]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
[TCP]: Kill almost unused variable pcount from sacktag
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 88int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
1da177e4
LT
108
109#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 113#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 114
4dc2665e
IJ
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
1da177e4 117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 119
e905a9ed 120/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 121 * real world.
e905a9ed 122 */
40efc6fa
SH
123static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
1da177e4 125{
463c84b9 126 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 128 unsigned int len;
1da177e4 129
e905a9ed 130 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
ff9b5e0f 135 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
9c70220b 144 len += skb->data - skb_transport_header(skb);
1da177e4
LT
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
463c84b9
ACM
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
1da177e4 159 if (len == lss) {
463c84b9 160 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
161 return;
162 }
163 }
1ef9696c
AK
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
167 }
168}
169
463c84b9 170static void tcp_incr_quickack(struct sock *sk)
1da177e4 171{
463c84b9
ACM
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
174
175 if (quickacks==0)
176 quickacks=2;
463c84b9
ACM
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
179}
180
463c84b9 181void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 182{
463c84b9
ACM
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
463c84b9 193static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 194{
463c84b9
ACM
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
197}
198
bdf1ee5d
IJ
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246}
247
1da177e4
LT
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
caa20d9a 283 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
9e412ba7 288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 289{
9e412ba7 290 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
463c84b9 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303}
304
9e412ba7 305static void tcp_grow_window(struct sock *sk,
40efc6fa 306 struct sk_buff *skb)
1da177e4 307{
9e412ba7
IJ
308 struct tcp_sock *tp = tcp_sk(sk);
309
1da177e4
LT
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
9e412ba7 322 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 326 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
327 }
328 }
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 339 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
caa20d9a 348/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
349 * established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
1da177e4 384/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 385static void tcp_clamp_window(struct sock *sk)
1da177e4 386{
9e412ba7 387 struct tcp_sock *tp = tcp_sk(sk);
6687e988 388 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 389
6687e988 390 icsk->icsk_ack.quick = 0;
1da177e4 391
326f36e9
JH
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
1da177e4 398 }
326f36e9 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
401}
402
40efc6fa
SH
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
1da177e4
LT
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
31f34269 449 * non-timestamp case, we do not smooth things out
caa20d9a 450 * else with timestamps disabled convergence takes too
1da177e4
LT
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
caa20d9a 459 /* No previous measure. */
1da177e4
LT
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
463c84b9 482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 483{
463c84b9 484 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
463c84b9 487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
e905a9ed 500
1da177e4
LT
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
e905a9ed 503
1da177e4
LT
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
e905a9ed 508
1da177e4
LT
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
6fcf9412
JH
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
e905a9ed 543
1da177e4
LT
544new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
9e412ba7 559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 560{
9e412ba7 561 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 562 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
563 u32 now;
564
463c84b9 565 inet_csk_schedule_ack(sk);
1da177e4 566
463c84b9 567 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
568
569 tcp_rcv_rtt_measure(tp);
e905a9ed 570
1da177e4
LT
571 now = tcp_time_stamp;
572
463c84b9 573 if (!icsk->icsk_ack.ato) {
1da177e4
LT
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
463c84b9
ACM
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 579 } else {
463c84b9 580 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
463c84b9
ACM
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
caa20d9a 590 /* Too long gap. Apparently sender failed to
1da177e4
LT
591 * restart window, so that we send ACKs quickly.
592 */
463c84b9 593 tcp_incr_quickack(sk);
1da177e4
LT
594 sk_stream_mem_reclaim(sk);
595 }
596 }
463c84b9 597 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
9e412ba7 602 tcp_grow_window(sk, skb);
1da177e4
LT
603}
604
05bb1fad
DM
605static u32 tcp_rto_min(struct sock *sk)
606{
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
5c127c58 610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613}
614
1da177e4
LT
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
2d2abbab 624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 625{
6687e988 626 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
627 long m = mrtt; /* RTT */
628
1da177e4
LT
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
e905a9ed 632 * This is designed to be as fast as possible
1da177e4
LT
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
31f34269 640 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
2de979bd 645 if (m == 0)
1da177e4
LT
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
05bb1fad 676 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
683 tp->rtt_seq = tp->snd_nxt;
684 }
1da177e4
LT
685}
686
687/* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
463c84b9 690static inline void tcp_set_rto(struct sock *sk)
1da177e4 691{
463c84b9 692 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 701 * ACKs in some circumstances.
1da177e4 702 */
463c84b9 703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
caa20d9a 708 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
709 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
463c84b9 715static inline void tcp_bound_rto(struct sock *sk)
1da177e4 716{
463c84b9
ACM
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
719}
720
721/* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
6687e988 736 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
737 int m;
738
6687e988 739 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 788 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813}
814
26722873
DM
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
1da177e4
LT
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
c1b4a7e6 829 if (tp->mss_cache > 1460)
1da177e4
LT
830 cwnd = 2;
831 else
c1b4a7e6 832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
40efc6fa 837/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
839{
840 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 841 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
e01f9d77 845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 846 tp->undo_marker = 0;
3cfe3baa
IJ
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858}
859
e60402d0
IJ
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866 tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending DSACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872 tp->rx_opt.sack_ok |= 4;
873}
874
1da177e4
LT
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 896 tcp_disable_fack(tp);
1da177e4
LT
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 912 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
463c84b9
ACM
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
945 }
946}
947
6687e988
ACM
948static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
1da177e4 950{
6687e988 951 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
e60402d0 958 else if (tcp_is_reno(tp))
1da177e4 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
e60402d0 960 else if (tcp_is_fack(tp))
1da177e4
LT
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971#endif
e60402d0 972 tcp_disable_fack(tp);
1da177e4
LT
973 }
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
5b3c9882
IJ
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, DSACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1da177e4 1071 */
5b3c9882
IJ
1072static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074{
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for DSACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107}
1108
1c1e87ed
IJ
1109/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 */
1113static int tcp_mark_lost_retrans(struct sock *sk, u32 lost_retrans)
1114{
1115 struct tcp_sock *tp = tcp_sk(sk);
1116 struct sk_buff *skb;
1117 int flag = 0;
1118
1119 tcp_for_write_queue(skb, sk) {
1120 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1121
1122 if (skb == tcp_send_head(sk))
1123 break;
1124 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1125 break;
1126 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1127 continue;
1128
1129 if ((TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) &&
1130 after(lost_retrans, ack_seq) &&
1131 (tcp_is_fack(tp) ||
1132 !before(lost_retrans,
1133 ack_seq + tp->reordering * tp->mss_cache))) {
1134 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1135 tp->retrans_out -= tcp_skb_pcount(skb);
1136
1137 /* clear lost hint */
1138 tp->retransmit_skb_hint = NULL;
1139
1140 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1141 tp->lost_out += tcp_skb_pcount(skb);
1142 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1143 flag |= FLAG_DATA_SACKED;
1144 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1145 }
1146 }
1147 }
1148 return flag;
1149}
5b3c9882 1150
d06e021d
DM
1151static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1152 struct tcp_sack_block_wire *sp, int num_sacks,
1153 u32 prior_snd_una)
1154{
1155 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1156 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1157 int dup_sack = 0;
1158
1159 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1160 dup_sack = 1;
e60402d0 1161 tcp_dsack_seen(tp);
d06e021d
DM
1162 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1163 } else if (num_sacks > 1) {
1164 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1165 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1166
1167 if (!after(end_seq_0, end_seq_1) &&
1168 !before(start_seq_0, start_seq_1)) {
1169 dup_sack = 1;
e60402d0 1170 tcp_dsack_seen(tp);
d06e021d
DM
1171 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1172 }
1173 }
1174
1175 /* D-SACK for already forgotten data... Do dumb counting. */
1176 if (dup_sack &&
1177 !after(end_seq_0, prior_snd_una) &&
1178 after(end_seq_0, tp->undo_marker))
1179 tp->undo_retrans--;
1180
1181 return dup_sack;
1182}
1183
1da177e4
LT
1184static int
1185tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1186{
6687e988 1187 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1188 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1189 unsigned char *ptr = (skb_transport_header(ack_skb) +
1190 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1191 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1192 struct sk_buff *cached_skb;
1da177e4
LT
1193 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1194 int reord = tp->packets_out;
1195 int prior_fackets;
1196 u32 lost_retrans = 0;
1197 int flag = 0;
7769f406 1198 int found_dup_sack = 0;
fda03fbb 1199 int cached_fack_count;
1da177e4 1200 int i;
fda03fbb 1201 int first_sack_index;
1da177e4 1202
d738cd8f 1203 if (!tp->sacked_out) {
de83c058
IJ
1204 if (WARN_ON(tp->fackets_out))
1205 tp->fackets_out = 0;
d738cd8f
IJ
1206 tp->highest_sack = tp->snd_una;
1207 }
1da177e4
LT
1208 prior_fackets = tp->fackets_out;
1209
d06e021d
DM
1210 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1211 num_sacks, prior_snd_una);
1212 if (found_dup_sack)
49ff4bb4 1213 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1214
1215 /* Eliminate too old ACKs, but take into
1216 * account more or less fresh ones, they can
1217 * contain valid SACK info.
1218 */
1219 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1220 return 0;
1221
6a438bbe
SH
1222 /* SACK fastpath:
1223 * if the only SACK change is the increase of the end_seq of
1224 * the first block then only apply that SACK block
1225 * and use retrans queue hinting otherwise slowpath */
1226 flag = 1;
6f74651a
BE
1227 for (i = 0; i < num_sacks; i++) {
1228 __be32 start_seq = sp[i].start_seq;
1229 __be32 end_seq = sp[i].end_seq;
6a438bbe 1230
6f74651a 1231 if (i == 0) {
6a438bbe
SH
1232 if (tp->recv_sack_cache[i].start_seq != start_seq)
1233 flag = 0;
1234 } else {
1235 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1236 (tp->recv_sack_cache[i].end_seq != end_seq))
1237 flag = 0;
1238 }
1239 tp->recv_sack_cache[i].start_seq = start_seq;
1240 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1241 }
8a3c3a97
BE
1242 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1243 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1244 tp->recv_sack_cache[i].start_seq = 0;
1245 tp->recv_sack_cache[i].end_seq = 0;
1246 }
6a438bbe 1247
fda03fbb 1248 first_sack_index = 0;
6a438bbe
SH
1249 if (flag)
1250 num_sacks = 1;
1251 else {
1252 int j;
1253 tp->fastpath_skb_hint = NULL;
1254
1255 /* order SACK blocks to allow in order walk of the retrans queue */
1256 for (i = num_sacks-1; i > 0; i--) {
1257 for (j = 0; j < i; j++){
1258 if (after(ntohl(sp[j].start_seq),
1259 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1260 struct tcp_sack_block_wire tmp;
1261
1262 tmp = sp[j];
1263 sp[j] = sp[j+1];
1264 sp[j+1] = tmp;
fda03fbb
BE
1265
1266 /* Track where the first SACK block goes to */
1267 if (j == first_sack_index)
1268 first_sack_index = j+1;
6a438bbe
SH
1269 }
1270
1271 }
1272 }
1273 }
1274
1275 /* clear flag as used for different purpose in following code */
1276 flag = 0;
1277
fda03fbb
BE
1278 /* Use SACK fastpath hint if valid */
1279 cached_skb = tp->fastpath_skb_hint;
1280 cached_fack_count = tp->fastpath_cnt_hint;
1281 if (!cached_skb) {
fe067e8a 1282 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1283 cached_fack_count = 0;
1284 }
1285
6a438bbe
SH
1286 for (i=0; i<num_sacks; i++, sp++) {
1287 struct sk_buff *skb;
1288 __u32 start_seq = ntohl(sp->start_seq);
1289 __u32 end_seq = ntohl(sp->end_seq);
1290 int fack_count;
7769f406 1291 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1292
18f02545
IJ
1293 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1294 if (dup_sack) {
1295 if (!tp->undo_marker)
1296 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1297 else
1298 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
93e68020
IJ
1299 } else {
1300 /* Don't count olds caused by ACK reordering */
1301 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1302 !after(end_seq, tp->snd_una))
1303 continue;
18f02545 1304 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
93e68020 1305 }
5b3c9882 1306 continue;
18f02545 1307 }
5b3c9882 1308
fda03fbb
BE
1309 skb = cached_skb;
1310 fack_count = cached_fack_count;
1da177e4
LT
1311
1312 /* Event "B" in the comment above. */
1313 if (after(end_seq, tp->high_seq))
1314 flag |= FLAG_DATA_LOST;
1315
fe067e8a 1316 tcp_for_write_queue_from(skb, sk) {
f6fb128d 1317 int in_sack;
6475be16 1318 u8 sacked;
1da177e4 1319
fe067e8a
DM
1320 if (skb == tcp_send_head(sk))
1321 break;
1322
fda03fbb
BE
1323 cached_skb = skb;
1324 cached_fack_count = fack_count;
1325 if (i == first_sack_index) {
1326 tp->fastpath_skb_hint = skb;
1327 tp->fastpath_cnt_hint = fack_count;
1328 }
6a438bbe 1329
1da177e4
LT
1330 /* The retransmission queue is always in order, so
1331 * we can short-circuit the walk early.
1332 */
6475be16 1333 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1334 break;
1335
3c05d92e
HX
1336 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1337 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1338
f6fb128d 1339 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
3c05d92e 1340 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1341 unsigned int pkt_len;
1342
3c05d92e
HX
1343 in_sack = !after(start_seq,
1344 TCP_SKB_CB(skb)->seq);
1345
1346 if (!in_sack)
6475be16
DM
1347 pkt_len = (start_seq -
1348 TCP_SKB_CB(skb)->seq);
1349 else
1350 pkt_len = (end_seq -
1351 TCP_SKB_CB(skb)->seq);
7967168c 1352 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16 1353 break;
6475be16
DM
1354 }
1355
f6fb128d 1356 fack_count += tcp_skb_pcount(skb);
1da177e4 1357
6475be16
DM
1358 sacked = TCP_SKB_CB(skb)->sacked;
1359
1da177e4
LT
1360 /* Account D-SACK for retransmitted packet. */
1361 if ((dup_sack && in_sack) &&
1362 (sacked & TCPCB_RETRANS) &&
1363 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1364 tp->undo_retrans--;
1365
1366 /* The frame is ACKed. */
1367 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1368 if (sacked&TCPCB_RETRANS) {
1369 if ((dup_sack && in_sack) &&
1370 (sacked&TCPCB_SACKED_ACKED))
1371 reord = min(fack_count, reord);
1372 } else {
1373 /* If it was in a hole, we detected reordering. */
1374 if (fack_count < prior_fackets &&
1375 !(sacked&TCPCB_SACKED_ACKED))
1376 reord = min(fack_count, reord);
1377 }
1378
1379 /* Nothing to do; acked frame is about to be dropped. */
1380 continue;
1381 }
1382
1383 if ((sacked&TCPCB_SACKED_RETRANS) &&
1384 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1385 (!lost_retrans || after(end_seq, lost_retrans)))
1386 lost_retrans = end_seq;
1387
1388 if (!in_sack)
1389 continue;
1390
1391 if (!(sacked&TCPCB_SACKED_ACKED)) {
1392 if (sacked & TCPCB_SACKED_RETRANS) {
1393 /* If the segment is not tagged as lost,
1394 * we do not clear RETRANS, believing
1395 * that retransmission is still in flight.
1396 */
1397 if (sacked & TCPCB_LOST) {
1398 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1399 tp->lost_out -= tcp_skb_pcount(skb);
1400 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1401
1402 /* clear lost hint */
1403 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1404 }
1405 } else {
1406 /* New sack for not retransmitted frame,
1407 * which was in hole. It is reordering.
1408 */
1409 if (!(sacked & TCPCB_RETRANS) &&
1410 fack_count < prior_fackets)
1411 reord = min(fack_count, reord);
1412
1413 if (sacked & TCPCB_LOST) {
1414 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1415 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1416
1417 /* clear lost hint */
1418 tp->retransmit_skb_hint = NULL;
1da177e4 1419 }
4dc2665e
IJ
1420 /* SACK enhanced F-RTO detection.
1421 * Set flag if and only if non-rexmitted
1422 * segments below frto_highmark are
1423 * SACKed (RFC4138; Appendix B).
1424 * Clearing correct due to in-order walk
1425 */
1426 if (after(end_seq, tp->frto_highmark)) {
1427 flag &= ~FLAG_ONLY_ORIG_SACKED;
1428 } else {
1429 if (!(sacked & TCPCB_RETRANS))
1430 flag |= FLAG_ONLY_ORIG_SACKED;
1431 }
1da177e4
LT
1432 }
1433
1434 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1435 flag |= FLAG_DATA_SACKED;
1436 tp->sacked_out += tcp_skb_pcount(skb);
1437
1438 if (fack_count > tp->fackets_out)
1439 tp->fackets_out = fack_count;
d738cd8f
IJ
1440
1441 if (after(TCP_SKB_CB(skb)->seq,
1442 tp->highest_sack))
1443 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1444 } else {
1445 if (dup_sack && (sacked&TCPCB_RETRANS))
1446 reord = min(fack_count, reord);
1447 }
1448
1449 /* D-SACK. We can detect redundant retransmission
1450 * in S|R and plain R frames and clear it.
1451 * undo_retrans is decreased above, L|R frames
1452 * are accounted above as well.
1453 */
1454 if (dup_sack &&
1455 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1456 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1457 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1458 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1459 }
1460 }
1461 }
1462
1c1e87ed
IJ
1463 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery)
1464 flag |= tcp_mark_lost_retrans(sk, lost_retrans);
1da177e4 1465
86426c22
IJ
1466 tcp_verify_left_out(tp);
1467
288035f9 1468 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1469 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1470 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1471
1472#if FASTRETRANS_DEBUG > 0
1473 BUG_TRAP((int)tp->sacked_out >= 0);
1474 BUG_TRAP((int)tp->lost_out >= 0);
1475 BUG_TRAP((int)tp->retrans_out >= 0);
1476 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1477#endif
1478 return flag;
1479}
1480
95eacd27
IJ
1481/* If we receive more dupacks than we expected counting segments
1482 * in assumption of absent reordering, interpret this as reordering.
1483 * The only another reason could be bug in receiver TCP.
30935cf4 1484 */
4ddf6676
IJ
1485static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1486{
1487 struct tcp_sock *tp = tcp_sk(sk);
1488 u32 holes;
1489
1490 holes = max(tp->lost_out, 1U);
1491 holes = min(holes, tp->packets_out);
1492
1493 if ((tp->sacked_out + holes) > tp->packets_out) {
1494 tp->sacked_out = tp->packets_out - holes;
1495 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1496 }
1497}
1498
1499/* Emulate SACKs for SACKless connection: account for a new dupack. */
1500
1501static void tcp_add_reno_sack(struct sock *sk)
1502{
1503 struct tcp_sock *tp = tcp_sk(sk);
1504 tp->sacked_out++;
1505 tcp_check_reno_reordering(sk, 0);
005903bc 1506 tcp_verify_left_out(tp);
4ddf6676
IJ
1507}
1508
1509/* Account for ACK, ACKing some data in Reno Recovery phase. */
1510
1511static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1512{
1513 struct tcp_sock *tp = tcp_sk(sk);
1514
1515 if (acked > 0) {
1516 /* One ACK acked hole. The rest eat duplicate ACKs. */
1517 if (acked-1 >= tp->sacked_out)
1518 tp->sacked_out = 0;
1519 else
1520 tp->sacked_out -= acked-1;
1521 }
1522 tcp_check_reno_reordering(sk, acked);
005903bc 1523 tcp_verify_left_out(tp);
4ddf6676
IJ
1524}
1525
1526static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1527{
1528 tp->sacked_out = 0;
4ddf6676
IJ
1529}
1530
95eacd27
IJ
1531/* F-RTO can only be used if TCP has never retransmitted anything other than
1532 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1533 */
46d0de4e 1534int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1535{
1536 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1537 struct sk_buff *skb;
1538
575ee714 1539 if (!sysctl_tcp_frto)
46d0de4e 1540 return 0;
bdaae17d 1541
4dc2665e
IJ
1542 if (IsSackFrto())
1543 return 1;
1544
46d0de4e
IJ
1545 /* Avoid expensive walking of rexmit queue if possible */
1546 if (tp->retrans_out > 1)
1547 return 0;
1548
fe067e8a
DM
1549 skb = tcp_write_queue_head(sk);
1550 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1551 tcp_for_write_queue_from(skb, sk) {
1552 if (skb == tcp_send_head(sk))
1553 break;
46d0de4e
IJ
1554 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1555 return 0;
1556 /* Short-circuit when first non-SACKed skb has been checked */
1557 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1558 break;
1559 }
1560 return 1;
bdaae17d
IJ
1561}
1562
30935cf4
IJ
1563/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1564 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1565 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1566 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1567 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1568 * bits are handled if the Loss state is really to be entered (in
1569 * tcp_enter_frto_loss).
7487c48c
IJ
1570 *
1571 * Do like tcp_enter_loss() would; when RTO expires the second time it
1572 * does:
1573 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1574 */
1575void tcp_enter_frto(struct sock *sk)
1576{
6687e988 1577 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1578 struct tcp_sock *tp = tcp_sk(sk);
1579 struct sk_buff *skb;
1580
7487c48c 1581 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1582 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1583 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1584 !icsk->icsk_retransmits)) {
6687e988 1585 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1586 /* Our state is too optimistic in ssthresh() call because cwnd
1587 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1588 * recovery has not yet completed. Pattern would be this: RTO,
1589 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1590 * up here twice).
1591 * RFC4138 should be more specific on what to do, even though
1592 * RTO is quite unlikely to occur after the first Cumulative ACK
1593 * due to back-off and complexity of triggering events ...
1594 */
1595 if (tp->frto_counter) {
1596 u32 stored_cwnd;
1597 stored_cwnd = tp->snd_cwnd;
1598 tp->snd_cwnd = 2;
1599 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1600 tp->snd_cwnd = stored_cwnd;
1601 } else {
1602 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1603 }
1604 /* ... in theory, cong.control module could do "any tricks" in
1605 * ssthresh(), which means that ca_state, lost bits and lost_out
1606 * counter would have to be faked before the call occurs. We
1607 * consider that too expensive, unlikely and hacky, so modules
1608 * using these in ssthresh() must deal these incompatibility
1609 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1610 */
6687e988 1611 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1612 }
1613
1da177e4
LT
1614 tp->undo_marker = tp->snd_una;
1615 tp->undo_retrans = 0;
1616
fe067e8a 1617 skb = tcp_write_queue_head(sk);
009a2e3e
IJ
1618 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1619 tp->undo_marker = 0;
d1a54c6a 1620 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1621 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1622 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1623 }
005903bc 1624 tcp_verify_left_out(tp);
1da177e4 1625
4dc2665e
IJ
1626 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1627 * The last condition is necessary at least in tp->frto_counter case.
1628 */
1629 if (IsSackFrto() && (tp->frto_counter ||
1630 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1631 after(tp->high_seq, tp->snd_una)) {
1632 tp->frto_highmark = tp->high_seq;
1633 } else {
1634 tp->frto_highmark = tp->snd_nxt;
1635 }
7b0eb22b
IJ
1636 tcp_set_ca_state(sk, TCP_CA_Disorder);
1637 tp->high_seq = tp->snd_nxt;
7487c48c 1638 tp->frto_counter = 1;
1da177e4
LT
1639}
1640
1641/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1642 * which indicates that we should follow the traditional RTO recovery,
1643 * i.e. mark everything lost and do go-back-N retransmission.
1644 */
d1a54c6a 1645static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1646{
1647 struct tcp_sock *tp = tcp_sk(sk);
1648 struct sk_buff *skb;
1da177e4 1649
1da177e4 1650 tp->lost_out = 0;
d1a54c6a 1651 tp->retrans_out = 0;
e60402d0 1652 if (tcp_is_reno(tp))
9bff40fd 1653 tcp_reset_reno_sack(tp);
1da177e4 1654
fe067e8a
DM
1655 tcp_for_write_queue(skb, sk) {
1656 if (skb == tcp_send_head(sk))
1657 break;
d1a54c6a
IJ
1658 /*
1659 * Count the retransmission made on RTO correctly (only when
1660 * waiting for the first ACK and did not get it)...
1661 */
1662 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1663 /* For some reason this R-bit might get cleared? */
1664 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1665 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1666 /* ...enter this if branch just for the first segment */
1667 flag |= FLAG_DATA_ACKED;
1668 } else {
009a2e3e
IJ
1669 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1670 tp->undo_marker = 0;
d1a54c6a
IJ
1671 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1672 }
1da177e4 1673
9bff40fd
IJ
1674 /* Don't lost mark skbs that were fwd transmitted after RTO */
1675 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1676 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1677 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1678 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1679 }
1680 }
005903bc 1681 tcp_verify_left_out(tp);
1da177e4 1682
95c4922b 1683 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1684 tp->snd_cwnd_cnt = 0;
1685 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4 1686 tp->frto_counter = 0;
16e90681 1687 tp->bytes_acked = 0;
1da177e4
LT
1688
1689 tp->reordering = min_t(unsigned int, tp->reordering,
1690 sysctl_tcp_reordering);
6687e988 1691 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1692 tp->high_seq = tp->frto_highmark;
1693 TCP_ECN_queue_cwr(tp);
6a438bbe 1694
b7689205 1695 tcp_clear_retrans_hints_partial(tp);
1da177e4
LT
1696}
1697
1698void tcp_clear_retrans(struct tcp_sock *tp)
1699{
1da177e4
LT
1700 tp->retrans_out = 0;
1701
1702 tp->fackets_out = 0;
1703 tp->sacked_out = 0;
1704 tp->lost_out = 0;
1705
1706 tp->undo_marker = 0;
1707 tp->undo_retrans = 0;
1708}
1709
1710/* Enter Loss state. If "how" is not zero, forget all SACK information
1711 * and reset tags completely, otherwise preserve SACKs. If receiver
1712 * dropped its ofo queue, we will know this due to reneging detection.
1713 */
1714void tcp_enter_loss(struct sock *sk, int how)
1715{
6687e988 1716 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1717 struct tcp_sock *tp = tcp_sk(sk);
1718 struct sk_buff *skb;
1719 int cnt = 0;
1720
1721 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1722 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1723 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1724 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1725 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1726 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1727 }
1728 tp->snd_cwnd = 1;
1729 tp->snd_cwnd_cnt = 0;
1730 tp->snd_cwnd_stamp = tcp_time_stamp;
1731
9772efb9 1732 tp->bytes_acked = 0;
1da177e4
LT
1733 tcp_clear_retrans(tp);
1734
b7689205
IJ
1735 if (!how) {
1736 /* Push undo marker, if it was plain RTO and nothing
1737 * was retransmitted. */
1da177e4 1738 tp->undo_marker = tp->snd_una;
b7689205
IJ
1739 tcp_clear_retrans_hints_partial(tp);
1740 } else {
1741 tcp_clear_all_retrans_hints(tp);
1742 }
1da177e4 1743
fe067e8a
DM
1744 tcp_for_write_queue(skb, sk) {
1745 if (skb == tcp_send_head(sk))
1746 break;
1da177e4
LT
1747 cnt += tcp_skb_pcount(skb);
1748 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1749 tp->undo_marker = 0;
1750 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1751 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1752 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1753 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1754 tp->lost_out += tcp_skb_pcount(skb);
1755 } else {
1756 tp->sacked_out += tcp_skb_pcount(skb);
1757 tp->fackets_out = cnt;
1758 }
1759 }
005903bc 1760 tcp_verify_left_out(tp);
1da177e4
LT
1761
1762 tp->reordering = min_t(unsigned int, tp->reordering,
1763 sysctl_tcp_reordering);
6687e988 1764 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1765 tp->high_seq = tp->snd_nxt;
1766 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1767 /* Abort FRTO algorithm if one is in progress */
1768 tp->frto_counter = 0;
1da177e4
LT
1769}
1770
463c84b9 1771static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1772{
1773 struct sk_buff *skb;
1774
1775 /* If ACK arrived pointing to a remembered SACK,
1776 * it means that our remembered SACKs do not reflect
1777 * real state of receiver i.e.
1778 * receiver _host_ is heavily congested (or buggy).
1779 * Do processing similar to RTO timeout.
1780 */
fe067e8a 1781 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1782 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1783 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1784 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1785
1786 tcp_enter_loss(sk, 1);
6687e988 1787 icsk->icsk_retransmits++;
fe067e8a 1788 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1789 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1790 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1791 return 1;
1792 }
1793 return 0;
1794}
1795
1796static inline int tcp_fackets_out(struct tcp_sock *tp)
1797{
e60402d0 1798 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1da177e4
LT
1799}
1800
463c84b9 1801static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1802{
463c84b9 1803 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1804}
1805
9e412ba7 1806static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1807{
9e412ba7
IJ
1808 struct tcp_sock *tp = tcp_sk(sk);
1809
1da177e4 1810 return tp->packets_out &&
fe067e8a 1811 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1812}
1813
1814/* Linux NewReno/SACK/FACK/ECN state machine.
1815 * --------------------------------------
1816 *
1817 * "Open" Normal state, no dubious events, fast path.
1818 * "Disorder" In all the respects it is "Open",
1819 * but requires a bit more attention. It is entered when
1820 * we see some SACKs or dupacks. It is split of "Open"
1821 * mainly to move some processing from fast path to slow one.
1822 * "CWR" CWND was reduced due to some Congestion Notification event.
1823 * It can be ECN, ICMP source quench, local device congestion.
1824 * "Recovery" CWND was reduced, we are fast-retransmitting.
1825 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1826 *
1827 * tcp_fastretrans_alert() is entered:
1828 * - each incoming ACK, if state is not "Open"
1829 * - when arrived ACK is unusual, namely:
1830 * * SACK
1831 * * Duplicate ACK.
1832 * * ECN ECE.
1833 *
1834 * Counting packets in flight is pretty simple.
1835 *
1836 * in_flight = packets_out - left_out + retrans_out
1837 *
1838 * packets_out is SND.NXT-SND.UNA counted in packets.
1839 *
1840 * retrans_out is number of retransmitted segments.
1841 *
1842 * left_out is number of segments left network, but not ACKed yet.
1843 *
1844 * left_out = sacked_out + lost_out
1845 *
1846 * sacked_out: Packets, which arrived to receiver out of order
1847 * and hence not ACKed. With SACKs this number is simply
1848 * amount of SACKed data. Even without SACKs
1849 * it is easy to give pretty reliable estimate of this number,
1850 * counting duplicate ACKs.
1851 *
1852 * lost_out: Packets lost by network. TCP has no explicit
1853 * "loss notification" feedback from network (for now).
1854 * It means that this number can be only _guessed_.
1855 * Actually, it is the heuristics to predict lossage that
1856 * distinguishes different algorithms.
1857 *
1858 * F.e. after RTO, when all the queue is considered as lost,
1859 * lost_out = packets_out and in_flight = retrans_out.
1860 *
1861 * Essentially, we have now two algorithms counting
1862 * lost packets.
1863 *
1864 * FACK: It is the simplest heuristics. As soon as we decided
1865 * that something is lost, we decide that _all_ not SACKed
1866 * packets until the most forward SACK are lost. I.e.
1867 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1868 * It is absolutely correct estimate, if network does not reorder
1869 * packets. And it loses any connection to reality when reordering
1870 * takes place. We use FACK by default until reordering
1871 * is suspected on the path to this destination.
1872 *
1873 * NewReno: when Recovery is entered, we assume that one segment
1874 * is lost (classic Reno). While we are in Recovery and
1875 * a partial ACK arrives, we assume that one more packet
1876 * is lost (NewReno). This heuristics are the same in NewReno
1877 * and SACK.
1878 *
1879 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1880 * deflation etc. CWND is real congestion window, never inflated, changes
1881 * only according to classic VJ rules.
1882 *
1883 * Really tricky (and requiring careful tuning) part of algorithm
1884 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1885 * The first determines the moment _when_ we should reduce CWND and,
1886 * hence, slow down forward transmission. In fact, it determines the moment
1887 * when we decide that hole is caused by loss, rather than by a reorder.
1888 *
1889 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1890 * holes, caused by lost packets.
1891 *
1892 * And the most logically complicated part of algorithm is undo
1893 * heuristics. We detect false retransmits due to both too early
1894 * fast retransmit (reordering) and underestimated RTO, analyzing
1895 * timestamps and D-SACKs. When we detect that some segments were
1896 * retransmitted by mistake and CWND reduction was wrong, we undo
1897 * window reduction and abort recovery phase. This logic is hidden
1898 * inside several functions named tcp_try_undo_<something>.
1899 */
1900
1901/* This function decides, when we should leave Disordered state
1902 * and enter Recovery phase, reducing congestion window.
1903 *
1904 * Main question: may we further continue forward transmission
1905 * with the same cwnd?
1906 */
9e412ba7 1907static int tcp_time_to_recover(struct sock *sk)
1da177e4 1908{
9e412ba7 1909 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1910 __u32 packets_out;
1911
52c63f1e
IJ
1912 /* Do not perform any recovery during FRTO algorithm */
1913 if (tp->frto_counter)
1914 return 0;
1915
1da177e4
LT
1916 /* Trick#1: The loss is proven. */
1917 if (tp->lost_out)
1918 return 1;
1919
1920 /* Not-A-Trick#2 : Classic rule... */
1921 if (tcp_fackets_out(tp) > tp->reordering)
1922 return 1;
1923
1924 /* Trick#3 : when we use RFC2988 timer restart, fast
1925 * retransmit can be triggered by timeout of queue head.
1926 */
9e412ba7 1927 if (tcp_head_timedout(sk))
1da177e4
LT
1928 return 1;
1929
1930 /* Trick#4: It is still not OK... But will it be useful to delay
1931 * recovery more?
1932 */
1933 packets_out = tp->packets_out;
1934 if (packets_out <= tp->reordering &&
1935 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1936 !tcp_may_send_now(sk)) {
1da177e4
LT
1937 /* We have nothing to send. This connection is limited
1938 * either by receiver window or by application.
1939 */
1940 return 1;
1941 }
1942
1943 return 0;
1944}
1945
d8f4f223
IJ
1946/* RFC: This is from the original, I doubt that this is necessary at all:
1947 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1948 * retransmitted past LOST markings in the first place? I'm not fully sure
1949 * about undo and end of connection cases, which can cause R without L?
1950 */
1951static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1952 struct sk_buff *skb)
1953{
1954 if ((tp->retransmit_skb_hint != NULL) &&
1955 before(TCP_SKB_CB(skb)->seq,
1956 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1957 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1958}
1959
1da177e4 1960/* Mark head of queue up as lost. */
9e412ba7 1961static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1962 int packets, u32 high_seq)
1963{
9e412ba7 1964 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1965 struct sk_buff *skb;
6a438bbe 1966 int cnt;
1da177e4 1967
6a438bbe
SH
1968 BUG_TRAP(packets <= tp->packets_out);
1969 if (tp->lost_skb_hint) {
1970 skb = tp->lost_skb_hint;
1971 cnt = tp->lost_cnt_hint;
1972 } else {
fe067e8a 1973 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1974 cnt = 0;
1975 }
1da177e4 1976
fe067e8a
DM
1977 tcp_for_write_queue_from(skb, sk) {
1978 if (skb == tcp_send_head(sk))
1979 break;
6a438bbe
SH
1980 /* TODO: do this better */
1981 /* this is not the most efficient way to do this... */
1982 tp->lost_skb_hint = skb;
1983 tp->lost_cnt_hint = cnt;
1984 cnt += tcp_skb_pcount(skb);
1985 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4 1986 break;
3eec0047 1987 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
1da177e4
LT
1988 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1989 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1990 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1991 }
1992 }
005903bc 1993 tcp_verify_left_out(tp);
1da177e4
LT
1994}
1995
1996/* Account newly detected lost packet(s) */
1997
9e412ba7 1998static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1999{
9e412ba7
IJ
2000 struct tcp_sock *tp = tcp_sk(sk);
2001
e60402d0 2002 if (tcp_is_fack(tp)) {
1da177e4
LT
2003 int lost = tp->fackets_out - tp->reordering;
2004 if (lost <= 0)
2005 lost = 1;
9e412ba7 2006 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 2007 } else {
9e412ba7 2008 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
2009 }
2010
2011 /* New heuristics: it is possible only after we switched
2012 * to restart timer each time when something is ACKed.
2013 * Hence, we can detect timed out packets during fast
2014 * retransmit without falling to slow start.
2015 */
e60402d0 2016 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
2017 struct sk_buff *skb;
2018
6a438bbe 2019 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 2020 : tcp_write_queue_head(sk);
6a438bbe 2021
fe067e8a
DM
2022 tcp_for_write_queue_from(skb, sk) {
2023 if (skb == tcp_send_head(sk))
2024 break;
6a438bbe
SH
2025 if (!tcp_skb_timedout(sk, skb))
2026 break;
2027
2028 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
2029 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2030 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 2031 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
2032 }
2033 }
6a438bbe
SH
2034
2035 tp->scoreboard_skb_hint = skb;
2036
005903bc 2037 tcp_verify_left_out(tp);
1da177e4
LT
2038 }
2039}
2040
2041/* CWND moderation, preventing bursts due to too big ACKs
2042 * in dubious situations.
2043 */
2044static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2045{
2046 tp->snd_cwnd = min(tp->snd_cwnd,
2047 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2048 tp->snd_cwnd_stamp = tcp_time_stamp;
2049}
2050
72dc5b92
SH
2051/* Lower bound on congestion window is slow start threshold
2052 * unless congestion avoidance choice decides to overide it.
2053 */
2054static inline u32 tcp_cwnd_min(const struct sock *sk)
2055{
2056 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2057
2058 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2059}
2060
1da177e4 2061/* Decrease cwnd each second ack. */
1e757f99 2062static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 2063{
6687e988 2064 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2065 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 2066
49ff4bb4 2067 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
e60402d0 2068 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
1e757f99
IJ
2069 tp->snd_cwnd_cnt = decr&1;
2070 decr >>= 1;
1da177e4 2071
1e757f99
IJ
2072 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2073 tp->snd_cwnd -= decr;
1da177e4 2074
1e757f99
IJ
2075 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2076 tp->snd_cwnd_stamp = tcp_time_stamp;
2077 }
1da177e4
LT
2078}
2079
2080/* Nothing was retransmitted or returned timestamp is less
2081 * than timestamp of the first retransmission.
2082 */
2083static inline int tcp_packet_delayed(struct tcp_sock *tp)
2084{
2085 return !tp->retrans_stamp ||
2086 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2087 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2088}
2089
2090/* Undo procedures. */
2091
2092#if FASTRETRANS_DEBUG > 1
9e412ba7 2093static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 2094{
9e412ba7 2095 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2096 struct inet_sock *inet = inet_sk(sk);
9e412ba7 2097
1da177e4
LT
2098 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2099 msg,
2100 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 2101 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
2102 tp->snd_ssthresh, tp->prior_ssthresh,
2103 tp->packets_out);
2104}
2105#else
2106#define DBGUNDO(x...) do { } while (0)
2107#endif
2108
6687e988 2109static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 2110{
6687e988
ACM
2111 struct tcp_sock *tp = tcp_sk(sk);
2112
1da177e4 2113 if (tp->prior_ssthresh) {
6687e988
ACM
2114 const struct inet_connection_sock *icsk = inet_csk(sk);
2115
2116 if (icsk->icsk_ca_ops->undo_cwnd)
2117 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
2118 else
2119 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2120
2121 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2122 tp->snd_ssthresh = tp->prior_ssthresh;
2123 TCP_ECN_withdraw_cwr(tp);
2124 }
2125 } else {
2126 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2127 }
2128 tcp_moderate_cwnd(tp);
2129 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2130
2131 /* There is something screwy going on with the retrans hints after
2132 an undo */
5af4ec23 2133 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2134}
2135
2136static inline int tcp_may_undo(struct tcp_sock *tp)
2137{
2138 return tp->undo_marker &&
2139 (!tp->undo_retrans || tcp_packet_delayed(tp));
2140}
2141
2142/* People celebrate: "We love our President!" */
9e412ba7 2143static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2144{
9e412ba7
IJ
2145 struct tcp_sock *tp = tcp_sk(sk);
2146
1da177e4
LT
2147 if (tcp_may_undo(tp)) {
2148 /* Happy end! We did not retransmit anything
2149 * or our original transmission succeeded.
2150 */
9e412ba7 2151 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2152 tcp_undo_cwr(sk, 1);
2153 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2154 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2155 else
2156 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2157 tp->undo_marker = 0;
2158 }
e60402d0 2159 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
1da177e4
LT
2160 /* Hold old state until something *above* high_seq
2161 * is ACKed. For Reno it is MUST to prevent false
2162 * fast retransmits (RFC2582). SACK TCP is safe. */
2163 tcp_moderate_cwnd(tp);
2164 return 1;
2165 }
6687e988 2166 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2167 return 0;
2168}
2169
2170/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2171static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2172{
9e412ba7
IJ
2173 struct tcp_sock *tp = tcp_sk(sk);
2174
1da177e4 2175 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2176 DBGUNDO(sk, "D-SACK");
6687e988 2177 tcp_undo_cwr(sk, 1);
1da177e4
LT
2178 tp->undo_marker = 0;
2179 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2180 }
2181}
2182
2183/* Undo during fast recovery after partial ACK. */
2184
9e412ba7 2185static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2186{
9e412ba7 2187 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2188 /* Partial ACK arrived. Force Hoe's retransmit. */
e60402d0 2189 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
1da177e4
LT
2190
2191 if (tcp_may_undo(tp)) {
2192 /* Plain luck! Hole if filled with delayed
2193 * packet, rather than with a retransmit.
2194 */
2195 if (tp->retrans_out == 0)
2196 tp->retrans_stamp = 0;
2197
6687e988 2198 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2199
9e412ba7 2200 DBGUNDO(sk, "Hoe");
6687e988 2201 tcp_undo_cwr(sk, 0);
1da177e4
LT
2202 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2203
2204 /* So... Do not make Hoe's retransmit yet.
2205 * If the first packet was delayed, the rest
2206 * ones are most probably delayed as well.
2207 */
2208 failed = 0;
2209 }
2210 return failed;
2211}
2212
2213/* Undo during loss recovery after partial ACK. */
9e412ba7 2214static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2215{
9e412ba7
IJ
2216 struct tcp_sock *tp = tcp_sk(sk);
2217
1da177e4
LT
2218 if (tcp_may_undo(tp)) {
2219 struct sk_buff *skb;
fe067e8a
DM
2220 tcp_for_write_queue(skb, sk) {
2221 if (skb == tcp_send_head(sk))
2222 break;
1da177e4
LT
2223 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2224 }
6a438bbe 2225
5af4ec23 2226 tcp_clear_all_retrans_hints(tp);
6a438bbe 2227
9e412ba7 2228 DBGUNDO(sk, "partial loss");
1da177e4 2229 tp->lost_out = 0;
6687e988 2230 tcp_undo_cwr(sk, 1);
1da177e4 2231 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2232 inet_csk(sk)->icsk_retransmits = 0;
1da177e4 2233 tp->undo_marker = 0;
e60402d0 2234 if (tcp_is_sack(tp))
6687e988 2235 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2236 return 1;
2237 }
2238 return 0;
2239}
2240
6687e988 2241static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2242{
6687e988 2243 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2244 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2245 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2246 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2247}
2248
9e412ba7 2249static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2250{
9e412ba7
IJ
2251 struct tcp_sock *tp = tcp_sk(sk);
2252
86426c22
IJ
2253 tcp_verify_left_out(tp);
2254
1da177e4
LT
2255 if (tp->retrans_out == 0)
2256 tp->retrans_stamp = 0;
2257
2258 if (flag&FLAG_ECE)
3cfe3baa 2259 tcp_enter_cwr(sk, 1);
1da177e4 2260
6687e988 2261 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2262 int state = TCP_CA_Open;
2263
d02596e3 2264 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2265 state = TCP_CA_Disorder;
2266
6687e988
ACM
2267 if (inet_csk(sk)->icsk_ca_state != state) {
2268 tcp_set_ca_state(sk, state);
1da177e4
LT
2269 tp->high_seq = tp->snd_nxt;
2270 }
2271 tcp_moderate_cwnd(tp);
2272 } else {
1e757f99 2273 tcp_cwnd_down(sk, flag);
1da177e4
LT
2274 }
2275}
2276
5d424d5a
JH
2277static void tcp_mtup_probe_failed(struct sock *sk)
2278{
2279 struct inet_connection_sock *icsk = inet_csk(sk);
2280
2281 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2282 icsk->icsk_mtup.probe_size = 0;
2283}
2284
2285static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2286{
2287 struct tcp_sock *tp = tcp_sk(sk);
2288 struct inet_connection_sock *icsk = inet_csk(sk);
2289
2290 /* FIXME: breaks with very large cwnd */
2291 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2292 tp->snd_cwnd = tp->snd_cwnd *
2293 tcp_mss_to_mtu(sk, tp->mss_cache) /
2294 icsk->icsk_mtup.probe_size;
2295 tp->snd_cwnd_cnt = 0;
2296 tp->snd_cwnd_stamp = tcp_time_stamp;
2297 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2298
2299 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2300 icsk->icsk_mtup.probe_size = 0;
2301 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2302}
2303
2304
1da177e4
LT
2305/* Process an event, which can update packets-in-flight not trivially.
2306 * Main goal of this function is to calculate new estimate for left_out,
2307 * taking into account both packets sitting in receiver's buffer and
2308 * packets lost by network.
2309 *
2310 * Besides that it does CWND reduction, when packet loss is detected
2311 * and changes state of machine.
2312 *
2313 * It does _not_ decide what to send, it is made in function
2314 * tcp_xmit_retransmit_queue().
2315 */
2316static void
1b6d427b 2317tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2318{
6687e988 2319 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2320 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2321 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2322 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2323 (tp->fackets_out > tp->reordering));
1da177e4
LT
2324
2325 /* Some technical things:
2326 * 1. Reno does not count dupacks (sacked_out) automatically. */
2327 if (!tp->packets_out)
2328 tp->sacked_out = 0;
91fed7a1
IJ
2329
2330 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
1da177e4
LT
2331 tp->fackets_out = 0;
2332
e905a9ed 2333 /* Now state machine starts.
1da177e4
LT
2334 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2335 if (flag&FLAG_ECE)
2336 tp->prior_ssthresh = 0;
2337
2338 /* B. In all the states check for reneging SACKs. */
463c84b9 2339 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2340 return;
2341
2342 /* C. Process data loss notification, provided it is valid. */
2343 if ((flag&FLAG_DATA_LOST) &&
2344 before(tp->snd_una, tp->high_seq) &&
6687e988 2345 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2346 tp->fackets_out > tp->reordering) {
9e412ba7 2347 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2348 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2349 }
2350
005903bc
IJ
2351 /* D. Check consistency of the current state. */
2352 tcp_verify_left_out(tp);
1da177e4
LT
2353
2354 /* E. Check state exit conditions. State can be terminated
2355 * when high_seq is ACKed. */
6687e988 2356 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2357 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2358 tp->retrans_stamp = 0;
2359 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2360 switch (icsk->icsk_ca_state) {
1da177e4 2361 case TCP_CA_Loss:
6687e988 2362 icsk->icsk_retransmits = 0;
9e412ba7 2363 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2364 return;
2365 break;
2366
2367 case TCP_CA_CWR:
2368 /* CWR is to be held something *above* high_seq
2369 * is ACKed for CWR bit to reach receiver. */
2370 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2371 tcp_complete_cwr(sk);
2372 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2373 }
2374 break;
2375
2376 case TCP_CA_Disorder:
9e412ba7 2377 tcp_try_undo_dsack(sk);
1da177e4
LT
2378 if (!tp->undo_marker ||
2379 /* For SACK case do not Open to allow to undo
2380 * catching for all duplicate ACKs. */
e60402d0 2381 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
1da177e4 2382 tp->undo_marker = 0;
6687e988 2383 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2384 }
2385 break;
2386
2387 case TCP_CA_Recovery:
e60402d0 2388 if (tcp_is_reno(tp))
1da177e4 2389 tcp_reset_reno_sack(tp);
9e412ba7 2390 if (tcp_try_undo_recovery(sk))
1da177e4 2391 return;
6687e988 2392 tcp_complete_cwr(sk);
1da177e4
LT
2393 break;
2394 }
2395 }
2396
2397 /* F. Process state. */
6687e988 2398 switch (icsk->icsk_ca_state) {
1da177e4 2399 case TCP_CA_Recovery:
2e605294 2400 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
e60402d0 2401 if (tcp_is_reno(tp) && is_dupack)
6687e988 2402 tcp_add_reno_sack(sk);
1b6d427b
IJ
2403 } else
2404 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2405 break;
2406 case TCP_CA_Loss:
2407 if (flag&FLAG_DATA_ACKED)
6687e988 2408 icsk->icsk_retransmits = 0;
9e412ba7 2409 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2410 tcp_moderate_cwnd(tp);
2411 tcp_xmit_retransmit_queue(sk);
2412 return;
2413 }
6687e988 2414 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2415 return;
2416 /* Loss is undone; fall through to processing in Open state. */
2417 default:
e60402d0 2418 if (tcp_is_reno(tp)) {
2e605294 2419 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2420 tcp_reset_reno_sack(tp);
2421 if (is_dupack)
6687e988 2422 tcp_add_reno_sack(sk);
1da177e4
LT
2423 }
2424
6687e988 2425 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2426 tcp_try_undo_dsack(sk);
1da177e4 2427
9e412ba7
IJ
2428 if (!tcp_time_to_recover(sk)) {
2429 tcp_try_to_open(sk, flag);
1da177e4
LT
2430 return;
2431 }
2432
5d424d5a
JH
2433 /* MTU probe failure: don't reduce cwnd */
2434 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2435 icsk->icsk_mtup.probe_size &&
0e7b1368 2436 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2437 tcp_mtup_probe_failed(sk);
2438 /* Restores the reduction we did in tcp_mtup_probe() */
2439 tp->snd_cwnd++;
2440 tcp_simple_retransmit(sk);
2441 return;
2442 }
2443
1da177e4
LT
2444 /* Otherwise enter Recovery state */
2445
e60402d0 2446 if (tcp_is_reno(tp))
1da177e4
LT
2447 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2448 else
2449 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2450
2451 tp->high_seq = tp->snd_nxt;
2452 tp->prior_ssthresh = 0;
2453 tp->undo_marker = tp->snd_una;
2454 tp->undo_retrans = tp->retrans_out;
2455
6687e988 2456 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2457 if (!(flag&FLAG_ECE))
6687e988
ACM
2458 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2459 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2460 TCP_ECN_queue_cwr(tp);
2461 }
2462
9772efb9 2463 tp->bytes_acked = 0;
1da177e4 2464 tp->snd_cwnd_cnt = 0;
6687e988 2465 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2466 }
2467
2e605294 2468 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2469 tcp_update_scoreboard(sk);
1e757f99 2470 tcp_cwnd_down(sk, flag);
1da177e4
LT
2471 tcp_xmit_retransmit_queue(sk);
2472}
2473
2474/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2475 * with this code. (Supersedes RFC1323)
1da177e4 2476 */
2d2abbab 2477static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2478{
1da177e4
LT
2479 /* RTTM Rule: A TSecr value received in a segment is used to
2480 * update the averaged RTT measurement only if the segment
2481 * acknowledges some new data, i.e., only if it advances the
2482 * left edge of the send window.
2483 *
2484 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2485 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2486 *
2487 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2488 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2489 * samples are accepted even from very old segments: f.e., when rtt=1
2490 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2491 * answer arrives rto becomes 120 seconds! If at least one of segments
2492 * in window is lost... Voila. --ANK (010210)
2493 */
463c84b9
ACM
2494 struct tcp_sock *tp = tcp_sk(sk);
2495 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2496 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2497 tcp_set_rto(sk);
2498 inet_csk(sk)->icsk_backoff = 0;
2499 tcp_bound_rto(sk);
1da177e4
LT
2500}
2501
2d2abbab 2502static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2503{
2504 /* We don't have a timestamp. Can only use
2505 * packets that are not retransmitted to determine
2506 * rtt estimates. Also, we must not reset the
2507 * backoff for rto until we get a non-retransmitted
2508 * packet. This allows us to deal with a situation
2509 * where the network delay has increased suddenly.
2510 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2511 */
2512
2513 if (flag & FLAG_RETRANS_DATA_ACKED)
2514 return;
2515
2d2abbab 2516 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2517 tcp_set_rto(sk);
2518 inet_csk(sk)->icsk_backoff = 0;
2519 tcp_bound_rto(sk);
1da177e4
LT
2520}
2521
463c84b9 2522static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2523 const s32 seq_rtt)
1da177e4 2524{
463c84b9 2525 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2526 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2527 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2528 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2529 else if (seq_rtt >= 0)
2d2abbab 2530 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2531}
2532
16751347 2533static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2534 u32 in_flight, int good)
1da177e4 2535{
6687e988 2536 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2537 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2538 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2539}
2540
1da177e4
LT
2541/* Restart timer after forward progress on connection.
2542 * RFC2988 recommends to restart timer to now+rto.
2543 */
6728e7dc 2544static void tcp_rearm_rto(struct sock *sk)
1da177e4 2545{
9e412ba7
IJ
2546 struct tcp_sock *tp = tcp_sk(sk);
2547
1da177e4 2548 if (!tp->packets_out) {
463c84b9 2549 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2550 } else {
3f421baa 2551 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2552 }
2553}
2554
7c46a03e 2555/* If we get here, the whole TSO packet has not been acked. */
13fcf850 2556static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
2557{
2558 struct tcp_sock *tp = tcp_sk(sk);
7c46a03e 2559 u32 packets_acked;
1da177e4 2560
7c46a03e 2561 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
1da177e4
LT
2562
2563 packets_acked = tcp_skb_pcount(skb);
7c46a03e 2564 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1da177e4
LT
2565 return 0;
2566 packets_acked -= tcp_skb_pcount(skb);
2567
2568 if (packets_acked) {
1da177e4 2569 BUG_ON(tcp_skb_pcount(skb) == 0);
7c46a03e 2570 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
1da177e4
LT
2571 }
2572
13fcf850 2573 return packets_acked;
1da177e4
LT
2574}
2575
7c46a03e
IJ
2576/* Remove acknowledged frames from the retransmission queue. If our packet
2577 * is before the ack sequence we can discard it as it's confirmed to have
2578 * arrived at the other end.
2579 */
2580static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
1da177e4
LT
2581{
2582 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2583 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2584 struct sk_buff *skb;
7c46a03e 2585 u32 now = tcp_time_stamp;
13fcf850 2586 int fully_acked = 1;
7c46a03e 2587 int flag = 0;
6418204f 2588 int prior_packets = tp->packets_out;
7c46a03e 2589 s32 seq_rtt = -1;
b9ce204f 2590 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2591
7c46a03e 2592 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
e905a9ed 2593 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
13fcf850
IJ
2594 u32 end_seq;
2595 u32 packets_acked;
7c46a03e 2596 u8 sacked = scb->sacked;
1da177e4 2597
1da177e4 2598 if (after(scb->end_seq, tp->snd_una)) {
13fcf850
IJ
2599 if (tcp_skb_pcount(skb) == 1 ||
2600 !after(tp->snd_una, scb->seq))
2601 break;
2602
2603 packets_acked = tcp_tso_acked(sk, skb);
2604 if (!packets_acked)
2605 break;
2606
2607 fully_acked = 0;
2608 end_seq = tp->snd_una;
2609 } else {
2610 packets_acked = tcp_skb_pcount(skb);
2611 end_seq = scb->end_seq;
1da177e4
LT
2612 }
2613
5d424d5a 2614 /* MTU probing checks */
7c46a03e
IJ
2615 if (fully_acked && icsk->icsk_mtup.probe_size &&
2616 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2617 tcp_mtup_probe_success(sk, skb);
5d424d5a
JH
2618 }
2619
1da177e4
LT
2620 if (sacked) {
2621 if (sacked & TCPCB_RETRANS) {
2de979bd 2622 if (sacked & TCPCB_SACKED_RETRANS)
13fcf850 2623 tp->retrans_out -= packets_acked;
7c46a03e 2624 flag |= FLAG_RETRANS_DATA_ACKED;
1da177e4 2625 seq_rtt = -1;
009a2e3e
IJ
2626 if ((flag & FLAG_DATA_ACKED) ||
2627 (packets_acked > 1))
2628 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2d2abbab 2629 } else if (seq_rtt < 0) {
1da177e4 2630 seq_rtt = now - scb->when;
13fcf850
IJ
2631 if (fully_acked)
2632 last_ackt = skb->tstamp;
a61bbcf2 2633 }
7c46a03e 2634
1da177e4 2635 if (sacked & TCPCB_SACKED_ACKED)
13fcf850 2636 tp->sacked_out -= packets_acked;
1da177e4 2637 if (sacked & TCPCB_LOST)
13fcf850 2638 tp->lost_out -= packets_acked;
7c46a03e
IJ
2639
2640 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2641 !before(end_seq, tp->snd_up))
2642 tp->urg_mode = 0;
2d2abbab 2643 } else if (seq_rtt < 0) {
1da177e4 2644 seq_rtt = now - scb->when;
13fcf850
IJ
2645 if (fully_acked)
2646 last_ackt = skb->tstamp;
2d2abbab 2647 }
13fcf850
IJ
2648 tp->packets_out -= packets_acked;
2649
009a2e3e
IJ
2650 /* Initial outgoing SYN's get put onto the write_queue
2651 * just like anything else we transmit. It is not
2652 * true data, and if we misinform our callers that
2653 * this ACK acks real data, we will erroneously exit
2654 * connection startup slow start one packet too
2655 * quickly. This is severely frowned upon behavior.
2656 */
2657 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2658 flag |= FLAG_DATA_ACKED;
2659 } else {
2660 flag |= FLAG_SYN_ACKED;
2661 tp->retrans_stamp = 0;
2662 }
2663
13fcf850
IJ
2664 if (!fully_acked)
2665 break;
2666
fe067e8a 2667 tcp_unlink_write_queue(skb, sk);
1da177e4 2668 sk_stream_free_skb(sk, skb);
5af4ec23 2669 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2670 }
2671
7c46a03e 2672 if (flag & FLAG_ACKED) {
6418204f 2673 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2674 const struct tcp_congestion_ops *ca_ops
2675 = inet_csk(sk)->icsk_ca_ops;
2676
7c46a03e 2677 tcp_ack_update_rtt(sk, flag, seq_rtt);
6728e7dc 2678 tcp_rearm_rto(sk);
317a76f9 2679
91fed7a1 2680 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
13fcf850
IJ
2681 /* hint's skb might be NULL but we don't need to care */
2682 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2683 tp->fastpath_cnt_hint);
e60402d0 2684 if (tcp_is_reno(tp))
1b6d427b
IJ
2685 tcp_remove_reno_sacks(sk, pkts_acked);
2686
30cfd0ba
SH
2687 if (ca_ops->pkts_acked) {
2688 s32 rtt_us = -1;
2689
2690 /* Is the ACK triggering packet unambiguous? */
7c46a03e 2691 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
30cfd0ba
SH
2692 /* High resolution needed and available? */
2693 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2694 !ktime_equal(last_ackt,
2695 net_invalid_timestamp()))
2696 rtt_us = ktime_us_delta(ktime_get_real(),
2697 last_ackt);
2698 else if (seq_rtt > 0)
2699 rtt_us = jiffies_to_usecs(seq_rtt);
2700 }
b9ce204f 2701
30cfd0ba
SH
2702 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2703 }
1da177e4
LT
2704 }
2705
2706#if FASTRETRANS_DEBUG > 0
2707 BUG_TRAP((int)tp->sacked_out >= 0);
2708 BUG_TRAP((int)tp->lost_out >= 0);
2709 BUG_TRAP((int)tp->retrans_out >= 0);
e60402d0 2710 if (!tp->packets_out && tcp_is_sack(tp)) {
cfcabdcc 2711 icsk = inet_csk(sk);
1da177e4
LT
2712 if (tp->lost_out) {
2713 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2714 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2715 tp->lost_out = 0;
2716 }
2717 if (tp->sacked_out) {
2718 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2719 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2720 tp->sacked_out = 0;
2721 }
2722 if (tp->retrans_out) {
2723 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2724 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2725 tp->retrans_out = 0;
2726 }
2727 }
2728#endif
2729 *seq_rtt_p = seq_rtt;
7c46a03e 2730 return flag;
1da177e4
LT
2731}
2732
2733static void tcp_ack_probe(struct sock *sk)
2734{
463c84b9
ACM
2735 const struct tcp_sock *tp = tcp_sk(sk);
2736 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2737
2738 /* Was it a usable window open? */
2739
fe067e8a 2740 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2741 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2742 icsk->icsk_backoff = 0;
2743 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2744 /* Socket must be waked up by subsequent tcp_data_snd_check().
2745 * This function is not for random using!
2746 */
2747 } else {
463c84b9 2748 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2749 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2750 TCP_RTO_MAX);
1da177e4
LT
2751 }
2752}
2753
6687e988 2754static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2755{
2756 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2757 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2758}
2759
6687e988 2760static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2761{
6687e988 2762 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2763 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2764 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2765}
2766
2767/* Check that window update is acceptable.
2768 * The function assumes that snd_una<=ack<=snd_next.
2769 */
463c84b9
ACM
2770static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2771 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2772{
2773 return (after(ack, tp->snd_una) ||
2774 after(ack_seq, tp->snd_wl1) ||
2775 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2776}
2777
2778/* Update our send window.
2779 *
2780 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2781 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2782 */
9e412ba7
IJ
2783static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2784 u32 ack_seq)
1da177e4 2785{
9e412ba7 2786 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2787 int flag = 0;
aa8223c7 2788 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2789
aa8223c7 2790 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2791 nwin <<= tp->rx_opt.snd_wscale;
2792
2793 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2794 flag |= FLAG_WIN_UPDATE;
2795 tcp_update_wl(tp, ack, ack_seq);
2796
2797 if (tp->snd_wnd != nwin) {
2798 tp->snd_wnd = nwin;
2799
2800 /* Note, it is the only place, where
2801 * fast path is recovered for sending TCP.
2802 */
2ad41065 2803 tp->pred_flags = 0;
9e412ba7 2804 tcp_fast_path_check(sk);
1da177e4
LT
2805
2806 if (nwin > tp->max_window) {
2807 tp->max_window = nwin;
d83d8461 2808 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2809 }
2810 }
2811 }
2812
2813 tp->snd_una = ack;
2814
2815 return flag;
2816}
2817
9ead9a1d
IJ
2818/* A very conservative spurious RTO response algorithm: reduce cwnd and
2819 * continue in congestion avoidance.
2820 */
2821static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2822{
2823 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2824 tp->snd_cwnd_cnt = 0;
16e90681 2825 tp->bytes_acked = 0;
46323655 2826 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2827 tcp_moderate_cwnd(tp);
2828}
2829
3cfe3baa
IJ
2830/* A conservative spurious RTO response algorithm: reduce cwnd using
2831 * rate halving and continue in congestion avoidance.
2832 */
2833static void tcp_ratehalving_spur_to_response(struct sock *sk)
2834{
3cfe3baa 2835 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2836}
2837
e317f6f6 2838static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2839{
e317f6f6
IJ
2840 if (flag&FLAG_ECE)
2841 tcp_ratehalving_spur_to_response(sk);
2842 else
2843 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2844}
2845
30935cf4
IJ
2846/* F-RTO spurious RTO detection algorithm (RFC4138)
2847 *
6408d206
IJ
2848 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2849 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2850 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2851 * On First ACK, send two new segments out.
2852 * On Second ACK, RTO was likely spurious. Do spurious response (response
2853 * algorithm is not part of the F-RTO detection algorithm
2854 * given in RFC4138 but can be selected separately).
2855 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2856 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2857 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2858 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2859 *
2860 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2861 * original window even after we transmit two new data segments.
2862 *
4dc2665e
IJ
2863 * SACK version:
2864 * on first step, wait until first cumulative ACK arrives, then move to
2865 * the second step. In second step, the next ACK decides.
2866 *
30935cf4
IJ
2867 * F-RTO is implemented (mainly) in four functions:
2868 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2869 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2870 * called when tcp_use_frto() showed green light
2871 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2872 * - tcp_enter_frto_loss() is called if there is not enough evidence
2873 * to prove that the RTO is indeed spurious. It transfers the control
2874 * from F-RTO to the conventional RTO recovery
2875 */
2e605294 2876static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2877{
2878 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2879
005903bc 2880 tcp_verify_left_out(tp);
e905a9ed 2881
7487c48c
IJ
2882 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2883 if (flag&FLAG_DATA_ACKED)
2884 inet_csk(sk)->icsk_retransmits = 0;
2885
009a2e3e
IJ
2886 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2887 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2888 tp->undo_marker = 0;
2889
95c4922b 2890 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2891 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2892 return 1;
95c4922b
IJ
2893 }
2894
e60402d0 2895 if (!IsSackFrto() || tcp_is_reno(tp)) {
4dc2665e
IJ
2896 /* RFC4138 shortcoming in step 2; should also have case c):
2897 * ACK isn't duplicate nor advances window, e.g., opposite dir
2898 * data, winupdate
2899 */
2e605294 2900 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2901 return 1;
2902
2903 if (!(flag&FLAG_DATA_ACKED)) {
2904 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2905 flag);
2906 return 1;
2907 }
2908 } else {
2909 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2910 /* Prevent sending of new data. */
2911 tp->snd_cwnd = min(tp->snd_cwnd,
2912 tcp_packets_in_flight(tp));
2913 return 1;
2914 }
6408d206 2915
d551e454 2916 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2917 (!(flag&FLAG_FORWARD_PROGRESS) ||
2918 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2919 /* RFC4138 shortcoming (see comment above) */
2920 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2921 return 1;
2922
2923 tcp_enter_frto_loss(sk, 3, flag);
2924 return 1;
2925 }
1da177e4
LT
2926 }
2927
2928 if (tp->frto_counter == 1) {
575ee714
IJ
2929 /* Sending of the next skb must be allowed or no FRTO */
2930 if (!tcp_send_head(sk) ||
2931 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2932 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2933 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2934 flag);
575ee714
IJ
2935 return 1;
2936 }
2937
1da177e4 2938 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2939 tp->frto_counter = 2;
7c9a4a5b 2940 return 1;
d551e454 2941 } else {
3cfe3baa
IJ
2942 switch (sysctl_tcp_frto_response) {
2943 case 2:
e317f6f6 2944 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2945 break;
2946 case 1:
2947 tcp_conservative_spur_to_response(tp);
2948 break;
2949 default:
2950 tcp_ratehalving_spur_to_response(sk);
2951 break;
3ff50b79 2952 }
94d0ea77 2953 tp->frto_counter = 0;
009a2e3e 2954 tp->undo_marker = 0;
912d8f0b 2955 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
1da177e4 2956 }
7c9a4a5b 2957 return 0;
1da177e4
LT
2958}
2959
1da177e4
LT
2960/* This routine deals with incoming acks, but not outgoing ones. */
2961static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2962{
6687e988 2963 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2964 struct tcp_sock *tp = tcp_sk(sk);
2965 u32 prior_snd_una = tp->snd_una;
2966 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2967 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2968 u32 prior_in_flight;
2969 s32 seq_rtt;
2970 int prior_packets;
7c9a4a5b 2971 int frto_cwnd = 0;
1da177e4
LT
2972
2973 /* If the ack is newer than sent or older than previous acks
2974 * then we can probably ignore it.
2975 */
2976 if (after(ack, tp->snd_nxt))
2977 goto uninteresting_ack;
2978
2979 if (before(ack, prior_snd_una))
2980 goto old_ack;
2981
2e605294
IJ
2982 if (after(ack, prior_snd_una))
2983 flag |= FLAG_SND_UNA_ADVANCED;
2984
3fdf3f0c
DO
2985 if (sysctl_tcp_abc) {
2986 if (icsk->icsk_ca_state < TCP_CA_CWR)
2987 tp->bytes_acked += ack - prior_snd_una;
2988 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2989 /* we assume just one segment left network */
2990 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2991 }
9772efb9 2992
1da177e4
LT
2993 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2994 /* Window is constant, pure forward advance.
2995 * No more checks are required.
2996 * Note, we use the fact that SND.UNA>=SND.WL2.
2997 */
2998 tcp_update_wl(tp, ack, ack_seq);
2999 tp->snd_una = ack;
1da177e4
LT
3000 flag |= FLAG_WIN_UPDATE;
3001
6687e988 3002 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 3003
1da177e4
LT
3004 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3005 } else {
3006 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3007 flag |= FLAG_DATA;
3008 else
3009 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3010
9e412ba7 3011 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
3012
3013 if (TCP_SKB_CB(skb)->sacked)
3014 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3015
aa8223c7 3016 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
3017 flag |= FLAG_ECE;
3018
6687e988 3019 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
3020 }
3021
3022 /* We passed data and got it acked, remove any soft error
3023 * log. Something worked...
3024 */
3025 sk->sk_err_soft = 0;
3026 tp->rcv_tstamp = tcp_time_stamp;
3027 prior_packets = tp->packets_out;
3028 if (!prior_packets)
3029 goto no_queue;
3030
3031 prior_in_flight = tcp_packets_in_flight(tp);
3032
3033 /* See if we can take anything off of the retransmit queue. */
2d2abbab 3034 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4 3035
3de96471
IJ
3036 /* Guarantee sacktag reordering detection against wrap-arounds */
3037 if (before(tp->frto_highmark, tp->snd_una))
3038 tp->frto_highmark = 0;
1da177e4 3039 if (tp->frto_counter)
2e605294 3040 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 3041
6687e988 3042 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 3043 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
3044 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3045 tcp_may_raise_cwnd(sk, flag))
16751347 3046 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 3047 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 3048 } else {
7c9a4a5b 3049 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 3050 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
3051 }
3052
3053 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3054 dst_confirm(sk->sk_dst_cache);
3055
3056 return 1;
3057
3058no_queue:
6687e988 3059 icsk->icsk_probes_out = 0;
1da177e4
LT
3060
3061 /* If this ack opens up a zero window, clear backoff. It was
3062 * being used to time the probes, and is probably far higher than
3063 * it needs to be for normal retransmission.
3064 */
fe067e8a 3065 if (tcp_send_head(sk))
1da177e4
LT
3066 tcp_ack_probe(sk);
3067 return 1;
3068
3069old_ack:
3070 if (TCP_SKB_CB(skb)->sacked)
3071 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3072
3073uninteresting_ack:
3074 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3075 return 0;
3076}
3077
3078
3079/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3080 * But, this can also be called on packets in the established flow when
3081 * the fast version below fails.
3082 */
3083void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3084{
3085 unsigned char *ptr;
aa8223c7 3086 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3087 int length=(th->doff*4)-sizeof(struct tcphdr);
3088
3089 ptr = (unsigned char *)(th + 1);
3090 opt_rx->saw_tstamp = 0;
3091
2de979bd 3092 while (length > 0) {
e905a9ed 3093 int opcode=*ptr++;
1da177e4
LT
3094 int opsize;
3095
3096 switch (opcode) {
3097 case TCPOPT_EOL:
3098 return;
3099 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3100 length--;
3101 continue;
3102 default:
3103 opsize=*ptr++;
3104 if (opsize < 2) /* "silly options" */
3105 return;
3106 if (opsize > length)
3107 return; /* don't parse partial options */
2de979bd 3108 switch (opcode) {
1da177e4 3109 case TCPOPT_MSS:
2de979bd 3110 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 3111 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
3112 if (in_mss) {
3113 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3114 in_mss = opt_rx->user_mss;
3115 opt_rx->mss_clamp = in_mss;
3116 }
3117 }
3118 break;
3119 case TCPOPT_WINDOW:
2de979bd 3120 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3121 if (sysctl_tcp_window_scaling) {
3122 __u8 snd_wscale = *(__u8 *) ptr;
3123 opt_rx->wscale_ok = 1;
3124 if (snd_wscale > 14) {
2de979bd 3125 if (net_ratelimit())
1da177e4
LT
3126 printk(KERN_INFO "tcp_parse_options: Illegal window "
3127 "scaling value %d >14 received.\n",
3128 snd_wscale);
3129 snd_wscale = 14;
3130 }
3131 opt_rx->snd_wscale = snd_wscale;
3132 }
3133 break;
3134 case TCPOPT_TIMESTAMP:
2de979bd 3135 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3136 if ((estab && opt_rx->tstamp_ok) ||
3137 (!estab && sysctl_tcp_timestamps)) {
3138 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3139 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3140 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3141 }
3142 }
3143 break;
3144 case TCPOPT_SACK_PERM:
2de979bd 3145 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3146 if (sysctl_tcp_sack) {
3147 opt_rx->sack_ok = 1;
3148 tcp_sack_reset(opt_rx);
3149 }
3150 }
3151 break;
3152
3153 case TCPOPT_SACK:
2de979bd 3154 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3155 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3156 opt_rx->sack_ok) {
3157 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3158 }
d7ea5b91 3159 break;
cfb6eeb4
YH
3160#ifdef CONFIG_TCP_MD5SIG
3161 case TCPOPT_MD5SIG:
3162 /*
3163 * The MD5 Hash has already been
3164 * checked (see tcp_v{4,6}_do_rcv()).
3165 */
3166 break;
3167#endif
3ff50b79
SH
3168 }
3169
e905a9ed
YH
3170 ptr+=opsize-2;
3171 length-=opsize;
3ff50b79 3172 }
1da177e4
LT
3173 }
3174}
3175
3176/* Fast parse options. This hopes to only see timestamps.
3177 * If it is wrong it falls back on tcp_parse_options().
3178 */
40efc6fa
SH
3179static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3180 struct tcp_sock *tp)
1da177e4
LT
3181{
3182 if (th->doff == sizeof(struct tcphdr)>>2) {
3183 tp->rx_opt.saw_tstamp = 0;
3184 return 0;
3185 } else if (tp->rx_opt.tstamp_ok &&
3186 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3187 __be32 *ptr = (__be32 *)(th + 1);
3188 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3189 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3190 tp->rx_opt.saw_tstamp = 1;
3191 ++ptr;
3192 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3193 ++ptr;
3194 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3195 return 1;
3196 }
3197 }
3198 tcp_parse_options(skb, &tp->rx_opt, 1);
3199 return 1;
3200}
3201
3202static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3203{
3204 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3205 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3206}
3207
3208static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3209{
3210 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3211 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3212 * extra check below makes sure this can only happen
3213 * for pure ACK frames. -DaveM
3214 *
3215 * Not only, also it occurs for expired timestamps.
3216 */
3217
2de979bd 3218 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3219 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3220 tcp_store_ts_recent(tp);
3221 }
3222}
3223
3224/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3225 *
3226 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3227 * it can pass through stack. So, the following predicate verifies that
3228 * this segment is not used for anything but congestion avoidance or
3229 * fast retransmit. Moreover, we even are able to eliminate most of such
3230 * second order effects, if we apply some small "replay" window (~RTO)
3231 * to timestamp space.
3232 *
3233 * All these measures still do not guarantee that we reject wrapped ACKs
3234 * on networks with high bandwidth, when sequence space is recycled fastly,
3235 * but it guarantees that such events will be very rare and do not affect
3236 * connection seriously. This doesn't look nice, but alas, PAWS is really
3237 * buggy extension.
3238 *
3239 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3240 * states that events when retransmit arrives after original data are rare.
3241 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3242 * the biggest problem on large power networks even with minor reordering.
3243 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3244 * up to bandwidth of 18Gigabit/sec. 8) ]
3245 */
3246
463c84b9 3247static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3248{
463c84b9 3249 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3250 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3251 u32 seq = TCP_SKB_CB(skb)->seq;
3252 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3253
3254 return (/* 1. Pure ACK with correct sequence number. */
3255 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3256
3257 /* 2. ... and duplicate ACK. */
3258 ack == tp->snd_una &&
3259
3260 /* 3. ... and does not update window. */
3261 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3262
3263 /* 4. ... and sits in replay window. */
463c84b9 3264 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3265}
3266
463c84b9 3267static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3268{
463c84b9 3269 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3270 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3271 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3272 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3273}
3274
3275/* Check segment sequence number for validity.
3276 *
3277 * Segment controls are considered valid, if the segment
3278 * fits to the window after truncation to the window. Acceptability
3279 * of data (and SYN, FIN, of course) is checked separately.
3280 * See tcp_data_queue(), for example.
3281 *
3282 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3283 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3284 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3285 * (borrowed from freebsd)
3286 */
3287
3288static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3289{
3290 return !before(end_seq, tp->rcv_wup) &&
3291 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3292}
3293
3294/* When we get a reset we do this. */
3295static void tcp_reset(struct sock *sk)
3296{
3297 /* We want the right error as BSD sees it (and indeed as we do). */
3298 switch (sk->sk_state) {
3299 case TCP_SYN_SENT:
3300 sk->sk_err = ECONNREFUSED;
3301 break;
3302 case TCP_CLOSE_WAIT:
3303 sk->sk_err = EPIPE;
3304 break;
3305 case TCP_CLOSE:
3306 return;
3307 default:
3308 sk->sk_err = ECONNRESET;
3309 }
3310
3311 if (!sock_flag(sk, SOCK_DEAD))
3312 sk->sk_error_report(sk);
3313
3314 tcp_done(sk);
3315}
3316
3317/*
3318 * Process the FIN bit. This now behaves as it is supposed to work
3319 * and the FIN takes effect when it is validly part of sequence
3320 * space. Not before when we get holes.
3321 *
3322 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3323 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3324 * TIME-WAIT)
3325 *
3326 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3327 * close and we go into CLOSING (and later onto TIME-WAIT)
3328 *
3329 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3330 */
3331static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3332{
3333 struct tcp_sock *tp = tcp_sk(sk);
3334
463c84b9 3335 inet_csk_schedule_ack(sk);
1da177e4
LT
3336
3337 sk->sk_shutdown |= RCV_SHUTDOWN;
3338 sock_set_flag(sk, SOCK_DONE);
3339
3340 switch (sk->sk_state) {
3341 case TCP_SYN_RECV:
3342 case TCP_ESTABLISHED:
3343 /* Move to CLOSE_WAIT */
3344 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3345 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3346 break;
3347
3348 case TCP_CLOSE_WAIT:
3349 case TCP_CLOSING:
3350 /* Received a retransmission of the FIN, do
3351 * nothing.
3352 */
3353 break;
3354 case TCP_LAST_ACK:
3355 /* RFC793: Remain in the LAST-ACK state. */
3356 break;
3357
3358 case TCP_FIN_WAIT1:
3359 /* This case occurs when a simultaneous close
3360 * happens, we must ack the received FIN and
3361 * enter the CLOSING state.
3362 */
3363 tcp_send_ack(sk);
3364 tcp_set_state(sk, TCP_CLOSING);
3365 break;
3366 case TCP_FIN_WAIT2:
3367 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3368 tcp_send_ack(sk);
3369 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3370 break;
3371 default:
3372 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3373 * cases we should never reach this piece of code.
3374 */
3375 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3376 __FUNCTION__, sk->sk_state);
3377 break;
3ff50b79 3378 }
1da177e4
LT
3379
3380 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3381 * Probably, we should reset in this case. For now drop them.
3382 */
3383 __skb_queue_purge(&tp->out_of_order_queue);
e60402d0 3384 if (tcp_is_sack(tp))
1da177e4
LT
3385 tcp_sack_reset(&tp->rx_opt);
3386 sk_stream_mem_reclaim(sk);
3387
3388 if (!sock_flag(sk, SOCK_DEAD)) {
3389 sk->sk_state_change(sk);
3390
3391 /* Do not send POLL_HUP for half duplex close. */
3392 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3393 sk->sk_state == TCP_CLOSE)
3394 sk_wake_async(sk, 1, POLL_HUP);
3395 else
3396 sk_wake_async(sk, 1, POLL_IN);
3397 }
3398}
3399
40efc6fa 3400static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3401{
3402 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3403 if (before(seq, sp->start_seq))
3404 sp->start_seq = seq;
3405 if (after(end_seq, sp->end_seq))
3406 sp->end_seq = end_seq;
3407 return 1;
3408 }
3409 return 0;
3410}
3411
40efc6fa 3412static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4 3413{
e60402d0 3414 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3415 if (before(seq, tp->rcv_nxt))
3416 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3417 else
3418 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3419
3420 tp->rx_opt.dsack = 1;
3421 tp->duplicate_sack[0].start_seq = seq;
3422 tp->duplicate_sack[0].end_seq = end_seq;
3423 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3424 }
3425}
3426
40efc6fa 3427static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3428{
3429 if (!tp->rx_opt.dsack)
3430 tcp_dsack_set(tp, seq, end_seq);
3431 else
3432 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3433}
3434
3435static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3436{
3437 struct tcp_sock *tp = tcp_sk(sk);
3438
3439 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3440 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3441 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3442 tcp_enter_quickack_mode(sk);
1da177e4 3443
e60402d0 3444 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3445 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3446
3447 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3448 end_seq = tp->rcv_nxt;
3449 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3450 }
3451 }
3452
3453 tcp_send_ack(sk);
3454}
3455
3456/* These routines update the SACK block as out-of-order packets arrive or
3457 * in-order packets close up the sequence space.
3458 */
3459static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3460{
3461 int this_sack;
3462 struct tcp_sack_block *sp = &tp->selective_acks[0];
3463 struct tcp_sack_block *swalk = sp+1;
3464
3465 /* See if the recent change to the first SACK eats into
3466 * or hits the sequence space of other SACK blocks, if so coalesce.
3467 */
3468 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3469 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3470 int i;
3471
3472 /* Zap SWALK, by moving every further SACK up by one slot.
3473 * Decrease num_sacks.
3474 */
3475 tp->rx_opt.num_sacks--;
3476 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3477 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3478 sp[i] = sp[i+1];
3479 continue;
3480 }
3481 this_sack++, swalk++;
3482 }
3483}
3484
40efc6fa 3485static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3486{
3487 __u32 tmp;
3488
3489 tmp = sack1->start_seq;
3490 sack1->start_seq = sack2->start_seq;
3491 sack2->start_seq = tmp;
3492
3493 tmp = sack1->end_seq;
3494 sack1->end_seq = sack2->end_seq;
3495 sack2->end_seq = tmp;
3496}
3497
3498static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3499{
3500 struct tcp_sock *tp = tcp_sk(sk);
3501 struct tcp_sack_block *sp = &tp->selective_acks[0];
3502 int cur_sacks = tp->rx_opt.num_sacks;
3503 int this_sack;
3504
3505 if (!cur_sacks)
3506 goto new_sack;
3507
3508 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3509 if (tcp_sack_extend(sp, seq, end_seq)) {
3510 /* Rotate this_sack to the first one. */
3511 for (; this_sack>0; this_sack--, sp--)
3512 tcp_sack_swap(sp, sp-1);
3513 if (cur_sacks > 1)
3514 tcp_sack_maybe_coalesce(tp);
3515 return;
3516 }
3517 }
3518
3519 /* Could not find an adjacent existing SACK, build a new one,
3520 * put it at the front, and shift everyone else down. We
3521 * always know there is at least one SACK present already here.
3522 *
3523 * If the sack array is full, forget about the last one.
3524 */
3525 if (this_sack >= 4) {
3526 this_sack--;
3527 tp->rx_opt.num_sacks--;
3528 sp--;
3529 }
2de979bd 3530 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3531 *sp = *(sp-1);
3532
3533new_sack:
3534 /* Build the new head SACK, and we're done. */
3535 sp->start_seq = seq;
3536 sp->end_seq = end_seq;
3537 tp->rx_opt.num_sacks++;
3538 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3539}
3540
3541/* RCV.NXT advances, some SACKs should be eaten. */
3542
3543static void tcp_sack_remove(struct tcp_sock *tp)
3544{
3545 struct tcp_sack_block *sp = &tp->selective_acks[0];
3546 int num_sacks = tp->rx_opt.num_sacks;
3547 int this_sack;
3548
3549 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3550 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3551 tp->rx_opt.num_sacks = 0;
3552 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3553 return;
3554 }
3555
2de979bd 3556 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3557 /* Check if the start of the sack is covered by RCV.NXT. */
3558 if (!before(tp->rcv_nxt, sp->start_seq)) {
3559 int i;
3560
3561 /* RCV.NXT must cover all the block! */
3562 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3563
3564 /* Zap this SACK, by moving forward any other SACKS. */
3565 for (i=this_sack+1; i < num_sacks; i++)
3566 tp->selective_acks[i-1] = tp->selective_acks[i];
3567 num_sacks--;
3568 continue;
3569 }
3570 this_sack++;
3571 sp++;
3572 }
3573 if (num_sacks != tp->rx_opt.num_sacks) {
3574 tp->rx_opt.num_sacks = num_sacks;
3575 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3576 }
3577}
3578
3579/* This one checks to see if we can put data from the
3580 * out_of_order queue into the receive_queue.
3581 */
3582static void tcp_ofo_queue(struct sock *sk)
3583{
3584 struct tcp_sock *tp = tcp_sk(sk);
3585 __u32 dsack_high = tp->rcv_nxt;
3586 struct sk_buff *skb;
3587
3588 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3589 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3590 break;
3591
3592 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3593 __u32 dsack = dsack_high;
3594 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3595 dsack_high = TCP_SKB_CB(skb)->end_seq;
3596 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3597 }
3598
3599 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3600 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3601 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3602 __kfree_skb(skb);
3603 continue;
3604 }
3605 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3606 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3607 TCP_SKB_CB(skb)->end_seq);
3608
8728b834 3609 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3610 __skb_queue_tail(&sk->sk_receive_queue, skb);
3611 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3612 if (tcp_hdr(skb)->fin)
3613 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3614 }
3615}
3616
3617static int tcp_prune_queue(struct sock *sk);
3618
3619static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3620{
aa8223c7 3621 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3622 struct tcp_sock *tp = tcp_sk(sk);
3623 int eaten = -1;
3624
3625 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3626 goto drop;
3627
1da177e4
LT
3628 __skb_pull(skb, th->doff*4);
3629
3630 TCP_ECN_accept_cwr(tp, skb);
3631
3632 if (tp->rx_opt.dsack) {
3633 tp->rx_opt.dsack = 0;
3634 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3635 4 - tp->rx_opt.tstamp_ok);
3636 }
3637
3638 /* Queue data for delivery to the user.
3639 * Packets in sequence go to the receive queue.
3640 * Out of sequence packets to the out_of_order_queue.
3641 */
3642 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3643 if (tcp_receive_window(tp) == 0)
3644 goto out_of_window;
3645
3646 /* Ok. In sequence. In window. */
3647 if (tp->ucopy.task == current &&
3648 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3649 sock_owned_by_user(sk) && !tp->urg_data) {
3650 int chunk = min_t(unsigned int, skb->len,
3651 tp->ucopy.len);
3652
3653 __set_current_state(TASK_RUNNING);
3654
3655 local_bh_enable();
3656 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3657 tp->ucopy.len -= chunk;
3658 tp->copied_seq += chunk;
3659 eaten = (chunk == skb->len && !th->fin);
3660 tcp_rcv_space_adjust(sk);
3661 }
3662 local_bh_disable();
3663 }
3664
3665 if (eaten <= 0) {
3666queue_and_out:
3667 if (eaten < 0 &&
3668 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3669 !sk_stream_rmem_schedule(sk, skb))) {
3670 if (tcp_prune_queue(sk) < 0 ||
3671 !sk_stream_rmem_schedule(sk, skb))
3672 goto drop;
3673 }
3674 sk_stream_set_owner_r(skb, sk);
3675 __skb_queue_tail(&sk->sk_receive_queue, skb);
3676 }
3677 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3678 if (skb->len)
9e412ba7 3679 tcp_event_data_recv(sk, skb);
2de979bd 3680 if (th->fin)
1da177e4
LT
3681 tcp_fin(skb, sk, th);
3682
b03efcfb 3683 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3684 tcp_ofo_queue(sk);
3685
3686 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3687 * gap in queue is filled.
3688 */
b03efcfb 3689 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3690 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3691 }
3692
3693 if (tp->rx_opt.num_sacks)
3694 tcp_sack_remove(tp);
3695
9e412ba7 3696 tcp_fast_path_check(sk);
1da177e4
LT
3697
3698 if (eaten > 0)
3699 __kfree_skb(skb);
3700 else if (!sock_flag(sk, SOCK_DEAD))
3701 sk->sk_data_ready(sk, 0);
3702 return;
3703 }
3704
3705 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3706 /* A retransmit, 2nd most common case. Force an immediate ack. */
3707 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3708 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3709
3710out_of_window:
463c84b9
ACM
3711 tcp_enter_quickack_mode(sk);
3712 inet_csk_schedule_ack(sk);
1da177e4
LT
3713drop:
3714 __kfree_skb(skb);
3715 return;
3716 }
3717
3718 /* Out of window. F.e. zero window probe. */
3719 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3720 goto out_of_window;
3721
463c84b9 3722 tcp_enter_quickack_mode(sk);
1da177e4
LT
3723
3724 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3725 /* Partial packet, seq < rcv_next < end_seq */
3726 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3727 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3728 TCP_SKB_CB(skb)->end_seq);
3729
3730 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3731
1da177e4
LT
3732 /* If window is closed, drop tail of packet. But after
3733 * remembering D-SACK for its head made in previous line.
3734 */
3735 if (!tcp_receive_window(tp))
3736 goto out_of_window;
3737 goto queue_and_out;
3738 }
3739
3740 TCP_ECN_check_ce(tp, skb);
3741
3742 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3743 !sk_stream_rmem_schedule(sk, skb)) {
3744 if (tcp_prune_queue(sk) < 0 ||
3745 !sk_stream_rmem_schedule(sk, skb))
3746 goto drop;
3747 }
3748
3749 /* Disable header prediction. */
3750 tp->pred_flags = 0;
463c84b9 3751 inet_csk_schedule_ack(sk);
1da177e4
LT
3752
3753 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3754 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3755
3756 sk_stream_set_owner_r(skb, sk);
3757
3758 if (!skb_peek(&tp->out_of_order_queue)) {
3759 /* Initial out of order segment, build 1 SACK. */
e60402d0 3760 if (tcp_is_sack(tp)) {
1da177e4
LT
3761 tp->rx_opt.num_sacks = 1;
3762 tp->rx_opt.dsack = 0;
3763 tp->rx_opt.eff_sacks = 1;
3764 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3765 tp->selective_acks[0].end_seq =
3766 TCP_SKB_CB(skb)->end_seq;
3767 }
3768 __skb_queue_head(&tp->out_of_order_queue,skb);
3769 } else {
3770 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3771 u32 seq = TCP_SKB_CB(skb)->seq;
3772 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3773
3774 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3775 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3776
3777 if (!tp->rx_opt.num_sacks ||
3778 tp->selective_acks[0].end_seq != seq)
3779 goto add_sack;
3780
3781 /* Common case: data arrive in order after hole. */
3782 tp->selective_acks[0].end_seq = end_seq;
3783 return;
3784 }
3785
3786 /* Find place to insert this segment. */
3787 do {
3788 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3789 break;
3790 } while ((skb1 = skb1->prev) !=
3791 (struct sk_buff*)&tp->out_of_order_queue);
3792
3793 /* Do skb overlap to previous one? */
3794 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3795 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3796 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3797 /* All the bits are present. Drop. */
3798 __kfree_skb(skb);
3799 tcp_dsack_set(tp, seq, end_seq);
3800 goto add_sack;
3801 }
3802 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3803 /* Partial overlap. */
3804 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3805 } else {
3806 skb1 = skb1->prev;
3807 }
3808 }
3809 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3810
1da177e4
LT
3811 /* And clean segments covered by new one as whole. */
3812 while ((skb1 = skb->next) !=
3813 (struct sk_buff*)&tp->out_of_order_queue &&
3814 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3815 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3816 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3817 break;
3818 }
8728b834 3819 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3820 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3821 __kfree_skb(skb1);
3822 }
3823
3824add_sack:
e60402d0 3825 if (tcp_is_sack(tp))
1da177e4
LT
3826 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3827 }
3828}
3829
3830/* Collapse contiguous sequence of skbs head..tail with
3831 * sequence numbers start..end.
3832 * Segments with FIN/SYN are not collapsed (only because this
3833 * simplifies code)
3834 */
3835static void
8728b834
DM
3836tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3837 struct sk_buff *head, struct sk_buff *tail,
3838 u32 start, u32 end)
1da177e4
LT
3839{
3840 struct sk_buff *skb;
3841
caa20d9a 3842 /* First, check that queue is collapsible and find
1da177e4
LT
3843 * the point where collapsing can be useful. */
3844 for (skb = head; skb != tail; ) {
3845 /* No new bits? It is possible on ofo queue. */
3846 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3847 struct sk_buff *next = skb->next;
8728b834 3848 __skb_unlink(skb, list);
1da177e4
LT
3849 __kfree_skb(skb);
3850 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3851 skb = next;
3852 continue;
3853 }
3854
3855 /* The first skb to collapse is:
3856 * - not SYN/FIN and
3857 * - bloated or contains data before "start" or
3858 * overlaps to the next one.
3859 */
aa8223c7 3860 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3861 (tcp_win_from_space(skb->truesize) > skb->len ||
3862 before(TCP_SKB_CB(skb)->seq, start) ||
3863 (skb->next != tail &&
3864 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3865 break;
3866
3867 /* Decided to skip this, advance start seq. */
3868 start = TCP_SKB_CB(skb)->end_seq;
3869 skb = skb->next;
3870 }
aa8223c7 3871 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3872 return;
3873
3874 while (before(start, end)) {
3875 struct sk_buff *nskb;
3876 int header = skb_headroom(skb);
3877 int copy = SKB_MAX_ORDER(header, 0);
3878
3879 /* Too big header? This can happen with IPv6. */
3880 if (copy < 0)
3881 return;
3882 if (end-start < copy)
3883 copy = end-start;
3884 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3885 if (!nskb)
3886 return;
c51957da 3887
98e399f8 3888 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3889 skb_set_network_header(nskb, (skb_network_header(skb) -
3890 skb->head));
3891 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3892 skb->head));
1da177e4
LT
3893 skb_reserve(nskb, header);
3894 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3895 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3896 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3897 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3898 sk_stream_set_owner_r(nskb, sk);
3899
3900 /* Copy data, releasing collapsed skbs. */
3901 while (copy > 0) {
3902 int offset = start - TCP_SKB_CB(skb)->seq;
3903 int size = TCP_SKB_CB(skb)->end_seq - start;
3904
09a62660 3905 BUG_ON(offset < 0);
1da177e4
LT
3906 if (size > 0) {
3907 size = min(copy, size);
3908 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3909 BUG();
3910 TCP_SKB_CB(nskb)->end_seq += size;
3911 copy -= size;
3912 start += size;
3913 }
3914 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3915 struct sk_buff *next = skb->next;
8728b834 3916 __skb_unlink(skb, list);
1da177e4
LT
3917 __kfree_skb(skb);
3918 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3919 skb = next;
aa8223c7
ACM
3920 if (skb == tail ||
3921 tcp_hdr(skb)->syn ||
3922 tcp_hdr(skb)->fin)
1da177e4
LT
3923 return;
3924 }
3925 }
3926 }
3927}
3928
3929/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3930 * and tcp_collapse() them until all the queue is collapsed.
3931 */
3932static void tcp_collapse_ofo_queue(struct sock *sk)
3933{
3934 struct tcp_sock *tp = tcp_sk(sk);
3935 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3936 struct sk_buff *head;
3937 u32 start, end;
3938
3939 if (skb == NULL)
3940 return;
3941
3942 start = TCP_SKB_CB(skb)->seq;
3943 end = TCP_SKB_CB(skb)->end_seq;
3944 head = skb;
3945
3946 for (;;) {
3947 skb = skb->next;
3948
3949 /* Segment is terminated when we see gap or when
3950 * we are at the end of all the queue. */
3951 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3952 after(TCP_SKB_CB(skb)->seq, end) ||
3953 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3954 tcp_collapse(sk, &tp->out_of_order_queue,
3955 head, skb, start, end);
1da177e4
LT
3956 head = skb;
3957 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3958 break;
3959 /* Start new segment */
3960 start = TCP_SKB_CB(skb)->seq;
3961 end = TCP_SKB_CB(skb)->end_seq;
3962 } else {
3963 if (before(TCP_SKB_CB(skb)->seq, start))
3964 start = TCP_SKB_CB(skb)->seq;
3965 if (after(TCP_SKB_CB(skb)->end_seq, end))
3966 end = TCP_SKB_CB(skb)->end_seq;
3967 }
3968 }
3969}
3970
3971/* Reduce allocated memory if we can, trying to get
3972 * the socket within its memory limits again.
3973 *
3974 * Return less than zero if we should start dropping frames
3975 * until the socket owning process reads some of the data
3976 * to stabilize the situation.
3977 */
3978static int tcp_prune_queue(struct sock *sk)
3979{
e905a9ed 3980 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3981
3982 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3983
3984 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3985
3986 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3987 tcp_clamp_window(sk);
1da177e4
LT
3988 else if (tcp_memory_pressure)
3989 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3990
3991 tcp_collapse_ofo_queue(sk);
8728b834
DM
3992 tcp_collapse(sk, &sk->sk_receive_queue,
3993 sk->sk_receive_queue.next,
1da177e4
LT
3994 (struct sk_buff*)&sk->sk_receive_queue,
3995 tp->copied_seq, tp->rcv_nxt);
3996 sk_stream_mem_reclaim(sk);
3997
3998 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3999 return 0;
4000
4001 /* Collapsing did not help, destructive actions follow.
4002 * This must not ever occur. */
4003
4004 /* First, purge the out_of_order queue. */
b03efcfb
DM
4005 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4006 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
4007 __skb_queue_purge(&tp->out_of_order_queue);
4008
4009 /* Reset SACK state. A conforming SACK implementation will
4010 * do the same at a timeout based retransmit. When a connection
4011 * is in a sad state like this, we care only about integrity
4012 * of the connection not performance.
4013 */
e60402d0 4014 if (tcp_is_sack(tp))
1da177e4
LT
4015 tcp_sack_reset(&tp->rx_opt);
4016 sk_stream_mem_reclaim(sk);
4017 }
4018
4019 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4020 return 0;
4021
4022 /* If we are really being abused, tell the caller to silently
4023 * drop receive data on the floor. It will get retransmitted
4024 * and hopefully then we'll have sufficient space.
4025 */
4026 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4027
4028 /* Massive buffer overcommit. */
4029 tp->pred_flags = 0;
4030 return -1;
4031}
4032
4033
4034/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4035 * As additional protections, we do not touch cwnd in retransmission phases,
4036 * and if application hit its sndbuf limit recently.
4037 */
4038void tcp_cwnd_application_limited(struct sock *sk)
4039{
4040 struct tcp_sock *tp = tcp_sk(sk);
4041
6687e988 4042 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
4043 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4044 /* Limited by application or receiver window. */
d254bcdb
IJ
4045 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4046 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 4047 if (win_used < tp->snd_cwnd) {
6687e988 4048 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
4049 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4050 }
4051 tp->snd_cwnd_used = 0;
4052 }
4053 tp->snd_cwnd_stamp = tcp_time_stamp;
4054}
4055
9e412ba7 4056static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 4057{
9e412ba7
IJ
4058 struct tcp_sock *tp = tcp_sk(sk);
4059
0d9901df
DM
4060 /* If the user specified a specific send buffer setting, do
4061 * not modify it.
4062 */
4063 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4064 return 0;
4065
4066 /* If we are under global TCP memory pressure, do not expand. */
4067 if (tcp_memory_pressure)
4068 return 0;
4069
4070 /* If we are under soft global TCP memory pressure, do not expand. */
4071 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4072 return 0;
4073
4074 /* If we filled the congestion window, do not expand. */
4075 if (tp->packets_out >= tp->snd_cwnd)
4076 return 0;
4077
4078 return 1;
4079}
1da177e4
LT
4080
4081/* When incoming ACK allowed to free some skb from write_queue,
4082 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4083 * on the exit from tcp input handler.
4084 *
4085 * PROBLEM: sndbuf expansion does not work well with largesend.
4086 */
4087static void tcp_new_space(struct sock *sk)
4088{
4089 struct tcp_sock *tp = tcp_sk(sk);
4090
9e412ba7 4091 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 4092 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
4093 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4094 demanded = max_t(unsigned int, tp->snd_cwnd,
4095 tp->reordering + 1);
4096 sndmem *= 2*demanded;
4097 if (sndmem > sk->sk_sndbuf)
4098 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4099 tp->snd_cwnd_stamp = tcp_time_stamp;
4100 }
4101
4102 sk->sk_write_space(sk);
4103}
4104
40efc6fa 4105static void tcp_check_space(struct sock *sk)
1da177e4
LT
4106{
4107 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4108 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4109 if (sk->sk_socket &&
4110 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4111 tcp_new_space(sk);
4112 }
4113}
4114
9e412ba7 4115static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 4116{
9e412ba7 4117 tcp_push_pending_frames(sk);
1da177e4
LT
4118 tcp_check_space(sk);
4119}
4120
4121/*
4122 * Check if sending an ack is needed.
4123 */
4124static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4125{
4126 struct tcp_sock *tp = tcp_sk(sk);
4127
4128 /* More than one full frame received... */
463c84b9 4129 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4130 /* ... and right edge of window advances far enough.
4131 * (tcp_recvmsg() will send ACK otherwise). Or...
4132 */
4133 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4134 /* We ACK each frame or... */
463c84b9 4135 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4136 /* We have out of order data. */
4137 (ofo_possible &&
4138 skb_peek(&tp->out_of_order_queue))) {
4139 /* Then ack it now */
4140 tcp_send_ack(sk);
4141 } else {
4142 /* Else, send delayed ack. */
4143 tcp_send_delayed_ack(sk);
4144 }
4145}
4146
40efc6fa 4147static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4148{
463c84b9 4149 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4150 /* We sent a data segment already. */
4151 return;
4152 }
4153 __tcp_ack_snd_check(sk, 1);
4154}
4155
4156/*
4157 * This routine is only called when we have urgent data
caa20d9a 4158 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4159 * moved inline now as tcp_urg is only called from one
4160 * place. We handle URGent data wrong. We have to - as
4161 * BSD still doesn't use the correction from RFC961.
4162 * For 1003.1g we should support a new option TCP_STDURG to permit
4163 * either form (or just set the sysctl tcp_stdurg).
4164 */
e905a9ed 4165
1da177e4
LT
4166static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4167{
4168 struct tcp_sock *tp = tcp_sk(sk);
4169 u32 ptr = ntohs(th->urg_ptr);
4170
4171 if (ptr && !sysctl_tcp_stdurg)
4172 ptr--;
4173 ptr += ntohl(th->seq);
4174
4175 /* Ignore urgent data that we've already seen and read. */
4176 if (after(tp->copied_seq, ptr))
4177 return;
4178
4179 /* Do not replay urg ptr.
4180 *
4181 * NOTE: interesting situation not covered by specs.
4182 * Misbehaving sender may send urg ptr, pointing to segment,
4183 * which we already have in ofo queue. We are not able to fetch
4184 * such data and will stay in TCP_URG_NOTYET until will be eaten
4185 * by recvmsg(). Seems, we are not obliged to handle such wicked
4186 * situations. But it is worth to think about possibility of some
4187 * DoSes using some hypothetical application level deadlock.
4188 */
4189 if (before(ptr, tp->rcv_nxt))
4190 return;
4191
4192 /* Do we already have a newer (or duplicate) urgent pointer? */
4193 if (tp->urg_data && !after(ptr, tp->urg_seq))
4194 return;
4195
4196 /* Tell the world about our new urgent pointer. */
4197 sk_send_sigurg(sk);
4198
4199 /* We may be adding urgent data when the last byte read was
4200 * urgent. To do this requires some care. We cannot just ignore
4201 * tp->copied_seq since we would read the last urgent byte again
4202 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4203 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4204 *
4205 * NOTE. Double Dutch. Rendering to plain English: author of comment
4206 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4207 * and expect that both A and B disappear from stream. This is _wrong_.
4208 * Though this happens in BSD with high probability, this is occasional.
4209 * Any application relying on this is buggy. Note also, that fix "works"
4210 * only in this artificial test. Insert some normal data between A and B and we will
4211 * decline of BSD again. Verdict: it is better to remove to trap
4212 * buggy users.
4213 */
4214 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4215 !sock_flag(sk, SOCK_URGINLINE) &&
4216 tp->copied_seq != tp->rcv_nxt) {
4217 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4218 tp->copied_seq++;
4219 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4220 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4221 __kfree_skb(skb);
4222 }
4223 }
4224
4225 tp->urg_data = TCP_URG_NOTYET;
4226 tp->urg_seq = ptr;
4227
4228 /* Disable header prediction. */
4229 tp->pred_flags = 0;
4230}
4231
4232/* This is the 'fast' part of urgent handling. */
4233static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4234{
4235 struct tcp_sock *tp = tcp_sk(sk);
4236
4237 /* Check if we get a new urgent pointer - normally not. */
4238 if (th->urg)
4239 tcp_check_urg(sk,th);
4240
4241 /* Do we wait for any urgent data? - normally not... */
4242 if (tp->urg_data == TCP_URG_NOTYET) {
4243 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4244 th->syn;
4245
e905a9ed 4246 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4247 if (ptr < skb->len) {
4248 u8 tmp;
4249 if (skb_copy_bits(skb, ptr, &tmp, 1))
4250 BUG();
4251 tp->urg_data = TCP_URG_VALID | tmp;
4252 if (!sock_flag(sk, SOCK_DEAD))
4253 sk->sk_data_ready(sk, 0);
4254 }
4255 }
4256}
4257
4258static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4259{
4260 struct tcp_sock *tp = tcp_sk(sk);
4261 int chunk = skb->len - hlen;
4262 int err;
4263
4264 local_bh_enable();
60476372 4265 if (skb_csum_unnecessary(skb))
1da177e4
LT
4266 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4267 else
4268 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4269 tp->ucopy.iov);
4270
4271 if (!err) {
4272 tp->ucopy.len -= chunk;
4273 tp->copied_seq += chunk;
4274 tcp_rcv_space_adjust(sk);
4275 }
4276
4277 local_bh_disable();
4278 return err;
4279}
4280
b51655b9 4281static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4282{
b51655b9 4283 __sum16 result;
1da177e4
LT
4284
4285 if (sock_owned_by_user(sk)) {
4286 local_bh_enable();
4287 result = __tcp_checksum_complete(skb);
4288 local_bh_disable();
4289 } else {
4290 result = __tcp_checksum_complete(skb);
4291 }
4292 return result;
4293}
4294
40efc6fa 4295static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4296{
60476372 4297 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4298 __tcp_checksum_complete_user(sk, skb);
4299}
4300
1a2449a8
CL
4301#ifdef CONFIG_NET_DMA
4302static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4303{
4304 struct tcp_sock *tp = tcp_sk(sk);
4305 int chunk = skb->len - hlen;
4306 int dma_cookie;
4307 int copied_early = 0;
4308
4309 if (tp->ucopy.wakeup)
e905a9ed 4310 return 0;
1a2449a8
CL
4311
4312 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4313 tp->ucopy.dma_chan = get_softnet_dma();
4314
60476372 4315 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4316
4317 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4318 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4319
4320 if (dma_cookie < 0)
4321 goto out;
4322
4323 tp->ucopy.dma_cookie = dma_cookie;
4324 copied_early = 1;
4325
4326 tp->ucopy.len -= chunk;
4327 tp->copied_seq += chunk;
4328 tcp_rcv_space_adjust(sk);
4329
4330 if ((tp->ucopy.len == 0) ||
aa8223c7 4331 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4332 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4333 tp->ucopy.wakeup = 1;
4334 sk->sk_data_ready(sk, 0);
4335 }
4336 } else if (chunk > 0) {
4337 tp->ucopy.wakeup = 1;
4338 sk->sk_data_ready(sk, 0);
4339 }
4340out:
4341 return copied_early;
4342}
4343#endif /* CONFIG_NET_DMA */
4344
1da177e4 4345/*
e905a9ed 4346 * TCP receive function for the ESTABLISHED state.
1da177e4 4347 *
e905a9ed 4348 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4349 * disabled when:
4350 * - A zero window was announced from us - zero window probing
e905a9ed 4351 * is only handled properly in the slow path.
1da177e4
LT
4352 * - Out of order segments arrived.
4353 * - Urgent data is expected.
4354 * - There is no buffer space left
4355 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4356 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4357 * - Data is sent in both directions. Fast path only supports pure senders
4358 * or pure receivers (this means either the sequence number or the ack
4359 * value must stay constant)
4360 * - Unexpected TCP option.
4361 *
e905a9ed 4362 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4363 * receive procedure patterned after RFC793 to handle all cases.
4364 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4365 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4366 * tcp_data_queue when everything is OK.
4367 */
4368int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4369 struct tcphdr *th, unsigned len)
4370{
4371 struct tcp_sock *tp = tcp_sk(sk);
4372
4373 /*
4374 * Header prediction.
e905a9ed 4375 * The code loosely follows the one in the famous
1da177e4 4376 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4377 *
4378 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4379 * on a device interrupt, to call tcp_recv function
4380 * on the receive process context and checksum and copy
4381 * the buffer to user space. smart...
4382 *
e905a9ed 4383 * Our current scheme is not silly either but we take the
1da177e4
LT
4384 * extra cost of the net_bh soft interrupt processing...
4385 * We do checksum and copy also but from device to kernel.
4386 */
4387
4388 tp->rx_opt.saw_tstamp = 0;
4389
4390 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4391 * if header_prediction is to be made
1da177e4
LT
4392 * 'S' will always be tp->tcp_header_len >> 2
4393 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4394 * turn it off (when there are holes in the receive
1da177e4
LT
4395 * space for instance)
4396 * PSH flag is ignored.
4397 */
4398
4399 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4400 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4401 int tcp_header_len = tp->tcp_header_len;
4402
4403 /* Timestamp header prediction: tcp_header_len
4404 * is automatically equal to th->doff*4 due to pred_flags
4405 * match.
4406 */
4407
4408 /* Check timestamp */
4409 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4410 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4411
4412 /* No? Slow path! */
4f3608b7 4413 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4414 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4415 goto slow_path;
4416
4417 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4418 ++ptr;
1da177e4
LT
4419 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4420 ++ptr;
4421 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4422
4423 /* If PAWS failed, check it more carefully in slow path */
4424 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4425 goto slow_path;
4426
4427 /* DO NOT update ts_recent here, if checksum fails
4428 * and timestamp was corrupted part, it will result
4429 * in a hung connection since we will drop all
4430 * future packets due to the PAWS test.
4431 */
4432 }
4433
4434 if (len <= tcp_header_len) {
4435 /* Bulk data transfer: sender */
4436 if (len == tcp_header_len) {
4437 /* Predicted packet is in window by definition.
4438 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4439 * Hence, check seq<=rcv_wup reduces to:
4440 */
4441 if (tcp_header_len ==
4442 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4443 tp->rcv_nxt == tp->rcv_wup)
4444 tcp_store_ts_recent(tp);
4445
1da177e4
LT
4446 /* We know that such packets are checksummed
4447 * on entry.
4448 */
4449 tcp_ack(sk, skb, 0);
e905a9ed 4450 __kfree_skb(skb);
9e412ba7 4451 tcp_data_snd_check(sk);
1da177e4
LT
4452 return 0;
4453 } else { /* Header too small */
4454 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4455 goto discard;
4456 }
4457 } else {
4458 int eaten = 0;
1a2449a8 4459 int copied_early = 0;
1da177e4 4460
1a2449a8
CL
4461 if (tp->copied_seq == tp->rcv_nxt &&
4462 len - tcp_header_len <= tp->ucopy.len) {
4463#ifdef CONFIG_NET_DMA
4464 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4465 copied_early = 1;
4466 eaten = 1;
4467 }
4468#endif
4469 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4470 __set_current_state(TASK_RUNNING);
1da177e4 4471
1a2449a8
CL
4472 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4473 eaten = 1;
4474 }
4475 if (eaten) {
1da177e4
LT
4476 /* Predicted packet is in window by definition.
4477 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4478 * Hence, check seq<=rcv_wup reduces to:
4479 */
4480 if (tcp_header_len ==
4481 (sizeof(struct tcphdr) +
4482 TCPOLEN_TSTAMP_ALIGNED) &&
4483 tp->rcv_nxt == tp->rcv_wup)
4484 tcp_store_ts_recent(tp);
4485
463c84b9 4486 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4487
4488 __skb_pull(skb, tcp_header_len);
4489 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4490 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4491 }
1a2449a8
CL
4492 if (copied_early)
4493 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4494 }
4495 if (!eaten) {
4496 if (tcp_checksum_complete_user(sk, skb))
4497 goto csum_error;
4498
4499 /* Predicted packet is in window by definition.
4500 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4501 * Hence, check seq<=rcv_wup reduces to:
4502 */
4503 if (tcp_header_len ==
4504 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4505 tp->rcv_nxt == tp->rcv_wup)
4506 tcp_store_ts_recent(tp);
4507
463c84b9 4508 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4509
4510 if ((int)skb->truesize > sk->sk_forward_alloc)
4511 goto step5;
4512
4513 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4514
4515 /* Bulk data transfer: receiver */
4516 __skb_pull(skb,tcp_header_len);
4517 __skb_queue_tail(&sk->sk_receive_queue, skb);
4518 sk_stream_set_owner_r(skb, sk);
4519 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4520 }
4521
9e412ba7 4522 tcp_event_data_recv(sk, skb);
1da177e4
LT
4523
4524 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4525 /* Well, only one small jumplet in fast path... */
4526 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4527 tcp_data_snd_check(sk);
463c84b9 4528 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4529 goto no_ack;
4530 }
4531
31432412 4532 __tcp_ack_snd_check(sk, 0);
1da177e4 4533no_ack:
1a2449a8
CL
4534#ifdef CONFIG_NET_DMA
4535 if (copied_early)
4536 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4537 else
4538#endif
1da177e4
LT
4539 if (eaten)
4540 __kfree_skb(skb);
4541 else
4542 sk->sk_data_ready(sk, 0);
4543 return 0;
4544 }
4545 }
4546
4547slow_path:
4548 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4549 goto csum_error;
4550
4551 /*
4552 * RFC1323: H1. Apply PAWS check first.
4553 */
4554 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4555 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4556 if (!th->rst) {
4557 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4558 tcp_send_dupack(sk, skb);
4559 goto discard;
4560 }
4561 /* Resets are accepted even if PAWS failed.
4562
4563 ts_recent update must be made after we are sure
4564 that the packet is in window.
4565 */
4566 }
4567
4568 /*
4569 * Standard slow path.
4570 */
4571
4572 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4573 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4574 * (RST) segments are validated by checking their SEQ-fields."
4575 * And page 69: "If an incoming segment is not acceptable,
4576 * an acknowledgment should be sent in reply (unless the RST bit
4577 * is set, if so drop the segment and return)".
4578 */
4579 if (!th->rst)
4580 tcp_send_dupack(sk, skb);
4581 goto discard;
4582 }
4583
2de979bd 4584 if (th->rst) {
1da177e4
LT
4585 tcp_reset(sk);
4586 goto discard;
4587 }
4588
4589 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4590
4591 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4592 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4593 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4594 tcp_reset(sk);
4595 return 1;
4596 }
4597
4598step5:
2de979bd 4599 if (th->ack)
1da177e4
LT
4600 tcp_ack(sk, skb, FLAG_SLOWPATH);
4601
463c84b9 4602 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4603
4604 /* Process urgent data. */
4605 tcp_urg(sk, skb, th);
4606
4607 /* step 7: process the segment text */
4608 tcp_data_queue(sk, skb);
4609
9e412ba7 4610 tcp_data_snd_check(sk);
1da177e4
LT
4611 tcp_ack_snd_check(sk);
4612 return 0;
4613
4614csum_error:
4615 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4616
4617discard:
4618 __kfree_skb(skb);
4619 return 0;
4620}
4621
4622static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4623 struct tcphdr *th, unsigned len)
4624{
4625 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4626 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4627 int saved_clamp = tp->rx_opt.mss_clamp;
4628
4629 tcp_parse_options(skb, &tp->rx_opt, 0);
4630
4631 if (th->ack) {
4632 /* rfc793:
4633 * "If the state is SYN-SENT then
4634 * first check the ACK bit
4635 * If the ACK bit is set
4636 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4637 * a reset (unless the RST bit is set, if so drop
4638 * the segment and return)"
4639 *
4640 * We do not send data with SYN, so that RFC-correct
4641 * test reduces to:
4642 */
4643 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4644 goto reset_and_undo;
4645
4646 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4647 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4648 tcp_time_stamp)) {
4649 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4650 goto reset_and_undo;
4651 }
4652
4653 /* Now ACK is acceptable.
4654 *
4655 * "If the RST bit is set
4656 * If the ACK was acceptable then signal the user "error:
4657 * connection reset", drop the segment, enter CLOSED state,
4658 * delete TCB, and return."
4659 */
4660
4661 if (th->rst) {
4662 tcp_reset(sk);
4663 goto discard;
4664 }
4665
4666 /* rfc793:
4667 * "fifth, if neither of the SYN or RST bits is set then
4668 * drop the segment and return."
4669 *
4670 * See note below!
4671 * --ANK(990513)
4672 */
4673 if (!th->syn)
4674 goto discard_and_undo;
4675
4676 /* rfc793:
4677 * "If the SYN bit is on ...
4678 * are acceptable then ...
4679 * (our SYN has been ACKed), change the connection
4680 * state to ESTABLISHED..."
4681 */
4682
4683 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4684
4685 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4686 tcp_ack(sk, skb, FLAG_SLOWPATH);
4687
4688 /* Ok.. it's good. Set up sequence numbers and
4689 * move to established.
4690 */
4691 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4692 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4693
4694 /* RFC1323: The window in SYN & SYN/ACK segments is
4695 * never scaled.
4696 */
4697 tp->snd_wnd = ntohs(th->window);
4698 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4699
4700 if (!tp->rx_opt.wscale_ok) {
4701 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4702 tp->window_clamp = min(tp->window_clamp, 65535U);
4703 }
4704
4705 if (tp->rx_opt.saw_tstamp) {
4706 tp->rx_opt.tstamp_ok = 1;
4707 tp->tcp_header_len =
4708 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4709 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4710 tcp_store_ts_recent(tp);
4711 } else {
4712 tp->tcp_header_len = sizeof(struct tcphdr);
4713 }
4714
e60402d0
IJ
4715 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4716 tcp_enable_fack(tp);
1da177e4 4717
5d424d5a 4718 tcp_mtup_init(sk);
d83d8461 4719 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4720 tcp_initialize_rcv_mss(sk);
4721
4722 /* Remember, tcp_poll() does not lock socket!
4723 * Change state from SYN-SENT only after copied_seq
4724 * is initialized. */
4725 tp->copied_seq = tp->rcv_nxt;
e16aa207 4726 smp_mb();
1da177e4
LT
4727 tcp_set_state(sk, TCP_ESTABLISHED);
4728
6b877699
VY
4729 security_inet_conn_established(sk, skb);
4730
1da177e4 4731 /* Make sure socket is routed, for correct metrics. */
8292a17a 4732 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4733
4734 tcp_init_metrics(sk);
4735
6687e988 4736 tcp_init_congestion_control(sk);
317a76f9 4737
1da177e4
LT
4738 /* Prevent spurious tcp_cwnd_restart() on first data
4739 * packet.
4740 */
4741 tp->lsndtime = tcp_time_stamp;
4742
4743 tcp_init_buffer_space(sk);
4744
4745 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4746 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4747
4748 if (!tp->rx_opt.snd_wscale)
4749 __tcp_fast_path_on(tp, tp->snd_wnd);
4750 else
4751 tp->pred_flags = 0;
4752
4753 if (!sock_flag(sk, SOCK_DEAD)) {
4754 sk->sk_state_change(sk);
4755 sk_wake_async(sk, 0, POLL_OUT);
4756 }
4757
295f7324
ACM
4758 if (sk->sk_write_pending ||
4759 icsk->icsk_accept_queue.rskq_defer_accept ||
4760 icsk->icsk_ack.pingpong) {
1da177e4
LT
4761 /* Save one ACK. Data will be ready after
4762 * several ticks, if write_pending is set.
4763 *
4764 * It may be deleted, but with this feature tcpdumps
4765 * look so _wonderfully_ clever, that I was not able
4766 * to stand against the temptation 8) --ANK
4767 */
463c84b9 4768 inet_csk_schedule_ack(sk);
295f7324
ACM
4769 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4770 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4771 tcp_incr_quickack(sk);
4772 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4773 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4774 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4775
4776discard:
4777 __kfree_skb(skb);
4778 return 0;
4779 } else {
4780 tcp_send_ack(sk);
4781 }
4782 return -1;
4783 }
4784
4785 /* No ACK in the segment */
4786
4787 if (th->rst) {
4788 /* rfc793:
4789 * "If the RST bit is set
4790 *
4791 * Otherwise (no ACK) drop the segment and return."
4792 */
4793
4794 goto discard_and_undo;
4795 }
4796
4797 /* PAWS check. */
4798 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4799 goto discard_and_undo;
4800
4801 if (th->syn) {
4802 /* We see SYN without ACK. It is attempt of
4803 * simultaneous connect with crossed SYNs.
4804 * Particularly, it can be connect to self.
4805 */
4806 tcp_set_state(sk, TCP_SYN_RECV);
4807
4808 if (tp->rx_opt.saw_tstamp) {
4809 tp->rx_opt.tstamp_ok = 1;
4810 tcp_store_ts_recent(tp);
4811 tp->tcp_header_len =
4812 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4813 } else {
4814 tp->tcp_header_len = sizeof(struct tcphdr);
4815 }
4816
4817 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4818 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4819
4820 /* RFC1323: The window in SYN & SYN/ACK segments is
4821 * never scaled.
4822 */
4823 tp->snd_wnd = ntohs(th->window);
4824 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4825 tp->max_window = tp->snd_wnd;
4826
4827 TCP_ECN_rcv_syn(tp, th);
1da177e4 4828
5d424d5a 4829 tcp_mtup_init(sk);
d83d8461 4830 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4831 tcp_initialize_rcv_mss(sk);
4832
4833
4834 tcp_send_synack(sk);
4835#if 0
4836 /* Note, we could accept data and URG from this segment.
4837 * There are no obstacles to make this.
4838 *
4839 * However, if we ignore data in ACKless segments sometimes,
4840 * we have no reasons to accept it sometimes.
4841 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4842 * is not flawless. So, discard packet for sanity.
4843 * Uncomment this return to process the data.
4844 */
4845 return -1;
4846#else
4847 goto discard;
4848#endif
4849 }
4850 /* "fifth, if neither of the SYN or RST bits is set then
4851 * drop the segment and return."
4852 */
4853
4854discard_and_undo:
4855 tcp_clear_options(&tp->rx_opt);
4856 tp->rx_opt.mss_clamp = saved_clamp;
4857 goto discard;
4858
4859reset_and_undo:
4860 tcp_clear_options(&tp->rx_opt);
4861 tp->rx_opt.mss_clamp = saved_clamp;
4862 return 1;
4863}
4864
4865
4866/*
4867 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4868 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4869 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4870 * address independent.
4871 */
e905a9ed 4872
1da177e4
LT
4873int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4874 struct tcphdr *th, unsigned len)
4875{
4876 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4877 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4878 int queued = 0;
4879
4880 tp->rx_opt.saw_tstamp = 0;
4881
4882 switch (sk->sk_state) {
4883 case TCP_CLOSE:
4884 goto discard;
4885
4886 case TCP_LISTEN:
2de979bd 4887 if (th->ack)
1da177e4
LT
4888 return 1;
4889
2de979bd 4890 if (th->rst)
1da177e4
LT
4891 goto discard;
4892
2de979bd 4893 if (th->syn) {
8292a17a 4894 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4895 return 1;
4896
e905a9ed
YH
4897 /* Now we have several options: In theory there is
4898 * nothing else in the frame. KA9Q has an option to
1da177e4 4899 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4900 * syn up to the [to be] advertised window and
4901 * Solaris 2.1 gives you a protocol error. For now
4902 * we just ignore it, that fits the spec precisely
1da177e4
LT
4903 * and avoids incompatibilities. It would be nice in
4904 * future to drop through and process the data.
4905 *
e905a9ed 4906 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4907 * queue this data.
4908 * But, this leaves one open to an easy denial of
e905a9ed 4909 * service attack, and SYN cookies can't defend
1da177e4 4910 * against this problem. So, we drop the data
fb7e2399
MN
4911 * in the interest of security over speed unless
4912 * it's still in use.
1da177e4 4913 */
fb7e2399
MN
4914 kfree_skb(skb);
4915 return 0;
1da177e4
LT
4916 }
4917 goto discard;
4918
4919 case TCP_SYN_SENT:
1da177e4
LT
4920 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4921 if (queued >= 0)
4922 return queued;
4923
4924 /* Do step6 onward by hand. */
4925 tcp_urg(sk, skb, th);
4926 __kfree_skb(skb);
9e412ba7 4927 tcp_data_snd_check(sk);
1da177e4
LT
4928 return 0;
4929 }
4930
4931 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4932 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4933 if (!th->rst) {
4934 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4935 tcp_send_dupack(sk, skb);
4936 goto discard;
4937 }
4938 /* Reset is accepted even if it did not pass PAWS. */
4939 }
4940
4941 /* step 1: check sequence number */
4942 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4943 if (!th->rst)
4944 tcp_send_dupack(sk, skb);
4945 goto discard;
4946 }
4947
4948 /* step 2: check RST bit */
2de979bd 4949 if (th->rst) {
1da177e4
LT
4950 tcp_reset(sk);
4951 goto discard;
4952 }
4953
4954 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4955
4956 /* step 3: check security and precedence [ignored] */
4957
4958 /* step 4:
4959 *
4960 * Check for a SYN in window.
4961 */
4962 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4963 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4964 tcp_reset(sk);
4965 return 1;
4966 }
4967
4968 /* step 5: check the ACK field */
4969 if (th->ack) {
4970 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4971
2de979bd 4972 switch (sk->sk_state) {
1da177e4
LT
4973 case TCP_SYN_RECV:
4974 if (acceptable) {
4975 tp->copied_seq = tp->rcv_nxt;
e16aa207 4976 smp_mb();
1da177e4
LT
4977 tcp_set_state(sk, TCP_ESTABLISHED);
4978 sk->sk_state_change(sk);
4979
4980 /* Note, that this wakeup is only for marginal
4981 * crossed SYN case. Passively open sockets
4982 * are not waked up, because sk->sk_sleep ==
4983 * NULL and sk->sk_socket == NULL.
4984 */
4985 if (sk->sk_socket) {
4986 sk_wake_async(sk,0,POLL_OUT);
4987 }
4988
4989 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4990 tp->snd_wnd = ntohs(th->window) <<
4991 tp->rx_opt.snd_wscale;
4992 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4993 TCP_SKB_CB(skb)->seq);
4994
4995 /* tcp_ack considers this ACK as duplicate
4996 * and does not calculate rtt.
4997 * Fix it at least with timestamps.
4998 */
4999 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5000 !tp->srtt)
2d2abbab 5001 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
5002
5003 if (tp->rx_opt.tstamp_ok)
5004 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5005
5006 /* Make sure socket is routed, for
5007 * correct metrics.
5008 */
8292a17a 5009 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
5010
5011 tcp_init_metrics(sk);
5012
6687e988 5013 tcp_init_congestion_control(sk);
317a76f9 5014
1da177e4
LT
5015 /* Prevent spurious tcp_cwnd_restart() on
5016 * first data packet.
5017 */
5018 tp->lsndtime = tcp_time_stamp;
5019
5d424d5a 5020 tcp_mtup_init(sk);
1da177e4
LT
5021 tcp_initialize_rcv_mss(sk);
5022 tcp_init_buffer_space(sk);
5023 tcp_fast_path_on(tp);
5024 } else {
5025 return 1;
5026 }
5027 break;
5028
5029 case TCP_FIN_WAIT1:
5030 if (tp->snd_una == tp->write_seq) {
5031 tcp_set_state(sk, TCP_FIN_WAIT2);
5032 sk->sk_shutdown |= SEND_SHUTDOWN;
5033 dst_confirm(sk->sk_dst_cache);
5034
5035 if (!sock_flag(sk, SOCK_DEAD))
5036 /* Wake up lingering close() */
5037 sk->sk_state_change(sk);
5038 else {
5039 int tmo;
5040
5041 if (tp->linger2 < 0 ||
5042 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5043 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5044 tcp_done(sk);
5045 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5046 return 1;
5047 }
5048
463c84b9 5049 tmo = tcp_fin_time(sk);
1da177e4 5050 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 5051 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
5052 } else if (th->fin || sock_owned_by_user(sk)) {
5053 /* Bad case. We could lose such FIN otherwise.
5054 * It is not a big problem, but it looks confusing
5055 * and not so rare event. We still can lose it now,
5056 * if it spins in bh_lock_sock(), but it is really
5057 * marginal case.
5058 */
463c84b9 5059 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
5060 } else {
5061 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5062 goto discard;
5063 }
5064 }
5065 }
5066 break;
5067
5068 case TCP_CLOSING:
5069 if (tp->snd_una == tp->write_seq) {
5070 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5071 goto discard;
5072 }
5073 break;
5074
5075 case TCP_LAST_ACK:
5076 if (tp->snd_una == tp->write_seq) {
5077 tcp_update_metrics(sk);
5078 tcp_done(sk);
5079 goto discard;
5080 }
5081 break;
5082 }
5083 } else
5084 goto discard;
5085
5086 /* step 6: check the URG bit */
5087 tcp_urg(sk, skb, th);
5088
5089 /* step 7: process the segment text */
5090 switch (sk->sk_state) {
5091 case TCP_CLOSE_WAIT:
5092 case TCP_CLOSING:
5093 case TCP_LAST_ACK:
5094 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5095 break;
5096 case TCP_FIN_WAIT1:
5097 case TCP_FIN_WAIT2:
5098 /* RFC 793 says to queue data in these states,
e905a9ed 5099 * RFC 1122 says we MUST send a reset.
1da177e4
LT
5100 * BSD 4.4 also does reset.
5101 */
5102 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5103 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5104 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5105 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5106 tcp_reset(sk);
5107 return 1;
5108 }
5109 }
5110 /* Fall through */
e905a9ed 5111 case TCP_ESTABLISHED:
1da177e4
LT
5112 tcp_data_queue(sk, skb);
5113 queued = 1;
5114 break;
5115 }
5116
5117 /* tcp_data could move socket to TIME-WAIT */
5118 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5119 tcp_data_snd_check(sk);
1da177e4
LT
5120 tcp_ack_snd_check(sk);
5121 }
5122
e905a9ed 5123 if (!queued) {
1da177e4
LT
5124discard:
5125 __kfree_skb(skb);
5126 }
5127 return 0;
5128}
5129
5130EXPORT_SYMBOL(sysctl_tcp_ecn);
5131EXPORT_SYMBOL(sysctl_tcp_reordering);
5132EXPORT_SYMBOL(tcp_parse_options);
5133EXPORT_SYMBOL(tcp_rcv_established);
5134EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5135EXPORT_SYMBOL(tcp_initialize_rcv_mss);