]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
nbd: stop using req->cmd
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
8324aa91 66void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
67{
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79}
80
1da177e4
LT
81/**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
1da177e4
LT
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
165125e1 91 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 92
ff9ea323 93 return &q->backing_dev_info;
1da177e4 94}
1da177e4
LT
95EXPORT_SYMBOL(blk_get_backing_dev_info);
96
2a4aa30c 97void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 98{
1afb20f3
FT
99 memset(rq, 0, sizeof(*rq));
100
1da177e4 101 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 102 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 103 rq->cpu = -1;
63a71386 104 rq->q = q;
a2dec7b3 105 rq->__sector = (sector_t) -1;
2e662b65
JA
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 108 rq->cmd = rq->__cmd;
e2494e1b 109 rq->cmd_len = BLK_MAX_CDB;
63a71386 110 rq->tag = -1;
b243ddcb 111 rq->start_time = jiffies;
9195291e 112 set_start_time_ns(rq);
09e099d4 113 rq->part = NULL;
1da177e4 114}
2a4aa30c 115EXPORT_SYMBOL(blk_rq_init);
1da177e4 116
5bb23a68
N
117static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
1da177e4 119{
143a87f4
TH
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
797e7dbb 124
143a87f4
TH
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 127
f79ea416 128 bio_advance(bio, nbytes);
7ba1ba12 129
143a87f4 130 /* don't actually finish bio if it's part of flush sequence */
4f024f37 131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 132 bio_endio(bio, error);
1da177e4 133}
1da177e4 134
1da177e4
LT
135void blk_dump_rq_flags(struct request *rq, char *msg)
136{
137 int bit;
138
5953316d 139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 141 (unsigned long long) rq->cmd_flags);
1da177e4 142
83096ebf
TH
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 148
33659ebb 149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 150 printk(KERN_INFO " cdb: ");
d34c87e4 151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155}
1da177e4
LT
156EXPORT_SYMBOL(blk_dump_rq_flags);
157
3cca6dc1 158static void blk_delay_work(struct work_struct *work)
1da177e4 159{
3cca6dc1 160 struct request_queue *q;
1da177e4 161
3cca6dc1
JA
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
24ecfbe2 164 __blk_run_queue(q);
3cca6dc1 165 spin_unlock_irq(q->queue_lock);
1da177e4 166}
1da177e4
LT
167
168/**
3cca6dc1
JA
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
1da177e4
LT
172 *
173 * Description:
3cca6dc1
JA
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
70460571 176 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
177 */
178void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 179{
70460571
BVA
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
2ad8b1ef 183}
3cca6dc1 184EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 185
1da177e4
LT
186/**
187 * blk_start_queue - restart a previously stopped queue
165125e1 188 * @q: The &struct request_queue in question
1da177e4
LT
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
165125e1 195void blk_start_queue(struct request_queue *q)
1da177e4 196{
a038e253
PBG
197 WARN_ON(!irqs_disabled());
198
75ad23bc 199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 200 __blk_run_queue(q);
1da177e4 201}
1da177e4
LT
202EXPORT_SYMBOL(blk_start_queue);
203
204/**
205 * blk_stop_queue - stop a queue
165125e1 206 * @q: The &struct request_queue in question
1da177e4
LT
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
165125e1 218void blk_stop_queue(struct request_queue *q)
1da177e4 219{
136b5721 220 cancel_delayed_work(&q->delay_work);
75ad23bc 221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
222}
223EXPORT_SYMBOL(blk_stop_queue);
224
225/**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
59c51591 234 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
da527770 238 * This function does not cancel any asynchronous activity arising
da3dae54 239 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 240 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 241 *
1da177e4
LT
242 */
243void blk_sync_queue(struct request_queue *q)
244{
70ed28b9 245 del_timer_sync(&q->timeout);
f04c1fe7
ML
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
70f4db63
CH
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
f04c1fe7
ML
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
1da177e4
LT
258}
259EXPORT_SYMBOL(blk_sync_queue);
260
c246e80d
BVA
261/**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272inline void __blk_run_queue_uncond(struct request_queue *q)
273{
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
24faf6f6
BVA
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
c246e80d 285 q->request_fn(q);
24faf6f6 286 q->request_fn_active--;
c246e80d 287}
a7928c15 288EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 289
1da177e4 290/**
80a4b58e 291 * __blk_run_queue - run a single device queue
1da177e4 292 * @q: The queue to run
80a4b58e
JA
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 296 * held and interrupts disabled.
1da177e4 297 */
24ecfbe2 298void __blk_run_queue(struct request_queue *q)
1da177e4 299{
a538cd03
TH
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
c246e80d 303 __blk_run_queue_uncond(q);
75ad23bc
NP
304}
305EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 306
24ecfbe2
CH
307/**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 313 * of us. The caller must hold the queue lock.
24ecfbe2
CH
314 */
315void blk_run_queue_async(struct request_queue *q)
316{
70460571 317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 319}
c21e6beb 320EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 321
75ad23bc
NP
322/**
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
80a4b58e
JA
325 *
326 * Description:
327 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 328 * May be used to restart queueing when a request has completed.
75ad23bc
NP
329 */
330void blk_run_queue(struct request_queue *q)
331{
332 unsigned long flags;
333
334 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 335 __blk_run_queue(q);
1da177e4
LT
336 spin_unlock_irqrestore(q->queue_lock, flags);
337}
338EXPORT_SYMBOL(blk_run_queue);
339
165125e1 340void blk_put_queue(struct request_queue *q)
483f4afc
AV
341{
342 kobject_put(&q->kobj);
343}
d86e0e83 344EXPORT_SYMBOL(blk_put_queue);
483f4afc 345
e3c78ca5 346/**
807592a4 347 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 348 * @q: queue to drain
c9a929dd 349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 350 *
c9a929dd
TH
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 354 */
807592a4
BVA
355static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 __releases(q->queue_lock)
357 __acquires(q->queue_lock)
e3c78ca5 358{
458f27a9
AH
359 int i;
360
807592a4
BVA
361 lockdep_assert_held(q->queue_lock);
362
e3c78ca5 363 while (true) {
481a7d64 364 bool drain = false;
e3c78ca5 365
b855b04a
TH
366 /*
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
369 */
370 if (q->elevator)
371 elv_drain_elevator(q);
372
5efd6113 373 blkcg_drain_queue(q);
e3c78ca5 374
4eabc941
TH
375 /*
376 * This function might be called on a queue which failed
b855b04a
TH
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
4eabc941 381 */
b855b04a 382 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 383 __blk_run_queue(q);
c9a929dd 384
8a5ecdd4 385 drain |= q->nr_rqs_elvpriv;
24faf6f6 386 drain |= q->request_fn_active;
481a7d64
TH
387
388 /*
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
392 */
393 if (drain_all) {
e97c293c 394 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
395 drain |= !list_empty(&q->queue_head);
396 for (i = 0; i < 2; i++) {
8a5ecdd4 397 drain |= q->nr_rqs[i];
481a7d64 398 drain |= q->in_flight[i];
7c94e1c1
ML
399 if (fq)
400 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
401 }
402 }
e3c78ca5 403
481a7d64 404 if (!drain)
e3c78ca5 405 break;
807592a4
BVA
406
407 spin_unlock_irq(q->queue_lock);
408
e3c78ca5 409 msleep(10);
807592a4
BVA
410
411 spin_lock_irq(q->queue_lock);
e3c78ca5 412 }
458f27a9
AH
413
414 /*
415 * With queue marked dead, any woken up waiter will fail the
416 * allocation path, so the wakeup chaining is lost and we're
417 * left with hung waiters. We need to wake up those waiters.
418 */
419 if (q->request_fn) {
a051661c
TH
420 struct request_list *rl;
421
a051661c
TH
422 blk_queue_for_each_rl(rl, q)
423 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
424 wake_up_all(&rl->wait[i]);
458f27a9 425 }
e3c78ca5
TH
426}
427
d732580b
TH
428/**
429 * blk_queue_bypass_start - enter queue bypass mode
430 * @q: queue of interest
431 *
432 * In bypass mode, only the dispatch FIFO queue of @q is used. This
433 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 434 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
435 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
436 * inside queue or RCU read lock.
d732580b
TH
437 */
438void blk_queue_bypass_start(struct request_queue *q)
439{
440 spin_lock_irq(q->queue_lock);
776687bc 441 q->bypass_depth++;
d732580b
TH
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
776687bc
TH
445 /*
446 * Queues start drained. Skip actual draining till init is
447 * complete. This avoids lenghty delays during queue init which
448 * can happen many times during boot.
449 */
450 if (blk_queue_init_done(q)) {
807592a4
BVA
451 spin_lock_irq(q->queue_lock);
452 __blk_drain_queue(q, false);
453 spin_unlock_irq(q->queue_lock);
454
b82d4b19
TH
455 /* ensure blk_queue_bypass() is %true inside RCU read lock */
456 synchronize_rcu();
457 }
d732580b
TH
458}
459EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
460
461/**
462 * blk_queue_bypass_end - leave queue bypass mode
463 * @q: queue of interest
464 *
465 * Leave bypass mode and restore the normal queueing behavior.
466 */
467void blk_queue_bypass_end(struct request_queue *q)
468{
469 spin_lock_irq(q->queue_lock);
470 if (!--q->bypass_depth)
471 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
472 WARN_ON_ONCE(q->bypass_depth < 0);
473 spin_unlock_irq(q->queue_lock);
474}
475EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
476
aed3ea94
JA
477void blk_set_queue_dying(struct request_queue *q)
478{
479 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
480
481 if (q->mq_ops)
482 blk_mq_wake_waiters(q);
483 else {
484 struct request_list *rl;
485
486 blk_queue_for_each_rl(rl, q) {
487 if (rl->rq_pool) {
488 wake_up(&rl->wait[BLK_RW_SYNC]);
489 wake_up(&rl->wait[BLK_RW_ASYNC]);
490 }
491 }
492 }
493}
494EXPORT_SYMBOL_GPL(blk_set_queue_dying);
495
c9a929dd
TH
496/**
497 * blk_cleanup_queue - shutdown a request queue
498 * @q: request queue to shutdown
499 *
c246e80d
BVA
500 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
501 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 502 */
6728cb0e 503void blk_cleanup_queue(struct request_queue *q)
483f4afc 504{
c9a929dd 505 spinlock_t *lock = q->queue_lock;
e3335de9 506
3f3299d5 507 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 508 mutex_lock(&q->sysfs_lock);
aed3ea94 509 blk_set_queue_dying(q);
c9a929dd 510 spin_lock_irq(lock);
6ecf23af 511
80fd9979 512 /*
3f3299d5 513 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
514 * that, unlike blk_queue_bypass_start(), we aren't performing
515 * synchronize_rcu() after entering bypass mode to avoid the delay
516 * as some drivers create and destroy a lot of queues while
517 * probing. This is still safe because blk_release_queue() will be
518 * called only after the queue refcnt drops to zero and nothing,
519 * RCU or not, would be traversing the queue by then.
520 */
6ecf23af
TH
521 q->bypass_depth++;
522 queue_flag_set(QUEUE_FLAG_BYPASS, q);
523
c9a929dd
TH
524 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
525 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 526 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
527 spin_unlock_irq(lock);
528 mutex_unlock(&q->sysfs_lock);
529
c246e80d
BVA
530 /*
531 * Drain all requests queued before DYING marking. Set DEAD flag to
532 * prevent that q->request_fn() gets invoked after draining finished.
533 */
43a5e4e2 534 if (q->mq_ops) {
780db207 535 blk_mq_freeze_queue(q);
43a5e4e2
ML
536 spin_lock_irq(lock);
537 } else {
538 spin_lock_irq(lock);
539 __blk_drain_queue(q, true);
540 }
c246e80d 541 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 542 spin_unlock_irq(lock);
c9a929dd
TH
543
544 /* @q won't process any more request, flush async actions */
545 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
546 blk_sync_queue(q);
547
45a9c9d9
BVA
548 if (q->mq_ops)
549 blk_mq_free_queue(q);
550
5e5cfac0
AH
551 spin_lock_irq(lock);
552 if (q->queue_lock != &q->__queue_lock)
553 q->queue_lock = &q->__queue_lock;
554 spin_unlock_irq(lock);
555
c9a929dd 556 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
557 blk_put_queue(q);
558}
1da177e4
LT
559EXPORT_SYMBOL(blk_cleanup_queue);
560
271508db
DR
561/* Allocate memory local to the request queue */
562static void *alloc_request_struct(gfp_t gfp_mask, void *data)
563{
564 int nid = (int)(long)data;
565 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
566}
567
568static void free_request_struct(void *element, void *unused)
569{
570 kmem_cache_free(request_cachep, element);
571}
572
5b788ce3
TH
573int blk_init_rl(struct request_list *rl, struct request_queue *q,
574 gfp_t gfp_mask)
1da177e4 575{
1abec4fd
MS
576 if (unlikely(rl->rq_pool))
577 return 0;
578
5b788ce3 579 rl->q = q;
1faa16d2
JA
580 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
581 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
582 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
583 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 584
271508db
DR
585 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
586 free_request_struct,
587 (void *)(long)q->node, gfp_mask,
588 q->node);
1da177e4
LT
589 if (!rl->rq_pool)
590 return -ENOMEM;
591
592 return 0;
593}
594
5b788ce3
TH
595void blk_exit_rl(struct request_list *rl)
596{
597 if (rl->rq_pool)
598 mempool_destroy(rl->rq_pool);
599}
600
165125e1 601struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 602{
c304a51b 603 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
604}
605EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 606
165125e1 607struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 608{
165125e1 609 struct request_queue *q;
e0bf68dd 610 int err;
1946089a 611
8324aa91 612 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 613 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
614 if (!q)
615 return NULL;
616
00380a40 617 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 618 if (q->id < 0)
3d2936f4 619 goto fail_q;
a73f730d 620
0989a025
JA
621 q->backing_dev_info.ra_pages =
622 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
623 q->backing_dev_info.state = 0;
b4caecd4 624 q->backing_dev_info.capabilities = 0;
d993831f 625 q->backing_dev_info.name = "block";
5151412d 626 q->node = node_id;
0989a025 627
e0bf68dd 628 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
629 if (err)
630 goto fail_id;
e0bf68dd 631
31373d09
MG
632 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
633 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 634 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 635 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 636 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 637 INIT_LIST_HEAD(&q->icq_list);
4eef3049 638#ifdef CONFIG_BLK_CGROUP
e8989fae 639 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 640#endif
3cca6dc1 641 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 642
8324aa91 643 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 644
483f4afc 645 mutex_init(&q->sysfs_lock);
e7e72bf6 646 spin_lock_init(&q->__queue_lock);
483f4afc 647
c94a96ac
VG
648 /*
649 * By default initialize queue_lock to internal lock and driver can
650 * override it later if need be.
651 */
652 q->queue_lock = &q->__queue_lock;
653
b82d4b19
TH
654 /*
655 * A queue starts its life with bypass turned on to avoid
656 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
657 * init. The initial bypass will be finished when the queue is
658 * registered by blk_register_queue().
b82d4b19
TH
659 */
660 q->bypass_depth = 1;
661 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
662
320ae51f
JA
663 init_waitqueue_head(&q->mq_freeze_wq);
664
5efd6113 665 if (blkcg_init_queue(q))
fff4996b 666 goto fail_bdi;
f51b802c 667
1da177e4 668 return q;
a73f730d 669
fff4996b
MP
670fail_bdi:
671 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
672fail_id:
673 ida_simple_remove(&blk_queue_ida, q->id);
674fail_q:
675 kmem_cache_free(blk_requestq_cachep, q);
676 return NULL;
1da177e4 677}
1946089a 678EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
679
680/**
681 * blk_init_queue - prepare a request queue for use with a block device
682 * @rfn: The function to be called to process requests that have been
683 * placed on the queue.
684 * @lock: Request queue spin lock
685 *
686 * Description:
687 * If a block device wishes to use the standard request handling procedures,
688 * which sorts requests and coalesces adjacent requests, then it must
689 * call blk_init_queue(). The function @rfn will be called when there
690 * are requests on the queue that need to be processed. If the device
691 * supports plugging, then @rfn may not be called immediately when requests
692 * are available on the queue, but may be called at some time later instead.
693 * Plugged queues are generally unplugged when a buffer belonging to one
694 * of the requests on the queue is needed, or due to memory pressure.
695 *
696 * @rfn is not required, or even expected, to remove all requests off the
697 * queue, but only as many as it can handle at a time. If it does leave
698 * requests on the queue, it is responsible for arranging that the requests
699 * get dealt with eventually.
700 *
701 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
702 * request queue; this lock will be taken also from interrupt context, so irq
703 * disabling is needed for it.
1da177e4 704 *
710027a4 705 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
706 * it didn't succeed.
707 *
708 * Note:
709 * blk_init_queue() must be paired with a blk_cleanup_queue() call
710 * when the block device is deactivated (such as at module unload).
711 **/
1946089a 712
165125e1 713struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 714{
c304a51b 715 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
716}
717EXPORT_SYMBOL(blk_init_queue);
718
165125e1 719struct request_queue *
1946089a
CL
720blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
721{
c86d1b8a 722 struct request_queue *uninit_q, *q;
1da177e4 723
c86d1b8a
MS
724 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
725 if (!uninit_q)
726 return NULL;
727
5151412d 728 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 729 if (!q)
7982e90c 730 blk_cleanup_queue(uninit_q);
18741986 731
7982e90c 732 return q;
01effb0d
MS
733}
734EXPORT_SYMBOL(blk_init_queue_node);
735
736struct request_queue *
737blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
738 spinlock_t *lock)
01effb0d 739{
1da177e4
LT
740 if (!q)
741 return NULL;
742
f70ced09 743 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 744 if (!q->fq)
7982e90c
MS
745 return NULL;
746
a051661c 747 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 748 goto fail;
1da177e4
LT
749
750 q->request_fn = rfn;
1da177e4 751 q->prep_rq_fn = NULL;
28018c24 752 q->unprep_rq_fn = NULL;
60ea8226 753 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
754
755 /* Override internal queue lock with supplied lock pointer */
756 if (lock)
757 q->queue_lock = lock;
1da177e4 758
f3b144aa
JA
759 /*
760 * This also sets hw/phys segments, boundary and size
761 */
c20e8de2 762 blk_queue_make_request(q, blk_queue_bio);
1da177e4 763
44ec9542
AS
764 q->sg_reserved_size = INT_MAX;
765
eb1c160b
TS
766 /* Protect q->elevator from elevator_change */
767 mutex_lock(&q->sysfs_lock);
768
b82d4b19 769 /* init elevator */
eb1c160b
TS
770 if (elevator_init(q, NULL)) {
771 mutex_unlock(&q->sysfs_lock);
708f04d2 772 goto fail;
eb1c160b
TS
773 }
774
775 mutex_unlock(&q->sysfs_lock);
776
b82d4b19 777 return q;
708f04d2
DJ
778
779fail:
ba483388 780 blk_free_flush_queue(q->fq);
708f04d2 781 return NULL;
1da177e4 782}
5151412d 783EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 784
09ac46c4 785bool blk_get_queue(struct request_queue *q)
1da177e4 786{
3f3299d5 787 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
788 __blk_get_queue(q);
789 return true;
1da177e4
LT
790 }
791
09ac46c4 792 return false;
1da177e4 793}
d86e0e83 794EXPORT_SYMBOL(blk_get_queue);
1da177e4 795
5b788ce3 796static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 797{
f1f8cc94 798 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 799 elv_put_request(rl->q, rq);
f1f8cc94 800 if (rq->elv.icq)
11a3122f 801 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
802 }
803
5b788ce3 804 mempool_free(rq, rl->rq_pool);
1da177e4
LT
805}
806
1da177e4
LT
807/*
808 * ioc_batching returns true if the ioc is a valid batching request and
809 * should be given priority access to a request.
810 */
165125e1 811static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
812{
813 if (!ioc)
814 return 0;
815
816 /*
817 * Make sure the process is able to allocate at least 1 request
818 * even if the batch times out, otherwise we could theoretically
819 * lose wakeups.
820 */
821 return ioc->nr_batch_requests == q->nr_batching ||
822 (ioc->nr_batch_requests > 0
823 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
824}
825
826/*
827 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
828 * will cause the process to be a "batcher" on all queues in the system. This
829 * is the behaviour we want though - once it gets a wakeup it should be given
830 * a nice run.
831 */
165125e1 832static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
833{
834 if (!ioc || ioc_batching(q, ioc))
835 return;
836
837 ioc->nr_batch_requests = q->nr_batching;
838 ioc->last_waited = jiffies;
839}
840
5b788ce3 841static void __freed_request(struct request_list *rl, int sync)
1da177e4 842{
5b788ce3 843 struct request_queue *q = rl->q;
1da177e4 844
a051661c
TH
845 /*
846 * bdi isn't aware of blkcg yet. As all async IOs end up root
847 * blkcg anyway, just use root blkcg state.
848 */
849 if (rl == &q->root_rl &&
850 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 851 blk_clear_queue_congested(q, sync);
1da177e4 852
1faa16d2
JA
853 if (rl->count[sync] + 1 <= q->nr_requests) {
854 if (waitqueue_active(&rl->wait[sync]))
855 wake_up(&rl->wait[sync]);
1da177e4 856
5b788ce3 857 blk_clear_rl_full(rl, sync);
1da177e4
LT
858 }
859}
860
861/*
862 * A request has just been released. Account for it, update the full and
863 * congestion status, wake up any waiters. Called under q->queue_lock.
864 */
5b788ce3 865static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 866{
5b788ce3 867 struct request_queue *q = rl->q;
75eb6c37 868 int sync = rw_is_sync(flags);
1da177e4 869
8a5ecdd4 870 q->nr_rqs[sync]--;
1faa16d2 871 rl->count[sync]--;
75eb6c37 872 if (flags & REQ_ELVPRIV)
8a5ecdd4 873 q->nr_rqs_elvpriv--;
1da177e4 874
5b788ce3 875 __freed_request(rl, sync);
1da177e4 876
1faa16d2 877 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 878 __freed_request(rl, sync ^ 1);
1da177e4
LT
879}
880
e3a2b3f9
JA
881int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
882{
883 struct request_list *rl;
884
885 spin_lock_irq(q->queue_lock);
886 q->nr_requests = nr;
887 blk_queue_congestion_threshold(q);
888
889 /* congestion isn't cgroup aware and follows root blkcg for now */
890 rl = &q->root_rl;
891
892 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
893 blk_set_queue_congested(q, BLK_RW_SYNC);
894 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
895 blk_clear_queue_congested(q, BLK_RW_SYNC);
896
897 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
898 blk_set_queue_congested(q, BLK_RW_ASYNC);
899 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
900 blk_clear_queue_congested(q, BLK_RW_ASYNC);
901
902 blk_queue_for_each_rl(rl, q) {
903 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
904 blk_set_rl_full(rl, BLK_RW_SYNC);
905 } else {
906 blk_clear_rl_full(rl, BLK_RW_SYNC);
907 wake_up(&rl->wait[BLK_RW_SYNC]);
908 }
909
910 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
911 blk_set_rl_full(rl, BLK_RW_ASYNC);
912 } else {
913 blk_clear_rl_full(rl, BLK_RW_ASYNC);
914 wake_up(&rl->wait[BLK_RW_ASYNC]);
915 }
916 }
917
918 spin_unlock_irq(q->queue_lock);
919 return 0;
920}
921
9d5a4e94
MS
922/*
923 * Determine if elevator data should be initialized when allocating the
924 * request associated with @bio.
925 */
926static bool blk_rq_should_init_elevator(struct bio *bio)
927{
928 if (!bio)
929 return true;
930
931 /*
932 * Flush requests do not use the elevator so skip initialization.
933 * This allows a request to share the flush and elevator data.
934 */
935 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
936 return false;
937
938 return true;
939}
940
852c788f
TH
941/**
942 * rq_ioc - determine io_context for request allocation
943 * @bio: request being allocated is for this bio (can be %NULL)
944 *
945 * Determine io_context to use for request allocation for @bio. May return
946 * %NULL if %current->io_context doesn't exist.
947 */
948static struct io_context *rq_ioc(struct bio *bio)
949{
950#ifdef CONFIG_BLK_CGROUP
951 if (bio && bio->bi_ioc)
952 return bio->bi_ioc;
953#endif
954 return current->io_context;
955}
956
da8303c6 957/**
a06e05e6 958 * __get_request - get a free request
5b788ce3 959 * @rl: request list to allocate from
da8303c6
TH
960 * @rw_flags: RW and SYNC flags
961 * @bio: bio to allocate request for (can be %NULL)
962 * @gfp_mask: allocation mask
963 *
964 * Get a free request from @q. This function may fail under memory
965 * pressure or if @q is dead.
966 *
da3dae54 967 * Must be called with @q->queue_lock held and,
a492f075
JL
968 * Returns ERR_PTR on failure, with @q->queue_lock held.
969 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 970 */
5b788ce3 971static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 972 struct bio *bio, gfp_t gfp_mask)
1da177e4 973{
5b788ce3 974 struct request_queue *q = rl->q;
b679281a 975 struct request *rq;
7f4b35d1
TH
976 struct elevator_type *et = q->elevator->type;
977 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 978 struct io_cq *icq = NULL;
1faa16d2 979 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 980 int may_queue;
88ee5ef1 981
3f3299d5 982 if (unlikely(blk_queue_dying(q)))
a492f075 983 return ERR_PTR(-ENODEV);
da8303c6 984
7749a8d4 985 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
986 if (may_queue == ELV_MQUEUE_NO)
987 goto rq_starved;
988
1faa16d2
JA
989 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
990 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
991 /*
992 * The queue will fill after this allocation, so set
993 * it as full, and mark this process as "batching".
994 * This process will be allowed to complete a batch of
995 * requests, others will be blocked.
996 */
5b788ce3 997 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 998 ioc_set_batching(q, ioc);
5b788ce3 999 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1000 } else {
1001 if (may_queue != ELV_MQUEUE_MUST
1002 && !ioc_batching(q, ioc)) {
1003 /*
1004 * The queue is full and the allocating
1005 * process is not a "batcher", and not
1006 * exempted by the IO scheduler
1007 */
a492f075 1008 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1009 }
1010 }
1da177e4 1011 }
a051661c
TH
1012 /*
1013 * bdi isn't aware of blkcg yet. As all async IOs end up
1014 * root blkcg anyway, just use root blkcg state.
1015 */
1016 if (rl == &q->root_rl)
1017 blk_set_queue_congested(q, is_sync);
1da177e4
LT
1018 }
1019
082cf69e
JA
1020 /*
1021 * Only allow batching queuers to allocate up to 50% over the defined
1022 * limit of requests, otherwise we could have thousands of requests
1023 * allocated with any setting of ->nr_requests
1024 */
1faa16d2 1025 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1026 return ERR_PTR(-ENOMEM);
fd782a4a 1027
8a5ecdd4 1028 q->nr_rqs[is_sync]++;
1faa16d2
JA
1029 rl->count[is_sync]++;
1030 rl->starved[is_sync] = 0;
cb98fc8b 1031
f1f8cc94
TH
1032 /*
1033 * Decide whether the new request will be managed by elevator. If
1034 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1035 * prevent the current elevator from being destroyed until the new
1036 * request is freed. This guarantees icq's won't be destroyed and
1037 * makes creating new ones safe.
1038 *
1039 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1040 * it will be created after releasing queue_lock.
1041 */
d732580b 1042 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1043 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1044 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1045 if (et->icq_cache && ioc)
1046 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1047 }
cb98fc8b 1048
f253b86b
JA
1049 if (blk_queue_io_stat(q))
1050 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1051 spin_unlock_irq(q->queue_lock);
1052
29e2b09a 1053 /* allocate and init request */
5b788ce3 1054 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1055 if (!rq)
b679281a 1056 goto fail_alloc;
1da177e4 1057
29e2b09a 1058 blk_rq_init(q, rq);
a051661c 1059 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1060 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1061
aaf7c680 1062 /* init elvpriv */
29e2b09a 1063 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1064 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1065 if (ioc)
1066 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1067 if (!icq)
1068 goto fail_elvpriv;
29e2b09a 1069 }
aaf7c680
TH
1070
1071 rq->elv.icq = icq;
1072 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1073 goto fail_elvpriv;
1074
1075 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1076 if (icq)
1077 get_io_context(icq->ioc);
1078 }
aaf7c680 1079out:
88ee5ef1
JA
1080 /*
1081 * ioc may be NULL here, and ioc_batching will be false. That's
1082 * OK, if the queue is under the request limit then requests need
1083 * not count toward the nr_batch_requests limit. There will always
1084 * be some limit enforced by BLK_BATCH_TIME.
1085 */
1da177e4
LT
1086 if (ioc_batching(q, ioc))
1087 ioc->nr_batch_requests--;
6728cb0e 1088
1faa16d2 1089 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1090 return rq;
b679281a 1091
aaf7c680
TH
1092fail_elvpriv:
1093 /*
1094 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1095 * and may fail indefinitely under memory pressure and thus
1096 * shouldn't stall IO. Treat this request as !elvpriv. This will
1097 * disturb iosched and blkcg but weird is bettern than dead.
1098 */
7b2b10e0
RE
1099 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1100 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1101
1102 rq->cmd_flags &= ~REQ_ELVPRIV;
1103 rq->elv.icq = NULL;
1104
1105 spin_lock_irq(q->queue_lock);
8a5ecdd4 1106 q->nr_rqs_elvpriv--;
aaf7c680
TH
1107 spin_unlock_irq(q->queue_lock);
1108 goto out;
1109
b679281a
TH
1110fail_alloc:
1111 /*
1112 * Allocation failed presumably due to memory. Undo anything we
1113 * might have messed up.
1114 *
1115 * Allocating task should really be put onto the front of the wait
1116 * queue, but this is pretty rare.
1117 */
1118 spin_lock_irq(q->queue_lock);
5b788ce3 1119 freed_request(rl, rw_flags);
b679281a
TH
1120
1121 /*
1122 * in the very unlikely event that allocation failed and no
1123 * requests for this direction was pending, mark us starved so that
1124 * freeing of a request in the other direction will notice
1125 * us. another possible fix would be to split the rq mempool into
1126 * READ and WRITE
1127 */
1128rq_starved:
1129 if (unlikely(rl->count[is_sync] == 0))
1130 rl->starved[is_sync] = 1;
a492f075 1131 return ERR_PTR(-ENOMEM);
1da177e4
LT
1132}
1133
da8303c6 1134/**
a06e05e6 1135 * get_request - get a free request
da8303c6
TH
1136 * @q: request_queue to allocate request from
1137 * @rw_flags: RW and SYNC flags
1138 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1139 * @gfp_mask: allocation mask
da8303c6 1140 *
a06e05e6
TH
1141 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1142 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1143 *
da3dae54 1144 * Must be called with @q->queue_lock held and,
a492f075
JL
1145 * Returns ERR_PTR on failure, with @q->queue_lock held.
1146 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1147 */
a06e05e6
TH
1148static struct request *get_request(struct request_queue *q, int rw_flags,
1149 struct bio *bio, gfp_t gfp_mask)
1da177e4 1150{
1faa16d2 1151 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1152 DEFINE_WAIT(wait);
a051661c 1153 struct request_list *rl;
1da177e4 1154 struct request *rq;
a051661c
TH
1155
1156 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1157retry:
a051661c 1158 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1159 if (!IS_ERR(rq))
a06e05e6 1160 return rq;
1da177e4 1161
3f3299d5 1162 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1163 blk_put_rl(rl);
a492f075 1164 return rq;
a051661c 1165 }
1da177e4 1166
a06e05e6
TH
1167 /* wait on @rl and retry */
1168 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1169 TASK_UNINTERRUPTIBLE);
1da177e4 1170
a06e05e6 1171 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1172
a06e05e6
TH
1173 spin_unlock_irq(q->queue_lock);
1174 io_schedule();
d6344532 1175
a06e05e6
TH
1176 /*
1177 * After sleeping, we become a "batching" process and will be able
1178 * to allocate at least one request, and up to a big batch of them
1179 * for a small period time. See ioc_batching, ioc_set_batching
1180 */
a06e05e6 1181 ioc_set_batching(q, current->io_context);
05caf8db 1182
a06e05e6
TH
1183 spin_lock_irq(q->queue_lock);
1184 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1185
a06e05e6 1186 goto retry;
1da177e4
LT
1187}
1188
320ae51f
JA
1189static struct request *blk_old_get_request(struct request_queue *q, int rw,
1190 gfp_t gfp_mask)
1da177e4
LT
1191{
1192 struct request *rq;
1193
1194 BUG_ON(rw != READ && rw != WRITE);
1195
7f4b35d1
TH
1196 /* create ioc upfront */
1197 create_io_context(gfp_mask, q->node);
1198
d6344532 1199 spin_lock_irq(q->queue_lock);
a06e05e6 1200 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1201 if (IS_ERR(rq))
da8303c6 1202 spin_unlock_irq(q->queue_lock);
d6344532 1203 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1204
1205 return rq;
1206}
320ae51f
JA
1207
1208struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1209{
1210 if (q->mq_ops)
4ce01dd1 1211 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1212 else
1213 return blk_old_get_request(q, rw, gfp_mask);
1214}
1da177e4
LT
1215EXPORT_SYMBOL(blk_get_request);
1216
dc72ef4a 1217/**
79eb63e9 1218 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1219 * @q: target request queue
79eb63e9
BH
1220 * @bio: The bio describing the memory mappings that will be submitted for IO.
1221 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1222 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1223 *
79eb63e9
BH
1224 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1225 * type commands. Where the struct request needs to be farther initialized by
1226 * the caller. It is passed a &struct bio, which describes the memory info of
1227 * the I/O transfer.
dc72ef4a 1228 *
79eb63e9
BH
1229 * The caller of blk_make_request must make sure that bi_io_vec
1230 * are set to describe the memory buffers. That bio_data_dir() will return
1231 * the needed direction of the request. (And all bio's in the passed bio-chain
1232 * are properly set accordingly)
1233 *
1234 * If called under none-sleepable conditions, mapped bio buffers must not
1235 * need bouncing, by calling the appropriate masked or flagged allocator,
1236 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1237 * BUG.
53674ac5
JA
1238 *
1239 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1240 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1241 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1242 * completion of a bio that hasn't been submitted yet, thus resulting in a
1243 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1244 * of bio_alloc(), as that avoids the mempool deadlock.
1245 * If possible a big IO should be split into smaller parts when allocation
1246 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1247 */
79eb63e9
BH
1248struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1249 gfp_t gfp_mask)
dc72ef4a 1250{
79eb63e9
BH
1251 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1252
a492f075
JL
1253 if (IS_ERR(rq))
1254 return rq;
79eb63e9 1255
f27b087b
JA
1256 blk_rq_set_block_pc(rq);
1257
79eb63e9
BH
1258 for_each_bio(bio) {
1259 struct bio *bounce_bio = bio;
1260 int ret;
1261
1262 blk_queue_bounce(q, &bounce_bio);
1263 ret = blk_rq_append_bio(q, rq, bounce_bio);
1264 if (unlikely(ret)) {
1265 blk_put_request(rq);
1266 return ERR_PTR(ret);
1267 }
1268 }
1269
1270 return rq;
dc72ef4a 1271}
79eb63e9 1272EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1273
f27b087b 1274/**
da3dae54 1275 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1276 * @rq: request to be initialized
1277 *
1278 */
1279void blk_rq_set_block_pc(struct request *rq)
1280{
1281 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1282 rq->__data_len = 0;
1283 rq->__sector = (sector_t) -1;
1284 rq->bio = rq->biotail = NULL;
1285 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1286}
1287EXPORT_SYMBOL(blk_rq_set_block_pc);
1288
1da177e4
LT
1289/**
1290 * blk_requeue_request - put a request back on queue
1291 * @q: request queue where request should be inserted
1292 * @rq: request to be inserted
1293 *
1294 * Description:
1295 * Drivers often keep queueing requests until the hardware cannot accept
1296 * more, when that condition happens we need to put the request back
1297 * on the queue. Must be called with queue lock held.
1298 */
165125e1 1299void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1300{
242f9dcb
JA
1301 blk_delete_timer(rq);
1302 blk_clear_rq_complete(rq);
5f3ea37c 1303 trace_block_rq_requeue(q, rq);
2056a782 1304
125c99bc 1305 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1306 blk_queue_end_tag(q, rq);
1307
ba396a6c
JB
1308 BUG_ON(blk_queued_rq(rq));
1309
1da177e4
LT
1310 elv_requeue_request(q, rq);
1311}
1da177e4
LT
1312EXPORT_SYMBOL(blk_requeue_request);
1313
73c10101
JA
1314static void add_acct_request(struct request_queue *q, struct request *rq,
1315 int where)
1316{
320ae51f 1317 blk_account_io_start(rq, true);
7eaceacc 1318 __elv_add_request(q, rq, where);
73c10101
JA
1319}
1320
074a7aca
TH
1321static void part_round_stats_single(int cpu, struct hd_struct *part,
1322 unsigned long now)
1323{
7276d02e
JA
1324 int inflight;
1325
074a7aca
TH
1326 if (now == part->stamp)
1327 return;
1328
7276d02e
JA
1329 inflight = part_in_flight(part);
1330 if (inflight) {
074a7aca 1331 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1332 inflight * (now - part->stamp));
074a7aca
TH
1333 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1334 }
1335 part->stamp = now;
1336}
1337
1338/**
496aa8a9
RD
1339 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1340 * @cpu: cpu number for stats access
1341 * @part: target partition
1da177e4
LT
1342 *
1343 * The average IO queue length and utilisation statistics are maintained
1344 * by observing the current state of the queue length and the amount of
1345 * time it has been in this state for.
1346 *
1347 * Normally, that accounting is done on IO completion, but that can result
1348 * in more than a second's worth of IO being accounted for within any one
1349 * second, leading to >100% utilisation. To deal with that, we call this
1350 * function to do a round-off before returning the results when reading
1351 * /proc/diskstats. This accounts immediately for all queue usage up to
1352 * the current jiffies and restarts the counters again.
1353 */
c9959059 1354void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1355{
1356 unsigned long now = jiffies;
1357
074a7aca
TH
1358 if (part->partno)
1359 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1360 part_round_stats_single(cpu, part, now);
6f2576af 1361}
074a7aca 1362EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1363
47fafbc7 1364#ifdef CONFIG_PM
c8158819
LM
1365static void blk_pm_put_request(struct request *rq)
1366{
1367 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1368 pm_runtime_mark_last_busy(rq->q->dev);
1369}
1370#else
1371static inline void blk_pm_put_request(struct request *rq) {}
1372#endif
1373
1da177e4
LT
1374/*
1375 * queue lock must be held
1376 */
165125e1 1377void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1378{
1da177e4
LT
1379 if (unlikely(!q))
1380 return;
1da177e4 1381
6f5ba581
CH
1382 if (q->mq_ops) {
1383 blk_mq_free_request(req);
1384 return;
1385 }
1386
c8158819
LM
1387 blk_pm_put_request(req);
1388
8922e16c
TH
1389 elv_completed_request(q, req);
1390
1cd96c24
BH
1391 /* this is a bio leak */
1392 WARN_ON(req->bio != NULL);
1393
1da177e4
LT
1394 /*
1395 * Request may not have originated from ll_rw_blk. if not,
1396 * it didn't come out of our reserved rq pools
1397 */
49171e5c 1398 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1399 unsigned int flags = req->cmd_flags;
a051661c 1400 struct request_list *rl = blk_rq_rl(req);
1da177e4 1401
1da177e4 1402 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1403 BUG_ON(ELV_ON_HASH(req));
1da177e4 1404
a051661c
TH
1405 blk_free_request(rl, req);
1406 freed_request(rl, flags);
1407 blk_put_rl(rl);
1da177e4
LT
1408 }
1409}
6e39b69e
MC
1410EXPORT_SYMBOL_GPL(__blk_put_request);
1411
1da177e4
LT
1412void blk_put_request(struct request *req)
1413{
165125e1 1414 struct request_queue *q = req->q;
8922e16c 1415
320ae51f
JA
1416 if (q->mq_ops)
1417 blk_mq_free_request(req);
1418 else {
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(q->queue_lock, flags);
1422 __blk_put_request(q, req);
1423 spin_unlock_irqrestore(q->queue_lock, flags);
1424 }
1da177e4 1425}
1da177e4
LT
1426EXPORT_SYMBOL(blk_put_request);
1427
66ac0280
CH
1428/**
1429 * blk_add_request_payload - add a payload to a request
1430 * @rq: request to update
1431 * @page: page backing the payload
1432 * @len: length of the payload.
1433 *
1434 * This allows to later add a payload to an already submitted request by
1435 * a block driver. The driver needs to take care of freeing the payload
1436 * itself.
1437 *
1438 * Note that this is a quite horrible hack and nothing but handling of
1439 * discard requests should ever use it.
1440 */
1441void blk_add_request_payload(struct request *rq, struct page *page,
1442 unsigned int len)
1443{
1444 struct bio *bio = rq->bio;
1445
1446 bio->bi_io_vec->bv_page = page;
1447 bio->bi_io_vec->bv_offset = 0;
1448 bio->bi_io_vec->bv_len = len;
1449
4f024f37 1450 bio->bi_iter.bi_size = len;
66ac0280
CH
1451 bio->bi_vcnt = 1;
1452 bio->bi_phys_segments = 1;
1453
1454 rq->__data_len = rq->resid_len = len;
1455 rq->nr_phys_segments = 1;
66ac0280
CH
1456}
1457EXPORT_SYMBOL_GPL(blk_add_request_payload);
1458
320ae51f
JA
1459bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1460 struct bio *bio)
73c10101
JA
1461{
1462 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1463
73c10101
JA
1464 if (!ll_back_merge_fn(q, req, bio))
1465 return false;
1466
8c1cf6bb 1467 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1468
1469 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1470 blk_rq_set_mixed_merge(req);
1471
1472 req->biotail->bi_next = bio;
1473 req->biotail = bio;
4f024f37 1474 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1475 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1476
320ae51f 1477 blk_account_io_start(req, false);
73c10101
JA
1478 return true;
1479}
1480
320ae51f
JA
1481bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1482 struct bio *bio)
73c10101
JA
1483{
1484 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1485
73c10101
JA
1486 if (!ll_front_merge_fn(q, req, bio))
1487 return false;
1488
8c1cf6bb 1489 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1490
1491 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1492 blk_rq_set_mixed_merge(req);
1493
73c10101
JA
1494 bio->bi_next = req->bio;
1495 req->bio = bio;
1496
4f024f37
KO
1497 req->__sector = bio->bi_iter.bi_sector;
1498 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1499 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1500
320ae51f 1501 blk_account_io_start(req, false);
73c10101
JA
1502 return true;
1503}
1504
bd87b589 1505/**
320ae51f 1506 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1507 * @q: request_queue new bio is being queued at
1508 * @bio: new bio being queued
1509 * @request_count: out parameter for number of traversed plugged requests
1510 *
1511 * Determine whether @bio being queued on @q can be merged with a request
1512 * on %current's plugged list. Returns %true if merge was successful,
1513 * otherwise %false.
1514 *
07c2bd37
TH
1515 * Plugging coalesces IOs from the same issuer for the same purpose without
1516 * going through @q->queue_lock. As such it's more of an issuing mechanism
1517 * than scheduling, and the request, while may have elvpriv data, is not
1518 * added on the elevator at this point. In addition, we don't have
1519 * reliable access to the elevator outside queue lock. Only check basic
1520 * merging parameters without querying the elevator.
da41a589
RE
1521 *
1522 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1523 */
320ae51f
JA
1524bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1525 unsigned int *request_count)
73c10101
JA
1526{
1527 struct blk_plug *plug;
1528 struct request *rq;
1529 bool ret = false;
92f399c7 1530 struct list_head *plug_list;
73c10101 1531
bd87b589 1532 plug = current->plug;
73c10101
JA
1533 if (!plug)
1534 goto out;
56ebdaf2 1535 *request_count = 0;
73c10101 1536
92f399c7
SL
1537 if (q->mq_ops)
1538 plug_list = &plug->mq_list;
1539 else
1540 plug_list = &plug->list;
1541
1542 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1543 int el_ret;
1544
1b2e19f1
SL
1545 if (rq->q == q)
1546 (*request_count)++;
56ebdaf2 1547
07c2bd37 1548 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1549 continue;
1550
050c8ea8 1551 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1552 if (el_ret == ELEVATOR_BACK_MERGE) {
1553 ret = bio_attempt_back_merge(q, rq, bio);
1554 if (ret)
1555 break;
1556 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1557 ret = bio_attempt_front_merge(q, rq, bio);
1558 if (ret)
1559 break;
1560 }
1561 }
1562out:
1563 return ret;
1564}
1565
86db1e29 1566void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1567{
4aff5e23 1568 req->cmd_type = REQ_TYPE_FS;
52d9e675 1569
7b6d91da
CH
1570 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1571 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1572 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1573
52d9e675 1574 req->errors = 0;
4f024f37 1575 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1576 req->ioprio = bio_prio(bio);
bc1c56fd 1577 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1578}
1579
5a7bbad2 1580void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1581{
5e00d1b5 1582 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1583 struct blk_plug *plug;
1584 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1585 struct request *req;
56ebdaf2 1586 unsigned int request_count = 0;
1da177e4 1587
1da177e4
LT
1588 /*
1589 * low level driver can indicate that it wants pages above a
1590 * certain limit bounced to low memory (ie for highmem, or even
1591 * ISA dma in theory)
1592 */
1593 blk_queue_bounce(q, &bio);
1594
ffecfd1a
DW
1595 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1596 bio_endio(bio, -EIO);
1597 return;
1598 }
1599
4fed947c 1600 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1601 spin_lock_irq(q->queue_lock);
ae1b1539 1602 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1603 goto get_rq;
1604 }
1605
73c10101
JA
1606 /*
1607 * Check if we can merge with the plugged list before grabbing
1608 * any locks.
1609 */
da41a589
RE
1610 if (!blk_queue_nomerges(q) &&
1611 blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1612 return;
1da177e4 1613
73c10101 1614 spin_lock_irq(q->queue_lock);
2056a782 1615
73c10101
JA
1616 el_ret = elv_merge(q, &req, bio);
1617 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1618 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1619 elv_bio_merged(q, req, bio);
73c10101
JA
1620 if (!attempt_back_merge(q, req))
1621 elv_merged_request(q, req, el_ret);
1622 goto out_unlock;
1623 }
1624 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1625 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1626 elv_bio_merged(q, req, bio);
73c10101
JA
1627 if (!attempt_front_merge(q, req))
1628 elv_merged_request(q, req, el_ret);
1629 goto out_unlock;
80a761fd 1630 }
1da177e4
LT
1631 }
1632
450991bc 1633get_rq:
7749a8d4
JA
1634 /*
1635 * This sync check and mask will be re-done in init_request_from_bio(),
1636 * but we need to set it earlier to expose the sync flag to the
1637 * rq allocator and io schedulers.
1638 */
1639 rw_flags = bio_data_dir(bio);
1640 if (sync)
7b6d91da 1641 rw_flags |= REQ_SYNC;
7749a8d4 1642
1da177e4 1643 /*
450991bc 1644 * Grab a free request. This is might sleep but can not fail.
d6344532 1645 * Returns with the queue unlocked.
450991bc 1646 */
a06e05e6 1647 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075
JL
1648 if (IS_ERR(req)) {
1649 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
da8303c6
TH
1650 goto out_unlock;
1651 }
d6344532 1652
450991bc
NP
1653 /*
1654 * After dropping the lock and possibly sleeping here, our request
1655 * may now be mergeable after it had proven unmergeable (above).
1656 * We don't worry about that case for efficiency. It won't happen
1657 * often, and the elevators are able to handle it.
1da177e4 1658 */
52d9e675 1659 init_request_from_bio(req, bio);
1da177e4 1660
9562ad9a 1661 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1662 req->cpu = raw_smp_processor_id();
73c10101
JA
1663
1664 plug = current->plug;
721a9602 1665 if (plug) {
dc6d36c9
JA
1666 /*
1667 * If this is the first request added after a plug, fire
7aef2e78 1668 * of a plug trace.
dc6d36c9 1669 */
7aef2e78 1670 if (!request_count)
dc6d36c9 1671 trace_block_plug(q);
3540d5e8 1672 else {
019ceb7d 1673 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1674 blk_flush_plug_list(plug, false);
019ceb7d
SL
1675 trace_block_plug(q);
1676 }
73c10101 1677 }
73c10101 1678 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1679 blk_account_io_start(req, true);
73c10101
JA
1680 } else {
1681 spin_lock_irq(q->queue_lock);
1682 add_acct_request(q, req, where);
24ecfbe2 1683 __blk_run_queue(q);
73c10101
JA
1684out_unlock:
1685 spin_unlock_irq(q->queue_lock);
1686 }
1da177e4 1687}
c20e8de2 1688EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1689
1690/*
1691 * If bio->bi_dev is a partition, remap the location
1692 */
1693static inline void blk_partition_remap(struct bio *bio)
1694{
1695 struct block_device *bdev = bio->bi_bdev;
1696
bf2de6f5 1697 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1698 struct hd_struct *p = bdev->bd_part;
1699
4f024f37 1700 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1701 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1702
d07335e5
MS
1703 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1704 bdev->bd_dev,
4f024f37 1705 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1706 }
1707}
1708
1da177e4
LT
1709static void handle_bad_sector(struct bio *bio)
1710{
1711 char b[BDEVNAME_SIZE];
1712
1713 printk(KERN_INFO "attempt to access beyond end of device\n");
1714 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1715 bdevname(bio->bi_bdev, b),
1716 bio->bi_rw,
f73a1c7d 1717 (unsigned long long)bio_end_sector(bio),
77304d2a 1718 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1719
1720 set_bit(BIO_EOF, &bio->bi_flags);
1721}
1722
c17bb495
AM
1723#ifdef CONFIG_FAIL_MAKE_REQUEST
1724
1725static DECLARE_FAULT_ATTR(fail_make_request);
1726
1727static int __init setup_fail_make_request(char *str)
1728{
1729 return setup_fault_attr(&fail_make_request, str);
1730}
1731__setup("fail_make_request=", setup_fail_make_request);
1732
b2c9cd37 1733static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1734{
b2c9cd37 1735 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1736}
1737
1738static int __init fail_make_request_debugfs(void)
1739{
dd48c085
AM
1740 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1741 NULL, &fail_make_request);
1742
21f9fcd8 1743 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1744}
1745
1746late_initcall(fail_make_request_debugfs);
1747
1748#else /* CONFIG_FAIL_MAKE_REQUEST */
1749
b2c9cd37
AM
1750static inline bool should_fail_request(struct hd_struct *part,
1751 unsigned int bytes)
c17bb495 1752{
b2c9cd37 1753 return false;
c17bb495
AM
1754}
1755
1756#endif /* CONFIG_FAIL_MAKE_REQUEST */
1757
c07e2b41
JA
1758/*
1759 * Check whether this bio extends beyond the end of the device.
1760 */
1761static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1762{
1763 sector_t maxsector;
1764
1765 if (!nr_sectors)
1766 return 0;
1767
1768 /* Test device or partition size, when known. */
77304d2a 1769 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1770 if (maxsector) {
4f024f37 1771 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1772
1773 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1774 /*
1775 * This may well happen - the kernel calls bread()
1776 * without checking the size of the device, e.g., when
1777 * mounting a device.
1778 */
1779 handle_bad_sector(bio);
1780 return 1;
1781 }
1782 }
1783
1784 return 0;
1785}
1786
27a84d54
CH
1787static noinline_for_stack bool
1788generic_make_request_checks(struct bio *bio)
1da177e4 1789{
165125e1 1790 struct request_queue *q;
5a7bbad2 1791 int nr_sectors = bio_sectors(bio);
51fd77bd 1792 int err = -EIO;
5a7bbad2
CH
1793 char b[BDEVNAME_SIZE];
1794 struct hd_struct *part;
1da177e4
LT
1795
1796 might_sleep();
1da177e4 1797
c07e2b41
JA
1798 if (bio_check_eod(bio, nr_sectors))
1799 goto end_io;
1da177e4 1800
5a7bbad2
CH
1801 q = bdev_get_queue(bio->bi_bdev);
1802 if (unlikely(!q)) {
1803 printk(KERN_ERR
1804 "generic_make_request: Trying to access "
1805 "nonexistent block-device %s (%Lu)\n",
1806 bdevname(bio->bi_bdev, b),
4f024f37 1807 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1808 goto end_io;
1809 }
c17bb495 1810
e2a60da7
MP
1811 if (likely(bio_is_rw(bio) &&
1812 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1813 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1814 bdevname(bio->bi_bdev, b),
1815 bio_sectors(bio),
1816 queue_max_hw_sectors(q));
1817 goto end_io;
1818 }
1da177e4 1819
5a7bbad2 1820 part = bio->bi_bdev->bd_part;
4f024f37 1821 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1822 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1823 bio->bi_iter.bi_size))
5a7bbad2 1824 goto end_io;
2056a782 1825
5a7bbad2
CH
1826 /*
1827 * If this device has partitions, remap block n
1828 * of partition p to block n+start(p) of the disk.
1829 */
1830 blk_partition_remap(bio);
2056a782 1831
5a7bbad2
CH
1832 if (bio_check_eod(bio, nr_sectors))
1833 goto end_io;
1e87901e 1834
5a7bbad2
CH
1835 /*
1836 * Filter flush bio's early so that make_request based
1837 * drivers without flush support don't have to worry
1838 * about them.
1839 */
1840 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1841 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1842 if (!nr_sectors) {
1843 err = 0;
51fd77bd
JA
1844 goto end_io;
1845 }
5a7bbad2 1846 }
5ddfe969 1847
5a7bbad2
CH
1848 if ((bio->bi_rw & REQ_DISCARD) &&
1849 (!blk_queue_discard(q) ||
e2a60da7 1850 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1851 err = -EOPNOTSUPP;
1852 goto end_io;
1853 }
01edede4 1854
4363ac7c 1855 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1856 err = -EOPNOTSUPP;
1857 goto end_io;
1858 }
01edede4 1859
7f4b35d1
TH
1860 /*
1861 * Various block parts want %current->io_context and lazy ioc
1862 * allocation ends up trading a lot of pain for a small amount of
1863 * memory. Just allocate it upfront. This may fail and block
1864 * layer knows how to live with it.
1865 */
1866 create_io_context(GFP_ATOMIC, q->node);
1867
bc16a4f9
TH
1868 if (blk_throtl_bio(q, bio))
1869 return false; /* throttled, will be resubmitted later */
27a84d54 1870
5a7bbad2 1871 trace_block_bio_queue(q, bio);
27a84d54 1872 return true;
a7384677
TH
1873
1874end_io:
1875 bio_endio(bio, err);
27a84d54 1876 return false;
1da177e4
LT
1877}
1878
27a84d54
CH
1879/**
1880 * generic_make_request - hand a buffer to its device driver for I/O
1881 * @bio: The bio describing the location in memory and on the device.
1882 *
1883 * generic_make_request() is used to make I/O requests of block
1884 * devices. It is passed a &struct bio, which describes the I/O that needs
1885 * to be done.
1886 *
1887 * generic_make_request() does not return any status. The
1888 * success/failure status of the request, along with notification of
1889 * completion, is delivered asynchronously through the bio->bi_end_io
1890 * function described (one day) else where.
1891 *
1892 * The caller of generic_make_request must make sure that bi_io_vec
1893 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1894 * set to describe the device address, and the
1895 * bi_end_io and optionally bi_private are set to describe how
1896 * completion notification should be signaled.
1897 *
1898 * generic_make_request and the drivers it calls may use bi_next if this
1899 * bio happens to be merged with someone else, and may resubmit the bio to
1900 * a lower device by calling into generic_make_request recursively, which
1901 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1902 */
1903void generic_make_request(struct bio *bio)
1904{
bddd87c7
AM
1905 struct bio_list bio_list_on_stack;
1906
27a84d54
CH
1907 if (!generic_make_request_checks(bio))
1908 return;
1909
1910 /*
1911 * We only want one ->make_request_fn to be active at a time, else
1912 * stack usage with stacked devices could be a problem. So use
1913 * current->bio_list to keep a list of requests submited by a
1914 * make_request_fn function. current->bio_list is also used as a
1915 * flag to say if generic_make_request is currently active in this
1916 * task or not. If it is NULL, then no make_request is active. If
1917 * it is non-NULL, then a make_request is active, and new requests
1918 * should be added at the tail
1919 */
bddd87c7 1920 if (current->bio_list) {
bddd87c7 1921 bio_list_add(current->bio_list, bio);
d89d8796
NB
1922 return;
1923 }
27a84d54 1924
d89d8796
NB
1925 /* following loop may be a bit non-obvious, and so deserves some
1926 * explanation.
1927 * Before entering the loop, bio->bi_next is NULL (as all callers
1928 * ensure that) so we have a list with a single bio.
1929 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1930 * we assign bio_list to a pointer to the bio_list_on_stack,
1931 * thus initialising the bio_list of new bios to be
27a84d54 1932 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1933 * through a recursive call to generic_make_request. If it
1934 * did, we find a non-NULL value in bio_list and re-enter the loop
1935 * from the top. In this case we really did just take the bio
bddd87c7 1936 * of the top of the list (no pretending) and so remove it from
27a84d54 1937 * bio_list, and call into ->make_request() again.
d89d8796
NB
1938 */
1939 BUG_ON(bio->bi_next);
bddd87c7
AM
1940 bio_list_init(&bio_list_on_stack);
1941 current->bio_list = &bio_list_on_stack;
d89d8796 1942 do {
27a84d54
CH
1943 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1944
1945 q->make_request_fn(q, bio);
1946
bddd87c7 1947 bio = bio_list_pop(current->bio_list);
d89d8796 1948 } while (bio);
bddd87c7 1949 current->bio_list = NULL; /* deactivate */
d89d8796 1950}
1da177e4
LT
1951EXPORT_SYMBOL(generic_make_request);
1952
1953/**
710027a4 1954 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1955 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1956 * @bio: The &struct bio which describes the I/O
1957 *
1958 * submit_bio() is very similar in purpose to generic_make_request(), and
1959 * uses that function to do most of the work. Both are fairly rough
710027a4 1960 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1961 *
1962 */
1963void submit_bio(int rw, struct bio *bio)
1964{
22e2c507 1965 bio->bi_rw |= rw;
1da177e4 1966
bf2de6f5
JA
1967 /*
1968 * If it's a regular read/write or a barrier with data attached,
1969 * go through the normal accounting stuff before submission.
1970 */
e2a60da7 1971 if (bio_has_data(bio)) {
4363ac7c
MP
1972 unsigned int count;
1973
1974 if (unlikely(rw & REQ_WRITE_SAME))
1975 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1976 else
1977 count = bio_sectors(bio);
1978
bf2de6f5
JA
1979 if (rw & WRITE) {
1980 count_vm_events(PGPGOUT, count);
1981 } else {
4f024f37 1982 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1983 count_vm_events(PGPGIN, count);
1984 }
1985
1986 if (unlikely(block_dump)) {
1987 char b[BDEVNAME_SIZE];
8dcbdc74 1988 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1989 current->comm, task_pid_nr(current),
bf2de6f5 1990 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1991 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1992 bdevname(bio->bi_bdev, b),
1993 count);
bf2de6f5 1994 }
1da177e4
LT
1995 }
1996
1997 generic_make_request(bio);
1998}
1da177e4
LT
1999EXPORT_SYMBOL(submit_bio);
2000
82124d60
KU
2001/**
2002 * blk_rq_check_limits - Helper function to check a request for the queue limit
2003 * @q: the queue
2004 * @rq: the request being checked
2005 *
2006 * Description:
2007 * @rq may have been made based on weaker limitations of upper-level queues
2008 * in request stacking drivers, and it may violate the limitation of @q.
2009 * Since the block layer and the underlying device driver trust @rq
2010 * after it is inserted to @q, it should be checked against @q before
2011 * the insertion using this generic function.
2012 *
2013 * This function should also be useful for request stacking drivers
eef35c2d 2014 * in some cases below, so export this function.
82124d60
KU
2015 * Request stacking drivers like request-based dm may change the queue
2016 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 2017 * Such request stacking drivers should check those requests against
82124d60
KU
2018 * the new queue limits again when they dispatch those requests,
2019 * although such checkings are also done against the old queue limits
2020 * when submitting requests.
2021 */
2022int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2023{
e2a60da7 2024 if (!rq_mergeable(rq))
3383977f
S
2025 return 0;
2026
f31dc1cd 2027 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2028 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2029 return -EIO;
2030 }
2031
2032 /*
2033 * queue's settings related to segment counting like q->bounce_pfn
2034 * may differ from that of other stacking queues.
2035 * Recalculate it to check the request correctly on this queue's
2036 * limitation.
2037 */
2038 blk_recalc_rq_segments(rq);
8a78362c 2039 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2040 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2041 return -EIO;
2042 }
2043
2044 return 0;
2045}
2046EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2047
2048/**
2049 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2050 * @q: the queue to submit the request
2051 * @rq: the request being queued
2052 */
2053int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2054{
2055 unsigned long flags;
4853abaa 2056 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2057
2058 if (blk_rq_check_limits(q, rq))
2059 return -EIO;
2060
b2c9cd37
AM
2061 if (rq->rq_disk &&
2062 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2063 return -EIO;
82124d60 2064
7fb4898e
KB
2065 if (q->mq_ops) {
2066 if (blk_queue_io_stat(q))
2067 blk_account_io_start(rq, true);
2068 blk_mq_insert_request(rq, false, true, true);
2069 return 0;
2070 }
2071
82124d60 2072 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2073 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2074 spin_unlock_irqrestore(q->queue_lock, flags);
2075 return -ENODEV;
2076 }
82124d60
KU
2077
2078 /*
2079 * Submitting request must be dequeued before calling this function
2080 * because it will be linked to another request_queue
2081 */
2082 BUG_ON(blk_queued_rq(rq));
2083
4853abaa
JM
2084 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2085 where = ELEVATOR_INSERT_FLUSH;
2086
2087 add_acct_request(q, rq, where);
e67b77c7
JM
2088 if (where == ELEVATOR_INSERT_FLUSH)
2089 __blk_run_queue(q);
82124d60
KU
2090 spin_unlock_irqrestore(q->queue_lock, flags);
2091
2092 return 0;
2093}
2094EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2095
80a761fd
TH
2096/**
2097 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2098 * @rq: request to examine
2099 *
2100 * Description:
2101 * A request could be merge of IOs which require different failure
2102 * handling. This function determines the number of bytes which
2103 * can be failed from the beginning of the request without
2104 * crossing into area which need to be retried further.
2105 *
2106 * Return:
2107 * The number of bytes to fail.
2108 *
2109 * Context:
2110 * queue_lock must be held.
2111 */
2112unsigned int blk_rq_err_bytes(const struct request *rq)
2113{
2114 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2115 unsigned int bytes = 0;
2116 struct bio *bio;
2117
2118 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2119 return blk_rq_bytes(rq);
2120
2121 /*
2122 * Currently the only 'mixing' which can happen is between
2123 * different fastfail types. We can safely fail portions
2124 * which have all the failfast bits that the first one has -
2125 * the ones which are at least as eager to fail as the first
2126 * one.
2127 */
2128 for (bio = rq->bio; bio; bio = bio->bi_next) {
2129 if ((bio->bi_rw & ff) != ff)
2130 break;
4f024f37 2131 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2132 }
2133
2134 /* this could lead to infinite loop */
2135 BUG_ON(blk_rq_bytes(rq) && !bytes);
2136 return bytes;
2137}
2138EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2139
320ae51f 2140void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2141{
c2553b58 2142 if (blk_do_io_stat(req)) {
bc58ba94
JA
2143 const int rw = rq_data_dir(req);
2144 struct hd_struct *part;
2145 int cpu;
2146
2147 cpu = part_stat_lock();
09e099d4 2148 part = req->part;
bc58ba94
JA
2149 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2150 part_stat_unlock();
2151 }
2152}
2153
320ae51f 2154void blk_account_io_done(struct request *req)
bc58ba94 2155{
bc58ba94 2156 /*
dd4c133f
TH
2157 * Account IO completion. flush_rq isn't accounted as a
2158 * normal IO on queueing nor completion. Accounting the
2159 * containing request is enough.
bc58ba94 2160 */
414b4ff5 2161 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2162 unsigned long duration = jiffies - req->start_time;
2163 const int rw = rq_data_dir(req);
2164 struct hd_struct *part;
2165 int cpu;
2166
2167 cpu = part_stat_lock();
09e099d4 2168 part = req->part;
bc58ba94
JA
2169
2170 part_stat_inc(cpu, part, ios[rw]);
2171 part_stat_add(cpu, part, ticks[rw], duration);
2172 part_round_stats(cpu, part);
316d315b 2173 part_dec_in_flight(part, rw);
bc58ba94 2174
6c23a968 2175 hd_struct_put(part);
bc58ba94
JA
2176 part_stat_unlock();
2177 }
2178}
2179
47fafbc7 2180#ifdef CONFIG_PM
c8158819
LM
2181/*
2182 * Don't process normal requests when queue is suspended
2183 * or in the process of suspending/resuming
2184 */
2185static struct request *blk_pm_peek_request(struct request_queue *q,
2186 struct request *rq)
2187{
2188 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2189 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2190 return NULL;
2191 else
2192 return rq;
2193}
2194#else
2195static inline struct request *blk_pm_peek_request(struct request_queue *q,
2196 struct request *rq)
2197{
2198 return rq;
2199}
2200#endif
2201
320ae51f
JA
2202void blk_account_io_start(struct request *rq, bool new_io)
2203{
2204 struct hd_struct *part;
2205 int rw = rq_data_dir(rq);
2206 int cpu;
2207
2208 if (!blk_do_io_stat(rq))
2209 return;
2210
2211 cpu = part_stat_lock();
2212
2213 if (!new_io) {
2214 part = rq->part;
2215 part_stat_inc(cpu, part, merges[rw]);
2216 } else {
2217 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2218 if (!hd_struct_try_get(part)) {
2219 /*
2220 * The partition is already being removed,
2221 * the request will be accounted on the disk only
2222 *
2223 * We take a reference on disk->part0 although that
2224 * partition will never be deleted, so we can treat
2225 * it as any other partition.
2226 */
2227 part = &rq->rq_disk->part0;
2228 hd_struct_get(part);
2229 }
2230 part_round_stats(cpu, part);
2231 part_inc_in_flight(part, rw);
2232 rq->part = part;
2233 }
2234
2235 part_stat_unlock();
2236}
2237
3bcddeac 2238/**
9934c8c0
TH
2239 * blk_peek_request - peek at the top of a request queue
2240 * @q: request queue to peek at
2241 *
2242 * Description:
2243 * Return the request at the top of @q. The returned request
2244 * should be started using blk_start_request() before LLD starts
2245 * processing it.
2246 *
2247 * Return:
2248 * Pointer to the request at the top of @q if available. Null
2249 * otherwise.
2250 *
2251 * Context:
2252 * queue_lock must be held.
2253 */
2254struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2255{
2256 struct request *rq;
2257 int ret;
2258
2259 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2260
2261 rq = blk_pm_peek_request(q, rq);
2262 if (!rq)
2263 break;
2264
158dbda0
TH
2265 if (!(rq->cmd_flags & REQ_STARTED)) {
2266 /*
2267 * This is the first time the device driver
2268 * sees this request (possibly after
2269 * requeueing). Notify IO scheduler.
2270 */
33659ebb 2271 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2272 elv_activate_rq(q, rq);
2273
2274 /*
2275 * just mark as started even if we don't start
2276 * it, a request that has been delayed should
2277 * not be passed by new incoming requests
2278 */
2279 rq->cmd_flags |= REQ_STARTED;
2280 trace_block_rq_issue(q, rq);
2281 }
2282
2283 if (!q->boundary_rq || q->boundary_rq == rq) {
2284 q->end_sector = rq_end_sector(rq);
2285 q->boundary_rq = NULL;
2286 }
2287
2288 if (rq->cmd_flags & REQ_DONTPREP)
2289 break;
2290
2e46e8b2 2291 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2292 /*
2293 * make sure space for the drain appears we
2294 * know we can do this because max_hw_segments
2295 * has been adjusted to be one fewer than the
2296 * device can handle
2297 */
2298 rq->nr_phys_segments++;
2299 }
2300
2301 if (!q->prep_rq_fn)
2302 break;
2303
2304 ret = q->prep_rq_fn(q, rq);
2305 if (ret == BLKPREP_OK) {
2306 break;
2307 } else if (ret == BLKPREP_DEFER) {
2308 /*
2309 * the request may have been (partially) prepped.
2310 * we need to keep this request in the front to
2311 * avoid resource deadlock. REQ_STARTED will
2312 * prevent other fs requests from passing this one.
2313 */
2e46e8b2 2314 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2315 !(rq->cmd_flags & REQ_DONTPREP)) {
2316 /*
2317 * remove the space for the drain we added
2318 * so that we don't add it again
2319 */
2320 --rq->nr_phys_segments;
2321 }
2322
2323 rq = NULL;
2324 break;
2325 } else if (ret == BLKPREP_KILL) {
2326 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2327 /*
2328 * Mark this request as started so we don't trigger
2329 * any debug logic in the end I/O path.
2330 */
2331 blk_start_request(rq);
40cbbb78 2332 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2333 } else {
2334 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2335 break;
2336 }
2337 }
2338
2339 return rq;
2340}
9934c8c0 2341EXPORT_SYMBOL(blk_peek_request);
158dbda0 2342
9934c8c0 2343void blk_dequeue_request(struct request *rq)
158dbda0 2344{
9934c8c0
TH
2345 struct request_queue *q = rq->q;
2346
158dbda0
TH
2347 BUG_ON(list_empty(&rq->queuelist));
2348 BUG_ON(ELV_ON_HASH(rq));
2349
2350 list_del_init(&rq->queuelist);
2351
2352 /*
2353 * the time frame between a request being removed from the lists
2354 * and to it is freed is accounted as io that is in progress at
2355 * the driver side.
2356 */
9195291e 2357 if (blk_account_rq(rq)) {
0a7ae2ff 2358 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2359 set_io_start_time_ns(rq);
2360 }
158dbda0
TH
2361}
2362
9934c8c0
TH
2363/**
2364 * blk_start_request - start request processing on the driver
2365 * @req: request to dequeue
2366 *
2367 * Description:
2368 * Dequeue @req and start timeout timer on it. This hands off the
2369 * request to the driver.
2370 *
2371 * Block internal functions which don't want to start timer should
2372 * call blk_dequeue_request().
2373 *
2374 * Context:
2375 * queue_lock must be held.
2376 */
2377void blk_start_request(struct request *req)
2378{
2379 blk_dequeue_request(req);
2380
2381 /*
5f49f631
TH
2382 * We are now handing the request to the hardware, initialize
2383 * resid_len to full count and add the timeout handler.
9934c8c0 2384 */
5f49f631 2385 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2386 if (unlikely(blk_bidi_rq(req)))
2387 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2388
4912aa6c 2389 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2390 blk_add_timer(req);
2391}
2392EXPORT_SYMBOL(blk_start_request);
2393
2394/**
2395 * blk_fetch_request - fetch a request from a request queue
2396 * @q: request queue to fetch a request from
2397 *
2398 * Description:
2399 * Return the request at the top of @q. The request is started on
2400 * return and LLD can start processing it immediately.
2401 *
2402 * Return:
2403 * Pointer to the request at the top of @q if available. Null
2404 * otherwise.
2405 *
2406 * Context:
2407 * queue_lock must be held.
2408 */
2409struct request *blk_fetch_request(struct request_queue *q)
2410{
2411 struct request *rq;
2412
2413 rq = blk_peek_request(q);
2414 if (rq)
2415 blk_start_request(rq);
2416 return rq;
2417}
2418EXPORT_SYMBOL(blk_fetch_request);
2419
3bcddeac 2420/**
2e60e022 2421 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2422 * @req: the request being processed
710027a4 2423 * @error: %0 for success, < %0 for error
8ebf9756 2424 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2425 *
2426 * Description:
8ebf9756
RD
2427 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2428 * the request structure even if @req doesn't have leftover.
2429 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2430 *
2431 * This special helper function is only for request stacking drivers
2432 * (e.g. request-based dm) so that they can handle partial completion.
2433 * Actual device drivers should use blk_end_request instead.
2434 *
2435 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2436 * %false return from this function.
3bcddeac
KU
2437 *
2438 * Return:
2e60e022
TH
2439 * %false - this request doesn't have any more data
2440 * %true - this request has more data
3bcddeac 2441 **/
2e60e022 2442bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2443{
f79ea416 2444 int total_bytes;
1da177e4 2445
4a0efdc9
HR
2446 trace_block_rq_complete(req->q, req, nr_bytes);
2447
2e60e022
TH
2448 if (!req->bio)
2449 return false;
2450
1da177e4 2451 /*
6f41469c
TH
2452 * For fs requests, rq is just carrier of independent bio's
2453 * and each partial completion should be handled separately.
2454 * Reset per-request error on each partial completion.
2455 *
2456 * TODO: tj: This is too subtle. It would be better to let
2457 * low level drivers do what they see fit.
1da177e4 2458 */
33659ebb 2459 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2460 req->errors = 0;
2461
33659ebb
CH
2462 if (error && req->cmd_type == REQ_TYPE_FS &&
2463 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2464 char *error_type;
2465
2466 switch (error) {
2467 case -ENOLINK:
2468 error_type = "recoverable transport";
2469 break;
2470 case -EREMOTEIO:
2471 error_type = "critical target";
2472 break;
2473 case -EBADE:
2474 error_type = "critical nexus";
2475 break;
d1ffc1f8
HR
2476 case -ETIMEDOUT:
2477 error_type = "timeout";
2478 break;
a9d6ceb8
HR
2479 case -ENOSPC:
2480 error_type = "critical space allocation";
2481 break;
7e782af5
HR
2482 case -ENODATA:
2483 error_type = "critical medium";
2484 break;
79775567
HR
2485 case -EIO:
2486 default:
2487 error_type = "I/O";
2488 break;
2489 }
ef3ecb66
RE
2490 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2491 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2492 req->rq_disk->disk_name : "?",
2493 (unsigned long long)blk_rq_pos(req));
2494
1da177e4
LT
2495 }
2496
bc58ba94 2497 blk_account_io_completion(req, nr_bytes);
d72d904a 2498
f79ea416
KO
2499 total_bytes = 0;
2500 while (req->bio) {
2501 struct bio *bio = req->bio;
4f024f37 2502 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2503
4f024f37 2504 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2505 req->bio = bio->bi_next;
1da177e4 2506
f79ea416 2507 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2508
f79ea416
KO
2509 total_bytes += bio_bytes;
2510 nr_bytes -= bio_bytes;
1da177e4 2511
f79ea416
KO
2512 if (!nr_bytes)
2513 break;
1da177e4
LT
2514 }
2515
2516 /*
2517 * completely done
2518 */
2e60e022
TH
2519 if (!req->bio) {
2520 /*
2521 * Reset counters so that the request stacking driver
2522 * can find how many bytes remain in the request
2523 * later.
2524 */
a2dec7b3 2525 req->__data_len = 0;
2e60e022
TH
2526 return false;
2527 }
1da177e4 2528
a2dec7b3 2529 req->__data_len -= total_bytes;
2e46e8b2
TH
2530
2531 /* update sector only for requests with clear definition of sector */
e2a60da7 2532 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2533 req->__sector += total_bytes >> 9;
2e46e8b2 2534
80a761fd
TH
2535 /* mixed attributes always follow the first bio */
2536 if (req->cmd_flags & REQ_MIXED_MERGE) {
2537 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2538 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2539 }
2540
2e46e8b2
TH
2541 /*
2542 * If total number of sectors is less than the first segment
2543 * size, something has gone terribly wrong.
2544 */
2545 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2546 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2547 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2548 }
2549
2550 /* recalculate the number of segments */
1da177e4 2551 blk_recalc_rq_segments(req);
2e46e8b2 2552
2e60e022 2553 return true;
1da177e4 2554}
2e60e022 2555EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2556
2e60e022
TH
2557static bool blk_update_bidi_request(struct request *rq, int error,
2558 unsigned int nr_bytes,
2559 unsigned int bidi_bytes)
5efccd17 2560{
2e60e022
TH
2561 if (blk_update_request(rq, error, nr_bytes))
2562 return true;
5efccd17 2563
2e60e022
TH
2564 /* Bidi request must be completed as a whole */
2565 if (unlikely(blk_bidi_rq(rq)) &&
2566 blk_update_request(rq->next_rq, error, bidi_bytes))
2567 return true;
5efccd17 2568
e2e1a148
JA
2569 if (blk_queue_add_random(rq->q))
2570 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2571
2572 return false;
1da177e4
LT
2573}
2574
28018c24
JB
2575/**
2576 * blk_unprep_request - unprepare a request
2577 * @req: the request
2578 *
2579 * This function makes a request ready for complete resubmission (or
2580 * completion). It happens only after all error handling is complete,
2581 * so represents the appropriate moment to deallocate any resources
2582 * that were allocated to the request in the prep_rq_fn. The queue
2583 * lock is held when calling this.
2584 */
2585void blk_unprep_request(struct request *req)
2586{
2587 struct request_queue *q = req->q;
2588
2589 req->cmd_flags &= ~REQ_DONTPREP;
2590 if (q->unprep_rq_fn)
2591 q->unprep_rq_fn(q, req);
2592}
2593EXPORT_SYMBOL_GPL(blk_unprep_request);
2594
1da177e4
LT
2595/*
2596 * queue lock must be held
2597 */
12120077 2598void blk_finish_request(struct request *req, int error)
1da177e4 2599{
125c99bc 2600 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2601 blk_queue_end_tag(req->q, req);
2602
ba396a6c 2603 BUG_ON(blk_queued_rq(req));
1da177e4 2604
33659ebb 2605 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2606 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2607
e78042e5
MA
2608 blk_delete_timer(req);
2609
28018c24
JB
2610 if (req->cmd_flags & REQ_DONTPREP)
2611 blk_unprep_request(req);
2612
bc58ba94 2613 blk_account_io_done(req);
b8286239 2614
1da177e4 2615 if (req->end_io)
8ffdc655 2616 req->end_io(req, error);
b8286239
KU
2617 else {
2618 if (blk_bidi_rq(req))
2619 __blk_put_request(req->next_rq->q, req->next_rq);
2620
1da177e4 2621 __blk_put_request(req->q, req);
b8286239 2622 }
1da177e4 2623}
12120077 2624EXPORT_SYMBOL(blk_finish_request);
1da177e4 2625
3b11313a 2626/**
2e60e022
TH
2627 * blk_end_bidi_request - Complete a bidi request
2628 * @rq: the request to complete
2629 * @error: %0 for success, < %0 for error
2630 * @nr_bytes: number of bytes to complete @rq
2631 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2632 *
2633 * Description:
e3a04fe3 2634 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2635 * Drivers that supports bidi can safely call this member for any
2636 * type of request, bidi or uni. In the later case @bidi_bytes is
2637 * just ignored.
336cdb40
KU
2638 *
2639 * Return:
2e60e022
TH
2640 * %false - we are done with this request
2641 * %true - still buffers pending for this request
a0cd1285 2642 **/
b1f74493 2643static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2644 unsigned int nr_bytes, unsigned int bidi_bytes)
2645{
336cdb40 2646 struct request_queue *q = rq->q;
2e60e022 2647 unsigned long flags;
32fab448 2648
2e60e022
TH
2649 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2650 return true;
32fab448 2651
336cdb40 2652 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2653 blk_finish_request(rq, error);
336cdb40
KU
2654 spin_unlock_irqrestore(q->queue_lock, flags);
2655
2e60e022 2656 return false;
32fab448
KU
2657}
2658
336cdb40 2659/**
2e60e022
TH
2660 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2661 * @rq: the request to complete
710027a4 2662 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2663 * @nr_bytes: number of bytes to complete @rq
2664 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2665 *
2666 * Description:
2e60e022
TH
2667 * Identical to blk_end_bidi_request() except that queue lock is
2668 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2669 *
2670 * Return:
2e60e022
TH
2671 * %false - we are done with this request
2672 * %true - still buffers pending for this request
336cdb40 2673 **/
4853abaa 2674bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2675 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2676{
2e60e022
TH
2677 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2678 return true;
336cdb40 2679
2e60e022 2680 blk_finish_request(rq, error);
336cdb40 2681
2e60e022 2682 return false;
336cdb40 2683}
e19a3ab0
KU
2684
2685/**
2686 * blk_end_request - Helper function for drivers to complete the request.
2687 * @rq: the request being processed
710027a4 2688 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2689 * @nr_bytes: number of bytes to complete
2690 *
2691 * Description:
2692 * Ends I/O on a number of bytes attached to @rq.
2693 * If @rq has leftover, sets it up for the next range of segments.
2694 *
2695 * Return:
b1f74493
FT
2696 * %false - we are done with this request
2697 * %true - still buffers pending for this request
e19a3ab0 2698 **/
b1f74493 2699bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2700{
b1f74493 2701 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2702}
56ad1740 2703EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2704
2705/**
b1f74493
FT
2706 * blk_end_request_all - Helper function for drives to finish the request.
2707 * @rq: the request to finish
8ebf9756 2708 * @error: %0 for success, < %0 for error
336cdb40
KU
2709 *
2710 * Description:
b1f74493
FT
2711 * Completely finish @rq.
2712 */
2713void blk_end_request_all(struct request *rq, int error)
336cdb40 2714{
b1f74493
FT
2715 bool pending;
2716 unsigned int bidi_bytes = 0;
336cdb40 2717
b1f74493
FT
2718 if (unlikely(blk_bidi_rq(rq)))
2719 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2720
b1f74493
FT
2721 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2722 BUG_ON(pending);
2723}
56ad1740 2724EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2725
b1f74493
FT
2726/**
2727 * blk_end_request_cur - Helper function to finish the current request chunk.
2728 * @rq: the request to finish the current chunk for
8ebf9756 2729 * @error: %0 for success, < %0 for error
b1f74493
FT
2730 *
2731 * Description:
2732 * Complete the current consecutively mapped chunk from @rq.
2733 *
2734 * Return:
2735 * %false - we are done with this request
2736 * %true - still buffers pending for this request
2737 */
2738bool blk_end_request_cur(struct request *rq, int error)
2739{
2740 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2741}
56ad1740 2742EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2743
80a761fd
TH
2744/**
2745 * blk_end_request_err - Finish a request till the next failure boundary.
2746 * @rq: the request to finish till the next failure boundary for
2747 * @error: must be negative errno
2748 *
2749 * Description:
2750 * Complete @rq till the next failure boundary.
2751 *
2752 * Return:
2753 * %false - we are done with this request
2754 * %true - still buffers pending for this request
2755 */
2756bool blk_end_request_err(struct request *rq, int error)
2757{
2758 WARN_ON(error >= 0);
2759 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2760}
2761EXPORT_SYMBOL_GPL(blk_end_request_err);
2762
e3a04fe3 2763/**
b1f74493
FT
2764 * __blk_end_request - Helper function for drivers to complete the request.
2765 * @rq: the request being processed
2766 * @error: %0 for success, < %0 for error
2767 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2768 *
2769 * Description:
b1f74493 2770 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2771 *
2772 * Return:
b1f74493
FT
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
e3a04fe3 2775 **/
b1f74493 2776bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2777{
b1f74493 2778 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2779}
56ad1740 2780EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2781
32fab448 2782/**
b1f74493
FT
2783 * __blk_end_request_all - Helper function for drives to finish the request.
2784 * @rq: the request to finish
8ebf9756 2785 * @error: %0 for success, < %0 for error
32fab448
KU
2786 *
2787 * Description:
b1f74493 2788 * Completely finish @rq. Must be called with queue lock held.
32fab448 2789 */
b1f74493 2790void __blk_end_request_all(struct request *rq, int error)
32fab448 2791{
b1f74493
FT
2792 bool pending;
2793 unsigned int bidi_bytes = 0;
2794
2795 if (unlikely(blk_bidi_rq(rq)))
2796 bidi_bytes = blk_rq_bytes(rq->next_rq);
2797
2798 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2799 BUG_ON(pending);
32fab448 2800}
56ad1740 2801EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2802
e19a3ab0 2803/**
b1f74493
FT
2804 * __blk_end_request_cur - Helper function to finish the current request chunk.
2805 * @rq: the request to finish the current chunk for
8ebf9756 2806 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2807 *
2808 * Description:
b1f74493
FT
2809 * Complete the current consecutively mapped chunk from @rq. Must
2810 * be called with queue lock held.
e19a3ab0
KU
2811 *
2812 * Return:
b1f74493
FT
2813 * %false - we are done with this request
2814 * %true - still buffers pending for this request
2815 */
2816bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2817{
b1f74493 2818 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2819}
56ad1740 2820EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2821
80a761fd
TH
2822/**
2823 * __blk_end_request_err - Finish a request till the next failure boundary.
2824 * @rq: the request to finish till the next failure boundary for
2825 * @error: must be negative errno
2826 *
2827 * Description:
2828 * Complete @rq till the next failure boundary. Must be called
2829 * with queue lock held.
2830 *
2831 * Return:
2832 * %false - we are done with this request
2833 * %true - still buffers pending for this request
2834 */
2835bool __blk_end_request_err(struct request *rq, int error)
2836{
2837 WARN_ON(error >= 0);
2838 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2839}
2840EXPORT_SYMBOL_GPL(__blk_end_request_err);
2841
86db1e29
JA
2842void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2843 struct bio *bio)
1da177e4 2844{
a82afdfc 2845 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2846 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2847
b4f42e28 2848 if (bio_has_data(bio))
fb2dce86 2849 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2850
4f024f37 2851 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2852 rq->bio = rq->biotail = bio;
1da177e4 2853
66846572
N
2854 if (bio->bi_bdev)
2855 rq->rq_disk = bio->bi_bdev->bd_disk;
2856}
1da177e4 2857
2d4dc890
IL
2858#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2859/**
2860 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2861 * @rq: the request to be flushed
2862 *
2863 * Description:
2864 * Flush all pages in @rq.
2865 */
2866void rq_flush_dcache_pages(struct request *rq)
2867{
2868 struct req_iterator iter;
7988613b 2869 struct bio_vec bvec;
2d4dc890
IL
2870
2871 rq_for_each_segment(bvec, rq, iter)
7988613b 2872 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2873}
2874EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2875#endif
2876
ef9e3fac
KU
2877/**
2878 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2879 * @q : the queue of the device being checked
2880 *
2881 * Description:
2882 * Check if underlying low-level drivers of a device are busy.
2883 * If the drivers want to export their busy state, they must set own
2884 * exporting function using blk_queue_lld_busy() first.
2885 *
2886 * Basically, this function is used only by request stacking drivers
2887 * to stop dispatching requests to underlying devices when underlying
2888 * devices are busy. This behavior helps more I/O merging on the queue
2889 * of the request stacking driver and prevents I/O throughput regression
2890 * on burst I/O load.
2891 *
2892 * Return:
2893 * 0 - Not busy (The request stacking driver should dispatch request)
2894 * 1 - Busy (The request stacking driver should stop dispatching request)
2895 */
2896int blk_lld_busy(struct request_queue *q)
2897{
2898 if (q->lld_busy_fn)
2899 return q->lld_busy_fn(q);
2900
2901 return 0;
2902}
2903EXPORT_SYMBOL_GPL(blk_lld_busy);
2904
b0fd271d
KU
2905/**
2906 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2907 * @rq: the clone request to be cleaned up
2908 *
2909 * Description:
2910 * Free all bios in @rq for a cloned request.
2911 */
2912void blk_rq_unprep_clone(struct request *rq)
2913{
2914 struct bio *bio;
2915
2916 while ((bio = rq->bio) != NULL) {
2917 rq->bio = bio->bi_next;
2918
2919 bio_put(bio);
2920 }
2921}
2922EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2923
2924/*
2925 * Copy attributes of the original request to the clone request.
b4f42e28 2926 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2927 */
2928static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2929{
2930 dst->cpu = src->cpu;
77a08689 2931 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2932 dst->cmd_type = src->cmd_type;
2933 dst->__sector = blk_rq_pos(src);
2934 dst->__data_len = blk_rq_bytes(src);
2935 dst->nr_phys_segments = src->nr_phys_segments;
2936 dst->ioprio = src->ioprio;
2937 dst->extra_len = src->extra_len;
2938}
2939
2940/**
2941 * blk_rq_prep_clone - Helper function to setup clone request
2942 * @rq: the request to be setup
2943 * @rq_src: original request to be cloned
2944 * @bs: bio_set that bios for clone are allocated from
2945 * @gfp_mask: memory allocation mask for bio
2946 * @bio_ctr: setup function to be called for each clone bio.
2947 * Returns %0 for success, non %0 for failure.
2948 * @data: private data to be passed to @bio_ctr
2949 *
2950 * Description:
2951 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2952 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2953 * are not copied, and copying such parts is the caller's responsibility.
2954 * Also, pages which the original bios are pointing to are not copied
2955 * and the cloned bios just point same pages.
2956 * So cloned bios must be completed before original bios, which means
2957 * the caller must complete @rq before @rq_src.
2958 */
2959int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2960 struct bio_set *bs, gfp_t gfp_mask,
2961 int (*bio_ctr)(struct bio *, struct bio *, void *),
2962 void *data)
2963{
2964 struct bio *bio, *bio_src;
2965
2966 if (!bs)
2967 bs = fs_bio_set;
2968
b0fd271d 2969 __rq_for_each_bio(bio_src, rq_src) {
11dfce50 2970 bio = bio_clone_fast(bio_src, gfp_mask, bs);
b0fd271d
KU
2971 if (!bio)
2972 goto free_and_out;
2973
b0fd271d
KU
2974 if (bio_ctr && bio_ctr(bio, bio_src, data))
2975 goto free_and_out;
2976
2977 if (rq->bio) {
2978 rq->biotail->bi_next = bio;
2979 rq->biotail = bio;
2980 } else
2981 rq->bio = rq->biotail = bio;
2982 }
2983
2984 __blk_rq_prep_clone(rq, rq_src);
2985
2986 return 0;
2987
2988free_and_out:
2989 if (bio)
4254bba1 2990 bio_put(bio);
b0fd271d
KU
2991 blk_rq_unprep_clone(rq);
2992
2993 return -ENOMEM;
2994}
2995EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2996
59c3d45e 2997int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2998{
2999 return queue_work(kblockd_workqueue, work);
3000}
1da177e4
LT
3001EXPORT_SYMBOL(kblockd_schedule_work);
3002
59c3d45e
JA
3003int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3004 unsigned long delay)
e43473b7
VG
3005{
3006 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3007}
3008EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3009
8ab14595
JA
3010int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3011 unsigned long delay)
3012{
3013 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3014}
3015EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3016
75df7136
SJ
3017/**
3018 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3019 * @plug: The &struct blk_plug that needs to be initialized
3020 *
3021 * Description:
3022 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3023 * pending I/O should the task end up blocking between blk_start_plug() and
3024 * blk_finish_plug(). This is important from a performance perspective, but
3025 * also ensures that we don't deadlock. For instance, if the task is blocking
3026 * for a memory allocation, memory reclaim could end up wanting to free a
3027 * page belonging to that request that is currently residing in our private
3028 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3029 * this kind of deadlock.
3030 */
73c10101
JA
3031void blk_start_plug(struct blk_plug *plug)
3032{
3033 struct task_struct *tsk = current;
3034
73c10101 3035 INIT_LIST_HEAD(&plug->list);
320ae51f 3036 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3037 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
3038
3039 /*
3040 * If this is a nested plug, don't actually assign it. It will be
3041 * flushed on its own.
3042 */
3043 if (!tsk->plug) {
3044 /*
3045 * Store ordering should not be needed here, since a potential
3046 * preempt will imply a full memory barrier
3047 */
3048 tsk->plug = plug;
3049 }
3050}
3051EXPORT_SYMBOL(blk_start_plug);
3052
3053static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3054{
3055 struct request *rqa = container_of(a, struct request, queuelist);
3056 struct request *rqb = container_of(b, struct request, queuelist);
3057
975927b9
JM
3058 return !(rqa->q < rqb->q ||
3059 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3060}
3061
49cac01e
JA
3062/*
3063 * If 'from_schedule' is true, then postpone the dispatch of requests
3064 * until a safe kblockd context. We due this to avoid accidental big
3065 * additional stack usage in driver dispatch, in places where the originally
3066 * plugger did not intend it.
3067 */
f6603783 3068static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3069 bool from_schedule)
99e22598 3070 __releases(q->queue_lock)
94b5eb28 3071{
49cac01e 3072 trace_block_unplug(q, depth, !from_schedule);
99e22598 3073
70460571 3074 if (from_schedule)
24ecfbe2 3075 blk_run_queue_async(q);
70460571 3076 else
24ecfbe2 3077 __blk_run_queue(q);
70460571 3078 spin_unlock(q->queue_lock);
94b5eb28
JA
3079}
3080
74018dc3 3081static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3082{
3083 LIST_HEAD(callbacks);
3084
2a7d5559
SL
3085 while (!list_empty(&plug->cb_list)) {
3086 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3087
2a7d5559
SL
3088 while (!list_empty(&callbacks)) {
3089 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3090 struct blk_plug_cb,
3091 list);
2a7d5559 3092 list_del(&cb->list);
74018dc3 3093 cb->callback(cb, from_schedule);
2a7d5559 3094 }
048c9374
N
3095 }
3096}
3097
9cbb1750
N
3098struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3099 int size)
3100{
3101 struct blk_plug *plug = current->plug;
3102 struct blk_plug_cb *cb;
3103
3104 if (!plug)
3105 return NULL;
3106
3107 list_for_each_entry(cb, &plug->cb_list, list)
3108 if (cb->callback == unplug && cb->data == data)
3109 return cb;
3110
3111 /* Not currently on the callback list */
3112 BUG_ON(size < sizeof(*cb));
3113 cb = kzalloc(size, GFP_ATOMIC);
3114 if (cb) {
3115 cb->data = data;
3116 cb->callback = unplug;
3117 list_add(&cb->list, &plug->cb_list);
3118 }
3119 return cb;
3120}
3121EXPORT_SYMBOL(blk_check_plugged);
3122
49cac01e 3123void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3124{
3125 struct request_queue *q;
3126 unsigned long flags;
3127 struct request *rq;
109b8129 3128 LIST_HEAD(list);
94b5eb28 3129 unsigned int depth;
73c10101 3130
74018dc3 3131 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3132
3133 if (!list_empty(&plug->mq_list))
3134 blk_mq_flush_plug_list(plug, from_schedule);
3135
73c10101
JA
3136 if (list_empty(&plug->list))
3137 return;
3138
109b8129
N
3139 list_splice_init(&plug->list, &list);
3140
422765c2 3141 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3142
3143 q = NULL;
94b5eb28 3144 depth = 0;
18811272
JA
3145
3146 /*
3147 * Save and disable interrupts here, to avoid doing it for every
3148 * queue lock we have to take.
3149 */
73c10101 3150 local_irq_save(flags);
109b8129
N
3151 while (!list_empty(&list)) {
3152 rq = list_entry_rq(list.next);
73c10101 3153 list_del_init(&rq->queuelist);
73c10101
JA
3154 BUG_ON(!rq->q);
3155 if (rq->q != q) {
99e22598
JA
3156 /*
3157 * This drops the queue lock
3158 */
3159 if (q)
49cac01e 3160 queue_unplugged(q, depth, from_schedule);
73c10101 3161 q = rq->q;
94b5eb28 3162 depth = 0;
73c10101
JA
3163 spin_lock(q->queue_lock);
3164 }
8ba61435
TH
3165
3166 /*
3167 * Short-circuit if @q is dead
3168 */
3f3299d5 3169 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3170 __blk_end_request_all(rq, -ENODEV);
3171 continue;
3172 }
3173
73c10101
JA
3174 /*
3175 * rq is already accounted, so use raw insert
3176 */
401a18e9
JA
3177 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3178 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3179 else
3180 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3181
3182 depth++;
73c10101
JA
3183 }
3184
99e22598
JA
3185 /*
3186 * This drops the queue lock
3187 */
3188 if (q)
49cac01e 3189 queue_unplugged(q, depth, from_schedule);
73c10101 3190
73c10101
JA
3191 local_irq_restore(flags);
3192}
73c10101
JA
3193
3194void blk_finish_plug(struct blk_plug *plug)
3195{
f6603783 3196 blk_flush_plug_list(plug, false);
73c10101 3197
88b996cd
CH
3198 if (plug == current->plug)
3199 current->plug = NULL;
73c10101 3200}
88b996cd 3201EXPORT_SYMBOL(blk_finish_plug);
73c10101 3202
47fafbc7 3203#ifdef CONFIG_PM
6c954667
LM
3204/**
3205 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3206 * @q: the queue of the device
3207 * @dev: the device the queue belongs to
3208 *
3209 * Description:
3210 * Initialize runtime-PM-related fields for @q and start auto suspend for
3211 * @dev. Drivers that want to take advantage of request-based runtime PM
3212 * should call this function after @dev has been initialized, and its
3213 * request queue @q has been allocated, and runtime PM for it can not happen
3214 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3215 * cases, driver should call this function before any I/O has taken place.
3216 *
3217 * This function takes care of setting up using auto suspend for the device,
3218 * the autosuspend delay is set to -1 to make runtime suspend impossible
3219 * until an updated value is either set by user or by driver. Drivers do
3220 * not need to touch other autosuspend settings.
3221 *
3222 * The block layer runtime PM is request based, so only works for drivers
3223 * that use request as their IO unit instead of those directly use bio's.
3224 */
3225void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3226{
3227 q->dev = dev;
3228 q->rpm_status = RPM_ACTIVE;
3229 pm_runtime_set_autosuspend_delay(q->dev, -1);
3230 pm_runtime_use_autosuspend(q->dev);
3231}
3232EXPORT_SYMBOL(blk_pm_runtime_init);
3233
3234/**
3235 * blk_pre_runtime_suspend - Pre runtime suspend check
3236 * @q: the queue of the device
3237 *
3238 * Description:
3239 * This function will check if runtime suspend is allowed for the device
3240 * by examining if there are any requests pending in the queue. If there
3241 * are requests pending, the device can not be runtime suspended; otherwise,
3242 * the queue's status will be updated to SUSPENDING and the driver can
3243 * proceed to suspend the device.
3244 *
3245 * For the not allowed case, we mark last busy for the device so that
3246 * runtime PM core will try to autosuspend it some time later.
3247 *
3248 * This function should be called near the start of the device's
3249 * runtime_suspend callback.
3250 *
3251 * Return:
3252 * 0 - OK to runtime suspend the device
3253 * -EBUSY - Device should not be runtime suspended
3254 */
3255int blk_pre_runtime_suspend(struct request_queue *q)
3256{
3257 int ret = 0;
3258
3259 spin_lock_irq(q->queue_lock);
3260 if (q->nr_pending) {
3261 ret = -EBUSY;
3262 pm_runtime_mark_last_busy(q->dev);
3263 } else {
3264 q->rpm_status = RPM_SUSPENDING;
3265 }
3266 spin_unlock_irq(q->queue_lock);
3267 return ret;
3268}
3269EXPORT_SYMBOL(blk_pre_runtime_suspend);
3270
3271/**
3272 * blk_post_runtime_suspend - Post runtime suspend processing
3273 * @q: the queue of the device
3274 * @err: return value of the device's runtime_suspend function
3275 *
3276 * Description:
3277 * Update the queue's runtime status according to the return value of the
3278 * device's runtime suspend function and mark last busy for the device so
3279 * that PM core will try to auto suspend the device at a later time.
3280 *
3281 * This function should be called near the end of the device's
3282 * runtime_suspend callback.
3283 */
3284void blk_post_runtime_suspend(struct request_queue *q, int err)
3285{
3286 spin_lock_irq(q->queue_lock);
3287 if (!err) {
3288 q->rpm_status = RPM_SUSPENDED;
3289 } else {
3290 q->rpm_status = RPM_ACTIVE;
3291 pm_runtime_mark_last_busy(q->dev);
3292 }
3293 spin_unlock_irq(q->queue_lock);
3294}
3295EXPORT_SYMBOL(blk_post_runtime_suspend);
3296
3297/**
3298 * blk_pre_runtime_resume - Pre runtime resume processing
3299 * @q: the queue of the device
3300 *
3301 * Description:
3302 * Update the queue's runtime status to RESUMING in preparation for the
3303 * runtime resume of the device.
3304 *
3305 * This function should be called near the start of the device's
3306 * runtime_resume callback.
3307 */
3308void blk_pre_runtime_resume(struct request_queue *q)
3309{
3310 spin_lock_irq(q->queue_lock);
3311 q->rpm_status = RPM_RESUMING;
3312 spin_unlock_irq(q->queue_lock);
3313}
3314EXPORT_SYMBOL(blk_pre_runtime_resume);
3315
3316/**
3317 * blk_post_runtime_resume - Post runtime resume processing
3318 * @q: the queue of the device
3319 * @err: return value of the device's runtime_resume function
3320 *
3321 * Description:
3322 * Update the queue's runtime status according to the return value of the
3323 * device's runtime_resume function. If it is successfully resumed, process
3324 * the requests that are queued into the device's queue when it is resuming
3325 * and then mark last busy and initiate autosuspend for it.
3326 *
3327 * This function should be called near the end of the device's
3328 * runtime_resume callback.
3329 */
3330void blk_post_runtime_resume(struct request_queue *q, int err)
3331{
3332 spin_lock_irq(q->queue_lock);
3333 if (!err) {
3334 q->rpm_status = RPM_ACTIVE;
3335 __blk_run_queue(q);
3336 pm_runtime_mark_last_busy(q->dev);
c60855cd 3337 pm_request_autosuspend(q->dev);
6c954667
LM
3338 } else {
3339 q->rpm_status = RPM_SUSPENDED;
3340 }
3341 spin_unlock_irq(q->queue_lock);
3342}
3343EXPORT_SYMBOL(blk_post_runtime_resume);
3344#endif
3345
1da177e4
LT
3346int __init blk_dev_init(void)
3347{
9eb55b03
NK
3348 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3349 sizeof(((struct request *)0)->cmd_flags));
3350
89b90be2
TH
3351 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3352 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3353 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3354 if (!kblockd_workqueue)
3355 panic("Failed to create kblockd\n");
3356
3357 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3358 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3359
8324aa91 3360 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3361 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3362
d38ecf93 3363 return 0;
1da177e4 3364}