * that cover anything except for empty directories.
3081 */
3082 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3083 struct inode *inode = child->mnt_mountpoint->d_inode;
3084 if (!S_ISDIR(inode->i_mode))
3085 goto next;
41301ae7 3086 if (inode->i_nlink > 2)
e51db735 3087 goto next;
87a8ebd6 3088 }
e51db735
EB
3089 visible = true;
3090 goto found;
3091 next: ;
87a8ebd6 3092 }
e51db735 3093found:
44bb4385 3094 up_read(&namespace_sem);
e51db735 3095 return visible;
87a8ebd6
EB
3096}
3097
8823c079
EB
3098static void *mntns_get(struct task_struct *task)
3099{
3100 struct mnt_namespace *ns = NULL;
3101 struct nsproxy *nsproxy;
3102
728dba3a
EB
3103 task_lock(task);
3104 nsproxy = task->nsproxy;
8823c079
EB
3105 if (nsproxy) {
3106 ns = nsproxy->mnt_ns;
3107 get_mnt_ns(ns);
3108 }
728dba3a 3109 task_unlock(task);
8823c079
EB
3110
3111 return ns;
3112}
3113
3114static void mntns_put(void *ns)
3115{
3116 put_mnt_ns(ns);
3117}
3118
3119static int mntns_install(struct nsproxy *nsproxy, void *ns)
3120{
3121 struct fs_struct *fs = current->fs;
3122 struct mnt_namespace *mnt_ns = ns;
3123 struct path root;
3124
0c55cfc4 3125 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3126 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3127 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3128 return -EPERM;
8823c079
EB
3129
3130 if (fs->users != 1)
3131 return -EINVAL;
3132
3133 get_mnt_ns(mnt_ns);
3134 put_mnt_ns(nsproxy->mnt_ns);
3135 nsproxy->mnt_ns = mnt_ns;
3136
3137 /* Find the root */
3138 root.mnt = &mnt_ns->root->mnt;
3139 root.dentry = mnt_ns->root->mnt.mnt_root;
3140 path_get(&root);
3141 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3142 ;
3143
3144 /* Update the pwd and root */
3145 set_fs_pwd(fs, &root);
3146 set_fs_root(fs, &root);
3147
3148 path_put(&root);
3149 return 0;
3150}
3151
98f842e6
EB
3152static unsigned int mntns_inum(void *ns)
3153{
3154 struct mnt_namespace *mnt_ns = ns;
3155 return mnt_ns->proc_inum;
3156}
3157
8823c079
EB
3158const struct proc_ns_operations mntns_operations = {
3159 .name = "mnt",
3160 .type = CLONE_NEWNS,
3161 .get = mntns_get,
3162 .put = mntns_put,
3163 .install = mntns_install,
98f842e6 3164 .inum = mntns_inum,
8823c079 3165};