]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: move blk_integrity to request_queue
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
143a87f4 148 if (unlikely(rq->cmd_flags & REQ_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
78d8e58a 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
1da177e4
LT
209/**
210 * blk_start_queue - restart a previously stopped queue
165125e1 211 * @q: The &struct request_queue in question
1da177e4
LT
212 *
213 * Description:
214 * blk_start_queue() will clear the stop flag on the queue, and call
215 * the request_fn for the queue if it was in a stopped state when
216 * entered. Also see blk_stop_queue(). Queue lock must be held.
217 **/
165125e1 218void blk_start_queue(struct request_queue *q)
1da177e4 219{
a038e253
PBG
220 WARN_ON(!irqs_disabled());
221
75ad23bc 222 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 223 __blk_run_queue(q);
1da177e4 224}
1da177e4
LT
225EXPORT_SYMBOL(blk_start_queue);
226
227/**
228 * blk_stop_queue - stop a queue
165125e1 229 * @q: The &struct request_queue in question
1da177e4
LT
230 *
231 * Description:
232 * The Linux block layer assumes that a block driver will consume all
233 * entries on the request queue when the request_fn strategy is called.
234 * Often this will not happen, because of hardware limitations (queue
235 * depth settings). If a device driver gets a 'queue full' response,
236 * or if it simply chooses not to queue more I/O at one point, it can
237 * call this function to prevent the request_fn from being called until
238 * the driver has signalled it's ready to go again. This happens by calling
239 * blk_start_queue() to restart queue operations. Queue lock must be held.
240 **/
165125e1 241void blk_stop_queue(struct request_queue *q)
1da177e4 242{
136b5721 243 cancel_delayed_work(&q->delay_work);
75ad23bc 244 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
245}
246EXPORT_SYMBOL(blk_stop_queue);
247
248/**
249 * blk_sync_queue - cancel any pending callbacks on a queue
250 * @q: the queue
251 *
252 * Description:
253 * The block layer may perform asynchronous callback activity
254 * on a queue, such as calling the unplug function after a timeout.
255 * A block device may call blk_sync_queue to ensure that any
256 * such activity is cancelled, thus allowing it to release resources
59c51591 257 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
258 * that its ->make_request_fn will not re-add plugging prior to calling
259 * this function.
260 *
da527770 261 * This function does not cancel any asynchronous activity arising
da3dae54 262 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 263 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 264 *
1da177e4
LT
265 */
266void blk_sync_queue(struct request_queue *q)
267{
70ed28b9 268 del_timer_sync(&q->timeout);
f04c1fe7
ML
269
270 if (q->mq_ops) {
271 struct blk_mq_hw_ctx *hctx;
272 int i;
273
70f4db63
CH
274 queue_for_each_hw_ctx(q, hctx, i) {
275 cancel_delayed_work_sync(&hctx->run_work);
276 cancel_delayed_work_sync(&hctx->delay_work);
277 }
f04c1fe7
ML
278 } else {
279 cancel_delayed_work_sync(&q->delay_work);
280 }
1da177e4
LT
281}
282EXPORT_SYMBOL(blk_sync_queue);
283
c246e80d
BVA
284/**
285 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
286 * @q: The queue to run
287 *
288 * Description:
289 * Invoke request handling on a queue if there are any pending requests.
290 * May be used to restart request handling after a request has completed.
291 * This variant runs the queue whether or not the queue has been
292 * stopped. Must be called with the queue lock held and interrupts
293 * disabled. See also @blk_run_queue.
294 */
295inline void __blk_run_queue_uncond(struct request_queue *q)
296{
297 if (unlikely(blk_queue_dead(q)))
298 return;
299
24faf6f6
BVA
300 /*
301 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
302 * the queue lock internally. As a result multiple threads may be
303 * running such a request function concurrently. Keep track of the
304 * number of active request_fn invocations such that blk_drain_queue()
305 * can wait until all these request_fn calls have finished.
306 */
307 q->request_fn_active++;
c246e80d 308 q->request_fn(q);
24faf6f6 309 q->request_fn_active--;
c246e80d 310}
a7928c15 311EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 312
1da177e4 313/**
80a4b58e 314 * __blk_run_queue - run a single device queue
1da177e4 315 * @q: The queue to run
80a4b58e
JA
316 *
317 * Description:
318 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 319 * held and interrupts disabled.
1da177e4 320 */
24ecfbe2 321void __blk_run_queue(struct request_queue *q)
1da177e4 322{
a538cd03
TH
323 if (unlikely(blk_queue_stopped(q)))
324 return;
325
c246e80d 326 __blk_run_queue_uncond(q);
75ad23bc
NP
327}
328EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 329
24ecfbe2
CH
330/**
331 * blk_run_queue_async - run a single device queue in workqueue context
332 * @q: The queue to run
333 *
334 * Description:
335 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 336 * of us. The caller must hold the queue lock.
24ecfbe2
CH
337 */
338void blk_run_queue_async(struct request_queue *q)
339{
70460571 340 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 341 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 342}
c21e6beb 343EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 344
75ad23bc
NP
345/**
346 * blk_run_queue - run a single device queue
347 * @q: The queue to run
80a4b58e
JA
348 *
349 * Description:
350 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 351 * May be used to restart queueing when a request has completed.
75ad23bc
NP
352 */
353void blk_run_queue(struct request_queue *q)
354{
355 unsigned long flags;
356
357 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 358 __blk_run_queue(q);
1da177e4
LT
359 spin_unlock_irqrestore(q->queue_lock, flags);
360}
361EXPORT_SYMBOL(blk_run_queue);
362
165125e1 363void blk_put_queue(struct request_queue *q)
483f4afc
AV
364{
365 kobject_put(&q->kobj);
366}
d86e0e83 367EXPORT_SYMBOL(blk_put_queue);
483f4afc 368
e3c78ca5 369/**
807592a4 370 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 371 * @q: queue to drain
c9a929dd 372 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 373 *
c9a929dd
TH
374 * Drain requests from @q. If @drain_all is set, all requests are drained.
375 * If not, only ELVPRIV requests are drained. The caller is responsible
376 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 377 */
807592a4
BVA
378static void __blk_drain_queue(struct request_queue *q, bool drain_all)
379 __releases(q->queue_lock)
380 __acquires(q->queue_lock)
e3c78ca5 381{
458f27a9
AH
382 int i;
383
807592a4
BVA
384 lockdep_assert_held(q->queue_lock);
385
e3c78ca5 386 while (true) {
481a7d64 387 bool drain = false;
e3c78ca5 388
b855b04a
TH
389 /*
390 * The caller might be trying to drain @q before its
391 * elevator is initialized.
392 */
393 if (q->elevator)
394 elv_drain_elevator(q);
395
5efd6113 396 blkcg_drain_queue(q);
e3c78ca5 397
4eabc941
TH
398 /*
399 * This function might be called on a queue which failed
b855b04a
TH
400 * driver init after queue creation or is not yet fully
401 * active yet. Some drivers (e.g. fd and loop) get unhappy
402 * in such cases. Kick queue iff dispatch queue has
403 * something on it and @q has request_fn set.
4eabc941 404 */
b855b04a 405 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 406 __blk_run_queue(q);
c9a929dd 407
8a5ecdd4 408 drain |= q->nr_rqs_elvpriv;
24faf6f6 409 drain |= q->request_fn_active;
481a7d64
TH
410
411 /*
412 * Unfortunately, requests are queued at and tracked from
413 * multiple places and there's no single counter which can
414 * be drained. Check all the queues and counters.
415 */
416 if (drain_all) {
e97c293c 417 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
418 drain |= !list_empty(&q->queue_head);
419 for (i = 0; i < 2; i++) {
8a5ecdd4 420 drain |= q->nr_rqs[i];
481a7d64 421 drain |= q->in_flight[i];
7c94e1c1
ML
422 if (fq)
423 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
424 }
425 }
e3c78ca5 426
481a7d64 427 if (!drain)
e3c78ca5 428 break;
807592a4
BVA
429
430 spin_unlock_irq(q->queue_lock);
431
e3c78ca5 432 msleep(10);
807592a4
BVA
433
434 spin_lock_irq(q->queue_lock);
e3c78ca5 435 }
458f27a9
AH
436
437 /*
438 * With queue marked dead, any woken up waiter will fail the
439 * allocation path, so the wakeup chaining is lost and we're
440 * left with hung waiters. We need to wake up those waiters.
441 */
442 if (q->request_fn) {
a051661c
TH
443 struct request_list *rl;
444
a051661c
TH
445 blk_queue_for_each_rl(rl, q)
446 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 wake_up_all(&rl->wait[i]);
458f27a9 448 }
e3c78ca5
TH
449}
450
d732580b
TH
451/**
452 * blk_queue_bypass_start - enter queue bypass mode
453 * @q: queue of interest
454 *
455 * In bypass mode, only the dispatch FIFO queue of @q is used. This
456 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 457 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
458 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459 * inside queue or RCU read lock.
d732580b
TH
460 */
461void blk_queue_bypass_start(struct request_queue *q)
462{
463 spin_lock_irq(q->queue_lock);
776687bc 464 q->bypass_depth++;
d732580b
TH
465 queue_flag_set(QUEUE_FLAG_BYPASS, q);
466 spin_unlock_irq(q->queue_lock);
467
776687bc
TH
468 /*
469 * Queues start drained. Skip actual draining till init is
470 * complete. This avoids lenghty delays during queue init which
471 * can happen many times during boot.
472 */
473 if (blk_queue_init_done(q)) {
807592a4
BVA
474 spin_lock_irq(q->queue_lock);
475 __blk_drain_queue(q, false);
476 spin_unlock_irq(q->queue_lock);
477
b82d4b19
TH
478 /* ensure blk_queue_bypass() is %true inside RCU read lock */
479 synchronize_rcu();
480 }
d732580b
TH
481}
482EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
483
484/**
485 * blk_queue_bypass_end - leave queue bypass mode
486 * @q: queue of interest
487 *
488 * Leave bypass mode and restore the normal queueing behavior.
489 */
490void blk_queue_bypass_end(struct request_queue *q)
491{
492 spin_lock_irq(q->queue_lock);
493 if (!--q->bypass_depth)
494 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
495 WARN_ON_ONCE(q->bypass_depth < 0);
496 spin_unlock_irq(q->queue_lock);
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
499
aed3ea94
JA
500void blk_set_queue_dying(struct request_queue *q)
501{
502 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
503
504 if (q->mq_ops)
505 blk_mq_wake_waiters(q);
506 else {
507 struct request_list *rl;
508
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 }
516}
517EXPORT_SYMBOL_GPL(blk_set_queue_dying);
518
c9a929dd
TH
519/**
520 * blk_cleanup_queue - shutdown a request queue
521 * @q: request queue to shutdown
522 *
c246e80d
BVA
523 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
524 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 525 */
6728cb0e 526void blk_cleanup_queue(struct request_queue *q)
483f4afc 527{
c9a929dd 528 spinlock_t *lock = q->queue_lock;
e3335de9 529
3f3299d5 530 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 531 mutex_lock(&q->sysfs_lock);
aed3ea94 532 blk_set_queue_dying(q);
c9a929dd 533 spin_lock_irq(lock);
6ecf23af 534
80fd9979 535 /*
3f3299d5 536 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
537 * that, unlike blk_queue_bypass_start(), we aren't performing
538 * synchronize_rcu() after entering bypass mode to avoid the delay
539 * as some drivers create and destroy a lot of queues while
540 * probing. This is still safe because blk_release_queue() will be
541 * called only after the queue refcnt drops to zero and nothing,
542 * RCU or not, would be traversing the queue by then.
543 */
6ecf23af
TH
544 q->bypass_depth++;
545 queue_flag_set(QUEUE_FLAG_BYPASS, q);
546
c9a929dd
TH
547 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
548 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 549 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
550 spin_unlock_irq(lock);
551 mutex_unlock(&q->sysfs_lock);
552
c246e80d
BVA
553 /*
554 * Drain all requests queued before DYING marking. Set DEAD flag to
555 * prevent that q->request_fn() gets invoked after draining finished.
556 */
3ef28e83
DW
557 blk_freeze_queue(q);
558 spin_lock_irq(lock);
559 if (!q->mq_ops)
43a5e4e2 560 __blk_drain_queue(q, true);
c246e80d 561 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 562 spin_unlock_irq(lock);
c9a929dd
TH
563
564 /* @q won't process any more request, flush async actions */
565 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
566 blk_sync_queue(q);
567
45a9c9d9
BVA
568 if (q->mq_ops)
569 blk_mq_free_queue(q);
3ef28e83 570 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 571
5e5cfac0
AH
572 spin_lock_irq(lock);
573 if (q->queue_lock != &q->__queue_lock)
574 q->queue_lock = &q->__queue_lock;
575 spin_unlock_irq(lock);
576
6cd18e71
N
577 bdi_destroy(&q->backing_dev_info);
578
c9a929dd 579 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
580 blk_put_queue(q);
581}
1da177e4
LT
582EXPORT_SYMBOL(blk_cleanup_queue);
583
271508db
DR
584/* Allocate memory local to the request queue */
585static void *alloc_request_struct(gfp_t gfp_mask, void *data)
586{
587 int nid = (int)(long)data;
588 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
589}
590
591static void free_request_struct(void *element, void *unused)
592{
593 kmem_cache_free(request_cachep, element);
594}
595
5b788ce3
TH
596int blk_init_rl(struct request_list *rl, struct request_queue *q,
597 gfp_t gfp_mask)
1da177e4 598{
1abec4fd
MS
599 if (unlikely(rl->rq_pool))
600 return 0;
601
5b788ce3 602 rl->q = q;
1faa16d2
JA
603 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
604 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
605 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
606 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 607
271508db
DR
608 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
609 free_request_struct,
610 (void *)(long)q->node, gfp_mask,
611 q->node);
1da177e4
LT
612 if (!rl->rq_pool)
613 return -ENOMEM;
614
615 return 0;
616}
617
5b788ce3
TH
618void blk_exit_rl(struct request_list *rl)
619{
620 if (rl->rq_pool)
621 mempool_destroy(rl->rq_pool);
622}
623
165125e1 624struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 625{
c304a51b 626 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
627}
628EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 629
3ef28e83
DW
630int blk_queue_enter(struct request_queue *q, gfp_t gfp)
631{
632 while (true) {
633 int ret;
634
635 if (percpu_ref_tryget_live(&q->q_usage_counter))
636 return 0;
637
638 if (!(gfp & __GFP_WAIT))
639 return -EBUSY;
640
641 ret = wait_event_interruptible(q->mq_freeze_wq,
642 !atomic_read(&q->mq_freeze_depth) ||
643 blk_queue_dying(q));
644 if (blk_queue_dying(q))
645 return -ENODEV;
646 if (ret)
647 return ret;
648 }
649}
650
651void blk_queue_exit(struct request_queue *q)
652{
653 percpu_ref_put(&q->q_usage_counter);
654}
655
656static void blk_queue_usage_counter_release(struct percpu_ref *ref)
657{
658 struct request_queue *q =
659 container_of(ref, struct request_queue, q_usage_counter);
660
661 wake_up_all(&q->mq_freeze_wq);
662}
663
165125e1 664struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 665{
165125e1 666 struct request_queue *q;
e0bf68dd 667 int err;
1946089a 668
8324aa91 669 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 670 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
671 if (!q)
672 return NULL;
673
00380a40 674 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 675 if (q->id < 0)
3d2936f4 676 goto fail_q;
a73f730d 677
54efd50b
KO
678 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
679 if (!q->bio_split)
680 goto fail_id;
681
0989a025
JA
682 q->backing_dev_info.ra_pages =
683 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
89e9b9e0 684 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 685 q->backing_dev_info.name = "block";
5151412d 686 q->node = node_id;
0989a025 687
e0bf68dd 688 err = bdi_init(&q->backing_dev_info);
a73f730d 689 if (err)
54efd50b 690 goto fail_split;
e0bf68dd 691
31373d09
MG
692 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
693 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 694 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 695 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 696 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 697 INIT_LIST_HEAD(&q->icq_list);
4eef3049 698#ifdef CONFIG_BLK_CGROUP
e8989fae 699 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 700#endif
3cca6dc1 701 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 702
8324aa91 703 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 704
483f4afc 705 mutex_init(&q->sysfs_lock);
e7e72bf6 706 spin_lock_init(&q->__queue_lock);
483f4afc 707
c94a96ac
VG
708 /*
709 * By default initialize queue_lock to internal lock and driver can
710 * override it later if need be.
711 */
712 q->queue_lock = &q->__queue_lock;
713
b82d4b19
TH
714 /*
715 * A queue starts its life with bypass turned on to avoid
716 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
717 * init. The initial bypass will be finished when the queue is
718 * registered by blk_register_queue().
b82d4b19
TH
719 */
720 q->bypass_depth = 1;
721 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
722
320ae51f
JA
723 init_waitqueue_head(&q->mq_freeze_wq);
724
3ef28e83
DW
725 /*
726 * Init percpu_ref in atomic mode so that it's faster to shutdown.
727 * See blk_register_queue() for details.
728 */
729 if (percpu_ref_init(&q->q_usage_counter,
730 blk_queue_usage_counter_release,
731 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 732 goto fail_bdi;
f51b802c 733
3ef28e83
DW
734 if (blkcg_init_queue(q))
735 goto fail_ref;
736
1da177e4 737 return q;
a73f730d 738
3ef28e83
DW
739fail_ref:
740 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
741fail_bdi:
742 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
743fail_split:
744 bioset_free(q->bio_split);
a73f730d
TH
745fail_id:
746 ida_simple_remove(&blk_queue_ida, q->id);
747fail_q:
748 kmem_cache_free(blk_requestq_cachep, q);
749 return NULL;
1da177e4 750}
1946089a 751EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
752
753/**
754 * blk_init_queue - prepare a request queue for use with a block device
755 * @rfn: The function to be called to process requests that have been
756 * placed on the queue.
757 * @lock: Request queue spin lock
758 *
759 * Description:
760 * If a block device wishes to use the standard request handling procedures,
761 * which sorts requests and coalesces adjacent requests, then it must
762 * call blk_init_queue(). The function @rfn will be called when there
763 * are requests on the queue that need to be processed. If the device
764 * supports plugging, then @rfn may not be called immediately when requests
765 * are available on the queue, but may be called at some time later instead.
766 * Plugged queues are generally unplugged when a buffer belonging to one
767 * of the requests on the queue is needed, or due to memory pressure.
768 *
769 * @rfn is not required, or even expected, to remove all requests off the
770 * queue, but only as many as it can handle at a time. If it does leave
771 * requests on the queue, it is responsible for arranging that the requests
772 * get dealt with eventually.
773 *
774 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
775 * request queue; this lock will be taken also from interrupt context, so irq
776 * disabling is needed for it.
1da177e4 777 *
710027a4 778 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
779 * it didn't succeed.
780 *
781 * Note:
782 * blk_init_queue() must be paired with a blk_cleanup_queue() call
783 * when the block device is deactivated (such as at module unload).
784 **/
1946089a 785
165125e1 786struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 787{
c304a51b 788 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
789}
790EXPORT_SYMBOL(blk_init_queue);
791
165125e1 792struct request_queue *
1946089a
CL
793blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
794{
c86d1b8a 795 struct request_queue *uninit_q, *q;
1da177e4 796
c86d1b8a
MS
797 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
798 if (!uninit_q)
799 return NULL;
800
5151412d 801 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 802 if (!q)
7982e90c 803 blk_cleanup_queue(uninit_q);
18741986 804
7982e90c 805 return q;
01effb0d
MS
806}
807EXPORT_SYMBOL(blk_init_queue_node);
808
336b7e1f
MS
809static void blk_queue_bio(struct request_queue *q, struct bio *bio);
810
01effb0d
MS
811struct request_queue *
812blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
813 spinlock_t *lock)
01effb0d 814{
1da177e4
LT
815 if (!q)
816 return NULL;
817
f70ced09 818 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 819 if (!q->fq)
7982e90c
MS
820 return NULL;
821
a051661c 822 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 823 goto fail;
1da177e4
LT
824
825 q->request_fn = rfn;
1da177e4 826 q->prep_rq_fn = NULL;
28018c24 827 q->unprep_rq_fn = NULL;
60ea8226 828 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
829
830 /* Override internal queue lock with supplied lock pointer */
831 if (lock)
832 q->queue_lock = lock;
1da177e4 833
f3b144aa
JA
834 /*
835 * This also sets hw/phys segments, boundary and size
836 */
c20e8de2 837 blk_queue_make_request(q, blk_queue_bio);
1da177e4 838
44ec9542
AS
839 q->sg_reserved_size = INT_MAX;
840
eb1c160b
TS
841 /* Protect q->elevator from elevator_change */
842 mutex_lock(&q->sysfs_lock);
843
b82d4b19 844 /* init elevator */
eb1c160b
TS
845 if (elevator_init(q, NULL)) {
846 mutex_unlock(&q->sysfs_lock);
708f04d2 847 goto fail;
eb1c160b
TS
848 }
849
850 mutex_unlock(&q->sysfs_lock);
851
b82d4b19 852 return q;
708f04d2
DJ
853
854fail:
ba483388 855 blk_free_flush_queue(q->fq);
708f04d2 856 return NULL;
1da177e4 857}
5151412d 858EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 859
09ac46c4 860bool blk_get_queue(struct request_queue *q)
1da177e4 861{
3f3299d5 862 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
863 __blk_get_queue(q);
864 return true;
1da177e4
LT
865 }
866
09ac46c4 867 return false;
1da177e4 868}
d86e0e83 869EXPORT_SYMBOL(blk_get_queue);
1da177e4 870
5b788ce3 871static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 872{
f1f8cc94 873 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 874 elv_put_request(rl->q, rq);
f1f8cc94 875 if (rq->elv.icq)
11a3122f 876 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
877 }
878
5b788ce3 879 mempool_free(rq, rl->rq_pool);
1da177e4
LT
880}
881
1da177e4
LT
882/*
883 * ioc_batching returns true if the ioc is a valid batching request and
884 * should be given priority access to a request.
885 */
165125e1 886static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
887{
888 if (!ioc)
889 return 0;
890
891 /*
892 * Make sure the process is able to allocate at least 1 request
893 * even if the batch times out, otherwise we could theoretically
894 * lose wakeups.
895 */
896 return ioc->nr_batch_requests == q->nr_batching ||
897 (ioc->nr_batch_requests > 0
898 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
899}
900
901/*
902 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
903 * will cause the process to be a "batcher" on all queues in the system. This
904 * is the behaviour we want though - once it gets a wakeup it should be given
905 * a nice run.
906 */
165125e1 907static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
908{
909 if (!ioc || ioc_batching(q, ioc))
910 return;
911
912 ioc->nr_batch_requests = q->nr_batching;
913 ioc->last_waited = jiffies;
914}
915
5b788ce3 916static void __freed_request(struct request_list *rl, int sync)
1da177e4 917{
5b788ce3 918 struct request_queue *q = rl->q;
1da177e4 919
d40f75a0
TH
920 if (rl->count[sync] < queue_congestion_off_threshold(q))
921 blk_clear_congested(rl, sync);
1da177e4 922
1faa16d2
JA
923 if (rl->count[sync] + 1 <= q->nr_requests) {
924 if (waitqueue_active(&rl->wait[sync]))
925 wake_up(&rl->wait[sync]);
1da177e4 926
5b788ce3 927 blk_clear_rl_full(rl, sync);
1da177e4
LT
928 }
929}
930
931/*
932 * A request has just been released. Account for it, update the full and
933 * congestion status, wake up any waiters. Called under q->queue_lock.
934 */
5b788ce3 935static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 936{
5b788ce3 937 struct request_queue *q = rl->q;
75eb6c37 938 int sync = rw_is_sync(flags);
1da177e4 939
8a5ecdd4 940 q->nr_rqs[sync]--;
1faa16d2 941 rl->count[sync]--;
75eb6c37 942 if (flags & REQ_ELVPRIV)
8a5ecdd4 943 q->nr_rqs_elvpriv--;
1da177e4 944
5b788ce3 945 __freed_request(rl, sync);
1da177e4 946
1faa16d2 947 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 948 __freed_request(rl, sync ^ 1);
1da177e4
LT
949}
950
e3a2b3f9
JA
951int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
952{
953 struct request_list *rl;
d40f75a0 954 int on_thresh, off_thresh;
e3a2b3f9
JA
955
956 spin_lock_irq(q->queue_lock);
957 q->nr_requests = nr;
958 blk_queue_congestion_threshold(q);
d40f75a0
TH
959 on_thresh = queue_congestion_on_threshold(q);
960 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 961
d40f75a0
TH
962 blk_queue_for_each_rl(rl, q) {
963 if (rl->count[BLK_RW_SYNC] >= on_thresh)
964 blk_set_congested(rl, BLK_RW_SYNC);
965 else if (rl->count[BLK_RW_SYNC] < off_thresh)
966 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 967
d40f75a0
TH
968 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
969 blk_set_congested(rl, BLK_RW_ASYNC);
970 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
971 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 972
e3a2b3f9
JA
973 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
974 blk_set_rl_full(rl, BLK_RW_SYNC);
975 } else {
976 blk_clear_rl_full(rl, BLK_RW_SYNC);
977 wake_up(&rl->wait[BLK_RW_SYNC]);
978 }
979
980 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
981 blk_set_rl_full(rl, BLK_RW_ASYNC);
982 } else {
983 blk_clear_rl_full(rl, BLK_RW_ASYNC);
984 wake_up(&rl->wait[BLK_RW_ASYNC]);
985 }
986 }
987
988 spin_unlock_irq(q->queue_lock);
989 return 0;
990}
991
9d5a4e94
MS
992/*
993 * Determine if elevator data should be initialized when allocating the
994 * request associated with @bio.
995 */
996static bool blk_rq_should_init_elevator(struct bio *bio)
997{
998 if (!bio)
999 return true;
1000
1001 /*
1002 * Flush requests do not use the elevator so skip initialization.
1003 * This allows a request to share the flush and elevator data.
1004 */
1005 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1006 return false;
1007
1008 return true;
1009}
1010
852c788f
TH
1011/**
1012 * rq_ioc - determine io_context for request allocation
1013 * @bio: request being allocated is for this bio (can be %NULL)
1014 *
1015 * Determine io_context to use for request allocation for @bio. May return
1016 * %NULL if %current->io_context doesn't exist.
1017 */
1018static struct io_context *rq_ioc(struct bio *bio)
1019{
1020#ifdef CONFIG_BLK_CGROUP
1021 if (bio && bio->bi_ioc)
1022 return bio->bi_ioc;
1023#endif
1024 return current->io_context;
1025}
1026
da8303c6 1027/**
a06e05e6 1028 * __get_request - get a free request
5b788ce3 1029 * @rl: request list to allocate from
da8303c6
TH
1030 * @rw_flags: RW and SYNC flags
1031 * @bio: bio to allocate request for (can be %NULL)
1032 * @gfp_mask: allocation mask
1033 *
1034 * Get a free request from @q. This function may fail under memory
1035 * pressure or if @q is dead.
1036 *
da3dae54 1037 * Must be called with @q->queue_lock held and,
a492f075
JL
1038 * Returns ERR_PTR on failure, with @q->queue_lock held.
1039 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1040 */
5b788ce3 1041static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 1042 struct bio *bio, gfp_t gfp_mask)
1da177e4 1043{
5b788ce3 1044 struct request_queue *q = rl->q;
b679281a 1045 struct request *rq;
7f4b35d1
TH
1046 struct elevator_type *et = q->elevator->type;
1047 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1048 struct io_cq *icq = NULL;
1faa16d2 1049 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 1050 int may_queue;
88ee5ef1 1051
3f3299d5 1052 if (unlikely(blk_queue_dying(q)))
a492f075 1053 return ERR_PTR(-ENODEV);
da8303c6 1054
7749a8d4 1055 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
1056 if (may_queue == ELV_MQUEUE_NO)
1057 goto rq_starved;
1058
1faa16d2
JA
1059 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1060 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1061 /*
1062 * The queue will fill after this allocation, so set
1063 * it as full, and mark this process as "batching".
1064 * This process will be allowed to complete a batch of
1065 * requests, others will be blocked.
1066 */
5b788ce3 1067 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1068 ioc_set_batching(q, ioc);
5b788ce3 1069 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1070 } else {
1071 if (may_queue != ELV_MQUEUE_MUST
1072 && !ioc_batching(q, ioc)) {
1073 /*
1074 * The queue is full and the allocating
1075 * process is not a "batcher", and not
1076 * exempted by the IO scheduler
1077 */
a492f075 1078 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1079 }
1080 }
1da177e4 1081 }
d40f75a0 1082 blk_set_congested(rl, is_sync);
1da177e4
LT
1083 }
1084
082cf69e
JA
1085 /*
1086 * Only allow batching queuers to allocate up to 50% over the defined
1087 * limit of requests, otherwise we could have thousands of requests
1088 * allocated with any setting of ->nr_requests
1089 */
1faa16d2 1090 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1091 return ERR_PTR(-ENOMEM);
fd782a4a 1092
8a5ecdd4 1093 q->nr_rqs[is_sync]++;
1faa16d2
JA
1094 rl->count[is_sync]++;
1095 rl->starved[is_sync] = 0;
cb98fc8b 1096
f1f8cc94
TH
1097 /*
1098 * Decide whether the new request will be managed by elevator. If
1099 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1100 * prevent the current elevator from being destroyed until the new
1101 * request is freed. This guarantees icq's won't be destroyed and
1102 * makes creating new ones safe.
1103 *
1104 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1105 * it will be created after releasing queue_lock.
1106 */
d732580b 1107 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1108 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1109 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1110 if (et->icq_cache && ioc)
1111 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1112 }
cb98fc8b 1113
f253b86b
JA
1114 if (blk_queue_io_stat(q))
1115 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1116 spin_unlock_irq(q->queue_lock);
1117
29e2b09a 1118 /* allocate and init request */
5b788ce3 1119 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1120 if (!rq)
b679281a 1121 goto fail_alloc;
1da177e4 1122
29e2b09a 1123 blk_rq_init(q, rq);
a051661c 1124 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1125 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1126
aaf7c680 1127 /* init elvpriv */
29e2b09a 1128 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1129 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1130 if (ioc)
1131 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1132 if (!icq)
1133 goto fail_elvpriv;
29e2b09a 1134 }
aaf7c680
TH
1135
1136 rq->elv.icq = icq;
1137 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1138 goto fail_elvpriv;
1139
1140 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1141 if (icq)
1142 get_io_context(icq->ioc);
1143 }
aaf7c680 1144out:
88ee5ef1
JA
1145 /*
1146 * ioc may be NULL here, and ioc_batching will be false. That's
1147 * OK, if the queue is under the request limit then requests need
1148 * not count toward the nr_batch_requests limit. There will always
1149 * be some limit enforced by BLK_BATCH_TIME.
1150 */
1da177e4
LT
1151 if (ioc_batching(q, ioc))
1152 ioc->nr_batch_requests--;
6728cb0e 1153
1faa16d2 1154 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1155 return rq;
b679281a 1156
aaf7c680
TH
1157fail_elvpriv:
1158 /*
1159 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1160 * and may fail indefinitely under memory pressure and thus
1161 * shouldn't stall IO. Treat this request as !elvpriv. This will
1162 * disturb iosched and blkcg but weird is bettern than dead.
1163 */
7b2b10e0
RE
1164 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1165 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1166
1167 rq->cmd_flags &= ~REQ_ELVPRIV;
1168 rq->elv.icq = NULL;
1169
1170 spin_lock_irq(q->queue_lock);
8a5ecdd4 1171 q->nr_rqs_elvpriv--;
aaf7c680
TH
1172 spin_unlock_irq(q->queue_lock);
1173 goto out;
1174
b679281a
TH
1175fail_alloc:
1176 /*
1177 * Allocation failed presumably due to memory. Undo anything we
1178 * might have messed up.
1179 *
1180 * Allocating task should really be put onto the front of the wait
1181 * queue, but this is pretty rare.
1182 */
1183 spin_lock_irq(q->queue_lock);
5b788ce3 1184 freed_request(rl, rw_flags);
b679281a
TH
1185
1186 /*
1187 * in the very unlikely event that allocation failed and no
1188 * requests for this direction was pending, mark us starved so that
1189 * freeing of a request in the other direction will notice
1190 * us. another possible fix would be to split the rq mempool into
1191 * READ and WRITE
1192 */
1193rq_starved:
1194 if (unlikely(rl->count[is_sync] == 0))
1195 rl->starved[is_sync] = 1;
a492f075 1196 return ERR_PTR(-ENOMEM);
1da177e4
LT
1197}
1198
da8303c6 1199/**
a06e05e6 1200 * get_request - get a free request
da8303c6
TH
1201 * @q: request_queue to allocate request from
1202 * @rw_flags: RW and SYNC flags
1203 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1204 * @gfp_mask: allocation mask
da8303c6 1205 *
a06e05e6
TH
1206 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1207 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1208 *
da3dae54 1209 * Must be called with @q->queue_lock held and,
a492f075
JL
1210 * Returns ERR_PTR on failure, with @q->queue_lock held.
1211 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1212 */
a06e05e6
TH
1213static struct request *get_request(struct request_queue *q, int rw_flags,
1214 struct bio *bio, gfp_t gfp_mask)
1da177e4 1215{
1faa16d2 1216 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1217 DEFINE_WAIT(wait);
a051661c 1218 struct request_list *rl;
1da177e4 1219 struct request *rq;
a051661c
TH
1220
1221 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1222retry:
a051661c 1223 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1224 if (!IS_ERR(rq))
a06e05e6 1225 return rq;
1da177e4 1226
3f3299d5 1227 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1228 blk_put_rl(rl);
a492f075 1229 return rq;
a051661c 1230 }
1da177e4 1231
a06e05e6
TH
1232 /* wait on @rl and retry */
1233 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1234 TASK_UNINTERRUPTIBLE);
1da177e4 1235
a06e05e6 1236 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1237
a06e05e6
TH
1238 spin_unlock_irq(q->queue_lock);
1239 io_schedule();
d6344532 1240
a06e05e6
TH
1241 /*
1242 * After sleeping, we become a "batching" process and will be able
1243 * to allocate at least one request, and up to a big batch of them
1244 * for a small period time. See ioc_batching, ioc_set_batching
1245 */
a06e05e6 1246 ioc_set_batching(q, current->io_context);
05caf8db 1247
a06e05e6
TH
1248 spin_lock_irq(q->queue_lock);
1249 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1250
a06e05e6 1251 goto retry;
1da177e4
LT
1252}
1253
320ae51f
JA
1254static struct request *blk_old_get_request(struct request_queue *q, int rw,
1255 gfp_t gfp_mask)
1da177e4
LT
1256{
1257 struct request *rq;
1258
1259 BUG_ON(rw != READ && rw != WRITE);
1260
7f4b35d1
TH
1261 /* create ioc upfront */
1262 create_io_context(gfp_mask, q->node);
1263
d6344532 1264 spin_lock_irq(q->queue_lock);
a06e05e6 1265 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1266 if (IS_ERR(rq))
da8303c6 1267 spin_unlock_irq(q->queue_lock);
d6344532 1268 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1269
1270 return rq;
1271}
320ae51f
JA
1272
1273struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1274{
1275 if (q->mq_ops)
4ce01dd1 1276 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1277 else
1278 return blk_old_get_request(q, rw, gfp_mask);
1279}
1da177e4
LT
1280EXPORT_SYMBOL(blk_get_request);
1281
dc72ef4a 1282/**
79eb63e9 1283 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1284 * @q: target request queue
79eb63e9
BH
1285 * @bio: The bio describing the memory mappings that will be submitted for IO.
1286 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1287 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1288 *
79eb63e9
BH
1289 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1290 * type commands. Where the struct request needs to be farther initialized by
1291 * the caller. It is passed a &struct bio, which describes the memory info of
1292 * the I/O transfer.
dc72ef4a 1293 *
79eb63e9
BH
1294 * The caller of blk_make_request must make sure that bi_io_vec
1295 * are set to describe the memory buffers. That bio_data_dir() will return
1296 * the needed direction of the request. (And all bio's in the passed bio-chain
1297 * are properly set accordingly)
1298 *
1299 * If called under none-sleepable conditions, mapped bio buffers must not
1300 * need bouncing, by calling the appropriate masked or flagged allocator,
1301 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1302 * BUG.
53674ac5
JA
1303 *
1304 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1305 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1306 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1307 * completion of a bio that hasn't been submitted yet, thus resulting in a
1308 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1309 * of bio_alloc(), as that avoids the mempool deadlock.
1310 * If possible a big IO should be split into smaller parts when allocation
1311 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1312 */
79eb63e9
BH
1313struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1314 gfp_t gfp_mask)
dc72ef4a 1315{
79eb63e9
BH
1316 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1317
a492f075
JL
1318 if (IS_ERR(rq))
1319 return rq;
79eb63e9 1320
f27b087b
JA
1321 blk_rq_set_block_pc(rq);
1322
79eb63e9
BH
1323 for_each_bio(bio) {
1324 struct bio *bounce_bio = bio;
1325 int ret;
1326
1327 blk_queue_bounce(q, &bounce_bio);
1328 ret = blk_rq_append_bio(q, rq, bounce_bio);
1329 if (unlikely(ret)) {
1330 blk_put_request(rq);
1331 return ERR_PTR(ret);
1332 }
1333 }
1334
1335 return rq;
dc72ef4a 1336}
79eb63e9 1337EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1338
f27b087b 1339/**
da3dae54 1340 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1341 * @rq: request to be initialized
1342 *
1343 */
1344void blk_rq_set_block_pc(struct request *rq)
1345{
1346 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1347 rq->__data_len = 0;
1348 rq->__sector = (sector_t) -1;
1349 rq->bio = rq->biotail = NULL;
1350 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1351}
1352EXPORT_SYMBOL(blk_rq_set_block_pc);
1353
1da177e4
LT
1354/**
1355 * blk_requeue_request - put a request back on queue
1356 * @q: request queue where request should be inserted
1357 * @rq: request to be inserted
1358 *
1359 * Description:
1360 * Drivers often keep queueing requests until the hardware cannot accept
1361 * more, when that condition happens we need to put the request back
1362 * on the queue. Must be called with queue lock held.
1363 */
165125e1 1364void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1365{
242f9dcb
JA
1366 blk_delete_timer(rq);
1367 blk_clear_rq_complete(rq);
5f3ea37c 1368 trace_block_rq_requeue(q, rq);
2056a782 1369
125c99bc 1370 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1371 blk_queue_end_tag(q, rq);
1372
ba396a6c
JB
1373 BUG_ON(blk_queued_rq(rq));
1374
1da177e4
LT
1375 elv_requeue_request(q, rq);
1376}
1da177e4
LT
1377EXPORT_SYMBOL(blk_requeue_request);
1378
73c10101
JA
1379static void add_acct_request(struct request_queue *q, struct request *rq,
1380 int where)
1381{
320ae51f 1382 blk_account_io_start(rq, true);
7eaceacc 1383 __elv_add_request(q, rq, where);
73c10101
JA
1384}
1385
074a7aca
TH
1386static void part_round_stats_single(int cpu, struct hd_struct *part,
1387 unsigned long now)
1388{
7276d02e
JA
1389 int inflight;
1390
074a7aca
TH
1391 if (now == part->stamp)
1392 return;
1393
7276d02e
JA
1394 inflight = part_in_flight(part);
1395 if (inflight) {
074a7aca 1396 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1397 inflight * (now - part->stamp));
074a7aca
TH
1398 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1399 }
1400 part->stamp = now;
1401}
1402
1403/**
496aa8a9
RD
1404 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1405 * @cpu: cpu number for stats access
1406 * @part: target partition
1da177e4
LT
1407 *
1408 * The average IO queue length and utilisation statistics are maintained
1409 * by observing the current state of the queue length and the amount of
1410 * time it has been in this state for.
1411 *
1412 * Normally, that accounting is done on IO completion, but that can result
1413 * in more than a second's worth of IO being accounted for within any one
1414 * second, leading to >100% utilisation. To deal with that, we call this
1415 * function to do a round-off before returning the results when reading
1416 * /proc/diskstats. This accounts immediately for all queue usage up to
1417 * the current jiffies and restarts the counters again.
1418 */
c9959059 1419void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1420{
1421 unsigned long now = jiffies;
1422
074a7aca
TH
1423 if (part->partno)
1424 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1425 part_round_stats_single(cpu, part, now);
6f2576af 1426}
074a7aca 1427EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1428
47fafbc7 1429#ifdef CONFIG_PM
c8158819
LM
1430static void blk_pm_put_request(struct request *rq)
1431{
1432 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1433 pm_runtime_mark_last_busy(rq->q->dev);
1434}
1435#else
1436static inline void blk_pm_put_request(struct request *rq) {}
1437#endif
1438
1da177e4
LT
1439/*
1440 * queue lock must be held
1441 */
165125e1 1442void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1443{
1da177e4
LT
1444 if (unlikely(!q))
1445 return;
1da177e4 1446
6f5ba581
CH
1447 if (q->mq_ops) {
1448 blk_mq_free_request(req);
1449 return;
1450 }
1451
c8158819
LM
1452 blk_pm_put_request(req);
1453
8922e16c
TH
1454 elv_completed_request(q, req);
1455
1cd96c24
BH
1456 /* this is a bio leak */
1457 WARN_ON(req->bio != NULL);
1458
1da177e4
LT
1459 /*
1460 * Request may not have originated from ll_rw_blk. if not,
1461 * it didn't come out of our reserved rq pools
1462 */
49171e5c 1463 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1464 unsigned int flags = req->cmd_flags;
a051661c 1465 struct request_list *rl = blk_rq_rl(req);
1da177e4 1466
1da177e4 1467 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1468 BUG_ON(ELV_ON_HASH(req));
1da177e4 1469
a051661c
TH
1470 blk_free_request(rl, req);
1471 freed_request(rl, flags);
1472 blk_put_rl(rl);
1da177e4
LT
1473 }
1474}
6e39b69e
MC
1475EXPORT_SYMBOL_GPL(__blk_put_request);
1476
1da177e4
LT
1477void blk_put_request(struct request *req)
1478{
165125e1 1479 struct request_queue *q = req->q;
8922e16c 1480
320ae51f
JA
1481 if (q->mq_ops)
1482 blk_mq_free_request(req);
1483 else {
1484 unsigned long flags;
1485
1486 spin_lock_irqsave(q->queue_lock, flags);
1487 __blk_put_request(q, req);
1488 spin_unlock_irqrestore(q->queue_lock, flags);
1489 }
1da177e4 1490}
1da177e4
LT
1491EXPORT_SYMBOL(blk_put_request);
1492
66ac0280
CH
1493/**
1494 * blk_add_request_payload - add a payload to a request
1495 * @rq: request to update
1496 * @page: page backing the payload
1497 * @len: length of the payload.
1498 *
1499 * This allows to later add a payload to an already submitted request by
1500 * a block driver. The driver needs to take care of freeing the payload
1501 * itself.
1502 *
1503 * Note that this is a quite horrible hack and nothing but handling of
1504 * discard requests should ever use it.
1505 */
1506void blk_add_request_payload(struct request *rq, struct page *page,
1507 unsigned int len)
1508{
1509 struct bio *bio = rq->bio;
1510
1511 bio->bi_io_vec->bv_page = page;
1512 bio->bi_io_vec->bv_offset = 0;
1513 bio->bi_io_vec->bv_len = len;
1514
4f024f37 1515 bio->bi_iter.bi_size = len;
66ac0280
CH
1516 bio->bi_vcnt = 1;
1517 bio->bi_phys_segments = 1;
1518
1519 rq->__data_len = rq->resid_len = len;
1520 rq->nr_phys_segments = 1;
66ac0280
CH
1521}
1522EXPORT_SYMBOL_GPL(blk_add_request_payload);
1523
320ae51f
JA
1524bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1525 struct bio *bio)
73c10101
JA
1526{
1527 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1528
73c10101
JA
1529 if (!ll_back_merge_fn(q, req, bio))
1530 return false;
1531
8c1cf6bb 1532 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1533
1534 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1535 blk_rq_set_mixed_merge(req);
1536
1537 req->biotail->bi_next = bio;
1538 req->biotail = bio;
4f024f37 1539 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1540 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1541
320ae51f 1542 blk_account_io_start(req, false);
73c10101
JA
1543 return true;
1544}
1545
320ae51f
JA
1546bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1547 struct bio *bio)
73c10101
JA
1548{
1549 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1550
73c10101
JA
1551 if (!ll_front_merge_fn(q, req, bio))
1552 return false;
1553
8c1cf6bb 1554 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1555
1556 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1557 blk_rq_set_mixed_merge(req);
1558
73c10101
JA
1559 bio->bi_next = req->bio;
1560 req->bio = bio;
1561
4f024f37
KO
1562 req->__sector = bio->bi_iter.bi_sector;
1563 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1564 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1565
320ae51f 1566 blk_account_io_start(req, false);
73c10101
JA
1567 return true;
1568}
1569
bd87b589 1570/**
320ae51f 1571 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1572 * @q: request_queue new bio is being queued at
1573 * @bio: new bio being queued
1574 * @request_count: out parameter for number of traversed plugged requests
1575 *
1576 * Determine whether @bio being queued on @q can be merged with a request
1577 * on %current's plugged list. Returns %true if merge was successful,
1578 * otherwise %false.
1579 *
07c2bd37
TH
1580 * Plugging coalesces IOs from the same issuer for the same purpose without
1581 * going through @q->queue_lock. As such it's more of an issuing mechanism
1582 * than scheduling, and the request, while may have elvpriv data, is not
1583 * added on the elevator at this point. In addition, we don't have
1584 * reliable access to the elevator outside queue lock. Only check basic
1585 * merging parameters without querying the elevator.
da41a589
RE
1586 *
1587 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1588 */
320ae51f 1589bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1590 unsigned int *request_count,
1591 struct request **same_queue_rq)
73c10101
JA
1592{
1593 struct blk_plug *plug;
1594 struct request *rq;
1595 bool ret = false;
92f399c7 1596 struct list_head *plug_list;
73c10101 1597
bd87b589 1598 plug = current->plug;
73c10101
JA
1599 if (!plug)
1600 goto out;
56ebdaf2 1601 *request_count = 0;
73c10101 1602
92f399c7
SL
1603 if (q->mq_ops)
1604 plug_list = &plug->mq_list;
1605 else
1606 plug_list = &plug->list;
1607
1608 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1609 int el_ret;
1610
5b3f341f 1611 if (rq->q == q) {
1b2e19f1 1612 (*request_count)++;
5b3f341f
SL
1613 /*
1614 * Only blk-mq multiple hardware queues case checks the
1615 * rq in the same queue, there should be only one such
1616 * rq in a queue
1617 **/
1618 if (same_queue_rq)
1619 *same_queue_rq = rq;
1620 }
56ebdaf2 1621
07c2bd37 1622 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1623 continue;
1624
050c8ea8 1625 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1626 if (el_ret == ELEVATOR_BACK_MERGE) {
1627 ret = bio_attempt_back_merge(q, rq, bio);
1628 if (ret)
1629 break;
1630 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1631 ret = bio_attempt_front_merge(q, rq, bio);
1632 if (ret)
1633 break;
1634 }
1635 }
1636out:
1637 return ret;
1638}
1639
86db1e29 1640void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1641{
4aff5e23 1642 req->cmd_type = REQ_TYPE_FS;
52d9e675 1643
7b6d91da
CH
1644 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1645 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1646 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1647
52d9e675 1648 req->errors = 0;
4f024f37 1649 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1650 req->ioprio = bio_prio(bio);
bc1c56fd 1651 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1652}
1653
336b7e1f 1654static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1655{
5e00d1b5 1656 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1657 struct blk_plug *plug;
1658 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1659 struct request *req;
56ebdaf2 1660 unsigned int request_count = 0;
1da177e4 1661
54efd50b
KO
1662 blk_queue_split(q, &bio, q->bio_split);
1663
1da177e4
LT
1664 /*
1665 * low level driver can indicate that it wants pages above a
1666 * certain limit bounced to low memory (ie for highmem, or even
1667 * ISA dma in theory)
1668 */
1669 blk_queue_bounce(q, &bio);
1670
ffecfd1a 1671 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1672 bio->bi_error = -EIO;
1673 bio_endio(bio);
ffecfd1a
DW
1674 return;
1675 }
1676
4fed947c 1677 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1678 spin_lock_irq(q->queue_lock);
ae1b1539 1679 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1680 goto get_rq;
1681 }
1682
73c10101
JA
1683 /*
1684 * Check if we can merge with the plugged list before grabbing
1685 * any locks.
1686 */
da41a589 1687 if (!blk_queue_nomerges(q) &&
5b3f341f 1688 blk_attempt_plug_merge(q, bio, &request_count, NULL))
5a7bbad2 1689 return;
1da177e4 1690
73c10101 1691 spin_lock_irq(q->queue_lock);
2056a782 1692
73c10101
JA
1693 el_ret = elv_merge(q, &req, bio);
1694 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1695 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1696 elv_bio_merged(q, req, bio);
73c10101
JA
1697 if (!attempt_back_merge(q, req))
1698 elv_merged_request(q, req, el_ret);
1699 goto out_unlock;
1700 }
1701 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1702 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1703 elv_bio_merged(q, req, bio);
73c10101
JA
1704 if (!attempt_front_merge(q, req))
1705 elv_merged_request(q, req, el_ret);
1706 goto out_unlock;
80a761fd 1707 }
1da177e4
LT
1708 }
1709
450991bc 1710get_rq:
7749a8d4
JA
1711 /*
1712 * This sync check and mask will be re-done in init_request_from_bio(),
1713 * but we need to set it earlier to expose the sync flag to the
1714 * rq allocator and io schedulers.
1715 */
1716 rw_flags = bio_data_dir(bio);
1717 if (sync)
7b6d91da 1718 rw_flags |= REQ_SYNC;
7749a8d4 1719
1da177e4 1720 /*
450991bc 1721 * Grab a free request. This is might sleep but can not fail.
d6344532 1722 * Returns with the queue unlocked.
450991bc 1723 */
a06e05e6 1724 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075 1725 if (IS_ERR(req)) {
4246a0b6
CH
1726 bio->bi_error = PTR_ERR(req);
1727 bio_endio(bio);
da8303c6
TH
1728 goto out_unlock;
1729 }
d6344532 1730
450991bc
NP
1731 /*
1732 * After dropping the lock and possibly sleeping here, our request
1733 * may now be mergeable after it had proven unmergeable (above).
1734 * We don't worry about that case for efficiency. It won't happen
1735 * often, and the elevators are able to handle it.
1da177e4 1736 */
52d9e675 1737 init_request_from_bio(req, bio);
1da177e4 1738
9562ad9a 1739 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1740 req->cpu = raw_smp_processor_id();
73c10101
JA
1741
1742 plug = current->plug;
721a9602 1743 if (plug) {
dc6d36c9
JA
1744 /*
1745 * If this is the first request added after a plug, fire
7aef2e78 1746 * of a plug trace.
dc6d36c9 1747 */
7aef2e78 1748 if (!request_count)
dc6d36c9 1749 trace_block_plug(q);
3540d5e8 1750 else {
019ceb7d 1751 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1752 blk_flush_plug_list(plug, false);
019ceb7d
SL
1753 trace_block_plug(q);
1754 }
73c10101 1755 }
73c10101 1756 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1757 blk_account_io_start(req, true);
73c10101
JA
1758 } else {
1759 spin_lock_irq(q->queue_lock);
1760 add_acct_request(q, req, where);
24ecfbe2 1761 __blk_run_queue(q);
73c10101
JA
1762out_unlock:
1763 spin_unlock_irq(q->queue_lock);
1764 }
1da177e4
LT
1765}
1766
1767/*
1768 * If bio->bi_dev is a partition, remap the location
1769 */
1770static inline void blk_partition_remap(struct bio *bio)
1771{
1772 struct block_device *bdev = bio->bi_bdev;
1773
bf2de6f5 1774 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1775 struct hd_struct *p = bdev->bd_part;
1776
4f024f37 1777 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1778 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1779
d07335e5
MS
1780 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1781 bdev->bd_dev,
4f024f37 1782 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1783 }
1784}
1785
1da177e4
LT
1786static void handle_bad_sector(struct bio *bio)
1787{
1788 char b[BDEVNAME_SIZE];
1789
1790 printk(KERN_INFO "attempt to access beyond end of device\n");
1791 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1792 bdevname(bio->bi_bdev, b),
1793 bio->bi_rw,
f73a1c7d 1794 (unsigned long long)bio_end_sector(bio),
77304d2a 1795 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1796}
1797
c17bb495
AM
1798#ifdef CONFIG_FAIL_MAKE_REQUEST
1799
1800static DECLARE_FAULT_ATTR(fail_make_request);
1801
1802static int __init setup_fail_make_request(char *str)
1803{
1804 return setup_fault_attr(&fail_make_request, str);
1805}
1806__setup("fail_make_request=", setup_fail_make_request);
1807
b2c9cd37 1808static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1809{
b2c9cd37 1810 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1811}
1812
1813static int __init fail_make_request_debugfs(void)
1814{
dd48c085
AM
1815 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1816 NULL, &fail_make_request);
1817
21f9fcd8 1818 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1819}
1820
1821late_initcall(fail_make_request_debugfs);
1822
1823#else /* CONFIG_FAIL_MAKE_REQUEST */
1824
b2c9cd37
AM
1825static inline bool should_fail_request(struct hd_struct *part,
1826 unsigned int bytes)
c17bb495 1827{
b2c9cd37 1828 return false;
c17bb495
AM
1829}
1830
1831#endif /* CONFIG_FAIL_MAKE_REQUEST */
1832
c07e2b41
JA
1833/*
1834 * Check whether this bio extends beyond the end of the device.
1835 */
1836static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1837{
1838 sector_t maxsector;
1839
1840 if (!nr_sectors)
1841 return 0;
1842
1843 /* Test device or partition size, when known. */
77304d2a 1844 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1845 if (maxsector) {
4f024f37 1846 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1847
1848 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1849 /*
1850 * This may well happen - the kernel calls bread()
1851 * without checking the size of the device, e.g., when
1852 * mounting a device.
1853 */
1854 handle_bad_sector(bio);
1855 return 1;
1856 }
1857 }
1858
1859 return 0;
1860}
1861
27a84d54
CH
1862static noinline_for_stack bool
1863generic_make_request_checks(struct bio *bio)
1da177e4 1864{
165125e1 1865 struct request_queue *q;
5a7bbad2 1866 int nr_sectors = bio_sectors(bio);
51fd77bd 1867 int err = -EIO;
5a7bbad2
CH
1868 char b[BDEVNAME_SIZE];
1869 struct hd_struct *part;
1da177e4
LT
1870
1871 might_sleep();
1da177e4 1872
c07e2b41
JA
1873 if (bio_check_eod(bio, nr_sectors))
1874 goto end_io;
1da177e4 1875
5a7bbad2
CH
1876 q = bdev_get_queue(bio->bi_bdev);
1877 if (unlikely(!q)) {
1878 printk(KERN_ERR
1879 "generic_make_request: Trying to access "
1880 "nonexistent block-device %s (%Lu)\n",
1881 bdevname(bio->bi_bdev, b),
4f024f37 1882 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1883 goto end_io;
1884 }
c17bb495 1885
5a7bbad2 1886 part = bio->bi_bdev->bd_part;
4f024f37 1887 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1888 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1889 bio->bi_iter.bi_size))
5a7bbad2 1890 goto end_io;
2056a782 1891
5a7bbad2
CH
1892 /*
1893 * If this device has partitions, remap block n
1894 * of partition p to block n+start(p) of the disk.
1895 */
1896 blk_partition_remap(bio);
2056a782 1897
5a7bbad2
CH
1898 if (bio_check_eod(bio, nr_sectors))
1899 goto end_io;
1e87901e 1900
5a7bbad2
CH
1901 /*
1902 * Filter flush bio's early so that make_request based
1903 * drivers without flush support don't have to worry
1904 * about them.
1905 */
1906 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1907 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1908 if (!nr_sectors) {
1909 err = 0;
51fd77bd
JA
1910 goto end_io;
1911 }
5a7bbad2 1912 }
5ddfe969 1913
5a7bbad2
CH
1914 if ((bio->bi_rw & REQ_DISCARD) &&
1915 (!blk_queue_discard(q) ||
e2a60da7 1916 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1917 err = -EOPNOTSUPP;
1918 goto end_io;
1919 }
01edede4 1920
4363ac7c 1921 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1922 err = -EOPNOTSUPP;
1923 goto end_io;
1924 }
01edede4 1925
7f4b35d1
TH
1926 /*
1927 * Various block parts want %current->io_context and lazy ioc
1928 * allocation ends up trading a lot of pain for a small amount of
1929 * memory. Just allocate it upfront. This may fail and block
1930 * layer knows how to live with it.
1931 */
1932 create_io_context(GFP_ATOMIC, q->node);
1933
ae118896
TH
1934 if (!blkcg_bio_issue_check(q, bio))
1935 return false;
27a84d54 1936
5a7bbad2 1937 trace_block_bio_queue(q, bio);
27a84d54 1938 return true;
a7384677
TH
1939
1940end_io:
4246a0b6
CH
1941 bio->bi_error = err;
1942 bio_endio(bio);
27a84d54 1943 return false;
1da177e4
LT
1944}
1945
27a84d54
CH
1946/**
1947 * generic_make_request - hand a buffer to its device driver for I/O
1948 * @bio: The bio describing the location in memory and on the device.
1949 *
1950 * generic_make_request() is used to make I/O requests of block
1951 * devices. It is passed a &struct bio, which describes the I/O that needs
1952 * to be done.
1953 *
1954 * generic_make_request() does not return any status. The
1955 * success/failure status of the request, along with notification of
1956 * completion, is delivered asynchronously through the bio->bi_end_io
1957 * function described (one day) else where.
1958 *
1959 * The caller of generic_make_request must make sure that bi_io_vec
1960 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1961 * set to describe the device address, and the
1962 * bi_end_io and optionally bi_private are set to describe how
1963 * completion notification should be signaled.
1964 *
1965 * generic_make_request and the drivers it calls may use bi_next if this
1966 * bio happens to be merged with someone else, and may resubmit the bio to
1967 * a lower device by calling into generic_make_request recursively, which
1968 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1969 */
1970void generic_make_request(struct bio *bio)
1971{
bddd87c7
AM
1972 struct bio_list bio_list_on_stack;
1973
27a84d54
CH
1974 if (!generic_make_request_checks(bio))
1975 return;
1976
1977 /*
1978 * We only want one ->make_request_fn to be active at a time, else
1979 * stack usage with stacked devices could be a problem. So use
1980 * current->bio_list to keep a list of requests submited by a
1981 * make_request_fn function. current->bio_list is also used as a
1982 * flag to say if generic_make_request is currently active in this
1983 * task or not. If it is NULL, then no make_request is active. If
1984 * it is non-NULL, then a make_request is active, and new requests
1985 * should be added at the tail
1986 */
bddd87c7 1987 if (current->bio_list) {
bddd87c7 1988 bio_list_add(current->bio_list, bio);
d89d8796
NB
1989 return;
1990 }
27a84d54 1991
d89d8796
NB
1992 /* following loop may be a bit non-obvious, and so deserves some
1993 * explanation.
1994 * Before entering the loop, bio->bi_next is NULL (as all callers
1995 * ensure that) so we have a list with a single bio.
1996 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1997 * we assign bio_list to a pointer to the bio_list_on_stack,
1998 * thus initialising the bio_list of new bios to be
27a84d54 1999 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2000 * through a recursive call to generic_make_request. If it
2001 * did, we find a non-NULL value in bio_list and re-enter the loop
2002 * from the top. In this case we really did just take the bio
bddd87c7 2003 * of the top of the list (no pretending) and so remove it from
27a84d54 2004 * bio_list, and call into ->make_request() again.
d89d8796
NB
2005 */
2006 BUG_ON(bio->bi_next);
bddd87c7
AM
2007 bio_list_init(&bio_list_on_stack);
2008 current->bio_list = &bio_list_on_stack;
d89d8796 2009 do {
27a84d54
CH
2010 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2011
3ef28e83
DW
2012 if (likely(blk_queue_enter(q, __GFP_WAIT) == 0)) {
2013
2014 q->make_request_fn(q, bio);
2015
2016 blk_queue_exit(q);
27a84d54 2017
3ef28e83
DW
2018 bio = bio_list_pop(current->bio_list);
2019 } else {
2020 struct bio *bio_next = bio_list_pop(current->bio_list);
2021
2022 bio_io_error(bio);
2023 bio = bio_next;
2024 }
d89d8796 2025 } while (bio);
bddd87c7 2026 current->bio_list = NULL; /* deactivate */
d89d8796 2027}
1da177e4
LT
2028EXPORT_SYMBOL(generic_make_request);
2029
2030/**
710027a4 2031 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2032 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2033 * @bio: The &struct bio which describes the I/O
2034 *
2035 * submit_bio() is very similar in purpose to generic_make_request(), and
2036 * uses that function to do most of the work. Both are fairly rough
710027a4 2037 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2038 *
2039 */
2040void submit_bio(int rw, struct bio *bio)
2041{
22e2c507 2042 bio->bi_rw |= rw;
1da177e4 2043
bf2de6f5
JA
2044 /*
2045 * If it's a regular read/write or a barrier with data attached,
2046 * go through the normal accounting stuff before submission.
2047 */
e2a60da7 2048 if (bio_has_data(bio)) {
4363ac7c
MP
2049 unsigned int count;
2050
2051 if (unlikely(rw & REQ_WRITE_SAME))
2052 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2053 else
2054 count = bio_sectors(bio);
2055
bf2de6f5
JA
2056 if (rw & WRITE) {
2057 count_vm_events(PGPGOUT, count);
2058 } else {
4f024f37 2059 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2060 count_vm_events(PGPGIN, count);
2061 }
2062
2063 if (unlikely(block_dump)) {
2064 char b[BDEVNAME_SIZE];
8dcbdc74 2065 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2066 current->comm, task_pid_nr(current),
bf2de6f5 2067 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 2068 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2069 bdevname(bio->bi_bdev, b),
2070 count);
bf2de6f5 2071 }
1da177e4
LT
2072 }
2073
2074 generic_make_request(bio);
2075}
1da177e4
LT
2076EXPORT_SYMBOL(submit_bio);
2077
82124d60
KU
2078/**
2079 * blk_rq_check_limits - Helper function to check a request for the queue limit
2080 * @q: the queue
2081 * @rq: the request being checked
2082 *
2083 * Description:
2084 * @rq may have been made based on weaker limitations of upper-level queues
2085 * in request stacking drivers, and it may violate the limitation of @q.
2086 * Since the block layer and the underlying device driver trust @rq
2087 * after it is inserted to @q, it should be checked against @q before
2088 * the insertion using this generic function.
2089 *
2090 * This function should also be useful for request stacking drivers
eef35c2d 2091 * in some cases below, so export this function.
82124d60
KU
2092 * Request stacking drivers like request-based dm may change the queue
2093 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 2094 * Such request stacking drivers should check those requests against
82124d60
KU
2095 * the new queue limits again when they dispatch those requests,
2096 * although such checkings are also done against the old queue limits
2097 * when submitting requests.
2098 */
2099int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2100{
e2a60da7 2101 if (!rq_mergeable(rq))
3383977f
S
2102 return 0;
2103
f31dc1cd 2104 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2105 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2106 return -EIO;
2107 }
2108
2109 /*
2110 * queue's settings related to segment counting like q->bounce_pfn
2111 * may differ from that of other stacking queues.
2112 * Recalculate it to check the request correctly on this queue's
2113 * limitation.
2114 */
2115 blk_recalc_rq_segments(rq);
8a78362c 2116 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2117 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2118 return -EIO;
2119 }
2120
2121 return 0;
2122}
2123EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2124
2125/**
2126 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2127 * @q: the queue to submit the request
2128 * @rq: the request being queued
2129 */
2130int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2131{
2132 unsigned long flags;
4853abaa 2133 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2134
2135 if (blk_rq_check_limits(q, rq))
2136 return -EIO;
2137
b2c9cd37
AM
2138 if (rq->rq_disk &&
2139 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2140 return -EIO;
82124d60 2141
7fb4898e
KB
2142 if (q->mq_ops) {
2143 if (blk_queue_io_stat(q))
2144 blk_account_io_start(rq, true);
2145 blk_mq_insert_request(rq, false, true, true);
2146 return 0;
2147 }
2148
82124d60 2149 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2150 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2151 spin_unlock_irqrestore(q->queue_lock, flags);
2152 return -ENODEV;
2153 }
82124d60
KU
2154
2155 /*
2156 * Submitting request must be dequeued before calling this function
2157 * because it will be linked to another request_queue
2158 */
2159 BUG_ON(blk_queued_rq(rq));
2160
4853abaa
JM
2161 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2162 where = ELEVATOR_INSERT_FLUSH;
2163
2164 add_acct_request(q, rq, where);
e67b77c7
JM
2165 if (where == ELEVATOR_INSERT_FLUSH)
2166 __blk_run_queue(q);
82124d60
KU
2167 spin_unlock_irqrestore(q->queue_lock, flags);
2168
2169 return 0;
2170}
2171EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2172
80a761fd
TH
2173/**
2174 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2175 * @rq: request to examine
2176 *
2177 * Description:
2178 * A request could be merge of IOs which require different failure
2179 * handling. This function determines the number of bytes which
2180 * can be failed from the beginning of the request without
2181 * crossing into area which need to be retried further.
2182 *
2183 * Return:
2184 * The number of bytes to fail.
2185 *
2186 * Context:
2187 * queue_lock must be held.
2188 */
2189unsigned int blk_rq_err_bytes(const struct request *rq)
2190{
2191 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2192 unsigned int bytes = 0;
2193 struct bio *bio;
2194
2195 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2196 return blk_rq_bytes(rq);
2197
2198 /*
2199 * Currently the only 'mixing' which can happen is between
2200 * different fastfail types. We can safely fail portions
2201 * which have all the failfast bits that the first one has -
2202 * the ones which are at least as eager to fail as the first
2203 * one.
2204 */
2205 for (bio = rq->bio; bio; bio = bio->bi_next) {
2206 if ((bio->bi_rw & ff) != ff)
2207 break;
4f024f37 2208 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2209 }
2210
2211 /* this could lead to infinite loop */
2212 BUG_ON(blk_rq_bytes(rq) && !bytes);
2213 return bytes;
2214}
2215EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2216
320ae51f 2217void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2218{
c2553b58 2219 if (blk_do_io_stat(req)) {
bc58ba94
JA
2220 const int rw = rq_data_dir(req);
2221 struct hd_struct *part;
2222 int cpu;
2223
2224 cpu = part_stat_lock();
09e099d4 2225 part = req->part;
bc58ba94
JA
2226 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2227 part_stat_unlock();
2228 }
2229}
2230
320ae51f 2231void blk_account_io_done(struct request *req)
bc58ba94 2232{
bc58ba94 2233 /*
dd4c133f
TH
2234 * Account IO completion. flush_rq isn't accounted as a
2235 * normal IO on queueing nor completion. Accounting the
2236 * containing request is enough.
bc58ba94 2237 */
414b4ff5 2238 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2239 unsigned long duration = jiffies - req->start_time;
2240 const int rw = rq_data_dir(req);
2241 struct hd_struct *part;
2242 int cpu;
2243
2244 cpu = part_stat_lock();
09e099d4 2245 part = req->part;
bc58ba94
JA
2246
2247 part_stat_inc(cpu, part, ios[rw]);
2248 part_stat_add(cpu, part, ticks[rw], duration);
2249 part_round_stats(cpu, part);
316d315b 2250 part_dec_in_flight(part, rw);
bc58ba94 2251
6c23a968 2252 hd_struct_put(part);
bc58ba94
JA
2253 part_stat_unlock();
2254 }
2255}
2256
47fafbc7 2257#ifdef CONFIG_PM
c8158819
LM
2258/*
2259 * Don't process normal requests when queue is suspended
2260 * or in the process of suspending/resuming
2261 */
2262static struct request *blk_pm_peek_request(struct request_queue *q,
2263 struct request *rq)
2264{
2265 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2266 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2267 return NULL;
2268 else
2269 return rq;
2270}
2271#else
2272static inline struct request *blk_pm_peek_request(struct request_queue *q,
2273 struct request *rq)
2274{
2275 return rq;
2276}
2277#endif
2278
320ae51f
JA
2279void blk_account_io_start(struct request *rq, bool new_io)
2280{
2281 struct hd_struct *part;
2282 int rw = rq_data_dir(rq);
2283 int cpu;
2284
2285 if (!blk_do_io_stat(rq))
2286 return;
2287
2288 cpu = part_stat_lock();
2289
2290 if (!new_io) {
2291 part = rq->part;
2292 part_stat_inc(cpu, part, merges[rw]);
2293 } else {
2294 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2295 if (!hd_struct_try_get(part)) {
2296 /*
2297 * The partition is already being removed,
2298 * the request will be accounted on the disk only
2299 *
2300 * We take a reference on disk->part0 although that
2301 * partition will never be deleted, so we can treat
2302 * it as any other partition.
2303 */
2304 part = &rq->rq_disk->part0;
2305 hd_struct_get(part);
2306 }
2307 part_round_stats(cpu, part);
2308 part_inc_in_flight(part, rw);
2309 rq->part = part;
2310 }
2311
2312 part_stat_unlock();
2313}
2314
3bcddeac 2315/**
9934c8c0
TH
2316 * blk_peek_request - peek at the top of a request queue
2317 * @q: request queue to peek at
2318 *
2319 * Description:
2320 * Return the request at the top of @q. The returned request
2321 * should be started using blk_start_request() before LLD starts
2322 * processing it.
2323 *
2324 * Return:
2325 * Pointer to the request at the top of @q if available. Null
2326 * otherwise.
2327 *
2328 * Context:
2329 * queue_lock must be held.
2330 */
2331struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2332{
2333 struct request *rq;
2334 int ret;
2335
2336 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2337
2338 rq = blk_pm_peek_request(q, rq);
2339 if (!rq)
2340 break;
2341
158dbda0
TH
2342 if (!(rq->cmd_flags & REQ_STARTED)) {
2343 /*
2344 * This is the first time the device driver
2345 * sees this request (possibly after
2346 * requeueing). Notify IO scheduler.
2347 */
33659ebb 2348 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2349 elv_activate_rq(q, rq);
2350
2351 /*
2352 * just mark as started even if we don't start
2353 * it, a request that has been delayed should
2354 * not be passed by new incoming requests
2355 */
2356 rq->cmd_flags |= REQ_STARTED;
2357 trace_block_rq_issue(q, rq);
2358 }
2359
2360 if (!q->boundary_rq || q->boundary_rq == rq) {
2361 q->end_sector = rq_end_sector(rq);
2362 q->boundary_rq = NULL;
2363 }
2364
2365 if (rq->cmd_flags & REQ_DONTPREP)
2366 break;
2367
2e46e8b2 2368 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2369 /*
2370 * make sure space for the drain appears we
2371 * know we can do this because max_hw_segments
2372 * has been adjusted to be one fewer than the
2373 * device can handle
2374 */
2375 rq->nr_phys_segments++;
2376 }
2377
2378 if (!q->prep_rq_fn)
2379 break;
2380
2381 ret = q->prep_rq_fn(q, rq);
2382 if (ret == BLKPREP_OK) {
2383 break;
2384 } else if (ret == BLKPREP_DEFER) {
2385 /*
2386 * the request may have been (partially) prepped.
2387 * we need to keep this request in the front to
2388 * avoid resource deadlock. REQ_STARTED will
2389 * prevent other fs requests from passing this one.
2390 */
2e46e8b2 2391 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2392 !(rq->cmd_flags & REQ_DONTPREP)) {
2393 /*
2394 * remove the space for the drain we added
2395 * so that we don't add it again
2396 */
2397 --rq->nr_phys_segments;
2398 }
2399
2400 rq = NULL;
2401 break;
2402 } else if (ret == BLKPREP_KILL) {
2403 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2404 /*
2405 * Mark this request as started so we don't trigger
2406 * any debug logic in the end I/O path.
2407 */
2408 blk_start_request(rq);
40cbbb78 2409 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2410 } else {
2411 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2412 break;
2413 }
2414 }
2415
2416 return rq;
2417}
9934c8c0 2418EXPORT_SYMBOL(blk_peek_request);
158dbda0 2419
9934c8c0 2420void blk_dequeue_request(struct request *rq)
158dbda0 2421{
9934c8c0
TH
2422 struct request_queue *q = rq->q;
2423
158dbda0
TH
2424 BUG_ON(list_empty(&rq->queuelist));
2425 BUG_ON(ELV_ON_HASH(rq));
2426
2427 list_del_init(&rq->queuelist);
2428
2429 /*
2430 * the time frame between a request being removed from the lists
2431 * and to it is freed is accounted as io that is in progress at
2432 * the driver side.
2433 */
9195291e 2434 if (blk_account_rq(rq)) {
0a7ae2ff 2435 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2436 set_io_start_time_ns(rq);
2437 }
158dbda0
TH
2438}
2439
9934c8c0
TH
2440/**
2441 * blk_start_request - start request processing on the driver
2442 * @req: request to dequeue
2443 *
2444 * Description:
2445 * Dequeue @req and start timeout timer on it. This hands off the
2446 * request to the driver.
2447 *
2448 * Block internal functions which don't want to start timer should
2449 * call blk_dequeue_request().
2450 *
2451 * Context:
2452 * queue_lock must be held.
2453 */
2454void blk_start_request(struct request *req)
2455{
2456 blk_dequeue_request(req);
2457
2458 /*
5f49f631
TH
2459 * We are now handing the request to the hardware, initialize
2460 * resid_len to full count and add the timeout handler.
9934c8c0 2461 */
5f49f631 2462 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2463 if (unlikely(blk_bidi_rq(req)))
2464 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2465
4912aa6c 2466 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2467 blk_add_timer(req);
2468}
2469EXPORT_SYMBOL(blk_start_request);
2470
2471/**
2472 * blk_fetch_request - fetch a request from a request queue
2473 * @q: request queue to fetch a request from
2474 *
2475 * Description:
2476 * Return the request at the top of @q. The request is started on
2477 * return and LLD can start processing it immediately.
2478 *
2479 * Return:
2480 * Pointer to the request at the top of @q if available. Null
2481 * otherwise.
2482 *
2483 * Context:
2484 * queue_lock must be held.
2485 */
2486struct request *blk_fetch_request(struct request_queue *q)
2487{
2488 struct request *rq;
2489
2490 rq = blk_peek_request(q);
2491 if (rq)
2492 blk_start_request(rq);
2493 return rq;
2494}
2495EXPORT_SYMBOL(blk_fetch_request);
2496
3bcddeac 2497/**
2e60e022 2498 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2499 * @req: the request being processed
710027a4 2500 * @error: %0 for success, < %0 for error
8ebf9756 2501 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2502 *
2503 * Description:
8ebf9756
RD
2504 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2505 * the request structure even if @req doesn't have leftover.
2506 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2507 *
2508 * This special helper function is only for request stacking drivers
2509 * (e.g. request-based dm) so that they can handle partial completion.
2510 * Actual device drivers should use blk_end_request instead.
2511 *
2512 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2513 * %false return from this function.
3bcddeac
KU
2514 *
2515 * Return:
2e60e022
TH
2516 * %false - this request doesn't have any more data
2517 * %true - this request has more data
3bcddeac 2518 **/
2e60e022 2519bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2520{
f79ea416 2521 int total_bytes;
1da177e4 2522
4a0efdc9
HR
2523 trace_block_rq_complete(req->q, req, nr_bytes);
2524
2e60e022
TH
2525 if (!req->bio)
2526 return false;
2527
1da177e4 2528 /*
6f41469c
TH
2529 * For fs requests, rq is just carrier of independent bio's
2530 * and each partial completion should be handled separately.
2531 * Reset per-request error on each partial completion.
2532 *
2533 * TODO: tj: This is too subtle. It would be better to let
2534 * low level drivers do what they see fit.
1da177e4 2535 */
33659ebb 2536 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2537 req->errors = 0;
2538
33659ebb
CH
2539 if (error && req->cmd_type == REQ_TYPE_FS &&
2540 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2541 char *error_type;
2542
2543 switch (error) {
2544 case -ENOLINK:
2545 error_type = "recoverable transport";
2546 break;
2547 case -EREMOTEIO:
2548 error_type = "critical target";
2549 break;
2550 case -EBADE:
2551 error_type = "critical nexus";
2552 break;
d1ffc1f8
HR
2553 case -ETIMEDOUT:
2554 error_type = "timeout";
2555 break;
a9d6ceb8
HR
2556 case -ENOSPC:
2557 error_type = "critical space allocation";
2558 break;
7e782af5
HR
2559 case -ENODATA:
2560 error_type = "critical medium";
2561 break;
79775567
HR
2562 case -EIO:
2563 default:
2564 error_type = "I/O";
2565 break;
2566 }
ef3ecb66
RE
2567 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2568 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2569 req->rq_disk->disk_name : "?",
2570 (unsigned long long)blk_rq_pos(req));
2571
1da177e4
LT
2572 }
2573
bc58ba94 2574 blk_account_io_completion(req, nr_bytes);
d72d904a 2575
f79ea416
KO
2576 total_bytes = 0;
2577 while (req->bio) {
2578 struct bio *bio = req->bio;
4f024f37 2579 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2580
4f024f37 2581 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2582 req->bio = bio->bi_next;
1da177e4 2583
f79ea416 2584 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2585
f79ea416
KO
2586 total_bytes += bio_bytes;
2587 nr_bytes -= bio_bytes;
1da177e4 2588
f79ea416
KO
2589 if (!nr_bytes)
2590 break;
1da177e4
LT
2591 }
2592
2593 /*
2594 * completely done
2595 */
2e60e022
TH
2596 if (!req->bio) {
2597 /*
2598 * Reset counters so that the request stacking driver
2599 * can find how many bytes remain in the request
2600 * later.
2601 */
a2dec7b3 2602 req->__data_len = 0;
2e60e022
TH
2603 return false;
2604 }
1da177e4 2605
a2dec7b3 2606 req->__data_len -= total_bytes;
2e46e8b2
TH
2607
2608 /* update sector only for requests with clear definition of sector */
e2a60da7 2609 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2610 req->__sector += total_bytes >> 9;
2e46e8b2 2611
80a761fd
TH
2612 /* mixed attributes always follow the first bio */
2613 if (req->cmd_flags & REQ_MIXED_MERGE) {
2614 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2615 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2616 }
2617
2e46e8b2
TH
2618 /*
2619 * If total number of sectors is less than the first segment
2620 * size, something has gone terribly wrong.
2621 */
2622 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2623 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2624 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2625 }
2626
2627 /* recalculate the number of segments */
1da177e4 2628 blk_recalc_rq_segments(req);
2e46e8b2 2629
2e60e022 2630 return true;
1da177e4 2631}
2e60e022 2632EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2633
2e60e022
TH
2634static bool blk_update_bidi_request(struct request *rq, int error,
2635 unsigned int nr_bytes,
2636 unsigned int bidi_bytes)
5efccd17 2637{
2e60e022
TH
2638 if (blk_update_request(rq, error, nr_bytes))
2639 return true;
5efccd17 2640
2e60e022
TH
2641 /* Bidi request must be completed as a whole */
2642 if (unlikely(blk_bidi_rq(rq)) &&
2643 blk_update_request(rq->next_rq, error, bidi_bytes))
2644 return true;
5efccd17 2645
e2e1a148
JA
2646 if (blk_queue_add_random(rq->q))
2647 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2648
2649 return false;
1da177e4
LT
2650}
2651
28018c24
JB
2652/**
2653 * blk_unprep_request - unprepare a request
2654 * @req: the request
2655 *
2656 * This function makes a request ready for complete resubmission (or
2657 * completion). It happens only after all error handling is complete,
2658 * so represents the appropriate moment to deallocate any resources
2659 * that were allocated to the request in the prep_rq_fn. The queue
2660 * lock is held when calling this.
2661 */
2662void blk_unprep_request(struct request *req)
2663{
2664 struct request_queue *q = req->q;
2665
2666 req->cmd_flags &= ~REQ_DONTPREP;
2667 if (q->unprep_rq_fn)
2668 q->unprep_rq_fn(q, req);
2669}
2670EXPORT_SYMBOL_GPL(blk_unprep_request);
2671
1da177e4
LT
2672/*
2673 * queue lock must be held
2674 */
12120077 2675void blk_finish_request(struct request *req, int error)
1da177e4 2676{
125c99bc 2677 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2678 blk_queue_end_tag(req->q, req);
2679
ba396a6c 2680 BUG_ON(blk_queued_rq(req));
1da177e4 2681
33659ebb 2682 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2683 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2684
e78042e5
MA
2685 blk_delete_timer(req);
2686
28018c24
JB
2687 if (req->cmd_flags & REQ_DONTPREP)
2688 blk_unprep_request(req);
2689
bc58ba94 2690 blk_account_io_done(req);
b8286239 2691
1da177e4 2692 if (req->end_io)
8ffdc655 2693 req->end_io(req, error);
b8286239
KU
2694 else {
2695 if (blk_bidi_rq(req))
2696 __blk_put_request(req->next_rq->q, req->next_rq);
2697
1da177e4 2698 __blk_put_request(req->q, req);
b8286239 2699 }
1da177e4 2700}
12120077 2701EXPORT_SYMBOL(blk_finish_request);
1da177e4 2702
3b11313a 2703/**
2e60e022
TH
2704 * blk_end_bidi_request - Complete a bidi request
2705 * @rq: the request to complete
2706 * @error: %0 for success, < %0 for error
2707 * @nr_bytes: number of bytes to complete @rq
2708 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2709 *
2710 * Description:
e3a04fe3 2711 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2712 * Drivers that supports bidi can safely call this member for any
2713 * type of request, bidi or uni. In the later case @bidi_bytes is
2714 * just ignored.
336cdb40
KU
2715 *
2716 * Return:
2e60e022
TH
2717 * %false - we are done with this request
2718 * %true - still buffers pending for this request
a0cd1285 2719 **/
b1f74493 2720static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2721 unsigned int nr_bytes, unsigned int bidi_bytes)
2722{
336cdb40 2723 struct request_queue *q = rq->q;
2e60e022 2724 unsigned long flags;
32fab448 2725
2e60e022
TH
2726 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2727 return true;
32fab448 2728
336cdb40 2729 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2730 blk_finish_request(rq, error);
336cdb40
KU
2731 spin_unlock_irqrestore(q->queue_lock, flags);
2732
2e60e022 2733 return false;
32fab448
KU
2734}
2735
336cdb40 2736/**
2e60e022
TH
2737 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2738 * @rq: the request to complete
710027a4 2739 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2740 * @nr_bytes: number of bytes to complete @rq
2741 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2742 *
2743 * Description:
2e60e022
TH
2744 * Identical to blk_end_bidi_request() except that queue lock is
2745 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2746 *
2747 * Return:
2e60e022
TH
2748 * %false - we are done with this request
2749 * %true - still buffers pending for this request
336cdb40 2750 **/
4853abaa 2751bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2752 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2753{
2e60e022
TH
2754 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2755 return true;
336cdb40 2756
2e60e022 2757 blk_finish_request(rq, error);
336cdb40 2758
2e60e022 2759 return false;
336cdb40 2760}
e19a3ab0
KU
2761
2762/**
2763 * blk_end_request - Helper function for drivers to complete the request.
2764 * @rq: the request being processed
710027a4 2765 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2766 * @nr_bytes: number of bytes to complete
2767 *
2768 * Description:
2769 * Ends I/O on a number of bytes attached to @rq.
2770 * If @rq has leftover, sets it up for the next range of segments.
2771 *
2772 * Return:
b1f74493
FT
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
e19a3ab0 2775 **/
b1f74493 2776bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2777{
b1f74493 2778 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2779}
56ad1740 2780EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2781
2782/**
b1f74493
FT
2783 * blk_end_request_all - Helper function for drives to finish the request.
2784 * @rq: the request to finish
8ebf9756 2785 * @error: %0 for success, < %0 for error
336cdb40
KU
2786 *
2787 * Description:
b1f74493
FT
2788 * Completely finish @rq.
2789 */
2790void blk_end_request_all(struct request *rq, int error)
336cdb40 2791{
b1f74493
FT
2792 bool pending;
2793 unsigned int bidi_bytes = 0;
336cdb40 2794
b1f74493
FT
2795 if (unlikely(blk_bidi_rq(rq)))
2796 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2797
b1f74493
FT
2798 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2799 BUG_ON(pending);
2800}
56ad1740 2801EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2802
b1f74493
FT
2803/**
2804 * blk_end_request_cur - Helper function to finish the current request chunk.
2805 * @rq: the request to finish the current chunk for
8ebf9756 2806 * @error: %0 for success, < %0 for error
b1f74493
FT
2807 *
2808 * Description:
2809 * Complete the current consecutively mapped chunk from @rq.
2810 *
2811 * Return:
2812 * %false - we are done with this request
2813 * %true - still buffers pending for this request
2814 */
2815bool blk_end_request_cur(struct request *rq, int error)
2816{
2817 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2818}
56ad1740 2819EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2820
80a761fd
TH
2821/**
2822 * blk_end_request_err - Finish a request till the next failure boundary.
2823 * @rq: the request to finish till the next failure boundary for
2824 * @error: must be negative errno
2825 *
2826 * Description:
2827 * Complete @rq till the next failure boundary.
2828 *
2829 * Return:
2830 * %false - we are done with this request
2831 * %true - still buffers pending for this request
2832 */
2833bool blk_end_request_err(struct request *rq, int error)
2834{
2835 WARN_ON(error >= 0);
2836 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2837}
2838EXPORT_SYMBOL_GPL(blk_end_request_err);
2839
e3a04fe3 2840/**
b1f74493
FT
2841 * __blk_end_request - Helper function for drivers to complete the request.
2842 * @rq: the request being processed
2843 * @error: %0 for success, < %0 for error
2844 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2845 *
2846 * Description:
b1f74493 2847 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2848 *
2849 * Return:
b1f74493
FT
2850 * %false - we are done with this request
2851 * %true - still buffers pending for this request
e3a04fe3 2852 **/
b1f74493 2853bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2854{
b1f74493 2855 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2856}
56ad1740 2857EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2858
32fab448 2859/**
b1f74493
FT
2860 * __blk_end_request_all - Helper function for drives to finish the request.
2861 * @rq: the request to finish
8ebf9756 2862 * @error: %0 for success, < %0 for error
32fab448
KU
2863 *
2864 * Description:
b1f74493 2865 * Completely finish @rq. Must be called with queue lock held.
32fab448 2866 */
b1f74493 2867void __blk_end_request_all(struct request *rq, int error)
32fab448 2868{
b1f74493
FT
2869 bool pending;
2870 unsigned int bidi_bytes = 0;
2871
2872 if (unlikely(blk_bidi_rq(rq)))
2873 bidi_bytes = blk_rq_bytes(rq->next_rq);
2874
2875 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2876 BUG_ON(pending);
32fab448 2877}
56ad1740 2878EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2879
e19a3ab0 2880/**
b1f74493
FT
2881 * __blk_end_request_cur - Helper function to finish the current request chunk.
2882 * @rq: the request to finish the current chunk for
8ebf9756 2883 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2884 *
2885 * Description:
b1f74493
FT
2886 * Complete the current consecutively mapped chunk from @rq. Must
2887 * be called with queue lock held.
e19a3ab0
KU
2888 *
2889 * Return:
b1f74493
FT
2890 * %false - we are done with this request
2891 * %true - still buffers pending for this request
2892 */
2893bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2894{
b1f74493 2895 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2896}
56ad1740 2897EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2898
80a761fd
TH
2899/**
2900 * __blk_end_request_err - Finish a request till the next failure boundary.
2901 * @rq: the request to finish till the next failure boundary for
2902 * @error: must be negative errno
2903 *
2904 * Description:
2905 * Complete @rq till the next failure boundary. Must be called
2906 * with queue lock held.
2907 *
2908 * Return:
2909 * %false - we are done with this request
2910 * %true - still buffers pending for this request
2911 */
2912bool __blk_end_request_err(struct request *rq, int error)
2913{
2914 WARN_ON(error >= 0);
2915 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2916}
2917EXPORT_SYMBOL_GPL(__blk_end_request_err);
2918
86db1e29
JA
2919void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2920 struct bio *bio)
1da177e4 2921{
a82afdfc 2922 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2923 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2924
b4f42e28 2925 if (bio_has_data(bio))
fb2dce86 2926 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2927
4f024f37 2928 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2929 rq->bio = rq->biotail = bio;
1da177e4 2930
66846572
N
2931 if (bio->bi_bdev)
2932 rq->rq_disk = bio->bi_bdev->bd_disk;
2933}
1da177e4 2934
2d4dc890
IL
2935#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2936/**
2937 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2938 * @rq: the request to be flushed
2939 *
2940 * Description:
2941 * Flush all pages in @rq.
2942 */
2943void rq_flush_dcache_pages(struct request *rq)
2944{
2945 struct req_iterator iter;
7988613b 2946 struct bio_vec bvec;
2d4dc890
IL
2947
2948 rq_for_each_segment(bvec, rq, iter)
7988613b 2949 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2950}
2951EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2952#endif
2953
ef9e3fac
KU
2954/**
2955 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2956 * @q : the queue of the device being checked
2957 *
2958 * Description:
2959 * Check if underlying low-level drivers of a device are busy.
2960 * If the drivers want to export their busy state, they must set own
2961 * exporting function using blk_queue_lld_busy() first.
2962 *
2963 * Basically, this function is used only by request stacking drivers
2964 * to stop dispatching requests to underlying devices when underlying
2965 * devices are busy. This behavior helps more I/O merging on the queue
2966 * of the request stacking driver and prevents I/O throughput regression
2967 * on burst I/O load.
2968 *
2969 * Return:
2970 * 0 - Not busy (The request stacking driver should dispatch request)
2971 * 1 - Busy (The request stacking driver should stop dispatching request)
2972 */
2973int blk_lld_busy(struct request_queue *q)
2974{
2975 if (q->lld_busy_fn)
2976 return q->lld_busy_fn(q);
2977
2978 return 0;
2979}
2980EXPORT_SYMBOL_GPL(blk_lld_busy);
2981
78d8e58a
MS
2982/**
2983 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2984 * @rq: the clone request to be cleaned up
2985 *
2986 * Description:
2987 * Free all bios in @rq for a cloned request.
2988 */
2989void blk_rq_unprep_clone(struct request *rq)
2990{
2991 struct bio *bio;
2992
2993 while ((bio = rq->bio) != NULL) {
2994 rq->bio = bio->bi_next;
2995
2996 bio_put(bio);
2997 }
2998}
2999EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3000
3001/*
3002 * Copy attributes of the original request to the clone request.
3003 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3004 */
3005static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3006{
3007 dst->cpu = src->cpu;
78d8e58a 3008 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
3009 dst->cmd_type = src->cmd_type;
3010 dst->__sector = blk_rq_pos(src);
3011 dst->__data_len = blk_rq_bytes(src);
3012 dst->nr_phys_segments = src->nr_phys_segments;
3013 dst->ioprio = src->ioprio;
3014 dst->extra_len = src->extra_len;
78d8e58a
MS
3015}
3016
3017/**
3018 * blk_rq_prep_clone - Helper function to setup clone request
3019 * @rq: the request to be setup
3020 * @rq_src: original request to be cloned
3021 * @bs: bio_set that bios for clone are allocated from
3022 * @gfp_mask: memory allocation mask for bio
3023 * @bio_ctr: setup function to be called for each clone bio.
3024 * Returns %0 for success, non %0 for failure.
3025 * @data: private data to be passed to @bio_ctr
3026 *
3027 * Description:
3028 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3029 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3030 * are not copied, and copying such parts is the caller's responsibility.
3031 * Also, pages which the original bios are pointing to are not copied
3032 * and the cloned bios just point same pages.
3033 * So cloned bios must be completed before original bios, which means
3034 * the caller must complete @rq before @rq_src.
3035 */
3036int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3037 struct bio_set *bs, gfp_t gfp_mask,
3038 int (*bio_ctr)(struct bio *, struct bio *, void *),
3039 void *data)
3040{
3041 struct bio *bio, *bio_src;
3042
3043 if (!bs)
3044 bs = fs_bio_set;
3045
3046 __rq_for_each_bio(bio_src, rq_src) {
3047 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3048 if (!bio)
3049 goto free_and_out;
3050
3051 if (bio_ctr && bio_ctr(bio, bio_src, data))
3052 goto free_and_out;
3053
3054 if (rq->bio) {
3055 rq->biotail->bi_next = bio;
3056 rq->biotail = bio;
3057 } else
3058 rq->bio = rq->biotail = bio;
3059 }
3060
3061 __blk_rq_prep_clone(rq, rq_src);
3062
3063 return 0;
3064
3065free_and_out:
3066 if (bio)
3067 bio_put(bio);
3068 blk_rq_unprep_clone(rq);
3069
3070 return -ENOMEM;
b0fd271d
KU
3071}
3072EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3073
59c3d45e 3074int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3075{
3076 return queue_work(kblockd_workqueue, work);
3077}
1da177e4
LT
3078EXPORT_SYMBOL(kblockd_schedule_work);
3079
59c3d45e
JA
3080int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3081 unsigned long delay)
e43473b7
VG
3082{
3083 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3084}
3085EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3086
8ab14595
JA
3087int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3088 unsigned long delay)
3089{
3090 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3091}
3092EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3093
75df7136
SJ
3094/**
3095 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3096 * @plug: The &struct blk_plug that needs to be initialized
3097 *
3098 * Description:
3099 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3100 * pending I/O should the task end up blocking between blk_start_plug() and
3101 * blk_finish_plug(). This is important from a performance perspective, but
3102 * also ensures that we don't deadlock. For instance, if the task is blocking
3103 * for a memory allocation, memory reclaim could end up wanting to free a
3104 * page belonging to that request that is currently residing in our private
3105 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3106 * this kind of deadlock.
3107 */
73c10101
JA
3108void blk_start_plug(struct blk_plug *plug)
3109{
3110 struct task_struct *tsk = current;
3111
dd6cf3e1
SL
3112 /*
3113 * If this is a nested plug, don't actually assign it.
3114 */
3115 if (tsk->plug)
3116 return;
3117
73c10101 3118 INIT_LIST_HEAD(&plug->list);
320ae51f 3119 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3120 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3121 /*
dd6cf3e1
SL
3122 * Store ordering should not be needed here, since a potential
3123 * preempt will imply a full memory barrier
73c10101 3124 */
dd6cf3e1 3125 tsk->plug = plug;
73c10101
JA
3126}
3127EXPORT_SYMBOL(blk_start_plug);
3128
3129static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3130{
3131 struct request *rqa = container_of(a, struct request, queuelist);
3132 struct request *rqb = container_of(b, struct request, queuelist);
3133
975927b9
JM
3134 return !(rqa->q < rqb->q ||
3135 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3136}
3137
49cac01e
JA
3138/*
3139 * If 'from_schedule' is true, then postpone the dispatch of requests
3140 * until a safe kblockd context. We due this to avoid accidental big
3141 * additional stack usage in driver dispatch, in places where the originally
3142 * plugger did not intend it.
3143 */
f6603783 3144static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3145 bool from_schedule)
99e22598 3146 __releases(q->queue_lock)
94b5eb28 3147{
49cac01e 3148 trace_block_unplug(q, depth, !from_schedule);
99e22598 3149
70460571 3150 if (from_schedule)
24ecfbe2 3151 blk_run_queue_async(q);
70460571 3152 else
24ecfbe2 3153 __blk_run_queue(q);
70460571 3154 spin_unlock(q->queue_lock);
94b5eb28
JA
3155}
3156
74018dc3 3157static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3158{
3159 LIST_HEAD(callbacks);
3160
2a7d5559
SL
3161 while (!list_empty(&plug->cb_list)) {
3162 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3163
2a7d5559
SL
3164 while (!list_empty(&callbacks)) {
3165 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3166 struct blk_plug_cb,
3167 list);
2a7d5559 3168 list_del(&cb->list);
74018dc3 3169 cb->callback(cb, from_schedule);
2a7d5559 3170 }
048c9374
N
3171 }
3172}
3173
9cbb1750
N
3174struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3175 int size)
3176{
3177 struct blk_plug *plug = current->plug;
3178 struct blk_plug_cb *cb;
3179
3180 if (!plug)
3181 return NULL;
3182
3183 list_for_each_entry(cb, &plug->cb_list, list)
3184 if (cb->callback == unplug && cb->data == data)
3185 return cb;
3186
3187 /* Not currently on the callback list */
3188 BUG_ON(size < sizeof(*cb));
3189 cb = kzalloc(size, GFP_ATOMIC);
3190 if (cb) {
3191 cb->data = data;
3192 cb->callback = unplug;
3193 list_add(&cb->list, &plug->cb_list);
3194 }
3195 return cb;
3196}
3197EXPORT_SYMBOL(blk_check_plugged);
3198
49cac01e 3199void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3200{
3201 struct request_queue *q;
3202 unsigned long flags;
3203 struct request *rq;
109b8129 3204 LIST_HEAD(list);
94b5eb28 3205 unsigned int depth;
73c10101 3206
74018dc3 3207 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3208
3209 if (!list_empty(&plug->mq_list))
3210 blk_mq_flush_plug_list(plug, from_schedule);
3211
73c10101
JA
3212 if (list_empty(&plug->list))
3213 return;
3214
109b8129
N
3215 list_splice_init(&plug->list, &list);
3216
422765c2 3217 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3218
3219 q = NULL;
94b5eb28 3220 depth = 0;
18811272
JA
3221
3222 /*
3223 * Save and disable interrupts here, to avoid doing it for every
3224 * queue lock we have to take.
3225 */
73c10101 3226 local_irq_save(flags);
109b8129
N
3227 while (!list_empty(&list)) {
3228 rq = list_entry_rq(list.next);
73c10101 3229 list_del_init(&rq->queuelist);
73c10101
JA
3230 BUG_ON(!rq->q);
3231 if (rq->q != q) {
99e22598
JA
3232 /*
3233 * This drops the queue lock
3234 */
3235 if (q)
49cac01e 3236 queue_unplugged(q, depth, from_schedule);
73c10101 3237 q = rq->q;
94b5eb28 3238 depth = 0;
73c10101
JA
3239 spin_lock(q->queue_lock);
3240 }
8ba61435
TH
3241
3242 /*
3243 * Short-circuit if @q is dead
3244 */
3f3299d5 3245 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3246 __blk_end_request_all(rq, -ENODEV);
3247 continue;
3248 }
3249
73c10101
JA
3250 /*
3251 * rq is already accounted, so use raw insert
3252 */
401a18e9
JA
3253 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3254 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3255 else
3256 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3257
3258 depth++;
73c10101
JA
3259 }
3260
99e22598
JA
3261 /*
3262 * This drops the queue lock
3263 */
3264 if (q)
49cac01e 3265 queue_unplugged(q, depth, from_schedule);
73c10101 3266
73c10101
JA
3267 local_irq_restore(flags);
3268}
73c10101
JA
3269
3270void blk_finish_plug(struct blk_plug *plug)
3271{
dd6cf3e1
SL
3272 if (plug != current->plug)
3273 return;
f6603783 3274 blk_flush_plug_list(plug, false);
73c10101 3275
dd6cf3e1 3276 current->plug = NULL;
73c10101 3277}
88b996cd 3278EXPORT_SYMBOL(blk_finish_plug);
73c10101 3279
47fafbc7 3280#ifdef CONFIG_PM
6c954667
LM
3281/**
3282 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3283 * @q: the queue of the device
3284 * @dev: the device the queue belongs to
3285 *
3286 * Description:
3287 * Initialize runtime-PM-related fields for @q and start auto suspend for
3288 * @dev. Drivers that want to take advantage of request-based runtime PM
3289 * should call this function after @dev has been initialized, and its
3290 * request queue @q has been allocated, and runtime PM for it can not happen
3291 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3292 * cases, driver should call this function before any I/O has taken place.
3293 *
3294 * This function takes care of setting up using auto suspend for the device,
3295 * the autosuspend delay is set to -1 to make runtime suspend impossible
3296 * until an updated value is either set by user or by driver. Drivers do
3297 * not need to touch other autosuspend settings.
3298 *
3299 * The block layer runtime PM is request based, so only works for drivers
3300 * that use request as their IO unit instead of those directly use bio's.
3301 */
3302void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3303{
3304 q->dev = dev;
3305 q->rpm_status = RPM_ACTIVE;
3306 pm_runtime_set_autosuspend_delay(q->dev, -1);
3307 pm_runtime_use_autosuspend(q->dev);
3308}
3309EXPORT_SYMBOL(blk_pm_runtime_init);
3310
3311/**
3312 * blk_pre_runtime_suspend - Pre runtime suspend check
3313 * @q: the queue of the device
3314 *
3315 * Description:
3316 * This function will check if runtime suspend is allowed for the device
3317 * by examining if there are any requests pending in the queue. If there
3318 * are requests pending, the device can not be runtime suspended; otherwise,
3319 * the queue's status will be updated to SUSPENDING and the driver can
3320 * proceed to suspend the device.
3321 *
3322 * For the not allowed case, we mark last busy for the device so that
3323 * runtime PM core will try to autosuspend it some time later.
3324 *
3325 * This function should be called near the start of the device's
3326 * runtime_suspend callback.
3327 *
3328 * Return:
3329 * 0 - OK to runtime suspend the device
3330 * -EBUSY - Device should not be runtime suspended
3331 */
3332int blk_pre_runtime_suspend(struct request_queue *q)
3333{
3334 int ret = 0;
3335
3336 spin_lock_irq(q->queue_lock);
3337 if (q->nr_pending) {
3338 ret = -EBUSY;
3339 pm_runtime_mark_last_busy(q->dev);
3340 } else {
3341 q->rpm_status = RPM_SUSPENDING;
3342 }
3343 spin_unlock_irq(q->queue_lock);
3344 return ret;
3345}
3346EXPORT_SYMBOL(blk_pre_runtime_suspend);
3347
3348/**
3349 * blk_post_runtime_suspend - Post runtime suspend processing
3350 * @q: the queue of the device
3351 * @err: return value of the device's runtime_suspend function
3352 *
3353 * Description:
3354 * Update the queue's runtime status according to the return value of the
3355 * device's runtime suspend function and mark last busy for the device so
3356 * that PM core will try to auto suspend the device at a later time.
3357 *
3358 * This function should be called near the end of the device's
3359 * runtime_suspend callback.
3360 */
3361void blk_post_runtime_suspend(struct request_queue *q, int err)
3362{
3363 spin_lock_irq(q->queue_lock);
3364 if (!err) {
3365 q->rpm_status = RPM_SUSPENDED;
3366 } else {
3367 q->rpm_status = RPM_ACTIVE;
3368 pm_runtime_mark_last_busy(q->dev);
3369 }
3370 spin_unlock_irq(q->queue_lock);
3371}
3372EXPORT_SYMBOL(blk_post_runtime_suspend);
3373
3374/**
3375 * blk_pre_runtime_resume - Pre runtime resume processing
3376 * @q: the queue of the device
3377 *
3378 * Description:
3379 * Update the queue's runtime status to RESUMING in preparation for the
3380 * runtime resume of the device.
3381 *
3382 * This function should be called near the start of the device's
3383 * runtime_resume callback.
3384 */
3385void blk_pre_runtime_resume(struct request_queue *q)
3386{
3387 spin_lock_irq(q->queue_lock);
3388 q->rpm_status = RPM_RESUMING;
3389 spin_unlock_irq(q->queue_lock);
3390}
3391EXPORT_SYMBOL(blk_pre_runtime_resume);
3392
3393/**
3394 * blk_post_runtime_resume - Post runtime resume processing
3395 * @q: the queue of the device
3396 * @err: return value of the device's runtime_resume function
3397 *
3398 * Description:
3399 * Update the queue's runtime status according to the return value of the
3400 * device's runtime_resume function. If it is successfully resumed, process
3401 * the requests that are queued into the device's queue when it is resuming
3402 * and then mark last busy and initiate autosuspend for it.
3403 *
3404 * This function should be called near the end of the device's
3405 * runtime_resume callback.
3406 */
3407void blk_post_runtime_resume(struct request_queue *q, int err)
3408{
3409 spin_lock_irq(q->queue_lock);
3410 if (!err) {
3411 q->rpm_status = RPM_ACTIVE;
3412 __blk_run_queue(q);
3413 pm_runtime_mark_last_busy(q->dev);
c60855cd 3414 pm_request_autosuspend(q->dev);
6c954667
LM
3415 } else {
3416 q->rpm_status = RPM_SUSPENDED;
3417 }
3418 spin_unlock_irq(q->queue_lock);
3419}
3420EXPORT_SYMBOL(blk_post_runtime_resume);
3421#endif
3422
1da177e4
LT
3423int __init blk_dev_init(void)
3424{
9eb55b03 3425 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
0762b23d 3426 FIELD_SIZEOF(struct request, cmd_flags));
9eb55b03 3427
89b90be2
TH
3428 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3429 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3430 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3431 if (!kblockd_workqueue)
3432 panic("Failed to create kblockd\n");
3433
3434 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3435 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3436
8324aa91 3437 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3438 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3439
d38ecf93 3440 return 0;
1da177e4 3441}