]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
hw/ioh3420.c: convert to PCIDeviceInfo to initialize ids
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181
FB
28#include "cpu.h"
29#include "exec-all.h"
b67d9a52 30#include "tcg.h"
b3c7724c 31#include "hw/hw.h"
cc9e98cb 32#include "hw/qdev.h"
74576198 33#include "osdep.h"
7ba1e619 34#include "kvm.h"
29e922b6 35#include "qemu-timer.h"
53a5960a
PB
36#if defined(CONFIG_USER_ONLY)
37#include <qemu.h>
fd052bf6 38#include <signal.h>
f01576f1
JL
39#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40#include <sys/param.h>
41#if __FreeBSD_version >= 700104
42#define HAVE_KINFO_GETVMMAP
43#define sigqueue sigqueue_freebsd /* avoid redefinition */
44#include <sys/time.h>
45#include <sys/proc.h>
46#include <machine/profile.h>
47#define _KERNEL
48#include <sys/user.h>
49#undef _KERNEL
50#undef sigqueue
51#include <libutil.h>
52#endif
53#endif
53a5960a 54#endif
54936004 55
fd6ce8f6 56//#define DEBUG_TB_INVALIDATE
66e85a21 57//#define DEBUG_FLUSH
9fa3e853 58//#define DEBUG_TLB
67d3b957 59//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
60
61/* make various TB consistency checks */
5fafdf24
TS
62//#define DEBUG_TB_CHECK
63//#define DEBUG_TLB_CHECK
fd6ce8f6 64
1196be37 65//#define DEBUG_IOPORT
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
99773bd4
PB
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
9fa3e853
FB
73#define SMC_BITMAP_USE_THRESHOLD 10
74
bdaf78e0 75static TranslationBlock *tbs;
24ab68ac 76static int code_gen_max_blocks;
9fa3e853 77TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 78static int nb_tbs;
eb51d102 79/* any access to the tbs or the page table must use this lock */
c227f099 80spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 81
141ac468
BS
82#if defined(__arm__) || defined(__sparc_v9__)
83/* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
85 section close to code segment. */
86#define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
f8e2af11
SW
89#elif defined(_WIN32)
90/* Maximum alignment for Win32 is 16. */
91#define code_gen_section \
92 __attribute__((aligned (16)))
d03d860b
BS
93#else
94#define code_gen_section \
95 __attribute__((aligned (32)))
96#endif
97
98uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
99static uint8_t *code_gen_buffer;
100static unsigned long code_gen_buffer_size;
26a5f13b 101/* threshold to flush the translated code buffer */
bdaf78e0 102static unsigned long code_gen_buffer_max_size;
24ab68ac 103static uint8_t *code_gen_ptr;
fd6ce8f6 104
e2eef170 105#if !defined(CONFIG_USER_ONLY)
9fa3e853 106int phys_ram_fd;
74576198 107static int in_migration;
94a6b54f 108
f471a17e 109RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 110#endif
9fa3e853 111
6a00d601
FB
112CPUState *first_cpu;
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
5fafdf24 115CPUState *cpu_single_env;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef
PB
118 2 = Adaptive rate instruction counting. */
119int use_icount = 0;
120/* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122int64_t qemu_icount;
6a00d601 123
54936004 124typedef struct PageDesc {
92e873b9 125 /* list of TBs intersecting this ram page */
fd6ce8f6 126 TranslationBlock *first_tb;
9fa3e853
FB
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131#if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133#endif
54936004
FB
134} PageDesc;
135
41c1b1c9 136/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
137 while in user mode we want it to be based on virtual addresses. */
138#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
139#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141#else
5cd2c5b6 142# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 143#endif
bedb69ea 144#else
5cd2c5b6 145# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 146#endif
54936004 147
5cd2c5b6
RH
148/* Size of the L2 (and L3, etc) page tables. */
149#define L2_BITS 10
54936004
FB
150#define L2_SIZE (1 << L2_BITS)
151
5cd2c5b6
RH
152/* The bits remaining after N lower levels of page tables. */
153#define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155#define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157
158/* Size of the L1 page table. Avoid silly small sizes. */
159#if P_L1_BITS_REM < 4
160#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161#else
162#define P_L1_BITS P_L1_BITS_REM
163#endif
164
165#if V_L1_BITS_REM < 4
166#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167#else
168#define V_L1_BITS V_L1_BITS_REM
169#endif
170
171#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
173
174#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
176
83fb7adf
FB
177unsigned long qemu_real_host_page_size;
178unsigned long qemu_host_page_bits;
179unsigned long qemu_host_page_size;
180unsigned long qemu_host_page_mask;
54936004 181
5cd2c5b6
RH
182/* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184static void *l1_map[V_L1_SIZE];
54936004 185
e2eef170 186#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
187typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191} PhysPageDesc;
192
5cd2c5b6
RH
193/* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195static void *l1_phys_map[P_L1_SIZE];
6d9a1304 196
e2eef170
PB
197static void io_mem_init(void);
198
33417e70 199/* io memory support */
33417e70
FB
200CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 202void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 203static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
204static int io_mem_watch;
205#endif
33417e70 206
34865134 207/* log support */
1e8b27ca
JR
208#ifdef WIN32
209static const char *logfilename = "qemu.log";
210#else
d9b630fd 211static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 212#endif
34865134
FB
213FILE *logfile;
214int loglevel;
e735b91c 215static int log_append = 0;
34865134 216
e3db7226 217/* statistics */
b3755a91 218#if !defined(CONFIG_USER_ONLY)
e3db7226 219static int tlb_flush_count;
b3755a91 220#endif
e3db7226
FB
221static int tb_flush_count;
222static int tb_phys_invalidate_count;
223
7cb69cae
FB
224#ifdef _WIN32
225static void map_exec(void *addr, long size)
226{
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
230
231}
232#else
233static void map_exec(void *addr, long size)
234{
4369415f 235 unsigned long start, end, page_size;
7cb69cae 236
4369415f 237 page_size = getpagesize();
7cb69cae 238 start = (unsigned long)addr;
4369415f 239 start &= ~(page_size - 1);
7cb69cae
FB
240
241 end = (unsigned long)addr + size;
4369415f
FB
242 end += page_size - 1;
243 end &= ~(page_size - 1);
7cb69cae
FB
244
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
247}
248#endif
249
b346ff46 250static void page_init(void)
54936004 251{
83fb7adf 252 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 253 TARGET_PAGE_SIZE */
c2b48b69
AL
254#ifdef _WIN32
255 {
256 SYSTEM_INFO system_info;
257
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
260 }
261#else
262 qemu_real_host_page_size = getpagesize();
263#endif
83fb7adf
FB
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 272
2e9a5713 273#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 274 {
f01576f1
JL
275#ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
278
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
284
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
289
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
fd436907 292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
293 } else {
294#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
fd436907 296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
297#endif
298 }
299 }
300 }
301 free(freep);
302 mmap_unlock();
303 }
304#else
50a9569b 305 FILE *f;
50a9569b 306
0776590d 307 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 308
fd436907 309 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 310 if (f) {
5cd2c5b6
RH
311 mmap_lock();
312
50a9569b 313 do {
5cd2c5b6
RH
314 unsigned long startaddr, endaddr;
315 int n;
316
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
318
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
321
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
326 }
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
328 }
329 } while (!feof(f));
5cd2c5b6 330
50a9569b 331 fclose(f);
5cd2c5b6 332 mmap_unlock();
50a9569b 333 }
f01576f1 334#endif
50a9569b
AZ
335 }
336#endif
54936004
FB
337}
338
41c1b1c9 339static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 340{
41c1b1c9
PB
341 PageDesc *pd;
342 void **lp;
343 int i;
344
5cd2c5b6 345#if defined(CONFIG_USER_ONLY)
2e9a5713 346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
347# define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
351 } while (0)
352#else
353# define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 355#endif
434929bf 356
5cd2c5b6
RH
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
359
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
363
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
367 }
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
17e2377a 370 }
5cd2c5b6
RH
371
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
373 }
374
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
379 }
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
54936004 382 }
5cd2c5b6
RH
383
384#undef ALLOC
5cd2c5b6
RH
385
386 return pd + (index & (L2_SIZE - 1));
54936004
FB
387}
388
41c1b1c9 389static inline PageDesc *page_find(tb_page_addr_t index)
54936004 390{
5cd2c5b6 391 return page_find_alloc(index, 0);
fd6ce8f6
FB
392}
393
6d9a1304 394#if !defined(CONFIG_USER_ONLY)
c227f099 395static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 396{
e3f4e2a4 397 PhysPageDesc *pd;
5cd2c5b6
RH
398 void **lp;
399 int i;
92e873b9 400
5cd2c5b6
RH
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 403
5cd2c5b6
RH
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
410 }
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
412 }
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 414 }
5cd2c5b6 415
e3f4e2a4 416 pd = *lp;
5cd2c5b6 417 if (pd == NULL) {
e3f4e2a4 418 int i;
5cd2c5b6
RH
419
420 if (!alloc) {
108c49b8 421 return NULL;
5cd2c5b6
RH
422 }
423
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
425
67c4d23c 426 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 429 }
92e873b9 430 }
5cd2c5b6
RH
431
432 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
433}
434
c227f099 435static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 436{
108c49b8 437 return phys_page_find_alloc(index, 0);
92e873b9
FB
438}
439
c227f099
AL
440static void tlb_protect_code(ram_addr_t ram_addr);
441static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 442 target_ulong vaddr);
c8a706fe
PB
443#define mmap_lock() do { } while(0)
444#define mmap_unlock() do { } while(0)
9fa3e853 445#endif
fd6ce8f6 446
4369415f
FB
447#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
448
449#if defined(CONFIG_USER_ONLY)
ccbb4d44 450/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
451 user mode. It will change when a dedicated libc will be used */
452#define USE_STATIC_CODE_GEN_BUFFER
453#endif
454
455#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
456static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
458#endif
459
8fcd3692 460static void code_gen_alloc(unsigned long tb_size)
26a5f13b 461{
4369415f
FB
462#ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466#else
26a5f13b
FB
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
4369415f
FB
469#if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472#else
ccbb4d44 473 /* XXX: needs adjustments */
94a6b54f 474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 475#endif
26a5f13b
FB
476 }
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481#if defined(__linux__)
482 {
483 int flags;
141ac468
BS
484 void *start = NULL;
485
26a5f13b
FB
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487#if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
492#elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 498#elif defined(__arm__)
63d41246 499 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
504#elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
26a5f13b 511#endif
141ac468
BS
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
cbb608a5
BS
520#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
06e67a82
AL
522 {
523 int flags;
524 void *addr = NULL;
525 flags = MAP_PRIVATE | MAP_ANONYMOUS;
526#if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
529 flags |= MAP_FIXED;
530 addr = (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size > (800 * 1024 * 1024))
533 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
534#elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
536 flags |= MAP_FIXED;
537 addr = (void *) 0x60000000UL;
538 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
539 code_gen_buffer_size = (512 * 1024 * 1024);
540 }
06e67a82
AL
541#endif
542 code_gen_buffer = mmap(addr, code_gen_buffer_size,
543 PROT_WRITE | PROT_READ | PROT_EXEC,
544 flags, -1, 0);
545 if (code_gen_buffer == MAP_FAILED) {
546 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
547 exit(1);
548 }
549 }
26a5f13b
FB
550#else
551 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
552 map_exec(code_gen_buffer, code_gen_buffer_size);
553#endif
4369415f 554#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
555 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
556 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 557 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
558 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
559 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
560}
561
562/* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
564 size. */
565void cpu_exec_init_all(unsigned long tb_size)
566{
26a5f13b
FB
567 cpu_gen_init();
568 code_gen_alloc(tb_size);
569 code_gen_ptr = code_gen_buffer;
4369415f 570 page_init();
e2eef170 571#if !defined(CONFIG_USER_ONLY)
26a5f13b 572 io_mem_init();
e2eef170 573#endif
9002ec79
RH
574#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578#endif
26a5f13b
FB
579}
580
9656f324
PB
581#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
582
e59fb374 583static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
584{
585 CPUState *env = opaque;
9656f324 586
3098dba0
AJ
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env->interrupt_request &= ~0x01;
9656f324
PB
590 tlb_flush(env, 1);
591
592 return 0;
593}
e7f4eff7
JQ
594
595static const VMStateDescription vmstate_cpu_common = {
596 .name = "cpu_common",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .minimum_version_id_old = 1,
e7f4eff7
JQ
600 .post_load = cpu_common_post_load,
601 .fields = (VMStateField []) {
602 VMSTATE_UINT32(halted, CPUState),
603 VMSTATE_UINT32(interrupt_request, CPUState),
604 VMSTATE_END_OF_LIST()
605 }
606};
9656f324
PB
607#endif
608
950f1472
GC
609CPUState *qemu_get_cpu(int cpu)
610{
611 CPUState *env = first_cpu;
612
613 while (env) {
614 if (env->cpu_index == cpu)
615 break;
616 env = env->next_cpu;
617 }
618
619 return env;
620}
621
6a00d601 622void cpu_exec_init(CPUState *env)
fd6ce8f6 623{
6a00d601
FB
624 CPUState **penv;
625 int cpu_index;
626
c2764719
PB
627#if defined(CONFIG_USER_ONLY)
628 cpu_list_lock();
629#endif
6a00d601
FB
630 env->next_cpu = NULL;
631 penv = &first_cpu;
632 cpu_index = 0;
633 while (*penv != NULL) {
1e9fa730 634 penv = &(*penv)->next_cpu;
6a00d601
FB
635 cpu_index++;
636 }
637 env->cpu_index = cpu_index;
268a362c 638 env->numa_node = 0;
72cf2d4f
BS
639 QTAILQ_INIT(&env->breakpoints);
640 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
641#ifndef CONFIG_USER_ONLY
642 env->thread_id = qemu_get_thread_id();
643#endif
6a00d601 644 *penv = env;
c2764719
PB
645#if defined(CONFIG_USER_ONLY)
646 cpu_list_unlock();
647#endif
b3c7724c 648#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
649 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
650 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
651 cpu_save, cpu_load, env);
652#endif
fd6ce8f6
FB
653}
654
d1a1eb74
TG
655/* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657static TranslationBlock *tb_alloc(target_ulong pc)
658{
659 TranslationBlock *tb;
660
661 if (nb_tbs >= code_gen_max_blocks ||
662 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
663 return NULL;
664 tb = &tbs[nb_tbs++];
665 tb->pc = pc;
666 tb->cflags = 0;
667 return tb;
668}
669
670void tb_free(TranslationBlock *tb)
671{
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
676 code_gen_ptr = tb->tc_ptr;
677 nb_tbs--;
678 }
679}
680
9fa3e853
FB
681static inline void invalidate_page_bitmap(PageDesc *p)
682{
683 if (p->code_bitmap) {
59817ccb 684 qemu_free(p->code_bitmap);
9fa3e853
FB
685 p->code_bitmap = NULL;
686 }
687 p->code_write_count = 0;
688}
689
5cd2c5b6
RH
690/* Set to NULL all the 'first_tb' fields in all PageDescs. */
691
692static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 693{
5cd2c5b6 694 int i;
fd6ce8f6 695
5cd2c5b6
RH
696 if (*lp == NULL) {
697 return;
698 }
699 if (level == 0) {
700 PageDesc *pd = *lp;
7296abac 701 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
702 pd[i].first_tb = NULL;
703 invalidate_page_bitmap(pd + i);
fd6ce8f6 704 }
5cd2c5b6
RH
705 } else {
706 void **pp = *lp;
7296abac 707 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
708 page_flush_tb_1 (level - 1, pp + i);
709 }
710 }
711}
712
713static void page_flush_tb(void)
714{
715 int i;
716 for (i = 0; i < V_L1_SIZE; i++) {
717 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
718 }
719}
720
721/* flush all the translation blocks */
d4e8164f 722/* XXX: tb_flush is currently not thread safe */
6a00d601 723void tb_flush(CPUState *env1)
fd6ce8f6 724{
6a00d601 725 CPUState *env;
0124311e 726#if defined(DEBUG_FLUSH)
ab3d1727
BS
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr - code_gen_buffer),
729 nb_tbs, nb_tbs > 0 ?
730 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 731#endif
26a5f13b 732 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
733 cpu_abort(env1, "Internal error: code buffer overflow\n");
734
fd6ce8f6 735 nb_tbs = 0;
3b46e624 736
6a00d601
FB
737 for(env = first_cpu; env != NULL; env = env->next_cpu) {
738 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
739 }
9fa3e853 740
8a8a608f 741 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 742 page_flush_tb();
9fa3e853 743
fd6ce8f6 744 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
745 /* XXX: flush processor icache at this point if cache flush is
746 expensive */
e3db7226 747 tb_flush_count++;
fd6ce8f6
FB
748}
749
750#ifdef DEBUG_TB_CHECK
751
bc98a7ef 752static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
753{
754 TranslationBlock *tb;
755 int i;
756 address &= TARGET_PAGE_MASK;
99773bd4
PB
757 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
758 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
759 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
760 address >= tb->pc + tb->size)) {
0bf9e31a
BS
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
99773bd4 763 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
764 }
765 }
766 }
767}
768
769/* verify that all the pages have correct rights for code */
770static void tb_page_check(void)
771{
772 TranslationBlock *tb;
773 int i, flags1, flags2;
3b46e624 774
99773bd4
PB
775 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
776 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
777 flags1 = page_get_flags(tb->pc);
778 flags2 = page_get_flags(tb->pc + tb->size - 1);
779 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 781 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
782 }
783 }
784 }
785}
786
787#endif
788
789/* invalidate one TB */
790static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
791 int next_offset)
792{
793 TranslationBlock *tb1;
794 for(;;) {
795 tb1 = *ptb;
796 if (tb1 == tb) {
797 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
798 break;
799 }
800 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
801 }
802}
803
9fa3e853
FB
804static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
805{
806 TranslationBlock *tb1;
807 unsigned int n1;
808
809 for(;;) {
810 tb1 = *ptb;
811 n1 = (long)tb1 & 3;
812 tb1 = (TranslationBlock *)((long)tb1 & ~3);
813 if (tb1 == tb) {
814 *ptb = tb1->page_next[n1];
815 break;
816 }
817 ptb = &tb1->page_next[n1];
818 }
819}
820
d4e8164f
FB
821static inline void tb_jmp_remove(TranslationBlock *tb, int n)
822{
823 TranslationBlock *tb1, **ptb;
824 unsigned int n1;
825
826 ptb = &tb->jmp_next[n];
827 tb1 = *ptb;
828 if (tb1) {
829 /* find tb(n) in circular list */
830 for(;;) {
831 tb1 = *ptb;
832 n1 = (long)tb1 & 3;
833 tb1 = (TranslationBlock *)((long)tb1 & ~3);
834 if (n1 == n && tb1 == tb)
835 break;
836 if (n1 == 2) {
837 ptb = &tb1->jmp_first;
838 } else {
839 ptb = &tb1->jmp_next[n1];
840 }
841 }
842 /* now we can suppress tb(n) from the list */
843 *ptb = tb->jmp_next[n];
844
845 tb->jmp_next[n] = NULL;
846 }
847}
848
849/* reset the jump entry 'n' of a TB so that it is not chained to
850 another TB */
851static inline void tb_reset_jump(TranslationBlock *tb, int n)
852{
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
854}
855
41c1b1c9 856void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 857{
6a00d601 858 CPUState *env;
8a40a180 859 PageDesc *p;
d4e8164f 860 unsigned int h, n1;
41c1b1c9 861 tb_page_addr_t phys_pc;
8a40a180 862 TranslationBlock *tb1, *tb2;
3b46e624 863
8a40a180
FB
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
5fafdf24 867 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
868 offsetof(TranslationBlock, phys_hash_next));
869
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
880 }
881
36bdbe54 882 tb_invalidated_flag = 1;
59817ccb 883
fd6ce8f6 884 /* remove the TB from the hash list */
8a40a180 885 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
889 }
d4e8164f
FB
890
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
894
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
906 }
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 908
e3db7226 909 tb_phys_invalidate_count++;
9fa3e853
FB
910}
911
912static inline void set_bits(uint8_t *tab, int start, int len)
913{
914 int end, mask, end1;
915
916 end = start + len;
917 tab += start >> 3;
918 mask = 0xff << (start & 7);
919 if ((start & ~7) == (end & ~7)) {
920 if (start < end) {
921 mask &= ~(0xff << (end & 7));
922 *tab |= mask;
923 }
924 } else {
925 *tab++ |= mask;
926 start = (start + 8) & ~7;
927 end1 = end & ~7;
928 while (start < end1) {
929 *tab++ = 0xff;
930 start += 8;
931 }
932 if (start < end) {
933 mask = ~(0xff << (end & 7));
934 *tab |= mask;
935 }
936 }
937}
938
939static void build_page_bitmap(PageDesc *p)
940{
941 int n, tb_start, tb_end;
942 TranslationBlock *tb;
3b46e624 943
b2a7081a 944 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
945
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->pc & ~TARGET_PAGE_MASK;
955 tb_end = tb_start + tb->size;
956 if (tb_end > TARGET_PAGE_SIZE)
957 tb_end = TARGET_PAGE_SIZE;
958 } else {
959 tb_start = 0;
960 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
961 }
962 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
963 tb = tb->page_next[n];
964 }
965}
966
2e70f6ef
PB
967TranslationBlock *tb_gen_code(CPUState *env,
968 target_ulong pc, target_ulong cs_base,
969 int flags, int cflags)
d720b93d
FB
970{
971 TranslationBlock *tb;
972 uint8_t *tc_ptr;
41c1b1c9
PB
973 tb_page_addr_t phys_pc, phys_page2;
974 target_ulong virt_page2;
d720b93d
FB
975 int code_gen_size;
976
41c1b1c9 977 phys_pc = get_page_addr_code(env, pc);
c27004ec 978 tb = tb_alloc(pc);
d720b93d
FB
979 if (!tb) {
980 /* flush must be done */
981 tb_flush(env);
982 /* cannot fail at this point */
c27004ec 983 tb = tb_alloc(pc);
2e70f6ef
PB
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag = 1;
d720b93d
FB
986 }
987 tc_ptr = code_gen_ptr;
988 tb->tc_ptr = tc_ptr;
989 tb->cs_base = cs_base;
990 tb->flags = flags;
991 tb->cflags = cflags;
d07bde88 992 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 993 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 994
d720b93d 995 /* check next page if needed */
c27004ec 996 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 997 phys_page2 = -1;
c27004ec 998 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 999 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1000 }
41c1b1c9 1001 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1002 return tb;
d720b93d 1003}
3b46e624 1004
9fa3e853
FB
1005/* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
41c1b1c9 1010void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1011 int is_cpu_write_access)
1012{
6b917547 1013 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1014 CPUState *env = cpu_single_env;
41c1b1c9 1015 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1016 PageDesc *p;
1017 int n;
1018#ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found = is_cpu_write_access;
1020 TranslationBlock *current_tb = NULL;
1021 int current_tb_modified = 0;
1022 target_ulong current_pc = 0;
1023 target_ulong current_cs_base = 0;
1024 int current_flags = 0;
1025#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1026
1027 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1028 if (!p)
9fa3e853 1029 return;
5fafdf24 1030 if (!p->code_bitmap &&
d720b93d
FB
1031 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1032 is_cpu_write_access) {
9fa3e853
FB
1033 /* build code bitmap */
1034 build_page_bitmap(p);
1035 }
1036
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1039 tb = p->first_tb;
1040 while (tb != NULL) {
1041 n = (long)tb & 3;
1042 tb = (TranslationBlock *)((long)tb & ~3);
1043 tb_next = tb->page_next[n];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1045 if (n == 0) {
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1049 tb_end = tb_start + tb->size;
1050 } else {
1051 tb_start = tb->page_addr[1];
1052 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1053 }
1054 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1055#ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found) {
1057 current_tb_not_found = 0;
1058 current_tb = NULL;
2e70f6ef 1059 if (env->mem_io_pc) {
d720b93d 1060 /* now we have a real cpu fault */
2e70f6ef 1061 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1062 }
1063 }
1064 if (current_tb == tb &&
2e70f6ef 1065 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
3b46e624 1071
d720b93d 1072 current_tb_modified = 1;
618ba8e6 1073 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1074 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1075 &current_flags);
d720b93d
FB
1076 }
1077#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1078 /* we need to do that to handle the case where a signal
1079 occurs while doing tb_phys_invalidate() */
1080 saved_tb = NULL;
1081 if (env) {
1082 saved_tb = env->current_tb;
1083 env->current_tb = NULL;
1084 }
9fa3e853 1085 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1086 if (env) {
1087 env->current_tb = saved_tb;
1088 if (env->interrupt_request && env->current_tb)
1089 cpu_interrupt(env, env->interrupt_request);
1090 }
9fa3e853
FB
1091 }
1092 tb = tb_next;
1093 }
1094#if !defined(CONFIG_USER_ONLY)
1095 /* if no code remaining, no need to continue to use slow writes */
1096 if (!p->first_tb) {
1097 invalidate_page_bitmap(p);
d720b93d 1098 if (is_cpu_write_access) {
2e70f6ef 1099 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1100 }
1101 }
1102#endif
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
ea1c1802 1108 env->current_tb = NULL;
2e70f6ef 1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1110 cpu_resume_from_signal(env, NULL);
9fa3e853 1111 }
fd6ce8f6 1112#endif
9fa3e853 1113}
fd6ce8f6 1114
9fa3e853 1115/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1116static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1117{
1118 PageDesc *p;
1119 int offset, b;
59817ccb 1120#if 0
a4193c8a 1121 if (1) {
93fcfe39
AL
1122 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1123 cpu_single_env->mem_io_vaddr, len,
1124 cpu_single_env->eip,
1125 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1126 }
1127#endif
9fa3e853 1128 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1129 if (!p)
9fa3e853
FB
1130 return;
1131 if (p->code_bitmap) {
1132 offset = start & ~TARGET_PAGE_MASK;
1133 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1134 if (b & ((1 << len) - 1))
1135 goto do_invalidate;
1136 } else {
1137 do_invalidate:
d720b93d 1138 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1139 }
1140}
1141
9fa3e853 1142#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1143static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1144 unsigned long pc, void *puc)
9fa3e853 1145{
6b917547 1146 TranslationBlock *tb;
9fa3e853 1147 PageDesc *p;
6b917547 1148 int n;
d720b93d 1149#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1150 TranslationBlock *current_tb = NULL;
d720b93d 1151 CPUState *env = cpu_single_env;
6b917547
AL
1152 int current_tb_modified = 0;
1153 target_ulong current_pc = 0;
1154 target_ulong current_cs_base = 0;
1155 int current_flags = 0;
d720b93d 1156#endif
9fa3e853
FB
1157
1158 addr &= TARGET_PAGE_MASK;
1159 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1160 if (!p)
9fa3e853
FB
1161 return;
1162 tb = p->first_tb;
d720b93d
FB
1163#ifdef TARGET_HAS_PRECISE_SMC
1164 if (tb && pc != 0) {
1165 current_tb = tb_find_pc(pc);
1166 }
1167#endif
9fa3e853
FB
1168 while (tb != NULL) {
1169 n = (long)tb & 3;
1170 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1171#ifdef TARGET_HAS_PRECISE_SMC
1172 if (current_tb == tb &&
2e70f6ef 1173 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1174 /* If we are modifying the current TB, we must stop
1175 its execution. We could be more precise by checking
1176 that the modification is after the current PC, but it
1177 would require a specialized function to partially
1178 restore the CPU state */
3b46e624 1179
d720b93d 1180 current_tb_modified = 1;
618ba8e6 1181 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1182 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1183 &current_flags);
d720b93d
FB
1184 }
1185#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1186 tb_phys_invalidate(tb, addr);
1187 tb = tb->page_next[n];
1188 }
fd6ce8f6 1189 p->first_tb = NULL;
d720b93d
FB
1190#ifdef TARGET_HAS_PRECISE_SMC
1191 if (current_tb_modified) {
1192 /* we generate a block containing just the instruction
1193 modifying the memory. It will ensure that it cannot modify
1194 itself */
ea1c1802 1195 env->current_tb = NULL;
2e70f6ef 1196 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1197 cpu_resume_from_signal(env, puc);
1198 }
1199#endif
fd6ce8f6 1200}
9fa3e853 1201#endif
fd6ce8f6
FB
1202
1203/* add the tb in the target page and protect it if necessary */
5fafdf24 1204static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1205 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1206{
1207 PageDesc *p;
9fa3e853
FB
1208 TranslationBlock *last_first_tb;
1209
1210 tb->page_addr[n] = page_addr;
5cd2c5b6 1211 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1212 tb->page_next[n] = p->first_tb;
1213 last_first_tb = p->first_tb;
1214 p->first_tb = (TranslationBlock *)((long)tb | n);
1215 invalidate_page_bitmap(p);
fd6ce8f6 1216
107db443 1217#if defined(TARGET_HAS_SMC) || 1
d720b93d 1218
9fa3e853 1219#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1220 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1221 target_ulong addr;
1222 PageDesc *p2;
9fa3e853
FB
1223 int prot;
1224
fd6ce8f6
FB
1225 /* force the host page as non writable (writes will have a
1226 page fault + mprotect overhead) */
53a5960a 1227 page_addr &= qemu_host_page_mask;
fd6ce8f6 1228 prot = 0;
53a5960a
PB
1229 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1230 addr += TARGET_PAGE_SIZE) {
1231
1232 p2 = page_find (addr >> TARGET_PAGE_BITS);
1233 if (!p2)
1234 continue;
1235 prot |= p2->flags;
1236 p2->flags &= ~PAGE_WRITE;
53a5960a 1237 }
5fafdf24 1238 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1239 (prot & PAGE_BITS) & ~PAGE_WRITE);
1240#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1241 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1242 page_addr);
fd6ce8f6 1243#endif
fd6ce8f6 1244 }
9fa3e853
FB
1245#else
1246 /* if some code is already present, then the pages are already
1247 protected. So we handle the case where only the first TB is
1248 allocated in a physical page */
1249 if (!last_first_tb) {
6a00d601 1250 tlb_protect_code(page_addr);
9fa3e853
FB
1251 }
1252#endif
d720b93d
FB
1253
1254#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1255}
1256
9fa3e853
FB
1257/* add a new TB and link it to the physical page tables. phys_page2 is
1258 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1259void tb_link_page(TranslationBlock *tb,
1260 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1261{
9fa3e853
FB
1262 unsigned int h;
1263 TranslationBlock **ptb;
1264
c8a706fe
PB
1265 /* Grab the mmap lock to stop another thread invalidating this TB
1266 before we are done. */
1267 mmap_lock();
9fa3e853
FB
1268 /* add in the physical hash table */
1269 h = tb_phys_hash_func(phys_pc);
1270 ptb = &tb_phys_hash[h];
1271 tb->phys_hash_next = *ptb;
1272 *ptb = tb;
fd6ce8f6
FB
1273
1274 /* add in the page list */
9fa3e853
FB
1275 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1276 if (phys_page2 != -1)
1277 tb_alloc_page(tb, 1, phys_page2);
1278 else
1279 tb->page_addr[1] = -1;
9fa3e853 1280
d4e8164f
FB
1281 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1282 tb->jmp_next[0] = NULL;
1283 tb->jmp_next[1] = NULL;
1284
1285 /* init original jump addresses */
1286 if (tb->tb_next_offset[0] != 0xffff)
1287 tb_reset_jump(tb, 0);
1288 if (tb->tb_next_offset[1] != 0xffff)
1289 tb_reset_jump(tb, 1);
8a40a180
FB
1290
1291#ifdef DEBUG_TB_CHECK
1292 tb_page_check();
1293#endif
c8a706fe 1294 mmap_unlock();
fd6ce8f6
FB
1295}
1296
9fa3e853
FB
1297/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1298 tb[1].tc_ptr. Return NULL if not found */
1299TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1300{
9fa3e853
FB
1301 int m_min, m_max, m;
1302 unsigned long v;
1303 TranslationBlock *tb;
a513fe19
FB
1304
1305 if (nb_tbs <= 0)
1306 return NULL;
1307 if (tc_ptr < (unsigned long)code_gen_buffer ||
1308 tc_ptr >= (unsigned long)code_gen_ptr)
1309 return NULL;
1310 /* binary search (cf Knuth) */
1311 m_min = 0;
1312 m_max = nb_tbs - 1;
1313 while (m_min <= m_max) {
1314 m = (m_min + m_max) >> 1;
1315 tb = &tbs[m];
1316 v = (unsigned long)tb->tc_ptr;
1317 if (v == tc_ptr)
1318 return tb;
1319 else if (tc_ptr < v) {
1320 m_max = m - 1;
1321 } else {
1322 m_min = m + 1;
1323 }
5fafdf24 1324 }
a513fe19
FB
1325 return &tbs[m_max];
1326}
7501267e 1327
ea041c0e
FB
1328static void tb_reset_jump_recursive(TranslationBlock *tb);
1329
1330static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1331{
1332 TranslationBlock *tb1, *tb_next, **ptb;
1333 unsigned int n1;
1334
1335 tb1 = tb->jmp_next[n];
1336 if (tb1 != NULL) {
1337 /* find head of list */
1338 for(;;) {
1339 n1 = (long)tb1 & 3;
1340 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1341 if (n1 == 2)
1342 break;
1343 tb1 = tb1->jmp_next[n1];
1344 }
1345 /* we are now sure now that tb jumps to tb1 */
1346 tb_next = tb1;
1347
1348 /* remove tb from the jmp_first list */
1349 ptb = &tb_next->jmp_first;
1350 for(;;) {
1351 tb1 = *ptb;
1352 n1 = (long)tb1 & 3;
1353 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1354 if (n1 == n && tb1 == tb)
1355 break;
1356 ptb = &tb1->jmp_next[n1];
1357 }
1358 *ptb = tb->jmp_next[n];
1359 tb->jmp_next[n] = NULL;
3b46e624 1360
ea041c0e
FB
1361 /* suppress the jump to next tb in generated code */
1362 tb_reset_jump(tb, n);
1363
0124311e 1364 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1365 tb_reset_jump_recursive(tb_next);
1366 }
1367}
1368
1369static void tb_reset_jump_recursive(TranslationBlock *tb)
1370{
1371 tb_reset_jump_recursive2(tb, 0);
1372 tb_reset_jump_recursive2(tb, 1);
1373}
1374
1fddef4b 1375#if defined(TARGET_HAS_ICE)
94df27fd
PB
1376#if defined(CONFIG_USER_ONLY)
1377static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1378{
1379 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1380}
1381#else
d720b93d
FB
1382static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1383{
c227f099 1384 target_phys_addr_t addr;
9b3c35e0 1385 target_ulong pd;
c227f099 1386 ram_addr_t ram_addr;
c2f07f81 1387 PhysPageDesc *p;
d720b93d 1388
c2f07f81
PB
1389 addr = cpu_get_phys_page_debug(env, pc);
1390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1391 if (!p) {
1392 pd = IO_MEM_UNASSIGNED;
1393 } else {
1394 pd = p->phys_offset;
1395 }
1396 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1397 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1398}
c27004ec 1399#endif
94df27fd 1400#endif /* TARGET_HAS_ICE */
d720b93d 1401
c527ee8f
PB
1402#if defined(CONFIG_USER_ONLY)
1403void cpu_watchpoint_remove_all(CPUState *env, int mask)
1404
1405{
1406}
1407
1408int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1409 int flags, CPUWatchpoint **watchpoint)
1410{
1411 return -ENOSYS;
1412}
1413#else
6658ffb8 1414/* Add a watchpoint. */
a1d1bb31
AL
1415int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1416 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1417{
b4051334 1418 target_ulong len_mask = ~(len - 1);
c0ce998e 1419 CPUWatchpoint *wp;
6658ffb8 1420
b4051334
AL
1421 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1422 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1423 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1424 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1425 return -EINVAL;
1426 }
a1d1bb31 1427 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1428
1429 wp->vaddr = addr;
b4051334 1430 wp->len_mask = len_mask;
a1d1bb31
AL
1431 wp->flags = flags;
1432
2dc9f411 1433 /* keep all GDB-injected watchpoints in front */
c0ce998e 1434 if (flags & BP_GDB)
72cf2d4f 1435 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1436 else
72cf2d4f 1437 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1438
6658ffb8 1439 tlb_flush_page(env, addr);
a1d1bb31
AL
1440
1441 if (watchpoint)
1442 *watchpoint = wp;
1443 return 0;
6658ffb8
PB
1444}
1445
a1d1bb31
AL
1446/* Remove a specific watchpoint. */
1447int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1448 int flags)
6658ffb8 1449{
b4051334 1450 target_ulong len_mask = ~(len - 1);
a1d1bb31 1451 CPUWatchpoint *wp;
6658ffb8 1452
72cf2d4f 1453 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1454 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1455 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1456 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1457 return 0;
1458 }
1459 }
a1d1bb31 1460 return -ENOENT;
6658ffb8
PB
1461}
1462
a1d1bb31
AL
1463/* Remove a specific watchpoint by reference. */
1464void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1465{
72cf2d4f 1466 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1467
a1d1bb31
AL
1468 tlb_flush_page(env, watchpoint->vaddr);
1469
1470 qemu_free(watchpoint);
1471}
1472
1473/* Remove all matching watchpoints. */
1474void cpu_watchpoint_remove_all(CPUState *env, int mask)
1475{
c0ce998e 1476 CPUWatchpoint *wp, *next;
a1d1bb31 1477
72cf2d4f 1478 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1479 if (wp->flags & mask)
1480 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1481 }
7d03f82f 1482}
c527ee8f 1483#endif
7d03f82f 1484
a1d1bb31
AL
1485/* Add a breakpoint. */
1486int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1487 CPUBreakpoint **breakpoint)
4c3a88a2 1488{
1fddef4b 1489#if defined(TARGET_HAS_ICE)
c0ce998e 1490 CPUBreakpoint *bp;
3b46e624 1491
a1d1bb31 1492 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1493
a1d1bb31
AL
1494 bp->pc = pc;
1495 bp->flags = flags;
1496
2dc9f411 1497 /* keep all GDB-injected breakpoints in front */
c0ce998e 1498 if (flags & BP_GDB)
72cf2d4f 1499 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1500 else
72cf2d4f 1501 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1502
d720b93d 1503 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1504
1505 if (breakpoint)
1506 *breakpoint = bp;
4c3a88a2
FB
1507 return 0;
1508#else
a1d1bb31 1509 return -ENOSYS;
4c3a88a2
FB
1510#endif
1511}
1512
a1d1bb31
AL
1513/* Remove a specific breakpoint. */
1514int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1515{
7d03f82f 1516#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1517 CPUBreakpoint *bp;
1518
72cf2d4f 1519 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1520 if (bp->pc == pc && bp->flags == flags) {
1521 cpu_breakpoint_remove_by_ref(env, bp);
1522 return 0;
1523 }
7d03f82f 1524 }
a1d1bb31
AL
1525 return -ENOENT;
1526#else
1527 return -ENOSYS;
7d03f82f
EI
1528#endif
1529}
1530
a1d1bb31
AL
1531/* Remove a specific breakpoint by reference. */
1532void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1533{
1fddef4b 1534#if defined(TARGET_HAS_ICE)
72cf2d4f 1535 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1536
a1d1bb31
AL
1537 breakpoint_invalidate(env, breakpoint->pc);
1538
1539 qemu_free(breakpoint);
1540#endif
1541}
1542
1543/* Remove all matching breakpoints. */
1544void cpu_breakpoint_remove_all(CPUState *env, int mask)
1545{
1546#if defined(TARGET_HAS_ICE)
c0ce998e 1547 CPUBreakpoint *bp, *next;
a1d1bb31 1548
72cf2d4f 1549 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1550 if (bp->flags & mask)
1551 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1552 }
4c3a88a2
FB
1553#endif
1554}
1555
c33a346e
FB
1556/* enable or disable single step mode. EXCP_DEBUG is returned by the
1557 CPU loop after each instruction */
1558void cpu_single_step(CPUState *env, int enabled)
1559{
1fddef4b 1560#if defined(TARGET_HAS_ICE)
c33a346e
FB
1561 if (env->singlestep_enabled != enabled) {
1562 env->singlestep_enabled = enabled;
e22a25c9
AL
1563 if (kvm_enabled())
1564 kvm_update_guest_debug(env, 0);
1565 else {
ccbb4d44 1566 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1567 /* XXX: only flush what is necessary */
1568 tb_flush(env);
1569 }
c33a346e
FB
1570 }
1571#endif
1572}
1573
34865134
FB
1574/* enable or disable low levels log */
1575void cpu_set_log(int log_flags)
1576{
1577 loglevel = log_flags;
1578 if (loglevel && !logfile) {
11fcfab4 1579 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1580 if (!logfile) {
1581 perror(logfilename);
1582 _exit(1);
1583 }
9fa3e853
FB
1584#if !defined(CONFIG_SOFTMMU)
1585 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1586 {
b55266b5 1587 static char logfile_buf[4096];
9fa3e853
FB
1588 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1589 }
bf65f53f
FN
1590#elif !defined(_WIN32)
1591 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1592 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1593#endif
e735b91c
PB
1594 log_append = 1;
1595 }
1596 if (!loglevel && logfile) {
1597 fclose(logfile);
1598 logfile = NULL;
34865134
FB
1599 }
1600}
1601
1602void cpu_set_log_filename(const char *filename)
1603{
1604 logfilename = strdup(filename);
e735b91c
PB
1605 if (logfile) {
1606 fclose(logfile);
1607 logfile = NULL;
1608 }
1609 cpu_set_log(loglevel);
34865134 1610}
c33a346e 1611
3098dba0 1612static void cpu_unlink_tb(CPUState *env)
ea041c0e 1613{
3098dba0
AJ
1614 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1615 problem and hope the cpu will stop of its own accord. For userspace
1616 emulation this often isn't actually as bad as it sounds. Often
1617 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1618 TranslationBlock *tb;
c227f099 1619 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1620
cab1b4bd 1621 spin_lock(&interrupt_lock);
3098dba0
AJ
1622 tb = env->current_tb;
1623 /* if the cpu is currently executing code, we must unlink it and
1624 all the potentially executing TB */
f76cfe56 1625 if (tb) {
3098dba0
AJ
1626 env->current_tb = NULL;
1627 tb_reset_jump_recursive(tb);
be214e6c 1628 }
cab1b4bd 1629 spin_unlock(&interrupt_lock);
3098dba0
AJ
1630}
1631
97ffbd8d 1632#ifndef CONFIG_USER_ONLY
3098dba0 1633/* mask must never be zero, except for A20 change call */
ec6959d0 1634static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1635{
1636 int old_mask;
be214e6c 1637
2e70f6ef 1638 old_mask = env->interrupt_request;
68a79315 1639 env->interrupt_request |= mask;
3098dba0 1640
8edac960
AL
1641 /*
1642 * If called from iothread context, wake the target cpu in
1643 * case its halted.
1644 */
b7680cb6 1645 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1646 qemu_cpu_kick(env);
1647 return;
1648 }
8edac960 1649
2e70f6ef 1650 if (use_icount) {
266910c4 1651 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1652 if (!can_do_io(env)
be214e6c 1653 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1654 cpu_abort(env, "Raised interrupt while not in I/O function");
1655 }
2e70f6ef 1656 } else {
3098dba0 1657 cpu_unlink_tb(env);
ea041c0e
FB
1658 }
1659}
1660
ec6959d0
JK
1661CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1662
97ffbd8d
JK
1663#else /* CONFIG_USER_ONLY */
1664
1665void cpu_interrupt(CPUState *env, int mask)
1666{
1667 env->interrupt_request |= mask;
1668 cpu_unlink_tb(env);
1669}
1670#endif /* CONFIG_USER_ONLY */
1671
b54ad049
FB
1672void cpu_reset_interrupt(CPUState *env, int mask)
1673{
1674 env->interrupt_request &= ~mask;
1675}
1676
3098dba0
AJ
1677void cpu_exit(CPUState *env)
1678{
1679 env->exit_request = 1;
1680 cpu_unlink_tb(env);
1681}
1682
c7cd6a37 1683const CPULogItem cpu_log_items[] = {
5fafdf24 1684 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1685 "show generated host assembly code for each compiled TB" },
1686 { CPU_LOG_TB_IN_ASM, "in_asm",
1687 "show target assembly code for each compiled TB" },
5fafdf24 1688 { CPU_LOG_TB_OP, "op",
57fec1fe 1689 "show micro ops for each compiled TB" },
f193c797 1690 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1691 "show micro ops "
1692#ifdef TARGET_I386
1693 "before eflags optimization and "
f193c797 1694#endif
e01a1157 1695 "after liveness analysis" },
f193c797
FB
1696 { CPU_LOG_INT, "int",
1697 "show interrupts/exceptions in short format" },
1698 { CPU_LOG_EXEC, "exec",
1699 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1700 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1701 "show CPU state before block translation" },
f193c797
FB
1702#ifdef TARGET_I386
1703 { CPU_LOG_PCALL, "pcall",
1704 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1705 { CPU_LOG_RESET, "cpu_reset",
1706 "show CPU state before CPU resets" },
f193c797 1707#endif
8e3a9fd2 1708#ifdef DEBUG_IOPORT
fd872598
FB
1709 { CPU_LOG_IOPORT, "ioport",
1710 "show all i/o ports accesses" },
8e3a9fd2 1711#endif
f193c797
FB
1712 { 0, NULL, NULL },
1713};
1714
f6f3fbca
MT
1715#ifndef CONFIG_USER_ONLY
1716static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1717 = QLIST_HEAD_INITIALIZER(memory_client_list);
1718
1719static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1720 ram_addr_t size,
0fd542fb
MT
1721 ram_addr_t phys_offset,
1722 bool log_dirty)
f6f3fbca
MT
1723{
1724 CPUPhysMemoryClient *client;
1725 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1726 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1727 }
1728}
1729
1730static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1731 target_phys_addr_t end)
f6f3fbca
MT
1732{
1733 CPUPhysMemoryClient *client;
1734 QLIST_FOREACH(client, &memory_client_list, list) {
1735 int r = client->sync_dirty_bitmap(client, start, end);
1736 if (r < 0)
1737 return r;
1738 }
1739 return 0;
1740}
1741
1742static int cpu_notify_migration_log(int enable)
1743{
1744 CPUPhysMemoryClient *client;
1745 QLIST_FOREACH(client, &memory_client_list, list) {
1746 int r = client->migration_log(client, enable);
1747 if (r < 0)
1748 return r;
1749 }
1750 return 0;
1751}
1752
2173a75f
AW
1753struct last_map {
1754 target_phys_addr_t start_addr;
1755 ram_addr_t size;
1756 ram_addr_t phys_offset;
1757};
1758
8d4c78e7
AW
1759/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1760 * address. Each intermediate table provides the next L2_BITs of guest
1761 * physical address space. The number of levels vary based on host and
1762 * guest configuration, making it efficient to build the final guest
1763 * physical address by seeding the L1 offset and shifting and adding in
1764 * each L2 offset as we recurse through them. */
2173a75f
AW
1765static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1766 void **lp, target_phys_addr_t addr,
1767 struct last_map *map)
f6f3fbca 1768{
5cd2c5b6 1769 int i;
f6f3fbca 1770
5cd2c5b6
RH
1771 if (*lp == NULL) {
1772 return;
1773 }
1774 if (level == 0) {
1775 PhysPageDesc *pd = *lp;
8d4c78e7 1776 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1777 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1778 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
2173a75f
AW
1779 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1780
1781 if (map->size &&
1782 start_addr == map->start_addr + map->size &&
1783 pd[i].phys_offset == map->phys_offset + map->size) {
1784
1785 map->size += TARGET_PAGE_SIZE;
1786 continue;
1787 } else if (map->size) {
1788 client->set_memory(client, map->start_addr,
1789 map->size, map->phys_offset, false);
1790 }
1791
1792 map->start_addr = start_addr;
1793 map->size = TARGET_PAGE_SIZE;
1794 map->phys_offset = pd[i].phys_offset;
f6f3fbca 1795 }
5cd2c5b6
RH
1796 }
1797 } else {
1798 void **pp = *lp;
7296abac 1799 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7 1800 phys_page_for_each_1(client, level - 1, pp + i,
2173a75f 1801 (addr << L2_BITS) | i, map);
f6f3fbca
MT
1802 }
1803 }
1804}
1805
1806static void phys_page_for_each(CPUPhysMemoryClient *client)
1807{
5cd2c5b6 1808 int i;
2173a75f
AW
1809 struct last_map map = { };
1810
5cd2c5b6
RH
1811 for (i = 0; i < P_L1_SIZE; ++i) {
1812 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
2173a75f
AW
1813 l1_phys_map + i, i, &map);
1814 }
1815 if (map.size) {
1816 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1817 false);
f6f3fbca 1818 }
f6f3fbca
MT
1819}
1820
1821void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1822{
1823 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1824 phys_page_for_each(client);
1825}
1826
1827void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1828{
1829 QLIST_REMOVE(client, list);
1830}
1831#endif
1832
f193c797
FB
1833static int cmp1(const char *s1, int n, const char *s2)
1834{
1835 if (strlen(s2) != n)
1836 return 0;
1837 return memcmp(s1, s2, n) == 0;
1838}
3b46e624 1839
f193c797
FB
1840/* takes a comma separated list of log masks. Return 0 if error. */
1841int cpu_str_to_log_mask(const char *str)
1842{
c7cd6a37 1843 const CPULogItem *item;
f193c797
FB
1844 int mask;
1845 const char *p, *p1;
1846
1847 p = str;
1848 mask = 0;
1849 for(;;) {
1850 p1 = strchr(p, ',');
1851 if (!p1)
1852 p1 = p + strlen(p);
9742bf26
YT
1853 if(cmp1(p,p1-p,"all")) {
1854 for(item = cpu_log_items; item->mask != 0; item++) {
1855 mask |= item->mask;
1856 }
1857 } else {
1858 for(item = cpu_log_items; item->mask != 0; item++) {
1859 if (cmp1(p, p1 - p, item->name))
1860 goto found;
1861 }
1862 return 0;
f193c797 1863 }
f193c797
FB
1864 found:
1865 mask |= item->mask;
1866 if (*p1 != ',')
1867 break;
1868 p = p1 + 1;
1869 }
1870 return mask;
1871}
ea041c0e 1872
7501267e
FB
1873void cpu_abort(CPUState *env, const char *fmt, ...)
1874{
1875 va_list ap;
493ae1f0 1876 va_list ap2;
7501267e
FB
1877
1878 va_start(ap, fmt);
493ae1f0 1879 va_copy(ap2, ap);
7501267e
FB
1880 fprintf(stderr, "qemu: fatal: ");
1881 vfprintf(stderr, fmt, ap);
1882 fprintf(stderr, "\n");
1883#ifdef TARGET_I386
7fe48483
FB
1884 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1885#else
1886 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1887#endif
93fcfe39
AL
1888 if (qemu_log_enabled()) {
1889 qemu_log("qemu: fatal: ");
1890 qemu_log_vprintf(fmt, ap2);
1891 qemu_log("\n");
f9373291 1892#ifdef TARGET_I386
93fcfe39 1893 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1894#else
93fcfe39 1895 log_cpu_state(env, 0);
f9373291 1896#endif
31b1a7b4 1897 qemu_log_flush();
93fcfe39 1898 qemu_log_close();
924edcae 1899 }
493ae1f0 1900 va_end(ap2);
f9373291 1901 va_end(ap);
fd052bf6
RV
1902#if defined(CONFIG_USER_ONLY)
1903 {
1904 struct sigaction act;
1905 sigfillset(&act.sa_mask);
1906 act.sa_handler = SIG_DFL;
1907 sigaction(SIGABRT, &act, NULL);
1908 }
1909#endif
7501267e
FB
1910 abort();
1911}
1912
c5be9f08
TS
1913CPUState *cpu_copy(CPUState *env)
1914{
01ba9816 1915 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1916 CPUState *next_cpu = new_env->next_cpu;
1917 int cpu_index = new_env->cpu_index;
5a38f081
AL
1918#if defined(TARGET_HAS_ICE)
1919 CPUBreakpoint *bp;
1920 CPUWatchpoint *wp;
1921#endif
1922
c5be9f08 1923 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1924
1925 /* Preserve chaining and index. */
c5be9f08
TS
1926 new_env->next_cpu = next_cpu;
1927 new_env->cpu_index = cpu_index;
5a38f081
AL
1928
1929 /* Clone all break/watchpoints.
1930 Note: Once we support ptrace with hw-debug register access, make sure
1931 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1932 QTAILQ_INIT(&env->breakpoints);
1933 QTAILQ_INIT(&env->watchpoints);
5a38f081 1934#if defined(TARGET_HAS_ICE)
72cf2d4f 1935 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1936 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1937 }
72cf2d4f 1938 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1939 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1940 wp->flags, NULL);
1941 }
1942#endif
1943
c5be9f08
TS
1944 return new_env;
1945}
1946
0124311e
FB
1947#if !defined(CONFIG_USER_ONLY)
1948
5c751e99
EI
1949static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1950{
1951 unsigned int i;
1952
1953 /* Discard jump cache entries for any tb which might potentially
1954 overlap the flushed page. */
1955 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1956 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1957 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1958
1959 i = tb_jmp_cache_hash_page(addr);
1960 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1961 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1962}
1963
08738984
IK
1964static CPUTLBEntry s_cputlb_empty_entry = {
1965 .addr_read = -1,
1966 .addr_write = -1,
1967 .addr_code = -1,
1968 .addend = -1,
1969};
1970
ee8b7021
FB
1971/* NOTE: if flush_global is true, also flush global entries (not
1972 implemented yet) */
1973void tlb_flush(CPUState *env, int flush_global)
33417e70 1974{
33417e70 1975 int i;
0124311e 1976
9fa3e853
FB
1977#if defined(DEBUG_TLB)
1978 printf("tlb_flush:\n");
1979#endif
0124311e
FB
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
1983
33417e70 1984 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1985 int mmu_idx;
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1987 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1988 }
33417e70 1989 }
9fa3e853 1990
8a40a180 1991 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1992
d4c430a8
PB
1993 env->tlb_flush_addr = -1;
1994 env->tlb_flush_mask = 0;
e3db7226 1995 tlb_flush_count++;
33417e70
FB
1996}
1997
274da6b2 1998static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1999{
5fafdf24 2000 if (addr == (tlb_entry->addr_read &
84b7b8e7 2001 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2002 addr == (tlb_entry->addr_write &
84b7b8e7 2003 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2004 addr == (tlb_entry->addr_code &
84b7b8e7 2005 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 2006 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 2007 }
61382a50
FB
2008}
2009
2e12669a 2010void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 2011{
8a40a180 2012 int i;
cfde4bd9 2013 int mmu_idx;
0124311e 2014
9fa3e853 2015#if defined(DEBUG_TLB)
108c49b8 2016 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 2017#endif
d4c430a8
PB
2018 /* Check if we need to flush due to large pages. */
2019 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2020#if defined(DEBUG_TLB)
2021 printf("tlb_flush_page: forced full flush ("
2022 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2023 env->tlb_flush_addr, env->tlb_flush_mask);
2024#endif
2025 tlb_flush(env, 1);
2026 return;
2027 }
0124311e
FB
2028 /* must reset current TB so that interrupts cannot modify the
2029 links while we are modifying them */
2030 env->current_tb = NULL;
61382a50
FB
2031
2032 addr &= TARGET_PAGE_MASK;
2033 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2034 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2035 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2036
5c751e99 2037 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2038}
2039
9fa3e853
FB
2040/* update the TLBs so that writes to code in the virtual page 'addr'
2041 can be detected */
c227f099 2042static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2043{
5fafdf24 2044 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2045 ram_addr + TARGET_PAGE_SIZE,
2046 CODE_DIRTY_FLAG);
9fa3e853
FB
2047}
2048
9fa3e853 2049/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2050 tested for self modifying code */
c227f099 2051static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2052 target_ulong vaddr)
9fa3e853 2053{
f7c11b53 2054 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2055}
2056
5fafdf24 2057static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2058 unsigned long start, unsigned long length)
2059{
2060 unsigned long addr;
84b7b8e7
FB
2061 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2062 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2063 if ((addr - start) < length) {
0f459d16 2064 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2065 }
2066 }
2067}
2068
5579c7f3 2069/* Note: start and end must be within the same ram block. */
c227f099 2070void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2071 int dirty_flags)
1ccde1cb
FB
2072{
2073 CPUState *env;
4f2ac237 2074 unsigned long length, start1;
f7c11b53 2075 int i;
1ccde1cb
FB
2076
2077 start &= TARGET_PAGE_MASK;
2078 end = TARGET_PAGE_ALIGN(end);
2079
2080 length = end - start;
2081 if (length == 0)
2082 return;
f7c11b53 2083 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2084
1ccde1cb
FB
2085 /* we modify the TLB cache so that the dirty bit will be set again
2086 when accessing the range */
b2e0a138 2087 start1 = (unsigned long)qemu_safe_ram_ptr(start);
5579c7f3
PB
2088 /* Chek that we don't span multiple blocks - this breaks the
2089 address comparisons below. */
b2e0a138 2090 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2091 != (end - 1) - start) {
2092 abort();
2093 }
2094
6a00d601 2095 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2096 int mmu_idx;
2097 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2098 for(i = 0; i < CPU_TLB_SIZE; i++)
2099 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2100 start1, length);
2101 }
6a00d601 2102 }
1ccde1cb
FB
2103}
2104
74576198
AL
2105int cpu_physical_memory_set_dirty_tracking(int enable)
2106{
f6f3fbca 2107 int ret = 0;
74576198 2108 in_migration = enable;
f6f3fbca
MT
2109 ret = cpu_notify_migration_log(!!enable);
2110 return ret;
74576198
AL
2111}
2112
2113int cpu_physical_memory_get_dirty_tracking(void)
2114{
2115 return in_migration;
2116}
2117
c227f099
AL
2118int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2119 target_phys_addr_t end_addr)
2bec46dc 2120{
7b8f3b78 2121 int ret;
151f7749 2122
f6f3fbca 2123 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2124 return ret;
2bec46dc
AL
2125}
2126
e5896b12
AP
2127int cpu_physical_log_start(target_phys_addr_t start_addr,
2128 ram_addr_t size)
2129{
2130 CPUPhysMemoryClient *client;
2131 QLIST_FOREACH(client, &memory_client_list, list) {
2132 if (client->log_start) {
2133 int r = client->log_start(client, start_addr, size);
2134 if (r < 0) {
2135 return r;
2136 }
2137 }
2138 }
2139 return 0;
2140}
2141
2142int cpu_physical_log_stop(target_phys_addr_t start_addr,
2143 ram_addr_t size)
2144{
2145 CPUPhysMemoryClient *client;
2146 QLIST_FOREACH(client, &memory_client_list, list) {
2147 if (client->log_stop) {
2148 int r = client->log_stop(client, start_addr, size);
2149 if (r < 0) {
2150 return r;
2151 }
2152 }
2153 }
2154 return 0;
2155}
2156
3a7d929e
FB
2157static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2158{
c227f099 2159 ram_addr_t ram_addr;
5579c7f3 2160 void *p;
3a7d929e 2161
84b7b8e7 2162 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2163 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2164 + tlb_entry->addend);
e890261f 2165 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2166 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2167 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2168 }
2169 }
2170}
2171
2172/* update the TLB according to the current state of the dirty bits */
2173void cpu_tlb_update_dirty(CPUState *env)
2174{
2175 int i;
cfde4bd9
IY
2176 int mmu_idx;
2177 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2178 for(i = 0; i < CPU_TLB_SIZE; i++)
2179 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2180 }
3a7d929e
FB
2181}
2182
0f459d16 2183static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2184{
0f459d16
PB
2185 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2186 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2187}
2188
0f459d16
PB
2189/* update the TLB corresponding to virtual page vaddr
2190 so that it is no longer dirty */
2191static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2192{
1ccde1cb 2193 int i;
cfde4bd9 2194 int mmu_idx;
1ccde1cb 2195
0f459d16 2196 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2197 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2198 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2199 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2200}
2201
d4c430a8
PB
2202/* Our TLB does not support large pages, so remember the area covered by
2203 large pages and trigger a full TLB flush if these are invalidated. */
2204static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2205 target_ulong size)
2206{
2207 target_ulong mask = ~(size - 1);
2208
2209 if (env->tlb_flush_addr == (target_ulong)-1) {
2210 env->tlb_flush_addr = vaddr & mask;
2211 env->tlb_flush_mask = mask;
2212 return;
2213 }
2214 /* Extend the existing region to include the new page.
2215 This is a compromise between unnecessary flushes and the cost
2216 of maintaining a full variable size TLB. */
2217 mask &= env->tlb_flush_mask;
2218 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2219 mask <<= 1;
2220 }
2221 env->tlb_flush_addr &= mask;
2222 env->tlb_flush_mask = mask;
2223}
2224
2225/* Add a new TLB entry. At most one entry for a given virtual address
2226 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2227 supplied size is only used by tlb_flush_page. */
2228void tlb_set_page(CPUState *env, target_ulong vaddr,
2229 target_phys_addr_t paddr, int prot,
2230 int mmu_idx, target_ulong size)
9fa3e853 2231{
92e873b9 2232 PhysPageDesc *p;
4f2ac237 2233 unsigned long pd;
9fa3e853 2234 unsigned int index;
4f2ac237 2235 target_ulong address;
0f459d16 2236 target_ulong code_address;
355b1943 2237 unsigned long addend;
84b7b8e7 2238 CPUTLBEntry *te;
a1d1bb31 2239 CPUWatchpoint *wp;
c227f099 2240 target_phys_addr_t iotlb;
9fa3e853 2241
d4c430a8
PB
2242 assert(size >= TARGET_PAGE_SIZE);
2243 if (size != TARGET_PAGE_SIZE) {
2244 tlb_add_large_page(env, vaddr, size);
2245 }
92e873b9 2246 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2247 if (!p) {
2248 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2249 } else {
2250 pd = p->phys_offset;
9fa3e853
FB
2251 }
2252#if defined(DEBUG_TLB)
7fd3f494
SW
2253 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2254 " prot=%x idx=%d pd=0x%08lx\n",
2255 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2256#endif
2257
0f459d16
PB
2258 address = vaddr;
2259 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2260 /* IO memory case (romd handled later) */
2261 address |= TLB_MMIO;
2262 }
5579c7f3 2263 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2264 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2265 /* Normal RAM. */
2266 iotlb = pd & TARGET_PAGE_MASK;
2267 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2268 iotlb |= IO_MEM_NOTDIRTY;
2269 else
2270 iotlb |= IO_MEM_ROM;
2271 } else {
ccbb4d44 2272 /* IO handlers are currently passed a physical address.
0f459d16
PB
2273 It would be nice to pass an offset from the base address
2274 of that region. This would avoid having to special case RAM,
2275 and avoid full address decoding in every device.
2276 We can't use the high bits of pd for this because
2277 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2278 iotlb = (pd & ~TARGET_PAGE_MASK);
2279 if (p) {
8da3ff18
PB
2280 iotlb += p->region_offset;
2281 } else {
2282 iotlb += paddr;
2283 }
0f459d16
PB
2284 }
2285
2286 code_address = address;
2287 /* Make accesses to pages with watchpoints go via the
2288 watchpoint trap routines. */
72cf2d4f 2289 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2290 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2291 /* Avoid trapping reads of pages with a write breakpoint. */
2292 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2293 iotlb = io_mem_watch + paddr;
2294 address |= TLB_MMIO;
2295 break;
2296 }
6658ffb8 2297 }
0f459d16 2298 }
d79acba4 2299
0f459d16
PB
2300 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2301 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2302 te = &env->tlb_table[mmu_idx][index];
2303 te->addend = addend - vaddr;
2304 if (prot & PAGE_READ) {
2305 te->addr_read = address;
2306 } else {
2307 te->addr_read = -1;
2308 }
5c751e99 2309
0f459d16
PB
2310 if (prot & PAGE_EXEC) {
2311 te->addr_code = code_address;
2312 } else {
2313 te->addr_code = -1;
2314 }
2315 if (prot & PAGE_WRITE) {
2316 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2317 (pd & IO_MEM_ROMD)) {
2318 /* Write access calls the I/O callback. */
2319 te->addr_write = address | TLB_MMIO;
2320 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2321 !cpu_physical_memory_is_dirty(pd)) {
2322 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2323 } else {
0f459d16 2324 te->addr_write = address;
9fa3e853 2325 }
0f459d16
PB
2326 } else {
2327 te->addr_write = -1;
9fa3e853 2328 }
9fa3e853
FB
2329}
2330
0124311e
FB
2331#else
2332
ee8b7021 2333void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2334{
2335}
2336
2e12669a 2337void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2338{
2339}
2340
edf8e2af
MW
2341/*
2342 * Walks guest process memory "regions" one by one
2343 * and calls callback function 'fn' for each region.
2344 */
5cd2c5b6
RH
2345
2346struct walk_memory_regions_data
2347{
2348 walk_memory_regions_fn fn;
2349 void *priv;
2350 unsigned long start;
2351 int prot;
2352};
2353
2354static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2355 abi_ulong end, int new_prot)
5cd2c5b6
RH
2356{
2357 if (data->start != -1ul) {
2358 int rc = data->fn(data->priv, data->start, end, data->prot);
2359 if (rc != 0) {
2360 return rc;
2361 }
2362 }
2363
2364 data->start = (new_prot ? end : -1ul);
2365 data->prot = new_prot;
2366
2367 return 0;
2368}
2369
2370static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2371 abi_ulong base, int level, void **lp)
5cd2c5b6 2372{
b480d9b7 2373 abi_ulong pa;
5cd2c5b6
RH
2374 int i, rc;
2375
2376 if (*lp == NULL) {
2377 return walk_memory_regions_end(data, base, 0);
2378 }
2379
2380 if (level == 0) {
2381 PageDesc *pd = *lp;
7296abac 2382 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2383 int prot = pd[i].flags;
2384
2385 pa = base | (i << TARGET_PAGE_BITS);
2386 if (prot != data->prot) {
2387 rc = walk_memory_regions_end(data, pa, prot);
2388 if (rc != 0) {
2389 return rc;
9fa3e853 2390 }
9fa3e853 2391 }
5cd2c5b6
RH
2392 }
2393 } else {
2394 void **pp = *lp;
7296abac 2395 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2396 pa = base | ((abi_ulong)i <<
2397 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2398 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2399 if (rc != 0) {
2400 return rc;
2401 }
2402 }
2403 }
2404
2405 return 0;
2406}
2407
2408int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2409{
2410 struct walk_memory_regions_data data;
2411 unsigned long i;
2412
2413 data.fn = fn;
2414 data.priv = priv;
2415 data.start = -1ul;
2416 data.prot = 0;
2417
2418 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2419 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2420 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2421 if (rc != 0) {
2422 return rc;
9fa3e853 2423 }
33417e70 2424 }
5cd2c5b6
RH
2425
2426 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2427}
2428
b480d9b7
PB
2429static int dump_region(void *priv, abi_ulong start,
2430 abi_ulong end, unsigned long prot)
edf8e2af
MW
2431{
2432 FILE *f = (FILE *)priv;
2433
b480d9b7
PB
2434 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2435 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2436 start, end, end - start,
2437 ((prot & PAGE_READ) ? 'r' : '-'),
2438 ((prot & PAGE_WRITE) ? 'w' : '-'),
2439 ((prot & PAGE_EXEC) ? 'x' : '-'));
2440
2441 return (0);
2442}
2443
2444/* dump memory mappings */
2445void page_dump(FILE *f)
2446{
2447 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2448 "start", "end", "size", "prot");
2449 walk_memory_regions(f, dump_region);
33417e70
FB
2450}
2451
53a5960a 2452int page_get_flags(target_ulong address)
33417e70 2453{
9fa3e853
FB
2454 PageDesc *p;
2455
2456 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2457 if (!p)
9fa3e853
FB
2458 return 0;
2459 return p->flags;
2460}
2461
376a7909
RH
2462/* Modify the flags of a page and invalidate the code if necessary.
2463 The flag PAGE_WRITE_ORG is positioned automatically depending
2464 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2465void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2466{
376a7909
RH
2467 target_ulong addr, len;
2468
2469 /* This function should never be called with addresses outside the
2470 guest address space. If this assert fires, it probably indicates
2471 a missing call to h2g_valid. */
b480d9b7
PB
2472#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2473 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2474#endif
2475 assert(start < end);
9fa3e853
FB
2476
2477 start = start & TARGET_PAGE_MASK;
2478 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2479
2480 if (flags & PAGE_WRITE) {
9fa3e853 2481 flags |= PAGE_WRITE_ORG;
376a7909
RH
2482 }
2483
2484 for (addr = start, len = end - start;
2485 len != 0;
2486 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2487 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2488
2489 /* If the write protection bit is set, then we invalidate
2490 the code inside. */
5fafdf24 2491 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2492 (flags & PAGE_WRITE) &&
2493 p->first_tb) {
d720b93d 2494 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2495 }
2496 p->flags = flags;
2497 }
33417e70
FB
2498}
2499
3d97b40b
TS
2500int page_check_range(target_ulong start, target_ulong len, int flags)
2501{
2502 PageDesc *p;
2503 target_ulong end;
2504 target_ulong addr;
2505
376a7909
RH
2506 /* This function should never be called with addresses outside the
2507 guest address space. If this assert fires, it probably indicates
2508 a missing call to h2g_valid. */
338e9e6c
BS
2509#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2510 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2511#endif
2512
3e0650a9
RH
2513 if (len == 0) {
2514 return 0;
2515 }
376a7909
RH
2516 if (start + len - 1 < start) {
2517 /* We've wrapped around. */
55f280c9 2518 return -1;
376a7909 2519 }
55f280c9 2520
3d97b40b
TS
2521 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2522 start = start & TARGET_PAGE_MASK;
2523
376a7909
RH
2524 for (addr = start, len = end - start;
2525 len != 0;
2526 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2527 p = page_find(addr >> TARGET_PAGE_BITS);
2528 if( !p )
2529 return -1;
2530 if( !(p->flags & PAGE_VALID) )
2531 return -1;
2532
dae3270c 2533 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2534 return -1;
dae3270c
FB
2535 if (flags & PAGE_WRITE) {
2536 if (!(p->flags & PAGE_WRITE_ORG))
2537 return -1;
2538 /* unprotect the page if it was put read-only because it
2539 contains translated code */
2540 if (!(p->flags & PAGE_WRITE)) {
2541 if (!page_unprotect(addr, 0, NULL))
2542 return -1;
2543 }
2544 return 0;
2545 }
3d97b40b
TS
2546 }
2547 return 0;
2548}
2549
9fa3e853 2550/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2551 page. Return TRUE if the fault was successfully handled. */
53a5960a 2552int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2553{
45d679d6
AJ
2554 unsigned int prot;
2555 PageDesc *p;
53a5960a 2556 target_ulong host_start, host_end, addr;
9fa3e853 2557
c8a706fe
PB
2558 /* Technically this isn't safe inside a signal handler. However we
2559 know this only ever happens in a synchronous SEGV handler, so in
2560 practice it seems to be ok. */
2561 mmap_lock();
2562
45d679d6
AJ
2563 p = page_find(address >> TARGET_PAGE_BITS);
2564 if (!p) {
c8a706fe 2565 mmap_unlock();
9fa3e853 2566 return 0;
c8a706fe 2567 }
45d679d6 2568
9fa3e853
FB
2569 /* if the page was really writable, then we change its
2570 protection back to writable */
45d679d6
AJ
2571 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2572 host_start = address & qemu_host_page_mask;
2573 host_end = host_start + qemu_host_page_size;
2574
2575 prot = 0;
2576 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2577 p = page_find(addr >> TARGET_PAGE_BITS);
2578 p->flags |= PAGE_WRITE;
2579 prot |= p->flags;
2580
9fa3e853
FB
2581 /* and since the content will be modified, we must invalidate
2582 the corresponding translated code. */
45d679d6 2583 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2584#ifdef DEBUG_TB_CHECK
45d679d6 2585 tb_invalidate_check(addr);
9fa3e853 2586#endif
9fa3e853 2587 }
45d679d6
AJ
2588 mprotect((void *)g2h(host_start), qemu_host_page_size,
2589 prot & PAGE_BITS);
2590
2591 mmap_unlock();
2592 return 1;
9fa3e853 2593 }
c8a706fe 2594 mmap_unlock();
9fa3e853
FB
2595 return 0;
2596}
2597
6a00d601
FB
2598static inline void tlb_set_dirty(CPUState *env,
2599 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2600{
2601}
9fa3e853
FB
2602#endif /* defined(CONFIG_USER_ONLY) */
2603
e2eef170 2604#if !defined(CONFIG_USER_ONLY)
8da3ff18 2605
c04b2b78
PB
2606#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2607typedef struct subpage_t {
2608 target_phys_addr_t base;
f6405247
RH
2609 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2610 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2611} subpage_t;
2612
c227f099
AL
2613static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2614 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2615static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2616 ram_addr_t orig_memory,
2617 ram_addr_t region_offset);
db7b5426
BS
2618#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2619 need_subpage) \
2620 do { \
2621 if (addr > start_addr) \
2622 start_addr2 = 0; \
2623 else { \
2624 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2625 if (start_addr2 > 0) \
2626 need_subpage = 1; \
2627 } \
2628 \
49e9fba2 2629 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2630 end_addr2 = TARGET_PAGE_SIZE - 1; \
2631 else { \
2632 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2633 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2634 need_subpage = 1; \
2635 } \
2636 } while (0)
2637
8f2498f9
MT
2638/* register physical memory.
2639 For RAM, 'size' must be a multiple of the target page size.
2640 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2641 io memory page. The address used when calling the IO function is
2642 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2643 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2644 before calculating this offset. This should not be a problem unless
2645 the low bits of start_addr and region_offset differ. */
0fd542fb 2646void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2647 ram_addr_t size,
2648 ram_addr_t phys_offset,
0fd542fb
MT
2649 ram_addr_t region_offset,
2650 bool log_dirty)
33417e70 2651{
c227f099 2652 target_phys_addr_t addr, end_addr;
92e873b9 2653 PhysPageDesc *p;
9d42037b 2654 CPUState *env;
c227f099 2655 ram_addr_t orig_size = size;
f6405247 2656 subpage_t *subpage;
33417e70 2657
3b8e6a2d 2658 assert(size);
0fd542fb 2659 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2660
67c4d23c
PB
2661 if (phys_offset == IO_MEM_UNASSIGNED) {
2662 region_offset = start_addr;
2663 }
8da3ff18 2664 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2665 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2666 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2667
2668 addr = start_addr;
2669 do {
db7b5426
BS
2670 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2671 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2672 ram_addr_t orig_memory = p->phys_offset;
2673 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2674 int need_subpage = 0;
2675
2676 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2677 need_subpage);
f6405247 2678 if (need_subpage) {
db7b5426
BS
2679 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2680 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2681 &p->phys_offset, orig_memory,
2682 p->region_offset);
db7b5426
BS
2683 } else {
2684 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2685 >> IO_MEM_SHIFT];
2686 }
8da3ff18
PB
2687 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2688 region_offset);
2689 p->region_offset = 0;
db7b5426
BS
2690 } else {
2691 p->phys_offset = phys_offset;
2692 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2693 (phys_offset & IO_MEM_ROMD))
2694 phys_offset += TARGET_PAGE_SIZE;
2695 }
2696 } else {
2697 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2698 p->phys_offset = phys_offset;
8da3ff18 2699 p->region_offset = region_offset;
db7b5426 2700 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2701 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2702 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2703 } else {
c227f099 2704 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2705 int need_subpage = 0;
2706
2707 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2708 end_addr2, need_subpage);
2709
f6405247 2710 if (need_subpage) {
db7b5426 2711 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2712 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2713 addr & TARGET_PAGE_MASK);
db7b5426 2714 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2715 phys_offset, region_offset);
2716 p->region_offset = 0;
db7b5426
BS
2717 }
2718 }
2719 }
8da3ff18 2720 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2721 addr += TARGET_PAGE_SIZE;
2722 } while (addr != end_addr);
3b46e624 2723
9d42037b
FB
2724 /* since each CPU stores ram addresses in its TLB cache, we must
2725 reset the modified entries */
2726 /* XXX: slow ! */
2727 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2728 tlb_flush(env, 1);
2729 }
33417e70
FB
2730}
2731
ba863458 2732/* XXX: temporary until new memory mapping API */
c227f099 2733ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2734{
2735 PhysPageDesc *p;
2736
2737 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2738 if (!p)
2739 return IO_MEM_UNASSIGNED;
2740 return p->phys_offset;
2741}
2742
c227f099 2743void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2744{
2745 if (kvm_enabled())
2746 kvm_coalesce_mmio_region(addr, size);
2747}
2748
c227f099 2749void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2750{
2751 if (kvm_enabled())
2752 kvm_uncoalesce_mmio_region(addr, size);
2753}
2754
62a2744c
SY
2755void qemu_flush_coalesced_mmio_buffer(void)
2756{
2757 if (kvm_enabled())
2758 kvm_flush_coalesced_mmio_buffer();
2759}
2760
c902760f
MT
2761#if defined(__linux__) && !defined(TARGET_S390X)
2762
2763#include <sys/vfs.h>
2764
2765#define HUGETLBFS_MAGIC 0x958458f6
2766
2767static long gethugepagesize(const char *path)
2768{
2769 struct statfs fs;
2770 int ret;
2771
2772 do {
9742bf26 2773 ret = statfs(path, &fs);
c902760f
MT
2774 } while (ret != 0 && errno == EINTR);
2775
2776 if (ret != 0) {
9742bf26
YT
2777 perror(path);
2778 return 0;
c902760f
MT
2779 }
2780
2781 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2782 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2783
2784 return fs.f_bsize;
2785}
2786
04b16653
AW
2787static void *file_ram_alloc(RAMBlock *block,
2788 ram_addr_t memory,
2789 const char *path)
c902760f
MT
2790{
2791 char *filename;
2792 void *area;
2793 int fd;
2794#ifdef MAP_POPULATE
2795 int flags;
2796#endif
2797 unsigned long hpagesize;
2798
2799 hpagesize = gethugepagesize(path);
2800 if (!hpagesize) {
9742bf26 2801 return NULL;
c902760f
MT
2802 }
2803
2804 if (memory < hpagesize) {
2805 return NULL;
2806 }
2807
2808 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2809 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2810 return NULL;
2811 }
2812
2813 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2814 return NULL;
c902760f
MT
2815 }
2816
2817 fd = mkstemp(filename);
2818 if (fd < 0) {
9742bf26
YT
2819 perror("unable to create backing store for hugepages");
2820 free(filename);
2821 return NULL;
c902760f
MT
2822 }
2823 unlink(filename);
2824 free(filename);
2825
2826 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2827
2828 /*
2829 * ftruncate is not supported by hugetlbfs in older
2830 * hosts, so don't bother bailing out on errors.
2831 * If anything goes wrong with it under other filesystems,
2832 * mmap will fail.
2833 */
2834 if (ftruncate(fd, memory))
9742bf26 2835 perror("ftruncate");
c902760f
MT
2836
2837#ifdef MAP_POPULATE
2838 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2839 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2840 * to sidestep this quirk.
2841 */
2842 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2843 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2844#else
2845 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2846#endif
2847 if (area == MAP_FAILED) {
9742bf26
YT
2848 perror("file_ram_alloc: can't mmap RAM pages");
2849 close(fd);
2850 return (NULL);
c902760f 2851 }
04b16653 2852 block->fd = fd;
c902760f
MT
2853 return area;
2854}
2855#endif
2856
d17b5288 2857static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2858{
2859 RAMBlock *block, *next_block;
09d7ae90 2860 ram_addr_t offset = 0, mingap = ULONG_MAX;
04b16653
AW
2861
2862 if (QLIST_EMPTY(&ram_list.blocks))
2863 return 0;
2864
2865 QLIST_FOREACH(block, &ram_list.blocks, next) {
2866 ram_addr_t end, next = ULONG_MAX;
2867
2868 end = block->offset + block->length;
2869
2870 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2871 if (next_block->offset >= end) {
2872 next = MIN(next, next_block->offset);
2873 }
2874 }
2875 if (next - end >= size && next - end < mingap) {
2876 offset = end;
2877 mingap = next - end;
2878 }
2879 }
2880 return offset;
2881}
2882
2883static ram_addr_t last_ram_offset(void)
d17b5288
AW
2884{
2885 RAMBlock *block;
2886 ram_addr_t last = 0;
2887
2888 QLIST_FOREACH(block, &ram_list.blocks, next)
2889 last = MAX(last, block->offset + block->length);
2890
2891 return last;
2892}
2893
84b89d78 2894ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2895 ram_addr_t size, void *host)
84b89d78
CM
2896{
2897 RAMBlock *new_block, *block;
2898
2899 size = TARGET_PAGE_ALIGN(size);
2900 new_block = qemu_mallocz(sizeof(*new_block));
2901
2902 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2903 char *id = dev->parent_bus->info->get_dev_path(dev);
2904 if (id) {
2905 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2906 qemu_free(id);
2907 }
2908 }
2909 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2910
2911 QLIST_FOREACH(block, &ram_list.blocks, next) {
2912 if (!strcmp(block->idstr, new_block->idstr)) {
2913 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2914 new_block->idstr);
2915 abort();
2916 }
2917 }
2918
6977dfe6
YT
2919 if (host) {
2920 new_block->host = host;
cd19cfa2 2921 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2922 } else {
2923 if (mem_path) {
c902760f 2924#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2925 new_block->host = file_ram_alloc(new_block, size, mem_path);
2926 if (!new_block->host) {
2927 new_block->host = qemu_vmalloc(size);
e78815a5 2928 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2929 }
c902760f 2930#else
6977dfe6
YT
2931 fprintf(stderr, "-mem-path option unsupported\n");
2932 exit(1);
c902760f 2933#endif
6977dfe6 2934 } else {
6b02494d 2935#if defined(TARGET_S390X) && defined(CONFIG_KVM)
6977dfe6
YT
2936 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2937 new_block->host = mmap((void*)0x1000000, size,
2938 PROT_EXEC|PROT_READ|PROT_WRITE,
2939 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2940#else
6977dfe6 2941 new_block->host = qemu_vmalloc(size);
6b02494d 2942#endif
e78815a5 2943 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2944 }
c902760f 2945 }
6977dfe6 2946
d17b5288 2947 new_block->offset = find_ram_offset(size);
94a6b54f
PB
2948 new_block->length = size;
2949
f471a17e 2950 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2951
f471a17e 2952 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
04b16653 2953 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2954 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2955 0xff, size >> TARGET_PAGE_BITS);
2956
6f0437e8
JK
2957 if (kvm_enabled())
2958 kvm_setup_guest_memory(new_block->host, size);
2959
94a6b54f
PB
2960 return new_block->offset;
2961}
e9a1ab19 2962
6977dfe6
YT
2963ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2964{
2965 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2966}
2967
c227f099 2968void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2969{
04b16653
AW
2970 RAMBlock *block;
2971
2972 QLIST_FOREACH(block, &ram_list.blocks, next) {
2973 if (addr == block->offset) {
2974 QLIST_REMOVE(block, next);
cd19cfa2
HY
2975 if (block->flags & RAM_PREALLOC_MASK) {
2976 ;
2977 } else if (mem_path) {
04b16653
AW
2978#if defined (__linux__) && !defined(TARGET_S390X)
2979 if (block->fd) {
2980 munmap(block->host, block->length);
2981 close(block->fd);
2982 } else {
2983 qemu_vfree(block->host);
2984 }
fd28aa13
JK
2985#else
2986 abort();
04b16653
AW
2987#endif
2988 } else {
2989#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2990 munmap(block->host, block->length);
2991#else
2992 qemu_vfree(block->host);
2993#endif
2994 }
2995 qemu_free(block);
2996 return;
2997 }
2998 }
2999
e9a1ab19
FB
3000}
3001
cd19cfa2
HY
3002#ifndef _WIN32
3003void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3004{
3005 RAMBlock *block;
3006 ram_addr_t offset;
3007 int flags;
3008 void *area, *vaddr;
3009
3010 QLIST_FOREACH(block, &ram_list.blocks, next) {
3011 offset = addr - block->offset;
3012 if (offset < block->length) {
3013 vaddr = block->host + offset;
3014 if (block->flags & RAM_PREALLOC_MASK) {
3015 ;
3016 } else {
3017 flags = MAP_FIXED;
3018 munmap(vaddr, length);
3019 if (mem_path) {
3020#if defined(__linux__) && !defined(TARGET_S390X)
3021 if (block->fd) {
3022#ifdef MAP_POPULATE
3023 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3024 MAP_PRIVATE;
3025#else
3026 flags |= MAP_PRIVATE;
3027#endif
3028 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3029 flags, block->fd, offset);
3030 } else {
3031 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3032 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3033 flags, -1, 0);
3034 }
fd28aa13
JK
3035#else
3036 abort();
cd19cfa2
HY
3037#endif
3038 } else {
3039#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3040 flags |= MAP_SHARED | MAP_ANONYMOUS;
3041 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3042 flags, -1, 0);
3043#else
3044 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3045 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3046 flags, -1, 0);
3047#endif
3048 }
3049 if (area != vaddr) {
3050 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3051 length, addr);
3052 exit(1);
3053 }
3054 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3055 }
3056 return;
3057 }
3058 }
3059}
3060#endif /* !_WIN32 */
3061
dc828ca1 3062/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3063 With the exception of the softmmu code in this file, this should
3064 only be used for local memory (e.g. video ram) that the device owns,
3065 and knows it isn't going to access beyond the end of the block.
3066
3067 It should not be used for general purpose DMA.
3068 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3069 */
c227f099 3070void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3071{
94a6b54f
PB
3072 RAMBlock *block;
3073
f471a17e
AW
3074 QLIST_FOREACH(block, &ram_list.blocks, next) {
3075 if (addr - block->offset < block->length) {
7d82af38
VP
3076 /* Move this entry to to start of the list. */
3077 if (block != QLIST_FIRST(&ram_list.blocks)) {
3078 QLIST_REMOVE(block, next);
3079 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3080 }
f471a17e
AW
3081 return block->host + (addr - block->offset);
3082 }
94a6b54f 3083 }
f471a17e
AW
3084
3085 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3086 abort();
3087
3088 return NULL;
dc828ca1
PB
3089}
3090
b2e0a138
MT
3091/* Return a host pointer to ram allocated with qemu_ram_alloc.
3092 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3093 */
3094void *qemu_safe_ram_ptr(ram_addr_t addr)
3095{
3096 RAMBlock *block;
3097
3098 QLIST_FOREACH(block, &ram_list.blocks, next) {
3099 if (addr - block->offset < block->length) {
3100 return block->host + (addr - block->offset);
3101 }
3102 }
3103
3104 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3105 abort();
3106
3107 return NULL;
3108}
3109
e890261f 3110int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3111{
94a6b54f
PB
3112 RAMBlock *block;
3113 uint8_t *host = ptr;
3114
f471a17e
AW
3115 QLIST_FOREACH(block, &ram_list.blocks, next) {
3116 if (host - block->host < block->length) {
e890261f
MT
3117 *ram_addr = block->offset + (host - block->host);
3118 return 0;
f471a17e 3119 }
94a6b54f 3120 }
e890261f
MT
3121 return -1;
3122}
f471a17e 3123
e890261f
MT
3124/* Some of the softmmu routines need to translate from a host pointer
3125 (typically a TLB entry) back to a ram offset. */
3126ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3127{
3128 ram_addr_t ram_addr;
f471a17e 3129
e890261f
MT
3130 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3131 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3132 abort();
3133 }
3134 return ram_addr;
5579c7f3
PB
3135}
3136
c227f099 3137static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3138{
67d3b957 3139#ifdef DEBUG_UNASSIGNED
ab3d1727 3140 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3141#endif
faed1c2a 3142#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3143 do_unassigned_access(addr, 0, 0, 0, 1);
3144#endif
3145 return 0;
3146}
3147
c227f099 3148static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3149{
3150#ifdef DEBUG_UNASSIGNED
3151 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3152#endif
faed1c2a 3153#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3154 do_unassigned_access(addr, 0, 0, 0, 2);
3155#endif
3156 return 0;
3157}
3158
c227f099 3159static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3160{
3161#ifdef DEBUG_UNASSIGNED
3162 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3163#endif
faed1c2a 3164#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3165 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 3166#endif
33417e70
FB
3167 return 0;
3168}
3169
c227f099 3170static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3171{
67d3b957 3172#ifdef DEBUG_UNASSIGNED
ab3d1727 3173 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3174#endif
faed1c2a 3175#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3176 do_unassigned_access(addr, 1, 0, 0, 1);
3177#endif
3178}
3179
c227f099 3180static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3181{
3182#ifdef DEBUG_UNASSIGNED
3183 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3184#endif
faed1c2a 3185#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3186 do_unassigned_access(addr, 1, 0, 0, 2);
3187#endif
3188}
3189
c227f099 3190static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3191{
3192#ifdef DEBUG_UNASSIGNED
3193 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3194#endif
faed1c2a 3195#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3196 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 3197#endif
33417e70
FB
3198}
3199
d60efc6b 3200static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3201 unassigned_mem_readb,
e18231a3
BS
3202 unassigned_mem_readw,
3203 unassigned_mem_readl,
33417e70
FB
3204};
3205
d60efc6b 3206static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3207 unassigned_mem_writeb,
e18231a3
BS
3208 unassigned_mem_writew,
3209 unassigned_mem_writel,
33417e70
FB
3210};
3211
c227f099 3212static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3213 uint32_t val)
9fa3e853 3214{
3a7d929e 3215 int dirty_flags;
f7c11b53 3216 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3217 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3218#if !defined(CONFIG_USER_ONLY)
3a7d929e 3219 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3220 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3221#endif
3a7d929e 3222 }
5579c7f3 3223 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3224 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3225 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3226 /* we remove the notdirty callback only if the code has been
3227 flushed */
3228 if (dirty_flags == 0xff)
2e70f6ef 3229 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3230}
3231
c227f099 3232static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3233 uint32_t val)
9fa3e853 3234{
3a7d929e 3235 int dirty_flags;
f7c11b53 3236 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3237 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3238#if !defined(CONFIG_USER_ONLY)
3a7d929e 3239 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3240 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3241#endif
3a7d929e 3242 }
5579c7f3 3243 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3244 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3245 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3246 /* we remove the notdirty callback only if the code has been
3247 flushed */
3248 if (dirty_flags == 0xff)
2e70f6ef 3249 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3250}
3251
c227f099 3252static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3253 uint32_t val)
9fa3e853 3254{
3a7d929e 3255 int dirty_flags;
f7c11b53 3256 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3257 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3258#if !defined(CONFIG_USER_ONLY)
3a7d929e 3259 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3260 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3261#endif
3a7d929e 3262 }
5579c7f3 3263 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3264 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3265 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3266 /* we remove the notdirty callback only if the code has been
3267 flushed */
3268 if (dirty_flags == 0xff)
2e70f6ef 3269 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3270}
3271
d60efc6b 3272static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3273 NULL, /* never used */
3274 NULL, /* never used */
3275 NULL, /* never used */
3276};
3277
d60efc6b 3278static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3279 notdirty_mem_writeb,
3280 notdirty_mem_writew,
3281 notdirty_mem_writel,
3282};
3283
0f459d16 3284/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3285static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3286{
3287 CPUState *env = cpu_single_env;
06d55cc1
AL
3288 target_ulong pc, cs_base;
3289 TranslationBlock *tb;
0f459d16 3290 target_ulong vaddr;
a1d1bb31 3291 CPUWatchpoint *wp;
06d55cc1 3292 int cpu_flags;
0f459d16 3293
06d55cc1
AL
3294 if (env->watchpoint_hit) {
3295 /* We re-entered the check after replacing the TB. Now raise
3296 * the debug interrupt so that is will trigger after the
3297 * current instruction. */
3298 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3299 return;
3300 }
2e70f6ef 3301 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3302 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3303 if ((vaddr == (wp->vaddr & len_mask) ||
3304 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3305 wp->flags |= BP_WATCHPOINT_HIT;
3306 if (!env->watchpoint_hit) {
3307 env->watchpoint_hit = wp;
3308 tb = tb_find_pc(env->mem_io_pc);
3309 if (!tb) {
3310 cpu_abort(env, "check_watchpoint: could not find TB for "
3311 "pc=%p", (void *)env->mem_io_pc);
3312 }
618ba8e6 3313 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3314 tb_phys_invalidate(tb, -1);
3315 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3316 env->exception_index = EXCP_DEBUG;
3317 } else {
3318 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3319 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3320 }
3321 cpu_resume_from_signal(env, NULL);
06d55cc1 3322 }
6e140f28
AL
3323 } else {
3324 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3325 }
3326 }
3327}
3328
6658ffb8
PB
3329/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3330 so these check for a hit then pass through to the normal out-of-line
3331 phys routines. */
c227f099 3332static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3333{
b4051334 3334 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3335 return ldub_phys(addr);
3336}
3337
c227f099 3338static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3339{
b4051334 3340 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3341 return lduw_phys(addr);
3342}
3343
c227f099 3344static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3345{
b4051334 3346 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3347 return ldl_phys(addr);
3348}
3349
c227f099 3350static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3351 uint32_t val)
3352{
b4051334 3353 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3354 stb_phys(addr, val);
3355}
3356
c227f099 3357static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3358 uint32_t val)
3359{
b4051334 3360 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3361 stw_phys(addr, val);
3362}
3363
c227f099 3364static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3365 uint32_t val)
3366{
b4051334 3367 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3368 stl_phys(addr, val);
3369}
3370
d60efc6b 3371static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3372 watch_mem_readb,
3373 watch_mem_readw,
3374 watch_mem_readl,
3375};
3376
d60efc6b 3377static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3378 watch_mem_writeb,
3379 watch_mem_writew,
3380 watch_mem_writel,
3381};
6658ffb8 3382
f6405247
RH
3383static inline uint32_t subpage_readlen (subpage_t *mmio,
3384 target_phys_addr_t addr,
3385 unsigned int len)
db7b5426 3386{
f6405247 3387 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3388#if defined(DEBUG_SUBPAGE)
3389 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3390 mmio, len, addr, idx);
3391#endif
db7b5426 3392
f6405247
RH
3393 addr += mmio->region_offset[idx];
3394 idx = mmio->sub_io_index[idx];
3395 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3396}
3397
c227f099 3398static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3399 uint32_t value, unsigned int len)
db7b5426 3400{
f6405247 3401 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3402#if defined(DEBUG_SUBPAGE)
f6405247
RH
3403 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3404 __func__, mmio, len, addr, idx, value);
db7b5426 3405#endif
f6405247
RH
3406
3407 addr += mmio->region_offset[idx];
3408 idx = mmio->sub_io_index[idx];
3409 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3410}
3411
c227f099 3412static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3413{
db7b5426
BS
3414 return subpage_readlen(opaque, addr, 0);
3415}
3416
c227f099 3417static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3418 uint32_t value)
3419{
db7b5426
BS
3420 subpage_writelen(opaque, addr, value, 0);
3421}
3422
c227f099 3423static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3424{
db7b5426
BS
3425 return subpage_readlen(opaque, addr, 1);
3426}
3427
c227f099 3428static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3429 uint32_t value)
3430{
db7b5426
BS
3431 subpage_writelen(opaque, addr, value, 1);
3432}
3433
c227f099 3434static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3435{
db7b5426
BS
3436 return subpage_readlen(opaque, addr, 2);
3437}
3438
f6405247
RH
3439static void subpage_writel (void *opaque, target_phys_addr_t addr,
3440 uint32_t value)
db7b5426 3441{
db7b5426
BS
3442 subpage_writelen(opaque, addr, value, 2);
3443}
3444
d60efc6b 3445static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3446 &subpage_readb,
3447 &subpage_readw,
3448 &subpage_readl,
3449};
3450
d60efc6b 3451static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3452 &subpage_writeb,
3453 &subpage_writew,
3454 &subpage_writel,
3455};
3456
c227f099
AL
3457static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3458 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3459{
3460 int idx, eidx;
3461
3462 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3463 return -1;
3464 idx = SUBPAGE_IDX(start);
3465 eidx = SUBPAGE_IDX(end);
3466#if defined(DEBUG_SUBPAGE)
0bf9e31a 3467 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3468 mmio, start, end, idx, eidx, memory);
3469#endif
95c318f5
GN
3470 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3471 memory = IO_MEM_UNASSIGNED;
f6405247 3472 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3473 for (; idx <= eidx; idx++) {
f6405247
RH
3474 mmio->sub_io_index[idx] = memory;
3475 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3476 }
3477
3478 return 0;
3479}
3480
f6405247
RH
3481static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3482 ram_addr_t orig_memory,
3483 ram_addr_t region_offset)
db7b5426 3484{
c227f099 3485 subpage_t *mmio;
db7b5426
BS
3486 int subpage_memory;
3487
c227f099 3488 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3489
3490 mmio->base = base;
2507c12a
AG
3491 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3492 DEVICE_NATIVE_ENDIAN);
db7b5426 3493#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3494 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3495 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3496#endif
1eec614b 3497 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3498 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3499
3500 return mmio;
3501}
3502
88715657
AL
3503static int get_free_io_mem_idx(void)
3504{
3505 int i;
3506
3507 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3508 if (!io_mem_used[i]) {
3509 io_mem_used[i] = 1;
3510 return i;
3511 }
c6703b47 3512 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3513 return -1;
3514}
3515
dd310534
AG
3516/*
3517 * Usually, devices operate in little endian mode. There are devices out
3518 * there that operate in big endian too. Each device gets byte swapped
3519 * mmio if plugged onto a CPU that does the other endianness.
3520 *
3521 * CPU Device swap?
3522 *
3523 * little little no
3524 * little big yes
3525 * big little yes
3526 * big big no
3527 */
3528
3529typedef struct SwapEndianContainer {
3530 CPUReadMemoryFunc *read[3];
3531 CPUWriteMemoryFunc *write[3];
3532 void *opaque;
3533} SwapEndianContainer;
3534
3535static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3536{
3537 uint32_t val;
3538 SwapEndianContainer *c = opaque;
3539 val = c->read[0](c->opaque, addr);
3540 return val;
3541}
3542
3543static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3544{
3545 uint32_t val;
3546 SwapEndianContainer *c = opaque;
3547 val = bswap16(c->read[1](c->opaque, addr));
3548 return val;
3549}
3550
3551static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3552{
3553 uint32_t val;
3554 SwapEndianContainer *c = opaque;
3555 val = bswap32(c->read[2](c->opaque, addr));
3556 return val;
3557}
3558
3559static CPUReadMemoryFunc * const swapendian_readfn[3]={
3560 swapendian_mem_readb,
3561 swapendian_mem_readw,
3562 swapendian_mem_readl
3563};
3564
3565static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3566 uint32_t val)
3567{
3568 SwapEndianContainer *c = opaque;
3569 c->write[0](c->opaque, addr, val);
3570}
3571
3572static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3573 uint32_t val)
3574{
3575 SwapEndianContainer *c = opaque;
3576 c->write[1](c->opaque, addr, bswap16(val));
3577}
3578
3579static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3580 uint32_t val)
3581{
3582 SwapEndianContainer *c = opaque;
3583 c->write[2](c->opaque, addr, bswap32(val));
3584}
3585
3586static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3587 swapendian_mem_writeb,
3588 swapendian_mem_writew,
3589 swapendian_mem_writel
3590};
3591
3592static void swapendian_init(int io_index)
3593{
3594 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3595 int i;
3596
3597 /* Swap mmio for big endian targets */
3598 c->opaque = io_mem_opaque[io_index];
3599 for (i = 0; i < 3; i++) {
3600 c->read[i] = io_mem_read[io_index][i];
3601 c->write[i] = io_mem_write[io_index][i];
3602
3603 io_mem_read[io_index][i] = swapendian_readfn[i];
3604 io_mem_write[io_index][i] = swapendian_writefn[i];
3605 }
3606 io_mem_opaque[io_index] = c;
3607}
3608
3609static void swapendian_del(int io_index)
3610{
3611 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3612 qemu_free(io_mem_opaque[io_index]);
3613 }
3614}
3615
33417e70
FB
3616/* mem_read and mem_write are arrays of functions containing the
3617 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3618 2). Functions can be omitted with a NULL function pointer.
3ee89922 3619 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3620 modified. If it is zero, a new io zone is allocated. The return
3621 value can be used with cpu_register_physical_memory(). (-1) is
3622 returned if error. */
1eed09cb 3623static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3624 CPUReadMemoryFunc * const *mem_read,
3625 CPUWriteMemoryFunc * const *mem_write,
dd310534 3626 void *opaque, enum device_endian endian)
33417e70 3627{
3cab721d
RH
3628 int i;
3629
33417e70 3630 if (io_index <= 0) {
88715657
AL
3631 io_index = get_free_io_mem_idx();
3632 if (io_index == -1)
3633 return io_index;
33417e70 3634 } else {
1eed09cb 3635 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3636 if (io_index >= IO_MEM_NB_ENTRIES)
3637 return -1;
3638 }
b5ff1b31 3639
3cab721d
RH
3640 for (i = 0; i < 3; ++i) {
3641 io_mem_read[io_index][i]
3642 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3643 }
3644 for (i = 0; i < 3; ++i) {
3645 io_mem_write[io_index][i]
3646 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3647 }
a4193c8a 3648 io_mem_opaque[io_index] = opaque;
f6405247 3649
dd310534
AG
3650 switch (endian) {
3651 case DEVICE_BIG_ENDIAN:
3652#ifndef TARGET_WORDS_BIGENDIAN
3653 swapendian_init(io_index);
3654#endif
3655 break;
3656 case DEVICE_LITTLE_ENDIAN:
3657#ifdef TARGET_WORDS_BIGENDIAN
3658 swapendian_init(io_index);
3659#endif
3660 break;
3661 case DEVICE_NATIVE_ENDIAN:
3662 default:
3663 break;
3664 }
3665
f6405247 3666 return (io_index << IO_MEM_SHIFT);
33417e70 3667}
61382a50 3668
d60efc6b
BS
3669int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3670 CPUWriteMemoryFunc * const *mem_write,
dd310534 3671 void *opaque, enum device_endian endian)
1eed09cb 3672{
2507c12a 3673 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3674}
3675
88715657
AL
3676void cpu_unregister_io_memory(int io_table_address)
3677{
3678 int i;
3679 int io_index = io_table_address >> IO_MEM_SHIFT;
3680
dd310534
AG
3681 swapendian_del(io_index);
3682
88715657
AL
3683 for (i=0;i < 3; i++) {
3684 io_mem_read[io_index][i] = unassigned_mem_read[i];
3685 io_mem_write[io_index][i] = unassigned_mem_write[i];
3686 }
3687 io_mem_opaque[io_index] = NULL;
3688 io_mem_used[io_index] = 0;
3689}
3690
e9179ce1
AK
3691static void io_mem_init(void)
3692{
3693 int i;
3694
2507c12a
AG
3695 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3696 unassigned_mem_write, NULL,
3697 DEVICE_NATIVE_ENDIAN);
3698 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3699 unassigned_mem_write, NULL,
3700 DEVICE_NATIVE_ENDIAN);
3701 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3702 notdirty_mem_write, NULL,
3703 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3704 for (i=0; i<5; i++)
3705 io_mem_used[i] = 1;
3706
3707 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3708 watch_mem_write, NULL,
3709 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3710}
3711
e2eef170
PB
3712#endif /* !defined(CONFIG_USER_ONLY) */
3713
13eb76e0
FB
3714/* physical memory access (slow version, mainly for debug) */
3715#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3716int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3717 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3718{
3719 int l, flags;
3720 target_ulong page;
53a5960a 3721 void * p;
13eb76e0
FB
3722
3723 while (len > 0) {
3724 page = addr & TARGET_PAGE_MASK;
3725 l = (page + TARGET_PAGE_SIZE) - addr;
3726 if (l > len)
3727 l = len;
3728 flags = page_get_flags(page);
3729 if (!(flags & PAGE_VALID))
a68fe89c 3730 return -1;
13eb76e0
FB
3731 if (is_write) {
3732 if (!(flags & PAGE_WRITE))
a68fe89c 3733 return -1;
579a97f7 3734 /* XXX: this code should not depend on lock_user */
72fb7daa 3735 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3736 return -1;
72fb7daa
AJ
3737 memcpy(p, buf, l);
3738 unlock_user(p, addr, l);
13eb76e0
FB
3739 } else {
3740 if (!(flags & PAGE_READ))
a68fe89c 3741 return -1;
579a97f7 3742 /* XXX: this code should not depend on lock_user */
72fb7daa 3743 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3744 return -1;
72fb7daa 3745 memcpy(buf, p, l);
5b257578 3746 unlock_user(p, addr, 0);
13eb76e0
FB
3747 }
3748 len -= l;
3749 buf += l;
3750 addr += l;
3751 }
a68fe89c 3752 return 0;
13eb76e0 3753}
8df1cd07 3754
13eb76e0 3755#else
c227f099 3756void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3757 int len, int is_write)
3758{
3759 int l, io_index;
3760 uint8_t *ptr;
3761 uint32_t val;
c227f099 3762 target_phys_addr_t page;
2e12669a 3763 unsigned long pd;
92e873b9 3764 PhysPageDesc *p;
3b46e624 3765
13eb76e0
FB
3766 while (len > 0) {
3767 page = addr & TARGET_PAGE_MASK;
3768 l = (page + TARGET_PAGE_SIZE) - addr;
3769 if (l > len)
3770 l = len;
92e873b9 3771 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3772 if (!p) {
3773 pd = IO_MEM_UNASSIGNED;
3774 } else {
3775 pd = p->phys_offset;
3776 }
3b46e624 3777
13eb76e0 3778 if (is_write) {
3a7d929e 3779 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3780 target_phys_addr_t addr1 = addr;
13eb76e0 3781 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3782 if (p)
6c2934db 3783 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3784 /* XXX: could force cpu_single_env to NULL to avoid
3785 potential bugs */
6c2934db 3786 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3787 /* 32 bit write access */
c27004ec 3788 val = ldl_p(buf);
6c2934db 3789 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3790 l = 4;
6c2934db 3791 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3792 /* 16 bit write access */
c27004ec 3793 val = lduw_p(buf);
6c2934db 3794 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3795 l = 2;
3796 } else {
1c213d19 3797 /* 8 bit write access */
c27004ec 3798 val = ldub_p(buf);
6c2934db 3799 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3800 l = 1;
3801 }
3802 } else {
b448f2f3
FB
3803 unsigned long addr1;
3804 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3805 /* RAM case */
5579c7f3 3806 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3807 memcpy(ptr, buf, l);
3a7d929e
FB
3808 if (!cpu_physical_memory_is_dirty(addr1)) {
3809 /* invalidate code */
3810 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3811 /* set dirty bit */
f7c11b53
YT
3812 cpu_physical_memory_set_dirty_flags(
3813 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3814 }
13eb76e0
FB
3815 }
3816 } else {
5fafdf24 3817 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3818 !(pd & IO_MEM_ROMD)) {
c227f099 3819 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3820 /* I/O case */
3821 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3822 if (p)
6c2934db
AJ
3823 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3824 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3825 /* 32 bit read access */
6c2934db 3826 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3827 stl_p(buf, val);
13eb76e0 3828 l = 4;
6c2934db 3829 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3830 /* 16 bit read access */
6c2934db 3831 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3832 stw_p(buf, val);
13eb76e0
FB
3833 l = 2;
3834 } else {
1c213d19 3835 /* 8 bit read access */
6c2934db 3836 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3837 stb_p(buf, val);
13eb76e0
FB
3838 l = 1;
3839 }
3840 } else {
3841 /* RAM case */
5579c7f3 3842 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3843 (addr & ~TARGET_PAGE_MASK);
3844 memcpy(buf, ptr, l);
3845 }
3846 }
3847 len -= l;
3848 buf += l;
3849 addr += l;
3850 }
3851}
8df1cd07 3852
d0ecd2aa 3853/* used for ROM loading : can write in RAM and ROM */
c227f099 3854void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3855 const uint8_t *buf, int len)
3856{
3857 int l;
3858 uint8_t *ptr;
c227f099 3859 target_phys_addr_t page;
d0ecd2aa
FB
3860 unsigned long pd;
3861 PhysPageDesc *p;
3b46e624 3862
d0ecd2aa
FB
3863 while (len > 0) {
3864 page = addr & TARGET_PAGE_MASK;
3865 l = (page + TARGET_PAGE_SIZE) - addr;
3866 if (l > len)
3867 l = len;
3868 p = phys_page_find(page >> TARGET_PAGE_BITS);
3869 if (!p) {
3870 pd = IO_MEM_UNASSIGNED;
3871 } else {
3872 pd = p->phys_offset;
3873 }
3b46e624 3874
d0ecd2aa 3875 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3876 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3877 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3878 /* do nothing */
3879 } else {
3880 unsigned long addr1;
3881 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3882 /* ROM/RAM case */
5579c7f3 3883 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3884 memcpy(ptr, buf, l);
3885 }
3886 len -= l;
3887 buf += l;
3888 addr += l;
3889 }
3890}
3891
6d16c2f8
AL
3892typedef struct {
3893 void *buffer;
c227f099
AL
3894 target_phys_addr_t addr;
3895 target_phys_addr_t len;
6d16c2f8
AL
3896} BounceBuffer;
3897
3898static BounceBuffer bounce;
3899
ba223c29
AL
3900typedef struct MapClient {
3901 void *opaque;
3902 void (*callback)(void *opaque);
72cf2d4f 3903 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3904} MapClient;
3905
72cf2d4f
BS
3906static QLIST_HEAD(map_client_list, MapClient) map_client_list
3907 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3908
3909void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3910{
3911 MapClient *client = qemu_malloc(sizeof(*client));
3912
3913 client->opaque = opaque;
3914 client->callback = callback;
72cf2d4f 3915 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3916 return client;
3917}
3918
3919void cpu_unregister_map_client(void *_client)
3920{
3921 MapClient *client = (MapClient *)_client;
3922
72cf2d4f 3923 QLIST_REMOVE(client, link);
34d5e948 3924 qemu_free(client);
ba223c29
AL
3925}
3926
3927static void cpu_notify_map_clients(void)
3928{
3929 MapClient *client;
3930
72cf2d4f
BS
3931 while (!QLIST_EMPTY(&map_client_list)) {
3932 client = QLIST_FIRST(&map_client_list);
ba223c29 3933 client->callback(client->opaque);
34d5e948 3934 cpu_unregister_map_client(client);
ba223c29
AL
3935 }
3936}
3937
6d16c2f8
AL
3938/* Map a physical memory region into a host virtual address.
3939 * May map a subset of the requested range, given by and returned in *plen.
3940 * May return NULL if resources needed to perform the mapping are exhausted.
3941 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3942 * Use cpu_register_map_client() to know when retrying the map operation is
3943 * likely to succeed.
6d16c2f8 3944 */
c227f099
AL
3945void *cpu_physical_memory_map(target_phys_addr_t addr,
3946 target_phys_addr_t *plen,
6d16c2f8
AL
3947 int is_write)
3948{
c227f099
AL
3949 target_phys_addr_t len = *plen;
3950 target_phys_addr_t done = 0;
6d16c2f8
AL
3951 int l;
3952 uint8_t *ret = NULL;
3953 uint8_t *ptr;
c227f099 3954 target_phys_addr_t page;
6d16c2f8
AL
3955 unsigned long pd;
3956 PhysPageDesc *p;
3957 unsigned long addr1;
3958
3959 while (len > 0) {
3960 page = addr & TARGET_PAGE_MASK;
3961 l = (page + TARGET_PAGE_SIZE) - addr;
3962 if (l > len)
3963 l = len;
3964 p = phys_page_find(page >> TARGET_PAGE_BITS);
3965 if (!p) {
3966 pd = IO_MEM_UNASSIGNED;
3967 } else {
3968 pd = p->phys_offset;
3969 }
3970
3971 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3972 if (done || bounce.buffer) {
3973 break;
3974 }
3975 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3976 bounce.addr = addr;
3977 bounce.len = l;
3978 if (!is_write) {
54f7b4a3 3979 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8
AL
3980 }
3981 ptr = bounce.buffer;
3982 } else {
3983 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3984 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3985 }
3986 if (!done) {
3987 ret = ptr;
3988 } else if (ret + done != ptr) {
3989 break;
3990 }
3991
3992 len -= l;
3993 addr += l;
3994 done += l;
3995 }
3996 *plen = done;
3997 return ret;
3998}
3999
4000/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4001 * Will also mark the memory as dirty if is_write == 1. access_len gives
4002 * the amount of memory that was actually read or written by the caller.
4003 */
c227f099
AL
4004void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4005 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4006{
4007 if (buffer != bounce.buffer) {
4008 if (is_write) {
e890261f 4009 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4010 while (access_len) {
4011 unsigned l;
4012 l = TARGET_PAGE_SIZE;
4013 if (l > access_len)
4014 l = access_len;
4015 if (!cpu_physical_memory_is_dirty(addr1)) {
4016 /* invalidate code */
4017 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4018 /* set dirty bit */
f7c11b53
YT
4019 cpu_physical_memory_set_dirty_flags(
4020 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4021 }
4022 addr1 += l;
4023 access_len -= l;
4024 }
4025 }
4026 return;
4027 }
4028 if (is_write) {
4029 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4030 }
f8a83245 4031 qemu_vfree(bounce.buffer);
6d16c2f8 4032 bounce.buffer = NULL;
ba223c29 4033 cpu_notify_map_clients();
6d16c2f8 4034}
d0ecd2aa 4035
8df1cd07 4036/* warning: addr must be aligned */
c227f099 4037uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
4038{
4039 int io_index;
4040 uint8_t *ptr;
4041 uint32_t val;
4042 unsigned long pd;
4043 PhysPageDesc *p;
4044
4045 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4046 if (!p) {
4047 pd = IO_MEM_UNASSIGNED;
4048 } else {
4049 pd = p->phys_offset;
4050 }
3b46e624 4051
5fafdf24 4052 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4053 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4054 /* I/O case */
4055 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4056 if (p)
4057 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4058 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4059 } else {
4060 /* RAM case */
5579c7f3 4061 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
4062 (addr & ~TARGET_PAGE_MASK);
4063 val = ldl_p(ptr);
4064 }
4065 return val;
4066}
4067
84b7b8e7 4068/* warning: addr must be aligned */
c227f099 4069uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
4070{
4071 int io_index;
4072 uint8_t *ptr;
4073 uint64_t val;
4074 unsigned long pd;
4075 PhysPageDesc *p;
4076
4077 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4078 if (!p) {
4079 pd = IO_MEM_UNASSIGNED;
4080 } else {
4081 pd = p->phys_offset;
4082 }
3b46e624 4083
2a4188a3
FB
4084 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4085 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4086 /* I/O case */
4087 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4088 if (p)
4089 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
4090#ifdef TARGET_WORDS_BIGENDIAN
4091 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4092 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4093#else
4094 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4095 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4096#endif
4097 } else {
4098 /* RAM case */
5579c7f3 4099 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
4100 (addr & ~TARGET_PAGE_MASK);
4101 val = ldq_p(ptr);
4102 }
4103 return val;
4104}
4105
aab33094 4106/* XXX: optimize */
c227f099 4107uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4108{
4109 uint8_t val;
4110 cpu_physical_memory_read(addr, &val, 1);
4111 return val;
4112}
4113
733f0b02 4114/* warning: addr must be aligned */
c227f099 4115uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 4116{
733f0b02
MT
4117 int io_index;
4118 uint8_t *ptr;
4119 uint64_t val;
4120 unsigned long pd;
4121 PhysPageDesc *p;
4122
4123 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4124 if (!p) {
4125 pd = IO_MEM_UNASSIGNED;
4126 } else {
4127 pd = p->phys_offset;
4128 }
4129
4130 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4131 !(pd & IO_MEM_ROMD)) {
4132 /* I/O case */
4133 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4134 if (p)
4135 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4136 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4137 } else {
4138 /* RAM case */
4139 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4140 (addr & ~TARGET_PAGE_MASK);
4141 val = lduw_p(ptr);
4142 }
4143 return val;
aab33094
FB
4144}
4145
8df1cd07
FB
4146/* warning: addr must be aligned. The ram page is not masked as dirty
4147 and the code inside is not invalidated. It is useful if the dirty
4148 bits are used to track modified PTEs */
c227f099 4149void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4150{
4151 int io_index;
4152 uint8_t *ptr;
4153 unsigned long pd;
4154 PhysPageDesc *p;
4155
4156 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4157 if (!p) {
4158 pd = IO_MEM_UNASSIGNED;
4159 } else {
4160 pd = p->phys_offset;
4161 }
3b46e624 4162
3a7d929e 4163 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4164 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4165 if (p)
4166 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4167 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4168 } else {
74576198 4169 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4170 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4171 stl_p(ptr, val);
74576198
AL
4172
4173 if (unlikely(in_migration)) {
4174 if (!cpu_physical_memory_is_dirty(addr1)) {
4175 /* invalidate code */
4176 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4177 /* set dirty bit */
f7c11b53
YT
4178 cpu_physical_memory_set_dirty_flags(
4179 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4180 }
4181 }
8df1cd07
FB
4182 }
4183}
4184
c227f099 4185void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4186{
4187 int io_index;
4188 uint8_t *ptr;
4189 unsigned long pd;
4190 PhysPageDesc *p;
4191
4192 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4193 if (!p) {
4194 pd = IO_MEM_UNASSIGNED;
4195 } else {
4196 pd = p->phys_offset;
4197 }
3b46e624 4198
bc98a7ef
JM
4199 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4200 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4201 if (p)
4202 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4203#ifdef TARGET_WORDS_BIGENDIAN
4204 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4205 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4206#else
4207 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4208 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4209#endif
4210 } else {
5579c7f3 4211 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4212 (addr & ~TARGET_PAGE_MASK);
4213 stq_p(ptr, val);
4214 }
4215}
4216
8df1cd07 4217/* warning: addr must be aligned */
c227f099 4218void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4219{
4220 int io_index;
4221 uint8_t *ptr;
4222 unsigned long pd;
4223 PhysPageDesc *p;
4224
4225 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4226 if (!p) {
4227 pd = IO_MEM_UNASSIGNED;
4228 } else {
4229 pd = p->phys_offset;
4230 }
3b46e624 4231
3a7d929e 4232 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4233 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4234 if (p)
4235 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4236 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4237 } else {
4238 unsigned long addr1;
4239 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4240 /* RAM case */
5579c7f3 4241 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4242 stl_p(ptr, val);
3a7d929e
FB
4243 if (!cpu_physical_memory_is_dirty(addr1)) {
4244 /* invalidate code */
4245 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4246 /* set dirty bit */
f7c11b53
YT
4247 cpu_physical_memory_set_dirty_flags(addr1,
4248 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4249 }
8df1cd07
FB
4250 }
4251}
4252
aab33094 4253/* XXX: optimize */
c227f099 4254void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4255{
4256 uint8_t v = val;
4257 cpu_physical_memory_write(addr, &v, 1);
4258}
4259
733f0b02 4260/* warning: addr must be aligned */
c227f099 4261void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 4262{
733f0b02
MT
4263 int io_index;
4264 uint8_t *ptr;
4265 unsigned long pd;
4266 PhysPageDesc *p;
4267
4268 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4269 if (!p) {
4270 pd = IO_MEM_UNASSIGNED;
4271 } else {
4272 pd = p->phys_offset;
4273 }
4274
4275 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4276 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4277 if (p)
4278 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4279 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4280 } else {
4281 unsigned long addr1;
4282 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4283 /* RAM case */
4284 ptr = qemu_get_ram_ptr(addr1);
4285 stw_p(ptr, val);
4286 if (!cpu_physical_memory_is_dirty(addr1)) {
4287 /* invalidate code */
4288 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4289 /* set dirty bit */
4290 cpu_physical_memory_set_dirty_flags(addr1,
4291 (0xff & ~CODE_DIRTY_FLAG));
4292 }
4293 }
aab33094
FB
4294}
4295
4296/* XXX: optimize */
c227f099 4297void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4298{
4299 val = tswap64(val);
71d2b725 4300 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4301}
4302
5e2972fd 4303/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4304int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4305 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4306{
4307 int l;
c227f099 4308 target_phys_addr_t phys_addr;
9b3c35e0 4309 target_ulong page;
13eb76e0
FB
4310
4311 while (len > 0) {
4312 page = addr & TARGET_PAGE_MASK;
4313 phys_addr = cpu_get_phys_page_debug(env, page);
4314 /* if no physical page mapped, return an error */
4315 if (phys_addr == -1)
4316 return -1;
4317 l = (page + TARGET_PAGE_SIZE) - addr;
4318 if (l > len)
4319 l = len;
5e2972fd 4320 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4321 if (is_write)
4322 cpu_physical_memory_write_rom(phys_addr, buf, l);
4323 else
5e2972fd 4324 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4325 len -= l;
4326 buf += l;
4327 addr += l;
4328 }
4329 return 0;
4330}
a68fe89c 4331#endif
13eb76e0 4332
2e70f6ef
PB
4333/* in deterministic execution mode, instructions doing device I/Os
4334 must be at the end of the TB */
4335void cpu_io_recompile(CPUState *env, void *retaddr)
4336{
4337 TranslationBlock *tb;
4338 uint32_t n, cflags;
4339 target_ulong pc, cs_base;
4340 uint64_t flags;
4341
4342 tb = tb_find_pc((unsigned long)retaddr);
4343 if (!tb) {
4344 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4345 retaddr);
4346 }
4347 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4348 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4349 /* Calculate how many instructions had been executed before the fault
bf20dc07 4350 occurred. */
2e70f6ef
PB
4351 n = n - env->icount_decr.u16.low;
4352 /* Generate a new TB ending on the I/O insn. */
4353 n++;
4354 /* On MIPS and SH, delay slot instructions can only be restarted if
4355 they were already the first instruction in the TB. If this is not
bf20dc07 4356 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4357 branch. */
4358#if defined(TARGET_MIPS)
4359 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4360 env->active_tc.PC -= 4;
4361 env->icount_decr.u16.low++;
4362 env->hflags &= ~MIPS_HFLAG_BMASK;
4363 }
4364#elif defined(TARGET_SH4)
4365 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4366 && n > 1) {
4367 env->pc -= 2;
4368 env->icount_decr.u16.low++;
4369 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4370 }
4371#endif
4372 /* This should never happen. */
4373 if (n > CF_COUNT_MASK)
4374 cpu_abort(env, "TB too big during recompile");
4375
4376 cflags = n | CF_LAST_IO;
4377 pc = tb->pc;
4378 cs_base = tb->cs_base;
4379 flags = tb->flags;
4380 tb_phys_invalidate(tb, -1);
4381 /* FIXME: In theory this could raise an exception. In practice
4382 we have already translated the block once so it's probably ok. */
4383 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4384 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4385 the first in the TB) then we end up generating a whole new TB and
4386 repeating the fault, which is horribly inefficient.
4387 Better would be to execute just this insn uncached, or generate a
4388 second new TB. */
4389 cpu_resume_from_signal(env, NULL);
4390}
4391
b3755a91
PB
4392#if !defined(CONFIG_USER_ONLY)
4393
055403b2 4394void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4395{
4396 int i, target_code_size, max_target_code_size;
4397 int direct_jmp_count, direct_jmp2_count, cross_page;
4398 TranslationBlock *tb;
3b46e624 4399
e3db7226
FB
4400 target_code_size = 0;
4401 max_target_code_size = 0;
4402 cross_page = 0;
4403 direct_jmp_count = 0;
4404 direct_jmp2_count = 0;
4405 for(i = 0; i < nb_tbs; i++) {
4406 tb = &tbs[i];
4407 target_code_size += tb->size;
4408 if (tb->size > max_target_code_size)
4409 max_target_code_size = tb->size;
4410 if (tb->page_addr[1] != -1)
4411 cross_page++;
4412 if (tb->tb_next_offset[0] != 0xffff) {
4413 direct_jmp_count++;
4414 if (tb->tb_next_offset[1] != 0xffff) {
4415 direct_jmp2_count++;
4416 }
4417 }
4418 }
4419 /* XXX: avoid using doubles ? */
57fec1fe 4420 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4421 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4422 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4423 cpu_fprintf(f, "TB count %d/%d\n",
4424 nb_tbs, code_gen_max_blocks);
5fafdf24 4425 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4426 nb_tbs ? target_code_size / nb_tbs : 0,
4427 max_target_code_size);
055403b2 4428 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4429 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4430 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4431 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4432 cross_page,
e3db7226
FB
4433 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4434 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4435 direct_jmp_count,
e3db7226
FB
4436 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4437 direct_jmp2_count,
4438 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4439 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4440 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4441 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4442 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4443 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4444}
4445
61382a50
FB
4446#define MMUSUFFIX _cmmu
4447#define GETPC() NULL
4448#define env cpu_single_env
b769d8fe 4449#define SOFTMMU_CODE_ACCESS
61382a50
FB
4450
4451#define SHIFT 0
4452#include "softmmu_template.h"
4453
4454#define SHIFT 1
4455#include "softmmu_template.h"
4456
4457#define SHIFT 2
4458#include "softmmu_template.h"
4459
4460#define SHIFT 3
4461#include "softmmu_template.h"
4462
4463#undef env
4464
4465#endif