]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: remove REQ_TYPE_PM_SHUTDOWN
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
8324aa91 66void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
67{
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79}
80
1da177e4
LT
81/**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
1da177e4
LT
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
165125e1 91 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 92
ff9ea323 93 return &q->backing_dev_info;
1da177e4 94}
1da177e4
LT
95EXPORT_SYMBOL(blk_get_backing_dev_info);
96
2a4aa30c 97void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 98{
1afb20f3
FT
99 memset(rq, 0, sizeof(*rq));
100
1da177e4 101 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 102 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 103 rq->cpu = -1;
63a71386 104 rq->q = q;
a2dec7b3 105 rq->__sector = (sector_t) -1;
2e662b65
JA
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 108 rq->cmd = rq->__cmd;
e2494e1b 109 rq->cmd_len = BLK_MAX_CDB;
63a71386 110 rq->tag = -1;
b243ddcb 111 rq->start_time = jiffies;
9195291e 112 set_start_time_ns(rq);
09e099d4 113 rq->part = NULL;
1da177e4 114}
2a4aa30c 115EXPORT_SYMBOL(blk_rq_init);
1da177e4 116
5bb23a68
N
117static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
1da177e4 119{
143a87f4
TH
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
797e7dbb 124
143a87f4
TH
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 127
f79ea416 128 bio_advance(bio, nbytes);
7ba1ba12 129
143a87f4 130 /* don't actually finish bio if it's part of flush sequence */
4f024f37 131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 132 bio_endio(bio, error);
1da177e4 133}
1da177e4 134
1da177e4
LT
135void blk_dump_rq_flags(struct request *rq, char *msg)
136{
137 int bit;
138
5953316d 139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 141 (unsigned long long) rq->cmd_flags);
1da177e4 142
83096ebf
TH
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 148
33659ebb 149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 150 printk(KERN_INFO " cdb: ");
d34c87e4 151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155}
1da177e4
LT
156EXPORT_SYMBOL(blk_dump_rq_flags);
157
3cca6dc1 158static void blk_delay_work(struct work_struct *work)
1da177e4 159{
3cca6dc1 160 struct request_queue *q;
1da177e4 161
3cca6dc1
JA
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
24ecfbe2 164 __blk_run_queue(q);
3cca6dc1 165 spin_unlock_irq(q->queue_lock);
1da177e4 166}
1da177e4
LT
167
168/**
3cca6dc1
JA
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
1da177e4
LT
172 *
173 * Description:
3cca6dc1
JA
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
70460571 176 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
177 */
178void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 179{
70460571
BVA
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
2ad8b1ef 183}
3cca6dc1 184EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 185
1da177e4
LT
186/**
187 * blk_start_queue - restart a previously stopped queue
165125e1 188 * @q: The &struct request_queue in question
1da177e4
LT
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
165125e1 195void blk_start_queue(struct request_queue *q)
1da177e4 196{
a038e253
PBG
197 WARN_ON(!irqs_disabled());
198
75ad23bc 199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 200 __blk_run_queue(q);
1da177e4 201}
1da177e4
LT
202EXPORT_SYMBOL(blk_start_queue);
203
204/**
205 * blk_stop_queue - stop a queue
165125e1 206 * @q: The &struct request_queue in question
1da177e4
LT
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
165125e1 218void blk_stop_queue(struct request_queue *q)
1da177e4 219{
136b5721 220 cancel_delayed_work(&q->delay_work);
75ad23bc 221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
222}
223EXPORT_SYMBOL(blk_stop_queue);
224
225/**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
59c51591 234 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
da527770 238 * This function does not cancel any asynchronous activity arising
da3dae54 239 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 240 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 241 *
1da177e4
LT
242 */
243void blk_sync_queue(struct request_queue *q)
244{
70ed28b9 245 del_timer_sync(&q->timeout);
f04c1fe7
ML
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
70f4db63
CH
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
f04c1fe7
ML
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
1da177e4
LT
258}
259EXPORT_SYMBOL(blk_sync_queue);
260
c246e80d
BVA
261/**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272inline void __blk_run_queue_uncond(struct request_queue *q)
273{
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
24faf6f6
BVA
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
c246e80d 285 q->request_fn(q);
24faf6f6 286 q->request_fn_active--;
c246e80d
BVA
287}
288
1da177e4 289/**
80a4b58e 290 * __blk_run_queue - run a single device queue
1da177e4 291 * @q: The queue to run
80a4b58e
JA
292 *
293 * Description:
294 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 295 * held and interrupts disabled.
1da177e4 296 */
24ecfbe2 297void __blk_run_queue(struct request_queue *q)
1da177e4 298{
a538cd03
TH
299 if (unlikely(blk_queue_stopped(q)))
300 return;
301
c246e80d 302 __blk_run_queue_uncond(q);
75ad23bc
NP
303}
304EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 305
24ecfbe2
CH
306/**
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q: The queue to run
309 *
310 * Description:
311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 312 * of us. The caller must hold the queue lock.
24ecfbe2
CH
313 */
314void blk_run_queue_async(struct request_queue *q)
315{
70460571 316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 318}
c21e6beb 319EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 320
75ad23bc
NP
321/**
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
80a4b58e
JA
324 *
325 * Description:
326 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 327 * May be used to restart queueing when a request has completed.
75ad23bc
NP
328 */
329void blk_run_queue(struct request_queue *q)
330{
331 unsigned long flags;
332
333 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 334 __blk_run_queue(q);
1da177e4
LT
335 spin_unlock_irqrestore(q->queue_lock, flags);
336}
337EXPORT_SYMBOL(blk_run_queue);
338
165125e1 339void blk_put_queue(struct request_queue *q)
483f4afc
AV
340{
341 kobject_put(&q->kobj);
342}
d86e0e83 343EXPORT_SYMBOL(blk_put_queue);
483f4afc 344
e3c78ca5 345/**
807592a4 346 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 347 * @q: queue to drain
c9a929dd 348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 349 *
c9a929dd
TH
350 * Drain requests from @q. If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained. The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 353 */
807592a4
BVA
354static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 __releases(q->queue_lock)
356 __acquires(q->queue_lock)
e3c78ca5 357{
458f27a9
AH
358 int i;
359
807592a4
BVA
360 lockdep_assert_held(q->queue_lock);
361
e3c78ca5 362 while (true) {
481a7d64 363 bool drain = false;
e3c78ca5 364
b855b04a
TH
365 /*
366 * The caller might be trying to drain @q before its
367 * elevator is initialized.
368 */
369 if (q->elevator)
370 elv_drain_elevator(q);
371
5efd6113 372 blkcg_drain_queue(q);
e3c78ca5 373
4eabc941
TH
374 /*
375 * This function might be called on a queue which failed
b855b04a
TH
376 * driver init after queue creation or is not yet fully
377 * active yet. Some drivers (e.g. fd and loop) get unhappy
378 * in such cases. Kick queue iff dispatch queue has
379 * something on it and @q has request_fn set.
4eabc941 380 */
b855b04a 381 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 382 __blk_run_queue(q);
c9a929dd 383
8a5ecdd4 384 drain |= q->nr_rqs_elvpriv;
24faf6f6 385 drain |= q->request_fn_active;
481a7d64
TH
386
387 /*
388 * Unfortunately, requests are queued at and tracked from
389 * multiple places and there's no single counter which can
390 * be drained. Check all the queues and counters.
391 */
392 if (drain_all) {
e97c293c 393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
8a5ecdd4 396 drain |= q->nr_rqs[i];
481a7d64 397 drain |= q->in_flight[i];
7c94e1c1
ML
398 if (fq)
399 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
400 }
401 }
e3c78ca5 402
481a7d64 403 if (!drain)
e3c78ca5 404 break;
807592a4
BVA
405
406 spin_unlock_irq(q->queue_lock);
407
e3c78ca5 408 msleep(10);
807592a4
BVA
409
410 spin_lock_irq(q->queue_lock);
e3c78ca5 411 }
458f27a9
AH
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
a051661c
TH
419 struct request_list *rl;
420
a051661c
TH
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
458f27a9 424 }
e3c78ca5
TH
425}
426
d732580b
TH
427/**
428 * blk_queue_bypass_start - enter queue bypass mode
429 * @q: queue of interest
430 *
431 * In bypass mode, only the dispatch FIFO queue of @q is used. This
432 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 433 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435 * inside queue or RCU read lock.
d732580b
TH
436 */
437void blk_queue_bypass_start(struct request_queue *q)
438{
439 spin_lock_irq(q->queue_lock);
776687bc 440 q->bypass_depth++;
d732580b
TH
441 queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 spin_unlock_irq(q->queue_lock);
443
776687bc
TH
444 /*
445 * Queues start drained. Skip actual draining till init is
446 * complete. This avoids lenghty delays during queue init which
447 * can happen many times during boot.
448 */
449 if (blk_queue_init_done(q)) {
807592a4
BVA
450 spin_lock_irq(q->queue_lock);
451 __blk_drain_queue(q, false);
452 spin_unlock_irq(q->queue_lock);
453
b82d4b19
TH
454 /* ensure blk_queue_bypass() is %true inside RCU read lock */
455 synchronize_rcu();
456 }
d732580b
TH
457}
458EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459
460/**
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
463 *
464 * Leave bypass mode and restore the normal queueing behavior.
465 */
466void blk_queue_bypass_end(struct request_queue *q)
467{
468 spin_lock_irq(q->queue_lock);
469 if (!--q->bypass_depth)
470 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 WARN_ON_ONCE(q->bypass_depth < 0);
472 spin_unlock_irq(q->queue_lock);
473}
474EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475
aed3ea94
JA
476void blk_set_queue_dying(struct request_queue *q)
477{
478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479
480 if (q->mq_ops)
481 blk_mq_wake_waiters(q);
482 else {
483 struct request_list *rl;
484
485 blk_queue_for_each_rl(rl, q) {
486 if (rl->rq_pool) {
487 wake_up(&rl->wait[BLK_RW_SYNC]);
488 wake_up(&rl->wait[BLK_RW_ASYNC]);
489 }
490 }
491 }
492}
493EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494
c9a929dd
TH
495/**
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
498 *
c246e80d
BVA
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 501 */
6728cb0e 502void blk_cleanup_queue(struct request_queue *q)
483f4afc 503{
c9a929dd 504 spinlock_t *lock = q->queue_lock;
e3335de9 505
3f3299d5 506 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 507 mutex_lock(&q->sysfs_lock);
aed3ea94 508 blk_set_queue_dying(q);
c9a929dd 509 spin_lock_irq(lock);
6ecf23af 510
80fd9979 511 /*
3f3299d5 512 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
513 * that, unlike blk_queue_bypass_start(), we aren't performing
514 * synchronize_rcu() after entering bypass mode to avoid the delay
515 * as some drivers create and destroy a lot of queues while
516 * probing. This is still safe because blk_release_queue() will be
517 * called only after the queue refcnt drops to zero and nothing,
518 * RCU or not, would be traversing the queue by then.
519 */
6ecf23af
TH
520 q->bypass_depth++;
521 queue_flag_set(QUEUE_FLAG_BYPASS, q);
522
c9a929dd
TH
523 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 525 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
526 spin_unlock_irq(lock);
527 mutex_unlock(&q->sysfs_lock);
528
c246e80d
BVA
529 /*
530 * Drain all requests queued before DYING marking. Set DEAD flag to
531 * prevent that q->request_fn() gets invoked after draining finished.
532 */
43a5e4e2 533 if (q->mq_ops) {
780db207 534 blk_mq_freeze_queue(q);
43a5e4e2
ML
535 spin_lock_irq(lock);
536 } else {
537 spin_lock_irq(lock);
538 __blk_drain_queue(q, true);
539 }
c246e80d 540 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 541 spin_unlock_irq(lock);
c9a929dd
TH
542
543 /* @q won't process any more request, flush async actions */
544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 blk_sync_queue(q);
546
45a9c9d9
BVA
547 if (q->mq_ops)
548 blk_mq_free_queue(q);
549
5e5cfac0
AH
550 spin_lock_irq(lock);
551 if (q->queue_lock != &q->__queue_lock)
552 q->queue_lock = &q->__queue_lock;
553 spin_unlock_irq(lock);
554
c9a929dd 555 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
556 blk_put_queue(q);
557}
1da177e4
LT
558EXPORT_SYMBOL(blk_cleanup_queue);
559
271508db
DR
560/* Allocate memory local to the request queue */
561static void *alloc_request_struct(gfp_t gfp_mask, void *data)
562{
563 int nid = (int)(long)data;
564 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
565}
566
567static void free_request_struct(void *element, void *unused)
568{
569 kmem_cache_free(request_cachep, element);
570}
571
5b788ce3
TH
572int blk_init_rl(struct request_list *rl, struct request_queue *q,
573 gfp_t gfp_mask)
1da177e4 574{
1abec4fd
MS
575 if (unlikely(rl->rq_pool))
576 return 0;
577
5b788ce3 578 rl->q = q;
1faa16d2
JA
579 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
580 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
581 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
582 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 583
271508db
DR
584 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
585 free_request_struct,
586 (void *)(long)q->node, gfp_mask,
587 q->node);
1da177e4
LT
588 if (!rl->rq_pool)
589 return -ENOMEM;
590
591 return 0;
592}
593
5b788ce3
TH
594void blk_exit_rl(struct request_list *rl)
595{
596 if (rl->rq_pool)
597 mempool_destroy(rl->rq_pool);
598}
599
165125e1 600struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 601{
c304a51b 602 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
603}
604EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 605
165125e1 606struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 607{
165125e1 608 struct request_queue *q;
e0bf68dd 609 int err;
1946089a 610
8324aa91 611 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 612 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
613 if (!q)
614 return NULL;
615
00380a40 616 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 617 if (q->id < 0)
3d2936f4 618 goto fail_q;
a73f730d 619
0989a025
JA
620 q->backing_dev_info.ra_pages =
621 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
622 q->backing_dev_info.state = 0;
b4caecd4 623 q->backing_dev_info.capabilities = 0;
d993831f 624 q->backing_dev_info.name = "block";
5151412d 625 q->node = node_id;
0989a025 626
e0bf68dd 627 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
628 if (err)
629 goto fail_id;
e0bf68dd 630
31373d09
MG
631 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
632 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 633 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 634 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 635 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 636 INIT_LIST_HEAD(&q->icq_list);
4eef3049 637#ifdef CONFIG_BLK_CGROUP
e8989fae 638 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 639#endif
3cca6dc1 640 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 641
8324aa91 642 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 643
483f4afc 644 mutex_init(&q->sysfs_lock);
e7e72bf6 645 spin_lock_init(&q->__queue_lock);
483f4afc 646
c94a96ac
VG
647 /*
648 * By default initialize queue_lock to internal lock and driver can
649 * override it later if need be.
650 */
651 q->queue_lock = &q->__queue_lock;
652
b82d4b19
TH
653 /*
654 * A queue starts its life with bypass turned on to avoid
655 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
656 * init. The initial bypass will be finished when the queue is
657 * registered by blk_register_queue().
b82d4b19
TH
658 */
659 q->bypass_depth = 1;
660 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
661
320ae51f
JA
662 init_waitqueue_head(&q->mq_freeze_wq);
663
5efd6113 664 if (blkcg_init_queue(q))
fff4996b 665 goto fail_bdi;
f51b802c 666
1da177e4 667 return q;
a73f730d 668
fff4996b
MP
669fail_bdi:
670 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
671fail_id:
672 ida_simple_remove(&blk_queue_ida, q->id);
673fail_q:
674 kmem_cache_free(blk_requestq_cachep, q);
675 return NULL;
1da177e4 676}
1946089a 677EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
678
679/**
680 * blk_init_queue - prepare a request queue for use with a block device
681 * @rfn: The function to be called to process requests that have been
682 * placed on the queue.
683 * @lock: Request queue spin lock
684 *
685 * Description:
686 * If a block device wishes to use the standard request handling procedures,
687 * which sorts requests and coalesces adjacent requests, then it must
688 * call blk_init_queue(). The function @rfn will be called when there
689 * are requests on the queue that need to be processed. If the device
690 * supports plugging, then @rfn may not be called immediately when requests
691 * are available on the queue, but may be called at some time later instead.
692 * Plugged queues are generally unplugged when a buffer belonging to one
693 * of the requests on the queue is needed, or due to memory pressure.
694 *
695 * @rfn is not required, or even expected, to remove all requests off the
696 * queue, but only as many as it can handle at a time. If it does leave
697 * requests on the queue, it is responsible for arranging that the requests
698 * get dealt with eventually.
699 *
700 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
701 * request queue; this lock will be taken also from interrupt context, so irq
702 * disabling is needed for it.
1da177e4 703 *
710027a4 704 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
705 * it didn't succeed.
706 *
707 * Note:
708 * blk_init_queue() must be paired with a blk_cleanup_queue() call
709 * when the block device is deactivated (such as at module unload).
710 **/
1946089a 711
165125e1 712struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 713{
c304a51b 714 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
715}
716EXPORT_SYMBOL(blk_init_queue);
717
165125e1 718struct request_queue *
1946089a
CL
719blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
720{
c86d1b8a 721 struct request_queue *uninit_q, *q;
1da177e4 722
c86d1b8a
MS
723 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
724 if (!uninit_q)
725 return NULL;
726
5151412d 727 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 728 if (!q)
7982e90c 729 blk_cleanup_queue(uninit_q);
18741986 730
7982e90c 731 return q;
01effb0d
MS
732}
733EXPORT_SYMBOL(blk_init_queue_node);
734
735struct request_queue *
736blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
737 spinlock_t *lock)
01effb0d 738{
1da177e4
LT
739 if (!q)
740 return NULL;
741
f70ced09 742 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 743 if (!q->fq)
7982e90c
MS
744 return NULL;
745
a051661c 746 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 747 goto fail;
1da177e4
LT
748
749 q->request_fn = rfn;
1da177e4 750 q->prep_rq_fn = NULL;
28018c24 751 q->unprep_rq_fn = NULL;
60ea8226 752 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
753
754 /* Override internal queue lock with supplied lock pointer */
755 if (lock)
756 q->queue_lock = lock;
1da177e4 757
f3b144aa
JA
758 /*
759 * This also sets hw/phys segments, boundary and size
760 */
c20e8de2 761 blk_queue_make_request(q, blk_queue_bio);
1da177e4 762
44ec9542
AS
763 q->sg_reserved_size = INT_MAX;
764
eb1c160b
TS
765 /* Protect q->elevator from elevator_change */
766 mutex_lock(&q->sysfs_lock);
767
b82d4b19 768 /* init elevator */
eb1c160b
TS
769 if (elevator_init(q, NULL)) {
770 mutex_unlock(&q->sysfs_lock);
708f04d2 771 goto fail;
eb1c160b
TS
772 }
773
774 mutex_unlock(&q->sysfs_lock);
775
b82d4b19 776 return q;
708f04d2
DJ
777
778fail:
ba483388 779 blk_free_flush_queue(q->fq);
708f04d2 780 return NULL;
1da177e4 781}
5151412d 782EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 783
09ac46c4 784bool blk_get_queue(struct request_queue *q)
1da177e4 785{
3f3299d5 786 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
787 __blk_get_queue(q);
788 return true;
1da177e4
LT
789 }
790
09ac46c4 791 return false;
1da177e4 792}
d86e0e83 793EXPORT_SYMBOL(blk_get_queue);
1da177e4 794
5b788ce3 795static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 796{
f1f8cc94 797 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 798 elv_put_request(rl->q, rq);
f1f8cc94 799 if (rq->elv.icq)
11a3122f 800 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
801 }
802
5b788ce3 803 mempool_free(rq, rl->rq_pool);
1da177e4
LT
804}
805
1da177e4
LT
806/*
807 * ioc_batching returns true if the ioc is a valid batching request and
808 * should be given priority access to a request.
809 */
165125e1 810static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
811{
812 if (!ioc)
813 return 0;
814
815 /*
816 * Make sure the process is able to allocate at least 1 request
817 * even if the batch times out, otherwise we could theoretically
818 * lose wakeups.
819 */
820 return ioc->nr_batch_requests == q->nr_batching ||
821 (ioc->nr_batch_requests > 0
822 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
823}
824
825/*
826 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
827 * will cause the process to be a "batcher" on all queues in the system. This
828 * is the behaviour we want though - once it gets a wakeup it should be given
829 * a nice run.
830 */
165125e1 831static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
832{
833 if (!ioc || ioc_batching(q, ioc))
834 return;
835
836 ioc->nr_batch_requests = q->nr_batching;
837 ioc->last_waited = jiffies;
838}
839
5b788ce3 840static void __freed_request(struct request_list *rl, int sync)
1da177e4 841{
5b788ce3 842 struct request_queue *q = rl->q;
1da177e4 843
a051661c
TH
844 /*
845 * bdi isn't aware of blkcg yet. As all async IOs end up root
846 * blkcg anyway, just use root blkcg state.
847 */
848 if (rl == &q->root_rl &&
849 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 850 blk_clear_queue_congested(q, sync);
1da177e4 851
1faa16d2
JA
852 if (rl->count[sync] + 1 <= q->nr_requests) {
853 if (waitqueue_active(&rl->wait[sync]))
854 wake_up(&rl->wait[sync]);
1da177e4 855
5b788ce3 856 blk_clear_rl_full(rl, sync);
1da177e4
LT
857 }
858}
859
860/*
861 * A request has just been released. Account for it, update the full and
862 * congestion status, wake up any waiters. Called under q->queue_lock.
863 */
5b788ce3 864static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 865{
5b788ce3 866 struct request_queue *q = rl->q;
75eb6c37 867 int sync = rw_is_sync(flags);
1da177e4 868
8a5ecdd4 869 q->nr_rqs[sync]--;
1faa16d2 870 rl->count[sync]--;
75eb6c37 871 if (flags & REQ_ELVPRIV)
8a5ecdd4 872 q->nr_rqs_elvpriv--;
1da177e4 873
5b788ce3 874 __freed_request(rl, sync);
1da177e4 875
1faa16d2 876 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 877 __freed_request(rl, sync ^ 1);
1da177e4
LT
878}
879
e3a2b3f9
JA
880int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
881{
882 struct request_list *rl;
883
884 spin_lock_irq(q->queue_lock);
885 q->nr_requests = nr;
886 blk_queue_congestion_threshold(q);
887
888 /* congestion isn't cgroup aware and follows root blkcg for now */
889 rl = &q->root_rl;
890
891 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
892 blk_set_queue_congested(q, BLK_RW_SYNC);
893 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
894 blk_clear_queue_congested(q, BLK_RW_SYNC);
895
896 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
897 blk_set_queue_congested(q, BLK_RW_ASYNC);
898 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
899 blk_clear_queue_congested(q, BLK_RW_ASYNC);
900
901 blk_queue_for_each_rl(rl, q) {
902 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
903 blk_set_rl_full(rl, BLK_RW_SYNC);
904 } else {
905 blk_clear_rl_full(rl, BLK_RW_SYNC);
906 wake_up(&rl->wait[BLK_RW_SYNC]);
907 }
908
909 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
910 blk_set_rl_full(rl, BLK_RW_ASYNC);
911 } else {
912 blk_clear_rl_full(rl, BLK_RW_ASYNC);
913 wake_up(&rl->wait[BLK_RW_ASYNC]);
914 }
915 }
916
917 spin_unlock_irq(q->queue_lock);
918 return 0;
919}
920
9d5a4e94
MS
921/*
922 * Determine if elevator data should be initialized when allocating the
923 * request associated with @bio.
924 */
925static bool blk_rq_should_init_elevator(struct bio *bio)
926{
927 if (!bio)
928 return true;
929
930 /*
931 * Flush requests do not use the elevator so skip initialization.
932 * This allows a request to share the flush and elevator data.
933 */
934 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
935 return false;
936
937 return true;
938}
939
852c788f
TH
940/**
941 * rq_ioc - determine io_context for request allocation
942 * @bio: request being allocated is for this bio (can be %NULL)
943 *
944 * Determine io_context to use for request allocation for @bio. May return
945 * %NULL if %current->io_context doesn't exist.
946 */
947static struct io_context *rq_ioc(struct bio *bio)
948{
949#ifdef CONFIG_BLK_CGROUP
950 if (bio && bio->bi_ioc)
951 return bio->bi_ioc;
952#endif
953 return current->io_context;
954}
955
da8303c6 956/**
a06e05e6 957 * __get_request - get a free request
5b788ce3 958 * @rl: request list to allocate from
da8303c6
TH
959 * @rw_flags: RW and SYNC flags
960 * @bio: bio to allocate request for (can be %NULL)
961 * @gfp_mask: allocation mask
962 *
963 * Get a free request from @q. This function may fail under memory
964 * pressure or if @q is dead.
965 *
da3dae54 966 * Must be called with @q->queue_lock held and,
a492f075
JL
967 * Returns ERR_PTR on failure, with @q->queue_lock held.
968 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 969 */
5b788ce3 970static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 971 struct bio *bio, gfp_t gfp_mask)
1da177e4 972{
5b788ce3 973 struct request_queue *q = rl->q;
b679281a 974 struct request *rq;
7f4b35d1
TH
975 struct elevator_type *et = q->elevator->type;
976 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 977 struct io_cq *icq = NULL;
1faa16d2 978 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 979 int may_queue;
88ee5ef1 980
3f3299d5 981 if (unlikely(blk_queue_dying(q)))
a492f075 982 return ERR_PTR(-ENODEV);
da8303c6 983
7749a8d4 984 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
985 if (may_queue == ELV_MQUEUE_NO)
986 goto rq_starved;
987
1faa16d2
JA
988 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
989 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
990 /*
991 * The queue will fill after this allocation, so set
992 * it as full, and mark this process as "batching".
993 * This process will be allowed to complete a batch of
994 * requests, others will be blocked.
995 */
5b788ce3 996 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 997 ioc_set_batching(q, ioc);
5b788ce3 998 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
999 } else {
1000 if (may_queue != ELV_MQUEUE_MUST
1001 && !ioc_batching(q, ioc)) {
1002 /*
1003 * The queue is full and the allocating
1004 * process is not a "batcher", and not
1005 * exempted by the IO scheduler
1006 */
a492f075 1007 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1008 }
1009 }
1da177e4 1010 }
a051661c
TH
1011 /*
1012 * bdi isn't aware of blkcg yet. As all async IOs end up
1013 * root blkcg anyway, just use root blkcg state.
1014 */
1015 if (rl == &q->root_rl)
1016 blk_set_queue_congested(q, is_sync);
1da177e4
LT
1017 }
1018
082cf69e
JA
1019 /*
1020 * Only allow batching queuers to allocate up to 50% over the defined
1021 * limit of requests, otherwise we could have thousands of requests
1022 * allocated with any setting of ->nr_requests
1023 */
1faa16d2 1024 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1025 return ERR_PTR(-ENOMEM);
fd782a4a 1026
8a5ecdd4 1027 q->nr_rqs[is_sync]++;
1faa16d2
JA
1028 rl->count[is_sync]++;
1029 rl->starved[is_sync] = 0;
cb98fc8b 1030
f1f8cc94
TH
1031 /*
1032 * Decide whether the new request will be managed by elevator. If
1033 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1034 * prevent the current elevator from being destroyed until the new
1035 * request is freed. This guarantees icq's won't be destroyed and
1036 * makes creating new ones safe.
1037 *
1038 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1039 * it will be created after releasing queue_lock.
1040 */
d732580b 1041 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1042 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1043 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1044 if (et->icq_cache && ioc)
1045 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1046 }
cb98fc8b 1047
f253b86b
JA
1048 if (blk_queue_io_stat(q))
1049 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1050 spin_unlock_irq(q->queue_lock);
1051
29e2b09a 1052 /* allocate and init request */
5b788ce3 1053 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1054 if (!rq)
b679281a 1055 goto fail_alloc;
1da177e4 1056
29e2b09a 1057 blk_rq_init(q, rq);
a051661c 1058 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1059 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1060
aaf7c680 1061 /* init elvpriv */
29e2b09a 1062 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1063 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1064 if (ioc)
1065 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1066 if (!icq)
1067 goto fail_elvpriv;
29e2b09a 1068 }
aaf7c680
TH
1069
1070 rq->elv.icq = icq;
1071 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1072 goto fail_elvpriv;
1073
1074 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1075 if (icq)
1076 get_io_context(icq->ioc);
1077 }
aaf7c680 1078out:
88ee5ef1
JA
1079 /*
1080 * ioc may be NULL here, and ioc_batching will be false. That's
1081 * OK, if the queue is under the request limit then requests need
1082 * not count toward the nr_batch_requests limit. There will always
1083 * be some limit enforced by BLK_BATCH_TIME.
1084 */
1da177e4
LT
1085 if (ioc_batching(q, ioc))
1086 ioc->nr_batch_requests--;
6728cb0e 1087
1faa16d2 1088 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1089 return rq;
b679281a 1090
aaf7c680
TH
1091fail_elvpriv:
1092 /*
1093 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1094 * and may fail indefinitely under memory pressure and thus
1095 * shouldn't stall IO. Treat this request as !elvpriv. This will
1096 * disturb iosched and blkcg but weird is bettern than dead.
1097 */
7b2b10e0
RE
1098 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1099 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1100
1101 rq->cmd_flags &= ~REQ_ELVPRIV;
1102 rq->elv.icq = NULL;
1103
1104 spin_lock_irq(q->queue_lock);
8a5ecdd4 1105 q->nr_rqs_elvpriv--;
aaf7c680
TH
1106 spin_unlock_irq(q->queue_lock);
1107 goto out;
1108
b679281a
TH
1109fail_alloc:
1110 /*
1111 * Allocation failed presumably due to memory. Undo anything we
1112 * might have messed up.
1113 *
1114 * Allocating task should really be put onto the front of the wait
1115 * queue, but this is pretty rare.
1116 */
1117 spin_lock_irq(q->queue_lock);
5b788ce3 1118 freed_request(rl, rw_flags);
b679281a
TH
1119
1120 /*
1121 * in the very unlikely event that allocation failed and no
1122 * requests for this direction was pending, mark us starved so that
1123 * freeing of a request in the other direction will notice
1124 * us. another possible fix would be to split the rq mempool into
1125 * READ and WRITE
1126 */
1127rq_starved:
1128 if (unlikely(rl->count[is_sync] == 0))
1129 rl->starved[is_sync] = 1;
a492f075 1130 return ERR_PTR(-ENOMEM);
1da177e4
LT
1131}
1132
da8303c6 1133/**
a06e05e6 1134 * get_request - get a free request
da8303c6
TH
1135 * @q: request_queue to allocate request from
1136 * @rw_flags: RW and SYNC flags
1137 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1138 * @gfp_mask: allocation mask
da8303c6 1139 *
a06e05e6
TH
1140 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1141 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1142 *
da3dae54 1143 * Must be called with @q->queue_lock held and,
a492f075
JL
1144 * Returns ERR_PTR on failure, with @q->queue_lock held.
1145 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1146 */
a06e05e6
TH
1147static struct request *get_request(struct request_queue *q, int rw_flags,
1148 struct bio *bio, gfp_t gfp_mask)
1da177e4 1149{
1faa16d2 1150 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1151 DEFINE_WAIT(wait);
a051661c 1152 struct request_list *rl;
1da177e4 1153 struct request *rq;
a051661c
TH
1154
1155 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1156retry:
a051661c 1157 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1158 if (!IS_ERR(rq))
a06e05e6 1159 return rq;
1da177e4 1160
3f3299d5 1161 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1162 blk_put_rl(rl);
a492f075 1163 return rq;
a051661c 1164 }
1da177e4 1165
a06e05e6
TH
1166 /* wait on @rl and retry */
1167 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1168 TASK_UNINTERRUPTIBLE);
1da177e4 1169
a06e05e6 1170 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1171
a06e05e6
TH
1172 spin_unlock_irq(q->queue_lock);
1173 io_schedule();
d6344532 1174
a06e05e6
TH
1175 /*
1176 * After sleeping, we become a "batching" process and will be able
1177 * to allocate at least one request, and up to a big batch of them
1178 * for a small period time. See ioc_batching, ioc_set_batching
1179 */
a06e05e6 1180 ioc_set_batching(q, current->io_context);
05caf8db 1181
a06e05e6
TH
1182 spin_lock_irq(q->queue_lock);
1183 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1184
a06e05e6 1185 goto retry;
1da177e4
LT
1186}
1187
320ae51f
JA
1188static struct request *blk_old_get_request(struct request_queue *q, int rw,
1189 gfp_t gfp_mask)
1da177e4
LT
1190{
1191 struct request *rq;
1192
1193 BUG_ON(rw != READ && rw != WRITE);
1194
7f4b35d1
TH
1195 /* create ioc upfront */
1196 create_io_context(gfp_mask, q->node);
1197
d6344532 1198 spin_lock_irq(q->queue_lock);
a06e05e6 1199 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1200 if (IS_ERR(rq))
da8303c6 1201 spin_unlock_irq(q->queue_lock);
d6344532 1202 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1203
1204 return rq;
1205}
320ae51f
JA
1206
1207struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1208{
1209 if (q->mq_ops)
4ce01dd1 1210 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1211 else
1212 return blk_old_get_request(q, rw, gfp_mask);
1213}
1da177e4
LT
1214EXPORT_SYMBOL(blk_get_request);
1215
dc72ef4a 1216/**
79eb63e9 1217 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1218 * @q: target request queue
79eb63e9
BH
1219 * @bio: The bio describing the memory mappings that will be submitted for IO.
1220 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1221 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1222 *
79eb63e9
BH
1223 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1224 * type commands. Where the struct request needs to be farther initialized by
1225 * the caller. It is passed a &struct bio, which describes the memory info of
1226 * the I/O transfer.
dc72ef4a 1227 *
79eb63e9
BH
1228 * The caller of blk_make_request must make sure that bi_io_vec
1229 * are set to describe the memory buffers. That bio_data_dir() will return
1230 * the needed direction of the request. (And all bio's in the passed bio-chain
1231 * are properly set accordingly)
1232 *
1233 * If called under none-sleepable conditions, mapped bio buffers must not
1234 * need bouncing, by calling the appropriate masked or flagged allocator,
1235 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1236 * BUG.
53674ac5
JA
1237 *
1238 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1239 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1240 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1241 * completion of a bio that hasn't been submitted yet, thus resulting in a
1242 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1243 * of bio_alloc(), as that avoids the mempool deadlock.
1244 * If possible a big IO should be split into smaller parts when allocation
1245 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1246 */
79eb63e9
BH
1247struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1248 gfp_t gfp_mask)
dc72ef4a 1249{
79eb63e9
BH
1250 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1251
a492f075
JL
1252 if (IS_ERR(rq))
1253 return rq;
79eb63e9 1254
f27b087b
JA
1255 blk_rq_set_block_pc(rq);
1256
79eb63e9
BH
1257 for_each_bio(bio) {
1258 struct bio *bounce_bio = bio;
1259 int ret;
1260
1261 blk_queue_bounce(q, &bounce_bio);
1262 ret = blk_rq_append_bio(q, rq, bounce_bio);
1263 if (unlikely(ret)) {
1264 blk_put_request(rq);
1265 return ERR_PTR(ret);
1266 }
1267 }
1268
1269 return rq;
dc72ef4a 1270}
79eb63e9 1271EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1272
f27b087b 1273/**
da3dae54 1274 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1275 * @rq: request to be initialized
1276 *
1277 */
1278void blk_rq_set_block_pc(struct request *rq)
1279{
1280 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1281 rq->__data_len = 0;
1282 rq->__sector = (sector_t) -1;
1283 rq->bio = rq->biotail = NULL;
1284 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1285}
1286EXPORT_SYMBOL(blk_rq_set_block_pc);
1287
1da177e4
LT
1288/**
1289 * blk_requeue_request - put a request back on queue
1290 * @q: request queue where request should be inserted
1291 * @rq: request to be inserted
1292 *
1293 * Description:
1294 * Drivers often keep queueing requests until the hardware cannot accept
1295 * more, when that condition happens we need to put the request back
1296 * on the queue. Must be called with queue lock held.
1297 */
165125e1 1298void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1299{
242f9dcb
JA
1300 blk_delete_timer(rq);
1301 blk_clear_rq_complete(rq);
5f3ea37c 1302 trace_block_rq_requeue(q, rq);
2056a782 1303
125c99bc 1304 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1305 blk_queue_end_tag(q, rq);
1306
ba396a6c
JB
1307 BUG_ON(blk_queued_rq(rq));
1308
1da177e4
LT
1309 elv_requeue_request(q, rq);
1310}
1da177e4
LT
1311EXPORT_SYMBOL(blk_requeue_request);
1312
73c10101
JA
1313static void add_acct_request(struct request_queue *q, struct request *rq,
1314 int where)
1315{
320ae51f 1316 blk_account_io_start(rq, true);
7eaceacc 1317 __elv_add_request(q, rq, where);
73c10101
JA
1318}
1319
074a7aca
TH
1320static void part_round_stats_single(int cpu, struct hd_struct *part,
1321 unsigned long now)
1322{
7276d02e
JA
1323 int inflight;
1324
074a7aca
TH
1325 if (now == part->stamp)
1326 return;
1327
7276d02e
JA
1328 inflight = part_in_flight(part);
1329 if (inflight) {
074a7aca 1330 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1331 inflight * (now - part->stamp));
074a7aca
TH
1332 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1333 }
1334 part->stamp = now;
1335}
1336
1337/**
496aa8a9
RD
1338 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1339 * @cpu: cpu number for stats access
1340 * @part: target partition
1da177e4
LT
1341 *
1342 * The average IO queue length and utilisation statistics are maintained
1343 * by observing the current state of the queue length and the amount of
1344 * time it has been in this state for.
1345 *
1346 * Normally, that accounting is done on IO completion, but that can result
1347 * in more than a second's worth of IO being accounted for within any one
1348 * second, leading to >100% utilisation. To deal with that, we call this
1349 * function to do a round-off before returning the results when reading
1350 * /proc/diskstats. This accounts immediately for all queue usage up to
1351 * the current jiffies and restarts the counters again.
1352 */
c9959059 1353void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1354{
1355 unsigned long now = jiffies;
1356
074a7aca
TH
1357 if (part->partno)
1358 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1359 part_round_stats_single(cpu, part, now);
6f2576af 1360}
074a7aca 1361EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1362
47fafbc7 1363#ifdef CONFIG_PM
c8158819
LM
1364static void blk_pm_put_request(struct request *rq)
1365{
1366 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1367 pm_runtime_mark_last_busy(rq->q->dev);
1368}
1369#else
1370static inline void blk_pm_put_request(struct request *rq) {}
1371#endif
1372
1da177e4
LT
1373/*
1374 * queue lock must be held
1375 */
165125e1 1376void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1377{
1da177e4
LT
1378 if (unlikely(!q))
1379 return;
1da177e4 1380
6f5ba581
CH
1381 if (q->mq_ops) {
1382 blk_mq_free_request(req);
1383 return;
1384 }
1385
c8158819
LM
1386 blk_pm_put_request(req);
1387
8922e16c
TH
1388 elv_completed_request(q, req);
1389
1cd96c24
BH
1390 /* this is a bio leak */
1391 WARN_ON(req->bio != NULL);
1392
1da177e4
LT
1393 /*
1394 * Request may not have originated from ll_rw_blk. if not,
1395 * it didn't come out of our reserved rq pools
1396 */
49171e5c 1397 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1398 unsigned int flags = req->cmd_flags;
a051661c 1399 struct request_list *rl = blk_rq_rl(req);
1da177e4 1400
1da177e4 1401 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1402 BUG_ON(ELV_ON_HASH(req));
1da177e4 1403
a051661c
TH
1404 blk_free_request(rl, req);
1405 freed_request(rl, flags);
1406 blk_put_rl(rl);
1da177e4
LT
1407 }
1408}
6e39b69e
MC
1409EXPORT_SYMBOL_GPL(__blk_put_request);
1410
1da177e4
LT
1411void blk_put_request(struct request *req)
1412{
165125e1 1413 struct request_queue *q = req->q;
8922e16c 1414
320ae51f
JA
1415 if (q->mq_ops)
1416 blk_mq_free_request(req);
1417 else {
1418 unsigned long flags;
1419
1420 spin_lock_irqsave(q->queue_lock, flags);
1421 __blk_put_request(q, req);
1422 spin_unlock_irqrestore(q->queue_lock, flags);
1423 }
1da177e4 1424}
1da177e4
LT
1425EXPORT_SYMBOL(blk_put_request);
1426
66ac0280
CH
1427/**
1428 * blk_add_request_payload - add a payload to a request
1429 * @rq: request to update
1430 * @page: page backing the payload
1431 * @len: length of the payload.
1432 *
1433 * This allows to later add a payload to an already submitted request by
1434 * a block driver. The driver needs to take care of freeing the payload
1435 * itself.
1436 *
1437 * Note that this is a quite horrible hack and nothing but handling of
1438 * discard requests should ever use it.
1439 */
1440void blk_add_request_payload(struct request *rq, struct page *page,
1441 unsigned int len)
1442{
1443 struct bio *bio = rq->bio;
1444
1445 bio->bi_io_vec->bv_page = page;
1446 bio->bi_io_vec->bv_offset = 0;
1447 bio->bi_io_vec->bv_len = len;
1448
4f024f37 1449 bio->bi_iter.bi_size = len;
66ac0280
CH
1450 bio->bi_vcnt = 1;
1451 bio->bi_phys_segments = 1;
1452
1453 rq->__data_len = rq->resid_len = len;
1454 rq->nr_phys_segments = 1;
66ac0280
CH
1455}
1456EXPORT_SYMBOL_GPL(blk_add_request_payload);
1457
320ae51f
JA
1458bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1459 struct bio *bio)
73c10101
JA
1460{
1461 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1462
73c10101
JA
1463 if (!ll_back_merge_fn(q, req, bio))
1464 return false;
1465
8c1cf6bb 1466 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1467
1468 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1469 blk_rq_set_mixed_merge(req);
1470
1471 req->biotail->bi_next = bio;
1472 req->biotail = bio;
4f024f37 1473 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1474 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1475
320ae51f 1476 blk_account_io_start(req, false);
73c10101
JA
1477 return true;
1478}
1479
320ae51f
JA
1480bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1481 struct bio *bio)
73c10101
JA
1482{
1483 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1484
73c10101
JA
1485 if (!ll_front_merge_fn(q, req, bio))
1486 return false;
1487
8c1cf6bb 1488 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1489
1490 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1491 blk_rq_set_mixed_merge(req);
1492
73c10101
JA
1493 bio->bi_next = req->bio;
1494 req->bio = bio;
1495
4f024f37
KO
1496 req->__sector = bio->bi_iter.bi_sector;
1497 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1498 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1499
320ae51f 1500 blk_account_io_start(req, false);
73c10101
JA
1501 return true;
1502}
1503
bd87b589 1504/**
320ae51f 1505 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1506 * @q: request_queue new bio is being queued at
1507 * @bio: new bio being queued
1508 * @request_count: out parameter for number of traversed plugged requests
1509 *
1510 * Determine whether @bio being queued on @q can be merged with a request
1511 * on %current's plugged list. Returns %true if merge was successful,
1512 * otherwise %false.
1513 *
07c2bd37
TH
1514 * Plugging coalesces IOs from the same issuer for the same purpose without
1515 * going through @q->queue_lock. As such it's more of an issuing mechanism
1516 * than scheduling, and the request, while may have elvpriv data, is not
1517 * added on the elevator at this point. In addition, we don't have
1518 * reliable access to the elevator outside queue lock. Only check basic
1519 * merging parameters without querying the elevator.
da41a589
RE
1520 *
1521 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1522 */
320ae51f
JA
1523bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1524 unsigned int *request_count)
73c10101
JA
1525{
1526 struct blk_plug *plug;
1527 struct request *rq;
1528 bool ret = false;
92f399c7 1529 struct list_head *plug_list;
73c10101 1530
bd87b589 1531 plug = current->plug;
73c10101
JA
1532 if (!plug)
1533 goto out;
56ebdaf2 1534 *request_count = 0;
73c10101 1535
92f399c7
SL
1536 if (q->mq_ops)
1537 plug_list = &plug->mq_list;
1538 else
1539 plug_list = &plug->list;
1540
1541 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1542 int el_ret;
1543
1b2e19f1
SL
1544 if (rq->q == q)
1545 (*request_count)++;
56ebdaf2 1546
07c2bd37 1547 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1548 continue;
1549
050c8ea8 1550 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1551 if (el_ret == ELEVATOR_BACK_MERGE) {
1552 ret = bio_attempt_back_merge(q, rq, bio);
1553 if (ret)
1554 break;
1555 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1556 ret = bio_attempt_front_merge(q, rq, bio);
1557 if (ret)
1558 break;
1559 }
1560 }
1561out:
1562 return ret;
1563}
1564
86db1e29 1565void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1566{
4aff5e23 1567 req->cmd_type = REQ_TYPE_FS;
52d9e675 1568
7b6d91da
CH
1569 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1570 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1571 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1572
52d9e675 1573 req->errors = 0;
4f024f37 1574 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1575 req->ioprio = bio_prio(bio);
bc1c56fd 1576 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1577}
1578
5a7bbad2 1579void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1580{
5e00d1b5 1581 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1582 struct blk_plug *plug;
1583 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1584 struct request *req;
56ebdaf2 1585 unsigned int request_count = 0;
1da177e4 1586
1da177e4
LT
1587 /*
1588 * low level driver can indicate that it wants pages above a
1589 * certain limit bounced to low memory (ie for highmem, or even
1590 * ISA dma in theory)
1591 */
1592 blk_queue_bounce(q, &bio);
1593
ffecfd1a
DW
1594 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1595 bio_endio(bio, -EIO);
1596 return;
1597 }
1598
4fed947c 1599 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1600 spin_lock_irq(q->queue_lock);
ae1b1539 1601 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1602 goto get_rq;
1603 }
1604
73c10101
JA
1605 /*
1606 * Check if we can merge with the plugged list before grabbing
1607 * any locks.
1608 */
da41a589
RE
1609 if (!blk_queue_nomerges(q) &&
1610 blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1611 return;
1da177e4 1612
73c10101 1613 spin_lock_irq(q->queue_lock);
2056a782 1614
73c10101
JA
1615 el_ret = elv_merge(q, &req, bio);
1616 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1617 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1618 elv_bio_merged(q, req, bio);
73c10101
JA
1619 if (!attempt_back_merge(q, req))
1620 elv_merged_request(q, req, el_ret);
1621 goto out_unlock;
1622 }
1623 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1624 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1625 elv_bio_merged(q, req, bio);
73c10101
JA
1626 if (!attempt_front_merge(q, req))
1627 elv_merged_request(q, req, el_ret);
1628 goto out_unlock;
80a761fd 1629 }
1da177e4
LT
1630 }
1631
450991bc 1632get_rq:
7749a8d4
JA
1633 /*
1634 * This sync check and mask will be re-done in init_request_from_bio(),
1635 * but we need to set it earlier to expose the sync flag to the
1636 * rq allocator and io schedulers.
1637 */
1638 rw_flags = bio_data_dir(bio);
1639 if (sync)
7b6d91da 1640 rw_flags |= REQ_SYNC;
7749a8d4 1641
1da177e4 1642 /*
450991bc 1643 * Grab a free request. This is might sleep but can not fail.
d6344532 1644 * Returns with the queue unlocked.
450991bc 1645 */
a06e05e6 1646 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075
JL
1647 if (IS_ERR(req)) {
1648 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
da8303c6
TH
1649 goto out_unlock;
1650 }
d6344532 1651
450991bc
NP
1652 /*
1653 * After dropping the lock and possibly sleeping here, our request
1654 * may now be mergeable after it had proven unmergeable (above).
1655 * We don't worry about that case for efficiency. It won't happen
1656 * often, and the elevators are able to handle it.
1da177e4 1657 */
52d9e675 1658 init_request_from_bio(req, bio);
1da177e4 1659
9562ad9a 1660 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1661 req->cpu = raw_smp_processor_id();
73c10101
JA
1662
1663 plug = current->plug;
721a9602 1664 if (plug) {
dc6d36c9
JA
1665 /*
1666 * If this is the first request added after a plug, fire
7aef2e78 1667 * of a plug trace.
dc6d36c9 1668 */
7aef2e78 1669 if (!request_count)
dc6d36c9 1670 trace_block_plug(q);
3540d5e8 1671 else {
019ceb7d 1672 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1673 blk_flush_plug_list(plug, false);
019ceb7d
SL
1674 trace_block_plug(q);
1675 }
73c10101 1676 }
73c10101 1677 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1678 blk_account_io_start(req, true);
73c10101
JA
1679 } else {
1680 spin_lock_irq(q->queue_lock);
1681 add_acct_request(q, req, where);
24ecfbe2 1682 __blk_run_queue(q);
73c10101
JA
1683out_unlock:
1684 spin_unlock_irq(q->queue_lock);
1685 }
1da177e4 1686}
c20e8de2 1687EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1688
1689/*
1690 * If bio->bi_dev is a partition, remap the location
1691 */
1692static inline void blk_partition_remap(struct bio *bio)
1693{
1694 struct block_device *bdev = bio->bi_bdev;
1695
bf2de6f5 1696 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1697 struct hd_struct *p = bdev->bd_part;
1698
4f024f37 1699 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1700 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1701
d07335e5
MS
1702 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1703 bdev->bd_dev,
4f024f37 1704 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1705 }
1706}
1707
1da177e4
LT
1708static void handle_bad_sector(struct bio *bio)
1709{
1710 char b[BDEVNAME_SIZE];
1711
1712 printk(KERN_INFO "attempt to access beyond end of device\n");
1713 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1714 bdevname(bio->bi_bdev, b),
1715 bio->bi_rw,
f73a1c7d 1716 (unsigned long long)bio_end_sector(bio),
77304d2a 1717 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1718
1719 set_bit(BIO_EOF, &bio->bi_flags);
1720}
1721
c17bb495
AM
1722#ifdef CONFIG_FAIL_MAKE_REQUEST
1723
1724static DECLARE_FAULT_ATTR(fail_make_request);
1725
1726static int __init setup_fail_make_request(char *str)
1727{
1728 return setup_fault_attr(&fail_make_request, str);
1729}
1730__setup("fail_make_request=", setup_fail_make_request);
1731
b2c9cd37 1732static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1733{
b2c9cd37 1734 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1735}
1736
1737static int __init fail_make_request_debugfs(void)
1738{
dd48c085
AM
1739 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1740 NULL, &fail_make_request);
1741
21f9fcd8 1742 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1743}
1744
1745late_initcall(fail_make_request_debugfs);
1746
1747#else /* CONFIG_FAIL_MAKE_REQUEST */
1748
b2c9cd37
AM
1749static inline bool should_fail_request(struct hd_struct *part,
1750 unsigned int bytes)
c17bb495 1751{
b2c9cd37 1752 return false;
c17bb495
AM
1753}
1754
1755#endif /* CONFIG_FAIL_MAKE_REQUEST */
1756
c07e2b41
JA
1757/*
1758 * Check whether this bio extends beyond the end of the device.
1759 */
1760static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1761{
1762 sector_t maxsector;
1763
1764 if (!nr_sectors)
1765 return 0;
1766
1767 /* Test device or partition size, when known. */
77304d2a 1768 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1769 if (maxsector) {
4f024f37 1770 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1771
1772 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1773 /*
1774 * This may well happen - the kernel calls bread()
1775 * without checking the size of the device, e.g., when
1776 * mounting a device.
1777 */
1778 handle_bad_sector(bio);
1779 return 1;
1780 }
1781 }
1782
1783 return 0;
1784}
1785
27a84d54
CH
1786static noinline_for_stack bool
1787generic_make_request_checks(struct bio *bio)
1da177e4 1788{
165125e1 1789 struct request_queue *q;
5a7bbad2 1790 int nr_sectors = bio_sectors(bio);
51fd77bd 1791 int err = -EIO;
5a7bbad2
CH
1792 char b[BDEVNAME_SIZE];
1793 struct hd_struct *part;
1da177e4
LT
1794
1795 might_sleep();
1da177e4 1796
c07e2b41
JA
1797 if (bio_check_eod(bio, nr_sectors))
1798 goto end_io;
1da177e4 1799
5a7bbad2
CH
1800 q = bdev_get_queue(bio->bi_bdev);
1801 if (unlikely(!q)) {
1802 printk(KERN_ERR
1803 "generic_make_request: Trying to access "
1804 "nonexistent block-device %s (%Lu)\n",
1805 bdevname(bio->bi_bdev, b),
4f024f37 1806 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1807 goto end_io;
1808 }
c17bb495 1809
e2a60da7
MP
1810 if (likely(bio_is_rw(bio) &&
1811 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1812 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1813 bdevname(bio->bi_bdev, b),
1814 bio_sectors(bio),
1815 queue_max_hw_sectors(q));
1816 goto end_io;
1817 }
1da177e4 1818
5a7bbad2 1819 part = bio->bi_bdev->bd_part;
4f024f37 1820 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1821 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1822 bio->bi_iter.bi_size))
5a7bbad2 1823 goto end_io;
2056a782 1824
5a7bbad2
CH
1825 /*
1826 * If this device has partitions, remap block n
1827 * of partition p to block n+start(p) of the disk.
1828 */
1829 blk_partition_remap(bio);
2056a782 1830
5a7bbad2
CH
1831 if (bio_check_eod(bio, nr_sectors))
1832 goto end_io;
1e87901e 1833
5a7bbad2
CH
1834 /*
1835 * Filter flush bio's early so that make_request based
1836 * drivers without flush support don't have to worry
1837 * about them.
1838 */
1839 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1840 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1841 if (!nr_sectors) {
1842 err = 0;
51fd77bd
JA
1843 goto end_io;
1844 }
5a7bbad2 1845 }
5ddfe969 1846
5a7bbad2
CH
1847 if ((bio->bi_rw & REQ_DISCARD) &&
1848 (!blk_queue_discard(q) ||
e2a60da7 1849 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1850 err = -EOPNOTSUPP;
1851 goto end_io;
1852 }
01edede4 1853
4363ac7c 1854 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1855 err = -EOPNOTSUPP;
1856 goto end_io;
1857 }
01edede4 1858
7f4b35d1
TH
1859 /*
1860 * Various block parts want %current->io_context and lazy ioc
1861 * allocation ends up trading a lot of pain for a small amount of
1862 * memory. Just allocate it upfront. This may fail and block
1863 * layer knows how to live with it.
1864 */
1865 create_io_context(GFP_ATOMIC, q->node);
1866
bc16a4f9
TH
1867 if (blk_throtl_bio(q, bio))
1868 return false; /* throttled, will be resubmitted later */
27a84d54 1869
5a7bbad2 1870 trace_block_bio_queue(q, bio);
27a84d54 1871 return true;
a7384677
TH
1872
1873end_io:
1874 bio_endio(bio, err);
27a84d54 1875 return false;
1da177e4
LT
1876}
1877
27a84d54
CH
1878/**
1879 * generic_make_request - hand a buffer to its device driver for I/O
1880 * @bio: The bio describing the location in memory and on the device.
1881 *
1882 * generic_make_request() is used to make I/O requests of block
1883 * devices. It is passed a &struct bio, which describes the I/O that needs
1884 * to be done.
1885 *
1886 * generic_make_request() does not return any status. The
1887 * success/failure status of the request, along with notification of
1888 * completion, is delivered asynchronously through the bio->bi_end_io
1889 * function described (one day) else where.
1890 *
1891 * The caller of generic_make_request must make sure that bi_io_vec
1892 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1893 * set to describe the device address, and the
1894 * bi_end_io and optionally bi_private are set to describe how
1895 * completion notification should be signaled.
1896 *
1897 * generic_make_request and the drivers it calls may use bi_next if this
1898 * bio happens to be merged with someone else, and may resubmit the bio to
1899 * a lower device by calling into generic_make_request recursively, which
1900 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1901 */
1902void generic_make_request(struct bio *bio)
1903{
bddd87c7
AM
1904 struct bio_list bio_list_on_stack;
1905
27a84d54
CH
1906 if (!generic_make_request_checks(bio))
1907 return;
1908
1909 /*
1910 * We only want one ->make_request_fn to be active at a time, else
1911 * stack usage with stacked devices could be a problem. So use
1912 * current->bio_list to keep a list of requests submited by a
1913 * make_request_fn function. current->bio_list is also used as a
1914 * flag to say if generic_make_request is currently active in this
1915 * task or not. If it is NULL, then no make_request is active. If
1916 * it is non-NULL, then a make_request is active, and new requests
1917 * should be added at the tail
1918 */
bddd87c7 1919 if (current->bio_list) {
bddd87c7 1920 bio_list_add(current->bio_list, bio);
d89d8796
NB
1921 return;
1922 }
27a84d54 1923
d89d8796
NB
1924 /* following loop may be a bit non-obvious, and so deserves some
1925 * explanation.
1926 * Before entering the loop, bio->bi_next is NULL (as all callers
1927 * ensure that) so we have a list with a single bio.
1928 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1929 * we assign bio_list to a pointer to the bio_list_on_stack,
1930 * thus initialising the bio_list of new bios to be
27a84d54 1931 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1932 * through a recursive call to generic_make_request. If it
1933 * did, we find a non-NULL value in bio_list and re-enter the loop
1934 * from the top. In this case we really did just take the bio
bddd87c7 1935 * of the top of the list (no pretending) and so remove it from
27a84d54 1936 * bio_list, and call into ->make_request() again.
d89d8796
NB
1937 */
1938 BUG_ON(bio->bi_next);
bddd87c7
AM
1939 bio_list_init(&bio_list_on_stack);
1940 current->bio_list = &bio_list_on_stack;
d89d8796 1941 do {
27a84d54
CH
1942 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1943
1944 q->make_request_fn(q, bio);
1945
bddd87c7 1946 bio = bio_list_pop(current->bio_list);
d89d8796 1947 } while (bio);
bddd87c7 1948 current->bio_list = NULL; /* deactivate */
d89d8796 1949}
1da177e4
LT
1950EXPORT_SYMBOL(generic_make_request);
1951
1952/**
710027a4 1953 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1954 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1955 * @bio: The &struct bio which describes the I/O
1956 *
1957 * submit_bio() is very similar in purpose to generic_make_request(), and
1958 * uses that function to do most of the work. Both are fairly rough
710027a4 1959 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1960 *
1961 */
1962void submit_bio(int rw, struct bio *bio)
1963{
22e2c507 1964 bio->bi_rw |= rw;
1da177e4 1965
bf2de6f5
JA
1966 /*
1967 * If it's a regular read/write or a barrier with data attached,
1968 * go through the normal accounting stuff before submission.
1969 */
e2a60da7 1970 if (bio_has_data(bio)) {
4363ac7c
MP
1971 unsigned int count;
1972
1973 if (unlikely(rw & REQ_WRITE_SAME))
1974 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1975 else
1976 count = bio_sectors(bio);
1977
bf2de6f5
JA
1978 if (rw & WRITE) {
1979 count_vm_events(PGPGOUT, count);
1980 } else {
4f024f37 1981 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1982 count_vm_events(PGPGIN, count);
1983 }
1984
1985 if (unlikely(block_dump)) {
1986 char b[BDEVNAME_SIZE];
8dcbdc74 1987 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1988 current->comm, task_pid_nr(current),
bf2de6f5 1989 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1990 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1991 bdevname(bio->bi_bdev, b),
1992 count);
bf2de6f5 1993 }
1da177e4
LT
1994 }
1995
1996 generic_make_request(bio);
1997}
1da177e4
LT
1998EXPORT_SYMBOL(submit_bio);
1999
82124d60
KU
2000/**
2001 * blk_rq_check_limits - Helper function to check a request for the queue limit
2002 * @q: the queue
2003 * @rq: the request being checked
2004 *
2005 * Description:
2006 * @rq may have been made based on weaker limitations of upper-level queues
2007 * in request stacking drivers, and it may violate the limitation of @q.
2008 * Since the block layer and the underlying device driver trust @rq
2009 * after it is inserted to @q, it should be checked against @q before
2010 * the insertion using this generic function.
2011 *
2012 * This function should also be useful for request stacking drivers
eef35c2d 2013 * in some cases below, so export this function.
82124d60
KU
2014 * Request stacking drivers like request-based dm may change the queue
2015 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 2016 * Such request stacking drivers should check those requests against
82124d60
KU
2017 * the new queue limits again when they dispatch those requests,
2018 * although such checkings are also done against the old queue limits
2019 * when submitting requests.
2020 */
2021int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2022{
e2a60da7 2023 if (!rq_mergeable(rq))
3383977f
S
2024 return 0;
2025
f31dc1cd 2026 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2027 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2028 return -EIO;
2029 }
2030
2031 /*
2032 * queue's settings related to segment counting like q->bounce_pfn
2033 * may differ from that of other stacking queues.
2034 * Recalculate it to check the request correctly on this queue's
2035 * limitation.
2036 */
2037 blk_recalc_rq_segments(rq);
8a78362c 2038 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2039 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2040 return -EIO;
2041 }
2042
2043 return 0;
2044}
2045EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2046
2047/**
2048 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2049 * @q: the queue to submit the request
2050 * @rq: the request being queued
2051 */
2052int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2053{
2054 unsigned long flags;
4853abaa 2055 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2056
2057 if (blk_rq_check_limits(q, rq))
2058 return -EIO;
2059
b2c9cd37
AM
2060 if (rq->rq_disk &&
2061 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2062 return -EIO;
82124d60 2063
7fb4898e
KB
2064 if (q->mq_ops) {
2065 if (blk_queue_io_stat(q))
2066 blk_account_io_start(rq, true);
2067 blk_mq_insert_request(rq, false, true, true);
2068 return 0;
2069 }
2070
82124d60 2071 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2072 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2073 spin_unlock_irqrestore(q->queue_lock, flags);
2074 return -ENODEV;
2075 }
82124d60
KU
2076
2077 /*
2078 * Submitting request must be dequeued before calling this function
2079 * because it will be linked to another request_queue
2080 */
2081 BUG_ON(blk_queued_rq(rq));
2082
4853abaa
JM
2083 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2084 where = ELEVATOR_INSERT_FLUSH;
2085
2086 add_acct_request(q, rq, where);
e67b77c7
JM
2087 if (where == ELEVATOR_INSERT_FLUSH)
2088 __blk_run_queue(q);
82124d60
KU
2089 spin_unlock_irqrestore(q->queue_lock, flags);
2090
2091 return 0;
2092}
2093EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2094
80a761fd
TH
2095/**
2096 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2097 * @rq: request to examine
2098 *
2099 * Description:
2100 * A request could be merge of IOs which require different failure
2101 * handling. This function determines the number of bytes which
2102 * can be failed from the beginning of the request without
2103 * crossing into area which need to be retried further.
2104 *
2105 * Return:
2106 * The number of bytes to fail.
2107 *
2108 * Context:
2109 * queue_lock must be held.
2110 */
2111unsigned int blk_rq_err_bytes(const struct request *rq)
2112{
2113 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2114 unsigned int bytes = 0;
2115 struct bio *bio;
2116
2117 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2118 return blk_rq_bytes(rq);
2119
2120 /*
2121 * Currently the only 'mixing' which can happen is between
2122 * different fastfail types. We can safely fail portions
2123 * which have all the failfast bits that the first one has -
2124 * the ones which are at least as eager to fail as the first
2125 * one.
2126 */
2127 for (bio = rq->bio; bio; bio = bio->bi_next) {
2128 if ((bio->bi_rw & ff) != ff)
2129 break;
4f024f37 2130 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2131 }
2132
2133 /* this could lead to infinite loop */
2134 BUG_ON(blk_rq_bytes(rq) && !bytes);
2135 return bytes;
2136}
2137EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2138
320ae51f 2139void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2140{
c2553b58 2141 if (blk_do_io_stat(req)) {
bc58ba94
JA
2142 const int rw = rq_data_dir(req);
2143 struct hd_struct *part;
2144 int cpu;
2145
2146 cpu = part_stat_lock();
09e099d4 2147 part = req->part;
bc58ba94
JA
2148 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2149 part_stat_unlock();
2150 }
2151}
2152
320ae51f 2153void blk_account_io_done(struct request *req)
bc58ba94 2154{
bc58ba94 2155 /*
dd4c133f
TH
2156 * Account IO completion. flush_rq isn't accounted as a
2157 * normal IO on queueing nor completion. Accounting the
2158 * containing request is enough.
bc58ba94 2159 */
414b4ff5 2160 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2161 unsigned long duration = jiffies - req->start_time;
2162 const int rw = rq_data_dir(req);
2163 struct hd_struct *part;
2164 int cpu;
2165
2166 cpu = part_stat_lock();
09e099d4 2167 part = req->part;
bc58ba94
JA
2168
2169 part_stat_inc(cpu, part, ios[rw]);
2170 part_stat_add(cpu, part, ticks[rw], duration);
2171 part_round_stats(cpu, part);
316d315b 2172 part_dec_in_flight(part, rw);
bc58ba94 2173
6c23a968 2174 hd_struct_put(part);
bc58ba94
JA
2175 part_stat_unlock();
2176 }
2177}
2178
47fafbc7 2179#ifdef CONFIG_PM
c8158819
LM
2180/*
2181 * Don't process normal requests when queue is suspended
2182 * or in the process of suspending/resuming
2183 */
2184static struct request *blk_pm_peek_request(struct request_queue *q,
2185 struct request *rq)
2186{
2187 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2188 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2189 return NULL;
2190 else
2191 return rq;
2192}
2193#else
2194static inline struct request *blk_pm_peek_request(struct request_queue *q,
2195 struct request *rq)
2196{
2197 return rq;
2198}
2199#endif
2200
320ae51f
JA
2201void blk_account_io_start(struct request *rq, bool new_io)
2202{
2203 struct hd_struct *part;
2204 int rw = rq_data_dir(rq);
2205 int cpu;
2206
2207 if (!blk_do_io_stat(rq))
2208 return;
2209
2210 cpu = part_stat_lock();
2211
2212 if (!new_io) {
2213 part = rq->part;
2214 part_stat_inc(cpu, part, merges[rw]);
2215 } else {
2216 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2217 if (!hd_struct_try_get(part)) {
2218 /*
2219 * The partition is already being removed,
2220 * the request will be accounted on the disk only
2221 *
2222 * We take a reference on disk->part0 although that
2223 * partition will never be deleted, so we can treat
2224 * it as any other partition.
2225 */
2226 part = &rq->rq_disk->part0;
2227 hd_struct_get(part);
2228 }
2229 part_round_stats(cpu, part);
2230 part_inc_in_flight(part, rw);
2231 rq->part = part;
2232 }
2233
2234 part_stat_unlock();
2235}
2236
3bcddeac 2237/**
9934c8c0
TH
2238 * blk_peek_request - peek at the top of a request queue
2239 * @q: request queue to peek at
2240 *
2241 * Description:
2242 * Return the request at the top of @q. The returned request
2243 * should be started using blk_start_request() before LLD starts
2244 * processing it.
2245 *
2246 * Return:
2247 * Pointer to the request at the top of @q if available. Null
2248 * otherwise.
2249 *
2250 * Context:
2251 * queue_lock must be held.
2252 */
2253struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2254{
2255 struct request *rq;
2256 int ret;
2257
2258 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2259
2260 rq = blk_pm_peek_request(q, rq);
2261 if (!rq)
2262 break;
2263
158dbda0
TH
2264 if (!(rq->cmd_flags & REQ_STARTED)) {
2265 /*
2266 * This is the first time the device driver
2267 * sees this request (possibly after
2268 * requeueing). Notify IO scheduler.
2269 */
33659ebb 2270 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2271 elv_activate_rq(q, rq);
2272
2273 /*
2274 * just mark as started even if we don't start
2275 * it, a request that has been delayed should
2276 * not be passed by new incoming requests
2277 */
2278 rq->cmd_flags |= REQ_STARTED;
2279 trace_block_rq_issue(q, rq);
2280 }
2281
2282 if (!q->boundary_rq || q->boundary_rq == rq) {
2283 q->end_sector = rq_end_sector(rq);
2284 q->boundary_rq = NULL;
2285 }
2286
2287 if (rq->cmd_flags & REQ_DONTPREP)
2288 break;
2289
2e46e8b2 2290 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2291 /*
2292 * make sure space for the drain appears we
2293 * know we can do this because max_hw_segments
2294 * has been adjusted to be one fewer than the
2295 * device can handle
2296 */
2297 rq->nr_phys_segments++;
2298 }
2299
2300 if (!q->prep_rq_fn)
2301 break;
2302
2303 ret = q->prep_rq_fn(q, rq);
2304 if (ret == BLKPREP_OK) {
2305 break;
2306 } else if (ret == BLKPREP_DEFER) {
2307 /*
2308 * the request may have been (partially) prepped.
2309 * we need to keep this request in the front to
2310 * avoid resource deadlock. REQ_STARTED will
2311 * prevent other fs requests from passing this one.
2312 */
2e46e8b2 2313 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2314 !(rq->cmd_flags & REQ_DONTPREP)) {
2315 /*
2316 * remove the space for the drain we added
2317 * so that we don't add it again
2318 */
2319 --rq->nr_phys_segments;
2320 }
2321
2322 rq = NULL;
2323 break;
2324 } else if (ret == BLKPREP_KILL) {
2325 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2326 /*
2327 * Mark this request as started so we don't trigger
2328 * any debug logic in the end I/O path.
2329 */
2330 blk_start_request(rq);
40cbbb78 2331 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2332 } else {
2333 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2334 break;
2335 }
2336 }
2337
2338 return rq;
2339}
9934c8c0 2340EXPORT_SYMBOL(blk_peek_request);
158dbda0 2341
9934c8c0 2342void blk_dequeue_request(struct request *rq)
158dbda0 2343{
9934c8c0
TH
2344 struct request_queue *q = rq->q;
2345
158dbda0
TH
2346 BUG_ON(list_empty(&rq->queuelist));
2347 BUG_ON(ELV_ON_HASH(rq));
2348
2349 list_del_init(&rq->queuelist);
2350
2351 /*
2352 * the time frame between a request being removed from the lists
2353 * and to it is freed is accounted as io that is in progress at
2354 * the driver side.
2355 */
9195291e 2356 if (blk_account_rq(rq)) {
0a7ae2ff 2357 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2358 set_io_start_time_ns(rq);
2359 }
158dbda0
TH
2360}
2361
9934c8c0
TH
2362/**
2363 * blk_start_request - start request processing on the driver
2364 * @req: request to dequeue
2365 *
2366 * Description:
2367 * Dequeue @req and start timeout timer on it. This hands off the
2368 * request to the driver.
2369 *
2370 * Block internal functions which don't want to start timer should
2371 * call blk_dequeue_request().
2372 *
2373 * Context:
2374 * queue_lock must be held.
2375 */
2376void blk_start_request(struct request *req)
2377{
2378 blk_dequeue_request(req);
2379
2380 /*
5f49f631
TH
2381 * We are now handing the request to the hardware, initialize
2382 * resid_len to full count and add the timeout handler.
9934c8c0 2383 */
5f49f631 2384 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2385 if (unlikely(blk_bidi_rq(req)))
2386 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2387
4912aa6c 2388 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2389 blk_add_timer(req);
2390}
2391EXPORT_SYMBOL(blk_start_request);
2392
2393/**
2394 * blk_fetch_request - fetch a request from a request queue
2395 * @q: request queue to fetch a request from
2396 *
2397 * Description:
2398 * Return the request at the top of @q. The request is started on
2399 * return and LLD can start processing it immediately.
2400 *
2401 * Return:
2402 * Pointer to the request at the top of @q if available. Null
2403 * otherwise.
2404 *
2405 * Context:
2406 * queue_lock must be held.
2407 */
2408struct request *blk_fetch_request(struct request_queue *q)
2409{
2410 struct request *rq;
2411
2412 rq = blk_peek_request(q);
2413 if (rq)
2414 blk_start_request(rq);
2415 return rq;
2416}
2417EXPORT_SYMBOL(blk_fetch_request);
2418
3bcddeac 2419/**
2e60e022 2420 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2421 * @req: the request being processed
710027a4 2422 * @error: %0 for success, < %0 for error
8ebf9756 2423 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2424 *
2425 * Description:
8ebf9756
RD
2426 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2427 * the request structure even if @req doesn't have leftover.
2428 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2429 *
2430 * This special helper function is only for request stacking drivers
2431 * (e.g. request-based dm) so that they can handle partial completion.
2432 * Actual device drivers should use blk_end_request instead.
2433 *
2434 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2435 * %false return from this function.
3bcddeac
KU
2436 *
2437 * Return:
2e60e022
TH
2438 * %false - this request doesn't have any more data
2439 * %true - this request has more data
3bcddeac 2440 **/
2e60e022 2441bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2442{
f79ea416 2443 int total_bytes;
1da177e4 2444
4a0efdc9
HR
2445 trace_block_rq_complete(req->q, req, nr_bytes);
2446
2e60e022
TH
2447 if (!req->bio)
2448 return false;
2449
1da177e4 2450 /*
6f41469c
TH
2451 * For fs requests, rq is just carrier of independent bio's
2452 * and each partial completion should be handled separately.
2453 * Reset per-request error on each partial completion.
2454 *
2455 * TODO: tj: This is too subtle. It would be better to let
2456 * low level drivers do what they see fit.
1da177e4 2457 */
33659ebb 2458 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2459 req->errors = 0;
2460
33659ebb
CH
2461 if (error && req->cmd_type == REQ_TYPE_FS &&
2462 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2463 char *error_type;
2464
2465 switch (error) {
2466 case -ENOLINK:
2467 error_type = "recoverable transport";
2468 break;
2469 case -EREMOTEIO:
2470 error_type = "critical target";
2471 break;
2472 case -EBADE:
2473 error_type = "critical nexus";
2474 break;
d1ffc1f8
HR
2475 case -ETIMEDOUT:
2476 error_type = "timeout";
2477 break;
a9d6ceb8
HR
2478 case -ENOSPC:
2479 error_type = "critical space allocation";
2480 break;
7e782af5
HR
2481 case -ENODATA:
2482 error_type = "critical medium";
2483 break;
79775567
HR
2484 case -EIO:
2485 default:
2486 error_type = "I/O";
2487 break;
2488 }
ef3ecb66
RE
2489 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2490 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2491 req->rq_disk->disk_name : "?",
2492 (unsigned long long)blk_rq_pos(req));
2493
1da177e4
LT
2494 }
2495
bc58ba94 2496 blk_account_io_completion(req, nr_bytes);
d72d904a 2497
f79ea416
KO
2498 total_bytes = 0;
2499 while (req->bio) {
2500 struct bio *bio = req->bio;
4f024f37 2501 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2502
4f024f37 2503 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2504 req->bio = bio->bi_next;
1da177e4 2505
f79ea416 2506 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2507
f79ea416
KO
2508 total_bytes += bio_bytes;
2509 nr_bytes -= bio_bytes;
1da177e4 2510
f79ea416
KO
2511 if (!nr_bytes)
2512 break;
1da177e4
LT
2513 }
2514
2515 /*
2516 * completely done
2517 */
2e60e022
TH
2518 if (!req->bio) {
2519 /*
2520 * Reset counters so that the request stacking driver
2521 * can find how many bytes remain in the request
2522 * later.
2523 */
a2dec7b3 2524 req->__data_len = 0;
2e60e022
TH
2525 return false;
2526 }
1da177e4 2527
a2dec7b3 2528 req->__data_len -= total_bytes;
2e46e8b2
TH
2529
2530 /* update sector only for requests with clear definition of sector */
e2a60da7 2531 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2532 req->__sector += total_bytes >> 9;
2e46e8b2 2533
80a761fd
TH
2534 /* mixed attributes always follow the first bio */
2535 if (req->cmd_flags & REQ_MIXED_MERGE) {
2536 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2537 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2538 }
2539
2e46e8b2
TH
2540 /*
2541 * If total number of sectors is less than the first segment
2542 * size, something has gone terribly wrong.
2543 */
2544 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2545 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2546 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2547 }
2548
2549 /* recalculate the number of segments */
1da177e4 2550 blk_recalc_rq_segments(req);
2e46e8b2 2551
2e60e022 2552 return true;
1da177e4 2553}
2e60e022 2554EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2555
2e60e022
TH
2556static bool blk_update_bidi_request(struct request *rq, int error,
2557 unsigned int nr_bytes,
2558 unsigned int bidi_bytes)
5efccd17 2559{
2e60e022
TH
2560 if (blk_update_request(rq, error, nr_bytes))
2561 return true;
5efccd17 2562
2e60e022
TH
2563 /* Bidi request must be completed as a whole */
2564 if (unlikely(blk_bidi_rq(rq)) &&
2565 blk_update_request(rq->next_rq, error, bidi_bytes))
2566 return true;
5efccd17 2567
e2e1a148
JA
2568 if (blk_queue_add_random(rq->q))
2569 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2570
2571 return false;
1da177e4
LT
2572}
2573
28018c24
JB
2574/**
2575 * blk_unprep_request - unprepare a request
2576 * @req: the request
2577 *
2578 * This function makes a request ready for complete resubmission (or
2579 * completion). It happens only after all error handling is complete,
2580 * so represents the appropriate moment to deallocate any resources
2581 * that were allocated to the request in the prep_rq_fn. The queue
2582 * lock is held when calling this.
2583 */
2584void blk_unprep_request(struct request *req)
2585{
2586 struct request_queue *q = req->q;
2587
2588 req->cmd_flags &= ~REQ_DONTPREP;
2589 if (q->unprep_rq_fn)
2590 q->unprep_rq_fn(q, req);
2591}
2592EXPORT_SYMBOL_GPL(blk_unprep_request);
2593
1da177e4
LT
2594/*
2595 * queue lock must be held
2596 */
12120077 2597void blk_finish_request(struct request *req, int error)
1da177e4 2598{
125c99bc 2599 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2600 blk_queue_end_tag(req->q, req);
2601
ba396a6c 2602 BUG_ON(blk_queued_rq(req));
1da177e4 2603
33659ebb 2604 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2605 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2606
e78042e5
MA
2607 blk_delete_timer(req);
2608
28018c24
JB
2609 if (req->cmd_flags & REQ_DONTPREP)
2610 blk_unprep_request(req);
2611
bc58ba94 2612 blk_account_io_done(req);
b8286239 2613
1da177e4 2614 if (req->end_io)
8ffdc655 2615 req->end_io(req, error);
b8286239
KU
2616 else {
2617 if (blk_bidi_rq(req))
2618 __blk_put_request(req->next_rq->q, req->next_rq);
2619
1da177e4 2620 __blk_put_request(req->q, req);
b8286239 2621 }
1da177e4 2622}
12120077 2623EXPORT_SYMBOL(blk_finish_request);
1da177e4 2624
3b11313a 2625/**
2e60e022
TH
2626 * blk_end_bidi_request - Complete a bidi request
2627 * @rq: the request to complete
2628 * @error: %0 for success, < %0 for error
2629 * @nr_bytes: number of bytes to complete @rq
2630 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2631 *
2632 * Description:
e3a04fe3 2633 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2634 * Drivers that supports bidi can safely call this member for any
2635 * type of request, bidi or uni. In the later case @bidi_bytes is
2636 * just ignored.
336cdb40
KU
2637 *
2638 * Return:
2e60e022
TH
2639 * %false - we are done with this request
2640 * %true - still buffers pending for this request
a0cd1285 2641 **/
b1f74493 2642static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2643 unsigned int nr_bytes, unsigned int bidi_bytes)
2644{
336cdb40 2645 struct request_queue *q = rq->q;
2e60e022 2646 unsigned long flags;
32fab448 2647
2e60e022
TH
2648 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2649 return true;
32fab448 2650
336cdb40 2651 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2652 blk_finish_request(rq, error);
336cdb40
KU
2653 spin_unlock_irqrestore(q->queue_lock, flags);
2654
2e60e022 2655 return false;
32fab448
KU
2656}
2657
336cdb40 2658/**
2e60e022
TH
2659 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2660 * @rq: the request to complete
710027a4 2661 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2662 * @nr_bytes: number of bytes to complete @rq
2663 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2664 *
2665 * Description:
2e60e022
TH
2666 * Identical to blk_end_bidi_request() except that queue lock is
2667 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2668 *
2669 * Return:
2e60e022
TH
2670 * %false - we are done with this request
2671 * %true - still buffers pending for this request
336cdb40 2672 **/
4853abaa 2673bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2674 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2675{
2e60e022
TH
2676 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2677 return true;
336cdb40 2678
2e60e022 2679 blk_finish_request(rq, error);
336cdb40 2680
2e60e022 2681 return false;
336cdb40 2682}
e19a3ab0
KU
2683
2684/**
2685 * blk_end_request - Helper function for drivers to complete the request.
2686 * @rq: the request being processed
710027a4 2687 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2688 * @nr_bytes: number of bytes to complete
2689 *
2690 * Description:
2691 * Ends I/O on a number of bytes attached to @rq.
2692 * If @rq has leftover, sets it up for the next range of segments.
2693 *
2694 * Return:
b1f74493
FT
2695 * %false - we are done with this request
2696 * %true - still buffers pending for this request
e19a3ab0 2697 **/
b1f74493 2698bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2699{
b1f74493 2700 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2701}
56ad1740 2702EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2703
2704/**
b1f74493
FT
2705 * blk_end_request_all - Helper function for drives to finish the request.
2706 * @rq: the request to finish
8ebf9756 2707 * @error: %0 for success, < %0 for error
336cdb40
KU
2708 *
2709 * Description:
b1f74493
FT
2710 * Completely finish @rq.
2711 */
2712void blk_end_request_all(struct request *rq, int error)
336cdb40 2713{
b1f74493
FT
2714 bool pending;
2715 unsigned int bidi_bytes = 0;
336cdb40 2716
b1f74493
FT
2717 if (unlikely(blk_bidi_rq(rq)))
2718 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2719
b1f74493
FT
2720 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2721 BUG_ON(pending);
2722}
56ad1740 2723EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2724
b1f74493
FT
2725/**
2726 * blk_end_request_cur - Helper function to finish the current request chunk.
2727 * @rq: the request to finish the current chunk for
8ebf9756 2728 * @error: %0 for success, < %0 for error
b1f74493
FT
2729 *
2730 * Description:
2731 * Complete the current consecutively mapped chunk from @rq.
2732 *
2733 * Return:
2734 * %false - we are done with this request
2735 * %true - still buffers pending for this request
2736 */
2737bool blk_end_request_cur(struct request *rq, int error)
2738{
2739 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2740}
56ad1740 2741EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2742
80a761fd
TH
2743/**
2744 * blk_end_request_err - Finish a request till the next failure boundary.
2745 * @rq: the request to finish till the next failure boundary for
2746 * @error: must be negative errno
2747 *
2748 * Description:
2749 * Complete @rq till the next failure boundary.
2750 *
2751 * Return:
2752 * %false - we are done with this request
2753 * %true - still buffers pending for this request
2754 */
2755bool blk_end_request_err(struct request *rq, int error)
2756{
2757 WARN_ON(error >= 0);
2758 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2759}
2760EXPORT_SYMBOL_GPL(blk_end_request_err);
2761
e3a04fe3 2762/**
b1f74493
FT
2763 * __blk_end_request - Helper function for drivers to complete the request.
2764 * @rq: the request being processed
2765 * @error: %0 for success, < %0 for error
2766 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2767 *
2768 * Description:
b1f74493 2769 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2770 *
2771 * Return:
b1f74493
FT
2772 * %false - we are done with this request
2773 * %true - still buffers pending for this request
e3a04fe3 2774 **/
b1f74493 2775bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2776{
b1f74493 2777 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2778}
56ad1740 2779EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2780
32fab448 2781/**
b1f74493
FT
2782 * __blk_end_request_all - Helper function for drives to finish the request.
2783 * @rq: the request to finish
8ebf9756 2784 * @error: %0 for success, < %0 for error
32fab448
KU
2785 *
2786 * Description:
b1f74493 2787 * Completely finish @rq. Must be called with queue lock held.
32fab448 2788 */
b1f74493 2789void __blk_end_request_all(struct request *rq, int error)
32fab448 2790{
b1f74493
FT
2791 bool pending;
2792 unsigned int bidi_bytes = 0;
2793
2794 if (unlikely(blk_bidi_rq(rq)))
2795 bidi_bytes = blk_rq_bytes(rq->next_rq);
2796
2797 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2798 BUG_ON(pending);
32fab448 2799}
56ad1740 2800EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2801
e19a3ab0 2802/**
b1f74493
FT
2803 * __blk_end_request_cur - Helper function to finish the current request chunk.
2804 * @rq: the request to finish the current chunk for
8ebf9756 2805 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2806 *
2807 * Description:
b1f74493
FT
2808 * Complete the current consecutively mapped chunk from @rq. Must
2809 * be called with queue lock held.
e19a3ab0
KU
2810 *
2811 * Return:
b1f74493
FT
2812 * %false - we are done with this request
2813 * %true - still buffers pending for this request
2814 */
2815bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2816{
b1f74493 2817 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2818}
56ad1740 2819EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2820
80a761fd
TH
2821/**
2822 * __blk_end_request_err - Finish a request till the next failure boundary.
2823 * @rq: the request to finish till the next failure boundary for
2824 * @error: must be negative errno
2825 *
2826 * Description:
2827 * Complete @rq till the next failure boundary. Must be called
2828 * with queue lock held.
2829 *
2830 * Return:
2831 * %false - we are done with this request
2832 * %true - still buffers pending for this request
2833 */
2834bool __blk_end_request_err(struct request *rq, int error)
2835{
2836 WARN_ON(error >= 0);
2837 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2838}
2839EXPORT_SYMBOL_GPL(__blk_end_request_err);
2840
86db1e29
JA
2841void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2842 struct bio *bio)
1da177e4 2843{
a82afdfc 2844 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2845 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2846
b4f42e28 2847 if (bio_has_data(bio))
fb2dce86 2848 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2849
4f024f37 2850 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2851 rq->bio = rq->biotail = bio;
1da177e4 2852
66846572
N
2853 if (bio->bi_bdev)
2854 rq->rq_disk = bio->bi_bdev->bd_disk;
2855}
1da177e4 2856
2d4dc890
IL
2857#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2858/**
2859 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2860 * @rq: the request to be flushed
2861 *
2862 * Description:
2863 * Flush all pages in @rq.
2864 */
2865void rq_flush_dcache_pages(struct request *rq)
2866{
2867 struct req_iterator iter;
7988613b 2868 struct bio_vec bvec;
2d4dc890
IL
2869
2870 rq_for_each_segment(bvec, rq, iter)
7988613b 2871 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2872}
2873EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2874#endif
2875
ef9e3fac
KU
2876/**
2877 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2878 * @q : the queue of the device being checked
2879 *
2880 * Description:
2881 * Check if underlying low-level drivers of a device are busy.
2882 * If the drivers want to export their busy state, they must set own
2883 * exporting function using blk_queue_lld_busy() first.
2884 *
2885 * Basically, this function is used only by request stacking drivers
2886 * to stop dispatching requests to underlying devices when underlying
2887 * devices are busy. This behavior helps more I/O merging on the queue
2888 * of the request stacking driver and prevents I/O throughput regression
2889 * on burst I/O load.
2890 *
2891 * Return:
2892 * 0 - Not busy (The request stacking driver should dispatch request)
2893 * 1 - Busy (The request stacking driver should stop dispatching request)
2894 */
2895int blk_lld_busy(struct request_queue *q)
2896{
2897 if (q->lld_busy_fn)
2898 return q->lld_busy_fn(q);
2899
2900 return 0;
2901}
2902EXPORT_SYMBOL_GPL(blk_lld_busy);
2903
b0fd271d
KU
2904/**
2905 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2906 * @rq: the clone request to be cleaned up
2907 *
2908 * Description:
2909 * Free all bios in @rq for a cloned request.
2910 */
2911void blk_rq_unprep_clone(struct request *rq)
2912{
2913 struct bio *bio;
2914
2915 while ((bio = rq->bio) != NULL) {
2916 rq->bio = bio->bi_next;
2917
2918 bio_put(bio);
2919 }
2920}
2921EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2922
2923/*
2924 * Copy attributes of the original request to the clone request.
b4f42e28 2925 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2926 */
2927static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2928{
2929 dst->cpu = src->cpu;
77a08689 2930 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2931 dst->cmd_type = src->cmd_type;
2932 dst->__sector = blk_rq_pos(src);
2933 dst->__data_len = blk_rq_bytes(src);
2934 dst->nr_phys_segments = src->nr_phys_segments;
2935 dst->ioprio = src->ioprio;
2936 dst->extra_len = src->extra_len;
2937}
2938
2939/**
2940 * blk_rq_prep_clone - Helper function to setup clone request
2941 * @rq: the request to be setup
2942 * @rq_src: original request to be cloned
2943 * @bs: bio_set that bios for clone are allocated from
2944 * @gfp_mask: memory allocation mask for bio
2945 * @bio_ctr: setup function to be called for each clone bio.
2946 * Returns %0 for success, non %0 for failure.
2947 * @data: private data to be passed to @bio_ctr
2948 *
2949 * Description:
2950 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2951 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2952 * are not copied, and copying such parts is the caller's responsibility.
2953 * Also, pages which the original bios are pointing to are not copied
2954 * and the cloned bios just point same pages.
2955 * So cloned bios must be completed before original bios, which means
2956 * the caller must complete @rq before @rq_src.
2957 */
2958int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2959 struct bio_set *bs, gfp_t gfp_mask,
2960 int (*bio_ctr)(struct bio *, struct bio *, void *),
2961 void *data)
2962{
2963 struct bio *bio, *bio_src;
2964
2965 if (!bs)
2966 bs = fs_bio_set;
2967
b0fd271d 2968 __rq_for_each_bio(bio_src, rq_src) {
11dfce50 2969 bio = bio_clone_fast(bio_src, gfp_mask, bs);
b0fd271d
KU
2970 if (!bio)
2971 goto free_and_out;
2972
b0fd271d
KU
2973 if (bio_ctr && bio_ctr(bio, bio_src, data))
2974 goto free_and_out;
2975
2976 if (rq->bio) {
2977 rq->biotail->bi_next = bio;
2978 rq->biotail = bio;
2979 } else
2980 rq->bio = rq->biotail = bio;
2981 }
2982
2983 __blk_rq_prep_clone(rq, rq_src);
2984
2985 return 0;
2986
2987free_and_out:
2988 if (bio)
4254bba1 2989 bio_put(bio);
b0fd271d
KU
2990 blk_rq_unprep_clone(rq);
2991
2992 return -ENOMEM;
2993}
2994EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2995
59c3d45e 2996int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2997{
2998 return queue_work(kblockd_workqueue, work);
2999}
1da177e4
LT
3000EXPORT_SYMBOL(kblockd_schedule_work);
3001
59c3d45e
JA
3002int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3003 unsigned long delay)
e43473b7
VG
3004{
3005 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3006}
3007EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3008
8ab14595
JA
3009int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3010 unsigned long delay)
3011{
3012 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3013}
3014EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3015
75df7136
SJ
3016/**
3017 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3018 * @plug: The &struct blk_plug that needs to be initialized
3019 *
3020 * Description:
3021 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3022 * pending I/O should the task end up blocking between blk_start_plug() and
3023 * blk_finish_plug(). This is important from a performance perspective, but
3024 * also ensures that we don't deadlock. For instance, if the task is blocking
3025 * for a memory allocation, memory reclaim could end up wanting to free a
3026 * page belonging to that request that is currently residing in our private
3027 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3028 * this kind of deadlock.
3029 */
73c10101
JA
3030void blk_start_plug(struct blk_plug *plug)
3031{
3032 struct task_struct *tsk = current;
3033
73c10101 3034 INIT_LIST_HEAD(&plug->list);
320ae51f 3035 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3036 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
3037
3038 /*
3039 * If this is a nested plug, don't actually assign it. It will be
3040 * flushed on its own.
3041 */
3042 if (!tsk->plug) {
3043 /*
3044 * Store ordering should not be needed here, since a potential
3045 * preempt will imply a full memory barrier
3046 */
3047 tsk->plug = plug;
3048 }
3049}
3050EXPORT_SYMBOL(blk_start_plug);
3051
3052static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3053{
3054 struct request *rqa = container_of(a, struct request, queuelist);
3055 struct request *rqb = container_of(b, struct request, queuelist);
3056
975927b9
JM
3057 return !(rqa->q < rqb->q ||
3058 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3059}
3060
49cac01e
JA
3061/*
3062 * If 'from_schedule' is true, then postpone the dispatch of requests
3063 * until a safe kblockd context. We due this to avoid accidental big
3064 * additional stack usage in driver dispatch, in places where the originally
3065 * plugger did not intend it.
3066 */
f6603783 3067static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3068 bool from_schedule)
99e22598 3069 __releases(q->queue_lock)
94b5eb28 3070{
49cac01e 3071 trace_block_unplug(q, depth, !from_schedule);
99e22598 3072
70460571 3073 if (from_schedule)
24ecfbe2 3074 blk_run_queue_async(q);
70460571 3075 else
24ecfbe2 3076 __blk_run_queue(q);
70460571 3077 spin_unlock(q->queue_lock);
94b5eb28
JA
3078}
3079
74018dc3 3080static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3081{
3082 LIST_HEAD(callbacks);
3083
2a7d5559
SL
3084 while (!list_empty(&plug->cb_list)) {
3085 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3086
2a7d5559
SL
3087 while (!list_empty(&callbacks)) {
3088 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3089 struct blk_plug_cb,
3090 list);
2a7d5559 3091 list_del(&cb->list);
74018dc3 3092 cb->callback(cb, from_schedule);
2a7d5559 3093 }
048c9374
N
3094 }
3095}
3096
9cbb1750
N
3097struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3098 int size)
3099{
3100 struct blk_plug *plug = current->plug;
3101 struct blk_plug_cb *cb;
3102
3103 if (!plug)
3104 return NULL;
3105
3106 list_for_each_entry(cb, &plug->cb_list, list)
3107 if (cb->callback == unplug && cb->data == data)
3108 return cb;
3109
3110 /* Not currently on the callback list */
3111 BUG_ON(size < sizeof(*cb));
3112 cb = kzalloc(size, GFP_ATOMIC);
3113 if (cb) {
3114 cb->data = data;
3115 cb->callback = unplug;
3116 list_add(&cb->list, &plug->cb_list);
3117 }
3118 return cb;
3119}
3120EXPORT_SYMBOL(blk_check_plugged);
3121
49cac01e 3122void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3123{
3124 struct request_queue *q;
3125 unsigned long flags;
3126 struct request *rq;
109b8129 3127 LIST_HEAD(list);
94b5eb28 3128 unsigned int depth;
73c10101 3129
74018dc3 3130 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3131
3132 if (!list_empty(&plug->mq_list))
3133 blk_mq_flush_plug_list(plug, from_schedule);
3134
73c10101
JA
3135 if (list_empty(&plug->list))
3136 return;
3137
109b8129
N
3138 list_splice_init(&plug->list, &list);
3139
422765c2 3140 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3141
3142 q = NULL;
94b5eb28 3143 depth = 0;
18811272
JA
3144
3145 /*
3146 * Save and disable interrupts here, to avoid doing it for every
3147 * queue lock we have to take.
3148 */
73c10101 3149 local_irq_save(flags);
109b8129
N
3150 while (!list_empty(&list)) {
3151 rq = list_entry_rq(list.next);
73c10101 3152 list_del_init(&rq->queuelist);
73c10101
JA
3153 BUG_ON(!rq->q);
3154 if (rq->q != q) {
99e22598
JA
3155 /*
3156 * This drops the queue lock
3157 */
3158 if (q)
49cac01e 3159 queue_unplugged(q, depth, from_schedule);
73c10101 3160 q = rq->q;
94b5eb28 3161 depth = 0;
73c10101
JA
3162 spin_lock(q->queue_lock);
3163 }
8ba61435
TH
3164
3165 /*
3166 * Short-circuit if @q is dead
3167 */
3f3299d5 3168 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3169 __blk_end_request_all(rq, -ENODEV);
3170 continue;
3171 }
3172
73c10101
JA
3173 /*
3174 * rq is already accounted, so use raw insert
3175 */
401a18e9
JA
3176 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3177 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3178 else
3179 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3180
3181 depth++;
73c10101
JA
3182 }
3183
99e22598
JA
3184 /*
3185 * This drops the queue lock
3186 */
3187 if (q)
49cac01e 3188 queue_unplugged(q, depth, from_schedule);
73c10101 3189
73c10101
JA
3190 local_irq_restore(flags);
3191}
73c10101
JA
3192
3193void blk_finish_plug(struct blk_plug *plug)
3194{
f6603783 3195 blk_flush_plug_list(plug, false);
73c10101 3196
88b996cd
CH
3197 if (plug == current->plug)
3198 current->plug = NULL;
73c10101 3199}
88b996cd 3200EXPORT_SYMBOL(blk_finish_plug);
73c10101 3201
47fafbc7 3202#ifdef CONFIG_PM
6c954667
LM
3203/**
3204 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3205 * @q: the queue of the device
3206 * @dev: the device the queue belongs to
3207 *
3208 * Description:
3209 * Initialize runtime-PM-related fields for @q and start auto suspend for
3210 * @dev. Drivers that want to take advantage of request-based runtime PM
3211 * should call this function after @dev has been initialized, and its
3212 * request queue @q has been allocated, and runtime PM for it can not happen
3213 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3214 * cases, driver should call this function before any I/O has taken place.
3215 *
3216 * This function takes care of setting up using auto suspend for the device,
3217 * the autosuspend delay is set to -1 to make runtime suspend impossible
3218 * until an updated value is either set by user or by driver. Drivers do
3219 * not need to touch other autosuspend settings.
3220 *
3221 * The block layer runtime PM is request based, so only works for drivers
3222 * that use request as their IO unit instead of those directly use bio's.
3223 */
3224void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3225{
3226 q->dev = dev;
3227 q->rpm_status = RPM_ACTIVE;
3228 pm_runtime_set_autosuspend_delay(q->dev, -1);
3229 pm_runtime_use_autosuspend(q->dev);
3230}
3231EXPORT_SYMBOL(blk_pm_runtime_init);
3232
3233/**
3234 * blk_pre_runtime_suspend - Pre runtime suspend check
3235 * @q: the queue of the device
3236 *
3237 * Description:
3238 * This function will check if runtime suspend is allowed for the device
3239 * by examining if there are any requests pending in the queue. If there
3240 * are requests pending, the device can not be runtime suspended; otherwise,
3241 * the queue's status will be updated to SUSPENDING and the driver can
3242 * proceed to suspend the device.
3243 *
3244 * For the not allowed case, we mark last busy for the device so that
3245 * runtime PM core will try to autosuspend it some time later.
3246 *
3247 * This function should be called near the start of the device's
3248 * runtime_suspend callback.
3249 *
3250 * Return:
3251 * 0 - OK to runtime suspend the device
3252 * -EBUSY - Device should not be runtime suspended
3253 */
3254int blk_pre_runtime_suspend(struct request_queue *q)
3255{
3256 int ret = 0;
3257
3258 spin_lock_irq(q->queue_lock);
3259 if (q->nr_pending) {
3260 ret = -EBUSY;
3261 pm_runtime_mark_last_busy(q->dev);
3262 } else {
3263 q->rpm_status = RPM_SUSPENDING;
3264 }
3265 spin_unlock_irq(q->queue_lock);
3266 return ret;
3267}
3268EXPORT_SYMBOL(blk_pre_runtime_suspend);
3269
3270/**
3271 * blk_post_runtime_suspend - Post runtime suspend processing
3272 * @q: the queue of the device
3273 * @err: return value of the device's runtime_suspend function
3274 *
3275 * Description:
3276 * Update the queue's runtime status according to the return value of the
3277 * device's runtime suspend function and mark last busy for the device so
3278 * that PM core will try to auto suspend the device at a later time.
3279 *
3280 * This function should be called near the end of the device's
3281 * runtime_suspend callback.
3282 */
3283void blk_post_runtime_suspend(struct request_queue *q, int err)
3284{
3285 spin_lock_irq(q->queue_lock);
3286 if (!err) {
3287 q->rpm_status = RPM_SUSPENDED;
3288 } else {
3289 q->rpm_status = RPM_ACTIVE;
3290 pm_runtime_mark_last_busy(q->dev);
3291 }
3292 spin_unlock_irq(q->queue_lock);
3293}
3294EXPORT_SYMBOL(blk_post_runtime_suspend);
3295
3296/**
3297 * blk_pre_runtime_resume - Pre runtime resume processing
3298 * @q: the queue of the device
3299 *
3300 * Description:
3301 * Update the queue's runtime status to RESUMING in preparation for the
3302 * runtime resume of the device.
3303 *
3304 * This function should be called near the start of the device's
3305 * runtime_resume callback.
3306 */
3307void blk_pre_runtime_resume(struct request_queue *q)
3308{
3309 spin_lock_irq(q->queue_lock);
3310 q->rpm_status = RPM_RESUMING;
3311 spin_unlock_irq(q->queue_lock);
3312}
3313EXPORT_SYMBOL(blk_pre_runtime_resume);
3314
3315/**
3316 * blk_post_runtime_resume - Post runtime resume processing
3317 * @q: the queue of the device
3318 * @err: return value of the device's runtime_resume function
3319 *
3320 * Description:
3321 * Update the queue's runtime status according to the return value of the
3322 * device's runtime_resume function. If it is successfully resumed, process
3323 * the requests that are queued into the device's queue when it is resuming
3324 * and then mark last busy and initiate autosuspend for it.
3325 *
3326 * This function should be called near the end of the device's
3327 * runtime_resume callback.
3328 */
3329void blk_post_runtime_resume(struct request_queue *q, int err)
3330{
3331 spin_lock_irq(q->queue_lock);
3332 if (!err) {
3333 q->rpm_status = RPM_ACTIVE;
3334 __blk_run_queue(q);
3335 pm_runtime_mark_last_busy(q->dev);
c60855cd 3336 pm_request_autosuspend(q->dev);
6c954667
LM
3337 } else {
3338 q->rpm_status = RPM_SUSPENDED;
3339 }
3340 spin_unlock_irq(q->queue_lock);
3341}
3342EXPORT_SYMBOL(blk_post_runtime_resume);
3343#endif
3344
1da177e4
LT
3345int __init blk_dev_init(void)
3346{
9eb55b03
NK
3347 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3348 sizeof(((struct request *)0)->cmd_flags));
3349
89b90be2
TH
3350 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3351 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3352 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3353 if (!kblockd_workqueue)
3354 panic("Failed to create kblockd\n");
3355
3356 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3357 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3358
8324aa91 3359 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3360 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3361
d38ecf93 3362 return 0;
1da177e4 3363}