]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
percpu_ida: add an API to return free tags
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
6c954667 33#include <linux/pm_runtime.h>
55782138
LZ
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/block.h>
1da177e4 37
8324aa91 38#include "blk.h"
5efd6113 39#include "blk-cgroup.h"
8324aa91 40
d07335e5 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 45
a73f730d
TH
46DEFINE_IDA(blk_queue_ida);
47
1da177e4
LT
48/*
49 * For the allocated request tables
50 */
5ece6c52 51static struct kmem_cache *request_cachep;
1da177e4
LT
52
53/*
54 * For queue allocation
55 */
6728cb0e 56struct kmem_cache *blk_requestq_cachep;
1da177e4 57
1da177e4
LT
58/*
59 * Controlling structure to kblockd
60 */
ff856bad 61static struct workqueue_struct *kblockd_workqueue;
1da177e4 62
26b8256e
JA
63static void drive_stat_acct(struct request *rq, int new_io)
64{
28f13702 65 struct hd_struct *part;
26b8256e 66 int rw = rq_data_dir(rq);
c9959059 67 int cpu;
26b8256e 68
c2553b58 69 if (!blk_do_io_stat(rq))
26b8256e
JA
70 return;
71
074a7aca 72 cpu = part_stat_lock();
c9959059 73
09e099d4
JM
74 if (!new_io) {
75 part = rq->part;
074a7aca 76 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 79 if (!hd_struct_try_get(part)) {
09e099d4
JM
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
6c23a968 89 hd_struct_get(part);
09e099d4 90 }
074a7aca 91 part_round_stats(cpu, part);
316d315b 92 part_inc_in_flight(part, rw);
09e099d4 93 rq->part = part;
26b8256e 94 }
e71bf0d0 95
074a7aca 96 part_stat_unlock();
26b8256e
JA
97}
98
8324aa91 99void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
1da177e4
LT
114/**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124{
125 struct backing_dev_info *ret = NULL;
165125e1 126 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131}
1da177e4
LT
132EXPORT_SYMBOL(blk_get_backing_dev_info);
133
2a4aa30c 134void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 135{
1afb20f3
FT
136 memset(rq, 0, sizeof(*rq));
137
1da177e4 138 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 139 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 140 rq->cpu = -1;
63a71386 141 rq->q = q;
a2dec7b3 142 rq->__sector = (sector_t) -1;
2e662b65
JA
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 145 rq->cmd = rq->__cmd;
e2494e1b 146 rq->cmd_len = BLK_MAX_CDB;
63a71386 147 rq->tag = -1;
b243ddcb 148 rq->start_time = jiffies;
9195291e 149 set_start_time_ns(rq);
09e099d4 150 rq->part = NULL;
1da177e4 151}
2a4aa30c 152EXPORT_SYMBOL(blk_rq_init);
1da177e4 153
5bb23a68
N
154static void req_bio_endio(struct request *rq, struct bio *bio,
155 unsigned int nbytes, int error)
1da177e4 156{
143a87f4
TH
157 if (error)
158 clear_bit(BIO_UPTODATE, &bio->bi_flags);
159 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
160 error = -EIO;
797e7dbb 161
143a87f4
TH
162 if (unlikely(rq->cmd_flags & REQ_QUIET))
163 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 164
f79ea416 165 bio_advance(bio, nbytes);
7ba1ba12 166
143a87f4
TH
167 /* don't actually finish bio if it's part of flush sequence */
168 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
169 bio_endio(bio, error);
1da177e4 170}
1da177e4 171
1da177e4
LT
172void blk_dump_rq_flags(struct request *rq, char *msg)
173{
174 int bit;
175
5953316d 176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 178 (unsigned long long) rq->cmd_flags);
1da177e4 179
83096ebf
TH
180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
181 (unsigned long long)blk_rq_pos(rq),
182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 185
33659ebb 186 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 187 printk(KERN_INFO " cdb: ");
d34c87e4 188 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
189 printk("%02x ", rq->cmd[bit]);
190 printk("\n");
191 }
192}
1da177e4
LT
193EXPORT_SYMBOL(blk_dump_rq_flags);
194
3cca6dc1 195static void blk_delay_work(struct work_struct *work)
1da177e4 196{
3cca6dc1 197 struct request_queue *q;
1da177e4 198
3cca6dc1
JA
199 q = container_of(work, struct request_queue, delay_work.work);
200 spin_lock_irq(q->queue_lock);
24ecfbe2 201 __blk_run_queue(q);
3cca6dc1 202 spin_unlock_irq(q->queue_lock);
1da177e4 203}
1da177e4
LT
204
205/**
3cca6dc1
JA
206 * blk_delay_queue - restart queueing after defined interval
207 * @q: The &struct request_queue in question
208 * @msecs: Delay in msecs
1da177e4
LT
209 *
210 * Description:
3cca6dc1
JA
211 * Sometimes queueing needs to be postponed for a little while, to allow
212 * resources to come back. This function will make sure that queueing is
70460571 213 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
214 */
215void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 216{
70460571
BVA
217 if (likely(!blk_queue_dead(q)))
218 queue_delayed_work(kblockd_workqueue, &q->delay_work,
219 msecs_to_jiffies(msecs));
2ad8b1ef 220}
3cca6dc1 221EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 222
1da177e4
LT
223/**
224 * blk_start_queue - restart a previously stopped queue
165125e1 225 * @q: The &struct request_queue in question
1da177e4
LT
226 *
227 * Description:
228 * blk_start_queue() will clear the stop flag on the queue, and call
229 * the request_fn for the queue if it was in a stopped state when
230 * entered. Also see blk_stop_queue(). Queue lock must be held.
231 **/
165125e1 232void blk_start_queue(struct request_queue *q)
1da177e4 233{
a038e253
PBG
234 WARN_ON(!irqs_disabled());
235
75ad23bc 236 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 237 __blk_run_queue(q);
1da177e4 238}
1da177e4
LT
239EXPORT_SYMBOL(blk_start_queue);
240
241/**
242 * blk_stop_queue - stop a queue
165125e1 243 * @q: The &struct request_queue in question
1da177e4
LT
244 *
245 * Description:
246 * The Linux block layer assumes that a block driver will consume all
247 * entries on the request queue when the request_fn strategy is called.
248 * Often this will not happen, because of hardware limitations (queue
249 * depth settings). If a device driver gets a 'queue full' response,
250 * or if it simply chooses not to queue more I/O at one point, it can
251 * call this function to prevent the request_fn from being called until
252 * the driver has signalled it's ready to go again. This happens by calling
253 * blk_start_queue() to restart queue operations. Queue lock must be held.
254 **/
165125e1 255void blk_stop_queue(struct request_queue *q)
1da177e4 256{
136b5721 257 cancel_delayed_work(&q->delay_work);
75ad23bc 258 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
259}
260EXPORT_SYMBOL(blk_stop_queue);
261
262/**
263 * blk_sync_queue - cancel any pending callbacks on a queue
264 * @q: the queue
265 *
266 * Description:
267 * The block layer may perform asynchronous callback activity
268 * on a queue, such as calling the unplug function after a timeout.
269 * A block device may call blk_sync_queue to ensure that any
270 * such activity is cancelled, thus allowing it to release resources
59c51591 271 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
272 * that its ->make_request_fn will not re-add plugging prior to calling
273 * this function.
274 *
da527770
VG
275 * This function does not cancel any asynchronous activity arising
276 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 277 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 278 *
1da177e4
LT
279 */
280void blk_sync_queue(struct request_queue *q)
281{
70ed28b9 282 del_timer_sync(&q->timeout);
3cca6dc1 283 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
284}
285EXPORT_SYMBOL(blk_sync_queue);
286
c246e80d
BVA
287/**
288 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
289 * @q: The queue to run
290 *
291 * Description:
292 * Invoke request handling on a queue if there are any pending requests.
293 * May be used to restart request handling after a request has completed.
294 * This variant runs the queue whether or not the queue has been
295 * stopped. Must be called with the queue lock held and interrupts
296 * disabled. See also @blk_run_queue.
297 */
298inline void __blk_run_queue_uncond(struct request_queue *q)
299{
300 if (unlikely(blk_queue_dead(q)))
301 return;
302
24faf6f6
BVA
303 /*
304 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
305 * the queue lock internally. As a result multiple threads may be
306 * running such a request function concurrently. Keep track of the
307 * number of active request_fn invocations such that blk_drain_queue()
308 * can wait until all these request_fn calls have finished.
309 */
310 q->request_fn_active++;
c246e80d 311 q->request_fn(q);
24faf6f6 312 q->request_fn_active--;
c246e80d
BVA
313}
314
1da177e4 315/**
80a4b58e 316 * __blk_run_queue - run a single device queue
1da177e4 317 * @q: The queue to run
80a4b58e
JA
318 *
319 * Description:
320 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 321 * held and interrupts disabled.
1da177e4 322 */
24ecfbe2 323void __blk_run_queue(struct request_queue *q)
1da177e4 324{
a538cd03
TH
325 if (unlikely(blk_queue_stopped(q)))
326 return;
327
c246e80d 328 __blk_run_queue_uncond(q);
75ad23bc
NP
329}
330EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 331
24ecfbe2
CH
332/**
333 * blk_run_queue_async - run a single device queue in workqueue context
334 * @q: The queue to run
335 *
336 * Description:
337 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 338 * of us. The caller must hold the queue lock.
24ecfbe2
CH
339 */
340void blk_run_queue_async(struct request_queue *q)
341{
70460571 342 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 343 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 344}
c21e6beb 345EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 346
75ad23bc
NP
347/**
348 * blk_run_queue - run a single device queue
349 * @q: The queue to run
80a4b58e
JA
350 *
351 * Description:
352 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 353 * May be used to restart queueing when a request has completed.
75ad23bc
NP
354 */
355void blk_run_queue(struct request_queue *q)
356{
357 unsigned long flags;
358
359 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 360 __blk_run_queue(q);
1da177e4
LT
361 spin_unlock_irqrestore(q->queue_lock, flags);
362}
363EXPORT_SYMBOL(blk_run_queue);
364
165125e1 365void blk_put_queue(struct request_queue *q)
483f4afc
AV
366{
367 kobject_put(&q->kobj);
368}
d86e0e83 369EXPORT_SYMBOL(blk_put_queue);
483f4afc 370
e3c78ca5 371/**
807592a4 372 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 373 * @q: queue to drain
c9a929dd 374 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 375 *
c9a929dd
TH
376 * Drain requests from @q. If @drain_all is set, all requests are drained.
377 * If not, only ELVPRIV requests are drained. The caller is responsible
378 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 379 */
807592a4
BVA
380static void __blk_drain_queue(struct request_queue *q, bool drain_all)
381 __releases(q->queue_lock)
382 __acquires(q->queue_lock)
e3c78ca5 383{
458f27a9
AH
384 int i;
385
807592a4
BVA
386 lockdep_assert_held(q->queue_lock);
387
e3c78ca5 388 while (true) {
481a7d64 389 bool drain = false;
e3c78ca5 390
b855b04a
TH
391 /*
392 * The caller might be trying to drain @q before its
393 * elevator is initialized.
394 */
395 if (q->elevator)
396 elv_drain_elevator(q);
397
5efd6113 398 blkcg_drain_queue(q);
e3c78ca5 399
4eabc941
TH
400 /*
401 * This function might be called on a queue which failed
b855b04a
TH
402 * driver init after queue creation or is not yet fully
403 * active yet. Some drivers (e.g. fd and loop) get unhappy
404 * in such cases. Kick queue iff dispatch queue has
405 * something on it and @q has request_fn set.
4eabc941 406 */
b855b04a 407 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 408 __blk_run_queue(q);
c9a929dd 409
8a5ecdd4 410 drain |= q->nr_rqs_elvpriv;
24faf6f6 411 drain |= q->request_fn_active;
481a7d64
TH
412
413 /*
414 * Unfortunately, requests are queued at and tracked from
415 * multiple places and there's no single counter which can
416 * be drained. Check all the queues and counters.
417 */
418 if (drain_all) {
419 drain |= !list_empty(&q->queue_head);
420 for (i = 0; i < 2; i++) {
8a5ecdd4 421 drain |= q->nr_rqs[i];
481a7d64
TH
422 drain |= q->in_flight[i];
423 drain |= !list_empty(&q->flush_queue[i]);
424 }
425 }
e3c78ca5 426
481a7d64 427 if (!drain)
e3c78ca5 428 break;
807592a4
BVA
429
430 spin_unlock_irq(q->queue_lock);
431
e3c78ca5 432 msleep(10);
807592a4
BVA
433
434 spin_lock_irq(q->queue_lock);
e3c78ca5 435 }
458f27a9
AH
436
437 /*
438 * With queue marked dead, any woken up waiter will fail the
439 * allocation path, so the wakeup chaining is lost and we're
440 * left with hung waiters. We need to wake up those waiters.
441 */
442 if (q->request_fn) {
a051661c
TH
443 struct request_list *rl;
444
a051661c
TH
445 blk_queue_for_each_rl(rl, q)
446 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 wake_up_all(&rl->wait[i]);
458f27a9 448 }
e3c78ca5
TH
449}
450
d732580b
TH
451/**
452 * blk_queue_bypass_start - enter queue bypass mode
453 * @q: queue of interest
454 *
455 * In bypass mode, only the dispatch FIFO queue of @q is used. This
456 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 457 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
458 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459 * inside queue or RCU read lock.
d732580b
TH
460 */
461void blk_queue_bypass_start(struct request_queue *q)
462{
b82d4b19
TH
463 bool drain;
464
d732580b 465 spin_lock_irq(q->queue_lock);
b82d4b19 466 drain = !q->bypass_depth++;
d732580b
TH
467 queue_flag_set(QUEUE_FLAG_BYPASS, q);
468 spin_unlock_irq(q->queue_lock);
469
b82d4b19 470 if (drain) {
807592a4
BVA
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
b82d4b19
TH
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
d732580b
TH
478}
479EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481/**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487void blk_queue_bypass_end(struct request_queue *q)
488{
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494}
495EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
c9a929dd
TH
497/**
498 * blk_cleanup_queue - shutdown a request queue
499 * @q: request queue to shutdown
500 *
c246e80d
BVA
501 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
502 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 503 */
6728cb0e 504void blk_cleanup_queue(struct request_queue *q)
483f4afc 505{
c9a929dd 506 spinlock_t *lock = q->queue_lock;
e3335de9 507
3f3299d5 508 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 509 mutex_lock(&q->sysfs_lock);
3f3299d5 510 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 511 spin_lock_irq(lock);
6ecf23af 512
80fd9979 513 /*
3f3299d5 514 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
515 * that, unlike blk_queue_bypass_start(), we aren't performing
516 * synchronize_rcu() after entering bypass mode to avoid the delay
517 * as some drivers create and destroy a lot of queues while
518 * probing. This is still safe because blk_release_queue() will be
519 * called only after the queue refcnt drops to zero and nothing,
520 * RCU or not, would be traversing the queue by then.
521 */
6ecf23af
TH
522 q->bypass_depth++;
523 queue_flag_set(QUEUE_FLAG_BYPASS, q);
524
c9a929dd
TH
525 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
526 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 527 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
528 spin_unlock_irq(lock);
529 mutex_unlock(&q->sysfs_lock);
530
c246e80d
BVA
531 /*
532 * Drain all requests queued before DYING marking. Set DEAD flag to
533 * prevent that q->request_fn() gets invoked after draining finished.
534 */
807592a4
BVA
535 spin_lock_irq(lock);
536 __blk_drain_queue(q, true);
c246e80d 537 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 538 spin_unlock_irq(lock);
c9a929dd
TH
539
540 /* @q won't process any more request, flush async actions */
541 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
542 blk_sync_queue(q);
543
5e5cfac0
AH
544 spin_lock_irq(lock);
545 if (q->queue_lock != &q->__queue_lock)
546 q->queue_lock = &q->__queue_lock;
547 spin_unlock_irq(lock);
548
c9a929dd 549 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
550 blk_put_queue(q);
551}
1da177e4
LT
552EXPORT_SYMBOL(blk_cleanup_queue);
553
5b788ce3
TH
554int blk_init_rl(struct request_list *rl, struct request_queue *q,
555 gfp_t gfp_mask)
1da177e4 556{
1abec4fd
MS
557 if (unlikely(rl->rq_pool))
558 return 0;
559
5b788ce3 560 rl->q = q;
1faa16d2
JA
561 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
562 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
563 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
564 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 565
1946089a 566 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 567 mempool_free_slab, request_cachep,
5b788ce3 568 gfp_mask, q->node);
1da177e4
LT
569 if (!rl->rq_pool)
570 return -ENOMEM;
571
572 return 0;
573}
574
5b788ce3
TH
575void blk_exit_rl(struct request_list *rl)
576{
577 if (rl->rq_pool)
578 mempool_destroy(rl->rq_pool);
579}
580
165125e1 581struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 582{
c304a51b 583 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
584}
585EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 586
165125e1 587struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 588{
165125e1 589 struct request_queue *q;
e0bf68dd 590 int err;
1946089a 591
8324aa91 592 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 593 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
594 if (!q)
595 return NULL;
596
00380a40 597 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
598 if (q->id < 0)
599 goto fail_q;
600
0989a025
JA
601 q->backing_dev_info.ra_pages =
602 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
603 q->backing_dev_info.state = 0;
604 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 605 q->backing_dev_info.name = "block";
5151412d 606 q->node = node_id;
0989a025 607
e0bf68dd 608 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
609 if (err)
610 goto fail_id;
e0bf68dd 611
31373d09
MG
612 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
613 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 614 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 615 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 616 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 617 INIT_LIST_HEAD(&q->icq_list);
4eef3049 618#ifdef CONFIG_BLK_CGROUP
e8989fae 619 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 620#endif
ae1b1539
TH
621 INIT_LIST_HEAD(&q->flush_queue[0]);
622 INIT_LIST_HEAD(&q->flush_queue[1]);
623 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 624 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 625
8324aa91 626 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 627
483f4afc 628 mutex_init(&q->sysfs_lock);
e7e72bf6 629 spin_lock_init(&q->__queue_lock);
483f4afc 630
c94a96ac
VG
631 /*
632 * By default initialize queue_lock to internal lock and driver can
633 * override it later if need be.
634 */
635 q->queue_lock = &q->__queue_lock;
636
b82d4b19
TH
637 /*
638 * A queue starts its life with bypass turned on to avoid
639 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
640 * init. The initial bypass will be finished when the queue is
641 * registered by blk_register_queue().
b82d4b19
TH
642 */
643 q->bypass_depth = 1;
644 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
645
5efd6113 646 if (blkcg_init_queue(q))
f51b802c
TH
647 goto fail_id;
648
1da177e4 649 return q;
a73f730d
TH
650
651fail_id:
652 ida_simple_remove(&blk_queue_ida, q->id);
653fail_q:
654 kmem_cache_free(blk_requestq_cachep, q);
655 return NULL;
1da177e4 656}
1946089a 657EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
658
659/**
660 * blk_init_queue - prepare a request queue for use with a block device
661 * @rfn: The function to be called to process requests that have been
662 * placed on the queue.
663 * @lock: Request queue spin lock
664 *
665 * Description:
666 * If a block device wishes to use the standard request handling procedures,
667 * which sorts requests and coalesces adjacent requests, then it must
668 * call blk_init_queue(). The function @rfn will be called when there
669 * are requests on the queue that need to be processed. If the device
670 * supports plugging, then @rfn may not be called immediately when requests
671 * are available on the queue, but may be called at some time later instead.
672 * Plugged queues are generally unplugged when a buffer belonging to one
673 * of the requests on the queue is needed, or due to memory pressure.
674 *
675 * @rfn is not required, or even expected, to remove all requests off the
676 * queue, but only as many as it can handle at a time. If it does leave
677 * requests on the queue, it is responsible for arranging that the requests
678 * get dealt with eventually.
679 *
680 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
681 * request queue; this lock will be taken also from interrupt context, so irq
682 * disabling is needed for it.
1da177e4 683 *
710027a4 684 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
685 * it didn't succeed.
686 *
687 * Note:
688 * blk_init_queue() must be paired with a blk_cleanup_queue() call
689 * when the block device is deactivated (such as at module unload).
690 **/
1946089a 691
165125e1 692struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 693{
c304a51b 694 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
695}
696EXPORT_SYMBOL(blk_init_queue);
697
165125e1 698struct request_queue *
1946089a
CL
699blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
700{
c86d1b8a 701 struct request_queue *uninit_q, *q;
1da177e4 702
c86d1b8a
MS
703 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
704 if (!uninit_q)
705 return NULL;
706
5151412d 707 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
708 if (!q)
709 blk_cleanup_queue(uninit_q);
710
711 return q;
01effb0d
MS
712}
713EXPORT_SYMBOL(blk_init_queue_node);
714
715struct request_queue *
716blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
717 spinlock_t *lock)
01effb0d 718{
1da177e4
LT
719 if (!q)
720 return NULL;
721
a051661c 722 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 723 return NULL;
1da177e4
LT
724
725 q->request_fn = rfn;
1da177e4 726 q->prep_rq_fn = NULL;
28018c24 727 q->unprep_rq_fn = NULL;
60ea8226 728 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
729
730 /* Override internal queue lock with supplied lock pointer */
731 if (lock)
732 q->queue_lock = lock;
1da177e4 733
f3b144aa
JA
734 /*
735 * This also sets hw/phys segments, boundary and size
736 */
c20e8de2 737 blk_queue_make_request(q, blk_queue_bio);
1da177e4 738
44ec9542
AS
739 q->sg_reserved_size = INT_MAX;
740
b82d4b19
TH
741 /* init elevator */
742 if (elevator_init(q, NULL))
743 return NULL;
b82d4b19 744 return q;
1da177e4 745}
5151412d 746EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 747
09ac46c4 748bool blk_get_queue(struct request_queue *q)
1da177e4 749{
3f3299d5 750 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
751 __blk_get_queue(q);
752 return true;
1da177e4
LT
753 }
754
09ac46c4 755 return false;
1da177e4 756}
d86e0e83 757EXPORT_SYMBOL(blk_get_queue);
1da177e4 758
5b788ce3 759static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 760{
f1f8cc94 761 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 762 elv_put_request(rl->q, rq);
f1f8cc94 763 if (rq->elv.icq)
11a3122f 764 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
765 }
766
5b788ce3 767 mempool_free(rq, rl->rq_pool);
1da177e4
LT
768}
769
1da177e4
LT
770/*
771 * ioc_batching returns true if the ioc is a valid batching request and
772 * should be given priority access to a request.
773 */
165125e1 774static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
775{
776 if (!ioc)
777 return 0;
778
779 /*
780 * Make sure the process is able to allocate at least 1 request
781 * even if the batch times out, otherwise we could theoretically
782 * lose wakeups.
783 */
784 return ioc->nr_batch_requests == q->nr_batching ||
785 (ioc->nr_batch_requests > 0
786 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
787}
788
789/*
790 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
791 * will cause the process to be a "batcher" on all queues in the system. This
792 * is the behaviour we want though - once it gets a wakeup it should be given
793 * a nice run.
794 */
165125e1 795static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
796{
797 if (!ioc || ioc_batching(q, ioc))
798 return;
799
800 ioc->nr_batch_requests = q->nr_batching;
801 ioc->last_waited = jiffies;
802}
803
5b788ce3 804static void __freed_request(struct request_list *rl, int sync)
1da177e4 805{
5b788ce3 806 struct request_queue *q = rl->q;
1da177e4 807
a051661c
TH
808 /*
809 * bdi isn't aware of blkcg yet. As all async IOs end up root
810 * blkcg anyway, just use root blkcg state.
811 */
812 if (rl == &q->root_rl &&
813 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 814 blk_clear_queue_congested(q, sync);
1da177e4 815
1faa16d2
JA
816 if (rl->count[sync] + 1 <= q->nr_requests) {
817 if (waitqueue_active(&rl->wait[sync]))
818 wake_up(&rl->wait[sync]);
1da177e4 819
5b788ce3 820 blk_clear_rl_full(rl, sync);
1da177e4
LT
821 }
822}
823
824/*
825 * A request has just been released. Account for it, update the full and
826 * congestion status, wake up any waiters. Called under q->queue_lock.
827 */
5b788ce3 828static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 829{
5b788ce3 830 struct request_queue *q = rl->q;
75eb6c37 831 int sync = rw_is_sync(flags);
1da177e4 832
8a5ecdd4 833 q->nr_rqs[sync]--;
1faa16d2 834 rl->count[sync]--;
75eb6c37 835 if (flags & REQ_ELVPRIV)
8a5ecdd4 836 q->nr_rqs_elvpriv--;
1da177e4 837
5b788ce3 838 __freed_request(rl, sync);
1da177e4 839
1faa16d2 840 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 841 __freed_request(rl, sync ^ 1);
1da177e4
LT
842}
843
9d5a4e94
MS
844/*
845 * Determine if elevator data should be initialized when allocating the
846 * request associated with @bio.
847 */
848static bool blk_rq_should_init_elevator(struct bio *bio)
849{
850 if (!bio)
851 return true;
852
853 /*
854 * Flush requests do not use the elevator so skip initialization.
855 * This allows a request to share the flush and elevator data.
856 */
857 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
858 return false;
859
860 return true;
861}
862
852c788f
TH
863/**
864 * rq_ioc - determine io_context for request allocation
865 * @bio: request being allocated is for this bio (can be %NULL)
866 *
867 * Determine io_context to use for request allocation for @bio. May return
868 * %NULL if %current->io_context doesn't exist.
869 */
870static struct io_context *rq_ioc(struct bio *bio)
871{
872#ifdef CONFIG_BLK_CGROUP
873 if (bio && bio->bi_ioc)
874 return bio->bi_ioc;
875#endif
876 return current->io_context;
877}
878
da8303c6 879/**
a06e05e6 880 * __get_request - get a free request
5b788ce3 881 * @rl: request list to allocate from
da8303c6
TH
882 * @rw_flags: RW and SYNC flags
883 * @bio: bio to allocate request for (can be %NULL)
884 * @gfp_mask: allocation mask
885 *
886 * Get a free request from @q. This function may fail under memory
887 * pressure or if @q is dead.
888 *
889 * Must be callled with @q->queue_lock held and,
890 * Returns %NULL on failure, with @q->queue_lock held.
891 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 892 */
5b788ce3 893static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 894 struct bio *bio, gfp_t gfp_mask)
1da177e4 895{
5b788ce3 896 struct request_queue *q = rl->q;
b679281a 897 struct request *rq;
7f4b35d1
TH
898 struct elevator_type *et = q->elevator->type;
899 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 900 struct io_cq *icq = NULL;
1faa16d2 901 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 902 int may_queue;
88ee5ef1 903
3f3299d5 904 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
905 return NULL;
906
7749a8d4 907 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
908 if (may_queue == ELV_MQUEUE_NO)
909 goto rq_starved;
910
1faa16d2
JA
911 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
912 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
913 /*
914 * The queue will fill after this allocation, so set
915 * it as full, and mark this process as "batching".
916 * This process will be allowed to complete a batch of
917 * requests, others will be blocked.
918 */
5b788ce3 919 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 920 ioc_set_batching(q, ioc);
5b788ce3 921 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
922 } else {
923 if (may_queue != ELV_MQUEUE_MUST
924 && !ioc_batching(q, ioc)) {
925 /*
926 * The queue is full and the allocating
927 * process is not a "batcher", and not
928 * exempted by the IO scheduler
929 */
b679281a 930 return NULL;
88ee5ef1
JA
931 }
932 }
1da177e4 933 }
a051661c
TH
934 /*
935 * bdi isn't aware of blkcg yet. As all async IOs end up
936 * root blkcg anyway, just use root blkcg state.
937 */
938 if (rl == &q->root_rl)
939 blk_set_queue_congested(q, is_sync);
1da177e4
LT
940 }
941
082cf69e
JA
942 /*
943 * Only allow batching queuers to allocate up to 50% over the defined
944 * limit of requests, otherwise we could have thousands of requests
945 * allocated with any setting of ->nr_requests
946 */
1faa16d2 947 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 948 return NULL;
fd782a4a 949
8a5ecdd4 950 q->nr_rqs[is_sync]++;
1faa16d2
JA
951 rl->count[is_sync]++;
952 rl->starved[is_sync] = 0;
cb98fc8b 953
f1f8cc94
TH
954 /*
955 * Decide whether the new request will be managed by elevator. If
956 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
957 * prevent the current elevator from being destroyed until the new
958 * request is freed. This guarantees icq's won't be destroyed and
959 * makes creating new ones safe.
960 *
961 * Also, lookup icq while holding queue_lock. If it doesn't exist,
962 * it will be created after releasing queue_lock.
963 */
d732580b 964 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 965 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 966 q->nr_rqs_elvpriv++;
f1f8cc94
TH
967 if (et->icq_cache && ioc)
968 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 969 }
cb98fc8b 970
f253b86b
JA
971 if (blk_queue_io_stat(q))
972 rw_flags |= REQ_IO_STAT;
1da177e4
LT
973 spin_unlock_irq(q->queue_lock);
974
29e2b09a 975 /* allocate and init request */
5b788ce3 976 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 977 if (!rq)
b679281a 978 goto fail_alloc;
1da177e4 979
29e2b09a 980 blk_rq_init(q, rq);
a051661c 981 blk_rq_set_rl(rq, rl);
29e2b09a
TH
982 rq->cmd_flags = rw_flags | REQ_ALLOCED;
983
aaf7c680 984 /* init elvpriv */
29e2b09a 985 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 986 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
987 if (ioc)
988 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
989 if (!icq)
990 goto fail_elvpriv;
29e2b09a 991 }
aaf7c680
TH
992
993 rq->elv.icq = icq;
994 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
995 goto fail_elvpriv;
996
997 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
998 if (icq)
999 get_io_context(icq->ioc);
1000 }
aaf7c680 1001out:
88ee5ef1
JA
1002 /*
1003 * ioc may be NULL here, and ioc_batching will be false. That's
1004 * OK, if the queue is under the request limit then requests need
1005 * not count toward the nr_batch_requests limit. There will always
1006 * be some limit enforced by BLK_BATCH_TIME.
1007 */
1da177e4
LT
1008 if (ioc_batching(q, ioc))
1009 ioc->nr_batch_requests--;
6728cb0e 1010
1faa16d2 1011 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1012 return rq;
b679281a 1013
aaf7c680
TH
1014fail_elvpriv:
1015 /*
1016 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1017 * and may fail indefinitely under memory pressure and thus
1018 * shouldn't stall IO. Treat this request as !elvpriv. This will
1019 * disturb iosched and blkcg but weird is bettern than dead.
1020 */
1021 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1022 dev_name(q->backing_dev_info.dev));
1023
1024 rq->cmd_flags &= ~REQ_ELVPRIV;
1025 rq->elv.icq = NULL;
1026
1027 spin_lock_irq(q->queue_lock);
8a5ecdd4 1028 q->nr_rqs_elvpriv--;
aaf7c680
TH
1029 spin_unlock_irq(q->queue_lock);
1030 goto out;
1031
b679281a
TH
1032fail_alloc:
1033 /*
1034 * Allocation failed presumably due to memory. Undo anything we
1035 * might have messed up.
1036 *
1037 * Allocating task should really be put onto the front of the wait
1038 * queue, but this is pretty rare.
1039 */
1040 spin_lock_irq(q->queue_lock);
5b788ce3 1041 freed_request(rl, rw_flags);
b679281a
TH
1042
1043 /*
1044 * in the very unlikely event that allocation failed and no
1045 * requests for this direction was pending, mark us starved so that
1046 * freeing of a request in the other direction will notice
1047 * us. another possible fix would be to split the rq mempool into
1048 * READ and WRITE
1049 */
1050rq_starved:
1051 if (unlikely(rl->count[is_sync] == 0))
1052 rl->starved[is_sync] = 1;
1053 return NULL;
1da177e4
LT
1054}
1055
da8303c6 1056/**
a06e05e6 1057 * get_request - get a free request
da8303c6
TH
1058 * @q: request_queue to allocate request from
1059 * @rw_flags: RW and SYNC flags
1060 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1061 * @gfp_mask: allocation mask
da8303c6 1062 *
a06e05e6
TH
1063 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1064 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1065 *
da8303c6
TH
1066 * Must be callled with @q->queue_lock held and,
1067 * Returns %NULL on failure, with @q->queue_lock held.
1068 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1069 */
a06e05e6
TH
1070static struct request *get_request(struct request_queue *q, int rw_flags,
1071 struct bio *bio, gfp_t gfp_mask)
1da177e4 1072{
1faa16d2 1073 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1074 DEFINE_WAIT(wait);
a051661c 1075 struct request_list *rl;
1da177e4 1076 struct request *rq;
a051661c
TH
1077
1078 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1079retry:
a051661c 1080 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1081 if (rq)
1082 return rq;
1da177e4 1083
3f3299d5 1084 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1085 blk_put_rl(rl);
a06e05e6 1086 return NULL;
a051661c 1087 }
1da177e4 1088
a06e05e6
TH
1089 /* wait on @rl and retry */
1090 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1091 TASK_UNINTERRUPTIBLE);
1da177e4 1092
a06e05e6 1093 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1094
a06e05e6
TH
1095 spin_unlock_irq(q->queue_lock);
1096 io_schedule();
d6344532 1097
a06e05e6
TH
1098 /*
1099 * After sleeping, we become a "batching" process and will be able
1100 * to allocate at least one request, and up to a big batch of them
1101 * for a small period time. See ioc_batching, ioc_set_batching
1102 */
a06e05e6 1103 ioc_set_batching(q, current->io_context);
05caf8db 1104
a06e05e6
TH
1105 spin_lock_irq(q->queue_lock);
1106 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1107
a06e05e6 1108 goto retry;
1da177e4
LT
1109}
1110
165125e1 1111struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1112{
1113 struct request *rq;
1114
1115 BUG_ON(rw != READ && rw != WRITE);
1116
7f4b35d1
TH
1117 /* create ioc upfront */
1118 create_io_context(gfp_mask, q->node);
1119
d6344532 1120 spin_lock_irq(q->queue_lock);
a06e05e6 1121 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1122 if (!rq)
1123 spin_unlock_irq(q->queue_lock);
d6344532 1124 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1125
1126 return rq;
1127}
1da177e4
LT
1128EXPORT_SYMBOL(blk_get_request);
1129
dc72ef4a 1130/**
79eb63e9 1131 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1132 * @q: target request queue
79eb63e9
BH
1133 * @bio: The bio describing the memory mappings that will be submitted for IO.
1134 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1135 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1136 *
79eb63e9
BH
1137 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1138 * type commands. Where the struct request needs to be farther initialized by
1139 * the caller. It is passed a &struct bio, which describes the memory info of
1140 * the I/O transfer.
dc72ef4a 1141 *
79eb63e9
BH
1142 * The caller of blk_make_request must make sure that bi_io_vec
1143 * are set to describe the memory buffers. That bio_data_dir() will return
1144 * the needed direction of the request. (And all bio's in the passed bio-chain
1145 * are properly set accordingly)
1146 *
1147 * If called under none-sleepable conditions, mapped bio buffers must not
1148 * need bouncing, by calling the appropriate masked or flagged allocator,
1149 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1150 * BUG.
53674ac5
JA
1151 *
1152 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1153 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1154 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1155 * completion of a bio that hasn't been submitted yet, thus resulting in a
1156 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1157 * of bio_alloc(), as that avoids the mempool deadlock.
1158 * If possible a big IO should be split into smaller parts when allocation
1159 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1160 */
79eb63e9
BH
1161struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1162 gfp_t gfp_mask)
dc72ef4a 1163{
79eb63e9
BH
1164 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1165
1166 if (unlikely(!rq))
1167 return ERR_PTR(-ENOMEM);
1168
1169 for_each_bio(bio) {
1170 struct bio *bounce_bio = bio;
1171 int ret;
1172
1173 blk_queue_bounce(q, &bounce_bio);
1174 ret = blk_rq_append_bio(q, rq, bounce_bio);
1175 if (unlikely(ret)) {
1176 blk_put_request(rq);
1177 return ERR_PTR(ret);
1178 }
1179 }
1180
1181 return rq;
dc72ef4a 1182}
79eb63e9 1183EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1184
1da177e4
LT
1185/**
1186 * blk_requeue_request - put a request back on queue
1187 * @q: request queue where request should be inserted
1188 * @rq: request to be inserted
1189 *
1190 * Description:
1191 * Drivers often keep queueing requests until the hardware cannot accept
1192 * more, when that condition happens we need to put the request back
1193 * on the queue. Must be called with queue lock held.
1194 */
165125e1 1195void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1196{
242f9dcb
JA
1197 blk_delete_timer(rq);
1198 blk_clear_rq_complete(rq);
5f3ea37c 1199 trace_block_rq_requeue(q, rq);
2056a782 1200
1da177e4
LT
1201 if (blk_rq_tagged(rq))
1202 blk_queue_end_tag(q, rq);
1203
ba396a6c
JB
1204 BUG_ON(blk_queued_rq(rq));
1205
1da177e4
LT
1206 elv_requeue_request(q, rq);
1207}
1da177e4
LT
1208EXPORT_SYMBOL(blk_requeue_request);
1209
73c10101
JA
1210static void add_acct_request(struct request_queue *q, struct request *rq,
1211 int where)
1212{
1213 drive_stat_acct(rq, 1);
7eaceacc 1214 __elv_add_request(q, rq, where);
73c10101
JA
1215}
1216
074a7aca
TH
1217static void part_round_stats_single(int cpu, struct hd_struct *part,
1218 unsigned long now)
1219{
1220 if (now == part->stamp)
1221 return;
1222
316d315b 1223 if (part_in_flight(part)) {
074a7aca 1224 __part_stat_add(cpu, part, time_in_queue,
316d315b 1225 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1226 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1227 }
1228 part->stamp = now;
1229}
1230
1231/**
496aa8a9
RD
1232 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1233 * @cpu: cpu number for stats access
1234 * @part: target partition
1da177e4
LT
1235 *
1236 * The average IO queue length and utilisation statistics are maintained
1237 * by observing the current state of the queue length and the amount of
1238 * time it has been in this state for.
1239 *
1240 * Normally, that accounting is done on IO completion, but that can result
1241 * in more than a second's worth of IO being accounted for within any one
1242 * second, leading to >100% utilisation. To deal with that, we call this
1243 * function to do a round-off before returning the results when reading
1244 * /proc/diskstats. This accounts immediately for all queue usage up to
1245 * the current jiffies and restarts the counters again.
1246 */
c9959059 1247void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1248{
1249 unsigned long now = jiffies;
1250
074a7aca
TH
1251 if (part->partno)
1252 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1253 part_round_stats_single(cpu, part, now);
6f2576af 1254}
074a7aca 1255EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1256
c8158819
LM
1257#ifdef CONFIG_PM_RUNTIME
1258static void blk_pm_put_request(struct request *rq)
1259{
1260 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1261 pm_runtime_mark_last_busy(rq->q->dev);
1262}
1263#else
1264static inline void blk_pm_put_request(struct request *rq) {}
1265#endif
1266
1da177e4
LT
1267/*
1268 * queue lock must be held
1269 */
165125e1 1270void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1271{
1da177e4
LT
1272 if (unlikely(!q))
1273 return;
1da177e4 1274
c8158819
LM
1275 blk_pm_put_request(req);
1276
8922e16c
TH
1277 elv_completed_request(q, req);
1278
1cd96c24
BH
1279 /* this is a bio leak */
1280 WARN_ON(req->bio != NULL);
1281
1da177e4
LT
1282 /*
1283 * Request may not have originated from ll_rw_blk. if not,
1284 * it didn't come out of our reserved rq pools
1285 */
49171e5c 1286 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1287 unsigned int flags = req->cmd_flags;
a051661c 1288 struct request_list *rl = blk_rq_rl(req);
1da177e4 1289
1da177e4 1290 BUG_ON(!list_empty(&req->queuelist));
9817064b 1291 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1292
a051661c
TH
1293 blk_free_request(rl, req);
1294 freed_request(rl, flags);
1295 blk_put_rl(rl);
1da177e4
LT
1296 }
1297}
6e39b69e
MC
1298EXPORT_SYMBOL_GPL(__blk_put_request);
1299
1da177e4
LT
1300void blk_put_request(struct request *req)
1301{
8922e16c 1302 unsigned long flags;
165125e1 1303 struct request_queue *q = req->q;
8922e16c 1304
52a93ba8
FT
1305 spin_lock_irqsave(q->queue_lock, flags);
1306 __blk_put_request(q, req);
1307 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1308}
1da177e4
LT
1309EXPORT_SYMBOL(blk_put_request);
1310
66ac0280
CH
1311/**
1312 * blk_add_request_payload - add a payload to a request
1313 * @rq: request to update
1314 * @page: page backing the payload
1315 * @len: length of the payload.
1316 *
1317 * This allows to later add a payload to an already submitted request by
1318 * a block driver. The driver needs to take care of freeing the payload
1319 * itself.
1320 *
1321 * Note that this is a quite horrible hack and nothing but handling of
1322 * discard requests should ever use it.
1323 */
1324void blk_add_request_payload(struct request *rq, struct page *page,
1325 unsigned int len)
1326{
1327 struct bio *bio = rq->bio;
1328
1329 bio->bi_io_vec->bv_page = page;
1330 bio->bi_io_vec->bv_offset = 0;
1331 bio->bi_io_vec->bv_len = len;
1332
1333 bio->bi_size = len;
1334 bio->bi_vcnt = 1;
1335 bio->bi_phys_segments = 1;
1336
1337 rq->__data_len = rq->resid_len = len;
1338 rq->nr_phys_segments = 1;
1339 rq->buffer = bio_data(bio);
1340}
1341EXPORT_SYMBOL_GPL(blk_add_request_payload);
1342
73c10101
JA
1343static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1344 struct bio *bio)
1345{
1346 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1347
73c10101
JA
1348 if (!ll_back_merge_fn(q, req, bio))
1349 return false;
1350
8c1cf6bb 1351 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1352
1353 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1354 blk_rq_set_mixed_merge(req);
1355
1356 req->biotail->bi_next = bio;
1357 req->biotail = bio;
1358 req->__data_len += bio->bi_size;
1359 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1360
1361 drive_stat_acct(req, 0);
1362 return true;
1363}
1364
1365static bool bio_attempt_front_merge(struct request_queue *q,
1366 struct request *req, struct bio *bio)
1367{
1368 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1369
73c10101
JA
1370 if (!ll_front_merge_fn(q, req, bio))
1371 return false;
1372
8c1cf6bb 1373 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1374
1375 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1376 blk_rq_set_mixed_merge(req);
1377
73c10101
JA
1378 bio->bi_next = req->bio;
1379 req->bio = bio;
1380
1381 /*
1382 * may not be valid. if the low level driver said
1383 * it didn't need a bounce buffer then it better
1384 * not touch req->buffer either...
1385 */
1386 req->buffer = bio_data(bio);
1387 req->__sector = bio->bi_sector;
1388 req->__data_len += bio->bi_size;
1389 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1390
1391 drive_stat_acct(req, 0);
1392 return true;
1393}
1394
bd87b589
TH
1395/**
1396 * attempt_plug_merge - try to merge with %current's plugged list
1397 * @q: request_queue new bio is being queued at
1398 * @bio: new bio being queued
1399 * @request_count: out parameter for number of traversed plugged requests
1400 *
1401 * Determine whether @bio being queued on @q can be merged with a request
1402 * on %current's plugged list. Returns %true if merge was successful,
1403 * otherwise %false.
1404 *
07c2bd37
TH
1405 * Plugging coalesces IOs from the same issuer for the same purpose without
1406 * going through @q->queue_lock. As such it's more of an issuing mechanism
1407 * than scheduling, and the request, while may have elvpriv data, is not
1408 * added on the elevator at this point. In addition, we don't have
1409 * reliable access to the elevator outside queue lock. Only check basic
1410 * merging parameters without querying the elevator.
73c10101 1411 */
bd87b589
TH
1412static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1413 unsigned int *request_count)
73c10101
JA
1414{
1415 struct blk_plug *plug;
1416 struct request *rq;
1417 bool ret = false;
1418
bd87b589 1419 plug = current->plug;
73c10101
JA
1420 if (!plug)
1421 goto out;
56ebdaf2 1422 *request_count = 0;
73c10101
JA
1423
1424 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1425 int el_ret;
1426
1b2e19f1
SL
1427 if (rq->q == q)
1428 (*request_count)++;
56ebdaf2 1429
07c2bd37 1430 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1431 continue;
1432
050c8ea8 1433 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1434 if (el_ret == ELEVATOR_BACK_MERGE) {
1435 ret = bio_attempt_back_merge(q, rq, bio);
1436 if (ret)
1437 break;
1438 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1439 ret = bio_attempt_front_merge(q, rq, bio);
1440 if (ret)
1441 break;
1442 }
1443 }
1444out:
1445 return ret;
1446}
1447
86db1e29 1448void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1449{
4aff5e23 1450 req->cmd_type = REQ_TYPE_FS;
52d9e675 1451
7b6d91da
CH
1452 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1453 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1454 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1455
52d9e675 1456 req->errors = 0;
a2dec7b3 1457 req->__sector = bio->bi_sector;
52d9e675 1458 req->ioprio = bio_prio(bio);
bc1c56fd 1459 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1460}
1461
5a7bbad2 1462void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1463{
5e00d1b5 1464 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1465 struct blk_plug *plug;
1466 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1467 struct request *req;
56ebdaf2 1468 unsigned int request_count = 0;
1da177e4 1469
1da177e4
LT
1470 /*
1471 * low level driver can indicate that it wants pages above a
1472 * certain limit bounced to low memory (ie for highmem, or even
1473 * ISA dma in theory)
1474 */
1475 blk_queue_bounce(q, &bio);
1476
ffecfd1a
DW
1477 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1478 bio_endio(bio, -EIO);
1479 return;
1480 }
1481
4fed947c 1482 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1483 spin_lock_irq(q->queue_lock);
ae1b1539 1484 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1485 goto get_rq;
1486 }
1487
73c10101
JA
1488 /*
1489 * Check if we can merge with the plugged list before grabbing
1490 * any locks.
1491 */
bd87b589 1492 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1493 return;
1da177e4 1494
73c10101 1495 spin_lock_irq(q->queue_lock);
2056a782 1496
73c10101
JA
1497 el_ret = elv_merge(q, &req, bio);
1498 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1499 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1500 elv_bio_merged(q, req, bio);
73c10101
JA
1501 if (!attempt_back_merge(q, req))
1502 elv_merged_request(q, req, el_ret);
1503 goto out_unlock;
1504 }
1505 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1506 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1507 elv_bio_merged(q, req, bio);
73c10101
JA
1508 if (!attempt_front_merge(q, req))
1509 elv_merged_request(q, req, el_ret);
1510 goto out_unlock;
80a761fd 1511 }
1da177e4
LT
1512 }
1513
450991bc 1514get_rq:
7749a8d4
JA
1515 /*
1516 * This sync check and mask will be re-done in init_request_from_bio(),
1517 * but we need to set it earlier to expose the sync flag to the
1518 * rq allocator and io schedulers.
1519 */
1520 rw_flags = bio_data_dir(bio);
1521 if (sync)
7b6d91da 1522 rw_flags |= REQ_SYNC;
7749a8d4 1523
1da177e4 1524 /*
450991bc 1525 * Grab a free request. This is might sleep but can not fail.
d6344532 1526 * Returns with the queue unlocked.
450991bc 1527 */
a06e05e6 1528 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1529 if (unlikely(!req)) {
1530 bio_endio(bio, -ENODEV); /* @q is dead */
1531 goto out_unlock;
1532 }
d6344532 1533
450991bc
NP
1534 /*
1535 * After dropping the lock and possibly sleeping here, our request
1536 * may now be mergeable after it had proven unmergeable (above).
1537 * We don't worry about that case for efficiency. It won't happen
1538 * often, and the elevators are able to handle it.
1da177e4 1539 */
52d9e675 1540 init_request_from_bio(req, bio);
1da177e4 1541
9562ad9a 1542 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1543 req->cpu = raw_smp_processor_id();
73c10101
JA
1544
1545 plug = current->plug;
721a9602 1546 if (plug) {
dc6d36c9
JA
1547 /*
1548 * If this is the first request added after a plug, fire
7aef2e78 1549 * of a plug trace.
dc6d36c9 1550 */
7aef2e78 1551 if (!request_count)
dc6d36c9 1552 trace_block_plug(q);
3540d5e8 1553 else {
019ceb7d 1554 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1555 blk_flush_plug_list(plug, false);
019ceb7d
SL
1556 trace_block_plug(q);
1557 }
73c10101 1558 }
73c10101
JA
1559 list_add_tail(&req->queuelist, &plug->list);
1560 drive_stat_acct(req, 1);
1561 } else {
1562 spin_lock_irq(q->queue_lock);
1563 add_acct_request(q, req, where);
24ecfbe2 1564 __blk_run_queue(q);
73c10101
JA
1565out_unlock:
1566 spin_unlock_irq(q->queue_lock);
1567 }
1da177e4 1568}
c20e8de2 1569EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1570
1571/*
1572 * If bio->bi_dev is a partition, remap the location
1573 */
1574static inline void blk_partition_remap(struct bio *bio)
1575{
1576 struct block_device *bdev = bio->bi_bdev;
1577
bf2de6f5 1578 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1579 struct hd_struct *p = bdev->bd_part;
1580
1da177e4
LT
1581 bio->bi_sector += p->start_sect;
1582 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1583
d07335e5
MS
1584 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1585 bdev->bd_dev,
1586 bio->bi_sector - p->start_sect);
1da177e4
LT
1587 }
1588}
1589
1da177e4
LT
1590static void handle_bad_sector(struct bio *bio)
1591{
1592 char b[BDEVNAME_SIZE];
1593
1594 printk(KERN_INFO "attempt to access beyond end of device\n");
1595 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1596 bdevname(bio->bi_bdev, b),
1597 bio->bi_rw,
f73a1c7d 1598 (unsigned long long)bio_end_sector(bio),
77304d2a 1599 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1600
1601 set_bit(BIO_EOF, &bio->bi_flags);
1602}
1603
c17bb495
AM
1604#ifdef CONFIG_FAIL_MAKE_REQUEST
1605
1606static DECLARE_FAULT_ATTR(fail_make_request);
1607
1608static int __init setup_fail_make_request(char *str)
1609{
1610 return setup_fault_attr(&fail_make_request, str);
1611}
1612__setup("fail_make_request=", setup_fail_make_request);
1613
b2c9cd37 1614static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1615{
b2c9cd37 1616 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1617}
1618
1619static int __init fail_make_request_debugfs(void)
1620{
dd48c085
AM
1621 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1622 NULL, &fail_make_request);
1623
1624 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1625}
1626
1627late_initcall(fail_make_request_debugfs);
1628
1629#else /* CONFIG_FAIL_MAKE_REQUEST */
1630
b2c9cd37
AM
1631static inline bool should_fail_request(struct hd_struct *part,
1632 unsigned int bytes)
c17bb495 1633{
b2c9cd37 1634 return false;
c17bb495
AM
1635}
1636
1637#endif /* CONFIG_FAIL_MAKE_REQUEST */
1638
c07e2b41
JA
1639/*
1640 * Check whether this bio extends beyond the end of the device.
1641 */
1642static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1643{
1644 sector_t maxsector;
1645
1646 if (!nr_sectors)
1647 return 0;
1648
1649 /* Test device or partition size, when known. */
77304d2a 1650 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1651 if (maxsector) {
1652 sector_t sector = bio->bi_sector;
1653
1654 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1655 /*
1656 * This may well happen - the kernel calls bread()
1657 * without checking the size of the device, e.g., when
1658 * mounting a device.
1659 */
1660 handle_bad_sector(bio);
1661 return 1;
1662 }
1663 }
1664
1665 return 0;
1666}
1667
27a84d54
CH
1668static noinline_for_stack bool
1669generic_make_request_checks(struct bio *bio)
1da177e4 1670{
165125e1 1671 struct request_queue *q;
5a7bbad2 1672 int nr_sectors = bio_sectors(bio);
51fd77bd 1673 int err = -EIO;
5a7bbad2
CH
1674 char b[BDEVNAME_SIZE];
1675 struct hd_struct *part;
1da177e4
LT
1676
1677 might_sleep();
1da177e4 1678
c07e2b41
JA
1679 if (bio_check_eod(bio, nr_sectors))
1680 goto end_io;
1da177e4 1681
5a7bbad2
CH
1682 q = bdev_get_queue(bio->bi_bdev);
1683 if (unlikely(!q)) {
1684 printk(KERN_ERR
1685 "generic_make_request: Trying to access "
1686 "nonexistent block-device %s (%Lu)\n",
1687 bdevname(bio->bi_bdev, b),
1688 (long long) bio->bi_sector);
1689 goto end_io;
1690 }
c17bb495 1691
e2a60da7
MP
1692 if (likely(bio_is_rw(bio) &&
1693 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1694 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1695 bdevname(bio->bi_bdev, b),
1696 bio_sectors(bio),
1697 queue_max_hw_sectors(q));
1698 goto end_io;
1699 }
1da177e4 1700
5a7bbad2
CH
1701 part = bio->bi_bdev->bd_part;
1702 if (should_fail_request(part, bio->bi_size) ||
1703 should_fail_request(&part_to_disk(part)->part0,
1704 bio->bi_size))
1705 goto end_io;
2056a782 1706
5a7bbad2
CH
1707 /*
1708 * If this device has partitions, remap block n
1709 * of partition p to block n+start(p) of the disk.
1710 */
1711 blk_partition_remap(bio);
2056a782 1712
5a7bbad2
CH
1713 if (bio_check_eod(bio, nr_sectors))
1714 goto end_io;
1e87901e 1715
5a7bbad2
CH
1716 /*
1717 * Filter flush bio's early so that make_request based
1718 * drivers without flush support don't have to worry
1719 * about them.
1720 */
1721 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1722 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1723 if (!nr_sectors) {
1724 err = 0;
51fd77bd
JA
1725 goto end_io;
1726 }
5a7bbad2 1727 }
5ddfe969 1728
5a7bbad2
CH
1729 if ((bio->bi_rw & REQ_DISCARD) &&
1730 (!blk_queue_discard(q) ||
e2a60da7 1731 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1732 err = -EOPNOTSUPP;
1733 goto end_io;
1734 }
01edede4 1735
4363ac7c 1736 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1737 err = -EOPNOTSUPP;
1738 goto end_io;
1739 }
01edede4 1740
7f4b35d1
TH
1741 /*
1742 * Various block parts want %current->io_context and lazy ioc
1743 * allocation ends up trading a lot of pain for a small amount of
1744 * memory. Just allocate it upfront. This may fail and block
1745 * layer knows how to live with it.
1746 */
1747 create_io_context(GFP_ATOMIC, q->node);
1748
bc16a4f9
TH
1749 if (blk_throtl_bio(q, bio))
1750 return false; /* throttled, will be resubmitted later */
27a84d54 1751
5a7bbad2 1752 trace_block_bio_queue(q, bio);
27a84d54 1753 return true;
a7384677
TH
1754
1755end_io:
1756 bio_endio(bio, err);
27a84d54 1757 return false;
1da177e4
LT
1758}
1759
27a84d54
CH
1760/**
1761 * generic_make_request - hand a buffer to its device driver for I/O
1762 * @bio: The bio describing the location in memory and on the device.
1763 *
1764 * generic_make_request() is used to make I/O requests of block
1765 * devices. It is passed a &struct bio, which describes the I/O that needs
1766 * to be done.
1767 *
1768 * generic_make_request() does not return any status. The
1769 * success/failure status of the request, along with notification of
1770 * completion, is delivered asynchronously through the bio->bi_end_io
1771 * function described (one day) else where.
1772 *
1773 * The caller of generic_make_request must make sure that bi_io_vec
1774 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1775 * set to describe the device address, and the
1776 * bi_end_io and optionally bi_private are set to describe how
1777 * completion notification should be signaled.
1778 *
1779 * generic_make_request and the drivers it calls may use bi_next if this
1780 * bio happens to be merged with someone else, and may resubmit the bio to
1781 * a lower device by calling into generic_make_request recursively, which
1782 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1783 */
1784void generic_make_request(struct bio *bio)
1785{
bddd87c7
AM
1786 struct bio_list bio_list_on_stack;
1787
27a84d54
CH
1788 if (!generic_make_request_checks(bio))
1789 return;
1790
1791 /*
1792 * We only want one ->make_request_fn to be active at a time, else
1793 * stack usage with stacked devices could be a problem. So use
1794 * current->bio_list to keep a list of requests submited by a
1795 * make_request_fn function. current->bio_list is also used as a
1796 * flag to say if generic_make_request is currently active in this
1797 * task or not. If it is NULL, then no make_request is active. If
1798 * it is non-NULL, then a make_request is active, and new requests
1799 * should be added at the tail
1800 */
bddd87c7 1801 if (current->bio_list) {
bddd87c7 1802 bio_list_add(current->bio_list, bio);
d89d8796
NB
1803 return;
1804 }
27a84d54 1805
d89d8796
NB
1806 /* following loop may be a bit non-obvious, and so deserves some
1807 * explanation.
1808 * Before entering the loop, bio->bi_next is NULL (as all callers
1809 * ensure that) so we have a list with a single bio.
1810 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1811 * we assign bio_list to a pointer to the bio_list_on_stack,
1812 * thus initialising the bio_list of new bios to be
27a84d54 1813 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1814 * through a recursive call to generic_make_request. If it
1815 * did, we find a non-NULL value in bio_list and re-enter the loop
1816 * from the top. In this case we really did just take the bio
bddd87c7 1817 * of the top of the list (no pretending) and so remove it from
27a84d54 1818 * bio_list, and call into ->make_request() again.
d89d8796
NB
1819 */
1820 BUG_ON(bio->bi_next);
bddd87c7
AM
1821 bio_list_init(&bio_list_on_stack);
1822 current->bio_list = &bio_list_on_stack;
d89d8796 1823 do {
27a84d54
CH
1824 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1825
1826 q->make_request_fn(q, bio);
1827
bddd87c7 1828 bio = bio_list_pop(current->bio_list);
d89d8796 1829 } while (bio);
bddd87c7 1830 current->bio_list = NULL; /* deactivate */
d89d8796 1831}
1da177e4
LT
1832EXPORT_SYMBOL(generic_make_request);
1833
1834/**
710027a4 1835 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1836 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1837 * @bio: The &struct bio which describes the I/O
1838 *
1839 * submit_bio() is very similar in purpose to generic_make_request(), and
1840 * uses that function to do most of the work. Both are fairly rough
710027a4 1841 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1842 *
1843 */
1844void submit_bio(int rw, struct bio *bio)
1845{
22e2c507 1846 bio->bi_rw |= rw;
1da177e4 1847
bf2de6f5
JA
1848 /*
1849 * If it's a regular read/write or a barrier with data attached,
1850 * go through the normal accounting stuff before submission.
1851 */
e2a60da7 1852 if (bio_has_data(bio)) {
4363ac7c
MP
1853 unsigned int count;
1854
1855 if (unlikely(rw & REQ_WRITE_SAME))
1856 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1857 else
1858 count = bio_sectors(bio);
1859
bf2de6f5
JA
1860 if (rw & WRITE) {
1861 count_vm_events(PGPGOUT, count);
1862 } else {
1863 task_io_account_read(bio->bi_size);
1864 count_vm_events(PGPGIN, count);
1865 }
1866
1867 if (unlikely(block_dump)) {
1868 char b[BDEVNAME_SIZE];
8dcbdc74 1869 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1870 current->comm, task_pid_nr(current),
bf2de6f5
JA
1871 (rw & WRITE) ? "WRITE" : "READ",
1872 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1873 bdevname(bio->bi_bdev, b),
1874 count);
bf2de6f5 1875 }
1da177e4
LT
1876 }
1877
1878 generic_make_request(bio);
1879}
1da177e4
LT
1880EXPORT_SYMBOL(submit_bio);
1881
82124d60
KU
1882/**
1883 * blk_rq_check_limits - Helper function to check a request for the queue limit
1884 * @q: the queue
1885 * @rq: the request being checked
1886 *
1887 * Description:
1888 * @rq may have been made based on weaker limitations of upper-level queues
1889 * in request stacking drivers, and it may violate the limitation of @q.
1890 * Since the block layer and the underlying device driver trust @rq
1891 * after it is inserted to @q, it should be checked against @q before
1892 * the insertion using this generic function.
1893 *
1894 * This function should also be useful for request stacking drivers
eef35c2d 1895 * in some cases below, so export this function.
82124d60
KU
1896 * Request stacking drivers like request-based dm may change the queue
1897 * limits while requests are in the queue (e.g. dm's table swapping).
1898 * Such request stacking drivers should check those requests agaist
1899 * the new queue limits again when they dispatch those requests,
1900 * although such checkings are also done against the old queue limits
1901 * when submitting requests.
1902 */
1903int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1904{
e2a60da7 1905 if (!rq_mergeable(rq))
3383977f
S
1906 return 0;
1907
f31dc1cd 1908 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1909 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1910 return -EIO;
1911 }
1912
1913 /*
1914 * queue's settings related to segment counting like q->bounce_pfn
1915 * may differ from that of other stacking queues.
1916 * Recalculate it to check the request correctly on this queue's
1917 * limitation.
1918 */
1919 blk_recalc_rq_segments(rq);
8a78362c 1920 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1921 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1922 return -EIO;
1923 }
1924
1925 return 0;
1926}
1927EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1928
1929/**
1930 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1931 * @q: the queue to submit the request
1932 * @rq: the request being queued
1933 */
1934int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1935{
1936 unsigned long flags;
4853abaa 1937 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1938
1939 if (blk_rq_check_limits(q, rq))
1940 return -EIO;
1941
b2c9cd37
AM
1942 if (rq->rq_disk &&
1943 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1944 return -EIO;
82124d60
KU
1945
1946 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1947 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1948 spin_unlock_irqrestore(q->queue_lock, flags);
1949 return -ENODEV;
1950 }
82124d60
KU
1951
1952 /*
1953 * Submitting request must be dequeued before calling this function
1954 * because it will be linked to another request_queue
1955 */
1956 BUG_ON(blk_queued_rq(rq));
1957
4853abaa
JM
1958 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1959 where = ELEVATOR_INSERT_FLUSH;
1960
1961 add_acct_request(q, rq, where);
e67b77c7
JM
1962 if (where == ELEVATOR_INSERT_FLUSH)
1963 __blk_run_queue(q);
82124d60
KU
1964 spin_unlock_irqrestore(q->queue_lock, flags);
1965
1966 return 0;
1967}
1968EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1969
80a761fd
TH
1970/**
1971 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1972 * @rq: request to examine
1973 *
1974 * Description:
1975 * A request could be merge of IOs which require different failure
1976 * handling. This function determines the number of bytes which
1977 * can be failed from the beginning of the request without
1978 * crossing into area which need to be retried further.
1979 *
1980 * Return:
1981 * The number of bytes to fail.
1982 *
1983 * Context:
1984 * queue_lock must be held.
1985 */
1986unsigned int blk_rq_err_bytes(const struct request *rq)
1987{
1988 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1989 unsigned int bytes = 0;
1990 struct bio *bio;
1991
1992 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1993 return blk_rq_bytes(rq);
1994
1995 /*
1996 * Currently the only 'mixing' which can happen is between
1997 * different fastfail types. We can safely fail portions
1998 * which have all the failfast bits that the first one has -
1999 * the ones which are at least as eager to fail as the first
2000 * one.
2001 */
2002 for (bio = rq->bio; bio; bio = bio->bi_next) {
2003 if ((bio->bi_rw & ff) != ff)
2004 break;
2005 bytes += bio->bi_size;
2006 }
2007
2008 /* this could lead to infinite loop */
2009 BUG_ON(blk_rq_bytes(rq) && !bytes);
2010 return bytes;
2011}
2012EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2013
bc58ba94
JA
2014static void blk_account_io_completion(struct request *req, unsigned int bytes)
2015{
c2553b58 2016 if (blk_do_io_stat(req)) {
bc58ba94
JA
2017 const int rw = rq_data_dir(req);
2018 struct hd_struct *part;
2019 int cpu;
2020
2021 cpu = part_stat_lock();
09e099d4 2022 part = req->part;
bc58ba94
JA
2023 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2024 part_stat_unlock();
2025 }
2026}
2027
2028static void blk_account_io_done(struct request *req)
2029{
bc58ba94 2030 /*
dd4c133f
TH
2031 * Account IO completion. flush_rq isn't accounted as a
2032 * normal IO on queueing nor completion. Accounting the
2033 * containing request is enough.
bc58ba94 2034 */
414b4ff5 2035 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2036 unsigned long duration = jiffies - req->start_time;
2037 const int rw = rq_data_dir(req);
2038 struct hd_struct *part;
2039 int cpu;
2040
2041 cpu = part_stat_lock();
09e099d4 2042 part = req->part;
bc58ba94
JA
2043
2044 part_stat_inc(cpu, part, ios[rw]);
2045 part_stat_add(cpu, part, ticks[rw], duration);
2046 part_round_stats(cpu, part);
316d315b 2047 part_dec_in_flight(part, rw);
bc58ba94 2048
6c23a968 2049 hd_struct_put(part);
bc58ba94
JA
2050 part_stat_unlock();
2051 }
2052}
2053
c8158819
LM
2054#ifdef CONFIG_PM_RUNTIME
2055/*
2056 * Don't process normal requests when queue is suspended
2057 * or in the process of suspending/resuming
2058 */
2059static struct request *blk_pm_peek_request(struct request_queue *q,
2060 struct request *rq)
2061{
2062 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2063 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2064 return NULL;
2065 else
2066 return rq;
2067}
2068#else
2069static inline struct request *blk_pm_peek_request(struct request_queue *q,
2070 struct request *rq)
2071{
2072 return rq;
2073}
2074#endif
2075
3bcddeac 2076/**
9934c8c0
TH
2077 * blk_peek_request - peek at the top of a request queue
2078 * @q: request queue to peek at
2079 *
2080 * Description:
2081 * Return the request at the top of @q. The returned request
2082 * should be started using blk_start_request() before LLD starts
2083 * processing it.
2084 *
2085 * Return:
2086 * Pointer to the request at the top of @q if available. Null
2087 * otherwise.
2088 *
2089 * Context:
2090 * queue_lock must be held.
2091 */
2092struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2093{
2094 struct request *rq;
2095 int ret;
2096
2097 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2098
2099 rq = blk_pm_peek_request(q, rq);
2100 if (!rq)
2101 break;
2102
158dbda0
TH
2103 if (!(rq->cmd_flags & REQ_STARTED)) {
2104 /*
2105 * This is the first time the device driver
2106 * sees this request (possibly after
2107 * requeueing). Notify IO scheduler.
2108 */
33659ebb 2109 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2110 elv_activate_rq(q, rq);
2111
2112 /*
2113 * just mark as started even if we don't start
2114 * it, a request that has been delayed should
2115 * not be passed by new incoming requests
2116 */
2117 rq->cmd_flags |= REQ_STARTED;
2118 trace_block_rq_issue(q, rq);
2119 }
2120
2121 if (!q->boundary_rq || q->boundary_rq == rq) {
2122 q->end_sector = rq_end_sector(rq);
2123 q->boundary_rq = NULL;
2124 }
2125
2126 if (rq->cmd_flags & REQ_DONTPREP)
2127 break;
2128
2e46e8b2 2129 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2130 /*
2131 * make sure space for the drain appears we
2132 * know we can do this because max_hw_segments
2133 * has been adjusted to be one fewer than the
2134 * device can handle
2135 */
2136 rq->nr_phys_segments++;
2137 }
2138
2139 if (!q->prep_rq_fn)
2140 break;
2141
2142 ret = q->prep_rq_fn(q, rq);
2143 if (ret == BLKPREP_OK) {
2144 break;
2145 } else if (ret == BLKPREP_DEFER) {
2146 /*
2147 * the request may have been (partially) prepped.
2148 * we need to keep this request in the front to
2149 * avoid resource deadlock. REQ_STARTED will
2150 * prevent other fs requests from passing this one.
2151 */
2e46e8b2 2152 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2153 !(rq->cmd_flags & REQ_DONTPREP)) {
2154 /*
2155 * remove the space for the drain we added
2156 * so that we don't add it again
2157 */
2158 --rq->nr_phys_segments;
2159 }
2160
2161 rq = NULL;
2162 break;
2163 } else if (ret == BLKPREP_KILL) {
2164 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2165 /*
2166 * Mark this request as started so we don't trigger
2167 * any debug logic in the end I/O path.
2168 */
2169 blk_start_request(rq);
40cbbb78 2170 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2171 } else {
2172 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2173 break;
2174 }
2175 }
2176
2177 return rq;
2178}
9934c8c0 2179EXPORT_SYMBOL(blk_peek_request);
158dbda0 2180
9934c8c0 2181void blk_dequeue_request(struct request *rq)
158dbda0 2182{
9934c8c0
TH
2183 struct request_queue *q = rq->q;
2184
158dbda0
TH
2185 BUG_ON(list_empty(&rq->queuelist));
2186 BUG_ON(ELV_ON_HASH(rq));
2187
2188 list_del_init(&rq->queuelist);
2189
2190 /*
2191 * the time frame between a request being removed from the lists
2192 * and to it is freed is accounted as io that is in progress at
2193 * the driver side.
2194 */
9195291e 2195 if (blk_account_rq(rq)) {
0a7ae2ff 2196 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2197 set_io_start_time_ns(rq);
2198 }
158dbda0
TH
2199}
2200
9934c8c0
TH
2201/**
2202 * blk_start_request - start request processing on the driver
2203 * @req: request to dequeue
2204 *
2205 * Description:
2206 * Dequeue @req and start timeout timer on it. This hands off the
2207 * request to the driver.
2208 *
2209 * Block internal functions which don't want to start timer should
2210 * call blk_dequeue_request().
2211 *
2212 * Context:
2213 * queue_lock must be held.
2214 */
2215void blk_start_request(struct request *req)
2216{
2217 blk_dequeue_request(req);
2218
2219 /*
5f49f631
TH
2220 * We are now handing the request to the hardware, initialize
2221 * resid_len to full count and add the timeout handler.
9934c8c0 2222 */
5f49f631 2223 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2224 if (unlikely(blk_bidi_rq(req)))
2225 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2226
9934c8c0
TH
2227 blk_add_timer(req);
2228}
2229EXPORT_SYMBOL(blk_start_request);
2230
2231/**
2232 * blk_fetch_request - fetch a request from a request queue
2233 * @q: request queue to fetch a request from
2234 *
2235 * Description:
2236 * Return the request at the top of @q. The request is started on
2237 * return and LLD can start processing it immediately.
2238 *
2239 * Return:
2240 * Pointer to the request at the top of @q if available. Null
2241 * otherwise.
2242 *
2243 * Context:
2244 * queue_lock must be held.
2245 */
2246struct request *blk_fetch_request(struct request_queue *q)
2247{
2248 struct request *rq;
2249
2250 rq = blk_peek_request(q);
2251 if (rq)
2252 blk_start_request(rq);
2253 return rq;
2254}
2255EXPORT_SYMBOL(blk_fetch_request);
2256
3bcddeac 2257/**
2e60e022 2258 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2259 * @req: the request being processed
710027a4 2260 * @error: %0 for success, < %0 for error
8ebf9756 2261 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2262 *
2263 * Description:
8ebf9756
RD
2264 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2265 * the request structure even if @req doesn't have leftover.
2266 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2267 *
2268 * This special helper function is only for request stacking drivers
2269 * (e.g. request-based dm) so that they can handle partial completion.
2270 * Actual device drivers should use blk_end_request instead.
2271 *
2272 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2273 * %false return from this function.
3bcddeac
KU
2274 *
2275 * Return:
2e60e022
TH
2276 * %false - this request doesn't have any more data
2277 * %true - this request has more data
3bcddeac 2278 **/
2e60e022 2279bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2280{
f79ea416 2281 int total_bytes;
1da177e4 2282
2e60e022
TH
2283 if (!req->bio)
2284 return false;
2285
5f3ea37c 2286 trace_block_rq_complete(req->q, req);
2056a782 2287
1da177e4 2288 /*
6f41469c
TH
2289 * For fs requests, rq is just carrier of independent bio's
2290 * and each partial completion should be handled separately.
2291 * Reset per-request error on each partial completion.
2292 *
2293 * TODO: tj: This is too subtle. It would be better to let
2294 * low level drivers do what they see fit.
1da177e4 2295 */
33659ebb 2296 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2297 req->errors = 0;
2298
33659ebb
CH
2299 if (error && req->cmd_type == REQ_TYPE_FS &&
2300 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2301 char *error_type;
2302
2303 switch (error) {
2304 case -ENOLINK:
2305 error_type = "recoverable transport";
2306 break;
2307 case -EREMOTEIO:
2308 error_type = "critical target";
2309 break;
2310 case -EBADE:
2311 error_type = "critical nexus";
2312 break;
d1ffc1f8
HR
2313 case -ETIMEDOUT:
2314 error_type = "timeout";
2315 break;
a9d6ceb8
HR
2316 case -ENOSPC:
2317 error_type = "critical space allocation";
2318 break;
7e782af5
HR
2319 case -ENODATA:
2320 error_type = "critical medium";
2321 break;
79775567
HR
2322 case -EIO:
2323 default:
2324 error_type = "I/O";
2325 break;
2326 }
37d7b34f
YZ
2327 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2328 error_type, req->rq_disk ?
2329 req->rq_disk->disk_name : "?",
2330 (unsigned long long)blk_rq_pos(req));
2331
1da177e4
LT
2332 }
2333
bc58ba94 2334 blk_account_io_completion(req, nr_bytes);
d72d904a 2335
f79ea416
KO
2336 total_bytes = 0;
2337 while (req->bio) {
2338 struct bio *bio = req->bio;
2339 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
1da177e4 2340
f79ea416 2341 if (bio_bytes == bio->bi_size)
1da177e4 2342 req->bio = bio->bi_next;
1da177e4 2343
f79ea416 2344 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2345
f79ea416
KO
2346 total_bytes += bio_bytes;
2347 nr_bytes -= bio_bytes;
1da177e4 2348
f79ea416
KO
2349 if (!nr_bytes)
2350 break;
1da177e4
LT
2351 }
2352
2353 /*
2354 * completely done
2355 */
2e60e022
TH
2356 if (!req->bio) {
2357 /*
2358 * Reset counters so that the request stacking driver
2359 * can find how many bytes remain in the request
2360 * later.
2361 */
a2dec7b3 2362 req->__data_len = 0;
2e60e022
TH
2363 return false;
2364 }
1da177e4 2365
a2dec7b3 2366 req->__data_len -= total_bytes;
2e46e8b2
TH
2367 req->buffer = bio_data(req->bio);
2368
2369 /* update sector only for requests with clear definition of sector */
e2a60da7 2370 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2371 req->__sector += total_bytes >> 9;
2e46e8b2 2372
80a761fd
TH
2373 /* mixed attributes always follow the first bio */
2374 if (req->cmd_flags & REQ_MIXED_MERGE) {
2375 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2376 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2377 }
2378
2e46e8b2
TH
2379 /*
2380 * If total number of sectors is less than the first segment
2381 * size, something has gone terribly wrong.
2382 */
2383 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2384 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2385 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2386 }
2387
2388 /* recalculate the number of segments */
1da177e4 2389 blk_recalc_rq_segments(req);
2e46e8b2 2390
2e60e022 2391 return true;
1da177e4 2392}
2e60e022 2393EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2394
2e60e022
TH
2395static bool blk_update_bidi_request(struct request *rq, int error,
2396 unsigned int nr_bytes,
2397 unsigned int bidi_bytes)
5efccd17 2398{
2e60e022
TH
2399 if (blk_update_request(rq, error, nr_bytes))
2400 return true;
5efccd17 2401
2e60e022
TH
2402 /* Bidi request must be completed as a whole */
2403 if (unlikely(blk_bidi_rq(rq)) &&
2404 blk_update_request(rq->next_rq, error, bidi_bytes))
2405 return true;
5efccd17 2406
e2e1a148
JA
2407 if (blk_queue_add_random(rq->q))
2408 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2409
2410 return false;
1da177e4
LT
2411}
2412
28018c24
JB
2413/**
2414 * blk_unprep_request - unprepare a request
2415 * @req: the request
2416 *
2417 * This function makes a request ready for complete resubmission (or
2418 * completion). It happens only after all error handling is complete,
2419 * so represents the appropriate moment to deallocate any resources
2420 * that were allocated to the request in the prep_rq_fn. The queue
2421 * lock is held when calling this.
2422 */
2423void blk_unprep_request(struct request *req)
2424{
2425 struct request_queue *q = req->q;
2426
2427 req->cmd_flags &= ~REQ_DONTPREP;
2428 if (q->unprep_rq_fn)
2429 q->unprep_rq_fn(q, req);
2430}
2431EXPORT_SYMBOL_GPL(blk_unprep_request);
2432
1da177e4
LT
2433/*
2434 * queue lock must be held
2435 */
2e60e022 2436static void blk_finish_request(struct request *req, int error)
1da177e4 2437{
b8286239
KU
2438 if (blk_rq_tagged(req))
2439 blk_queue_end_tag(req->q, req);
2440
ba396a6c 2441 BUG_ON(blk_queued_rq(req));
1da177e4 2442
33659ebb 2443 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2444 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2445
e78042e5
MA
2446 blk_delete_timer(req);
2447
28018c24
JB
2448 if (req->cmd_flags & REQ_DONTPREP)
2449 blk_unprep_request(req);
2450
2451
bc58ba94 2452 blk_account_io_done(req);
b8286239 2453
1da177e4 2454 if (req->end_io)
8ffdc655 2455 req->end_io(req, error);
b8286239
KU
2456 else {
2457 if (blk_bidi_rq(req))
2458 __blk_put_request(req->next_rq->q, req->next_rq);
2459
1da177e4 2460 __blk_put_request(req->q, req);
b8286239 2461 }
1da177e4
LT
2462}
2463
3b11313a 2464/**
2e60e022
TH
2465 * blk_end_bidi_request - Complete a bidi request
2466 * @rq: the request to complete
2467 * @error: %0 for success, < %0 for error
2468 * @nr_bytes: number of bytes to complete @rq
2469 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2470 *
2471 * Description:
e3a04fe3 2472 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2473 * Drivers that supports bidi can safely call this member for any
2474 * type of request, bidi or uni. In the later case @bidi_bytes is
2475 * just ignored.
336cdb40
KU
2476 *
2477 * Return:
2e60e022
TH
2478 * %false - we are done with this request
2479 * %true - still buffers pending for this request
a0cd1285 2480 **/
b1f74493 2481static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2482 unsigned int nr_bytes, unsigned int bidi_bytes)
2483{
336cdb40 2484 struct request_queue *q = rq->q;
2e60e022 2485 unsigned long flags;
32fab448 2486
2e60e022
TH
2487 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2488 return true;
32fab448 2489
336cdb40 2490 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2491 blk_finish_request(rq, error);
336cdb40
KU
2492 spin_unlock_irqrestore(q->queue_lock, flags);
2493
2e60e022 2494 return false;
32fab448
KU
2495}
2496
336cdb40 2497/**
2e60e022
TH
2498 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2499 * @rq: the request to complete
710027a4 2500 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2501 * @nr_bytes: number of bytes to complete @rq
2502 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2503 *
2504 * Description:
2e60e022
TH
2505 * Identical to blk_end_bidi_request() except that queue lock is
2506 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2507 *
2508 * Return:
2e60e022
TH
2509 * %false - we are done with this request
2510 * %true - still buffers pending for this request
336cdb40 2511 **/
4853abaa 2512bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2513 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2514{
2e60e022
TH
2515 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2516 return true;
336cdb40 2517
2e60e022 2518 blk_finish_request(rq, error);
336cdb40 2519
2e60e022 2520 return false;
336cdb40 2521}
e19a3ab0
KU
2522
2523/**
2524 * blk_end_request - Helper function for drivers to complete the request.
2525 * @rq: the request being processed
710027a4 2526 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2527 * @nr_bytes: number of bytes to complete
2528 *
2529 * Description:
2530 * Ends I/O on a number of bytes attached to @rq.
2531 * If @rq has leftover, sets it up for the next range of segments.
2532 *
2533 * Return:
b1f74493
FT
2534 * %false - we are done with this request
2535 * %true - still buffers pending for this request
e19a3ab0 2536 **/
b1f74493 2537bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2538{
b1f74493 2539 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2540}
56ad1740 2541EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2542
2543/**
b1f74493
FT
2544 * blk_end_request_all - Helper function for drives to finish the request.
2545 * @rq: the request to finish
8ebf9756 2546 * @error: %0 for success, < %0 for error
336cdb40
KU
2547 *
2548 * Description:
b1f74493
FT
2549 * Completely finish @rq.
2550 */
2551void blk_end_request_all(struct request *rq, int error)
336cdb40 2552{
b1f74493
FT
2553 bool pending;
2554 unsigned int bidi_bytes = 0;
336cdb40 2555
b1f74493
FT
2556 if (unlikely(blk_bidi_rq(rq)))
2557 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2558
b1f74493
FT
2559 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2560 BUG_ON(pending);
2561}
56ad1740 2562EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2563
b1f74493
FT
2564/**
2565 * blk_end_request_cur - Helper function to finish the current request chunk.
2566 * @rq: the request to finish the current chunk for
8ebf9756 2567 * @error: %0 for success, < %0 for error
b1f74493
FT
2568 *
2569 * Description:
2570 * Complete the current consecutively mapped chunk from @rq.
2571 *
2572 * Return:
2573 * %false - we are done with this request
2574 * %true - still buffers pending for this request
2575 */
2576bool blk_end_request_cur(struct request *rq, int error)
2577{
2578 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2579}
56ad1740 2580EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2581
80a761fd
TH
2582/**
2583 * blk_end_request_err - Finish a request till the next failure boundary.
2584 * @rq: the request to finish till the next failure boundary for
2585 * @error: must be negative errno
2586 *
2587 * Description:
2588 * Complete @rq till the next failure boundary.
2589 *
2590 * Return:
2591 * %false - we are done with this request
2592 * %true - still buffers pending for this request
2593 */
2594bool blk_end_request_err(struct request *rq, int error)
2595{
2596 WARN_ON(error >= 0);
2597 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2598}
2599EXPORT_SYMBOL_GPL(blk_end_request_err);
2600
e3a04fe3 2601/**
b1f74493
FT
2602 * __blk_end_request - Helper function for drivers to complete the request.
2603 * @rq: the request being processed
2604 * @error: %0 for success, < %0 for error
2605 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2606 *
2607 * Description:
b1f74493 2608 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2609 *
2610 * Return:
b1f74493
FT
2611 * %false - we are done with this request
2612 * %true - still buffers pending for this request
e3a04fe3 2613 **/
b1f74493 2614bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2615{
b1f74493 2616 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2617}
56ad1740 2618EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2619
32fab448 2620/**
b1f74493
FT
2621 * __blk_end_request_all - Helper function for drives to finish the request.
2622 * @rq: the request to finish
8ebf9756 2623 * @error: %0 for success, < %0 for error
32fab448
KU
2624 *
2625 * Description:
b1f74493 2626 * Completely finish @rq. Must be called with queue lock held.
32fab448 2627 */
b1f74493 2628void __blk_end_request_all(struct request *rq, int error)
32fab448 2629{
b1f74493
FT
2630 bool pending;
2631 unsigned int bidi_bytes = 0;
2632
2633 if (unlikely(blk_bidi_rq(rq)))
2634 bidi_bytes = blk_rq_bytes(rq->next_rq);
2635
2636 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2637 BUG_ON(pending);
32fab448 2638}
56ad1740 2639EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2640
e19a3ab0 2641/**
b1f74493
FT
2642 * __blk_end_request_cur - Helper function to finish the current request chunk.
2643 * @rq: the request to finish the current chunk for
8ebf9756 2644 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2645 *
2646 * Description:
b1f74493
FT
2647 * Complete the current consecutively mapped chunk from @rq. Must
2648 * be called with queue lock held.
e19a3ab0
KU
2649 *
2650 * Return:
b1f74493
FT
2651 * %false - we are done with this request
2652 * %true - still buffers pending for this request
2653 */
2654bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2655{
b1f74493 2656 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2657}
56ad1740 2658EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2659
80a761fd
TH
2660/**
2661 * __blk_end_request_err - Finish a request till the next failure boundary.
2662 * @rq: the request to finish till the next failure boundary for
2663 * @error: must be negative errno
2664 *
2665 * Description:
2666 * Complete @rq till the next failure boundary. Must be called
2667 * with queue lock held.
2668 *
2669 * Return:
2670 * %false - we are done with this request
2671 * %true - still buffers pending for this request
2672 */
2673bool __blk_end_request_err(struct request *rq, int error)
2674{
2675 WARN_ON(error >= 0);
2676 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2677}
2678EXPORT_SYMBOL_GPL(__blk_end_request_err);
2679
86db1e29
JA
2680void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2681 struct bio *bio)
1da177e4 2682{
a82afdfc 2683 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2684 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2685
fb2dce86
DW
2686 if (bio_has_data(bio)) {
2687 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2688 rq->buffer = bio_data(bio);
2689 }
a2dec7b3 2690 rq->__data_len = bio->bi_size;
1da177e4 2691 rq->bio = rq->biotail = bio;
1da177e4 2692
66846572
N
2693 if (bio->bi_bdev)
2694 rq->rq_disk = bio->bi_bdev->bd_disk;
2695}
1da177e4 2696
2d4dc890
IL
2697#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2698/**
2699 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2700 * @rq: the request to be flushed
2701 *
2702 * Description:
2703 * Flush all pages in @rq.
2704 */
2705void rq_flush_dcache_pages(struct request *rq)
2706{
2707 struct req_iterator iter;
2708 struct bio_vec *bvec;
2709
2710 rq_for_each_segment(bvec, rq, iter)
2711 flush_dcache_page(bvec->bv_page);
2712}
2713EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2714#endif
2715
ef9e3fac
KU
2716/**
2717 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2718 * @q : the queue of the device being checked
2719 *
2720 * Description:
2721 * Check if underlying low-level drivers of a device are busy.
2722 * If the drivers want to export their busy state, they must set own
2723 * exporting function using blk_queue_lld_busy() first.
2724 *
2725 * Basically, this function is used only by request stacking drivers
2726 * to stop dispatching requests to underlying devices when underlying
2727 * devices are busy. This behavior helps more I/O merging on the queue
2728 * of the request stacking driver and prevents I/O throughput regression
2729 * on burst I/O load.
2730 *
2731 * Return:
2732 * 0 - Not busy (The request stacking driver should dispatch request)
2733 * 1 - Busy (The request stacking driver should stop dispatching request)
2734 */
2735int blk_lld_busy(struct request_queue *q)
2736{
2737 if (q->lld_busy_fn)
2738 return q->lld_busy_fn(q);
2739
2740 return 0;
2741}
2742EXPORT_SYMBOL_GPL(blk_lld_busy);
2743
b0fd271d
KU
2744/**
2745 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2746 * @rq: the clone request to be cleaned up
2747 *
2748 * Description:
2749 * Free all bios in @rq for a cloned request.
2750 */
2751void blk_rq_unprep_clone(struct request *rq)
2752{
2753 struct bio *bio;
2754
2755 while ((bio = rq->bio) != NULL) {
2756 rq->bio = bio->bi_next;
2757
2758 bio_put(bio);
2759 }
2760}
2761EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2762
2763/*
2764 * Copy attributes of the original request to the clone request.
2765 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2766 */
2767static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2768{
2769 dst->cpu = src->cpu;
3a2edd0d 2770 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2771 dst->cmd_type = src->cmd_type;
2772 dst->__sector = blk_rq_pos(src);
2773 dst->__data_len = blk_rq_bytes(src);
2774 dst->nr_phys_segments = src->nr_phys_segments;
2775 dst->ioprio = src->ioprio;
2776 dst->extra_len = src->extra_len;
2777}
2778
2779/**
2780 * blk_rq_prep_clone - Helper function to setup clone request
2781 * @rq: the request to be setup
2782 * @rq_src: original request to be cloned
2783 * @bs: bio_set that bios for clone are allocated from
2784 * @gfp_mask: memory allocation mask for bio
2785 * @bio_ctr: setup function to be called for each clone bio.
2786 * Returns %0 for success, non %0 for failure.
2787 * @data: private data to be passed to @bio_ctr
2788 *
2789 * Description:
2790 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2791 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2792 * are not copied, and copying such parts is the caller's responsibility.
2793 * Also, pages which the original bios are pointing to are not copied
2794 * and the cloned bios just point same pages.
2795 * So cloned bios must be completed before original bios, which means
2796 * the caller must complete @rq before @rq_src.
2797 */
2798int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2799 struct bio_set *bs, gfp_t gfp_mask,
2800 int (*bio_ctr)(struct bio *, struct bio *, void *),
2801 void *data)
2802{
2803 struct bio *bio, *bio_src;
2804
2805 if (!bs)
2806 bs = fs_bio_set;
2807
2808 blk_rq_init(NULL, rq);
2809
2810 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2811 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2812 if (!bio)
2813 goto free_and_out;
2814
b0fd271d
KU
2815 if (bio_ctr && bio_ctr(bio, bio_src, data))
2816 goto free_and_out;
2817
2818 if (rq->bio) {
2819 rq->biotail->bi_next = bio;
2820 rq->biotail = bio;
2821 } else
2822 rq->bio = rq->biotail = bio;
2823 }
2824
2825 __blk_rq_prep_clone(rq, rq_src);
2826
2827 return 0;
2828
2829free_and_out:
2830 if (bio)
4254bba1 2831 bio_put(bio);
b0fd271d
KU
2832 blk_rq_unprep_clone(rq);
2833
2834 return -ENOMEM;
2835}
2836EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2837
18887ad9 2838int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2839{
2840 return queue_work(kblockd_workqueue, work);
2841}
1da177e4
LT
2842EXPORT_SYMBOL(kblockd_schedule_work);
2843
e43473b7
VG
2844int kblockd_schedule_delayed_work(struct request_queue *q,
2845 struct delayed_work *dwork, unsigned long delay)
2846{
2847 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2848}
2849EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2850
73c10101
JA
2851#define PLUG_MAGIC 0x91827364
2852
75df7136
SJ
2853/**
2854 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2855 * @plug: The &struct blk_plug that needs to be initialized
2856 *
2857 * Description:
2858 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2859 * pending I/O should the task end up blocking between blk_start_plug() and
2860 * blk_finish_plug(). This is important from a performance perspective, but
2861 * also ensures that we don't deadlock. For instance, if the task is blocking
2862 * for a memory allocation, memory reclaim could end up wanting to free a
2863 * page belonging to that request that is currently residing in our private
2864 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2865 * this kind of deadlock.
2866 */
73c10101
JA
2867void blk_start_plug(struct blk_plug *plug)
2868{
2869 struct task_struct *tsk = current;
2870
2871 plug->magic = PLUG_MAGIC;
2872 INIT_LIST_HEAD(&plug->list);
048c9374 2873 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2874
2875 /*
2876 * If this is a nested plug, don't actually assign it. It will be
2877 * flushed on its own.
2878 */
2879 if (!tsk->plug) {
2880 /*
2881 * Store ordering should not be needed here, since a potential
2882 * preempt will imply a full memory barrier
2883 */
2884 tsk->plug = plug;
2885 }
2886}
2887EXPORT_SYMBOL(blk_start_plug);
2888
2889static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2890{
2891 struct request *rqa = container_of(a, struct request, queuelist);
2892 struct request *rqb = container_of(b, struct request, queuelist);
2893
975927b9
JM
2894 return !(rqa->q < rqb->q ||
2895 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2896}
2897
49cac01e
JA
2898/*
2899 * If 'from_schedule' is true, then postpone the dispatch of requests
2900 * until a safe kblockd context. We due this to avoid accidental big
2901 * additional stack usage in driver dispatch, in places where the originally
2902 * plugger did not intend it.
2903 */
f6603783 2904static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2905 bool from_schedule)
99e22598 2906 __releases(q->queue_lock)
94b5eb28 2907{
49cac01e 2908 trace_block_unplug(q, depth, !from_schedule);
99e22598 2909
70460571 2910 if (from_schedule)
24ecfbe2 2911 blk_run_queue_async(q);
70460571 2912 else
24ecfbe2 2913 __blk_run_queue(q);
70460571 2914 spin_unlock(q->queue_lock);
94b5eb28
JA
2915}
2916
74018dc3 2917static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2918{
2919 LIST_HEAD(callbacks);
2920
2a7d5559
SL
2921 while (!list_empty(&plug->cb_list)) {
2922 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2923
2a7d5559
SL
2924 while (!list_empty(&callbacks)) {
2925 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2926 struct blk_plug_cb,
2927 list);
2a7d5559 2928 list_del(&cb->list);
74018dc3 2929 cb->callback(cb, from_schedule);
2a7d5559 2930 }
048c9374
N
2931 }
2932}
2933
9cbb1750
N
2934struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2935 int size)
2936{
2937 struct blk_plug *plug = current->plug;
2938 struct blk_plug_cb *cb;
2939
2940 if (!plug)
2941 return NULL;
2942
2943 list_for_each_entry(cb, &plug->cb_list, list)
2944 if (cb->callback == unplug && cb->data == data)
2945 return cb;
2946
2947 /* Not currently on the callback list */
2948 BUG_ON(size < sizeof(*cb));
2949 cb = kzalloc(size, GFP_ATOMIC);
2950 if (cb) {
2951 cb->data = data;
2952 cb->callback = unplug;
2953 list_add(&cb->list, &plug->cb_list);
2954 }
2955 return cb;
2956}
2957EXPORT_SYMBOL(blk_check_plugged);
2958
49cac01e 2959void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2960{
2961 struct request_queue *q;
2962 unsigned long flags;
2963 struct request *rq;
109b8129 2964 LIST_HEAD(list);
94b5eb28 2965 unsigned int depth;
73c10101
JA
2966
2967 BUG_ON(plug->magic != PLUG_MAGIC);
2968
74018dc3 2969 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2970 if (list_empty(&plug->list))
2971 return;
2972
109b8129
N
2973 list_splice_init(&plug->list, &list);
2974
422765c2 2975 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
2976
2977 q = NULL;
94b5eb28 2978 depth = 0;
18811272
JA
2979
2980 /*
2981 * Save and disable interrupts here, to avoid doing it for every
2982 * queue lock we have to take.
2983 */
73c10101 2984 local_irq_save(flags);
109b8129
N
2985 while (!list_empty(&list)) {
2986 rq = list_entry_rq(list.next);
73c10101 2987 list_del_init(&rq->queuelist);
73c10101
JA
2988 BUG_ON(!rq->q);
2989 if (rq->q != q) {
99e22598
JA
2990 /*
2991 * This drops the queue lock
2992 */
2993 if (q)
49cac01e 2994 queue_unplugged(q, depth, from_schedule);
73c10101 2995 q = rq->q;
94b5eb28 2996 depth = 0;
73c10101
JA
2997 spin_lock(q->queue_lock);
2998 }
8ba61435
TH
2999
3000 /*
3001 * Short-circuit if @q is dead
3002 */
3f3299d5 3003 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3004 __blk_end_request_all(rq, -ENODEV);
3005 continue;
3006 }
3007
73c10101
JA
3008 /*
3009 * rq is already accounted, so use raw insert
3010 */
401a18e9
JA
3011 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3012 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3013 else
3014 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3015
3016 depth++;
73c10101
JA
3017 }
3018
99e22598
JA
3019 /*
3020 * This drops the queue lock
3021 */
3022 if (q)
49cac01e 3023 queue_unplugged(q, depth, from_schedule);
73c10101 3024
73c10101
JA
3025 local_irq_restore(flags);
3026}
73c10101
JA
3027
3028void blk_finish_plug(struct blk_plug *plug)
3029{
f6603783 3030 blk_flush_plug_list(plug, false);
73c10101 3031
88b996cd
CH
3032 if (plug == current->plug)
3033 current->plug = NULL;
73c10101 3034}
88b996cd 3035EXPORT_SYMBOL(blk_finish_plug);
73c10101 3036
6c954667
LM
3037#ifdef CONFIG_PM_RUNTIME
3038/**
3039 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3040 * @q: the queue of the device
3041 * @dev: the device the queue belongs to
3042 *
3043 * Description:
3044 * Initialize runtime-PM-related fields for @q and start auto suspend for
3045 * @dev. Drivers that want to take advantage of request-based runtime PM
3046 * should call this function after @dev has been initialized, and its
3047 * request queue @q has been allocated, and runtime PM for it can not happen
3048 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3049 * cases, driver should call this function before any I/O has taken place.
3050 *
3051 * This function takes care of setting up using auto suspend for the device,
3052 * the autosuspend delay is set to -1 to make runtime suspend impossible
3053 * until an updated value is either set by user or by driver. Drivers do
3054 * not need to touch other autosuspend settings.
3055 *
3056 * The block layer runtime PM is request based, so only works for drivers
3057 * that use request as their IO unit instead of those directly use bio's.
3058 */
3059void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3060{
3061 q->dev = dev;
3062 q->rpm_status = RPM_ACTIVE;
3063 pm_runtime_set_autosuspend_delay(q->dev, -1);
3064 pm_runtime_use_autosuspend(q->dev);
3065}
3066EXPORT_SYMBOL(blk_pm_runtime_init);
3067
3068/**
3069 * blk_pre_runtime_suspend - Pre runtime suspend check
3070 * @q: the queue of the device
3071 *
3072 * Description:
3073 * This function will check if runtime suspend is allowed for the device
3074 * by examining if there are any requests pending in the queue. If there
3075 * are requests pending, the device can not be runtime suspended; otherwise,
3076 * the queue's status will be updated to SUSPENDING and the driver can
3077 * proceed to suspend the device.
3078 *
3079 * For the not allowed case, we mark last busy for the device so that
3080 * runtime PM core will try to autosuspend it some time later.
3081 *
3082 * This function should be called near the start of the device's
3083 * runtime_suspend callback.
3084 *
3085 * Return:
3086 * 0 - OK to runtime suspend the device
3087 * -EBUSY - Device should not be runtime suspended
3088 */
3089int blk_pre_runtime_suspend(struct request_queue *q)
3090{
3091 int ret = 0;
3092
3093 spin_lock_irq(q->queue_lock);
3094 if (q->nr_pending) {
3095 ret = -EBUSY;
3096 pm_runtime_mark_last_busy(q->dev);
3097 } else {
3098 q->rpm_status = RPM_SUSPENDING;
3099 }
3100 spin_unlock_irq(q->queue_lock);
3101 return ret;
3102}
3103EXPORT_SYMBOL(blk_pre_runtime_suspend);
3104
3105/**
3106 * blk_post_runtime_suspend - Post runtime suspend processing
3107 * @q: the queue of the device
3108 * @err: return value of the device's runtime_suspend function
3109 *
3110 * Description:
3111 * Update the queue's runtime status according to the return value of the
3112 * device's runtime suspend function and mark last busy for the device so
3113 * that PM core will try to auto suspend the device at a later time.
3114 *
3115 * This function should be called near the end of the device's
3116 * runtime_suspend callback.
3117 */
3118void blk_post_runtime_suspend(struct request_queue *q, int err)
3119{
3120 spin_lock_irq(q->queue_lock);
3121 if (!err) {
3122 q->rpm_status = RPM_SUSPENDED;
3123 } else {
3124 q->rpm_status = RPM_ACTIVE;
3125 pm_runtime_mark_last_busy(q->dev);
3126 }
3127 spin_unlock_irq(q->queue_lock);
3128}
3129EXPORT_SYMBOL(blk_post_runtime_suspend);
3130
3131/**
3132 * blk_pre_runtime_resume - Pre runtime resume processing
3133 * @q: the queue of the device
3134 *
3135 * Description:
3136 * Update the queue's runtime status to RESUMING in preparation for the
3137 * runtime resume of the device.
3138 *
3139 * This function should be called near the start of the device's
3140 * runtime_resume callback.
3141 */
3142void blk_pre_runtime_resume(struct request_queue *q)
3143{
3144 spin_lock_irq(q->queue_lock);
3145 q->rpm_status = RPM_RESUMING;
3146 spin_unlock_irq(q->queue_lock);
3147}
3148EXPORT_SYMBOL(blk_pre_runtime_resume);
3149
3150/**
3151 * blk_post_runtime_resume - Post runtime resume processing
3152 * @q: the queue of the device
3153 * @err: return value of the device's runtime_resume function
3154 *
3155 * Description:
3156 * Update the queue's runtime status according to the return value of the
3157 * device's runtime_resume function. If it is successfully resumed, process
3158 * the requests that are queued into the device's queue when it is resuming
3159 * and then mark last busy and initiate autosuspend for it.
3160 *
3161 * This function should be called near the end of the device's
3162 * runtime_resume callback.
3163 */
3164void blk_post_runtime_resume(struct request_queue *q, int err)
3165{
3166 spin_lock_irq(q->queue_lock);
3167 if (!err) {
3168 q->rpm_status = RPM_ACTIVE;
3169 __blk_run_queue(q);
3170 pm_runtime_mark_last_busy(q->dev);
c60855cd 3171 pm_request_autosuspend(q->dev);
6c954667
LM
3172 } else {
3173 q->rpm_status = RPM_SUSPENDED;
3174 }
3175 spin_unlock_irq(q->queue_lock);
3176}
3177EXPORT_SYMBOL(blk_post_runtime_resume);
3178#endif
3179
1da177e4
LT
3180int __init blk_dev_init(void)
3181{
9eb55b03
NK
3182 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3183 sizeof(((struct request *)0)->cmd_flags));
3184
89b90be2
TH
3185 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3186 kblockd_workqueue = alloc_workqueue("kblockd",
695588f9
VK
3187 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3188 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3189 if (!kblockd_workqueue)
3190 panic("Failed to create kblockd\n");
3191
3192 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3193 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3194
8324aa91 3195 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3196 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3197
d38ecf93 3198 return 0;
1da177e4 3199}