]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
md: Convert md_trim_bio() to use bio_advance()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
55782138
LZ
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
1da177e4 36
8324aa91 37#include "blk.h"
5efd6113 38#include "blk-cgroup.h"
8324aa91 39
d07335e5 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
cbae8d45 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 43
a73f730d
TH
44DEFINE_IDA(blk_queue_ida);
45
1da177e4
LT
46/*
47 * For the allocated request tables
48 */
5ece6c52 49static struct kmem_cache *request_cachep;
1da177e4
LT
50
51/*
52 * For queue allocation
53 */
6728cb0e 54struct kmem_cache *blk_requestq_cachep;
1da177e4 55
1da177e4
LT
56/*
57 * Controlling structure to kblockd
58 */
ff856bad 59static struct workqueue_struct *kblockd_workqueue;
1da177e4 60
26b8256e
JA
61static void drive_stat_acct(struct request *rq, int new_io)
62{
28f13702 63 struct hd_struct *part;
26b8256e 64 int rw = rq_data_dir(rq);
c9959059 65 int cpu;
26b8256e 66
c2553b58 67 if (!blk_do_io_stat(rq))
26b8256e
JA
68 return;
69
074a7aca 70 cpu = part_stat_lock();
c9959059 71
09e099d4
JM
72 if (!new_io) {
73 part = rq->part;
074a7aca 74 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 77 if (!hd_struct_try_get(part)) {
09e099d4
JM
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
6c23a968 87 hd_struct_get(part);
09e099d4 88 }
074a7aca 89 part_round_stats(cpu, part);
316d315b 90 part_inc_in_flight(part, rw);
09e099d4 91 rq->part = part;
26b8256e 92 }
e71bf0d0 93
074a7aca 94 part_stat_unlock();
26b8256e
JA
95}
96
8324aa91 97void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
1da177e4
LT
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
165125e1 124 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
1da177e4
LT
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
2a4aa30c 132void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 133{
1afb20f3
FT
134 memset(rq, 0, sizeof(*rq));
135
1da177e4 136 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 137 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 138 rq->cpu = -1;
63a71386 139 rq->q = q;
a2dec7b3 140 rq->__sector = (sector_t) -1;
2e662b65
JA
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 143 rq->cmd = rq->__cmd;
e2494e1b 144 rq->cmd_len = BLK_MAX_CDB;
63a71386 145 rq->tag = -1;
1da177e4 146 rq->ref_count = 1;
b243ddcb 147 rq->start_time = jiffies;
9195291e 148 set_start_time_ns(rq);
09e099d4 149 rq->part = NULL;
1da177e4 150}
2a4aa30c 151EXPORT_SYMBOL(blk_rq_init);
1da177e4 152
5bb23a68
N
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
1da177e4 155{
143a87f4
TH
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
797e7dbb 160
143a87f4
TH
161 if (unlikely(rq->cmd_flags & REQ_QUIET))
162 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 163
f79ea416 164 bio_advance(bio, nbytes);
7ba1ba12 165
143a87f4
TH
166 /* don't actually finish bio if it's part of flush sequence */
167 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
168 bio_endio(bio, error);
1da177e4 169}
1da177e4 170
1da177e4
LT
171void blk_dump_rq_flags(struct request *rq, char *msg)
172{
173 int bit;
174
6728cb0e 175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 rq->cmd_flags);
1da177e4 178
83096ebf
TH
179 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
180 (unsigned long long)blk_rq_pos(rq),
181 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 182 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 183 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 184
33659ebb 185 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 186 printk(KERN_INFO " cdb: ");
d34c87e4 187 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
188 printk("%02x ", rq->cmd[bit]);
189 printk("\n");
190 }
191}
1da177e4
LT
192EXPORT_SYMBOL(blk_dump_rq_flags);
193
3cca6dc1 194static void blk_delay_work(struct work_struct *work)
1da177e4 195{
3cca6dc1 196 struct request_queue *q;
1da177e4 197
3cca6dc1
JA
198 q = container_of(work, struct request_queue, delay_work.work);
199 spin_lock_irq(q->queue_lock);
24ecfbe2 200 __blk_run_queue(q);
3cca6dc1 201 spin_unlock_irq(q->queue_lock);
1da177e4 202}
1da177e4
LT
203
204/**
3cca6dc1
JA
205 * blk_delay_queue - restart queueing after defined interval
206 * @q: The &struct request_queue in question
207 * @msecs: Delay in msecs
1da177e4
LT
208 *
209 * Description:
3cca6dc1
JA
210 * Sometimes queueing needs to be postponed for a little while, to allow
211 * resources to come back. This function will make sure that queueing is
70460571 212 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
213 */
214void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 215{
70460571
BVA
216 if (likely(!blk_queue_dead(q)))
217 queue_delayed_work(kblockd_workqueue, &q->delay_work,
218 msecs_to_jiffies(msecs));
2ad8b1ef 219}
3cca6dc1 220EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 221
1da177e4
LT
222/**
223 * blk_start_queue - restart a previously stopped queue
165125e1 224 * @q: The &struct request_queue in question
1da177e4
LT
225 *
226 * Description:
227 * blk_start_queue() will clear the stop flag on the queue, and call
228 * the request_fn for the queue if it was in a stopped state when
229 * entered. Also see blk_stop_queue(). Queue lock must be held.
230 **/
165125e1 231void blk_start_queue(struct request_queue *q)
1da177e4 232{
a038e253
PBG
233 WARN_ON(!irqs_disabled());
234
75ad23bc 235 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 236 __blk_run_queue(q);
1da177e4 237}
1da177e4
LT
238EXPORT_SYMBOL(blk_start_queue);
239
240/**
241 * blk_stop_queue - stop a queue
165125e1 242 * @q: The &struct request_queue in question
1da177e4
LT
243 *
244 * Description:
245 * The Linux block layer assumes that a block driver will consume all
246 * entries on the request queue when the request_fn strategy is called.
247 * Often this will not happen, because of hardware limitations (queue
248 * depth settings). If a device driver gets a 'queue full' response,
249 * or if it simply chooses not to queue more I/O at one point, it can
250 * call this function to prevent the request_fn from being called until
251 * the driver has signalled it's ready to go again. This happens by calling
252 * blk_start_queue() to restart queue operations. Queue lock must be held.
253 **/
165125e1 254void blk_stop_queue(struct request_queue *q)
1da177e4 255{
136b5721 256 cancel_delayed_work(&q->delay_work);
75ad23bc 257 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
258}
259EXPORT_SYMBOL(blk_stop_queue);
260
261/**
262 * blk_sync_queue - cancel any pending callbacks on a queue
263 * @q: the queue
264 *
265 * Description:
266 * The block layer may perform asynchronous callback activity
267 * on a queue, such as calling the unplug function after a timeout.
268 * A block device may call blk_sync_queue to ensure that any
269 * such activity is cancelled, thus allowing it to release resources
59c51591 270 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
271 * that its ->make_request_fn will not re-add plugging prior to calling
272 * this function.
273 *
da527770
VG
274 * This function does not cancel any asynchronous activity arising
275 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 276 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 277 *
1da177e4
LT
278 */
279void blk_sync_queue(struct request_queue *q)
280{
70ed28b9 281 del_timer_sync(&q->timeout);
3cca6dc1 282 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
283}
284EXPORT_SYMBOL(blk_sync_queue);
285
c246e80d
BVA
286/**
287 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
288 * @q: The queue to run
289 *
290 * Description:
291 * Invoke request handling on a queue if there are any pending requests.
292 * May be used to restart request handling after a request has completed.
293 * This variant runs the queue whether or not the queue has been
294 * stopped. Must be called with the queue lock held and interrupts
295 * disabled. See also @blk_run_queue.
296 */
297inline void __blk_run_queue_uncond(struct request_queue *q)
298{
299 if (unlikely(blk_queue_dead(q)))
300 return;
301
24faf6f6
BVA
302 /*
303 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
304 * the queue lock internally. As a result multiple threads may be
305 * running such a request function concurrently. Keep track of the
306 * number of active request_fn invocations such that blk_drain_queue()
307 * can wait until all these request_fn calls have finished.
308 */
309 q->request_fn_active++;
c246e80d 310 q->request_fn(q);
24faf6f6 311 q->request_fn_active--;
c246e80d
BVA
312}
313
1da177e4 314/**
80a4b58e 315 * __blk_run_queue - run a single device queue
1da177e4 316 * @q: The queue to run
80a4b58e
JA
317 *
318 * Description:
319 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 320 * held and interrupts disabled.
1da177e4 321 */
24ecfbe2 322void __blk_run_queue(struct request_queue *q)
1da177e4 323{
a538cd03
TH
324 if (unlikely(blk_queue_stopped(q)))
325 return;
326
c246e80d 327 __blk_run_queue_uncond(q);
75ad23bc
NP
328}
329EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 330
24ecfbe2
CH
331/**
332 * blk_run_queue_async - run a single device queue in workqueue context
333 * @q: The queue to run
334 *
335 * Description:
336 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 337 * of us. The caller must hold the queue lock.
24ecfbe2
CH
338 */
339void blk_run_queue_async(struct request_queue *q)
340{
70460571 341 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 342 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 343}
c21e6beb 344EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 345
75ad23bc
NP
346/**
347 * blk_run_queue - run a single device queue
348 * @q: The queue to run
80a4b58e
JA
349 *
350 * Description:
351 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 352 * May be used to restart queueing when a request has completed.
75ad23bc
NP
353 */
354void blk_run_queue(struct request_queue *q)
355{
356 unsigned long flags;
357
358 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 359 __blk_run_queue(q);
1da177e4
LT
360 spin_unlock_irqrestore(q->queue_lock, flags);
361}
362EXPORT_SYMBOL(blk_run_queue);
363
165125e1 364void blk_put_queue(struct request_queue *q)
483f4afc
AV
365{
366 kobject_put(&q->kobj);
367}
d86e0e83 368EXPORT_SYMBOL(blk_put_queue);
483f4afc 369
e3c78ca5 370/**
807592a4 371 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 372 * @q: queue to drain
c9a929dd 373 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 374 *
c9a929dd
TH
375 * Drain requests from @q. If @drain_all is set, all requests are drained.
376 * If not, only ELVPRIV requests are drained. The caller is responsible
377 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 378 */
807592a4
BVA
379static void __blk_drain_queue(struct request_queue *q, bool drain_all)
380 __releases(q->queue_lock)
381 __acquires(q->queue_lock)
e3c78ca5 382{
458f27a9
AH
383 int i;
384
807592a4
BVA
385 lockdep_assert_held(q->queue_lock);
386
e3c78ca5 387 while (true) {
481a7d64 388 bool drain = false;
e3c78ca5 389
b855b04a
TH
390 /*
391 * The caller might be trying to drain @q before its
392 * elevator is initialized.
393 */
394 if (q->elevator)
395 elv_drain_elevator(q);
396
5efd6113 397 blkcg_drain_queue(q);
e3c78ca5 398
4eabc941
TH
399 /*
400 * This function might be called on a queue which failed
b855b04a
TH
401 * driver init after queue creation or is not yet fully
402 * active yet. Some drivers (e.g. fd and loop) get unhappy
403 * in such cases. Kick queue iff dispatch queue has
404 * something on it and @q has request_fn set.
4eabc941 405 */
b855b04a 406 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 407 __blk_run_queue(q);
c9a929dd 408
8a5ecdd4 409 drain |= q->nr_rqs_elvpriv;
24faf6f6 410 drain |= q->request_fn_active;
481a7d64
TH
411
412 /*
413 * Unfortunately, requests are queued at and tracked from
414 * multiple places and there's no single counter which can
415 * be drained. Check all the queues and counters.
416 */
417 if (drain_all) {
418 drain |= !list_empty(&q->queue_head);
419 for (i = 0; i < 2; i++) {
8a5ecdd4 420 drain |= q->nr_rqs[i];
481a7d64
TH
421 drain |= q->in_flight[i];
422 drain |= !list_empty(&q->flush_queue[i]);
423 }
424 }
e3c78ca5 425
481a7d64 426 if (!drain)
e3c78ca5 427 break;
807592a4
BVA
428
429 spin_unlock_irq(q->queue_lock);
430
e3c78ca5 431 msleep(10);
807592a4
BVA
432
433 spin_lock_irq(q->queue_lock);
e3c78ca5 434 }
458f27a9
AH
435
436 /*
437 * With queue marked dead, any woken up waiter will fail the
438 * allocation path, so the wakeup chaining is lost and we're
439 * left with hung waiters. We need to wake up those waiters.
440 */
441 if (q->request_fn) {
a051661c
TH
442 struct request_list *rl;
443
a051661c
TH
444 blk_queue_for_each_rl(rl, q)
445 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
446 wake_up_all(&rl->wait[i]);
458f27a9 447 }
e3c78ca5
TH
448}
449
d732580b
TH
450/**
451 * blk_queue_bypass_start - enter queue bypass mode
452 * @q: queue of interest
453 *
454 * In bypass mode, only the dispatch FIFO queue of @q is used. This
455 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 456 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
457 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
458 * inside queue or RCU read lock.
d732580b
TH
459 */
460void blk_queue_bypass_start(struct request_queue *q)
461{
b82d4b19
TH
462 bool drain;
463
d732580b 464 spin_lock_irq(q->queue_lock);
b82d4b19 465 drain = !q->bypass_depth++;
d732580b
TH
466 queue_flag_set(QUEUE_FLAG_BYPASS, q);
467 spin_unlock_irq(q->queue_lock);
468
b82d4b19 469 if (drain) {
807592a4
BVA
470 spin_lock_irq(q->queue_lock);
471 __blk_drain_queue(q, false);
472 spin_unlock_irq(q->queue_lock);
473
b82d4b19
TH
474 /* ensure blk_queue_bypass() is %true inside RCU read lock */
475 synchronize_rcu();
476 }
d732580b
TH
477}
478EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
479
480/**
481 * blk_queue_bypass_end - leave queue bypass mode
482 * @q: queue of interest
483 *
484 * Leave bypass mode and restore the normal queueing behavior.
485 */
486void blk_queue_bypass_end(struct request_queue *q)
487{
488 spin_lock_irq(q->queue_lock);
489 if (!--q->bypass_depth)
490 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
491 WARN_ON_ONCE(q->bypass_depth < 0);
492 spin_unlock_irq(q->queue_lock);
493}
494EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
495
c9a929dd
TH
496/**
497 * blk_cleanup_queue - shutdown a request queue
498 * @q: request queue to shutdown
499 *
c246e80d
BVA
500 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
501 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 502 */
6728cb0e 503void blk_cleanup_queue(struct request_queue *q)
483f4afc 504{
c9a929dd 505 spinlock_t *lock = q->queue_lock;
e3335de9 506
3f3299d5 507 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 508 mutex_lock(&q->sysfs_lock);
3f3299d5 509 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 510 spin_lock_irq(lock);
6ecf23af 511
80fd9979 512 /*
3f3299d5 513 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
514 * that, unlike blk_queue_bypass_start(), we aren't performing
515 * synchronize_rcu() after entering bypass mode to avoid the delay
516 * as some drivers create and destroy a lot of queues while
517 * probing. This is still safe because blk_release_queue() will be
518 * called only after the queue refcnt drops to zero and nothing,
519 * RCU or not, would be traversing the queue by then.
520 */
6ecf23af
TH
521 q->bypass_depth++;
522 queue_flag_set(QUEUE_FLAG_BYPASS, q);
523
c9a929dd
TH
524 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
525 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 526 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
527 spin_unlock_irq(lock);
528 mutex_unlock(&q->sysfs_lock);
529
c246e80d
BVA
530 /*
531 * Drain all requests queued before DYING marking. Set DEAD flag to
532 * prevent that q->request_fn() gets invoked after draining finished.
533 */
807592a4
BVA
534 spin_lock_irq(lock);
535 __blk_drain_queue(q, true);
c246e80d 536 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 537 spin_unlock_irq(lock);
c9a929dd
TH
538
539 /* @q won't process any more request, flush async actions */
540 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
541 blk_sync_queue(q);
542
5e5cfac0
AH
543 spin_lock_irq(lock);
544 if (q->queue_lock != &q->__queue_lock)
545 q->queue_lock = &q->__queue_lock;
546 spin_unlock_irq(lock);
547
c9a929dd 548 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
549 blk_put_queue(q);
550}
1da177e4
LT
551EXPORT_SYMBOL(blk_cleanup_queue);
552
5b788ce3
TH
553int blk_init_rl(struct request_list *rl, struct request_queue *q,
554 gfp_t gfp_mask)
1da177e4 555{
1abec4fd
MS
556 if (unlikely(rl->rq_pool))
557 return 0;
558
5b788ce3 559 rl->q = q;
1faa16d2
JA
560 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
561 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
562 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
563 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 564
1946089a 565 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 566 mempool_free_slab, request_cachep,
5b788ce3 567 gfp_mask, q->node);
1da177e4
LT
568 if (!rl->rq_pool)
569 return -ENOMEM;
570
571 return 0;
572}
573
5b788ce3
TH
574void blk_exit_rl(struct request_list *rl)
575{
576 if (rl->rq_pool)
577 mempool_destroy(rl->rq_pool);
578}
579
165125e1 580struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 581{
c304a51b 582 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
583}
584EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 585
165125e1 586struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 587{
165125e1 588 struct request_queue *q;
e0bf68dd 589 int err;
1946089a 590
8324aa91 591 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 592 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
593 if (!q)
594 return NULL;
595
00380a40 596 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
597 if (q->id < 0)
598 goto fail_q;
599
0989a025
JA
600 q->backing_dev_info.ra_pages =
601 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
602 q->backing_dev_info.state = 0;
603 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 604 q->backing_dev_info.name = "block";
5151412d 605 q->node = node_id;
0989a025 606
e0bf68dd 607 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
608 if (err)
609 goto fail_id;
e0bf68dd 610
31373d09
MG
611 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
612 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 613 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 614 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 615 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 616 INIT_LIST_HEAD(&q->icq_list);
4eef3049 617#ifdef CONFIG_BLK_CGROUP
e8989fae 618 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 619#endif
ae1b1539
TH
620 INIT_LIST_HEAD(&q->flush_queue[0]);
621 INIT_LIST_HEAD(&q->flush_queue[1]);
622 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 623 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 624
8324aa91 625 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 626
483f4afc 627 mutex_init(&q->sysfs_lock);
e7e72bf6 628 spin_lock_init(&q->__queue_lock);
483f4afc 629
c94a96ac
VG
630 /*
631 * By default initialize queue_lock to internal lock and driver can
632 * override it later if need be.
633 */
634 q->queue_lock = &q->__queue_lock;
635
b82d4b19
TH
636 /*
637 * A queue starts its life with bypass turned on to avoid
638 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
639 * init. The initial bypass will be finished when the queue is
640 * registered by blk_register_queue().
b82d4b19
TH
641 */
642 q->bypass_depth = 1;
643 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
644
5efd6113 645 if (blkcg_init_queue(q))
f51b802c
TH
646 goto fail_id;
647
1da177e4 648 return q;
a73f730d
TH
649
650fail_id:
651 ida_simple_remove(&blk_queue_ida, q->id);
652fail_q:
653 kmem_cache_free(blk_requestq_cachep, q);
654 return NULL;
1da177e4 655}
1946089a 656EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
657
658/**
659 * blk_init_queue - prepare a request queue for use with a block device
660 * @rfn: The function to be called to process requests that have been
661 * placed on the queue.
662 * @lock: Request queue spin lock
663 *
664 * Description:
665 * If a block device wishes to use the standard request handling procedures,
666 * which sorts requests and coalesces adjacent requests, then it must
667 * call blk_init_queue(). The function @rfn will be called when there
668 * are requests on the queue that need to be processed. If the device
669 * supports plugging, then @rfn may not be called immediately when requests
670 * are available on the queue, but may be called at some time later instead.
671 * Plugged queues are generally unplugged when a buffer belonging to one
672 * of the requests on the queue is needed, or due to memory pressure.
673 *
674 * @rfn is not required, or even expected, to remove all requests off the
675 * queue, but only as many as it can handle at a time. If it does leave
676 * requests on the queue, it is responsible for arranging that the requests
677 * get dealt with eventually.
678 *
679 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
680 * request queue; this lock will be taken also from interrupt context, so irq
681 * disabling is needed for it.
1da177e4 682 *
710027a4 683 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
684 * it didn't succeed.
685 *
686 * Note:
687 * blk_init_queue() must be paired with a blk_cleanup_queue() call
688 * when the block device is deactivated (such as at module unload).
689 **/
1946089a 690
165125e1 691struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 692{
c304a51b 693 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
694}
695EXPORT_SYMBOL(blk_init_queue);
696
165125e1 697struct request_queue *
1946089a
CL
698blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
699{
c86d1b8a 700 struct request_queue *uninit_q, *q;
1da177e4 701
c86d1b8a
MS
702 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
703 if (!uninit_q)
704 return NULL;
705
5151412d 706 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
707 if (!q)
708 blk_cleanup_queue(uninit_q);
709
710 return q;
01effb0d
MS
711}
712EXPORT_SYMBOL(blk_init_queue_node);
713
714struct request_queue *
715blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
716 spinlock_t *lock)
01effb0d 717{
1da177e4
LT
718 if (!q)
719 return NULL;
720
a051661c 721 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 722 return NULL;
1da177e4
LT
723
724 q->request_fn = rfn;
1da177e4 725 q->prep_rq_fn = NULL;
28018c24 726 q->unprep_rq_fn = NULL;
60ea8226 727 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
728
729 /* Override internal queue lock with supplied lock pointer */
730 if (lock)
731 q->queue_lock = lock;
1da177e4 732
f3b144aa
JA
733 /*
734 * This also sets hw/phys segments, boundary and size
735 */
c20e8de2 736 blk_queue_make_request(q, blk_queue_bio);
1da177e4 737
44ec9542
AS
738 q->sg_reserved_size = INT_MAX;
739
b82d4b19
TH
740 /* init elevator */
741 if (elevator_init(q, NULL))
742 return NULL;
b82d4b19 743 return q;
1da177e4 744}
5151412d 745EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 746
09ac46c4 747bool blk_get_queue(struct request_queue *q)
1da177e4 748{
3f3299d5 749 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
750 __blk_get_queue(q);
751 return true;
1da177e4
LT
752 }
753
09ac46c4 754 return false;
1da177e4 755}
d86e0e83 756EXPORT_SYMBOL(blk_get_queue);
1da177e4 757
5b788ce3 758static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 759{
f1f8cc94 760 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 761 elv_put_request(rl->q, rq);
f1f8cc94 762 if (rq->elv.icq)
11a3122f 763 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
764 }
765
5b788ce3 766 mempool_free(rq, rl->rq_pool);
1da177e4
LT
767}
768
1da177e4
LT
769/*
770 * ioc_batching returns true if the ioc is a valid batching request and
771 * should be given priority access to a request.
772 */
165125e1 773static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
774{
775 if (!ioc)
776 return 0;
777
778 /*
779 * Make sure the process is able to allocate at least 1 request
780 * even if the batch times out, otherwise we could theoretically
781 * lose wakeups.
782 */
783 return ioc->nr_batch_requests == q->nr_batching ||
784 (ioc->nr_batch_requests > 0
785 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
786}
787
788/*
789 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
790 * will cause the process to be a "batcher" on all queues in the system. This
791 * is the behaviour we want though - once it gets a wakeup it should be given
792 * a nice run.
793 */
165125e1 794static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
795{
796 if (!ioc || ioc_batching(q, ioc))
797 return;
798
799 ioc->nr_batch_requests = q->nr_batching;
800 ioc->last_waited = jiffies;
801}
802
5b788ce3 803static void __freed_request(struct request_list *rl, int sync)
1da177e4 804{
5b788ce3 805 struct request_queue *q = rl->q;
1da177e4 806
a051661c
TH
807 /*
808 * bdi isn't aware of blkcg yet. As all async IOs end up root
809 * blkcg anyway, just use root blkcg state.
810 */
811 if (rl == &q->root_rl &&
812 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 813 blk_clear_queue_congested(q, sync);
1da177e4 814
1faa16d2
JA
815 if (rl->count[sync] + 1 <= q->nr_requests) {
816 if (waitqueue_active(&rl->wait[sync]))
817 wake_up(&rl->wait[sync]);
1da177e4 818
5b788ce3 819 blk_clear_rl_full(rl, sync);
1da177e4
LT
820 }
821}
822
823/*
824 * A request has just been released. Account for it, update the full and
825 * congestion status, wake up any waiters. Called under q->queue_lock.
826 */
5b788ce3 827static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 828{
5b788ce3 829 struct request_queue *q = rl->q;
75eb6c37 830 int sync = rw_is_sync(flags);
1da177e4 831
8a5ecdd4 832 q->nr_rqs[sync]--;
1faa16d2 833 rl->count[sync]--;
75eb6c37 834 if (flags & REQ_ELVPRIV)
8a5ecdd4 835 q->nr_rqs_elvpriv--;
1da177e4 836
5b788ce3 837 __freed_request(rl, sync);
1da177e4 838
1faa16d2 839 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 840 __freed_request(rl, sync ^ 1);
1da177e4
LT
841}
842
9d5a4e94
MS
843/*
844 * Determine if elevator data should be initialized when allocating the
845 * request associated with @bio.
846 */
847static bool blk_rq_should_init_elevator(struct bio *bio)
848{
849 if (!bio)
850 return true;
851
852 /*
853 * Flush requests do not use the elevator so skip initialization.
854 * This allows a request to share the flush and elevator data.
855 */
856 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
857 return false;
858
859 return true;
860}
861
852c788f
TH
862/**
863 * rq_ioc - determine io_context for request allocation
864 * @bio: request being allocated is for this bio (can be %NULL)
865 *
866 * Determine io_context to use for request allocation for @bio. May return
867 * %NULL if %current->io_context doesn't exist.
868 */
869static struct io_context *rq_ioc(struct bio *bio)
870{
871#ifdef CONFIG_BLK_CGROUP
872 if (bio && bio->bi_ioc)
873 return bio->bi_ioc;
874#endif
875 return current->io_context;
876}
877
da8303c6 878/**
a06e05e6 879 * __get_request - get a free request
5b788ce3 880 * @rl: request list to allocate from
da8303c6
TH
881 * @rw_flags: RW and SYNC flags
882 * @bio: bio to allocate request for (can be %NULL)
883 * @gfp_mask: allocation mask
884 *
885 * Get a free request from @q. This function may fail under memory
886 * pressure or if @q is dead.
887 *
888 * Must be callled with @q->queue_lock held and,
889 * Returns %NULL on failure, with @q->queue_lock held.
890 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 891 */
5b788ce3 892static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 893 struct bio *bio, gfp_t gfp_mask)
1da177e4 894{
5b788ce3 895 struct request_queue *q = rl->q;
b679281a 896 struct request *rq;
7f4b35d1
TH
897 struct elevator_type *et = q->elevator->type;
898 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 899 struct io_cq *icq = NULL;
1faa16d2 900 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 901 int may_queue;
88ee5ef1 902
3f3299d5 903 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
904 return NULL;
905
7749a8d4 906 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
907 if (may_queue == ELV_MQUEUE_NO)
908 goto rq_starved;
909
1faa16d2
JA
910 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
911 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
912 /*
913 * The queue will fill after this allocation, so set
914 * it as full, and mark this process as "batching".
915 * This process will be allowed to complete a batch of
916 * requests, others will be blocked.
917 */
5b788ce3 918 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 919 ioc_set_batching(q, ioc);
5b788ce3 920 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
921 } else {
922 if (may_queue != ELV_MQUEUE_MUST
923 && !ioc_batching(q, ioc)) {
924 /*
925 * The queue is full and the allocating
926 * process is not a "batcher", and not
927 * exempted by the IO scheduler
928 */
b679281a 929 return NULL;
88ee5ef1
JA
930 }
931 }
1da177e4 932 }
a051661c
TH
933 /*
934 * bdi isn't aware of blkcg yet. As all async IOs end up
935 * root blkcg anyway, just use root blkcg state.
936 */
937 if (rl == &q->root_rl)
938 blk_set_queue_congested(q, is_sync);
1da177e4
LT
939 }
940
082cf69e
JA
941 /*
942 * Only allow batching queuers to allocate up to 50% over the defined
943 * limit of requests, otherwise we could have thousands of requests
944 * allocated with any setting of ->nr_requests
945 */
1faa16d2 946 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 947 return NULL;
fd782a4a 948
8a5ecdd4 949 q->nr_rqs[is_sync]++;
1faa16d2
JA
950 rl->count[is_sync]++;
951 rl->starved[is_sync] = 0;
cb98fc8b 952
f1f8cc94
TH
953 /*
954 * Decide whether the new request will be managed by elevator. If
955 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
956 * prevent the current elevator from being destroyed until the new
957 * request is freed. This guarantees icq's won't be destroyed and
958 * makes creating new ones safe.
959 *
960 * Also, lookup icq while holding queue_lock. If it doesn't exist,
961 * it will be created after releasing queue_lock.
962 */
d732580b 963 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 964 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 965 q->nr_rqs_elvpriv++;
f1f8cc94
TH
966 if (et->icq_cache && ioc)
967 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 968 }
cb98fc8b 969
f253b86b
JA
970 if (blk_queue_io_stat(q))
971 rw_flags |= REQ_IO_STAT;
1da177e4
LT
972 spin_unlock_irq(q->queue_lock);
973
29e2b09a 974 /* allocate and init request */
5b788ce3 975 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 976 if (!rq)
b679281a 977 goto fail_alloc;
1da177e4 978
29e2b09a 979 blk_rq_init(q, rq);
a051661c 980 blk_rq_set_rl(rq, rl);
29e2b09a
TH
981 rq->cmd_flags = rw_flags | REQ_ALLOCED;
982
aaf7c680 983 /* init elvpriv */
29e2b09a 984 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 985 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
986 if (ioc)
987 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
988 if (!icq)
989 goto fail_elvpriv;
29e2b09a 990 }
aaf7c680
TH
991
992 rq->elv.icq = icq;
993 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
994 goto fail_elvpriv;
995
996 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
997 if (icq)
998 get_io_context(icq->ioc);
999 }
aaf7c680 1000out:
88ee5ef1
JA
1001 /*
1002 * ioc may be NULL here, and ioc_batching will be false. That's
1003 * OK, if the queue is under the request limit then requests need
1004 * not count toward the nr_batch_requests limit. There will always
1005 * be some limit enforced by BLK_BATCH_TIME.
1006 */
1da177e4
LT
1007 if (ioc_batching(q, ioc))
1008 ioc->nr_batch_requests--;
6728cb0e 1009
1faa16d2 1010 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1011 return rq;
b679281a 1012
aaf7c680
TH
1013fail_elvpriv:
1014 /*
1015 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1016 * and may fail indefinitely under memory pressure and thus
1017 * shouldn't stall IO. Treat this request as !elvpriv. This will
1018 * disturb iosched and blkcg but weird is bettern than dead.
1019 */
1020 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1021 dev_name(q->backing_dev_info.dev));
1022
1023 rq->cmd_flags &= ~REQ_ELVPRIV;
1024 rq->elv.icq = NULL;
1025
1026 spin_lock_irq(q->queue_lock);
8a5ecdd4 1027 q->nr_rqs_elvpriv--;
aaf7c680
TH
1028 spin_unlock_irq(q->queue_lock);
1029 goto out;
1030
b679281a
TH
1031fail_alloc:
1032 /*
1033 * Allocation failed presumably due to memory. Undo anything we
1034 * might have messed up.
1035 *
1036 * Allocating task should really be put onto the front of the wait
1037 * queue, but this is pretty rare.
1038 */
1039 spin_lock_irq(q->queue_lock);
5b788ce3 1040 freed_request(rl, rw_flags);
b679281a
TH
1041
1042 /*
1043 * in the very unlikely event that allocation failed and no
1044 * requests for this direction was pending, mark us starved so that
1045 * freeing of a request in the other direction will notice
1046 * us. another possible fix would be to split the rq mempool into
1047 * READ and WRITE
1048 */
1049rq_starved:
1050 if (unlikely(rl->count[is_sync] == 0))
1051 rl->starved[is_sync] = 1;
1052 return NULL;
1da177e4
LT
1053}
1054
da8303c6 1055/**
a06e05e6 1056 * get_request - get a free request
da8303c6
TH
1057 * @q: request_queue to allocate request from
1058 * @rw_flags: RW and SYNC flags
1059 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1060 * @gfp_mask: allocation mask
da8303c6 1061 *
a06e05e6
TH
1062 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1063 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1064 *
da8303c6
TH
1065 * Must be callled with @q->queue_lock held and,
1066 * Returns %NULL on failure, with @q->queue_lock held.
1067 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1068 */
a06e05e6
TH
1069static struct request *get_request(struct request_queue *q, int rw_flags,
1070 struct bio *bio, gfp_t gfp_mask)
1da177e4 1071{
1faa16d2 1072 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1073 DEFINE_WAIT(wait);
a051661c 1074 struct request_list *rl;
1da177e4 1075 struct request *rq;
a051661c
TH
1076
1077 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1078retry:
a051661c 1079 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1080 if (rq)
1081 return rq;
1da177e4 1082
3f3299d5 1083 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1084 blk_put_rl(rl);
a06e05e6 1085 return NULL;
a051661c 1086 }
1da177e4 1087
a06e05e6
TH
1088 /* wait on @rl and retry */
1089 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1090 TASK_UNINTERRUPTIBLE);
1da177e4 1091
a06e05e6 1092 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1093
a06e05e6
TH
1094 spin_unlock_irq(q->queue_lock);
1095 io_schedule();
d6344532 1096
a06e05e6
TH
1097 /*
1098 * After sleeping, we become a "batching" process and will be able
1099 * to allocate at least one request, and up to a big batch of them
1100 * for a small period time. See ioc_batching, ioc_set_batching
1101 */
a06e05e6 1102 ioc_set_batching(q, current->io_context);
05caf8db 1103
a06e05e6
TH
1104 spin_lock_irq(q->queue_lock);
1105 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1106
a06e05e6 1107 goto retry;
1da177e4
LT
1108}
1109
165125e1 1110struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1111{
1112 struct request *rq;
1113
1114 BUG_ON(rw != READ && rw != WRITE);
1115
7f4b35d1
TH
1116 /* create ioc upfront */
1117 create_io_context(gfp_mask, q->node);
1118
d6344532 1119 spin_lock_irq(q->queue_lock);
a06e05e6 1120 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1121 if (!rq)
1122 spin_unlock_irq(q->queue_lock);
d6344532 1123 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1124
1125 return rq;
1126}
1da177e4
LT
1127EXPORT_SYMBOL(blk_get_request);
1128
dc72ef4a 1129/**
79eb63e9 1130 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1131 * @q: target request queue
79eb63e9
BH
1132 * @bio: The bio describing the memory mappings that will be submitted for IO.
1133 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1134 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1135 *
79eb63e9
BH
1136 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1137 * type commands. Where the struct request needs to be farther initialized by
1138 * the caller. It is passed a &struct bio, which describes the memory info of
1139 * the I/O transfer.
dc72ef4a 1140 *
79eb63e9
BH
1141 * The caller of blk_make_request must make sure that bi_io_vec
1142 * are set to describe the memory buffers. That bio_data_dir() will return
1143 * the needed direction of the request. (And all bio's in the passed bio-chain
1144 * are properly set accordingly)
1145 *
1146 * If called under none-sleepable conditions, mapped bio buffers must not
1147 * need bouncing, by calling the appropriate masked or flagged allocator,
1148 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1149 * BUG.
53674ac5
JA
1150 *
1151 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1152 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1153 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1154 * completion of a bio that hasn't been submitted yet, thus resulting in a
1155 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1156 * of bio_alloc(), as that avoids the mempool deadlock.
1157 * If possible a big IO should be split into smaller parts when allocation
1158 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1159 */
79eb63e9
BH
1160struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1161 gfp_t gfp_mask)
dc72ef4a 1162{
79eb63e9
BH
1163 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1164
1165 if (unlikely(!rq))
1166 return ERR_PTR(-ENOMEM);
1167
1168 for_each_bio(bio) {
1169 struct bio *bounce_bio = bio;
1170 int ret;
1171
1172 blk_queue_bounce(q, &bounce_bio);
1173 ret = blk_rq_append_bio(q, rq, bounce_bio);
1174 if (unlikely(ret)) {
1175 blk_put_request(rq);
1176 return ERR_PTR(ret);
1177 }
1178 }
1179
1180 return rq;
dc72ef4a 1181}
79eb63e9 1182EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1183
1da177e4
LT
1184/**
1185 * blk_requeue_request - put a request back on queue
1186 * @q: request queue where request should be inserted
1187 * @rq: request to be inserted
1188 *
1189 * Description:
1190 * Drivers often keep queueing requests until the hardware cannot accept
1191 * more, when that condition happens we need to put the request back
1192 * on the queue. Must be called with queue lock held.
1193 */
165125e1 1194void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1195{
242f9dcb
JA
1196 blk_delete_timer(rq);
1197 blk_clear_rq_complete(rq);
5f3ea37c 1198 trace_block_rq_requeue(q, rq);
2056a782 1199
1da177e4
LT
1200 if (blk_rq_tagged(rq))
1201 blk_queue_end_tag(q, rq);
1202
ba396a6c
JB
1203 BUG_ON(blk_queued_rq(rq));
1204
1da177e4
LT
1205 elv_requeue_request(q, rq);
1206}
1da177e4
LT
1207EXPORT_SYMBOL(blk_requeue_request);
1208
73c10101
JA
1209static void add_acct_request(struct request_queue *q, struct request *rq,
1210 int where)
1211{
1212 drive_stat_acct(rq, 1);
7eaceacc 1213 __elv_add_request(q, rq, where);
73c10101
JA
1214}
1215
074a7aca
TH
1216static void part_round_stats_single(int cpu, struct hd_struct *part,
1217 unsigned long now)
1218{
1219 if (now == part->stamp)
1220 return;
1221
316d315b 1222 if (part_in_flight(part)) {
074a7aca 1223 __part_stat_add(cpu, part, time_in_queue,
316d315b 1224 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1225 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1226 }
1227 part->stamp = now;
1228}
1229
1230/**
496aa8a9
RD
1231 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1232 * @cpu: cpu number for stats access
1233 * @part: target partition
1da177e4
LT
1234 *
1235 * The average IO queue length and utilisation statistics are maintained
1236 * by observing the current state of the queue length and the amount of
1237 * time it has been in this state for.
1238 *
1239 * Normally, that accounting is done on IO completion, but that can result
1240 * in more than a second's worth of IO being accounted for within any one
1241 * second, leading to >100% utilisation. To deal with that, we call this
1242 * function to do a round-off before returning the results when reading
1243 * /proc/diskstats. This accounts immediately for all queue usage up to
1244 * the current jiffies and restarts the counters again.
1245 */
c9959059 1246void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1247{
1248 unsigned long now = jiffies;
1249
074a7aca
TH
1250 if (part->partno)
1251 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1252 part_round_stats_single(cpu, part, now);
6f2576af 1253}
074a7aca 1254EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1255
1da177e4
LT
1256/*
1257 * queue lock must be held
1258 */
165125e1 1259void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1260{
1da177e4
LT
1261 if (unlikely(!q))
1262 return;
1263 if (unlikely(--req->ref_count))
1264 return;
1265
8922e16c
TH
1266 elv_completed_request(q, req);
1267
1cd96c24
BH
1268 /* this is a bio leak */
1269 WARN_ON(req->bio != NULL);
1270
1da177e4
LT
1271 /*
1272 * Request may not have originated from ll_rw_blk. if not,
1273 * it didn't come out of our reserved rq pools
1274 */
49171e5c 1275 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1276 unsigned int flags = req->cmd_flags;
a051661c 1277 struct request_list *rl = blk_rq_rl(req);
1da177e4 1278
1da177e4 1279 BUG_ON(!list_empty(&req->queuelist));
9817064b 1280 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1281
a051661c
TH
1282 blk_free_request(rl, req);
1283 freed_request(rl, flags);
1284 blk_put_rl(rl);
1da177e4
LT
1285 }
1286}
6e39b69e
MC
1287EXPORT_SYMBOL_GPL(__blk_put_request);
1288
1da177e4
LT
1289void blk_put_request(struct request *req)
1290{
8922e16c 1291 unsigned long flags;
165125e1 1292 struct request_queue *q = req->q;
8922e16c 1293
52a93ba8
FT
1294 spin_lock_irqsave(q->queue_lock, flags);
1295 __blk_put_request(q, req);
1296 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1297}
1da177e4
LT
1298EXPORT_SYMBOL(blk_put_request);
1299
66ac0280
CH
1300/**
1301 * blk_add_request_payload - add a payload to a request
1302 * @rq: request to update
1303 * @page: page backing the payload
1304 * @len: length of the payload.
1305 *
1306 * This allows to later add a payload to an already submitted request by
1307 * a block driver. The driver needs to take care of freeing the payload
1308 * itself.
1309 *
1310 * Note that this is a quite horrible hack and nothing but handling of
1311 * discard requests should ever use it.
1312 */
1313void blk_add_request_payload(struct request *rq, struct page *page,
1314 unsigned int len)
1315{
1316 struct bio *bio = rq->bio;
1317
1318 bio->bi_io_vec->bv_page = page;
1319 bio->bi_io_vec->bv_offset = 0;
1320 bio->bi_io_vec->bv_len = len;
1321
1322 bio->bi_size = len;
1323 bio->bi_vcnt = 1;
1324 bio->bi_phys_segments = 1;
1325
1326 rq->__data_len = rq->resid_len = len;
1327 rq->nr_phys_segments = 1;
1328 rq->buffer = bio_data(bio);
1329}
1330EXPORT_SYMBOL_GPL(blk_add_request_payload);
1331
73c10101
JA
1332static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1333 struct bio *bio)
1334{
1335 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1336
73c10101
JA
1337 if (!ll_back_merge_fn(q, req, bio))
1338 return false;
1339
8c1cf6bb 1340 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1341
1342 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1343 blk_rq_set_mixed_merge(req);
1344
1345 req->biotail->bi_next = bio;
1346 req->biotail = bio;
1347 req->__data_len += bio->bi_size;
1348 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1349
1350 drive_stat_acct(req, 0);
1351 return true;
1352}
1353
1354static bool bio_attempt_front_merge(struct request_queue *q,
1355 struct request *req, struct bio *bio)
1356{
1357 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1358
73c10101
JA
1359 if (!ll_front_merge_fn(q, req, bio))
1360 return false;
1361
8c1cf6bb 1362 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1363
1364 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1365 blk_rq_set_mixed_merge(req);
1366
73c10101
JA
1367 bio->bi_next = req->bio;
1368 req->bio = bio;
1369
1370 /*
1371 * may not be valid. if the low level driver said
1372 * it didn't need a bounce buffer then it better
1373 * not touch req->buffer either...
1374 */
1375 req->buffer = bio_data(bio);
1376 req->__sector = bio->bi_sector;
1377 req->__data_len += bio->bi_size;
1378 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1379
1380 drive_stat_acct(req, 0);
1381 return true;
1382}
1383
bd87b589
TH
1384/**
1385 * attempt_plug_merge - try to merge with %current's plugged list
1386 * @q: request_queue new bio is being queued at
1387 * @bio: new bio being queued
1388 * @request_count: out parameter for number of traversed plugged requests
1389 *
1390 * Determine whether @bio being queued on @q can be merged with a request
1391 * on %current's plugged list. Returns %true if merge was successful,
1392 * otherwise %false.
1393 *
07c2bd37
TH
1394 * Plugging coalesces IOs from the same issuer for the same purpose without
1395 * going through @q->queue_lock. As such it's more of an issuing mechanism
1396 * than scheduling, and the request, while may have elvpriv data, is not
1397 * added on the elevator at this point. In addition, we don't have
1398 * reliable access to the elevator outside queue lock. Only check basic
1399 * merging parameters without querying the elevator.
73c10101 1400 */
bd87b589
TH
1401static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1402 unsigned int *request_count)
73c10101
JA
1403{
1404 struct blk_plug *plug;
1405 struct request *rq;
1406 bool ret = false;
1407
bd87b589 1408 plug = current->plug;
73c10101
JA
1409 if (!plug)
1410 goto out;
56ebdaf2 1411 *request_count = 0;
73c10101
JA
1412
1413 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1414 int el_ret;
1415
1b2e19f1
SL
1416 if (rq->q == q)
1417 (*request_count)++;
56ebdaf2 1418
07c2bd37 1419 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1420 continue;
1421
050c8ea8 1422 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1423 if (el_ret == ELEVATOR_BACK_MERGE) {
1424 ret = bio_attempt_back_merge(q, rq, bio);
1425 if (ret)
1426 break;
1427 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1428 ret = bio_attempt_front_merge(q, rq, bio);
1429 if (ret)
1430 break;
1431 }
1432 }
1433out:
1434 return ret;
1435}
1436
86db1e29 1437void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1438{
4aff5e23 1439 req->cmd_type = REQ_TYPE_FS;
52d9e675 1440
7b6d91da
CH
1441 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1442 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1443 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1444
52d9e675 1445 req->errors = 0;
a2dec7b3 1446 req->__sector = bio->bi_sector;
52d9e675 1447 req->ioprio = bio_prio(bio);
bc1c56fd 1448 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1449}
1450
5a7bbad2 1451void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1452{
5e00d1b5 1453 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1454 struct blk_plug *plug;
1455 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1456 struct request *req;
56ebdaf2 1457 unsigned int request_count = 0;
1da177e4 1458
1da177e4
LT
1459 /*
1460 * low level driver can indicate that it wants pages above a
1461 * certain limit bounced to low memory (ie for highmem, or even
1462 * ISA dma in theory)
1463 */
1464 blk_queue_bounce(q, &bio);
1465
ffecfd1a
DW
1466 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1467 bio_endio(bio, -EIO);
1468 return;
1469 }
1470
4fed947c 1471 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1472 spin_lock_irq(q->queue_lock);
ae1b1539 1473 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1474 goto get_rq;
1475 }
1476
73c10101
JA
1477 /*
1478 * Check if we can merge with the plugged list before grabbing
1479 * any locks.
1480 */
bd87b589 1481 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1482 return;
1da177e4 1483
73c10101 1484 spin_lock_irq(q->queue_lock);
2056a782 1485
73c10101
JA
1486 el_ret = elv_merge(q, &req, bio);
1487 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1488 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1489 elv_bio_merged(q, req, bio);
73c10101
JA
1490 if (!attempt_back_merge(q, req))
1491 elv_merged_request(q, req, el_ret);
1492 goto out_unlock;
1493 }
1494 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1495 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1496 elv_bio_merged(q, req, bio);
73c10101
JA
1497 if (!attempt_front_merge(q, req))
1498 elv_merged_request(q, req, el_ret);
1499 goto out_unlock;
80a761fd 1500 }
1da177e4
LT
1501 }
1502
450991bc 1503get_rq:
7749a8d4
JA
1504 /*
1505 * This sync check and mask will be re-done in init_request_from_bio(),
1506 * but we need to set it earlier to expose the sync flag to the
1507 * rq allocator and io schedulers.
1508 */
1509 rw_flags = bio_data_dir(bio);
1510 if (sync)
7b6d91da 1511 rw_flags |= REQ_SYNC;
7749a8d4 1512
1da177e4 1513 /*
450991bc 1514 * Grab a free request. This is might sleep but can not fail.
d6344532 1515 * Returns with the queue unlocked.
450991bc 1516 */
a06e05e6 1517 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1518 if (unlikely(!req)) {
1519 bio_endio(bio, -ENODEV); /* @q is dead */
1520 goto out_unlock;
1521 }
d6344532 1522
450991bc
NP
1523 /*
1524 * After dropping the lock and possibly sleeping here, our request
1525 * may now be mergeable after it had proven unmergeable (above).
1526 * We don't worry about that case for efficiency. It won't happen
1527 * often, and the elevators are able to handle it.
1da177e4 1528 */
52d9e675 1529 init_request_from_bio(req, bio);
1da177e4 1530
9562ad9a 1531 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1532 req->cpu = raw_smp_processor_id();
73c10101
JA
1533
1534 plug = current->plug;
721a9602 1535 if (plug) {
dc6d36c9
JA
1536 /*
1537 * If this is the first request added after a plug, fire
1538 * of a plug trace. If others have been added before, check
1539 * if we have multiple devices in this plug. If so, make a
1540 * note to sort the list before dispatch.
1541 */
1542 if (list_empty(&plug->list))
1543 trace_block_plug(q);
3540d5e8 1544 else {
019ceb7d 1545 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1546 blk_flush_plug_list(plug, false);
019ceb7d
SL
1547 trace_block_plug(q);
1548 }
73c10101 1549 }
73c10101
JA
1550 list_add_tail(&req->queuelist, &plug->list);
1551 drive_stat_acct(req, 1);
1552 } else {
1553 spin_lock_irq(q->queue_lock);
1554 add_acct_request(q, req, where);
24ecfbe2 1555 __blk_run_queue(q);
73c10101
JA
1556out_unlock:
1557 spin_unlock_irq(q->queue_lock);
1558 }
1da177e4 1559}
c20e8de2 1560EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1561
1562/*
1563 * If bio->bi_dev is a partition, remap the location
1564 */
1565static inline void blk_partition_remap(struct bio *bio)
1566{
1567 struct block_device *bdev = bio->bi_bdev;
1568
bf2de6f5 1569 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1570 struct hd_struct *p = bdev->bd_part;
1571
1da177e4
LT
1572 bio->bi_sector += p->start_sect;
1573 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1574
d07335e5
MS
1575 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1576 bdev->bd_dev,
1577 bio->bi_sector - p->start_sect);
1da177e4
LT
1578 }
1579}
1580
1da177e4
LT
1581static void handle_bad_sector(struct bio *bio)
1582{
1583 char b[BDEVNAME_SIZE];
1584
1585 printk(KERN_INFO "attempt to access beyond end of device\n");
1586 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1587 bdevname(bio->bi_bdev, b),
1588 bio->bi_rw,
1589 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1590 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1591
1592 set_bit(BIO_EOF, &bio->bi_flags);
1593}
1594
c17bb495
AM
1595#ifdef CONFIG_FAIL_MAKE_REQUEST
1596
1597static DECLARE_FAULT_ATTR(fail_make_request);
1598
1599static int __init setup_fail_make_request(char *str)
1600{
1601 return setup_fault_attr(&fail_make_request, str);
1602}
1603__setup("fail_make_request=", setup_fail_make_request);
1604
b2c9cd37 1605static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1606{
b2c9cd37 1607 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1608}
1609
1610static int __init fail_make_request_debugfs(void)
1611{
dd48c085
AM
1612 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1613 NULL, &fail_make_request);
1614
1615 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1616}
1617
1618late_initcall(fail_make_request_debugfs);
1619
1620#else /* CONFIG_FAIL_MAKE_REQUEST */
1621
b2c9cd37
AM
1622static inline bool should_fail_request(struct hd_struct *part,
1623 unsigned int bytes)
c17bb495 1624{
b2c9cd37 1625 return false;
c17bb495
AM
1626}
1627
1628#endif /* CONFIG_FAIL_MAKE_REQUEST */
1629
c07e2b41
JA
1630/*
1631 * Check whether this bio extends beyond the end of the device.
1632 */
1633static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1634{
1635 sector_t maxsector;
1636
1637 if (!nr_sectors)
1638 return 0;
1639
1640 /* Test device or partition size, when known. */
77304d2a 1641 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1642 if (maxsector) {
1643 sector_t sector = bio->bi_sector;
1644
1645 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1646 /*
1647 * This may well happen - the kernel calls bread()
1648 * without checking the size of the device, e.g., when
1649 * mounting a device.
1650 */
1651 handle_bad_sector(bio);
1652 return 1;
1653 }
1654 }
1655
1656 return 0;
1657}
1658
27a84d54
CH
1659static noinline_for_stack bool
1660generic_make_request_checks(struct bio *bio)
1da177e4 1661{
165125e1 1662 struct request_queue *q;
5a7bbad2 1663 int nr_sectors = bio_sectors(bio);
51fd77bd 1664 int err = -EIO;
5a7bbad2
CH
1665 char b[BDEVNAME_SIZE];
1666 struct hd_struct *part;
1da177e4
LT
1667
1668 might_sleep();
1da177e4 1669
c07e2b41
JA
1670 if (bio_check_eod(bio, nr_sectors))
1671 goto end_io;
1da177e4 1672
5a7bbad2
CH
1673 q = bdev_get_queue(bio->bi_bdev);
1674 if (unlikely(!q)) {
1675 printk(KERN_ERR
1676 "generic_make_request: Trying to access "
1677 "nonexistent block-device %s (%Lu)\n",
1678 bdevname(bio->bi_bdev, b),
1679 (long long) bio->bi_sector);
1680 goto end_io;
1681 }
c17bb495 1682
e2a60da7
MP
1683 if (likely(bio_is_rw(bio) &&
1684 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1685 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1686 bdevname(bio->bi_bdev, b),
1687 bio_sectors(bio),
1688 queue_max_hw_sectors(q));
1689 goto end_io;
1690 }
1da177e4 1691
5a7bbad2
CH
1692 part = bio->bi_bdev->bd_part;
1693 if (should_fail_request(part, bio->bi_size) ||
1694 should_fail_request(&part_to_disk(part)->part0,
1695 bio->bi_size))
1696 goto end_io;
2056a782 1697
5a7bbad2
CH
1698 /*
1699 * If this device has partitions, remap block n
1700 * of partition p to block n+start(p) of the disk.
1701 */
1702 blk_partition_remap(bio);
2056a782 1703
5a7bbad2
CH
1704 if (bio_check_eod(bio, nr_sectors))
1705 goto end_io;
1e87901e 1706
5a7bbad2
CH
1707 /*
1708 * Filter flush bio's early so that make_request based
1709 * drivers without flush support don't have to worry
1710 * about them.
1711 */
1712 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1713 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1714 if (!nr_sectors) {
1715 err = 0;
51fd77bd
JA
1716 goto end_io;
1717 }
5a7bbad2 1718 }
5ddfe969 1719
5a7bbad2
CH
1720 if ((bio->bi_rw & REQ_DISCARD) &&
1721 (!blk_queue_discard(q) ||
e2a60da7 1722 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1723 err = -EOPNOTSUPP;
1724 goto end_io;
1725 }
01edede4 1726
4363ac7c 1727 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1728 err = -EOPNOTSUPP;
1729 goto end_io;
1730 }
01edede4 1731
7f4b35d1
TH
1732 /*
1733 * Various block parts want %current->io_context and lazy ioc
1734 * allocation ends up trading a lot of pain for a small amount of
1735 * memory. Just allocate it upfront. This may fail and block
1736 * layer knows how to live with it.
1737 */
1738 create_io_context(GFP_ATOMIC, q->node);
1739
bc16a4f9
TH
1740 if (blk_throtl_bio(q, bio))
1741 return false; /* throttled, will be resubmitted later */
27a84d54 1742
5a7bbad2 1743 trace_block_bio_queue(q, bio);
27a84d54 1744 return true;
a7384677
TH
1745
1746end_io:
1747 bio_endio(bio, err);
27a84d54 1748 return false;
1da177e4
LT
1749}
1750
27a84d54
CH
1751/**
1752 * generic_make_request - hand a buffer to its device driver for I/O
1753 * @bio: The bio describing the location in memory and on the device.
1754 *
1755 * generic_make_request() is used to make I/O requests of block
1756 * devices. It is passed a &struct bio, which describes the I/O that needs
1757 * to be done.
1758 *
1759 * generic_make_request() does not return any status. The
1760 * success/failure status of the request, along with notification of
1761 * completion, is delivered asynchronously through the bio->bi_end_io
1762 * function described (one day) else where.
1763 *
1764 * The caller of generic_make_request must make sure that bi_io_vec
1765 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1766 * set to describe the device address, and the
1767 * bi_end_io and optionally bi_private are set to describe how
1768 * completion notification should be signaled.
1769 *
1770 * generic_make_request and the drivers it calls may use bi_next if this
1771 * bio happens to be merged with someone else, and may resubmit the bio to
1772 * a lower device by calling into generic_make_request recursively, which
1773 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1774 */
1775void generic_make_request(struct bio *bio)
1776{
bddd87c7
AM
1777 struct bio_list bio_list_on_stack;
1778
27a84d54
CH
1779 if (!generic_make_request_checks(bio))
1780 return;
1781
1782 /*
1783 * We only want one ->make_request_fn to be active at a time, else
1784 * stack usage with stacked devices could be a problem. So use
1785 * current->bio_list to keep a list of requests submited by a
1786 * make_request_fn function. current->bio_list is also used as a
1787 * flag to say if generic_make_request is currently active in this
1788 * task or not. If it is NULL, then no make_request is active. If
1789 * it is non-NULL, then a make_request is active, and new requests
1790 * should be added at the tail
1791 */
bddd87c7 1792 if (current->bio_list) {
bddd87c7 1793 bio_list_add(current->bio_list, bio);
d89d8796
NB
1794 return;
1795 }
27a84d54 1796
d89d8796
NB
1797 /* following loop may be a bit non-obvious, and so deserves some
1798 * explanation.
1799 * Before entering the loop, bio->bi_next is NULL (as all callers
1800 * ensure that) so we have a list with a single bio.
1801 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1802 * we assign bio_list to a pointer to the bio_list_on_stack,
1803 * thus initialising the bio_list of new bios to be
27a84d54 1804 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1805 * through a recursive call to generic_make_request. If it
1806 * did, we find a non-NULL value in bio_list and re-enter the loop
1807 * from the top. In this case we really did just take the bio
bddd87c7 1808 * of the top of the list (no pretending) and so remove it from
27a84d54 1809 * bio_list, and call into ->make_request() again.
d89d8796
NB
1810 */
1811 BUG_ON(bio->bi_next);
bddd87c7
AM
1812 bio_list_init(&bio_list_on_stack);
1813 current->bio_list = &bio_list_on_stack;
d89d8796 1814 do {
27a84d54
CH
1815 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1816
1817 q->make_request_fn(q, bio);
1818
bddd87c7 1819 bio = bio_list_pop(current->bio_list);
d89d8796 1820 } while (bio);
bddd87c7 1821 current->bio_list = NULL; /* deactivate */
d89d8796 1822}
1da177e4
LT
1823EXPORT_SYMBOL(generic_make_request);
1824
1825/**
710027a4 1826 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1827 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1828 * @bio: The &struct bio which describes the I/O
1829 *
1830 * submit_bio() is very similar in purpose to generic_make_request(), and
1831 * uses that function to do most of the work. Both are fairly rough
710027a4 1832 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1833 *
1834 */
1835void submit_bio(int rw, struct bio *bio)
1836{
22e2c507 1837 bio->bi_rw |= rw;
1da177e4 1838
bf2de6f5
JA
1839 /*
1840 * If it's a regular read/write or a barrier with data attached,
1841 * go through the normal accounting stuff before submission.
1842 */
e2a60da7 1843 if (bio_has_data(bio)) {
4363ac7c
MP
1844 unsigned int count;
1845
1846 if (unlikely(rw & REQ_WRITE_SAME))
1847 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1848 else
1849 count = bio_sectors(bio);
1850
bf2de6f5
JA
1851 if (rw & WRITE) {
1852 count_vm_events(PGPGOUT, count);
1853 } else {
1854 task_io_account_read(bio->bi_size);
1855 count_vm_events(PGPGIN, count);
1856 }
1857
1858 if (unlikely(block_dump)) {
1859 char b[BDEVNAME_SIZE];
8dcbdc74 1860 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1861 current->comm, task_pid_nr(current),
bf2de6f5
JA
1862 (rw & WRITE) ? "WRITE" : "READ",
1863 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1864 bdevname(bio->bi_bdev, b),
1865 count);
bf2de6f5 1866 }
1da177e4
LT
1867 }
1868
1869 generic_make_request(bio);
1870}
1da177e4
LT
1871EXPORT_SYMBOL(submit_bio);
1872
82124d60
KU
1873/**
1874 * blk_rq_check_limits - Helper function to check a request for the queue limit
1875 * @q: the queue
1876 * @rq: the request being checked
1877 *
1878 * Description:
1879 * @rq may have been made based on weaker limitations of upper-level queues
1880 * in request stacking drivers, and it may violate the limitation of @q.
1881 * Since the block layer and the underlying device driver trust @rq
1882 * after it is inserted to @q, it should be checked against @q before
1883 * the insertion using this generic function.
1884 *
1885 * This function should also be useful for request stacking drivers
eef35c2d 1886 * in some cases below, so export this function.
82124d60
KU
1887 * Request stacking drivers like request-based dm may change the queue
1888 * limits while requests are in the queue (e.g. dm's table swapping).
1889 * Such request stacking drivers should check those requests agaist
1890 * the new queue limits again when they dispatch those requests,
1891 * although such checkings are also done against the old queue limits
1892 * when submitting requests.
1893 */
1894int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1895{
e2a60da7 1896 if (!rq_mergeable(rq))
3383977f
S
1897 return 0;
1898
f31dc1cd 1899 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1900 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1901 return -EIO;
1902 }
1903
1904 /*
1905 * queue's settings related to segment counting like q->bounce_pfn
1906 * may differ from that of other stacking queues.
1907 * Recalculate it to check the request correctly on this queue's
1908 * limitation.
1909 */
1910 blk_recalc_rq_segments(rq);
8a78362c 1911 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1912 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1913 return -EIO;
1914 }
1915
1916 return 0;
1917}
1918EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1919
1920/**
1921 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1922 * @q: the queue to submit the request
1923 * @rq: the request being queued
1924 */
1925int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1926{
1927 unsigned long flags;
4853abaa 1928 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1929
1930 if (blk_rq_check_limits(q, rq))
1931 return -EIO;
1932
b2c9cd37
AM
1933 if (rq->rq_disk &&
1934 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1935 return -EIO;
82124d60
KU
1936
1937 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1938 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1939 spin_unlock_irqrestore(q->queue_lock, flags);
1940 return -ENODEV;
1941 }
82124d60
KU
1942
1943 /*
1944 * Submitting request must be dequeued before calling this function
1945 * because it will be linked to another request_queue
1946 */
1947 BUG_ON(blk_queued_rq(rq));
1948
4853abaa
JM
1949 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1950 where = ELEVATOR_INSERT_FLUSH;
1951
1952 add_acct_request(q, rq, where);
e67b77c7
JM
1953 if (where == ELEVATOR_INSERT_FLUSH)
1954 __blk_run_queue(q);
82124d60
KU
1955 spin_unlock_irqrestore(q->queue_lock, flags);
1956
1957 return 0;
1958}
1959EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1960
80a761fd
TH
1961/**
1962 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1963 * @rq: request to examine
1964 *
1965 * Description:
1966 * A request could be merge of IOs which require different failure
1967 * handling. This function determines the number of bytes which
1968 * can be failed from the beginning of the request without
1969 * crossing into area which need to be retried further.
1970 *
1971 * Return:
1972 * The number of bytes to fail.
1973 *
1974 * Context:
1975 * queue_lock must be held.
1976 */
1977unsigned int blk_rq_err_bytes(const struct request *rq)
1978{
1979 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1980 unsigned int bytes = 0;
1981 struct bio *bio;
1982
1983 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1984 return blk_rq_bytes(rq);
1985
1986 /*
1987 * Currently the only 'mixing' which can happen is between
1988 * different fastfail types. We can safely fail portions
1989 * which have all the failfast bits that the first one has -
1990 * the ones which are at least as eager to fail as the first
1991 * one.
1992 */
1993 for (bio = rq->bio; bio; bio = bio->bi_next) {
1994 if ((bio->bi_rw & ff) != ff)
1995 break;
1996 bytes += bio->bi_size;
1997 }
1998
1999 /* this could lead to infinite loop */
2000 BUG_ON(blk_rq_bytes(rq) && !bytes);
2001 return bytes;
2002}
2003EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2004
bc58ba94
JA
2005static void blk_account_io_completion(struct request *req, unsigned int bytes)
2006{
c2553b58 2007 if (blk_do_io_stat(req)) {
bc58ba94
JA
2008 const int rw = rq_data_dir(req);
2009 struct hd_struct *part;
2010 int cpu;
2011
2012 cpu = part_stat_lock();
09e099d4 2013 part = req->part;
bc58ba94
JA
2014 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2015 part_stat_unlock();
2016 }
2017}
2018
2019static void blk_account_io_done(struct request *req)
2020{
bc58ba94 2021 /*
dd4c133f
TH
2022 * Account IO completion. flush_rq isn't accounted as a
2023 * normal IO on queueing nor completion. Accounting the
2024 * containing request is enough.
bc58ba94 2025 */
414b4ff5 2026 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2027 unsigned long duration = jiffies - req->start_time;
2028 const int rw = rq_data_dir(req);
2029 struct hd_struct *part;
2030 int cpu;
2031
2032 cpu = part_stat_lock();
09e099d4 2033 part = req->part;
bc58ba94
JA
2034
2035 part_stat_inc(cpu, part, ios[rw]);
2036 part_stat_add(cpu, part, ticks[rw], duration);
2037 part_round_stats(cpu, part);
316d315b 2038 part_dec_in_flight(part, rw);
bc58ba94 2039
6c23a968 2040 hd_struct_put(part);
bc58ba94
JA
2041 part_stat_unlock();
2042 }
2043}
2044
3bcddeac 2045/**
9934c8c0
TH
2046 * blk_peek_request - peek at the top of a request queue
2047 * @q: request queue to peek at
2048 *
2049 * Description:
2050 * Return the request at the top of @q. The returned request
2051 * should be started using blk_start_request() before LLD starts
2052 * processing it.
2053 *
2054 * Return:
2055 * Pointer to the request at the top of @q if available. Null
2056 * otherwise.
2057 *
2058 * Context:
2059 * queue_lock must be held.
2060 */
2061struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2062{
2063 struct request *rq;
2064 int ret;
2065
2066 while ((rq = __elv_next_request(q)) != NULL) {
2067 if (!(rq->cmd_flags & REQ_STARTED)) {
2068 /*
2069 * This is the first time the device driver
2070 * sees this request (possibly after
2071 * requeueing). Notify IO scheduler.
2072 */
33659ebb 2073 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2074 elv_activate_rq(q, rq);
2075
2076 /*
2077 * just mark as started even if we don't start
2078 * it, a request that has been delayed should
2079 * not be passed by new incoming requests
2080 */
2081 rq->cmd_flags |= REQ_STARTED;
2082 trace_block_rq_issue(q, rq);
2083 }
2084
2085 if (!q->boundary_rq || q->boundary_rq == rq) {
2086 q->end_sector = rq_end_sector(rq);
2087 q->boundary_rq = NULL;
2088 }
2089
2090 if (rq->cmd_flags & REQ_DONTPREP)
2091 break;
2092
2e46e8b2 2093 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2094 /*
2095 * make sure space for the drain appears we
2096 * know we can do this because max_hw_segments
2097 * has been adjusted to be one fewer than the
2098 * device can handle
2099 */
2100 rq->nr_phys_segments++;
2101 }
2102
2103 if (!q->prep_rq_fn)
2104 break;
2105
2106 ret = q->prep_rq_fn(q, rq);
2107 if (ret == BLKPREP_OK) {
2108 break;
2109 } else if (ret == BLKPREP_DEFER) {
2110 /*
2111 * the request may have been (partially) prepped.
2112 * we need to keep this request in the front to
2113 * avoid resource deadlock. REQ_STARTED will
2114 * prevent other fs requests from passing this one.
2115 */
2e46e8b2 2116 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2117 !(rq->cmd_flags & REQ_DONTPREP)) {
2118 /*
2119 * remove the space for the drain we added
2120 * so that we don't add it again
2121 */
2122 --rq->nr_phys_segments;
2123 }
2124
2125 rq = NULL;
2126 break;
2127 } else if (ret == BLKPREP_KILL) {
2128 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2129 /*
2130 * Mark this request as started so we don't trigger
2131 * any debug logic in the end I/O path.
2132 */
2133 blk_start_request(rq);
40cbbb78 2134 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2135 } else {
2136 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2137 break;
2138 }
2139 }
2140
2141 return rq;
2142}
9934c8c0 2143EXPORT_SYMBOL(blk_peek_request);
158dbda0 2144
9934c8c0 2145void blk_dequeue_request(struct request *rq)
158dbda0 2146{
9934c8c0
TH
2147 struct request_queue *q = rq->q;
2148
158dbda0
TH
2149 BUG_ON(list_empty(&rq->queuelist));
2150 BUG_ON(ELV_ON_HASH(rq));
2151
2152 list_del_init(&rq->queuelist);
2153
2154 /*
2155 * the time frame between a request being removed from the lists
2156 * and to it is freed is accounted as io that is in progress at
2157 * the driver side.
2158 */
9195291e 2159 if (blk_account_rq(rq)) {
0a7ae2ff 2160 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2161 set_io_start_time_ns(rq);
2162 }
158dbda0
TH
2163}
2164
9934c8c0
TH
2165/**
2166 * blk_start_request - start request processing on the driver
2167 * @req: request to dequeue
2168 *
2169 * Description:
2170 * Dequeue @req and start timeout timer on it. This hands off the
2171 * request to the driver.
2172 *
2173 * Block internal functions which don't want to start timer should
2174 * call blk_dequeue_request().
2175 *
2176 * Context:
2177 * queue_lock must be held.
2178 */
2179void blk_start_request(struct request *req)
2180{
2181 blk_dequeue_request(req);
2182
2183 /*
5f49f631
TH
2184 * We are now handing the request to the hardware, initialize
2185 * resid_len to full count and add the timeout handler.
9934c8c0 2186 */
5f49f631 2187 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2188 if (unlikely(blk_bidi_rq(req)))
2189 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2190
9934c8c0
TH
2191 blk_add_timer(req);
2192}
2193EXPORT_SYMBOL(blk_start_request);
2194
2195/**
2196 * blk_fetch_request - fetch a request from a request queue
2197 * @q: request queue to fetch a request from
2198 *
2199 * Description:
2200 * Return the request at the top of @q. The request is started on
2201 * return and LLD can start processing it immediately.
2202 *
2203 * Return:
2204 * Pointer to the request at the top of @q if available. Null
2205 * otherwise.
2206 *
2207 * Context:
2208 * queue_lock must be held.
2209 */
2210struct request *blk_fetch_request(struct request_queue *q)
2211{
2212 struct request *rq;
2213
2214 rq = blk_peek_request(q);
2215 if (rq)
2216 blk_start_request(rq);
2217 return rq;
2218}
2219EXPORT_SYMBOL(blk_fetch_request);
2220
3bcddeac 2221/**
2e60e022 2222 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2223 * @req: the request being processed
710027a4 2224 * @error: %0 for success, < %0 for error
8ebf9756 2225 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2226 *
2227 * Description:
8ebf9756
RD
2228 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2229 * the request structure even if @req doesn't have leftover.
2230 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2231 *
2232 * This special helper function is only for request stacking drivers
2233 * (e.g. request-based dm) so that they can handle partial completion.
2234 * Actual device drivers should use blk_end_request instead.
2235 *
2236 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2237 * %false return from this function.
3bcddeac
KU
2238 *
2239 * Return:
2e60e022
TH
2240 * %false - this request doesn't have any more data
2241 * %true - this request has more data
3bcddeac 2242 **/
2e60e022 2243bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2244{
f79ea416 2245 int total_bytes;
1da177e4 2246
2e60e022
TH
2247 if (!req->bio)
2248 return false;
2249
5f3ea37c 2250 trace_block_rq_complete(req->q, req);
2056a782 2251
1da177e4 2252 /*
6f41469c
TH
2253 * For fs requests, rq is just carrier of independent bio's
2254 * and each partial completion should be handled separately.
2255 * Reset per-request error on each partial completion.
2256 *
2257 * TODO: tj: This is too subtle. It would be better to let
2258 * low level drivers do what they see fit.
1da177e4 2259 */
33659ebb 2260 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2261 req->errors = 0;
2262
33659ebb
CH
2263 if (error && req->cmd_type == REQ_TYPE_FS &&
2264 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2265 char *error_type;
2266
2267 switch (error) {
2268 case -ENOLINK:
2269 error_type = "recoverable transport";
2270 break;
2271 case -EREMOTEIO:
2272 error_type = "critical target";
2273 break;
2274 case -EBADE:
2275 error_type = "critical nexus";
2276 break;
2277 case -EIO:
2278 default:
2279 error_type = "I/O";
2280 break;
2281 }
37d7b34f
YZ
2282 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2283 error_type, req->rq_disk ?
2284 req->rq_disk->disk_name : "?",
2285 (unsigned long long)blk_rq_pos(req));
2286
1da177e4
LT
2287 }
2288
bc58ba94 2289 blk_account_io_completion(req, nr_bytes);
d72d904a 2290
f79ea416
KO
2291 total_bytes = 0;
2292 while (req->bio) {
2293 struct bio *bio = req->bio;
2294 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
1da177e4 2295
f79ea416 2296 if (bio_bytes == bio->bi_size)
1da177e4 2297 req->bio = bio->bi_next;
1da177e4 2298
f79ea416 2299 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2300
f79ea416
KO
2301 total_bytes += bio_bytes;
2302 nr_bytes -= bio_bytes;
1da177e4 2303
f79ea416
KO
2304 if (!nr_bytes)
2305 break;
1da177e4
LT
2306 }
2307
2308 /*
2309 * completely done
2310 */
2e60e022
TH
2311 if (!req->bio) {
2312 /*
2313 * Reset counters so that the request stacking driver
2314 * can find how many bytes remain in the request
2315 * later.
2316 */
a2dec7b3 2317 req->__data_len = 0;
2e60e022
TH
2318 return false;
2319 }
1da177e4 2320
a2dec7b3 2321 req->__data_len -= total_bytes;
2e46e8b2
TH
2322 req->buffer = bio_data(req->bio);
2323
2324 /* update sector only for requests with clear definition of sector */
e2a60da7 2325 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2326 req->__sector += total_bytes >> 9;
2e46e8b2 2327
80a761fd
TH
2328 /* mixed attributes always follow the first bio */
2329 if (req->cmd_flags & REQ_MIXED_MERGE) {
2330 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2331 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2332 }
2333
2e46e8b2
TH
2334 /*
2335 * If total number of sectors is less than the first segment
2336 * size, something has gone terribly wrong.
2337 */
2338 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2339 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2340 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2341 }
2342
2343 /* recalculate the number of segments */
1da177e4 2344 blk_recalc_rq_segments(req);
2e46e8b2 2345
2e60e022 2346 return true;
1da177e4 2347}
2e60e022 2348EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2349
2e60e022
TH
2350static bool blk_update_bidi_request(struct request *rq, int error,
2351 unsigned int nr_bytes,
2352 unsigned int bidi_bytes)
5efccd17 2353{
2e60e022
TH
2354 if (blk_update_request(rq, error, nr_bytes))
2355 return true;
5efccd17 2356
2e60e022
TH
2357 /* Bidi request must be completed as a whole */
2358 if (unlikely(blk_bidi_rq(rq)) &&
2359 blk_update_request(rq->next_rq, error, bidi_bytes))
2360 return true;
5efccd17 2361
e2e1a148
JA
2362 if (blk_queue_add_random(rq->q))
2363 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2364
2365 return false;
1da177e4
LT
2366}
2367
28018c24
JB
2368/**
2369 * blk_unprep_request - unprepare a request
2370 * @req: the request
2371 *
2372 * This function makes a request ready for complete resubmission (or
2373 * completion). It happens only after all error handling is complete,
2374 * so represents the appropriate moment to deallocate any resources
2375 * that were allocated to the request in the prep_rq_fn. The queue
2376 * lock is held when calling this.
2377 */
2378void blk_unprep_request(struct request *req)
2379{
2380 struct request_queue *q = req->q;
2381
2382 req->cmd_flags &= ~REQ_DONTPREP;
2383 if (q->unprep_rq_fn)
2384 q->unprep_rq_fn(q, req);
2385}
2386EXPORT_SYMBOL_GPL(blk_unprep_request);
2387
1da177e4
LT
2388/*
2389 * queue lock must be held
2390 */
2e60e022 2391static void blk_finish_request(struct request *req, int error)
1da177e4 2392{
b8286239
KU
2393 if (blk_rq_tagged(req))
2394 blk_queue_end_tag(req->q, req);
2395
ba396a6c 2396 BUG_ON(blk_queued_rq(req));
1da177e4 2397
33659ebb 2398 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2399 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2400
e78042e5
MA
2401 blk_delete_timer(req);
2402
28018c24
JB
2403 if (req->cmd_flags & REQ_DONTPREP)
2404 blk_unprep_request(req);
2405
2406
bc58ba94 2407 blk_account_io_done(req);
b8286239 2408
1da177e4 2409 if (req->end_io)
8ffdc655 2410 req->end_io(req, error);
b8286239
KU
2411 else {
2412 if (blk_bidi_rq(req))
2413 __blk_put_request(req->next_rq->q, req->next_rq);
2414
1da177e4 2415 __blk_put_request(req->q, req);
b8286239 2416 }
1da177e4
LT
2417}
2418
3b11313a 2419/**
2e60e022
TH
2420 * blk_end_bidi_request - Complete a bidi request
2421 * @rq: the request to complete
2422 * @error: %0 for success, < %0 for error
2423 * @nr_bytes: number of bytes to complete @rq
2424 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2425 *
2426 * Description:
e3a04fe3 2427 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2428 * Drivers that supports bidi can safely call this member for any
2429 * type of request, bidi or uni. In the later case @bidi_bytes is
2430 * just ignored.
336cdb40
KU
2431 *
2432 * Return:
2e60e022
TH
2433 * %false - we are done with this request
2434 * %true - still buffers pending for this request
a0cd1285 2435 **/
b1f74493 2436static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2437 unsigned int nr_bytes, unsigned int bidi_bytes)
2438{
336cdb40 2439 struct request_queue *q = rq->q;
2e60e022 2440 unsigned long flags;
32fab448 2441
2e60e022
TH
2442 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2443 return true;
32fab448 2444
336cdb40 2445 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2446 blk_finish_request(rq, error);
336cdb40
KU
2447 spin_unlock_irqrestore(q->queue_lock, flags);
2448
2e60e022 2449 return false;
32fab448
KU
2450}
2451
336cdb40 2452/**
2e60e022
TH
2453 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2454 * @rq: the request to complete
710027a4 2455 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2456 * @nr_bytes: number of bytes to complete @rq
2457 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2458 *
2459 * Description:
2e60e022
TH
2460 * Identical to blk_end_bidi_request() except that queue lock is
2461 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2462 *
2463 * Return:
2e60e022
TH
2464 * %false - we are done with this request
2465 * %true - still buffers pending for this request
336cdb40 2466 **/
4853abaa 2467bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2468 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2469{
2e60e022
TH
2470 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2471 return true;
336cdb40 2472
2e60e022 2473 blk_finish_request(rq, error);
336cdb40 2474
2e60e022 2475 return false;
336cdb40 2476}
e19a3ab0
KU
2477
2478/**
2479 * blk_end_request - Helper function for drivers to complete the request.
2480 * @rq: the request being processed
710027a4 2481 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2482 * @nr_bytes: number of bytes to complete
2483 *
2484 * Description:
2485 * Ends I/O on a number of bytes attached to @rq.
2486 * If @rq has leftover, sets it up for the next range of segments.
2487 *
2488 * Return:
b1f74493
FT
2489 * %false - we are done with this request
2490 * %true - still buffers pending for this request
e19a3ab0 2491 **/
b1f74493 2492bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2493{
b1f74493 2494 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2495}
56ad1740 2496EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2497
2498/**
b1f74493
FT
2499 * blk_end_request_all - Helper function for drives to finish the request.
2500 * @rq: the request to finish
8ebf9756 2501 * @error: %0 for success, < %0 for error
336cdb40
KU
2502 *
2503 * Description:
b1f74493
FT
2504 * Completely finish @rq.
2505 */
2506void blk_end_request_all(struct request *rq, int error)
336cdb40 2507{
b1f74493
FT
2508 bool pending;
2509 unsigned int bidi_bytes = 0;
336cdb40 2510
b1f74493
FT
2511 if (unlikely(blk_bidi_rq(rq)))
2512 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2513
b1f74493
FT
2514 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2515 BUG_ON(pending);
2516}
56ad1740 2517EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2518
b1f74493
FT
2519/**
2520 * blk_end_request_cur - Helper function to finish the current request chunk.
2521 * @rq: the request to finish the current chunk for
8ebf9756 2522 * @error: %0 for success, < %0 for error
b1f74493
FT
2523 *
2524 * Description:
2525 * Complete the current consecutively mapped chunk from @rq.
2526 *
2527 * Return:
2528 * %false - we are done with this request
2529 * %true - still buffers pending for this request
2530 */
2531bool blk_end_request_cur(struct request *rq, int error)
2532{
2533 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2534}
56ad1740 2535EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2536
80a761fd
TH
2537/**
2538 * blk_end_request_err - Finish a request till the next failure boundary.
2539 * @rq: the request to finish till the next failure boundary for
2540 * @error: must be negative errno
2541 *
2542 * Description:
2543 * Complete @rq till the next failure boundary.
2544 *
2545 * Return:
2546 * %false - we are done with this request
2547 * %true - still buffers pending for this request
2548 */
2549bool blk_end_request_err(struct request *rq, int error)
2550{
2551 WARN_ON(error >= 0);
2552 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2553}
2554EXPORT_SYMBOL_GPL(blk_end_request_err);
2555
e3a04fe3 2556/**
b1f74493
FT
2557 * __blk_end_request - Helper function for drivers to complete the request.
2558 * @rq: the request being processed
2559 * @error: %0 for success, < %0 for error
2560 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2561 *
2562 * Description:
b1f74493 2563 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2564 *
2565 * Return:
b1f74493
FT
2566 * %false - we are done with this request
2567 * %true - still buffers pending for this request
e3a04fe3 2568 **/
b1f74493 2569bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2570{
b1f74493 2571 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2572}
56ad1740 2573EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2574
32fab448 2575/**
b1f74493
FT
2576 * __blk_end_request_all - Helper function for drives to finish the request.
2577 * @rq: the request to finish
8ebf9756 2578 * @error: %0 for success, < %0 for error
32fab448
KU
2579 *
2580 * Description:
b1f74493 2581 * Completely finish @rq. Must be called with queue lock held.
32fab448 2582 */
b1f74493 2583void __blk_end_request_all(struct request *rq, int error)
32fab448 2584{
b1f74493
FT
2585 bool pending;
2586 unsigned int bidi_bytes = 0;
2587
2588 if (unlikely(blk_bidi_rq(rq)))
2589 bidi_bytes = blk_rq_bytes(rq->next_rq);
2590
2591 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2592 BUG_ON(pending);
32fab448 2593}
56ad1740 2594EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2595
e19a3ab0 2596/**
b1f74493
FT
2597 * __blk_end_request_cur - Helper function to finish the current request chunk.
2598 * @rq: the request to finish the current chunk for
8ebf9756 2599 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2600 *
2601 * Description:
b1f74493
FT
2602 * Complete the current consecutively mapped chunk from @rq. Must
2603 * be called with queue lock held.
e19a3ab0
KU
2604 *
2605 * Return:
b1f74493
FT
2606 * %false - we are done with this request
2607 * %true - still buffers pending for this request
2608 */
2609bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2610{
b1f74493 2611 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2612}
56ad1740 2613EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2614
80a761fd
TH
2615/**
2616 * __blk_end_request_err - Finish a request till the next failure boundary.
2617 * @rq: the request to finish till the next failure boundary for
2618 * @error: must be negative errno
2619 *
2620 * Description:
2621 * Complete @rq till the next failure boundary. Must be called
2622 * with queue lock held.
2623 *
2624 * Return:
2625 * %false - we are done with this request
2626 * %true - still buffers pending for this request
2627 */
2628bool __blk_end_request_err(struct request *rq, int error)
2629{
2630 WARN_ON(error >= 0);
2631 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2632}
2633EXPORT_SYMBOL_GPL(__blk_end_request_err);
2634
86db1e29
JA
2635void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2636 struct bio *bio)
1da177e4 2637{
a82afdfc 2638 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2639 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2640
fb2dce86
DW
2641 if (bio_has_data(bio)) {
2642 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2643 rq->buffer = bio_data(bio);
2644 }
a2dec7b3 2645 rq->__data_len = bio->bi_size;
1da177e4 2646 rq->bio = rq->biotail = bio;
1da177e4 2647
66846572
N
2648 if (bio->bi_bdev)
2649 rq->rq_disk = bio->bi_bdev->bd_disk;
2650}
1da177e4 2651
2d4dc890
IL
2652#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2653/**
2654 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2655 * @rq: the request to be flushed
2656 *
2657 * Description:
2658 * Flush all pages in @rq.
2659 */
2660void rq_flush_dcache_pages(struct request *rq)
2661{
2662 struct req_iterator iter;
2663 struct bio_vec *bvec;
2664
2665 rq_for_each_segment(bvec, rq, iter)
2666 flush_dcache_page(bvec->bv_page);
2667}
2668EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2669#endif
2670
ef9e3fac
KU
2671/**
2672 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2673 * @q : the queue of the device being checked
2674 *
2675 * Description:
2676 * Check if underlying low-level drivers of a device are busy.
2677 * If the drivers want to export their busy state, they must set own
2678 * exporting function using blk_queue_lld_busy() first.
2679 *
2680 * Basically, this function is used only by request stacking drivers
2681 * to stop dispatching requests to underlying devices when underlying
2682 * devices are busy. This behavior helps more I/O merging on the queue
2683 * of the request stacking driver and prevents I/O throughput regression
2684 * on burst I/O load.
2685 *
2686 * Return:
2687 * 0 - Not busy (The request stacking driver should dispatch request)
2688 * 1 - Busy (The request stacking driver should stop dispatching request)
2689 */
2690int blk_lld_busy(struct request_queue *q)
2691{
2692 if (q->lld_busy_fn)
2693 return q->lld_busy_fn(q);
2694
2695 return 0;
2696}
2697EXPORT_SYMBOL_GPL(blk_lld_busy);
2698
b0fd271d
KU
2699/**
2700 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2701 * @rq: the clone request to be cleaned up
2702 *
2703 * Description:
2704 * Free all bios in @rq for a cloned request.
2705 */
2706void blk_rq_unprep_clone(struct request *rq)
2707{
2708 struct bio *bio;
2709
2710 while ((bio = rq->bio) != NULL) {
2711 rq->bio = bio->bi_next;
2712
2713 bio_put(bio);
2714 }
2715}
2716EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2717
2718/*
2719 * Copy attributes of the original request to the clone request.
2720 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2721 */
2722static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2723{
2724 dst->cpu = src->cpu;
3a2edd0d 2725 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2726 dst->cmd_type = src->cmd_type;
2727 dst->__sector = blk_rq_pos(src);
2728 dst->__data_len = blk_rq_bytes(src);
2729 dst->nr_phys_segments = src->nr_phys_segments;
2730 dst->ioprio = src->ioprio;
2731 dst->extra_len = src->extra_len;
2732}
2733
2734/**
2735 * blk_rq_prep_clone - Helper function to setup clone request
2736 * @rq: the request to be setup
2737 * @rq_src: original request to be cloned
2738 * @bs: bio_set that bios for clone are allocated from
2739 * @gfp_mask: memory allocation mask for bio
2740 * @bio_ctr: setup function to be called for each clone bio.
2741 * Returns %0 for success, non %0 for failure.
2742 * @data: private data to be passed to @bio_ctr
2743 *
2744 * Description:
2745 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2746 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2747 * are not copied, and copying such parts is the caller's responsibility.
2748 * Also, pages which the original bios are pointing to are not copied
2749 * and the cloned bios just point same pages.
2750 * So cloned bios must be completed before original bios, which means
2751 * the caller must complete @rq before @rq_src.
2752 */
2753int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2754 struct bio_set *bs, gfp_t gfp_mask,
2755 int (*bio_ctr)(struct bio *, struct bio *, void *),
2756 void *data)
2757{
2758 struct bio *bio, *bio_src;
2759
2760 if (!bs)
2761 bs = fs_bio_set;
2762
2763 blk_rq_init(NULL, rq);
2764
2765 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2766 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2767 if (!bio)
2768 goto free_and_out;
2769
b0fd271d
KU
2770 if (bio_ctr && bio_ctr(bio, bio_src, data))
2771 goto free_and_out;
2772
2773 if (rq->bio) {
2774 rq->biotail->bi_next = bio;
2775 rq->biotail = bio;
2776 } else
2777 rq->bio = rq->biotail = bio;
2778 }
2779
2780 __blk_rq_prep_clone(rq, rq_src);
2781
2782 return 0;
2783
2784free_and_out:
2785 if (bio)
4254bba1 2786 bio_put(bio);
b0fd271d
KU
2787 blk_rq_unprep_clone(rq);
2788
2789 return -ENOMEM;
2790}
2791EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2792
18887ad9 2793int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2794{
2795 return queue_work(kblockd_workqueue, work);
2796}
1da177e4
LT
2797EXPORT_SYMBOL(kblockd_schedule_work);
2798
e43473b7
VG
2799int kblockd_schedule_delayed_work(struct request_queue *q,
2800 struct delayed_work *dwork, unsigned long delay)
2801{
2802 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2803}
2804EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2805
73c10101
JA
2806#define PLUG_MAGIC 0x91827364
2807
75df7136
SJ
2808/**
2809 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2810 * @plug: The &struct blk_plug that needs to be initialized
2811 *
2812 * Description:
2813 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2814 * pending I/O should the task end up blocking between blk_start_plug() and
2815 * blk_finish_plug(). This is important from a performance perspective, but
2816 * also ensures that we don't deadlock. For instance, if the task is blocking
2817 * for a memory allocation, memory reclaim could end up wanting to free a
2818 * page belonging to that request that is currently residing in our private
2819 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2820 * this kind of deadlock.
2821 */
73c10101
JA
2822void blk_start_plug(struct blk_plug *plug)
2823{
2824 struct task_struct *tsk = current;
2825
2826 plug->magic = PLUG_MAGIC;
2827 INIT_LIST_HEAD(&plug->list);
048c9374 2828 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2829
2830 /*
2831 * If this is a nested plug, don't actually assign it. It will be
2832 * flushed on its own.
2833 */
2834 if (!tsk->plug) {
2835 /*
2836 * Store ordering should not be needed here, since a potential
2837 * preempt will imply a full memory barrier
2838 */
2839 tsk->plug = plug;
2840 }
2841}
2842EXPORT_SYMBOL(blk_start_plug);
2843
2844static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2845{
2846 struct request *rqa = container_of(a, struct request, queuelist);
2847 struct request *rqb = container_of(b, struct request, queuelist);
2848
975927b9
JM
2849 return !(rqa->q < rqb->q ||
2850 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2851}
2852
49cac01e
JA
2853/*
2854 * If 'from_schedule' is true, then postpone the dispatch of requests
2855 * until a safe kblockd context. We due this to avoid accidental big
2856 * additional stack usage in driver dispatch, in places where the originally
2857 * plugger did not intend it.
2858 */
f6603783 2859static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2860 bool from_schedule)
99e22598 2861 __releases(q->queue_lock)
94b5eb28 2862{
49cac01e 2863 trace_block_unplug(q, depth, !from_schedule);
99e22598 2864
70460571 2865 if (from_schedule)
24ecfbe2 2866 blk_run_queue_async(q);
70460571 2867 else
24ecfbe2 2868 __blk_run_queue(q);
70460571 2869 spin_unlock(q->queue_lock);
94b5eb28
JA
2870}
2871
74018dc3 2872static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2873{
2874 LIST_HEAD(callbacks);
2875
2a7d5559
SL
2876 while (!list_empty(&plug->cb_list)) {
2877 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2878
2a7d5559
SL
2879 while (!list_empty(&callbacks)) {
2880 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2881 struct blk_plug_cb,
2882 list);
2a7d5559 2883 list_del(&cb->list);
74018dc3 2884 cb->callback(cb, from_schedule);
2a7d5559 2885 }
048c9374
N
2886 }
2887}
2888
9cbb1750
N
2889struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2890 int size)
2891{
2892 struct blk_plug *plug = current->plug;
2893 struct blk_plug_cb *cb;
2894
2895 if (!plug)
2896 return NULL;
2897
2898 list_for_each_entry(cb, &plug->cb_list, list)
2899 if (cb->callback == unplug && cb->data == data)
2900 return cb;
2901
2902 /* Not currently on the callback list */
2903 BUG_ON(size < sizeof(*cb));
2904 cb = kzalloc(size, GFP_ATOMIC);
2905 if (cb) {
2906 cb->data = data;
2907 cb->callback = unplug;
2908 list_add(&cb->list, &plug->cb_list);
2909 }
2910 return cb;
2911}
2912EXPORT_SYMBOL(blk_check_plugged);
2913
49cac01e 2914void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2915{
2916 struct request_queue *q;
2917 unsigned long flags;
2918 struct request *rq;
109b8129 2919 LIST_HEAD(list);
94b5eb28 2920 unsigned int depth;
73c10101
JA
2921
2922 BUG_ON(plug->magic != PLUG_MAGIC);
2923
74018dc3 2924 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2925 if (list_empty(&plug->list))
2926 return;
2927
109b8129
N
2928 list_splice_init(&plug->list, &list);
2929
422765c2 2930 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
2931
2932 q = NULL;
94b5eb28 2933 depth = 0;
18811272
JA
2934
2935 /*
2936 * Save and disable interrupts here, to avoid doing it for every
2937 * queue lock we have to take.
2938 */
73c10101 2939 local_irq_save(flags);
109b8129
N
2940 while (!list_empty(&list)) {
2941 rq = list_entry_rq(list.next);
73c10101 2942 list_del_init(&rq->queuelist);
73c10101
JA
2943 BUG_ON(!rq->q);
2944 if (rq->q != q) {
99e22598
JA
2945 /*
2946 * This drops the queue lock
2947 */
2948 if (q)
49cac01e 2949 queue_unplugged(q, depth, from_schedule);
73c10101 2950 q = rq->q;
94b5eb28 2951 depth = 0;
73c10101
JA
2952 spin_lock(q->queue_lock);
2953 }
8ba61435
TH
2954
2955 /*
2956 * Short-circuit if @q is dead
2957 */
3f3299d5 2958 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2959 __blk_end_request_all(rq, -ENODEV);
2960 continue;
2961 }
2962
73c10101
JA
2963 /*
2964 * rq is already accounted, so use raw insert
2965 */
401a18e9
JA
2966 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2967 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2968 else
2969 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2970
2971 depth++;
73c10101
JA
2972 }
2973
99e22598
JA
2974 /*
2975 * This drops the queue lock
2976 */
2977 if (q)
49cac01e 2978 queue_unplugged(q, depth, from_schedule);
73c10101 2979
73c10101
JA
2980 local_irq_restore(flags);
2981}
73c10101
JA
2982
2983void blk_finish_plug(struct blk_plug *plug)
2984{
f6603783 2985 blk_flush_plug_list(plug, false);
73c10101 2986
88b996cd
CH
2987 if (plug == current->plug)
2988 current->plug = NULL;
73c10101 2989}
88b996cd 2990EXPORT_SYMBOL(blk_finish_plug);
73c10101 2991
1da177e4
LT
2992int __init blk_dev_init(void)
2993{
9eb55b03
NK
2994 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2995 sizeof(((struct request *)0)->cmd_flags));
2996
89b90be2
TH
2997 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2998 kblockd_workqueue = alloc_workqueue("kblockd",
2999 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3000 if (!kblockd_workqueue)
3001 panic("Failed to create kblockd\n");
3002
3003 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3004 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3005
8324aa91 3006 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3007 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3008
d38ecf93 3009 return 0;
1da177e4 3010}