]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Merge branch 'target-arm.for-upstream' of git://git.linaro.org/people/pmaydell/qemu-arm
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
fd6ce8f6 60//#define DEBUG_TB_INVALIDATE
66e85a21 61//#define DEBUG_FLUSH
9fa3e853 62//#define DEBUG_TLB
67d3b957 63//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
64
65/* make various TB consistency checks */
5fafdf24
TS
66//#define DEBUG_TB_CHECK
67//#define DEBUG_TLB_CHECK
fd6ce8f6 68
1196be37 69//#define DEBUG_IOPORT
db7b5426 70//#define DEBUG_SUBPAGE
1196be37 71
99773bd4
PB
72#if !defined(CONFIG_USER_ONLY)
73/* TB consistency checks only implemented for usermode emulation. */
74#undef DEBUG_TB_CHECK
75#endif
76
9fa3e853
FB
77#define SMC_BITMAP_USE_THRESHOLD 10
78
bdaf78e0 79static TranslationBlock *tbs;
24ab68ac 80static int code_gen_max_blocks;
9fa3e853 81TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 82static int nb_tbs;
eb51d102 83/* any access to the tbs or the page table must use this lock */
c227f099 84spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 85
141ac468
BS
86#if defined(__arm__) || defined(__sparc_v9__)
87/* The prologue must be reachable with a direct jump. ARM and Sparc64
88 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
89 section close to code segment. */
90#define code_gen_section \
91 __attribute__((__section__(".gen_code"))) \
92 __attribute__((aligned (32)))
f8e2af11
SW
93#elif defined(_WIN32)
94/* Maximum alignment for Win32 is 16. */
95#define code_gen_section \
96 __attribute__((aligned (16)))
d03d860b
BS
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
24ab68ac 107static uint8_t *code_gen_ptr;
fd6ce8f6 108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
9fa3e853 110int phys_ram_fd;
74576198 111static int in_migration;
94a6b54f 112
85d59fef 113RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
114
115static MemoryRegion *system_memory;
309cb471 116static MemoryRegion *system_io;
62152b8a 117
e2eef170 118#endif
9fa3e853 119
6a00d601
FB
120CPUState *first_cpu;
121/* current CPU in the current thread. It is only valid inside
122 cpu_exec() */
b3c4bbe5 123DEFINE_TLS(CPUState *,cpu_single_env);
2e70f6ef 124/* 0 = Do not count executed instructions.
bf20dc07 125 1 = Precise instruction counting.
2e70f6ef
PB
126 2 = Adaptive rate instruction counting. */
127int use_icount = 0;
6a00d601 128
54936004 129typedef struct PageDesc {
92e873b9 130 /* list of TBs intersecting this ram page */
fd6ce8f6 131 TranslationBlock *first_tb;
9fa3e853
FB
132 /* in order to optimize self modifying code, we count the number
133 of lookups we do to a given page to use a bitmap */
134 unsigned int code_write_count;
135 uint8_t *code_bitmap;
136#if defined(CONFIG_USER_ONLY)
137 unsigned long flags;
138#endif
54936004
FB
139} PageDesc;
140
41c1b1c9 141/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
142 while in user mode we want it to be based on virtual addresses. */
143#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
144#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
145# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
146#else
5cd2c5b6 147# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 148#endif
bedb69ea 149#else
5cd2c5b6 150# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 151#endif
54936004 152
5cd2c5b6
RH
153/* Size of the L2 (and L3, etc) page tables. */
154#define L2_BITS 10
54936004
FB
155#define L2_SIZE (1 << L2_BITS)
156
5cd2c5b6
RH
157/* The bits remaining after N lower levels of page tables. */
158#define P_L1_BITS_REM \
159 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160#define V_L1_BITS_REM \
161 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162
163/* Size of the L1 page table. Avoid silly small sizes. */
164#if P_L1_BITS_REM < 4
165#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
166#else
167#define P_L1_BITS P_L1_BITS_REM
168#endif
169
170#if V_L1_BITS_REM < 4
171#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172#else
173#define V_L1_BITS V_L1_BITS_REM
174#endif
175
176#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
177#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
178
179#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
180#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
181
83fb7adf 182unsigned long qemu_real_host_page_size;
83fb7adf
FB
183unsigned long qemu_host_page_size;
184unsigned long qemu_host_page_mask;
54936004 185
5cd2c5b6
RH
186/* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188static void *l1_map[V_L1_SIZE];
54936004 189
e2eef170 190#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
191typedef struct PhysPageDesc {
192 /* offset in host memory of the page + io_index in the low bits */
193 ram_addr_t phys_offset;
194 ram_addr_t region_offset;
195} PhysPageDesc;
196
5cd2c5b6
RH
197/* This is a multi-level map on the physical address space.
198 The bottom level has pointers to PhysPageDesc. */
199static void *l1_phys_map[P_L1_SIZE];
6d9a1304 200
e2eef170 201static void io_mem_init(void);
62152b8a 202static void memory_map_init(void);
e2eef170 203
33417e70 204/* io memory support */
33417e70
FB
205CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 207void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 208static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
209static int io_mem_watch;
210#endif
33417e70 211
34865134 212/* log support */
1e8b27ca
JR
213#ifdef WIN32
214static const char *logfilename = "qemu.log";
215#else
d9b630fd 216static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 217#endif
34865134
FB
218FILE *logfile;
219int loglevel;
e735b91c 220static int log_append = 0;
34865134 221
e3db7226 222/* statistics */
b3755a91 223#if !defined(CONFIG_USER_ONLY)
e3db7226 224static int tlb_flush_count;
b3755a91 225#endif
e3db7226
FB
226static int tb_flush_count;
227static int tb_phys_invalidate_count;
228
7cb69cae
FB
229#ifdef _WIN32
230static void map_exec(void *addr, long size)
231{
232 DWORD old_protect;
233 VirtualProtect(addr, size,
234 PAGE_EXECUTE_READWRITE, &old_protect);
235
236}
237#else
238static void map_exec(void *addr, long size)
239{
4369415f 240 unsigned long start, end, page_size;
7cb69cae 241
4369415f 242 page_size = getpagesize();
7cb69cae 243 start = (unsigned long)addr;
4369415f 244 start &= ~(page_size - 1);
7cb69cae
FB
245
246 end = (unsigned long)addr + size;
4369415f
FB
247 end += page_size - 1;
248 end &= ~(page_size - 1);
7cb69cae
FB
249
250 mprotect((void *)start, end - start,
251 PROT_READ | PROT_WRITE | PROT_EXEC);
252}
253#endif
254
b346ff46 255static void page_init(void)
54936004 256{
83fb7adf 257 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 258 TARGET_PAGE_SIZE */
c2b48b69
AL
259#ifdef _WIN32
260 {
261 SYSTEM_INFO system_info;
262
263 GetSystemInfo(&system_info);
264 qemu_real_host_page_size = system_info.dwPageSize;
265 }
266#else
267 qemu_real_host_page_size = getpagesize();
268#endif
83fb7adf
FB
269 if (qemu_host_page_size == 0)
270 qemu_host_page_size = qemu_real_host_page_size;
271 if (qemu_host_page_size < TARGET_PAGE_SIZE)
272 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 274
2e9a5713 275#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 276 {
f01576f1
JL
277#ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
280
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
286
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
291
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
fd436907 294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
295 } else {
296#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
fd436907 298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
299#endif
300 }
301 }
302 }
303 free(freep);
304 mmap_unlock();
305 }
306#else
50a9569b 307 FILE *f;
50a9569b 308
0776590d 309 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 310
fd436907 311 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 312 if (f) {
5cd2c5b6
RH
313 mmap_lock();
314
50a9569b 315 do {
5cd2c5b6
RH
316 unsigned long startaddr, endaddr;
317 int n;
318
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
320
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
323
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
328 }
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
330 }
331 } while (!feof(f));
5cd2c5b6 332
50a9569b 333 fclose(f);
5cd2c5b6 334 mmap_unlock();
50a9569b 335 }
f01576f1 336#endif
50a9569b
AZ
337 }
338#endif
54936004
FB
339}
340
41c1b1c9 341static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 342{
41c1b1c9
PB
343 PageDesc *pd;
344 void **lp;
345 int i;
346
5cd2c5b6 347#if defined(CONFIG_USER_ONLY)
7267c094 348 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
349# define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
353 } while (0)
354#else
355# define ALLOC(P, SIZE) \
7267c094 356 do { P = g_malloc0(SIZE); } while (0)
17e2377a 357#endif
434929bf 358
5cd2c5b6
RH
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
365
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
369 }
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
17e2377a 372 }
5cd2c5b6
RH
373
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 }
376
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
381 }
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
54936004 384 }
5cd2c5b6
RH
385
386#undef ALLOC
5cd2c5b6
RH
387
388 return pd + (index & (L2_SIZE - 1));
54936004
FB
389}
390
41c1b1c9 391static inline PageDesc *page_find(tb_page_addr_t index)
54936004 392{
5cd2c5b6 393 return page_find_alloc(index, 0);
fd6ce8f6
FB
394}
395
6d9a1304 396#if !defined(CONFIG_USER_ONLY)
c227f099 397static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 398{
e3f4e2a4 399 PhysPageDesc *pd;
5cd2c5b6
RH
400 void **lp;
401 int i;
92e873b9 402
5cd2c5b6
RH
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 405
5cd2c5b6
RH
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
7267c094 413 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
5cd2c5b6
RH
414 }
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 416 }
5cd2c5b6 417
e3f4e2a4 418 pd = *lp;
5cd2c5b6 419 if (pd == NULL) {
e3f4e2a4 420 int i;
5cd2c5b6
RH
421
422 if (!alloc) {
108c49b8 423 return NULL;
5cd2c5b6
RH
424 }
425
7267c094 426 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
5cd2c5b6 427
67c4d23c 428 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
429 pd[i].phys_offset = IO_MEM_UNASSIGNED;
430 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 431 }
92e873b9 432 }
5cd2c5b6
RH
433
434 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
435}
436
c227f099 437static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 438{
108c49b8 439 return phys_page_find_alloc(index, 0);
92e873b9
FB
440}
441
c227f099
AL
442static void tlb_protect_code(ram_addr_t ram_addr);
443static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 444 target_ulong vaddr);
c8a706fe
PB
445#define mmap_lock() do { } while(0)
446#define mmap_unlock() do { } while(0)
9fa3e853 447#endif
fd6ce8f6 448
4369415f
FB
449#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
450
451#if defined(CONFIG_USER_ONLY)
ccbb4d44 452/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
453 user mode. It will change when a dedicated libc will be used */
454#define USE_STATIC_CODE_GEN_BUFFER
455#endif
456
457#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
458static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
459 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
460#endif
461
8fcd3692 462static void code_gen_alloc(unsigned long tb_size)
26a5f13b 463{
4369415f
FB
464#ifdef USE_STATIC_CODE_GEN_BUFFER
465 code_gen_buffer = static_code_gen_buffer;
466 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
467 map_exec(code_gen_buffer, code_gen_buffer_size);
468#else
26a5f13b
FB
469 code_gen_buffer_size = tb_size;
470 if (code_gen_buffer_size == 0) {
4369415f 471#if defined(CONFIG_USER_ONLY)
4369415f
FB
472 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
473#else
ccbb4d44 474 /* XXX: needs adjustments */
94a6b54f 475 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 476#endif
26a5f13b
FB
477 }
478 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
479 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
480 /* The code gen buffer location may have constraints depending on
481 the host cpu and OS */
482#if defined(__linux__)
483 {
484 int flags;
141ac468
BS
485 void *start = NULL;
486
26a5f13b
FB
487 flags = MAP_PRIVATE | MAP_ANONYMOUS;
488#if defined(__x86_64__)
489 flags |= MAP_32BIT;
490 /* Cannot map more than that */
491 if (code_gen_buffer_size > (800 * 1024 * 1024))
492 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
493#elif defined(__sparc_v9__)
494 // Map the buffer below 2G, so we can use direct calls and branches
495 flags |= MAP_FIXED;
496 start = (void *) 0x60000000UL;
497 if (code_gen_buffer_size > (512 * 1024 * 1024))
498 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 499#elif defined(__arm__)
63d41246 500 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
501 flags |= MAP_FIXED;
502 start = (void *) 0x01000000UL;
503 if (code_gen_buffer_size > 16 * 1024 * 1024)
504 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
505#elif defined(__s390x__)
506 /* Map the buffer so that we can use direct calls and branches. */
507 /* We have a +- 4GB range on the branches; leave some slop. */
508 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
509 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
510 }
511 start = (void *)0x90000000UL;
26a5f13b 512#endif
141ac468
BS
513 code_gen_buffer = mmap(start, code_gen_buffer_size,
514 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
515 flags, -1, 0);
516 if (code_gen_buffer == MAP_FAILED) {
517 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
518 exit(1);
519 }
520 }
cbb608a5 521#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
522 || defined(__DragonFly__) || defined(__OpenBSD__) \
523 || defined(__NetBSD__)
06e67a82
AL
524 {
525 int flags;
526 void *addr = NULL;
527 flags = MAP_PRIVATE | MAP_ANONYMOUS;
528#if defined(__x86_64__)
529 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
530 * 0x40000000 is free */
531 flags |= MAP_FIXED;
532 addr = (void *)0x40000000;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size > (800 * 1024 * 1024))
535 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
536#elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
538 flags |= MAP_FIXED;
539 addr = (void *) 0x60000000UL;
540 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
541 code_gen_buffer_size = (512 * 1024 * 1024);
542 }
06e67a82
AL
543#endif
544 code_gen_buffer = mmap(addr, code_gen_buffer_size,
545 PROT_WRITE | PROT_READ | PROT_EXEC,
546 flags, -1, 0);
547 if (code_gen_buffer == MAP_FAILED) {
548 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
549 exit(1);
550 }
551 }
26a5f13b 552#else
7267c094 553 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
554 map_exec(code_gen_buffer, code_gen_buffer_size);
555#endif
4369415f 556#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 557 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
558 code_gen_buffer_max_size = code_gen_buffer_size -
559 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 560 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 561 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
562}
563
564/* Must be called before using the QEMU cpus. 'tb_size' is the size
565 (in bytes) allocated to the translation buffer. Zero means default
566 size. */
d5ab9713 567void tcg_exec_init(unsigned long tb_size)
26a5f13b 568{
26a5f13b
FB
569 cpu_gen_init();
570 code_gen_alloc(tb_size);
571 code_gen_ptr = code_gen_buffer;
4369415f 572 page_init();
9002ec79
RH
573#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
574 /* There's no guest base to take into account, so go ahead and
575 initialize the prologue now. */
576 tcg_prologue_init(&tcg_ctx);
577#endif
26a5f13b
FB
578}
579
d5ab9713
JK
580bool tcg_enabled(void)
581{
582 return code_gen_buffer != NULL;
583}
584
585void cpu_exec_init_all(void)
586{
587#if !defined(CONFIG_USER_ONLY)
588 memory_map_init();
589 io_mem_init();
590#endif
591}
592
9656f324
PB
593#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
594
e59fb374 595static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
596{
597 CPUState *env = opaque;
9656f324 598
3098dba0
AJ
599 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
600 version_id is increased. */
601 env->interrupt_request &= ~0x01;
9656f324
PB
602 tlb_flush(env, 1);
603
604 return 0;
605}
e7f4eff7
JQ
606
607static const VMStateDescription vmstate_cpu_common = {
608 .name = "cpu_common",
609 .version_id = 1,
610 .minimum_version_id = 1,
611 .minimum_version_id_old = 1,
e7f4eff7
JQ
612 .post_load = cpu_common_post_load,
613 .fields = (VMStateField []) {
614 VMSTATE_UINT32(halted, CPUState),
615 VMSTATE_UINT32(interrupt_request, CPUState),
616 VMSTATE_END_OF_LIST()
617 }
618};
9656f324
PB
619#endif
620
950f1472
GC
621CPUState *qemu_get_cpu(int cpu)
622{
623 CPUState *env = first_cpu;
624
625 while (env) {
626 if (env->cpu_index == cpu)
627 break;
628 env = env->next_cpu;
629 }
630
631 return env;
632}
633
6a00d601 634void cpu_exec_init(CPUState *env)
fd6ce8f6 635{
6a00d601
FB
636 CPUState **penv;
637 int cpu_index;
638
c2764719
PB
639#if defined(CONFIG_USER_ONLY)
640 cpu_list_lock();
641#endif
6a00d601
FB
642 env->next_cpu = NULL;
643 penv = &first_cpu;
644 cpu_index = 0;
645 while (*penv != NULL) {
1e9fa730 646 penv = &(*penv)->next_cpu;
6a00d601
FB
647 cpu_index++;
648 }
649 env->cpu_index = cpu_index;
268a362c 650 env->numa_node = 0;
72cf2d4f
BS
651 QTAILQ_INIT(&env->breakpoints);
652 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
653#ifndef CONFIG_USER_ONLY
654 env->thread_id = qemu_get_thread_id();
655#endif
6a00d601 656 *penv = env;
c2764719
PB
657#if defined(CONFIG_USER_ONLY)
658 cpu_list_unlock();
659#endif
b3c7724c 660#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
661 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
662 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
663 cpu_save, cpu_load, env);
664#endif
fd6ce8f6
FB
665}
666
d1a1eb74
TG
667/* Allocate a new translation block. Flush the translation buffer if
668 too many translation blocks or too much generated code. */
669static TranslationBlock *tb_alloc(target_ulong pc)
670{
671 TranslationBlock *tb;
672
673 if (nb_tbs >= code_gen_max_blocks ||
674 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
675 return NULL;
676 tb = &tbs[nb_tbs++];
677 tb->pc = pc;
678 tb->cflags = 0;
679 return tb;
680}
681
682void tb_free(TranslationBlock *tb)
683{
684 /* In practice this is mostly used for single use temporary TB
685 Ignore the hard cases and just back up if this TB happens to
686 be the last one generated. */
687 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
688 code_gen_ptr = tb->tc_ptr;
689 nb_tbs--;
690 }
691}
692
9fa3e853
FB
693static inline void invalidate_page_bitmap(PageDesc *p)
694{
695 if (p->code_bitmap) {
7267c094 696 g_free(p->code_bitmap);
9fa3e853
FB
697 p->code_bitmap = NULL;
698 }
699 p->code_write_count = 0;
700}
701
5cd2c5b6
RH
702/* Set to NULL all the 'first_tb' fields in all PageDescs. */
703
704static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 705{
5cd2c5b6 706 int i;
fd6ce8f6 707
5cd2c5b6
RH
708 if (*lp == NULL) {
709 return;
710 }
711 if (level == 0) {
712 PageDesc *pd = *lp;
7296abac 713 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
714 pd[i].first_tb = NULL;
715 invalidate_page_bitmap(pd + i);
fd6ce8f6 716 }
5cd2c5b6
RH
717 } else {
718 void **pp = *lp;
7296abac 719 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
720 page_flush_tb_1 (level - 1, pp + i);
721 }
722 }
723}
724
725static void page_flush_tb(void)
726{
727 int i;
728 for (i = 0; i < V_L1_SIZE; i++) {
729 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
730 }
731}
732
733/* flush all the translation blocks */
d4e8164f 734/* XXX: tb_flush is currently not thread safe */
6a00d601 735void tb_flush(CPUState *env1)
fd6ce8f6 736{
6a00d601 737 CPUState *env;
0124311e 738#if defined(DEBUG_FLUSH)
ab3d1727
BS
739 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
740 (unsigned long)(code_gen_ptr - code_gen_buffer),
741 nb_tbs, nb_tbs > 0 ?
742 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 743#endif
26a5f13b 744 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
745 cpu_abort(env1, "Internal error: code buffer overflow\n");
746
fd6ce8f6 747 nb_tbs = 0;
3b46e624 748
6a00d601
FB
749 for(env = first_cpu; env != NULL; env = env->next_cpu) {
750 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
751 }
9fa3e853 752
8a8a608f 753 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 754 page_flush_tb();
9fa3e853 755
fd6ce8f6 756 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
757 /* XXX: flush processor icache at this point if cache flush is
758 expensive */
e3db7226 759 tb_flush_count++;
fd6ce8f6
FB
760}
761
762#ifdef DEBUG_TB_CHECK
763
bc98a7ef 764static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
765{
766 TranslationBlock *tb;
767 int i;
768 address &= TARGET_PAGE_MASK;
99773bd4
PB
769 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
770 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
771 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
772 address >= tb->pc + tb->size)) {
0bf9e31a
BS
773 printf("ERROR invalidate: address=" TARGET_FMT_lx
774 " PC=%08lx size=%04x\n",
99773bd4 775 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
776 }
777 }
778 }
779}
780
781/* verify that all the pages have correct rights for code */
782static void tb_page_check(void)
783{
784 TranslationBlock *tb;
785 int i, flags1, flags2;
3b46e624 786
99773bd4
PB
787 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
788 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
789 flags1 = page_get_flags(tb->pc);
790 flags2 = page_get_flags(tb->pc + tb->size - 1);
791 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
792 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 793 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
794 }
795 }
796 }
797}
798
799#endif
800
801/* invalidate one TB */
802static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
803 int next_offset)
804{
805 TranslationBlock *tb1;
806 for(;;) {
807 tb1 = *ptb;
808 if (tb1 == tb) {
809 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
810 break;
811 }
812 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
813 }
814}
815
9fa3e853
FB
816static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
817{
818 TranslationBlock *tb1;
819 unsigned int n1;
820
821 for(;;) {
822 tb1 = *ptb;
823 n1 = (long)tb1 & 3;
824 tb1 = (TranslationBlock *)((long)tb1 & ~3);
825 if (tb1 == tb) {
826 *ptb = tb1->page_next[n1];
827 break;
828 }
829 ptb = &tb1->page_next[n1];
830 }
831}
832
d4e8164f
FB
833static inline void tb_jmp_remove(TranslationBlock *tb, int n)
834{
835 TranslationBlock *tb1, **ptb;
836 unsigned int n1;
837
838 ptb = &tb->jmp_next[n];
839 tb1 = *ptb;
840 if (tb1) {
841 /* find tb(n) in circular list */
842 for(;;) {
843 tb1 = *ptb;
844 n1 = (long)tb1 & 3;
845 tb1 = (TranslationBlock *)((long)tb1 & ~3);
846 if (n1 == n && tb1 == tb)
847 break;
848 if (n1 == 2) {
849 ptb = &tb1->jmp_first;
850 } else {
851 ptb = &tb1->jmp_next[n1];
852 }
853 }
854 /* now we can suppress tb(n) from the list */
855 *ptb = tb->jmp_next[n];
856
857 tb->jmp_next[n] = NULL;
858 }
859}
860
861/* reset the jump entry 'n' of a TB so that it is not chained to
862 another TB */
863static inline void tb_reset_jump(TranslationBlock *tb, int n)
864{
865 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
866}
867
41c1b1c9 868void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 869{
6a00d601 870 CPUState *env;
8a40a180 871 PageDesc *p;
d4e8164f 872 unsigned int h, n1;
41c1b1c9 873 tb_page_addr_t phys_pc;
8a40a180 874 TranslationBlock *tb1, *tb2;
3b46e624 875
8a40a180
FB
876 /* remove the TB from the hash list */
877 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
878 h = tb_phys_hash_func(phys_pc);
5fafdf24 879 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
880 offsetof(TranslationBlock, phys_hash_next));
881
882 /* remove the TB from the page list */
883 if (tb->page_addr[0] != page_addr) {
884 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
885 tb_page_remove(&p->first_tb, tb);
886 invalidate_page_bitmap(p);
887 }
888 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
889 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
890 tb_page_remove(&p->first_tb, tb);
891 invalidate_page_bitmap(p);
892 }
893
36bdbe54 894 tb_invalidated_flag = 1;
59817ccb 895
fd6ce8f6 896 /* remove the TB from the hash list */
8a40a180 897 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
898 for(env = first_cpu; env != NULL; env = env->next_cpu) {
899 if (env->tb_jmp_cache[h] == tb)
900 env->tb_jmp_cache[h] = NULL;
901 }
d4e8164f
FB
902
903 /* suppress this TB from the two jump lists */
904 tb_jmp_remove(tb, 0);
905 tb_jmp_remove(tb, 1);
906
907 /* suppress any remaining jumps to this TB */
908 tb1 = tb->jmp_first;
909 for(;;) {
910 n1 = (long)tb1 & 3;
911 if (n1 == 2)
912 break;
913 tb1 = (TranslationBlock *)((long)tb1 & ~3);
914 tb2 = tb1->jmp_next[n1];
915 tb_reset_jump(tb1, n1);
916 tb1->jmp_next[n1] = NULL;
917 tb1 = tb2;
918 }
919 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 920
e3db7226 921 tb_phys_invalidate_count++;
9fa3e853
FB
922}
923
924static inline void set_bits(uint8_t *tab, int start, int len)
925{
926 int end, mask, end1;
927
928 end = start + len;
929 tab += start >> 3;
930 mask = 0xff << (start & 7);
931 if ((start & ~7) == (end & ~7)) {
932 if (start < end) {
933 mask &= ~(0xff << (end & 7));
934 *tab |= mask;
935 }
936 } else {
937 *tab++ |= mask;
938 start = (start + 8) & ~7;
939 end1 = end & ~7;
940 while (start < end1) {
941 *tab++ = 0xff;
942 start += 8;
943 }
944 if (start < end) {
945 mask = ~(0xff << (end & 7));
946 *tab |= mask;
947 }
948 }
949}
950
951static void build_page_bitmap(PageDesc *p)
952{
953 int n, tb_start, tb_end;
954 TranslationBlock *tb;
3b46e624 955
7267c094 956 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
957
958 tb = p->first_tb;
959 while (tb != NULL) {
960 n = (long)tb & 3;
961 tb = (TranslationBlock *)((long)tb & ~3);
962 /* NOTE: this is subtle as a TB may span two physical pages */
963 if (n == 0) {
964 /* NOTE: tb_end may be after the end of the page, but
965 it is not a problem */
966 tb_start = tb->pc & ~TARGET_PAGE_MASK;
967 tb_end = tb_start + tb->size;
968 if (tb_end > TARGET_PAGE_SIZE)
969 tb_end = TARGET_PAGE_SIZE;
970 } else {
971 tb_start = 0;
972 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
973 }
974 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
975 tb = tb->page_next[n];
976 }
977}
978
2e70f6ef
PB
979TranslationBlock *tb_gen_code(CPUState *env,
980 target_ulong pc, target_ulong cs_base,
981 int flags, int cflags)
d720b93d
FB
982{
983 TranslationBlock *tb;
984 uint8_t *tc_ptr;
41c1b1c9
PB
985 tb_page_addr_t phys_pc, phys_page2;
986 target_ulong virt_page2;
d720b93d
FB
987 int code_gen_size;
988
41c1b1c9 989 phys_pc = get_page_addr_code(env, pc);
c27004ec 990 tb = tb_alloc(pc);
d720b93d
FB
991 if (!tb) {
992 /* flush must be done */
993 tb_flush(env);
994 /* cannot fail at this point */
c27004ec 995 tb = tb_alloc(pc);
2e70f6ef
PB
996 /* Don't forget to invalidate previous TB info. */
997 tb_invalidated_flag = 1;
d720b93d
FB
998 }
999 tc_ptr = code_gen_ptr;
1000 tb->tc_ptr = tc_ptr;
1001 tb->cs_base = cs_base;
1002 tb->flags = flags;
1003 tb->cflags = cflags;
d07bde88 1004 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1005 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1006
d720b93d 1007 /* check next page if needed */
c27004ec 1008 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1009 phys_page2 = -1;
c27004ec 1010 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1011 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1012 }
41c1b1c9 1013 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1014 return tb;
d720b93d 1015}
3b46e624 1016
9fa3e853
FB
1017/* invalidate all TBs which intersect with the target physical page
1018 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1019 the same physical page. 'is_cpu_write_access' should be true if called
1020 from a real cpu write access: the virtual CPU will exit the current
1021 TB if code is modified inside this TB. */
41c1b1c9 1022void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1023 int is_cpu_write_access)
1024{
6b917547 1025 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1026 CPUState *env = cpu_single_env;
41c1b1c9 1027 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1028 PageDesc *p;
1029 int n;
1030#ifdef TARGET_HAS_PRECISE_SMC
1031 int current_tb_not_found = is_cpu_write_access;
1032 TranslationBlock *current_tb = NULL;
1033 int current_tb_modified = 0;
1034 target_ulong current_pc = 0;
1035 target_ulong current_cs_base = 0;
1036 int current_flags = 0;
1037#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1038
1039 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1040 if (!p)
9fa3e853 1041 return;
5fafdf24 1042 if (!p->code_bitmap &&
d720b93d
FB
1043 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1044 is_cpu_write_access) {
9fa3e853
FB
1045 /* build code bitmap */
1046 build_page_bitmap(p);
1047 }
1048
1049 /* we remove all the TBs in the range [start, end[ */
1050 /* XXX: see if in some cases it could be faster to invalidate all the code */
1051 tb = p->first_tb;
1052 while (tb != NULL) {
1053 n = (long)tb & 3;
1054 tb = (TranslationBlock *)((long)tb & ~3);
1055 tb_next = tb->page_next[n];
1056 /* NOTE: this is subtle as a TB may span two physical pages */
1057 if (n == 0) {
1058 /* NOTE: tb_end may be after the end of the page, but
1059 it is not a problem */
1060 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1061 tb_end = tb_start + tb->size;
1062 } else {
1063 tb_start = tb->page_addr[1];
1064 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1065 }
1066 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1067#ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb_not_found) {
1069 current_tb_not_found = 0;
1070 current_tb = NULL;
2e70f6ef 1071 if (env->mem_io_pc) {
d720b93d 1072 /* now we have a real cpu fault */
2e70f6ef 1073 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1074 }
1075 }
1076 if (current_tb == tb &&
2e70f6ef 1077 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1078 /* If we are modifying the current TB, we must stop
1079 its execution. We could be more precise by checking
1080 that the modification is after the current PC, but it
1081 would require a specialized function to partially
1082 restore the CPU state */
3b46e624 1083
d720b93d 1084 current_tb_modified = 1;
618ba8e6 1085 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1086 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1087 &current_flags);
d720b93d
FB
1088 }
1089#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1090 /* we need to do that to handle the case where a signal
1091 occurs while doing tb_phys_invalidate() */
1092 saved_tb = NULL;
1093 if (env) {
1094 saved_tb = env->current_tb;
1095 env->current_tb = NULL;
1096 }
9fa3e853 1097 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1098 if (env) {
1099 env->current_tb = saved_tb;
1100 if (env->interrupt_request && env->current_tb)
1101 cpu_interrupt(env, env->interrupt_request);
1102 }
9fa3e853
FB
1103 }
1104 tb = tb_next;
1105 }
1106#if !defined(CONFIG_USER_ONLY)
1107 /* if no code remaining, no need to continue to use slow writes */
1108 if (!p->first_tb) {
1109 invalidate_page_bitmap(p);
d720b93d 1110 if (is_cpu_write_access) {
2e70f6ef 1111 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1112 }
1113 }
1114#endif
1115#ifdef TARGET_HAS_PRECISE_SMC
1116 if (current_tb_modified) {
1117 /* we generate a block containing just the instruction
1118 modifying the memory. It will ensure that it cannot modify
1119 itself */
ea1c1802 1120 env->current_tb = NULL;
2e70f6ef 1121 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1122 cpu_resume_from_signal(env, NULL);
9fa3e853 1123 }
fd6ce8f6 1124#endif
9fa3e853 1125}
fd6ce8f6 1126
9fa3e853 1127/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1128static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1129{
1130 PageDesc *p;
1131 int offset, b;
59817ccb 1132#if 0
a4193c8a 1133 if (1) {
93fcfe39
AL
1134 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1135 cpu_single_env->mem_io_vaddr, len,
1136 cpu_single_env->eip,
1137 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1138 }
1139#endif
9fa3e853 1140 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1141 if (!p)
9fa3e853
FB
1142 return;
1143 if (p->code_bitmap) {
1144 offset = start & ~TARGET_PAGE_MASK;
1145 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1146 if (b & ((1 << len) - 1))
1147 goto do_invalidate;
1148 } else {
1149 do_invalidate:
d720b93d 1150 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1151 }
1152}
1153
9fa3e853 1154#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1155static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1156 unsigned long pc, void *puc)
9fa3e853 1157{
6b917547 1158 TranslationBlock *tb;
9fa3e853 1159 PageDesc *p;
6b917547 1160 int n;
d720b93d 1161#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1162 TranslationBlock *current_tb = NULL;
d720b93d 1163 CPUState *env = cpu_single_env;
6b917547
AL
1164 int current_tb_modified = 0;
1165 target_ulong current_pc = 0;
1166 target_ulong current_cs_base = 0;
1167 int current_flags = 0;
d720b93d 1168#endif
9fa3e853
FB
1169
1170 addr &= TARGET_PAGE_MASK;
1171 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1172 if (!p)
9fa3e853
FB
1173 return;
1174 tb = p->first_tb;
d720b93d
FB
1175#ifdef TARGET_HAS_PRECISE_SMC
1176 if (tb && pc != 0) {
1177 current_tb = tb_find_pc(pc);
1178 }
1179#endif
9fa3e853
FB
1180 while (tb != NULL) {
1181 n = (long)tb & 3;
1182 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1183#ifdef TARGET_HAS_PRECISE_SMC
1184 if (current_tb == tb &&
2e70f6ef 1185 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1186 /* If we are modifying the current TB, we must stop
1187 its execution. We could be more precise by checking
1188 that the modification is after the current PC, but it
1189 would require a specialized function to partially
1190 restore the CPU state */
3b46e624 1191
d720b93d 1192 current_tb_modified = 1;
618ba8e6 1193 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1194 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1195 &current_flags);
d720b93d
FB
1196 }
1197#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1198 tb_phys_invalidate(tb, addr);
1199 tb = tb->page_next[n];
1200 }
fd6ce8f6 1201 p->first_tb = NULL;
d720b93d
FB
1202#ifdef TARGET_HAS_PRECISE_SMC
1203 if (current_tb_modified) {
1204 /* we generate a block containing just the instruction
1205 modifying the memory. It will ensure that it cannot modify
1206 itself */
ea1c1802 1207 env->current_tb = NULL;
2e70f6ef 1208 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1209 cpu_resume_from_signal(env, puc);
1210 }
1211#endif
fd6ce8f6 1212}
9fa3e853 1213#endif
fd6ce8f6
FB
1214
1215/* add the tb in the target page and protect it if necessary */
5fafdf24 1216static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1217 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1218{
1219 PageDesc *p;
4429ab44
JQ
1220#ifndef CONFIG_USER_ONLY
1221 bool page_already_protected;
1222#endif
9fa3e853
FB
1223
1224 tb->page_addr[n] = page_addr;
5cd2c5b6 1225 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1226 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1227#ifndef CONFIG_USER_ONLY
1228 page_already_protected = p->first_tb != NULL;
1229#endif
9fa3e853
FB
1230 p->first_tb = (TranslationBlock *)((long)tb | n);
1231 invalidate_page_bitmap(p);
fd6ce8f6 1232
107db443 1233#if defined(TARGET_HAS_SMC) || 1
d720b93d 1234
9fa3e853 1235#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1236 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1237 target_ulong addr;
1238 PageDesc *p2;
9fa3e853
FB
1239 int prot;
1240
fd6ce8f6
FB
1241 /* force the host page as non writable (writes will have a
1242 page fault + mprotect overhead) */
53a5960a 1243 page_addr &= qemu_host_page_mask;
fd6ce8f6 1244 prot = 0;
53a5960a
PB
1245 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1246 addr += TARGET_PAGE_SIZE) {
1247
1248 p2 = page_find (addr >> TARGET_PAGE_BITS);
1249 if (!p2)
1250 continue;
1251 prot |= p2->flags;
1252 p2->flags &= ~PAGE_WRITE;
53a5960a 1253 }
5fafdf24 1254 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1255 (prot & PAGE_BITS) & ~PAGE_WRITE);
1256#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1257 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1258 page_addr);
fd6ce8f6 1259#endif
fd6ce8f6 1260 }
9fa3e853
FB
1261#else
1262 /* if some code is already present, then the pages are already
1263 protected. So we handle the case where only the first TB is
1264 allocated in a physical page */
4429ab44 1265 if (!page_already_protected) {
6a00d601 1266 tlb_protect_code(page_addr);
9fa3e853
FB
1267 }
1268#endif
d720b93d
FB
1269
1270#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1271}
1272
9fa3e853
FB
1273/* add a new TB and link it to the physical page tables. phys_page2 is
1274 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1275void tb_link_page(TranslationBlock *tb,
1276 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1277{
9fa3e853
FB
1278 unsigned int h;
1279 TranslationBlock **ptb;
1280
c8a706fe
PB
1281 /* Grab the mmap lock to stop another thread invalidating this TB
1282 before we are done. */
1283 mmap_lock();
9fa3e853
FB
1284 /* add in the physical hash table */
1285 h = tb_phys_hash_func(phys_pc);
1286 ptb = &tb_phys_hash[h];
1287 tb->phys_hash_next = *ptb;
1288 *ptb = tb;
fd6ce8f6
FB
1289
1290 /* add in the page list */
9fa3e853
FB
1291 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1292 if (phys_page2 != -1)
1293 tb_alloc_page(tb, 1, phys_page2);
1294 else
1295 tb->page_addr[1] = -1;
9fa3e853 1296
d4e8164f
FB
1297 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1298 tb->jmp_next[0] = NULL;
1299 tb->jmp_next[1] = NULL;
1300
1301 /* init original jump addresses */
1302 if (tb->tb_next_offset[0] != 0xffff)
1303 tb_reset_jump(tb, 0);
1304 if (tb->tb_next_offset[1] != 0xffff)
1305 tb_reset_jump(tb, 1);
8a40a180
FB
1306
1307#ifdef DEBUG_TB_CHECK
1308 tb_page_check();
1309#endif
c8a706fe 1310 mmap_unlock();
fd6ce8f6
FB
1311}
1312
9fa3e853
FB
1313/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1314 tb[1].tc_ptr. Return NULL if not found */
1315TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1316{
9fa3e853
FB
1317 int m_min, m_max, m;
1318 unsigned long v;
1319 TranslationBlock *tb;
a513fe19
FB
1320
1321 if (nb_tbs <= 0)
1322 return NULL;
1323 if (tc_ptr < (unsigned long)code_gen_buffer ||
1324 tc_ptr >= (unsigned long)code_gen_ptr)
1325 return NULL;
1326 /* binary search (cf Knuth) */
1327 m_min = 0;
1328 m_max = nb_tbs - 1;
1329 while (m_min <= m_max) {
1330 m = (m_min + m_max) >> 1;
1331 tb = &tbs[m];
1332 v = (unsigned long)tb->tc_ptr;
1333 if (v == tc_ptr)
1334 return tb;
1335 else if (tc_ptr < v) {
1336 m_max = m - 1;
1337 } else {
1338 m_min = m + 1;
1339 }
5fafdf24 1340 }
a513fe19
FB
1341 return &tbs[m_max];
1342}
7501267e 1343
ea041c0e
FB
1344static void tb_reset_jump_recursive(TranslationBlock *tb);
1345
1346static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1347{
1348 TranslationBlock *tb1, *tb_next, **ptb;
1349 unsigned int n1;
1350
1351 tb1 = tb->jmp_next[n];
1352 if (tb1 != NULL) {
1353 /* find head of list */
1354 for(;;) {
1355 n1 = (long)tb1 & 3;
1356 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1357 if (n1 == 2)
1358 break;
1359 tb1 = tb1->jmp_next[n1];
1360 }
1361 /* we are now sure now that tb jumps to tb1 */
1362 tb_next = tb1;
1363
1364 /* remove tb from the jmp_first list */
1365 ptb = &tb_next->jmp_first;
1366 for(;;) {
1367 tb1 = *ptb;
1368 n1 = (long)tb1 & 3;
1369 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1370 if (n1 == n && tb1 == tb)
1371 break;
1372 ptb = &tb1->jmp_next[n1];
1373 }
1374 *ptb = tb->jmp_next[n];
1375 tb->jmp_next[n] = NULL;
3b46e624 1376
ea041c0e
FB
1377 /* suppress the jump to next tb in generated code */
1378 tb_reset_jump(tb, n);
1379
0124311e 1380 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1381 tb_reset_jump_recursive(tb_next);
1382 }
1383}
1384
1385static void tb_reset_jump_recursive(TranslationBlock *tb)
1386{
1387 tb_reset_jump_recursive2(tb, 0);
1388 tb_reset_jump_recursive2(tb, 1);
1389}
1390
1fddef4b 1391#if defined(TARGET_HAS_ICE)
94df27fd
PB
1392#if defined(CONFIG_USER_ONLY)
1393static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1394{
1395 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1396}
1397#else
d720b93d
FB
1398static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1399{
c227f099 1400 target_phys_addr_t addr;
9b3c35e0 1401 target_ulong pd;
c227f099 1402 ram_addr_t ram_addr;
c2f07f81 1403 PhysPageDesc *p;
d720b93d 1404
c2f07f81
PB
1405 addr = cpu_get_phys_page_debug(env, pc);
1406 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1407 if (!p) {
1408 pd = IO_MEM_UNASSIGNED;
1409 } else {
1410 pd = p->phys_offset;
1411 }
1412 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1413 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1414}
c27004ec 1415#endif
94df27fd 1416#endif /* TARGET_HAS_ICE */
d720b93d 1417
c527ee8f
PB
1418#if defined(CONFIG_USER_ONLY)
1419void cpu_watchpoint_remove_all(CPUState *env, int mask)
1420
1421{
1422}
1423
1424int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1425 int flags, CPUWatchpoint **watchpoint)
1426{
1427 return -ENOSYS;
1428}
1429#else
6658ffb8 1430/* Add a watchpoint. */
a1d1bb31
AL
1431int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1432 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1433{
b4051334 1434 target_ulong len_mask = ~(len - 1);
c0ce998e 1435 CPUWatchpoint *wp;
6658ffb8 1436
b4051334
AL
1437 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1438 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1439 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1440 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1441 return -EINVAL;
1442 }
7267c094 1443 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1444
1445 wp->vaddr = addr;
b4051334 1446 wp->len_mask = len_mask;
a1d1bb31
AL
1447 wp->flags = flags;
1448
2dc9f411 1449 /* keep all GDB-injected watchpoints in front */
c0ce998e 1450 if (flags & BP_GDB)
72cf2d4f 1451 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1452 else
72cf2d4f 1453 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1454
6658ffb8 1455 tlb_flush_page(env, addr);
a1d1bb31
AL
1456
1457 if (watchpoint)
1458 *watchpoint = wp;
1459 return 0;
6658ffb8
PB
1460}
1461
a1d1bb31
AL
1462/* Remove a specific watchpoint. */
1463int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1464 int flags)
6658ffb8 1465{
b4051334 1466 target_ulong len_mask = ~(len - 1);
a1d1bb31 1467 CPUWatchpoint *wp;
6658ffb8 1468
72cf2d4f 1469 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1470 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1471 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1472 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1473 return 0;
1474 }
1475 }
a1d1bb31 1476 return -ENOENT;
6658ffb8
PB
1477}
1478
a1d1bb31
AL
1479/* Remove a specific watchpoint by reference. */
1480void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1481{
72cf2d4f 1482 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1483
a1d1bb31
AL
1484 tlb_flush_page(env, watchpoint->vaddr);
1485
7267c094 1486 g_free(watchpoint);
a1d1bb31
AL
1487}
1488
1489/* Remove all matching watchpoints. */
1490void cpu_watchpoint_remove_all(CPUState *env, int mask)
1491{
c0ce998e 1492 CPUWatchpoint *wp, *next;
a1d1bb31 1493
72cf2d4f 1494 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1495 if (wp->flags & mask)
1496 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1497 }
7d03f82f 1498}
c527ee8f 1499#endif
7d03f82f 1500
a1d1bb31
AL
1501/* Add a breakpoint. */
1502int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1503 CPUBreakpoint **breakpoint)
4c3a88a2 1504{
1fddef4b 1505#if defined(TARGET_HAS_ICE)
c0ce998e 1506 CPUBreakpoint *bp;
3b46e624 1507
7267c094 1508 bp = g_malloc(sizeof(*bp));
4c3a88a2 1509
a1d1bb31
AL
1510 bp->pc = pc;
1511 bp->flags = flags;
1512
2dc9f411 1513 /* keep all GDB-injected breakpoints in front */
c0ce998e 1514 if (flags & BP_GDB)
72cf2d4f 1515 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1516 else
72cf2d4f 1517 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1518
d720b93d 1519 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1520
1521 if (breakpoint)
1522 *breakpoint = bp;
4c3a88a2
FB
1523 return 0;
1524#else
a1d1bb31 1525 return -ENOSYS;
4c3a88a2
FB
1526#endif
1527}
1528
a1d1bb31
AL
1529/* Remove a specific breakpoint. */
1530int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1531{
7d03f82f 1532#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1533 CPUBreakpoint *bp;
1534
72cf2d4f 1535 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1536 if (bp->pc == pc && bp->flags == flags) {
1537 cpu_breakpoint_remove_by_ref(env, bp);
1538 return 0;
1539 }
7d03f82f 1540 }
a1d1bb31
AL
1541 return -ENOENT;
1542#else
1543 return -ENOSYS;
7d03f82f
EI
1544#endif
1545}
1546
a1d1bb31
AL
1547/* Remove a specific breakpoint by reference. */
1548void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1549{
1fddef4b 1550#if defined(TARGET_HAS_ICE)
72cf2d4f 1551 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1552
a1d1bb31
AL
1553 breakpoint_invalidate(env, breakpoint->pc);
1554
7267c094 1555 g_free(breakpoint);
a1d1bb31
AL
1556#endif
1557}
1558
1559/* Remove all matching breakpoints. */
1560void cpu_breakpoint_remove_all(CPUState *env, int mask)
1561{
1562#if defined(TARGET_HAS_ICE)
c0ce998e 1563 CPUBreakpoint *bp, *next;
a1d1bb31 1564
72cf2d4f 1565 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1566 if (bp->flags & mask)
1567 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1568 }
4c3a88a2
FB
1569#endif
1570}
1571
c33a346e
FB
1572/* enable or disable single step mode. EXCP_DEBUG is returned by the
1573 CPU loop after each instruction */
1574void cpu_single_step(CPUState *env, int enabled)
1575{
1fddef4b 1576#if defined(TARGET_HAS_ICE)
c33a346e
FB
1577 if (env->singlestep_enabled != enabled) {
1578 env->singlestep_enabled = enabled;
e22a25c9
AL
1579 if (kvm_enabled())
1580 kvm_update_guest_debug(env, 0);
1581 else {
ccbb4d44 1582 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1583 /* XXX: only flush what is necessary */
1584 tb_flush(env);
1585 }
c33a346e
FB
1586 }
1587#endif
1588}
1589
34865134
FB
1590/* enable or disable low levels log */
1591void cpu_set_log(int log_flags)
1592{
1593 loglevel = log_flags;
1594 if (loglevel && !logfile) {
11fcfab4 1595 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1596 if (!logfile) {
1597 perror(logfilename);
1598 _exit(1);
1599 }
9fa3e853
FB
1600#if !defined(CONFIG_SOFTMMU)
1601 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1602 {
b55266b5 1603 static char logfile_buf[4096];
9fa3e853
FB
1604 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1605 }
daf767b1
SW
1606#elif defined(_WIN32)
1607 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1608 setvbuf(logfile, NULL, _IONBF, 0);
1609#else
34865134 1610 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1611#endif
e735b91c
PB
1612 log_append = 1;
1613 }
1614 if (!loglevel && logfile) {
1615 fclose(logfile);
1616 logfile = NULL;
34865134
FB
1617 }
1618}
1619
1620void cpu_set_log_filename(const char *filename)
1621{
1622 logfilename = strdup(filename);
e735b91c
PB
1623 if (logfile) {
1624 fclose(logfile);
1625 logfile = NULL;
1626 }
1627 cpu_set_log(loglevel);
34865134 1628}
c33a346e 1629
3098dba0 1630static void cpu_unlink_tb(CPUState *env)
ea041c0e 1631{
3098dba0
AJ
1632 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1633 problem and hope the cpu will stop of its own accord. For userspace
1634 emulation this often isn't actually as bad as it sounds. Often
1635 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1636 TranslationBlock *tb;
c227f099 1637 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1638
cab1b4bd 1639 spin_lock(&interrupt_lock);
3098dba0
AJ
1640 tb = env->current_tb;
1641 /* if the cpu is currently executing code, we must unlink it and
1642 all the potentially executing TB */
f76cfe56 1643 if (tb) {
3098dba0
AJ
1644 env->current_tb = NULL;
1645 tb_reset_jump_recursive(tb);
be214e6c 1646 }
cab1b4bd 1647 spin_unlock(&interrupt_lock);
3098dba0
AJ
1648}
1649
97ffbd8d 1650#ifndef CONFIG_USER_ONLY
3098dba0 1651/* mask must never be zero, except for A20 change call */
ec6959d0 1652static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1653{
1654 int old_mask;
be214e6c 1655
2e70f6ef 1656 old_mask = env->interrupt_request;
68a79315 1657 env->interrupt_request |= mask;
3098dba0 1658
8edac960
AL
1659 /*
1660 * If called from iothread context, wake the target cpu in
1661 * case its halted.
1662 */
b7680cb6 1663 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1664 qemu_cpu_kick(env);
1665 return;
1666 }
8edac960 1667
2e70f6ef 1668 if (use_icount) {
266910c4 1669 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1670 if (!can_do_io(env)
be214e6c 1671 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1672 cpu_abort(env, "Raised interrupt while not in I/O function");
1673 }
2e70f6ef 1674 } else {
3098dba0 1675 cpu_unlink_tb(env);
ea041c0e
FB
1676 }
1677}
1678
ec6959d0
JK
1679CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1680
97ffbd8d
JK
1681#else /* CONFIG_USER_ONLY */
1682
1683void cpu_interrupt(CPUState *env, int mask)
1684{
1685 env->interrupt_request |= mask;
1686 cpu_unlink_tb(env);
1687}
1688#endif /* CONFIG_USER_ONLY */
1689
b54ad049
FB
1690void cpu_reset_interrupt(CPUState *env, int mask)
1691{
1692 env->interrupt_request &= ~mask;
1693}
1694
3098dba0
AJ
1695void cpu_exit(CPUState *env)
1696{
1697 env->exit_request = 1;
1698 cpu_unlink_tb(env);
1699}
1700
c7cd6a37 1701const CPULogItem cpu_log_items[] = {
5fafdf24 1702 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1703 "show generated host assembly code for each compiled TB" },
1704 { CPU_LOG_TB_IN_ASM, "in_asm",
1705 "show target assembly code for each compiled TB" },
5fafdf24 1706 { CPU_LOG_TB_OP, "op",
57fec1fe 1707 "show micro ops for each compiled TB" },
f193c797 1708 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1709 "show micro ops "
1710#ifdef TARGET_I386
1711 "before eflags optimization and "
f193c797 1712#endif
e01a1157 1713 "after liveness analysis" },
f193c797
FB
1714 { CPU_LOG_INT, "int",
1715 "show interrupts/exceptions in short format" },
1716 { CPU_LOG_EXEC, "exec",
1717 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1718 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1719 "show CPU state before block translation" },
f193c797
FB
1720#ifdef TARGET_I386
1721 { CPU_LOG_PCALL, "pcall",
1722 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1723 { CPU_LOG_RESET, "cpu_reset",
1724 "show CPU state before CPU resets" },
f193c797 1725#endif
8e3a9fd2 1726#ifdef DEBUG_IOPORT
fd872598
FB
1727 { CPU_LOG_IOPORT, "ioport",
1728 "show all i/o ports accesses" },
8e3a9fd2 1729#endif
f193c797
FB
1730 { 0, NULL, NULL },
1731};
1732
f6f3fbca
MT
1733#ifndef CONFIG_USER_ONLY
1734static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1735 = QLIST_HEAD_INITIALIZER(memory_client_list);
1736
1737static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1738 ram_addr_t size,
0fd542fb
MT
1739 ram_addr_t phys_offset,
1740 bool log_dirty)
f6f3fbca
MT
1741{
1742 CPUPhysMemoryClient *client;
1743 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1744 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1745 }
1746}
1747
1748static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1749 target_phys_addr_t end)
f6f3fbca
MT
1750{
1751 CPUPhysMemoryClient *client;
1752 QLIST_FOREACH(client, &memory_client_list, list) {
1753 int r = client->sync_dirty_bitmap(client, start, end);
1754 if (r < 0)
1755 return r;
1756 }
1757 return 0;
1758}
1759
1760static int cpu_notify_migration_log(int enable)
1761{
1762 CPUPhysMemoryClient *client;
1763 QLIST_FOREACH(client, &memory_client_list, list) {
1764 int r = client->migration_log(client, enable);
1765 if (r < 0)
1766 return r;
1767 }
1768 return 0;
1769}
1770
2173a75f
AW
1771struct last_map {
1772 target_phys_addr_t start_addr;
1773 ram_addr_t size;
1774 ram_addr_t phys_offset;
1775};
1776
8d4c78e7
AW
1777/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1778 * address. Each intermediate table provides the next L2_BITs of guest
1779 * physical address space. The number of levels vary based on host and
1780 * guest configuration, making it efficient to build the final guest
1781 * physical address by seeding the L1 offset and shifting and adding in
1782 * each L2 offset as we recurse through them. */
2173a75f
AW
1783static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1784 void **lp, target_phys_addr_t addr,
1785 struct last_map *map)
f6f3fbca 1786{
5cd2c5b6 1787 int i;
f6f3fbca 1788
5cd2c5b6
RH
1789 if (*lp == NULL) {
1790 return;
1791 }
1792 if (level == 0) {
1793 PhysPageDesc *pd = *lp;
8d4c78e7 1794 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1795 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1796 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
2173a75f
AW
1797 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1798
1799 if (map->size &&
1800 start_addr == map->start_addr + map->size &&
1801 pd[i].phys_offset == map->phys_offset + map->size) {
1802
1803 map->size += TARGET_PAGE_SIZE;
1804 continue;
1805 } else if (map->size) {
1806 client->set_memory(client, map->start_addr,
1807 map->size, map->phys_offset, false);
1808 }
1809
1810 map->start_addr = start_addr;
1811 map->size = TARGET_PAGE_SIZE;
1812 map->phys_offset = pd[i].phys_offset;
f6f3fbca 1813 }
5cd2c5b6
RH
1814 }
1815 } else {
1816 void **pp = *lp;
7296abac 1817 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7 1818 phys_page_for_each_1(client, level - 1, pp + i,
2173a75f 1819 (addr << L2_BITS) | i, map);
f6f3fbca
MT
1820 }
1821 }
1822}
1823
1824static void phys_page_for_each(CPUPhysMemoryClient *client)
1825{
5cd2c5b6 1826 int i;
2173a75f
AW
1827 struct last_map map = { };
1828
5cd2c5b6
RH
1829 for (i = 0; i < P_L1_SIZE; ++i) {
1830 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
2173a75f
AW
1831 l1_phys_map + i, i, &map);
1832 }
1833 if (map.size) {
1834 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1835 false);
f6f3fbca 1836 }
f6f3fbca
MT
1837}
1838
1839void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1840{
1841 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1842 phys_page_for_each(client);
1843}
1844
1845void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1846{
1847 QLIST_REMOVE(client, list);
1848}
1849#endif
1850
f193c797
FB
1851static int cmp1(const char *s1, int n, const char *s2)
1852{
1853 if (strlen(s2) != n)
1854 return 0;
1855 return memcmp(s1, s2, n) == 0;
1856}
3b46e624 1857
f193c797
FB
1858/* takes a comma separated list of log masks. Return 0 if error. */
1859int cpu_str_to_log_mask(const char *str)
1860{
c7cd6a37 1861 const CPULogItem *item;
f193c797
FB
1862 int mask;
1863 const char *p, *p1;
1864
1865 p = str;
1866 mask = 0;
1867 for(;;) {
1868 p1 = strchr(p, ',');
1869 if (!p1)
1870 p1 = p + strlen(p);
9742bf26
YT
1871 if(cmp1(p,p1-p,"all")) {
1872 for(item = cpu_log_items; item->mask != 0; item++) {
1873 mask |= item->mask;
1874 }
1875 } else {
1876 for(item = cpu_log_items; item->mask != 0; item++) {
1877 if (cmp1(p, p1 - p, item->name))
1878 goto found;
1879 }
1880 return 0;
f193c797 1881 }
f193c797
FB
1882 found:
1883 mask |= item->mask;
1884 if (*p1 != ',')
1885 break;
1886 p = p1 + 1;
1887 }
1888 return mask;
1889}
ea041c0e 1890
7501267e
FB
1891void cpu_abort(CPUState *env, const char *fmt, ...)
1892{
1893 va_list ap;
493ae1f0 1894 va_list ap2;
7501267e
FB
1895
1896 va_start(ap, fmt);
493ae1f0 1897 va_copy(ap2, ap);
7501267e
FB
1898 fprintf(stderr, "qemu: fatal: ");
1899 vfprintf(stderr, fmt, ap);
1900 fprintf(stderr, "\n");
1901#ifdef TARGET_I386
7fe48483
FB
1902 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1903#else
1904 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1905#endif
93fcfe39
AL
1906 if (qemu_log_enabled()) {
1907 qemu_log("qemu: fatal: ");
1908 qemu_log_vprintf(fmt, ap2);
1909 qemu_log("\n");
f9373291 1910#ifdef TARGET_I386
93fcfe39 1911 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1912#else
93fcfe39 1913 log_cpu_state(env, 0);
f9373291 1914#endif
31b1a7b4 1915 qemu_log_flush();
93fcfe39 1916 qemu_log_close();
924edcae 1917 }
493ae1f0 1918 va_end(ap2);
f9373291 1919 va_end(ap);
fd052bf6
RV
1920#if defined(CONFIG_USER_ONLY)
1921 {
1922 struct sigaction act;
1923 sigfillset(&act.sa_mask);
1924 act.sa_handler = SIG_DFL;
1925 sigaction(SIGABRT, &act, NULL);
1926 }
1927#endif
7501267e
FB
1928 abort();
1929}
1930
c5be9f08
TS
1931CPUState *cpu_copy(CPUState *env)
1932{
01ba9816 1933 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1934 CPUState *next_cpu = new_env->next_cpu;
1935 int cpu_index = new_env->cpu_index;
5a38f081
AL
1936#if defined(TARGET_HAS_ICE)
1937 CPUBreakpoint *bp;
1938 CPUWatchpoint *wp;
1939#endif
1940
c5be9f08 1941 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1942
1943 /* Preserve chaining and index. */
c5be9f08
TS
1944 new_env->next_cpu = next_cpu;
1945 new_env->cpu_index = cpu_index;
5a38f081
AL
1946
1947 /* Clone all break/watchpoints.
1948 Note: Once we support ptrace with hw-debug register access, make sure
1949 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1950 QTAILQ_INIT(&env->breakpoints);
1951 QTAILQ_INIT(&env->watchpoints);
5a38f081 1952#if defined(TARGET_HAS_ICE)
72cf2d4f 1953 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1954 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1955 }
72cf2d4f 1956 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1957 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1958 wp->flags, NULL);
1959 }
1960#endif
1961
c5be9f08
TS
1962 return new_env;
1963}
1964
0124311e
FB
1965#if !defined(CONFIG_USER_ONLY)
1966
5c751e99
EI
1967static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1968{
1969 unsigned int i;
1970
1971 /* Discard jump cache entries for any tb which might potentially
1972 overlap the flushed page. */
1973 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1974 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1975 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1976
1977 i = tb_jmp_cache_hash_page(addr);
1978 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1979 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1980}
1981
08738984
IK
1982static CPUTLBEntry s_cputlb_empty_entry = {
1983 .addr_read = -1,
1984 .addr_write = -1,
1985 .addr_code = -1,
1986 .addend = -1,
1987};
1988
ee8b7021
FB
1989/* NOTE: if flush_global is true, also flush global entries (not
1990 implemented yet) */
1991void tlb_flush(CPUState *env, int flush_global)
33417e70 1992{
33417e70 1993 int i;
0124311e 1994
9fa3e853
FB
1995#if defined(DEBUG_TLB)
1996 printf("tlb_flush:\n");
1997#endif
0124311e
FB
1998 /* must reset current TB so that interrupts cannot modify the
1999 links while we are modifying them */
2000 env->current_tb = NULL;
2001
33417e70 2002 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
2003 int mmu_idx;
2004 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 2005 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 2006 }
33417e70 2007 }
9fa3e853 2008
8a40a180 2009 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 2010
d4c430a8
PB
2011 env->tlb_flush_addr = -1;
2012 env->tlb_flush_mask = 0;
e3db7226 2013 tlb_flush_count++;
33417e70
FB
2014}
2015
274da6b2 2016static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 2017{
5fafdf24 2018 if (addr == (tlb_entry->addr_read &
84b7b8e7 2019 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2020 addr == (tlb_entry->addr_write &
84b7b8e7 2021 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2022 addr == (tlb_entry->addr_code &
84b7b8e7 2023 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 2024 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 2025 }
61382a50
FB
2026}
2027
2e12669a 2028void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 2029{
8a40a180 2030 int i;
cfde4bd9 2031 int mmu_idx;
0124311e 2032
9fa3e853 2033#if defined(DEBUG_TLB)
108c49b8 2034 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 2035#endif
d4c430a8
PB
2036 /* Check if we need to flush due to large pages. */
2037 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2038#if defined(DEBUG_TLB)
2039 printf("tlb_flush_page: forced full flush ("
2040 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2041 env->tlb_flush_addr, env->tlb_flush_mask);
2042#endif
2043 tlb_flush(env, 1);
2044 return;
2045 }
0124311e
FB
2046 /* must reset current TB so that interrupts cannot modify the
2047 links while we are modifying them */
2048 env->current_tb = NULL;
61382a50
FB
2049
2050 addr &= TARGET_PAGE_MASK;
2051 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2052 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2053 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2054
5c751e99 2055 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2056}
2057
9fa3e853
FB
2058/* update the TLBs so that writes to code in the virtual page 'addr'
2059 can be detected */
c227f099 2060static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2061{
5fafdf24 2062 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2063 ram_addr + TARGET_PAGE_SIZE,
2064 CODE_DIRTY_FLAG);
9fa3e853
FB
2065}
2066
9fa3e853 2067/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2068 tested for self modifying code */
c227f099 2069static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2070 target_ulong vaddr)
9fa3e853 2071{
f7c11b53 2072 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2073}
2074
5fafdf24 2075static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2076 unsigned long start, unsigned long length)
2077{
2078 unsigned long addr;
84b7b8e7
FB
2079 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2080 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2081 if ((addr - start) < length) {
0f459d16 2082 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2083 }
2084 }
2085}
2086
5579c7f3 2087/* Note: start and end must be within the same ram block. */
c227f099 2088void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2089 int dirty_flags)
1ccde1cb
FB
2090{
2091 CPUState *env;
4f2ac237 2092 unsigned long length, start1;
f7c11b53 2093 int i;
1ccde1cb
FB
2094
2095 start &= TARGET_PAGE_MASK;
2096 end = TARGET_PAGE_ALIGN(end);
2097
2098 length = end - start;
2099 if (length == 0)
2100 return;
f7c11b53 2101 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2102
1ccde1cb
FB
2103 /* we modify the TLB cache so that the dirty bit will be set again
2104 when accessing the range */
b2e0a138 2105 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 2106 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 2107 address comparisons below. */
b2e0a138 2108 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2109 != (end - 1) - start) {
2110 abort();
2111 }
2112
6a00d601 2113 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2114 int mmu_idx;
2115 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2116 for(i = 0; i < CPU_TLB_SIZE; i++)
2117 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2118 start1, length);
2119 }
6a00d601 2120 }
1ccde1cb
FB
2121}
2122
74576198
AL
2123int cpu_physical_memory_set_dirty_tracking(int enable)
2124{
f6f3fbca 2125 int ret = 0;
74576198 2126 in_migration = enable;
f6f3fbca
MT
2127 ret = cpu_notify_migration_log(!!enable);
2128 return ret;
74576198
AL
2129}
2130
2131int cpu_physical_memory_get_dirty_tracking(void)
2132{
2133 return in_migration;
2134}
2135
c227f099
AL
2136int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2137 target_phys_addr_t end_addr)
2bec46dc 2138{
7b8f3b78 2139 int ret;
151f7749 2140
f6f3fbca 2141 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2142 return ret;
2bec46dc
AL
2143}
2144
e5896b12
AP
2145int cpu_physical_log_start(target_phys_addr_t start_addr,
2146 ram_addr_t size)
2147{
2148 CPUPhysMemoryClient *client;
2149 QLIST_FOREACH(client, &memory_client_list, list) {
2150 if (client->log_start) {
2151 int r = client->log_start(client, start_addr, size);
2152 if (r < 0) {
2153 return r;
2154 }
2155 }
2156 }
2157 return 0;
2158}
2159
2160int cpu_physical_log_stop(target_phys_addr_t start_addr,
2161 ram_addr_t size)
2162{
2163 CPUPhysMemoryClient *client;
2164 QLIST_FOREACH(client, &memory_client_list, list) {
2165 if (client->log_stop) {
2166 int r = client->log_stop(client, start_addr, size);
2167 if (r < 0) {
2168 return r;
2169 }
2170 }
2171 }
2172 return 0;
2173}
2174
3a7d929e
FB
2175static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2176{
c227f099 2177 ram_addr_t ram_addr;
5579c7f3 2178 void *p;
3a7d929e 2179
84b7b8e7 2180 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2181 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2182 + tlb_entry->addend);
e890261f 2183 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2184 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2185 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2186 }
2187 }
2188}
2189
2190/* update the TLB according to the current state of the dirty bits */
2191void cpu_tlb_update_dirty(CPUState *env)
2192{
2193 int i;
cfde4bd9
IY
2194 int mmu_idx;
2195 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2196 for(i = 0; i < CPU_TLB_SIZE; i++)
2197 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2198 }
3a7d929e
FB
2199}
2200
0f459d16 2201static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2202{
0f459d16
PB
2203 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2204 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2205}
2206
0f459d16
PB
2207/* update the TLB corresponding to virtual page vaddr
2208 so that it is no longer dirty */
2209static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2210{
1ccde1cb 2211 int i;
cfde4bd9 2212 int mmu_idx;
1ccde1cb 2213
0f459d16 2214 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2215 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2216 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2217 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2218}
2219
d4c430a8
PB
2220/* Our TLB does not support large pages, so remember the area covered by
2221 large pages and trigger a full TLB flush if these are invalidated. */
2222static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2223 target_ulong size)
2224{
2225 target_ulong mask = ~(size - 1);
2226
2227 if (env->tlb_flush_addr == (target_ulong)-1) {
2228 env->tlb_flush_addr = vaddr & mask;
2229 env->tlb_flush_mask = mask;
2230 return;
2231 }
2232 /* Extend the existing region to include the new page.
2233 This is a compromise between unnecessary flushes and the cost
2234 of maintaining a full variable size TLB. */
2235 mask &= env->tlb_flush_mask;
2236 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2237 mask <<= 1;
2238 }
2239 env->tlb_flush_addr &= mask;
2240 env->tlb_flush_mask = mask;
2241}
2242
2243/* Add a new TLB entry. At most one entry for a given virtual address
2244 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2245 supplied size is only used by tlb_flush_page. */
2246void tlb_set_page(CPUState *env, target_ulong vaddr,
2247 target_phys_addr_t paddr, int prot,
2248 int mmu_idx, target_ulong size)
9fa3e853 2249{
92e873b9 2250 PhysPageDesc *p;
4f2ac237 2251 unsigned long pd;
9fa3e853 2252 unsigned int index;
4f2ac237 2253 target_ulong address;
0f459d16 2254 target_ulong code_address;
355b1943 2255 unsigned long addend;
84b7b8e7 2256 CPUTLBEntry *te;
a1d1bb31 2257 CPUWatchpoint *wp;
c227f099 2258 target_phys_addr_t iotlb;
9fa3e853 2259
d4c430a8
PB
2260 assert(size >= TARGET_PAGE_SIZE);
2261 if (size != TARGET_PAGE_SIZE) {
2262 tlb_add_large_page(env, vaddr, size);
2263 }
92e873b9 2264 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2265 if (!p) {
2266 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2267 } else {
2268 pd = p->phys_offset;
9fa3e853
FB
2269 }
2270#if defined(DEBUG_TLB)
7fd3f494
SW
2271 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2272 " prot=%x idx=%d pd=0x%08lx\n",
2273 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2274#endif
2275
0f459d16
PB
2276 address = vaddr;
2277 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2278 /* IO memory case (romd handled later) */
2279 address |= TLB_MMIO;
2280 }
5579c7f3 2281 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2282 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2283 /* Normal RAM. */
2284 iotlb = pd & TARGET_PAGE_MASK;
2285 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2286 iotlb |= IO_MEM_NOTDIRTY;
2287 else
2288 iotlb |= IO_MEM_ROM;
2289 } else {
ccbb4d44 2290 /* IO handlers are currently passed a physical address.
0f459d16
PB
2291 It would be nice to pass an offset from the base address
2292 of that region. This would avoid having to special case RAM,
2293 and avoid full address decoding in every device.
2294 We can't use the high bits of pd for this because
2295 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2296 iotlb = (pd & ~TARGET_PAGE_MASK);
2297 if (p) {
8da3ff18
PB
2298 iotlb += p->region_offset;
2299 } else {
2300 iotlb += paddr;
2301 }
0f459d16
PB
2302 }
2303
2304 code_address = address;
2305 /* Make accesses to pages with watchpoints go via the
2306 watchpoint trap routines. */
72cf2d4f 2307 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2308 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2309 /* Avoid trapping reads of pages with a write breakpoint. */
2310 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2311 iotlb = io_mem_watch + paddr;
2312 address |= TLB_MMIO;
2313 break;
2314 }
6658ffb8 2315 }
0f459d16 2316 }
d79acba4 2317
0f459d16
PB
2318 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2319 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2320 te = &env->tlb_table[mmu_idx][index];
2321 te->addend = addend - vaddr;
2322 if (prot & PAGE_READ) {
2323 te->addr_read = address;
2324 } else {
2325 te->addr_read = -1;
2326 }
5c751e99 2327
0f459d16
PB
2328 if (prot & PAGE_EXEC) {
2329 te->addr_code = code_address;
2330 } else {
2331 te->addr_code = -1;
2332 }
2333 if (prot & PAGE_WRITE) {
2334 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2335 (pd & IO_MEM_ROMD)) {
2336 /* Write access calls the I/O callback. */
2337 te->addr_write = address | TLB_MMIO;
2338 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2339 !cpu_physical_memory_is_dirty(pd)) {
2340 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2341 } else {
0f459d16 2342 te->addr_write = address;
9fa3e853 2343 }
0f459d16
PB
2344 } else {
2345 te->addr_write = -1;
9fa3e853 2346 }
9fa3e853
FB
2347}
2348
0124311e
FB
2349#else
2350
ee8b7021 2351void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2352{
2353}
2354
2e12669a 2355void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2356{
2357}
2358
edf8e2af
MW
2359/*
2360 * Walks guest process memory "regions" one by one
2361 * and calls callback function 'fn' for each region.
2362 */
5cd2c5b6
RH
2363
2364struct walk_memory_regions_data
2365{
2366 walk_memory_regions_fn fn;
2367 void *priv;
2368 unsigned long start;
2369 int prot;
2370};
2371
2372static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2373 abi_ulong end, int new_prot)
5cd2c5b6
RH
2374{
2375 if (data->start != -1ul) {
2376 int rc = data->fn(data->priv, data->start, end, data->prot);
2377 if (rc != 0) {
2378 return rc;
2379 }
2380 }
2381
2382 data->start = (new_prot ? end : -1ul);
2383 data->prot = new_prot;
2384
2385 return 0;
2386}
2387
2388static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2389 abi_ulong base, int level, void **lp)
5cd2c5b6 2390{
b480d9b7 2391 abi_ulong pa;
5cd2c5b6
RH
2392 int i, rc;
2393
2394 if (*lp == NULL) {
2395 return walk_memory_regions_end(data, base, 0);
2396 }
2397
2398 if (level == 0) {
2399 PageDesc *pd = *lp;
7296abac 2400 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2401 int prot = pd[i].flags;
2402
2403 pa = base | (i << TARGET_PAGE_BITS);
2404 if (prot != data->prot) {
2405 rc = walk_memory_regions_end(data, pa, prot);
2406 if (rc != 0) {
2407 return rc;
9fa3e853 2408 }
9fa3e853 2409 }
5cd2c5b6
RH
2410 }
2411 } else {
2412 void **pp = *lp;
7296abac 2413 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2414 pa = base | ((abi_ulong)i <<
2415 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2416 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2417 if (rc != 0) {
2418 return rc;
2419 }
2420 }
2421 }
2422
2423 return 0;
2424}
2425
2426int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2427{
2428 struct walk_memory_regions_data data;
2429 unsigned long i;
2430
2431 data.fn = fn;
2432 data.priv = priv;
2433 data.start = -1ul;
2434 data.prot = 0;
2435
2436 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2437 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2438 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2439 if (rc != 0) {
2440 return rc;
9fa3e853 2441 }
33417e70 2442 }
5cd2c5b6
RH
2443
2444 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2445}
2446
b480d9b7
PB
2447static int dump_region(void *priv, abi_ulong start,
2448 abi_ulong end, unsigned long prot)
edf8e2af
MW
2449{
2450 FILE *f = (FILE *)priv;
2451
b480d9b7
PB
2452 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2453 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2454 start, end, end - start,
2455 ((prot & PAGE_READ) ? 'r' : '-'),
2456 ((prot & PAGE_WRITE) ? 'w' : '-'),
2457 ((prot & PAGE_EXEC) ? 'x' : '-'));
2458
2459 return (0);
2460}
2461
2462/* dump memory mappings */
2463void page_dump(FILE *f)
2464{
2465 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2466 "start", "end", "size", "prot");
2467 walk_memory_regions(f, dump_region);
33417e70
FB
2468}
2469
53a5960a 2470int page_get_flags(target_ulong address)
33417e70 2471{
9fa3e853
FB
2472 PageDesc *p;
2473
2474 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2475 if (!p)
9fa3e853
FB
2476 return 0;
2477 return p->flags;
2478}
2479
376a7909
RH
2480/* Modify the flags of a page and invalidate the code if necessary.
2481 The flag PAGE_WRITE_ORG is positioned automatically depending
2482 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2483void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2484{
376a7909
RH
2485 target_ulong addr, len;
2486
2487 /* This function should never be called with addresses outside the
2488 guest address space. If this assert fires, it probably indicates
2489 a missing call to h2g_valid. */
b480d9b7
PB
2490#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2491 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2492#endif
2493 assert(start < end);
9fa3e853
FB
2494
2495 start = start & TARGET_PAGE_MASK;
2496 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2497
2498 if (flags & PAGE_WRITE) {
9fa3e853 2499 flags |= PAGE_WRITE_ORG;
376a7909
RH
2500 }
2501
2502 for (addr = start, len = end - start;
2503 len != 0;
2504 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2505 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2506
2507 /* If the write protection bit is set, then we invalidate
2508 the code inside. */
5fafdf24 2509 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2510 (flags & PAGE_WRITE) &&
2511 p->first_tb) {
d720b93d 2512 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2513 }
2514 p->flags = flags;
2515 }
33417e70
FB
2516}
2517
3d97b40b
TS
2518int page_check_range(target_ulong start, target_ulong len, int flags)
2519{
2520 PageDesc *p;
2521 target_ulong end;
2522 target_ulong addr;
2523
376a7909
RH
2524 /* This function should never be called with addresses outside the
2525 guest address space. If this assert fires, it probably indicates
2526 a missing call to h2g_valid. */
338e9e6c
BS
2527#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2528 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2529#endif
2530
3e0650a9
RH
2531 if (len == 0) {
2532 return 0;
2533 }
376a7909
RH
2534 if (start + len - 1 < start) {
2535 /* We've wrapped around. */
55f280c9 2536 return -1;
376a7909 2537 }
55f280c9 2538
3d97b40b
TS
2539 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2540 start = start & TARGET_PAGE_MASK;
2541
376a7909
RH
2542 for (addr = start, len = end - start;
2543 len != 0;
2544 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2545 p = page_find(addr >> TARGET_PAGE_BITS);
2546 if( !p )
2547 return -1;
2548 if( !(p->flags & PAGE_VALID) )
2549 return -1;
2550
dae3270c 2551 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2552 return -1;
dae3270c
FB
2553 if (flags & PAGE_WRITE) {
2554 if (!(p->flags & PAGE_WRITE_ORG))
2555 return -1;
2556 /* unprotect the page if it was put read-only because it
2557 contains translated code */
2558 if (!(p->flags & PAGE_WRITE)) {
2559 if (!page_unprotect(addr, 0, NULL))
2560 return -1;
2561 }
2562 return 0;
2563 }
3d97b40b
TS
2564 }
2565 return 0;
2566}
2567
9fa3e853 2568/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2569 page. Return TRUE if the fault was successfully handled. */
53a5960a 2570int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2571{
45d679d6
AJ
2572 unsigned int prot;
2573 PageDesc *p;
53a5960a 2574 target_ulong host_start, host_end, addr;
9fa3e853 2575
c8a706fe
PB
2576 /* Technically this isn't safe inside a signal handler. However we
2577 know this only ever happens in a synchronous SEGV handler, so in
2578 practice it seems to be ok. */
2579 mmap_lock();
2580
45d679d6
AJ
2581 p = page_find(address >> TARGET_PAGE_BITS);
2582 if (!p) {
c8a706fe 2583 mmap_unlock();
9fa3e853 2584 return 0;
c8a706fe 2585 }
45d679d6 2586
9fa3e853
FB
2587 /* if the page was really writable, then we change its
2588 protection back to writable */
45d679d6
AJ
2589 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2590 host_start = address & qemu_host_page_mask;
2591 host_end = host_start + qemu_host_page_size;
2592
2593 prot = 0;
2594 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2595 p = page_find(addr >> TARGET_PAGE_BITS);
2596 p->flags |= PAGE_WRITE;
2597 prot |= p->flags;
2598
9fa3e853
FB
2599 /* and since the content will be modified, we must invalidate
2600 the corresponding translated code. */
45d679d6 2601 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2602#ifdef DEBUG_TB_CHECK
45d679d6 2603 tb_invalidate_check(addr);
9fa3e853 2604#endif
9fa3e853 2605 }
45d679d6
AJ
2606 mprotect((void *)g2h(host_start), qemu_host_page_size,
2607 prot & PAGE_BITS);
2608
2609 mmap_unlock();
2610 return 1;
9fa3e853 2611 }
c8a706fe 2612 mmap_unlock();
9fa3e853
FB
2613 return 0;
2614}
2615
6a00d601
FB
2616static inline void tlb_set_dirty(CPUState *env,
2617 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2618{
2619}
9fa3e853
FB
2620#endif /* defined(CONFIG_USER_ONLY) */
2621
e2eef170 2622#if !defined(CONFIG_USER_ONLY)
8da3ff18 2623
c04b2b78
PB
2624#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2625typedef struct subpage_t {
2626 target_phys_addr_t base;
f6405247
RH
2627 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2628 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2629} subpage_t;
2630
c227f099
AL
2631static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2632 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2633static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2634 ram_addr_t orig_memory,
2635 ram_addr_t region_offset);
db7b5426
BS
2636#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2637 need_subpage) \
2638 do { \
2639 if (addr > start_addr) \
2640 start_addr2 = 0; \
2641 else { \
2642 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2643 if (start_addr2 > 0) \
2644 need_subpage = 1; \
2645 } \
2646 \
49e9fba2 2647 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2648 end_addr2 = TARGET_PAGE_SIZE - 1; \
2649 else { \
2650 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2651 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2652 need_subpage = 1; \
2653 } \
2654 } while (0)
2655
8f2498f9
MT
2656/* register physical memory.
2657 For RAM, 'size' must be a multiple of the target page size.
2658 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2659 io memory page. The address used when calling the IO function is
2660 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2661 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2662 before calculating this offset. This should not be a problem unless
2663 the low bits of start_addr and region_offset differ. */
0fd542fb 2664void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2665 ram_addr_t size,
2666 ram_addr_t phys_offset,
0fd542fb
MT
2667 ram_addr_t region_offset,
2668 bool log_dirty)
33417e70 2669{
c227f099 2670 target_phys_addr_t addr, end_addr;
92e873b9 2671 PhysPageDesc *p;
9d42037b 2672 CPUState *env;
c227f099 2673 ram_addr_t orig_size = size;
f6405247 2674 subpage_t *subpage;
33417e70 2675
3b8e6a2d 2676 assert(size);
0fd542fb 2677 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2678
67c4d23c
PB
2679 if (phys_offset == IO_MEM_UNASSIGNED) {
2680 region_offset = start_addr;
2681 }
8da3ff18 2682 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2683 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2684 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2685
2686 addr = start_addr;
2687 do {
db7b5426
BS
2688 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2689 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2690 ram_addr_t orig_memory = p->phys_offset;
2691 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2692 int need_subpage = 0;
2693
2694 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2695 need_subpage);
f6405247 2696 if (need_subpage) {
db7b5426
BS
2697 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2698 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2699 &p->phys_offset, orig_memory,
2700 p->region_offset);
db7b5426
BS
2701 } else {
2702 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2703 >> IO_MEM_SHIFT];
2704 }
8da3ff18
PB
2705 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2706 region_offset);
2707 p->region_offset = 0;
db7b5426
BS
2708 } else {
2709 p->phys_offset = phys_offset;
2710 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2711 (phys_offset & IO_MEM_ROMD))
2712 phys_offset += TARGET_PAGE_SIZE;
2713 }
2714 } else {
2715 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2716 p->phys_offset = phys_offset;
8da3ff18 2717 p->region_offset = region_offset;
db7b5426 2718 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2719 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2720 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2721 } else {
c227f099 2722 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2723 int need_subpage = 0;
2724
2725 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2726 end_addr2, need_subpage);
2727
f6405247 2728 if (need_subpage) {
db7b5426 2729 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2730 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2731 addr & TARGET_PAGE_MASK);
db7b5426 2732 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2733 phys_offset, region_offset);
2734 p->region_offset = 0;
db7b5426
BS
2735 }
2736 }
2737 }
8da3ff18 2738 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2739 addr += TARGET_PAGE_SIZE;
2740 } while (addr != end_addr);
3b46e624 2741
9d42037b
FB
2742 /* since each CPU stores ram addresses in its TLB cache, we must
2743 reset the modified entries */
2744 /* XXX: slow ! */
2745 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2746 tlb_flush(env, 1);
2747 }
33417e70
FB
2748}
2749
ba863458 2750/* XXX: temporary until new memory mapping API */
c227f099 2751ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2752{
2753 PhysPageDesc *p;
2754
2755 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2756 if (!p)
2757 return IO_MEM_UNASSIGNED;
2758 return p->phys_offset;
2759}
2760
c227f099 2761void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2762{
2763 if (kvm_enabled())
2764 kvm_coalesce_mmio_region(addr, size);
2765}
2766
c227f099 2767void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2768{
2769 if (kvm_enabled())
2770 kvm_uncoalesce_mmio_region(addr, size);
2771}
2772
62a2744c
SY
2773void qemu_flush_coalesced_mmio_buffer(void)
2774{
2775 if (kvm_enabled())
2776 kvm_flush_coalesced_mmio_buffer();
2777}
2778
c902760f
MT
2779#if defined(__linux__) && !defined(TARGET_S390X)
2780
2781#include <sys/vfs.h>
2782
2783#define HUGETLBFS_MAGIC 0x958458f6
2784
2785static long gethugepagesize(const char *path)
2786{
2787 struct statfs fs;
2788 int ret;
2789
2790 do {
9742bf26 2791 ret = statfs(path, &fs);
c902760f
MT
2792 } while (ret != 0 && errno == EINTR);
2793
2794 if (ret != 0) {
9742bf26
YT
2795 perror(path);
2796 return 0;
c902760f
MT
2797 }
2798
2799 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2800 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2801
2802 return fs.f_bsize;
2803}
2804
04b16653
AW
2805static void *file_ram_alloc(RAMBlock *block,
2806 ram_addr_t memory,
2807 const char *path)
c902760f
MT
2808{
2809 char *filename;
2810 void *area;
2811 int fd;
2812#ifdef MAP_POPULATE
2813 int flags;
2814#endif
2815 unsigned long hpagesize;
2816
2817 hpagesize = gethugepagesize(path);
2818 if (!hpagesize) {
9742bf26 2819 return NULL;
c902760f
MT
2820 }
2821
2822 if (memory < hpagesize) {
2823 return NULL;
2824 }
2825
2826 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2827 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2828 return NULL;
2829 }
2830
2831 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2832 return NULL;
c902760f
MT
2833 }
2834
2835 fd = mkstemp(filename);
2836 if (fd < 0) {
9742bf26
YT
2837 perror("unable to create backing store for hugepages");
2838 free(filename);
2839 return NULL;
c902760f
MT
2840 }
2841 unlink(filename);
2842 free(filename);
2843
2844 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2845
2846 /*
2847 * ftruncate is not supported by hugetlbfs in older
2848 * hosts, so don't bother bailing out on errors.
2849 * If anything goes wrong with it under other filesystems,
2850 * mmap will fail.
2851 */
2852 if (ftruncate(fd, memory))
9742bf26 2853 perror("ftruncate");
c902760f
MT
2854
2855#ifdef MAP_POPULATE
2856 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2857 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2858 * to sidestep this quirk.
2859 */
2860 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2861 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2862#else
2863 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2864#endif
2865 if (area == MAP_FAILED) {
9742bf26
YT
2866 perror("file_ram_alloc: can't mmap RAM pages");
2867 close(fd);
2868 return (NULL);
c902760f 2869 }
04b16653 2870 block->fd = fd;
c902760f
MT
2871 return area;
2872}
2873#endif
2874
d17b5288 2875static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2876{
2877 RAMBlock *block, *next_block;
3e837b2c 2878 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2879
2880 if (QLIST_EMPTY(&ram_list.blocks))
2881 return 0;
2882
2883 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2884 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2885
2886 end = block->offset + block->length;
2887
2888 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2889 if (next_block->offset >= end) {
2890 next = MIN(next, next_block->offset);
2891 }
2892 }
2893 if (next - end >= size && next - end < mingap) {
3e837b2c 2894 offset = end;
04b16653
AW
2895 mingap = next - end;
2896 }
2897 }
3e837b2c
AW
2898
2899 if (offset == RAM_ADDR_MAX) {
2900 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2901 (uint64_t)size);
2902 abort();
2903 }
2904
04b16653
AW
2905 return offset;
2906}
2907
2908static ram_addr_t last_ram_offset(void)
d17b5288
AW
2909{
2910 RAMBlock *block;
2911 ram_addr_t last = 0;
2912
2913 QLIST_FOREACH(block, &ram_list.blocks, next)
2914 last = MAX(last, block->offset + block->length);
2915
2916 return last;
2917}
2918
84b89d78 2919ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2920 ram_addr_t size, void *host)
84b89d78
CM
2921{
2922 RAMBlock *new_block, *block;
2923
2924 size = TARGET_PAGE_ALIGN(size);
7267c094 2925 new_block = g_malloc0(sizeof(*new_block));
84b89d78
CM
2926
2927 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2928 char *id = dev->parent_bus->info->get_dev_path(dev);
2929 if (id) {
2930 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2931 g_free(id);
84b89d78
CM
2932 }
2933 }
2934 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2935
2936 QLIST_FOREACH(block, &ram_list.blocks, next) {
2937 if (!strcmp(block->idstr, new_block->idstr)) {
2938 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2939 new_block->idstr);
2940 abort();
2941 }
2942 }
2943
432d268c 2944 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2945 if (host) {
2946 new_block->host = host;
cd19cfa2 2947 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2948 } else {
2949 if (mem_path) {
c902760f 2950#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2951 new_block->host = file_ram_alloc(new_block, size, mem_path);
2952 if (!new_block->host) {
2953 new_block->host = qemu_vmalloc(size);
e78815a5 2954 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2955 }
c902760f 2956#else
6977dfe6
YT
2957 fprintf(stderr, "-mem-path option unsupported\n");
2958 exit(1);
c902760f 2959#endif
6977dfe6 2960 } else {
6b02494d 2961#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2962 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2963 an system defined value, which is at least 256GB. Larger systems
2964 have larger values. We put the guest between the end of data
2965 segment (system break) and this value. We use 32GB as a base to
2966 have enough room for the system break to grow. */
2967 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2968 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2969 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2970 if (new_block->host == MAP_FAILED) {
2971 fprintf(stderr, "Allocating RAM failed\n");
2972 abort();
2973 }
6b02494d 2974#else
868bb33f 2975 if (xen_enabled()) {
432d268c
JN
2976 xen_ram_alloc(new_block->offset, size);
2977 } else {
2978 new_block->host = qemu_vmalloc(size);
2979 }
6b02494d 2980#endif
e78815a5 2981 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2982 }
c902760f 2983 }
94a6b54f
PB
2984 new_block->length = size;
2985
f471a17e 2986 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2987
7267c094 2988 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2989 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2990 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2991 0xff, size >> TARGET_PAGE_BITS);
2992
6f0437e8
JK
2993 if (kvm_enabled())
2994 kvm_setup_guest_memory(new_block->host, size);
2995
94a6b54f
PB
2996 return new_block->offset;
2997}
e9a1ab19 2998
6977dfe6
YT
2999ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
3000{
3001 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
3002}
3003
1f2e98b6
AW
3004void qemu_ram_free_from_ptr(ram_addr_t addr)
3005{
3006 RAMBlock *block;
3007
3008 QLIST_FOREACH(block, &ram_list.blocks, next) {
3009 if (addr == block->offset) {
3010 QLIST_REMOVE(block, next);
7267c094 3011 g_free(block);
1f2e98b6
AW
3012 return;
3013 }
3014 }
3015}
3016
c227f099 3017void qemu_ram_free(ram_addr_t addr)
e9a1ab19 3018{
04b16653
AW
3019 RAMBlock *block;
3020
3021 QLIST_FOREACH(block, &ram_list.blocks, next) {
3022 if (addr == block->offset) {
3023 QLIST_REMOVE(block, next);
cd19cfa2
HY
3024 if (block->flags & RAM_PREALLOC_MASK) {
3025 ;
3026 } else if (mem_path) {
04b16653
AW
3027#if defined (__linux__) && !defined(TARGET_S390X)
3028 if (block->fd) {
3029 munmap(block->host, block->length);
3030 close(block->fd);
3031 } else {
3032 qemu_vfree(block->host);
3033 }
fd28aa13
JK
3034#else
3035 abort();
04b16653
AW
3036#endif
3037 } else {
3038#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3039 munmap(block->host, block->length);
3040#else
868bb33f 3041 if (xen_enabled()) {
e41d7c69 3042 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
3043 } else {
3044 qemu_vfree(block->host);
3045 }
04b16653
AW
3046#endif
3047 }
7267c094 3048 g_free(block);
04b16653
AW
3049 return;
3050 }
3051 }
3052
e9a1ab19
FB
3053}
3054
cd19cfa2
HY
3055#ifndef _WIN32
3056void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3057{
3058 RAMBlock *block;
3059 ram_addr_t offset;
3060 int flags;
3061 void *area, *vaddr;
3062
3063 QLIST_FOREACH(block, &ram_list.blocks, next) {
3064 offset = addr - block->offset;
3065 if (offset < block->length) {
3066 vaddr = block->host + offset;
3067 if (block->flags & RAM_PREALLOC_MASK) {
3068 ;
3069 } else {
3070 flags = MAP_FIXED;
3071 munmap(vaddr, length);
3072 if (mem_path) {
3073#if defined(__linux__) && !defined(TARGET_S390X)
3074 if (block->fd) {
3075#ifdef MAP_POPULATE
3076 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3077 MAP_PRIVATE;
3078#else
3079 flags |= MAP_PRIVATE;
3080#endif
3081 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3082 flags, block->fd, offset);
3083 } else {
3084 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3085 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3086 flags, -1, 0);
3087 }
fd28aa13
JK
3088#else
3089 abort();
cd19cfa2
HY
3090#endif
3091 } else {
3092#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3093 flags |= MAP_SHARED | MAP_ANONYMOUS;
3094 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3095 flags, -1, 0);
3096#else
3097 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3098 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3099 flags, -1, 0);
3100#endif
3101 }
3102 if (area != vaddr) {
f15fbc4b
AP
3103 fprintf(stderr, "Could not remap addr: "
3104 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
3105 length, addr);
3106 exit(1);
3107 }
3108 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3109 }
3110 return;
3111 }
3112 }
3113}
3114#endif /* !_WIN32 */
3115
dc828ca1 3116/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3117 With the exception of the softmmu code in this file, this should
3118 only be used for local memory (e.g. video ram) that the device owns,
3119 and knows it isn't going to access beyond the end of the block.
3120
3121 It should not be used for general purpose DMA.
3122 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3123 */
c227f099 3124void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3125{
94a6b54f
PB
3126 RAMBlock *block;
3127
f471a17e
AW
3128 QLIST_FOREACH(block, &ram_list.blocks, next) {
3129 if (addr - block->offset < block->length) {
7d82af38
VP
3130 /* Move this entry to to start of the list. */
3131 if (block != QLIST_FIRST(&ram_list.blocks)) {
3132 QLIST_REMOVE(block, next);
3133 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3134 }
868bb33f 3135 if (xen_enabled()) {
432d268c
JN
3136 /* We need to check if the requested address is in the RAM
3137 * because we don't want to map the entire memory in QEMU.
712c2b41 3138 * In that case just map until the end of the page.
432d268c
JN
3139 */
3140 if (block->offset == 0) {
e41d7c69 3141 return xen_map_cache(addr, 0, 0);
432d268c 3142 } else if (block->host == NULL) {
e41d7c69
JK
3143 block->host =
3144 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3145 }
3146 }
f471a17e
AW
3147 return block->host + (addr - block->offset);
3148 }
94a6b54f 3149 }
f471a17e
AW
3150
3151 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3152 abort();
3153
3154 return NULL;
dc828ca1
PB
3155}
3156
b2e0a138
MT
3157/* Return a host pointer to ram allocated with qemu_ram_alloc.
3158 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3159 */
3160void *qemu_safe_ram_ptr(ram_addr_t addr)
3161{
3162 RAMBlock *block;
3163
3164 QLIST_FOREACH(block, &ram_list.blocks, next) {
3165 if (addr - block->offset < block->length) {
868bb33f 3166 if (xen_enabled()) {
432d268c
JN
3167 /* We need to check if the requested address is in the RAM
3168 * because we don't want to map the entire memory in QEMU.
712c2b41 3169 * In that case just map until the end of the page.
432d268c
JN
3170 */
3171 if (block->offset == 0) {
e41d7c69 3172 return xen_map_cache(addr, 0, 0);
432d268c 3173 } else if (block->host == NULL) {
e41d7c69
JK
3174 block->host =
3175 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3176 }
3177 }
b2e0a138
MT
3178 return block->host + (addr - block->offset);
3179 }
3180 }
3181
3182 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3183 abort();
3184
3185 return NULL;
3186}
3187
38bee5dc
SS
3188/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3189 * but takes a size argument */
8ab934f9 3190void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3191{
8ab934f9
SS
3192 if (*size == 0) {
3193 return NULL;
3194 }
868bb33f 3195 if (xen_enabled()) {
e41d7c69 3196 return xen_map_cache(addr, *size, 1);
868bb33f 3197 } else {
38bee5dc
SS
3198 RAMBlock *block;
3199
3200 QLIST_FOREACH(block, &ram_list.blocks, next) {
3201 if (addr - block->offset < block->length) {
3202 if (addr - block->offset + *size > block->length)
3203 *size = block->length - addr + block->offset;
3204 return block->host + (addr - block->offset);
3205 }
3206 }
3207
3208 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3209 abort();
38bee5dc
SS
3210 }
3211}
3212
050a0ddf
AP
3213void qemu_put_ram_ptr(void *addr)
3214{
3215 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3216}
3217
e890261f 3218int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3219{
94a6b54f
PB
3220 RAMBlock *block;
3221 uint8_t *host = ptr;
3222
868bb33f 3223 if (xen_enabled()) {
e41d7c69 3224 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3225 return 0;
3226 }
3227
f471a17e 3228 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3229 /* This case append when the block is not mapped. */
3230 if (block->host == NULL) {
3231 continue;
3232 }
f471a17e 3233 if (host - block->host < block->length) {
e890261f
MT
3234 *ram_addr = block->offset + (host - block->host);
3235 return 0;
f471a17e 3236 }
94a6b54f 3237 }
432d268c 3238
e890261f
MT
3239 return -1;
3240}
f471a17e 3241
e890261f
MT
3242/* Some of the softmmu routines need to translate from a host pointer
3243 (typically a TLB entry) back to a ram offset. */
3244ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3245{
3246 ram_addr_t ram_addr;
f471a17e 3247
e890261f
MT
3248 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3249 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3250 abort();
3251 }
3252 return ram_addr;
5579c7f3
PB
3253}
3254
c227f099 3255static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3256{
67d3b957 3257#ifdef DEBUG_UNASSIGNED
ab3d1727 3258 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3259#endif
5b450407 3260#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3261 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
e18231a3
BS
3262#endif
3263 return 0;
3264}
3265
c227f099 3266static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3267{
3268#ifdef DEBUG_UNASSIGNED
3269 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3270#endif
5b450407 3271#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3272 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
e18231a3
BS
3273#endif
3274 return 0;
3275}
3276
c227f099 3277static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3278{
3279#ifdef DEBUG_UNASSIGNED
3280 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3281#endif
5b450407 3282#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3283 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
67d3b957 3284#endif
33417e70
FB
3285 return 0;
3286}
3287
c227f099 3288static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3289{
67d3b957 3290#ifdef DEBUG_UNASSIGNED
ab3d1727 3291 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3292#endif
5b450407 3293#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3294 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
e18231a3
BS
3295#endif
3296}
3297
c227f099 3298static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3299{
3300#ifdef DEBUG_UNASSIGNED
3301 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3302#endif
5b450407 3303#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3304 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
e18231a3
BS
3305#endif
3306}
3307
c227f099 3308static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3309{
3310#ifdef DEBUG_UNASSIGNED
3311 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3312#endif
5b450407 3313#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3314 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
b4f0a316 3315#endif
33417e70
FB
3316}
3317
d60efc6b 3318static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3319 unassigned_mem_readb,
e18231a3
BS
3320 unassigned_mem_readw,
3321 unassigned_mem_readl,
33417e70
FB
3322};
3323
d60efc6b 3324static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3325 unassigned_mem_writeb,
e18231a3
BS
3326 unassigned_mem_writew,
3327 unassigned_mem_writel,
33417e70
FB
3328};
3329
c227f099 3330static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3331 uint32_t val)
9fa3e853 3332{
3a7d929e 3333 int dirty_flags;
f7c11b53 3334 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3335 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3336#if !defined(CONFIG_USER_ONLY)
3a7d929e 3337 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3338 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3339#endif
3a7d929e 3340 }
5579c7f3 3341 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3342 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3343 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3344 /* we remove the notdirty callback only if the code has been
3345 flushed */
3346 if (dirty_flags == 0xff)
2e70f6ef 3347 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3348}
3349
c227f099 3350static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3351 uint32_t val)
9fa3e853 3352{
3a7d929e 3353 int dirty_flags;
f7c11b53 3354 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3355 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3356#if !defined(CONFIG_USER_ONLY)
3a7d929e 3357 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3358 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3359#endif
3a7d929e 3360 }
5579c7f3 3361 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3362 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3363 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3364 /* we remove the notdirty callback only if the code has been
3365 flushed */
3366 if (dirty_flags == 0xff)
2e70f6ef 3367 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3368}
3369
c227f099 3370static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3371 uint32_t val)
9fa3e853 3372{
3a7d929e 3373 int dirty_flags;
f7c11b53 3374 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3375 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3376#if !defined(CONFIG_USER_ONLY)
3a7d929e 3377 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3378 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3379#endif
3a7d929e 3380 }
5579c7f3 3381 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3382 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3383 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3384 /* we remove the notdirty callback only if the code has been
3385 flushed */
3386 if (dirty_flags == 0xff)
2e70f6ef 3387 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3388}
3389
d60efc6b 3390static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3391 NULL, /* never used */
3392 NULL, /* never used */
3393 NULL, /* never used */
3394};
3395
d60efc6b 3396static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3397 notdirty_mem_writeb,
3398 notdirty_mem_writew,
3399 notdirty_mem_writel,
3400};
3401
0f459d16 3402/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3403static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3404{
3405 CPUState *env = cpu_single_env;
06d55cc1
AL
3406 target_ulong pc, cs_base;
3407 TranslationBlock *tb;
0f459d16 3408 target_ulong vaddr;
a1d1bb31 3409 CPUWatchpoint *wp;
06d55cc1 3410 int cpu_flags;
0f459d16 3411
06d55cc1
AL
3412 if (env->watchpoint_hit) {
3413 /* We re-entered the check after replacing the TB. Now raise
3414 * the debug interrupt so that is will trigger after the
3415 * current instruction. */
3416 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3417 return;
3418 }
2e70f6ef 3419 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3420 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3421 if ((vaddr == (wp->vaddr & len_mask) ||
3422 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3423 wp->flags |= BP_WATCHPOINT_HIT;
3424 if (!env->watchpoint_hit) {
3425 env->watchpoint_hit = wp;
3426 tb = tb_find_pc(env->mem_io_pc);
3427 if (!tb) {
3428 cpu_abort(env, "check_watchpoint: could not find TB for "
3429 "pc=%p", (void *)env->mem_io_pc);
3430 }
618ba8e6 3431 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3432 tb_phys_invalidate(tb, -1);
3433 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3434 env->exception_index = EXCP_DEBUG;
3435 } else {
3436 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3437 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3438 }
3439 cpu_resume_from_signal(env, NULL);
06d55cc1 3440 }
6e140f28
AL
3441 } else {
3442 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3443 }
3444 }
3445}
3446
6658ffb8
PB
3447/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3448 so these check for a hit then pass through to the normal out-of-line
3449 phys routines. */
c227f099 3450static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3451{
b4051334 3452 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3453 return ldub_phys(addr);
3454}
3455
c227f099 3456static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3457{
b4051334 3458 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3459 return lduw_phys(addr);
3460}
3461
c227f099 3462static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3463{
b4051334 3464 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3465 return ldl_phys(addr);
3466}
3467
c227f099 3468static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3469 uint32_t val)
3470{
b4051334 3471 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3472 stb_phys(addr, val);
3473}
3474
c227f099 3475static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3476 uint32_t val)
3477{
b4051334 3478 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3479 stw_phys(addr, val);
3480}
3481
c227f099 3482static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3483 uint32_t val)
3484{
b4051334 3485 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3486 stl_phys(addr, val);
3487}
3488
d60efc6b 3489static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3490 watch_mem_readb,
3491 watch_mem_readw,
3492 watch_mem_readl,
3493};
3494
d60efc6b 3495static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3496 watch_mem_writeb,
3497 watch_mem_writew,
3498 watch_mem_writel,
3499};
6658ffb8 3500
f6405247
RH
3501static inline uint32_t subpage_readlen (subpage_t *mmio,
3502 target_phys_addr_t addr,
3503 unsigned int len)
db7b5426 3504{
f6405247 3505 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3506#if defined(DEBUG_SUBPAGE)
3507 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3508 mmio, len, addr, idx);
3509#endif
db7b5426 3510
f6405247
RH
3511 addr += mmio->region_offset[idx];
3512 idx = mmio->sub_io_index[idx];
3513 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3514}
3515
c227f099 3516static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3517 uint32_t value, unsigned int len)
db7b5426 3518{
f6405247 3519 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3520#if defined(DEBUG_SUBPAGE)
f6405247
RH
3521 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3522 __func__, mmio, len, addr, idx, value);
db7b5426 3523#endif
f6405247
RH
3524
3525 addr += mmio->region_offset[idx];
3526 idx = mmio->sub_io_index[idx];
3527 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3528}
3529
c227f099 3530static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3531{
db7b5426
BS
3532 return subpage_readlen(opaque, addr, 0);
3533}
3534
c227f099 3535static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3536 uint32_t value)
3537{
db7b5426
BS
3538 subpage_writelen(opaque, addr, value, 0);
3539}
3540
c227f099 3541static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3542{
db7b5426
BS
3543 return subpage_readlen(opaque, addr, 1);
3544}
3545
c227f099 3546static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3547 uint32_t value)
3548{
db7b5426
BS
3549 subpage_writelen(opaque, addr, value, 1);
3550}
3551
c227f099 3552static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3553{
db7b5426
BS
3554 return subpage_readlen(opaque, addr, 2);
3555}
3556
f6405247
RH
3557static void subpage_writel (void *opaque, target_phys_addr_t addr,
3558 uint32_t value)
db7b5426 3559{
db7b5426
BS
3560 subpage_writelen(opaque, addr, value, 2);
3561}
3562
d60efc6b 3563static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3564 &subpage_readb,
3565 &subpage_readw,
3566 &subpage_readl,
3567};
3568
d60efc6b 3569static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3570 &subpage_writeb,
3571 &subpage_writew,
3572 &subpage_writel,
3573};
3574
c227f099
AL
3575static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3576 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3577{
3578 int idx, eidx;
3579
3580 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3581 return -1;
3582 idx = SUBPAGE_IDX(start);
3583 eidx = SUBPAGE_IDX(end);
3584#if defined(DEBUG_SUBPAGE)
0bf9e31a 3585 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3586 mmio, start, end, idx, eidx, memory);
3587#endif
95c318f5
GN
3588 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3589 memory = IO_MEM_UNASSIGNED;
f6405247 3590 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3591 for (; idx <= eidx; idx++) {
f6405247
RH
3592 mmio->sub_io_index[idx] = memory;
3593 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3594 }
3595
3596 return 0;
3597}
3598
f6405247
RH
3599static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3600 ram_addr_t orig_memory,
3601 ram_addr_t region_offset)
db7b5426 3602{
c227f099 3603 subpage_t *mmio;
db7b5426
BS
3604 int subpage_memory;
3605
7267c094 3606 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3607
3608 mmio->base = base;
2507c12a
AG
3609 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3610 DEVICE_NATIVE_ENDIAN);
db7b5426 3611#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3612 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3613 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3614#endif
1eec614b 3615 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3616 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3617
3618 return mmio;
3619}
3620
88715657
AL
3621static int get_free_io_mem_idx(void)
3622{
3623 int i;
3624
3625 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3626 if (!io_mem_used[i]) {
3627 io_mem_used[i] = 1;
3628 return i;
3629 }
c6703b47 3630 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3631 return -1;
3632}
3633
dd310534
AG
3634/*
3635 * Usually, devices operate in little endian mode. There are devices out
3636 * there that operate in big endian too. Each device gets byte swapped
3637 * mmio if plugged onto a CPU that does the other endianness.
3638 *
3639 * CPU Device swap?
3640 *
3641 * little little no
3642 * little big yes
3643 * big little yes
3644 * big big no
3645 */
3646
3647typedef struct SwapEndianContainer {
3648 CPUReadMemoryFunc *read[3];
3649 CPUWriteMemoryFunc *write[3];
3650 void *opaque;
3651} SwapEndianContainer;
3652
3653static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3654{
3655 uint32_t val;
3656 SwapEndianContainer *c = opaque;
3657 val = c->read[0](c->opaque, addr);
3658 return val;
3659}
3660
3661static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3662{
3663 uint32_t val;
3664 SwapEndianContainer *c = opaque;
3665 val = bswap16(c->read[1](c->opaque, addr));
3666 return val;
3667}
3668
3669static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3670{
3671 uint32_t val;
3672 SwapEndianContainer *c = opaque;
3673 val = bswap32(c->read[2](c->opaque, addr));
3674 return val;
3675}
3676
3677static CPUReadMemoryFunc * const swapendian_readfn[3]={
3678 swapendian_mem_readb,
3679 swapendian_mem_readw,
3680 swapendian_mem_readl
3681};
3682
3683static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3684 uint32_t val)
3685{
3686 SwapEndianContainer *c = opaque;
3687 c->write[0](c->opaque, addr, val);
3688}
3689
3690static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3691 uint32_t val)
3692{
3693 SwapEndianContainer *c = opaque;
3694 c->write[1](c->opaque, addr, bswap16(val));
3695}
3696
3697static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3698 uint32_t val)
3699{
3700 SwapEndianContainer *c = opaque;
3701 c->write[2](c->opaque, addr, bswap32(val));
3702}
3703
3704static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3705 swapendian_mem_writeb,
3706 swapendian_mem_writew,
3707 swapendian_mem_writel
3708};
3709
3710static void swapendian_init(int io_index)
3711{
7267c094 3712 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
dd310534
AG
3713 int i;
3714
3715 /* Swap mmio for big endian targets */
3716 c->opaque = io_mem_opaque[io_index];
3717 for (i = 0; i < 3; i++) {
3718 c->read[i] = io_mem_read[io_index][i];
3719 c->write[i] = io_mem_write[io_index][i];
3720
3721 io_mem_read[io_index][i] = swapendian_readfn[i];
3722 io_mem_write[io_index][i] = swapendian_writefn[i];
3723 }
3724 io_mem_opaque[io_index] = c;
3725}
3726
3727static void swapendian_del(int io_index)
3728{
3729 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
7267c094 3730 g_free(io_mem_opaque[io_index]);
dd310534
AG
3731 }
3732}
3733
33417e70
FB
3734/* mem_read and mem_write are arrays of functions containing the
3735 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3736 2). Functions can be omitted with a NULL function pointer.
3ee89922 3737 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3738 modified. If it is zero, a new io zone is allocated. The return
3739 value can be used with cpu_register_physical_memory(). (-1) is
3740 returned if error. */
1eed09cb 3741static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3742 CPUReadMemoryFunc * const *mem_read,
3743 CPUWriteMemoryFunc * const *mem_write,
dd310534 3744 void *opaque, enum device_endian endian)
33417e70 3745{
3cab721d
RH
3746 int i;
3747
33417e70 3748 if (io_index <= 0) {
88715657
AL
3749 io_index = get_free_io_mem_idx();
3750 if (io_index == -1)
3751 return io_index;
33417e70 3752 } else {
1eed09cb 3753 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3754 if (io_index >= IO_MEM_NB_ENTRIES)
3755 return -1;
3756 }
b5ff1b31 3757
3cab721d
RH
3758 for (i = 0; i < 3; ++i) {
3759 io_mem_read[io_index][i]
3760 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3761 }
3762 for (i = 0; i < 3; ++i) {
3763 io_mem_write[io_index][i]
3764 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3765 }
a4193c8a 3766 io_mem_opaque[io_index] = opaque;
f6405247 3767
dd310534
AG
3768 switch (endian) {
3769 case DEVICE_BIG_ENDIAN:
3770#ifndef TARGET_WORDS_BIGENDIAN
3771 swapendian_init(io_index);
3772#endif
3773 break;
3774 case DEVICE_LITTLE_ENDIAN:
3775#ifdef TARGET_WORDS_BIGENDIAN
3776 swapendian_init(io_index);
3777#endif
3778 break;
3779 case DEVICE_NATIVE_ENDIAN:
3780 default:
3781 break;
3782 }
3783
f6405247 3784 return (io_index << IO_MEM_SHIFT);
33417e70 3785}
61382a50 3786
d60efc6b
BS
3787int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3788 CPUWriteMemoryFunc * const *mem_write,
dd310534 3789 void *opaque, enum device_endian endian)
1eed09cb 3790{
2507c12a 3791 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3792}
3793
88715657
AL
3794void cpu_unregister_io_memory(int io_table_address)
3795{
3796 int i;
3797 int io_index = io_table_address >> IO_MEM_SHIFT;
3798
dd310534
AG
3799 swapendian_del(io_index);
3800
88715657
AL
3801 for (i=0;i < 3; i++) {
3802 io_mem_read[io_index][i] = unassigned_mem_read[i];
3803 io_mem_write[io_index][i] = unassigned_mem_write[i];
3804 }
3805 io_mem_opaque[io_index] = NULL;
3806 io_mem_used[io_index] = 0;
3807}
3808
e9179ce1
AK
3809static void io_mem_init(void)
3810{
3811 int i;
3812
2507c12a
AG
3813 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3814 unassigned_mem_write, NULL,
3815 DEVICE_NATIVE_ENDIAN);
3816 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3817 unassigned_mem_write, NULL,
3818 DEVICE_NATIVE_ENDIAN);
3819 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3820 notdirty_mem_write, NULL,
3821 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3822 for (i=0; i<5; i++)
3823 io_mem_used[i] = 1;
3824
3825 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3826 watch_mem_write, NULL,
3827 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3828}
3829
62152b8a
AK
3830static void memory_map_init(void)
3831{
7267c094 3832 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3833 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3834 set_system_memory_map(system_memory);
309cb471 3835
7267c094 3836 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3837 memory_region_init(system_io, "io", 65536);
3838 set_system_io_map(system_io);
62152b8a
AK
3839}
3840
3841MemoryRegion *get_system_memory(void)
3842{
3843 return system_memory;
3844}
3845
309cb471
AK
3846MemoryRegion *get_system_io(void)
3847{
3848 return system_io;
3849}
3850
e2eef170
PB
3851#endif /* !defined(CONFIG_USER_ONLY) */
3852
13eb76e0
FB
3853/* physical memory access (slow version, mainly for debug) */
3854#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3855int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3856 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3857{
3858 int l, flags;
3859 target_ulong page;
53a5960a 3860 void * p;
13eb76e0
FB
3861
3862 while (len > 0) {
3863 page = addr & TARGET_PAGE_MASK;
3864 l = (page + TARGET_PAGE_SIZE) - addr;
3865 if (l > len)
3866 l = len;
3867 flags = page_get_flags(page);
3868 if (!(flags & PAGE_VALID))
a68fe89c 3869 return -1;
13eb76e0
FB
3870 if (is_write) {
3871 if (!(flags & PAGE_WRITE))
a68fe89c 3872 return -1;
579a97f7 3873 /* XXX: this code should not depend on lock_user */
72fb7daa 3874 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3875 return -1;
72fb7daa
AJ
3876 memcpy(p, buf, l);
3877 unlock_user(p, addr, l);
13eb76e0
FB
3878 } else {
3879 if (!(flags & PAGE_READ))
a68fe89c 3880 return -1;
579a97f7 3881 /* XXX: this code should not depend on lock_user */
72fb7daa 3882 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3883 return -1;
72fb7daa 3884 memcpy(buf, p, l);
5b257578 3885 unlock_user(p, addr, 0);
13eb76e0
FB
3886 }
3887 len -= l;
3888 buf += l;
3889 addr += l;
3890 }
a68fe89c 3891 return 0;
13eb76e0 3892}
8df1cd07 3893
13eb76e0 3894#else
c227f099 3895void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3896 int len, int is_write)
3897{
3898 int l, io_index;
3899 uint8_t *ptr;
3900 uint32_t val;
c227f099 3901 target_phys_addr_t page;
8ca5692d 3902 ram_addr_t pd;
92e873b9 3903 PhysPageDesc *p;
3b46e624 3904
13eb76e0
FB
3905 while (len > 0) {
3906 page = addr & TARGET_PAGE_MASK;
3907 l = (page + TARGET_PAGE_SIZE) - addr;
3908 if (l > len)
3909 l = len;
92e873b9 3910 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3911 if (!p) {
3912 pd = IO_MEM_UNASSIGNED;
3913 } else {
3914 pd = p->phys_offset;
3915 }
3b46e624 3916
13eb76e0 3917 if (is_write) {
3a7d929e 3918 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3919 target_phys_addr_t addr1 = addr;
13eb76e0 3920 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3921 if (p)
6c2934db 3922 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3923 /* XXX: could force cpu_single_env to NULL to avoid
3924 potential bugs */
6c2934db 3925 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3926 /* 32 bit write access */
c27004ec 3927 val = ldl_p(buf);
6c2934db 3928 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3929 l = 4;
6c2934db 3930 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3931 /* 16 bit write access */
c27004ec 3932 val = lduw_p(buf);
6c2934db 3933 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3934 l = 2;
3935 } else {
1c213d19 3936 /* 8 bit write access */
c27004ec 3937 val = ldub_p(buf);
6c2934db 3938 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3939 l = 1;
3940 }
3941 } else {
8ca5692d 3942 ram_addr_t addr1;
b448f2f3 3943 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3944 /* RAM case */
5579c7f3 3945 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3946 memcpy(ptr, buf, l);
3a7d929e
FB
3947 if (!cpu_physical_memory_is_dirty(addr1)) {
3948 /* invalidate code */
3949 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3950 /* set dirty bit */
f7c11b53
YT
3951 cpu_physical_memory_set_dirty_flags(
3952 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3953 }
050a0ddf 3954 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3955 }
3956 } else {
5fafdf24 3957 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3958 !(pd & IO_MEM_ROMD)) {
c227f099 3959 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3960 /* I/O case */
3961 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3962 if (p)
6c2934db
AJ
3963 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3964 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3965 /* 32 bit read access */
6c2934db 3966 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3967 stl_p(buf, val);
13eb76e0 3968 l = 4;
6c2934db 3969 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3970 /* 16 bit read access */
6c2934db 3971 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3972 stw_p(buf, val);
13eb76e0
FB
3973 l = 2;
3974 } else {
1c213d19 3975 /* 8 bit read access */
6c2934db 3976 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3977 stb_p(buf, val);
13eb76e0
FB
3978 l = 1;
3979 }
3980 } else {
3981 /* RAM case */
050a0ddf
AP
3982 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3983 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3984 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3985 }
3986 }
3987 len -= l;
3988 buf += l;
3989 addr += l;
3990 }
3991}
8df1cd07 3992
d0ecd2aa 3993/* used for ROM loading : can write in RAM and ROM */
c227f099 3994void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3995 const uint8_t *buf, int len)
3996{
3997 int l;
3998 uint8_t *ptr;
c227f099 3999 target_phys_addr_t page;
d0ecd2aa
FB
4000 unsigned long pd;
4001 PhysPageDesc *p;
3b46e624 4002
d0ecd2aa
FB
4003 while (len > 0) {
4004 page = addr & TARGET_PAGE_MASK;
4005 l = (page + TARGET_PAGE_SIZE) - addr;
4006 if (l > len)
4007 l = len;
4008 p = phys_page_find(page >> TARGET_PAGE_BITS);
4009 if (!p) {
4010 pd = IO_MEM_UNASSIGNED;
4011 } else {
4012 pd = p->phys_offset;
4013 }
3b46e624 4014
d0ecd2aa 4015 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
4016 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4017 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
4018 /* do nothing */
4019 } else {
4020 unsigned long addr1;
4021 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4022 /* ROM/RAM case */
5579c7f3 4023 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 4024 memcpy(ptr, buf, l);
050a0ddf 4025 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
4026 }
4027 len -= l;
4028 buf += l;
4029 addr += l;
4030 }
4031}
4032
6d16c2f8
AL
4033typedef struct {
4034 void *buffer;
c227f099
AL
4035 target_phys_addr_t addr;
4036 target_phys_addr_t len;
6d16c2f8
AL
4037} BounceBuffer;
4038
4039static BounceBuffer bounce;
4040
ba223c29
AL
4041typedef struct MapClient {
4042 void *opaque;
4043 void (*callback)(void *opaque);
72cf2d4f 4044 QLIST_ENTRY(MapClient) link;
ba223c29
AL
4045} MapClient;
4046
72cf2d4f
BS
4047static QLIST_HEAD(map_client_list, MapClient) map_client_list
4048 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
4049
4050void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4051{
7267c094 4052 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
4053
4054 client->opaque = opaque;
4055 client->callback = callback;
72cf2d4f 4056 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
4057 return client;
4058}
4059
4060void cpu_unregister_map_client(void *_client)
4061{
4062 MapClient *client = (MapClient *)_client;
4063
72cf2d4f 4064 QLIST_REMOVE(client, link);
7267c094 4065 g_free(client);
ba223c29
AL
4066}
4067
4068static void cpu_notify_map_clients(void)
4069{
4070 MapClient *client;
4071
72cf2d4f
BS
4072 while (!QLIST_EMPTY(&map_client_list)) {
4073 client = QLIST_FIRST(&map_client_list);
ba223c29 4074 client->callback(client->opaque);
34d5e948 4075 cpu_unregister_map_client(client);
ba223c29
AL
4076 }
4077}
4078
6d16c2f8
AL
4079/* Map a physical memory region into a host virtual address.
4080 * May map a subset of the requested range, given by and returned in *plen.
4081 * May return NULL if resources needed to perform the mapping are exhausted.
4082 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
4083 * Use cpu_register_map_client() to know when retrying the map operation is
4084 * likely to succeed.
6d16c2f8 4085 */
c227f099
AL
4086void *cpu_physical_memory_map(target_phys_addr_t addr,
4087 target_phys_addr_t *plen,
6d16c2f8
AL
4088 int is_write)
4089{
c227f099 4090 target_phys_addr_t len = *plen;
38bee5dc 4091 target_phys_addr_t todo = 0;
6d16c2f8 4092 int l;
c227f099 4093 target_phys_addr_t page;
6d16c2f8
AL
4094 unsigned long pd;
4095 PhysPageDesc *p;
f15fbc4b 4096 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
4097 ram_addr_t rlen;
4098 void *ret;
6d16c2f8
AL
4099
4100 while (len > 0) {
4101 page = addr & TARGET_PAGE_MASK;
4102 l = (page + TARGET_PAGE_SIZE) - addr;
4103 if (l > len)
4104 l = len;
4105 p = phys_page_find(page >> TARGET_PAGE_BITS);
4106 if (!p) {
4107 pd = IO_MEM_UNASSIGNED;
4108 } else {
4109 pd = p->phys_offset;
4110 }
4111
4112 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
38bee5dc 4113 if (todo || bounce.buffer) {
6d16c2f8
AL
4114 break;
4115 }
4116 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4117 bounce.addr = addr;
4118 bounce.len = l;
4119 if (!is_write) {
54f7b4a3 4120 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 4121 }
38bee5dc
SS
4122
4123 *plen = l;
4124 return bounce.buffer;
6d16c2f8 4125 }
8ab934f9
SS
4126 if (!todo) {
4127 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4128 }
6d16c2f8
AL
4129
4130 len -= l;
4131 addr += l;
38bee5dc 4132 todo += l;
6d16c2f8 4133 }
8ab934f9
SS
4134 rlen = todo;
4135 ret = qemu_ram_ptr_length(raddr, &rlen);
4136 *plen = rlen;
4137 return ret;
6d16c2f8
AL
4138}
4139
4140/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4141 * Will also mark the memory as dirty if is_write == 1. access_len gives
4142 * the amount of memory that was actually read or written by the caller.
4143 */
c227f099
AL
4144void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4145 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4146{
4147 if (buffer != bounce.buffer) {
4148 if (is_write) {
e890261f 4149 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4150 while (access_len) {
4151 unsigned l;
4152 l = TARGET_PAGE_SIZE;
4153 if (l > access_len)
4154 l = access_len;
4155 if (!cpu_physical_memory_is_dirty(addr1)) {
4156 /* invalidate code */
4157 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4158 /* set dirty bit */
f7c11b53
YT
4159 cpu_physical_memory_set_dirty_flags(
4160 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4161 }
4162 addr1 += l;
4163 access_len -= l;
4164 }
4165 }
868bb33f 4166 if (xen_enabled()) {
e41d7c69 4167 xen_invalidate_map_cache_entry(buffer);
050a0ddf 4168 }
6d16c2f8
AL
4169 return;
4170 }
4171 if (is_write) {
4172 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4173 }
f8a83245 4174 qemu_vfree(bounce.buffer);
6d16c2f8 4175 bounce.buffer = NULL;
ba223c29 4176 cpu_notify_map_clients();
6d16c2f8 4177}
d0ecd2aa 4178
8df1cd07 4179/* warning: addr must be aligned */
1e78bcc1
AG
4180static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4181 enum device_endian endian)
8df1cd07
FB
4182{
4183 int io_index;
4184 uint8_t *ptr;
4185 uint32_t val;
4186 unsigned long pd;
4187 PhysPageDesc *p;
4188
4189 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4190 if (!p) {
4191 pd = IO_MEM_UNASSIGNED;
4192 } else {
4193 pd = p->phys_offset;
4194 }
3b46e624 4195
5fafdf24 4196 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4197 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4198 /* I/O case */
4199 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4200 if (p)
4201 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07 4202 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4203#if defined(TARGET_WORDS_BIGENDIAN)
4204 if (endian == DEVICE_LITTLE_ENDIAN) {
4205 val = bswap32(val);
4206 }
4207#else
4208 if (endian == DEVICE_BIG_ENDIAN) {
4209 val = bswap32(val);
4210 }
4211#endif
8df1cd07
FB
4212 } else {
4213 /* RAM case */
5579c7f3 4214 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07 4215 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4216 switch (endian) {
4217 case DEVICE_LITTLE_ENDIAN:
4218 val = ldl_le_p(ptr);
4219 break;
4220 case DEVICE_BIG_ENDIAN:
4221 val = ldl_be_p(ptr);
4222 break;
4223 default:
4224 val = ldl_p(ptr);
4225 break;
4226 }
8df1cd07
FB
4227 }
4228 return val;
4229}
4230
1e78bcc1
AG
4231uint32_t ldl_phys(target_phys_addr_t addr)
4232{
4233 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4234}
4235
4236uint32_t ldl_le_phys(target_phys_addr_t addr)
4237{
4238 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4239}
4240
4241uint32_t ldl_be_phys(target_phys_addr_t addr)
4242{
4243 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4244}
4245
84b7b8e7 4246/* warning: addr must be aligned */
1e78bcc1
AG
4247static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4248 enum device_endian endian)
84b7b8e7
FB
4249{
4250 int io_index;
4251 uint8_t *ptr;
4252 uint64_t val;
4253 unsigned long pd;
4254 PhysPageDesc *p;
4255
4256 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4257 if (!p) {
4258 pd = IO_MEM_UNASSIGNED;
4259 } else {
4260 pd = p->phys_offset;
4261 }
3b46e624 4262
2a4188a3
FB
4263 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4264 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4265 /* I/O case */
4266 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4267 if (p)
4268 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4269
4270 /* XXX This is broken when device endian != cpu endian.
4271 Fix and add "endian" variable check */
84b7b8e7
FB
4272#ifdef TARGET_WORDS_BIGENDIAN
4273 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4274 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4275#else
4276 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4277 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4278#endif
4279 } else {
4280 /* RAM case */
5579c7f3 4281 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7 4282 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4283 switch (endian) {
4284 case DEVICE_LITTLE_ENDIAN:
4285 val = ldq_le_p(ptr);
4286 break;
4287 case DEVICE_BIG_ENDIAN:
4288 val = ldq_be_p(ptr);
4289 break;
4290 default:
4291 val = ldq_p(ptr);
4292 break;
4293 }
84b7b8e7
FB
4294 }
4295 return val;
4296}
4297
1e78bcc1
AG
4298uint64_t ldq_phys(target_phys_addr_t addr)
4299{
4300 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4301}
4302
4303uint64_t ldq_le_phys(target_phys_addr_t addr)
4304{
4305 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4306}
4307
4308uint64_t ldq_be_phys(target_phys_addr_t addr)
4309{
4310 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4311}
4312
aab33094 4313/* XXX: optimize */
c227f099 4314uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4315{
4316 uint8_t val;
4317 cpu_physical_memory_read(addr, &val, 1);
4318 return val;
4319}
4320
733f0b02 4321/* warning: addr must be aligned */
1e78bcc1
AG
4322static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4323 enum device_endian endian)
aab33094 4324{
733f0b02
MT
4325 int io_index;
4326 uint8_t *ptr;
4327 uint64_t val;
4328 unsigned long pd;
4329 PhysPageDesc *p;
4330
4331 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4332 if (!p) {
4333 pd = IO_MEM_UNASSIGNED;
4334 } else {
4335 pd = p->phys_offset;
4336 }
4337
4338 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4339 !(pd & IO_MEM_ROMD)) {
4340 /* I/O case */
4341 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4342 if (p)
4343 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4344 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4345#if defined(TARGET_WORDS_BIGENDIAN)
4346 if (endian == DEVICE_LITTLE_ENDIAN) {
4347 val = bswap16(val);
4348 }
4349#else
4350 if (endian == DEVICE_BIG_ENDIAN) {
4351 val = bswap16(val);
4352 }
4353#endif
733f0b02
MT
4354 } else {
4355 /* RAM case */
4356 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4357 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4358 switch (endian) {
4359 case DEVICE_LITTLE_ENDIAN:
4360 val = lduw_le_p(ptr);
4361 break;
4362 case DEVICE_BIG_ENDIAN:
4363 val = lduw_be_p(ptr);
4364 break;
4365 default:
4366 val = lduw_p(ptr);
4367 break;
4368 }
733f0b02
MT
4369 }
4370 return val;
aab33094
FB
4371}
4372
1e78bcc1
AG
4373uint32_t lduw_phys(target_phys_addr_t addr)
4374{
4375 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4376}
4377
4378uint32_t lduw_le_phys(target_phys_addr_t addr)
4379{
4380 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4381}
4382
4383uint32_t lduw_be_phys(target_phys_addr_t addr)
4384{
4385 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4386}
4387
8df1cd07
FB
4388/* warning: addr must be aligned. The ram page is not masked as dirty
4389 and the code inside is not invalidated. It is useful if the dirty
4390 bits are used to track modified PTEs */
c227f099 4391void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4392{
4393 int io_index;
4394 uint8_t *ptr;
4395 unsigned long pd;
4396 PhysPageDesc *p;
4397
4398 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4399 if (!p) {
4400 pd = IO_MEM_UNASSIGNED;
4401 } else {
4402 pd = p->phys_offset;
4403 }
3b46e624 4404
3a7d929e 4405 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4406 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4407 if (p)
4408 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4409 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4410 } else {
74576198 4411 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4412 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4413 stl_p(ptr, val);
74576198
AL
4414
4415 if (unlikely(in_migration)) {
4416 if (!cpu_physical_memory_is_dirty(addr1)) {
4417 /* invalidate code */
4418 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4419 /* set dirty bit */
f7c11b53
YT
4420 cpu_physical_memory_set_dirty_flags(
4421 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4422 }
4423 }
8df1cd07
FB
4424 }
4425}
4426
c227f099 4427void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4428{
4429 int io_index;
4430 uint8_t *ptr;
4431 unsigned long pd;
4432 PhysPageDesc *p;
4433
4434 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4435 if (!p) {
4436 pd = IO_MEM_UNASSIGNED;
4437 } else {
4438 pd = p->phys_offset;
4439 }
3b46e624 4440
bc98a7ef
JM
4441 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4442 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4443 if (p)
4444 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4445#ifdef TARGET_WORDS_BIGENDIAN
4446 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4447 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4448#else
4449 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4450 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4451#endif
4452 } else {
5579c7f3 4453 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4454 (addr & ~TARGET_PAGE_MASK);
4455 stq_p(ptr, val);
4456 }
4457}
4458
8df1cd07 4459/* warning: addr must be aligned */
1e78bcc1
AG
4460static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4461 enum device_endian endian)
8df1cd07
FB
4462{
4463 int io_index;
4464 uint8_t *ptr;
4465 unsigned long pd;
4466 PhysPageDesc *p;
4467
4468 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4469 if (!p) {
4470 pd = IO_MEM_UNASSIGNED;
4471 } else {
4472 pd = p->phys_offset;
4473 }
3b46e624 4474
3a7d929e 4475 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4476 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4477 if (p)
4478 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4479#if defined(TARGET_WORDS_BIGENDIAN)
4480 if (endian == DEVICE_LITTLE_ENDIAN) {
4481 val = bswap32(val);
4482 }
4483#else
4484 if (endian == DEVICE_BIG_ENDIAN) {
4485 val = bswap32(val);
4486 }
4487#endif
8df1cd07
FB
4488 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4489 } else {
4490 unsigned long addr1;
4491 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4492 /* RAM case */
5579c7f3 4493 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4494 switch (endian) {
4495 case DEVICE_LITTLE_ENDIAN:
4496 stl_le_p(ptr, val);
4497 break;
4498 case DEVICE_BIG_ENDIAN:
4499 stl_be_p(ptr, val);
4500 break;
4501 default:
4502 stl_p(ptr, val);
4503 break;
4504 }
3a7d929e
FB
4505 if (!cpu_physical_memory_is_dirty(addr1)) {
4506 /* invalidate code */
4507 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4508 /* set dirty bit */
f7c11b53
YT
4509 cpu_physical_memory_set_dirty_flags(addr1,
4510 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4511 }
8df1cd07
FB
4512 }
4513}
4514
1e78bcc1
AG
4515void stl_phys(target_phys_addr_t addr, uint32_t val)
4516{
4517 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4518}
4519
4520void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4521{
4522 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4523}
4524
4525void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4526{
4527 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4528}
4529
aab33094 4530/* XXX: optimize */
c227f099 4531void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4532{
4533 uint8_t v = val;
4534 cpu_physical_memory_write(addr, &v, 1);
4535}
4536
733f0b02 4537/* warning: addr must be aligned */
1e78bcc1
AG
4538static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4539 enum device_endian endian)
aab33094 4540{
733f0b02
MT
4541 int io_index;
4542 uint8_t *ptr;
4543 unsigned long pd;
4544 PhysPageDesc *p;
4545
4546 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4547 if (!p) {
4548 pd = IO_MEM_UNASSIGNED;
4549 } else {
4550 pd = p->phys_offset;
4551 }
4552
4553 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4554 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4555 if (p)
4556 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4557#if defined(TARGET_WORDS_BIGENDIAN)
4558 if (endian == DEVICE_LITTLE_ENDIAN) {
4559 val = bswap16(val);
4560 }
4561#else
4562 if (endian == DEVICE_BIG_ENDIAN) {
4563 val = bswap16(val);
4564 }
4565#endif
733f0b02
MT
4566 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4567 } else {
4568 unsigned long addr1;
4569 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4570 /* RAM case */
4571 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4572 switch (endian) {
4573 case DEVICE_LITTLE_ENDIAN:
4574 stw_le_p(ptr, val);
4575 break;
4576 case DEVICE_BIG_ENDIAN:
4577 stw_be_p(ptr, val);
4578 break;
4579 default:
4580 stw_p(ptr, val);
4581 break;
4582 }
733f0b02
MT
4583 if (!cpu_physical_memory_is_dirty(addr1)) {
4584 /* invalidate code */
4585 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4586 /* set dirty bit */
4587 cpu_physical_memory_set_dirty_flags(addr1,
4588 (0xff & ~CODE_DIRTY_FLAG));
4589 }
4590 }
aab33094
FB
4591}
4592
1e78bcc1
AG
4593void stw_phys(target_phys_addr_t addr, uint32_t val)
4594{
4595 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4596}
4597
4598void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4599{
4600 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4601}
4602
4603void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4604{
4605 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4606}
4607
aab33094 4608/* XXX: optimize */
c227f099 4609void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4610{
4611 val = tswap64(val);
71d2b725 4612 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4613}
4614
1e78bcc1
AG
4615void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4616{
4617 val = cpu_to_le64(val);
4618 cpu_physical_memory_write(addr, &val, 8);
4619}
4620
4621void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4622{
4623 val = cpu_to_be64(val);
4624 cpu_physical_memory_write(addr, &val, 8);
4625}
4626
5e2972fd 4627/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4628int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4629 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4630{
4631 int l;
c227f099 4632 target_phys_addr_t phys_addr;
9b3c35e0 4633 target_ulong page;
13eb76e0
FB
4634
4635 while (len > 0) {
4636 page = addr & TARGET_PAGE_MASK;
4637 phys_addr = cpu_get_phys_page_debug(env, page);
4638 /* if no physical page mapped, return an error */
4639 if (phys_addr == -1)
4640 return -1;
4641 l = (page + TARGET_PAGE_SIZE) - addr;
4642 if (l > len)
4643 l = len;
5e2972fd 4644 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4645 if (is_write)
4646 cpu_physical_memory_write_rom(phys_addr, buf, l);
4647 else
5e2972fd 4648 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4649 len -= l;
4650 buf += l;
4651 addr += l;
4652 }
4653 return 0;
4654}
a68fe89c 4655#endif
13eb76e0 4656
2e70f6ef
PB
4657/* in deterministic execution mode, instructions doing device I/Os
4658 must be at the end of the TB */
4659void cpu_io_recompile(CPUState *env, void *retaddr)
4660{
4661 TranslationBlock *tb;
4662 uint32_t n, cflags;
4663 target_ulong pc, cs_base;
4664 uint64_t flags;
4665
4666 tb = tb_find_pc((unsigned long)retaddr);
4667 if (!tb) {
4668 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4669 retaddr);
4670 }
4671 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4672 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4673 /* Calculate how many instructions had been executed before the fault
bf20dc07 4674 occurred. */
2e70f6ef
PB
4675 n = n - env->icount_decr.u16.low;
4676 /* Generate a new TB ending on the I/O insn. */
4677 n++;
4678 /* On MIPS and SH, delay slot instructions can only be restarted if
4679 they were already the first instruction in the TB. If this is not
bf20dc07 4680 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4681 branch. */
4682#if defined(TARGET_MIPS)
4683 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4684 env->active_tc.PC -= 4;
4685 env->icount_decr.u16.low++;
4686 env->hflags &= ~MIPS_HFLAG_BMASK;
4687 }
4688#elif defined(TARGET_SH4)
4689 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4690 && n > 1) {
4691 env->pc -= 2;
4692 env->icount_decr.u16.low++;
4693 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4694 }
4695#endif
4696 /* This should never happen. */
4697 if (n > CF_COUNT_MASK)
4698 cpu_abort(env, "TB too big during recompile");
4699
4700 cflags = n | CF_LAST_IO;
4701 pc = tb->pc;
4702 cs_base = tb->cs_base;
4703 flags = tb->flags;
4704 tb_phys_invalidate(tb, -1);
4705 /* FIXME: In theory this could raise an exception. In practice
4706 we have already translated the block once so it's probably ok. */
4707 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4708 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4709 the first in the TB) then we end up generating a whole new TB and
4710 repeating the fault, which is horribly inefficient.
4711 Better would be to execute just this insn uncached, or generate a
4712 second new TB. */
4713 cpu_resume_from_signal(env, NULL);
4714}
4715
b3755a91
PB
4716#if !defined(CONFIG_USER_ONLY)
4717
055403b2 4718void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4719{
4720 int i, target_code_size, max_target_code_size;
4721 int direct_jmp_count, direct_jmp2_count, cross_page;
4722 TranslationBlock *tb;
3b46e624 4723
e3db7226
FB
4724 target_code_size = 0;
4725 max_target_code_size = 0;
4726 cross_page = 0;
4727 direct_jmp_count = 0;
4728 direct_jmp2_count = 0;
4729 for(i = 0; i < nb_tbs; i++) {
4730 tb = &tbs[i];
4731 target_code_size += tb->size;
4732 if (tb->size > max_target_code_size)
4733 max_target_code_size = tb->size;
4734 if (tb->page_addr[1] != -1)
4735 cross_page++;
4736 if (tb->tb_next_offset[0] != 0xffff) {
4737 direct_jmp_count++;
4738 if (tb->tb_next_offset[1] != 0xffff) {
4739 direct_jmp2_count++;
4740 }
4741 }
4742 }
4743 /* XXX: avoid using doubles ? */
57fec1fe 4744 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4745 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4746 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4747 cpu_fprintf(f, "TB count %d/%d\n",
4748 nb_tbs, code_gen_max_blocks);
5fafdf24 4749 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4750 nb_tbs ? target_code_size / nb_tbs : 0,
4751 max_target_code_size);
055403b2 4752 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4753 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4754 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4755 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4756 cross_page,
e3db7226
FB
4757 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4758 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4759 direct_jmp_count,
e3db7226
FB
4760 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4761 direct_jmp2_count,
4762 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4763 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4764 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4765 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4766 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4767 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4768}
4769
61382a50 4770#define MMUSUFFIX _cmmu
3917149d 4771#undef GETPC
61382a50
FB
4772#define GETPC() NULL
4773#define env cpu_single_env
b769d8fe 4774#define SOFTMMU_CODE_ACCESS
61382a50
FB
4775
4776#define SHIFT 0
4777#include "softmmu_template.h"
4778
4779#define SHIFT 1
4780#include "softmmu_template.h"
4781
4782#define SHIFT 2
4783#include "softmmu_template.h"
4784
4785#define SHIFT 3
4786#include "softmmu_template.h"
4787
4788#undef env
4789
4790#endif