]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
noaudio: fix return value for read()
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181
FB
28#include "cpu.h"
29#include "exec-all.h"
b67d9a52 30#include "tcg.h"
b3c7724c 31#include "hw/hw.h"
cc9e98cb 32#include "hw/qdev.h"
74576198 33#include "osdep.h"
7ba1e619 34#include "kvm.h"
29e922b6 35#include "qemu-timer.h"
53a5960a
PB
36#if defined(CONFIG_USER_ONLY)
37#include <qemu.h>
fd052bf6 38#include <signal.h>
f01576f1
JL
39#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40#include <sys/param.h>
41#if __FreeBSD_version >= 700104
42#define HAVE_KINFO_GETVMMAP
43#define sigqueue sigqueue_freebsd /* avoid redefinition */
44#include <sys/time.h>
45#include <sys/proc.h>
46#include <machine/profile.h>
47#define _KERNEL
48#include <sys/user.h>
49#undef _KERNEL
50#undef sigqueue
51#include <libutil.h>
52#endif
53#endif
53a5960a 54#endif
54936004 55
fd6ce8f6 56//#define DEBUG_TB_INVALIDATE
66e85a21 57//#define DEBUG_FLUSH
9fa3e853 58//#define DEBUG_TLB
67d3b957 59//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
60
61/* make various TB consistency checks */
5fafdf24
TS
62//#define DEBUG_TB_CHECK
63//#define DEBUG_TLB_CHECK
fd6ce8f6 64
1196be37 65//#define DEBUG_IOPORT
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
99773bd4
PB
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
9fa3e853
FB
73#define SMC_BITMAP_USE_THRESHOLD 10
74
bdaf78e0 75static TranslationBlock *tbs;
24ab68ac 76static int code_gen_max_blocks;
9fa3e853 77TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 78static int nb_tbs;
eb51d102 79/* any access to the tbs or the page table must use this lock */
c227f099 80spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 81
141ac468
BS
82#if defined(__arm__) || defined(__sparc_v9__)
83/* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
85 section close to code segment. */
86#define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
f8e2af11
SW
89#elif defined(_WIN32)
90/* Maximum alignment for Win32 is 16. */
91#define code_gen_section \
92 __attribute__((aligned (16)))
d03d860b
BS
93#else
94#define code_gen_section \
95 __attribute__((aligned (32)))
96#endif
97
98uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
99static uint8_t *code_gen_buffer;
100static unsigned long code_gen_buffer_size;
26a5f13b 101/* threshold to flush the translated code buffer */
bdaf78e0 102static unsigned long code_gen_buffer_max_size;
24ab68ac 103static uint8_t *code_gen_ptr;
fd6ce8f6 104
e2eef170 105#if !defined(CONFIG_USER_ONLY)
9fa3e853 106int phys_ram_fd;
74576198 107static int in_migration;
94a6b54f 108
f471a17e 109RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 110#endif
9fa3e853 111
6a00d601
FB
112CPUState *first_cpu;
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
5fafdf24 115CPUState *cpu_single_env;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef
PB
118 2 = Adaptive rate instruction counting. */
119int use_icount = 0;
120/* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122int64_t qemu_icount;
6a00d601 123
54936004 124typedef struct PageDesc {
92e873b9 125 /* list of TBs intersecting this ram page */
fd6ce8f6 126 TranslationBlock *first_tb;
9fa3e853
FB
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131#if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133#endif
54936004
FB
134} PageDesc;
135
41c1b1c9 136/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
137 while in user mode we want it to be based on virtual addresses. */
138#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
139#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141#else
5cd2c5b6 142# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 143#endif
bedb69ea 144#else
5cd2c5b6 145# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 146#endif
54936004 147
5cd2c5b6
RH
148/* Size of the L2 (and L3, etc) page tables. */
149#define L2_BITS 10
54936004
FB
150#define L2_SIZE (1 << L2_BITS)
151
5cd2c5b6
RH
152/* The bits remaining after N lower levels of page tables. */
153#define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155#define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157
158/* Size of the L1 page table. Avoid silly small sizes. */
159#if P_L1_BITS_REM < 4
160#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161#else
162#define P_L1_BITS P_L1_BITS_REM
163#endif
164
165#if V_L1_BITS_REM < 4
166#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167#else
168#define V_L1_BITS V_L1_BITS_REM
169#endif
170
171#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
173
174#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
176
83fb7adf
FB
177unsigned long qemu_real_host_page_size;
178unsigned long qemu_host_page_bits;
179unsigned long qemu_host_page_size;
180unsigned long qemu_host_page_mask;
54936004 181
5cd2c5b6
RH
182/* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184static void *l1_map[V_L1_SIZE];
54936004 185
e2eef170 186#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
187typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191} PhysPageDesc;
192
5cd2c5b6
RH
193/* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195static void *l1_phys_map[P_L1_SIZE];
6d9a1304 196
e2eef170
PB
197static void io_mem_init(void);
198
33417e70 199/* io memory support */
33417e70
FB
200CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 202void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 203static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
204static int io_mem_watch;
205#endif
33417e70 206
34865134 207/* log support */
1e8b27ca
JR
208#ifdef WIN32
209static const char *logfilename = "qemu.log";
210#else
d9b630fd 211static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 212#endif
34865134
FB
213FILE *logfile;
214int loglevel;
e735b91c 215static int log_append = 0;
34865134 216
e3db7226 217/* statistics */
b3755a91 218#if !defined(CONFIG_USER_ONLY)
e3db7226 219static int tlb_flush_count;
b3755a91 220#endif
e3db7226
FB
221static int tb_flush_count;
222static int tb_phys_invalidate_count;
223
7cb69cae
FB
224#ifdef _WIN32
225static void map_exec(void *addr, long size)
226{
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
230
231}
232#else
233static void map_exec(void *addr, long size)
234{
4369415f 235 unsigned long start, end, page_size;
7cb69cae 236
4369415f 237 page_size = getpagesize();
7cb69cae 238 start = (unsigned long)addr;
4369415f 239 start &= ~(page_size - 1);
7cb69cae
FB
240
241 end = (unsigned long)addr + size;
4369415f
FB
242 end += page_size - 1;
243 end &= ~(page_size - 1);
7cb69cae
FB
244
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
247}
248#endif
249
b346ff46 250static void page_init(void)
54936004 251{
83fb7adf 252 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 253 TARGET_PAGE_SIZE */
c2b48b69
AL
254#ifdef _WIN32
255 {
256 SYSTEM_INFO system_info;
257
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
260 }
261#else
262 qemu_real_host_page_size = getpagesize();
263#endif
83fb7adf
FB
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 272
2e9a5713 273#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 274 {
f01576f1
JL
275#ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
278
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
284
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
289
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
fd436907 292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
293 } else {
294#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
fd436907 296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
297#endif
298 }
299 }
300 }
301 free(freep);
302 mmap_unlock();
303 }
304#else
50a9569b 305 FILE *f;
50a9569b 306
0776590d 307 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 308
fd436907 309 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 310 if (f) {
5cd2c5b6
RH
311 mmap_lock();
312
50a9569b 313 do {
5cd2c5b6
RH
314 unsigned long startaddr, endaddr;
315 int n;
316
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
318
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
321
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
326 }
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
328 }
329 } while (!feof(f));
5cd2c5b6 330
50a9569b 331 fclose(f);
5cd2c5b6 332 mmap_unlock();
50a9569b 333 }
f01576f1 334#endif
50a9569b
AZ
335 }
336#endif
54936004
FB
337}
338
41c1b1c9 339static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 340{
41c1b1c9
PB
341 PageDesc *pd;
342 void **lp;
343 int i;
344
5cd2c5b6 345#if defined(CONFIG_USER_ONLY)
2e9a5713 346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
347# define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
351 } while (0)
352#else
353# define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 355#endif
434929bf 356
5cd2c5b6
RH
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
359
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
363
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
367 }
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
17e2377a 370 }
5cd2c5b6
RH
371
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
373 }
374
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
379 }
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
54936004 382 }
5cd2c5b6
RH
383
384#undef ALLOC
5cd2c5b6
RH
385
386 return pd + (index & (L2_SIZE - 1));
54936004
FB
387}
388
41c1b1c9 389static inline PageDesc *page_find(tb_page_addr_t index)
54936004 390{
5cd2c5b6 391 return page_find_alloc(index, 0);
fd6ce8f6
FB
392}
393
6d9a1304 394#if !defined(CONFIG_USER_ONLY)
c227f099 395static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 396{
e3f4e2a4 397 PhysPageDesc *pd;
5cd2c5b6
RH
398 void **lp;
399 int i;
92e873b9 400
5cd2c5b6
RH
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 403
5cd2c5b6
RH
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
410 }
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
412 }
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 414 }
5cd2c5b6 415
e3f4e2a4 416 pd = *lp;
5cd2c5b6 417 if (pd == NULL) {
e3f4e2a4 418 int i;
5cd2c5b6
RH
419
420 if (!alloc) {
108c49b8 421 return NULL;
5cd2c5b6
RH
422 }
423
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
425
67c4d23c 426 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 429 }
92e873b9 430 }
5cd2c5b6
RH
431
432 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
433}
434
c227f099 435static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 436{
108c49b8 437 return phys_page_find_alloc(index, 0);
92e873b9
FB
438}
439
c227f099
AL
440static void tlb_protect_code(ram_addr_t ram_addr);
441static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 442 target_ulong vaddr);
c8a706fe
PB
443#define mmap_lock() do { } while(0)
444#define mmap_unlock() do { } while(0)
9fa3e853 445#endif
fd6ce8f6 446
4369415f
FB
447#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
448
449#if defined(CONFIG_USER_ONLY)
ccbb4d44 450/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
451 user mode. It will change when a dedicated libc will be used */
452#define USE_STATIC_CODE_GEN_BUFFER
453#endif
454
455#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
456static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
458#endif
459
8fcd3692 460static void code_gen_alloc(unsigned long tb_size)
26a5f13b 461{
4369415f
FB
462#ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466#else
26a5f13b
FB
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
4369415f
FB
469#if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472#else
ccbb4d44 473 /* XXX: needs adjustments */
94a6b54f 474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 475#endif
26a5f13b
FB
476 }
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481#if defined(__linux__)
482 {
483 int flags;
141ac468
BS
484 void *start = NULL;
485
26a5f13b
FB
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487#if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
492#elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 498#elif defined(__arm__)
63d41246 499 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
504#elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
26a5f13b 511#endif
141ac468
BS
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
a167ba50 520#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
521 {
522 int flags;
523 void *addr = NULL;
524 flags = MAP_PRIVATE | MAP_ANONYMOUS;
525#if defined(__x86_64__)
526 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
527 * 0x40000000 is free */
528 flags |= MAP_FIXED;
529 addr = (void *)0x40000000;
530 /* Cannot map more than that */
531 if (code_gen_buffer_size > (800 * 1024 * 1024))
532 code_gen_buffer_size = (800 * 1024 * 1024);
533#endif
534 code_gen_buffer = mmap(addr, code_gen_buffer_size,
535 PROT_WRITE | PROT_READ | PROT_EXEC,
536 flags, -1, 0);
537 if (code_gen_buffer == MAP_FAILED) {
538 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
539 exit(1);
540 }
541 }
26a5f13b
FB
542#else
543 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
544 map_exec(code_gen_buffer, code_gen_buffer_size);
545#endif
4369415f 546#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
547 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
548 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 549 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
550 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
551 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
552}
553
554/* Must be called before using the QEMU cpus. 'tb_size' is the size
555 (in bytes) allocated to the translation buffer. Zero means default
556 size. */
557void cpu_exec_init_all(unsigned long tb_size)
558{
26a5f13b
FB
559 cpu_gen_init();
560 code_gen_alloc(tb_size);
561 code_gen_ptr = code_gen_buffer;
4369415f 562 page_init();
e2eef170 563#if !defined(CONFIG_USER_ONLY)
26a5f13b 564 io_mem_init();
e2eef170 565#endif
9002ec79
RH
566#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
567 /* There's no guest base to take into account, so go ahead and
568 initialize the prologue now. */
569 tcg_prologue_init(&tcg_ctx);
570#endif
26a5f13b
FB
571}
572
9656f324
PB
573#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
574
e59fb374 575static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
576{
577 CPUState *env = opaque;
9656f324 578
3098dba0
AJ
579 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
580 version_id is increased. */
581 env->interrupt_request &= ~0x01;
9656f324
PB
582 tlb_flush(env, 1);
583
584 return 0;
585}
e7f4eff7
JQ
586
587static const VMStateDescription vmstate_cpu_common = {
588 .name = "cpu_common",
589 .version_id = 1,
590 .minimum_version_id = 1,
591 .minimum_version_id_old = 1,
e7f4eff7
JQ
592 .post_load = cpu_common_post_load,
593 .fields = (VMStateField []) {
594 VMSTATE_UINT32(halted, CPUState),
595 VMSTATE_UINT32(interrupt_request, CPUState),
596 VMSTATE_END_OF_LIST()
597 }
598};
9656f324
PB
599#endif
600
950f1472
GC
601CPUState *qemu_get_cpu(int cpu)
602{
603 CPUState *env = first_cpu;
604
605 while (env) {
606 if (env->cpu_index == cpu)
607 break;
608 env = env->next_cpu;
609 }
610
611 return env;
612}
613
6a00d601 614void cpu_exec_init(CPUState *env)
fd6ce8f6 615{
6a00d601
FB
616 CPUState **penv;
617 int cpu_index;
618
c2764719
PB
619#if defined(CONFIG_USER_ONLY)
620 cpu_list_lock();
621#endif
6a00d601
FB
622 env->next_cpu = NULL;
623 penv = &first_cpu;
624 cpu_index = 0;
625 while (*penv != NULL) {
1e9fa730 626 penv = &(*penv)->next_cpu;
6a00d601
FB
627 cpu_index++;
628 }
629 env->cpu_index = cpu_index;
268a362c 630 env->numa_node = 0;
72cf2d4f
BS
631 QTAILQ_INIT(&env->breakpoints);
632 QTAILQ_INIT(&env->watchpoints);
6a00d601 633 *penv = env;
c2764719
PB
634#if defined(CONFIG_USER_ONLY)
635 cpu_list_unlock();
636#endif
b3c7724c 637#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
638 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
639 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
640 cpu_save, cpu_load, env);
641#endif
fd6ce8f6
FB
642}
643
9fa3e853
FB
644static inline void invalidate_page_bitmap(PageDesc *p)
645{
646 if (p->code_bitmap) {
59817ccb 647 qemu_free(p->code_bitmap);
9fa3e853
FB
648 p->code_bitmap = NULL;
649 }
650 p->code_write_count = 0;
651}
652
5cd2c5b6
RH
653/* Set to NULL all the 'first_tb' fields in all PageDescs. */
654
655static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 656{
5cd2c5b6 657 int i;
fd6ce8f6 658
5cd2c5b6
RH
659 if (*lp == NULL) {
660 return;
661 }
662 if (level == 0) {
663 PageDesc *pd = *lp;
7296abac 664 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
665 pd[i].first_tb = NULL;
666 invalidate_page_bitmap(pd + i);
fd6ce8f6 667 }
5cd2c5b6
RH
668 } else {
669 void **pp = *lp;
7296abac 670 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
671 page_flush_tb_1 (level - 1, pp + i);
672 }
673 }
674}
675
676static void page_flush_tb(void)
677{
678 int i;
679 for (i = 0; i < V_L1_SIZE; i++) {
680 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
681 }
682}
683
684/* flush all the translation blocks */
d4e8164f 685/* XXX: tb_flush is currently not thread safe */
6a00d601 686void tb_flush(CPUState *env1)
fd6ce8f6 687{
6a00d601 688 CPUState *env;
0124311e 689#if defined(DEBUG_FLUSH)
ab3d1727
BS
690 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
691 (unsigned long)(code_gen_ptr - code_gen_buffer),
692 nb_tbs, nb_tbs > 0 ?
693 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 694#endif
26a5f13b 695 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
696 cpu_abort(env1, "Internal error: code buffer overflow\n");
697
fd6ce8f6 698 nb_tbs = 0;
3b46e624 699
6a00d601
FB
700 for(env = first_cpu; env != NULL; env = env->next_cpu) {
701 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
702 }
9fa3e853 703
8a8a608f 704 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 705 page_flush_tb();
9fa3e853 706
fd6ce8f6 707 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
708 /* XXX: flush processor icache at this point if cache flush is
709 expensive */
e3db7226 710 tb_flush_count++;
fd6ce8f6
FB
711}
712
713#ifdef DEBUG_TB_CHECK
714
bc98a7ef 715static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
716{
717 TranslationBlock *tb;
718 int i;
719 address &= TARGET_PAGE_MASK;
99773bd4
PB
720 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
721 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
722 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
723 address >= tb->pc + tb->size)) {
0bf9e31a
BS
724 printf("ERROR invalidate: address=" TARGET_FMT_lx
725 " PC=%08lx size=%04x\n",
99773bd4 726 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
727 }
728 }
729 }
730}
731
732/* verify that all the pages have correct rights for code */
733static void tb_page_check(void)
734{
735 TranslationBlock *tb;
736 int i, flags1, flags2;
3b46e624 737
99773bd4
PB
738 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
739 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
740 flags1 = page_get_flags(tb->pc);
741 flags2 = page_get_flags(tb->pc + tb->size - 1);
742 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
743 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 744 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
745 }
746 }
747 }
748}
749
750#endif
751
752/* invalidate one TB */
753static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
754 int next_offset)
755{
756 TranslationBlock *tb1;
757 for(;;) {
758 tb1 = *ptb;
759 if (tb1 == tb) {
760 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
761 break;
762 }
763 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
764 }
765}
766
9fa3e853
FB
767static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
768{
769 TranslationBlock *tb1;
770 unsigned int n1;
771
772 for(;;) {
773 tb1 = *ptb;
774 n1 = (long)tb1 & 3;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 if (tb1 == tb) {
777 *ptb = tb1->page_next[n1];
778 break;
779 }
780 ptb = &tb1->page_next[n1];
781 }
782}
783
d4e8164f
FB
784static inline void tb_jmp_remove(TranslationBlock *tb, int n)
785{
786 TranslationBlock *tb1, **ptb;
787 unsigned int n1;
788
789 ptb = &tb->jmp_next[n];
790 tb1 = *ptb;
791 if (tb1) {
792 /* find tb(n) in circular list */
793 for(;;) {
794 tb1 = *ptb;
795 n1 = (long)tb1 & 3;
796 tb1 = (TranslationBlock *)((long)tb1 & ~3);
797 if (n1 == n && tb1 == tb)
798 break;
799 if (n1 == 2) {
800 ptb = &tb1->jmp_first;
801 } else {
802 ptb = &tb1->jmp_next[n1];
803 }
804 }
805 /* now we can suppress tb(n) from the list */
806 *ptb = tb->jmp_next[n];
807
808 tb->jmp_next[n] = NULL;
809 }
810}
811
812/* reset the jump entry 'n' of a TB so that it is not chained to
813 another TB */
814static inline void tb_reset_jump(TranslationBlock *tb, int n)
815{
816 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
817}
818
41c1b1c9 819void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 820{
6a00d601 821 CPUState *env;
8a40a180 822 PageDesc *p;
d4e8164f 823 unsigned int h, n1;
41c1b1c9 824 tb_page_addr_t phys_pc;
8a40a180 825 TranslationBlock *tb1, *tb2;
3b46e624 826
8a40a180
FB
827 /* remove the TB from the hash list */
828 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
829 h = tb_phys_hash_func(phys_pc);
5fafdf24 830 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
831 offsetof(TranslationBlock, phys_hash_next));
832
833 /* remove the TB from the page list */
834 if (tb->page_addr[0] != page_addr) {
835 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
836 tb_page_remove(&p->first_tb, tb);
837 invalidate_page_bitmap(p);
838 }
839 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
840 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
841 tb_page_remove(&p->first_tb, tb);
842 invalidate_page_bitmap(p);
843 }
844
36bdbe54 845 tb_invalidated_flag = 1;
59817ccb 846
fd6ce8f6 847 /* remove the TB from the hash list */
8a40a180 848 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
849 for(env = first_cpu; env != NULL; env = env->next_cpu) {
850 if (env->tb_jmp_cache[h] == tb)
851 env->tb_jmp_cache[h] = NULL;
852 }
d4e8164f
FB
853
854 /* suppress this TB from the two jump lists */
855 tb_jmp_remove(tb, 0);
856 tb_jmp_remove(tb, 1);
857
858 /* suppress any remaining jumps to this TB */
859 tb1 = tb->jmp_first;
860 for(;;) {
861 n1 = (long)tb1 & 3;
862 if (n1 == 2)
863 break;
864 tb1 = (TranslationBlock *)((long)tb1 & ~3);
865 tb2 = tb1->jmp_next[n1];
866 tb_reset_jump(tb1, n1);
867 tb1->jmp_next[n1] = NULL;
868 tb1 = tb2;
869 }
870 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 871
e3db7226 872 tb_phys_invalidate_count++;
9fa3e853
FB
873}
874
875static inline void set_bits(uint8_t *tab, int start, int len)
876{
877 int end, mask, end1;
878
879 end = start + len;
880 tab += start >> 3;
881 mask = 0xff << (start & 7);
882 if ((start & ~7) == (end & ~7)) {
883 if (start < end) {
884 mask &= ~(0xff << (end & 7));
885 *tab |= mask;
886 }
887 } else {
888 *tab++ |= mask;
889 start = (start + 8) & ~7;
890 end1 = end & ~7;
891 while (start < end1) {
892 *tab++ = 0xff;
893 start += 8;
894 }
895 if (start < end) {
896 mask = ~(0xff << (end & 7));
897 *tab |= mask;
898 }
899 }
900}
901
902static void build_page_bitmap(PageDesc *p)
903{
904 int n, tb_start, tb_end;
905 TranslationBlock *tb;
3b46e624 906
b2a7081a 907 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
908
909 tb = p->first_tb;
910 while (tb != NULL) {
911 n = (long)tb & 3;
912 tb = (TranslationBlock *)((long)tb & ~3);
913 /* NOTE: this is subtle as a TB may span two physical pages */
914 if (n == 0) {
915 /* NOTE: tb_end may be after the end of the page, but
916 it is not a problem */
917 tb_start = tb->pc & ~TARGET_PAGE_MASK;
918 tb_end = tb_start + tb->size;
919 if (tb_end > TARGET_PAGE_SIZE)
920 tb_end = TARGET_PAGE_SIZE;
921 } else {
922 tb_start = 0;
923 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
924 }
925 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
926 tb = tb->page_next[n];
927 }
928}
929
2e70f6ef
PB
930TranslationBlock *tb_gen_code(CPUState *env,
931 target_ulong pc, target_ulong cs_base,
932 int flags, int cflags)
d720b93d
FB
933{
934 TranslationBlock *tb;
935 uint8_t *tc_ptr;
41c1b1c9
PB
936 tb_page_addr_t phys_pc, phys_page2;
937 target_ulong virt_page2;
d720b93d
FB
938 int code_gen_size;
939
41c1b1c9 940 phys_pc = get_page_addr_code(env, pc);
c27004ec 941 tb = tb_alloc(pc);
d720b93d
FB
942 if (!tb) {
943 /* flush must be done */
944 tb_flush(env);
945 /* cannot fail at this point */
c27004ec 946 tb = tb_alloc(pc);
2e70f6ef
PB
947 /* Don't forget to invalidate previous TB info. */
948 tb_invalidated_flag = 1;
d720b93d
FB
949 }
950 tc_ptr = code_gen_ptr;
951 tb->tc_ptr = tc_ptr;
952 tb->cs_base = cs_base;
953 tb->flags = flags;
954 tb->cflags = cflags;
d07bde88 955 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 956 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 957
d720b93d 958 /* check next page if needed */
c27004ec 959 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 960 phys_page2 = -1;
c27004ec 961 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 962 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 963 }
41c1b1c9 964 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 965 return tb;
d720b93d 966}
3b46e624 967
9fa3e853
FB
968/* invalidate all TBs which intersect with the target physical page
969 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
970 the same physical page. 'is_cpu_write_access' should be true if called
971 from a real cpu write access: the virtual CPU will exit the current
972 TB if code is modified inside this TB. */
41c1b1c9 973void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
974 int is_cpu_write_access)
975{
6b917547 976 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 977 CPUState *env = cpu_single_env;
41c1b1c9 978 tb_page_addr_t tb_start, tb_end;
6b917547
AL
979 PageDesc *p;
980 int n;
981#ifdef TARGET_HAS_PRECISE_SMC
982 int current_tb_not_found = is_cpu_write_access;
983 TranslationBlock *current_tb = NULL;
984 int current_tb_modified = 0;
985 target_ulong current_pc = 0;
986 target_ulong current_cs_base = 0;
987 int current_flags = 0;
988#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
989
990 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 991 if (!p)
9fa3e853 992 return;
5fafdf24 993 if (!p->code_bitmap &&
d720b93d
FB
994 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
995 is_cpu_write_access) {
9fa3e853
FB
996 /* build code bitmap */
997 build_page_bitmap(p);
998 }
999
1000 /* we remove all the TBs in the range [start, end[ */
1001 /* XXX: see if in some cases it could be faster to invalidate all the code */
1002 tb = p->first_tb;
1003 while (tb != NULL) {
1004 n = (long)tb & 3;
1005 tb = (TranslationBlock *)((long)tb & ~3);
1006 tb_next = tb->page_next[n];
1007 /* NOTE: this is subtle as a TB may span two physical pages */
1008 if (n == 0) {
1009 /* NOTE: tb_end may be after the end of the page, but
1010 it is not a problem */
1011 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1012 tb_end = tb_start + tb->size;
1013 } else {
1014 tb_start = tb->page_addr[1];
1015 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1016 }
1017 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1018#ifdef TARGET_HAS_PRECISE_SMC
1019 if (current_tb_not_found) {
1020 current_tb_not_found = 0;
1021 current_tb = NULL;
2e70f6ef 1022 if (env->mem_io_pc) {
d720b93d 1023 /* now we have a real cpu fault */
2e70f6ef 1024 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1025 }
1026 }
1027 if (current_tb == tb &&
2e70f6ef 1028 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1029 /* If we are modifying the current TB, we must stop
1030 its execution. We could be more precise by checking
1031 that the modification is after the current PC, but it
1032 would require a specialized function to partially
1033 restore the CPU state */
3b46e624 1034
d720b93d 1035 current_tb_modified = 1;
5fafdf24 1036 cpu_restore_state(current_tb, env,
2e70f6ef 1037 env->mem_io_pc, NULL);
6b917547
AL
1038 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1039 &current_flags);
d720b93d
FB
1040 }
1041#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1042 /* we need to do that to handle the case where a signal
1043 occurs while doing tb_phys_invalidate() */
1044 saved_tb = NULL;
1045 if (env) {
1046 saved_tb = env->current_tb;
1047 env->current_tb = NULL;
1048 }
9fa3e853 1049 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1050 if (env) {
1051 env->current_tb = saved_tb;
1052 if (env->interrupt_request && env->current_tb)
1053 cpu_interrupt(env, env->interrupt_request);
1054 }
9fa3e853
FB
1055 }
1056 tb = tb_next;
1057 }
1058#if !defined(CONFIG_USER_ONLY)
1059 /* if no code remaining, no need to continue to use slow writes */
1060 if (!p->first_tb) {
1061 invalidate_page_bitmap(p);
d720b93d 1062 if (is_cpu_write_access) {
2e70f6ef 1063 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1064 }
1065 }
1066#endif
1067#ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb_modified) {
1069 /* we generate a block containing just the instruction
1070 modifying the memory. It will ensure that it cannot modify
1071 itself */
ea1c1802 1072 env->current_tb = NULL;
2e70f6ef 1073 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1074 cpu_resume_from_signal(env, NULL);
9fa3e853 1075 }
fd6ce8f6 1076#endif
9fa3e853 1077}
fd6ce8f6 1078
9fa3e853 1079/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1080static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1081{
1082 PageDesc *p;
1083 int offset, b;
59817ccb 1084#if 0
a4193c8a 1085 if (1) {
93fcfe39
AL
1086 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1087 cpu_single_env->mem_io_vaddr, len,
1088 cpu_single_env->eip,
1089 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1090 }
1091#endif
9fa3e853 1092 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1093 if (!p)
9fa3e853
FB
1094 return;
1095 if (p->code_bitmap) {
1096 offset = start & ~TARGET_PAGE_MASK;
1097 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1098 if (b & ((1 << len) - 1))
1099 goto do_invalidate;
1100 } else {
1101 do_invalidate:
d720b93d 1102 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1103 }
1104}
1105
9fa3e853 1106#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1107static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1108 unsigned long pc, void *puc)
9fa3e853 1109{
6b917547 1110 TranslationBlock *tb;
9fa3e853 1111 PageDesc *p;
6b917547 1112 int n;
d720b93d 1113#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1114 TranslationBlock *current_tb = NULL;
d720b93d 1115 CPUState *env = cpu_single_env;
6b917547
AL
1116 int current_tb_modified = 0;
1117 target_ulong current_pc = 0;
1118 target_ulong current_cs_base = 0;
1119 int current_flags = 0;
d720b93d 1120#endif
9fa3e853
FB
1121
1122 addr &= TARGET_PAGE_MASK;
1123 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1124 if (!p)
9fa3e853
FB
1125 return;
1126 tb = p->first_tb;
d720b93d
FB
1127#ifdef TARGET_HAS_PRECISE_SMC
1128 if (tb && pc != 0) {
1129 current_tb = tb_find_pc(pc);
1130 }
1131#endif
9fa3e853
FB
1132 while (tb != NULL) {
1133 n = (long)tb & 3;
1134 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1135#ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb == tb &&
2e70f6ef 1137 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1138 /* If we are modifying the current TB, we must stop
1139 its execution. We could be more precise by checking
1140 that the modification is after the current PC, but it
1141 would require a specialized function to partially
1142 restore the CPU state */
3b46e624 1143
d720b93d
FB
1144 current_tb_modified = 1;
1145 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1146 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1147 &current_flags);
d720b93d
FB
1148 }
1149#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1150 tb_phys_invalidate(tb, addr);
1151 tb = tb->page_next[n];
1152 }
fd6ce8f6 1153 p->first_tb = NULL;
d720b93d
FB
1154#ifdef TARGET_HAS_PRECISE_SMC
1155 if (current_tb_modified) {
1156 /* we generate a block containing just the instruction
1157 modifying the memory. It will ensure that it cannot modify
1158 itself */
ea1c1802 1159 env->current_tb = NULL;
2e70f6ef 1160 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1161 cpu_resume_from_signal(env, puc);
1162 }
1163#endif
fd6ce8f6 1164}
9fa3e853 1165#endif
fd6ce8f6
FB
1166
1167/* add the tb in the target page and protect it if necessary */
5fafdf24 1168static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1169 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1170{
1171 PageDesc *p;
9fa3e853
FB
1172 TranslationBlock *last_first_tb;
1173
1174 tb->page_addr[n] = page_addr;
5cd2c5b6 1175 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1176 tb->page_next[n] = p->first_tb;
1177 last_first_tb = p->first_tb;
1178 p->first_tb = (TranslationBlock *)((long)tb | n);
1179 invalidate_page_bitmap(p);
fd6ce8f6 1180
107db443 1181#if defined(TARGET_HAS_SMC) || 1
d720b93d 1182
9fa3e853 1183#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1184 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1185 target_ulong addr;
1186 PageDesc *p2;
9fa3e853
FB
1187 int prot;
1188
fd6ce8f6
FB
1189 /* force the host page as non writable (writes will have a
1190 page fault + mprotect overhead) */
53a5960a 1191 page_addr &= qemu_host_page_mask;
fd6ce8f6 1192 prot = 0;
53a5960a
PB
1193 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1194 addr += TARGET_PAGE_SIZE) {
1195
1196 p2 = page_find (addr >> TARGET_PAGE_BITS);
1197 if (!p2)
1198 continue;
1199 prot |= p2->flags;
1200 p2->flags &= ~PAGE_WRITE;
53a5960a 1201 }
5fafdf24 1202 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1203 (prot & PAGE_BITS) & ~PAGE_WRITE);
1204#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1205 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1206 page_addr);
fd6ce8f6 1207#endif
fd6ce8f6 1208 }
9fa3e853
FB
1209#else
1210 /* if some code is already present, then the pages are already
1211 protected. So we handle the case where only the first TB is
1212 allocated in a physical page */
1213 if (!last_first_tb) {
6a00d601 1214 tlb_protect_code(page_addr);
9fa3e853
FB
1215 }
1216#endif
d720b93d
FB
1217
1218#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1219}
1220
1221/* Allocate a new translation block. Flush the translation buffer if
1222 too many translation blocks or too much generated code. */
c27004ec 1223TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1224{
1225 TranslationBlock *tb;
fd6ce8f6 1226
26a5f13b
FB
1227 if (nb_tbs >= code_gen_max_blocks ||
1228 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1229 return NULL;
fd6ce8f6
FB
1230 tb = &tbs[nb_tbs++];
1231 tb->pc = pc;
b448f2f3 1232 tb->cflags = 0;
d4e8164f
FB
1233 return tb;
1234}
1235
2e70f6ef
PB
1236void tb_free(TranslationBlock *tb)
1237{
bf20dc07 1238 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1239 Ignore the hard cases and just back up if this TB happens to
1240 be the last one generated. */
1241 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1242 code_gen_ptr = tb->tc_ptr;
1243 nb_tbs--;
1244 }
1245}
1246
9fa3e853
FB
1247/* add a new TB and link it to the physical page tables. phys_page2 is
1248 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1249void tb_link_page(TranslationBlock *tb,
1250 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1251{
9fa3e853
FB
1252 unsigned int h;
1253 TranslationBlock **ptb;
1254
c8a706fe
PB
1255 /* Grab the mmap lock to stop another thread invalidating this TB
1256 before we are done. */
1257 mmap_lock();
9fa3e853
FB
1258 /* add in the physical hash table */
1259 h = tb_phys_hash_func(phys_pc);
1260 ptb = &tb_phys_hash[h];
1261 tb->phys_hash_next = *ptb;
1262 *ptb = tb;
fd6ce8f6
FB
1263
1264 /* add in the page list */
9fa3e853
FB
1265 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1266 if (phys_page2 != -1)
1267 tb_alloc_page(tb, 1, phys_page2);
1268 else
1269 tb->page_addr[1] = -1;
9fa3e853 1270
d4e8164f
FB
1271 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1272 tb->jmp_next[0] = NULL;
1273 tb->jmp_next[1] = NULL;
1274
1275 /* init original jump addresses */
1276 if (tb->tb_next_offset[0] != 0xffff)
1277 tb_reset_jump(tb, 0);
1278 if (tb->tb_next_offset[1] != 0xffff)
1279 tb_reset_jump(tb, 1);
8a40a180
FB
1280
1281#ifdef DEBUG_TB_CHECK
1282 tb_page_check();
1283#endif
c8a706fe 1284 mmap_unlock();
fd6ce8f6
FB
1285}
1286
9fa3e853
FB
1287/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1288 tb[1].tc_ptr. Return NULL if not found */
1289TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1290{
9fa3e853
FB
1291 int m_min, m_max, m;
1292 unsigned long v;
1293 TranslationBlock *tb;
a513fe19
FB
1294
1295 if (nb_tbs <= 0)
1296 return NULL;
1297 if (tc_ptr < (unsigned long)code_gen_buffer ||
1298 tc_ptr >= (unsigned long)code_gen_ptr)
1299 return NULL;
1300 /* binary search (cf Knuth) */
1301 m_min = 0;
1302 m_max = nb_tbs - 1;
1303 while (m_min <= m_max) {
1304 m = (m_min + m_max) >> 1;
1305 tb = &tbs[m];
1306 v = (unsigned long)tb->tc_ptr;
1307 if (v == tc_ptr)
1308 return tb;
1309 else if (tc_ptr < v) {
1310 m_max = m - 1;
1311 } else {
1312 m_min = m + 1;
1313 }
5fafdf24 1314 }
a513fe19
FB
1315 return &tbs[m_max];
1316}
7501267e 1317
ea041c0e
FB
1318static void tb_reset_jump_recursive(TranslationBlock *tb);
1319
1320static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1321{
1322 TranslationBlock *tb1, *tb_next, **ptb;
1323 unsigned int n1;
1324
1325 tb1 = tb->jmp_next[n];
1326 if (tb1 != NULL) {
1327 /* find head of list */
1328 for(;;) {
1329 n1 = (long)tb1 & 3;
1330 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1331 if (n1 == 2)
1332 break;
1333 tb1 = tb1->jmp_next[n1];
1334 }
1335 /* we are now sure now that tb jumps to tb1 */
1336 tb_next = tb1;
1337
1338 /* remove tb from the jmp_first list */
1339 ptb = &tb_next->jmp_first;
1340 for(;;) {
1341 tb1 = *ptb;
1342 n1 = (long)tb1 & 3;
1343 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1344 if (n1 == n && tb1 == tb)
1345 break;
1346 ptb = &tb1->jmp_next[n1];
1347 }
1348 *ptb = tb->jmp_next[n];
1349 tb->jmp_next[n] = NULL;
3b46e624 1350
ea041c0e
FB
1351 /* suppress the jump to next tb in generated code */
1352 tb_reset_jump(tb, n);
1353
0124311e 1354 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1355 tb_reset_jump_recursive(tb_next);
1356 }
1357}
1358
1359static void tb_reset_jump_recursive(TranslationBlock *tb)
1360{
1361 tb_reset_jump_recursive2(tb, 0);
1362 tb_reset_jump_recursive2(tb, 1);
1363}
1364
1fddef4b 1365#if defined(TARGET_HAS_ICE)
94df27fd
PB
1366#if defined(CONFIG_USER_ONLY)
1367static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1368{
1369 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1370}
1371#else
d720b93d
FB
1372static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1373{
c227f099 1374 target_phys_addr_t addr;
9b3c35e0 1375 target_ulong pd;
c227f099 1376 ram_addr_t ram_addr;
c2f07f81 1377 PhysPageDesc *p;
d720b93d 1378
c2f07f81
PB
1379 addr = cpu_get_phys_page_debug(env, pc);
1380 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1381 if (!p) {
1382 pd = IO_MEM_UNASSIGNED;
1383 } else {
1384 pd = p->phys_offset;
1385 }
1386 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1387 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1388}
c27004ec 1389#endif
94df27fd 1390#endif /* TARGET_HAS_ICE */
d720b93d 1391
c527ee8f
PB
1392#if defined(CONFIG_USER_ONLY)
1393void cpu_watchpoint_remove_all(CPUState *env, int mask)
1394
1395{
1396}
1397
1398int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1399 int flags, CPUWatchpoint **watchpoint)
1400{
1401 return -ENOSYS;
1402}
1403#else
6658ffb8 1404/* Add a watchpoint. */
a1d1bb31
AL
1405int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1406 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1407{
b4051334 1408 target_ulong len_mask = ~(len - 1);
c0ce998e 1409 CPUWatchpoint *wp;
6658ffb8 1410
b4051334
AL
1411 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1412 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1413 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1414 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1415 return -EINVAL;
1416 }
a1d1bb31 1417 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1418
1419 wp->vaddr = addr;
b4051334 1420 wp->len_mask = len_mask;
a1d1bb31
AL
1421 wp->flags = flags;
1422
2dc9f411 1423 /* keep all GDB-injected watchpoints in front */
c0ce998e 1424 if (flags & BP_GDB)
72cf2d4f 1425 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1426 else
72cf2d4f 1427 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1428
6658ffb8 1429 tlb_flush_page(env, addr);
a1d1bb31
AL
1430
1431 if (watchpoint)
1432 *watchpoint = wp;
1433 return 0;
6658ffb8
PB
1434}
1435
a1d1bb31
AL
1436/* Remove a specific watchpoint. */
1437int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags)
6658ffb8 1439{
b4051334 1440 target_ulong len_mask = ~(len - 1);
a1d1bb31 1441 CPUWatchpoint *wp;
6658ffb8 1442
72cf2d4f 1443 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1444 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1445 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1446 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1447 return 0;
1448 }
1449 }
a1d1bb31 1450 return -ENOENT;
6658ffb8
PB
1451}
1452
a1d1bb31
AL
1453/* Remove a specific watchpoint by reference. */
1454void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1455{
72cf2d4f 1456 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1457
a1d1bb31
AL
1458 tlb_flush_page(env, watchpoint->vaddr);
1459
1460 qemu_free(watchpoint);
1461}
1462
1463/* Remove all matching watchpoints. */
1464void cpu_watchpoint_remove_all(CPUState *env, int mask)
1465{
c0ce998e 1466 CPUWatchpoint *wp, *next;
a1d1bb31 1467
72cf2d4f 1468 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1469 if (wp->flags & mask)
1470 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1471 }
7d03f82f 1472}
c527ee8f 1473#endif
7d03f82f 1474
a1d1bb31
AL
1475/* Add a breakpoint. */
1476int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1477 CPUBreakpoint **breakpoint)
4c3a88a2 1478{
1fddef4b 1479#if defined(TARGET_HAS_ICE)
c0ce998e 1480 CPUBreakpoint *bp;
3b46e624 1481
a1d1bb31 1482 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1483
a1d1bb31
AL
1484 bp->pc = pc;
1485 bp->flags = flags;
1486
2dc9f411 1487 /* keep all GDB-injected breakpoints in front */
c0ce998e 1488 if (flags & BP_GDB)
72cf2d4f 1489 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1490 else
72cf2d4f 1491 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1492
d720b93d 1493 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1494
1495 if (breakpoint)
1496 *breakpoint = bp;
4c3a88a2
FB
1497 return 0;
1498#else
a1d1bb31 1499 return -ENOSYS;
4c3a88a2
FB
1500#endif
1501}
1502
a1d1bb31
AL
1503/* Remove a specific breakpoint. */
1504int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1505{
7d03f82f 1506#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1507 CPUBreakpoint *bp;
1508
72cf2d4f 1509 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1510 if (bp->pc == pc && bp->flags == flags) {
1511 cpu_breakpoint_remove_by_ref(env, bp);
1512 return 0;
1513 }
7d03f82f 1514 }
a1d1bb31
AL
1515 return -ENOENT;
1516#else
1517 return -ENOSYS;
7d03f82f
EI
1518#endif
1519}
1520
a1d1bb31
AL
1521/* Remove a specific breakpoint by reference. */
1522void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1523{
1fddef4b 1524#if defined(TARGET_HAS_ICE)
72cf2d4f 1525 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1526
a1d1bb31
AL
1527 breakpoint_invalidate(env, breakpoint->pc);
1528
1529 qemu_free(breakpoint);
1530#endif
1531}
1532
1533/* Remove all matching breakpoints. */
1534void cpu_breakpoint_remove_all(CPUState *env, int mask)
1535{
1536#if defined(TARGET_HAS_ICE)
c0ce998e 1537 CPUBreakpoint *bp, *next;
a1d1bb31 1538
72cf2d4f 1539 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1540 if (bp->flags & mask)
1541 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1542 }
4c3a88a2
FB
1543#endif
1544}
1545
c33a346e
FB
1546/* enable or disable single step mode. EXCP_DEBUG is returned by the
1547 CPU loop after each instruction */
1548void cpu_single_step(CPUState *env, int enabled)
1549{
1fddef4b 1550#if defined(TARGET_HAS_ICE)
c33a346e
FB
1551 if (env->singlestep_enabled != enabled) {
1552 env->singlestep_enabled = enabled;
e22a25c9
AL
1553 if (kvm_enabled())
1554 kvm_update_guest_debug(env, 0);
1555 else {
ccbb4d44 1556 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1557 /* XXX: only flush what is necessary */
1558 tb_flush(env);
1559 }
c33a346e
FB
1560 }
1561#endif
1562}
1563
34865134
FB
1564/* enable or disable low levels log */
1565void cpu_set_log(int log_flags)
1566{
1567 loglevel = log_flags;
1568 if (loglevel && !logfile) {
11fcfab4 1569 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1570 if (!logfile) {
1571 perror(logfilename);
1572 _exit(1);
1573 }
9fa3e853
FB
1574#if !defined(CONFIG_SOFTMMU)
1575 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1576 {
b55266b5 1577 static char logfile_buf[4096];
9fa3e853
FB
1578 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1579 }
bf65f53f
FN
1580#elif !defined(_WIN32)
1581 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1582 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1583#endif
e735b91c
PB
1584 log_append = 1;
1585 }
1586 if (!loglevel && logfile) {
1587 fclose(logfile);
1588 logfile = NULL;
34865134
FB
1589 }
1590}
1591
1592void cpu_set_log_filename(const char *filename)
1593{
1594 logfilename = strdup(filename);
e735b91c
PB
1595 if (logfile) {
1596 fclose(logfile);
1597 logfile = NULL;
1598 }
1599 cpu_set_log(loglevel);
34865134 1600}
c33a346e 1601
3098dba0 1602static void cpu_unlink_tb(CPUState *env)
ea041c0e 1603{
3098dba0
AJ
1604 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1605 problem and hope the cpu will stop of its own accord. For userspace
1606 emulation this often isn't actually as bad as it sounds. Often
1607 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1608 TranslationBlock *tb;
c227f099 1609 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1610
cab1b4bd 1611 spin_lock(&interrupt_lock);
3098dba0
AJ
1612 tb = env->current_tb;
1613 /* if the cpu is currently executing code, we must unlink it and
1614 all the potentially executing TB */
f76cfe56 1615 if (tb) {
3098dba0
AJ
1616 env->current_tb = NULL;
1617 tb_reset_jump_recursive(tb);
be214e6c 1618 }
cab1b4bd 1619 spin_unlock(&interrupt_lock);
3098dba0
AJ
1620}
1621
1622/* mask must never be zero, except for A20 change call */
1623void cpu_interrupt(CPUState *env, int mask)
1624{
1625 int old_mask;
be214e6c 1626
2e70f6ef 1627 old_mask = env->interrupt_request;
68a79315 1628 env->interrupt_request |= mask;
3098dba0 1629
8edac960
AL
1630#ifndef CONFIG_USER_ONLY
1631 /*
1632 * If called from iothread context, wake the target cpu in
1633 * case its halted.
1634 */
1635 if (!qemu_cpu_self(env)) {
1636 qemu_cpu_kick(env);
1637 return;
1638 }
1639#endif
1640
2e70f6ef 1641 if (use_icount) {
266910c4 1642 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1643#ifndef CONFIG_USER_ONLY
2e70f6ef 1644 if (!can_do_io(env)
be214e6c 1645 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1646 cpu_abort(env, "Raised interrupt while not in I/O function");
1647 }
1648#endif
1649 } else {
3098dba0 1650 cpu_unlink_tb(env);
ea041c0e
FB
1651 }
1652}
1653
b54ad049
FB
1654void cpu_reset_interrupt(CPUState *env, int mask)
1655{
1656 env->interrupt_request &= ~mask;
1657}
1658
3098dba0
AJ
1659void cpu_exit(CPUState *env)
1660{
1661 env->exit_request = 1;
1662 cpu_unlink_tb(env);
1663}
1664
c7cd6a37 1665const CPULogItem cpu_log_items[] = {
5fafdf24 1666 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1667 "show generated host assembly code for each compiled TB" },
1668 { CPU_LOG_TB_IN_ASM, "in_asm",
1669 "show target assembly code for each compiled TB" },
5fafdf24 1670 { CPU_LOG_TB_OP, "op",
57fec1fe 1671 "show micro ops for each compiled TB" },
f193c797 1672 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1673 "show micro ops "
1674#ifdef TARGET_I386
1675 "before eflags optimization and "
f193c797 1676#endif
e01a1157 1677 "after liveness analysis" },
f193c797
FB
1678 { CPU_LOG_INT, "int",
1679 "show interrupts/exceptions in short format" },
1680 { CPU_LOG_EXEC, "exec",
1681 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1682 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1683 "show CPU state before block translation" },
f193c797
FB
1684#ifdef TARGET_I386
1685 { CPU_LOG_PCALL, "pcall",
1686 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1687 { CPU_LOG_RESET, "cpu_reset",
1688 "show CPU state before CPU resets" },
f193c797 1689#endif
8e3a9fd2 1690#ifdef DEBUG_IOPORT
fd872598
FB
1691 { CPU_LOG_IOPORT, "ioport",
1692 "show all i/o ports accesses" },
8e3a9fd2 1693#endif
f193c797
FB
1694 { 0, NULL, NULL },
1695};
1696
f6f3fbca
MT
1697#ifndef CONFIG_USER_ONLY
1698static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1699 = QLIST_HEAD_INITIALIZER(memory_client_list);
1700
1701static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26
YT
1702 ram_addr_t size,
1703 ram_addr_t phys_offset)
f6f3fbca
MT
1704{
1705 CPUPhysMemoryClient *client;
1706 QLIST_FOREACH(client, &memory_client_list, list) {
1707 client->set_memory(client, start_addr, size, phys_offset);
1708 }
1709}
1710
1711static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1712 target_phys_addr_t end)
f6f3fbca
MT
1713{
1714 CPUPhysMemoryClient *client;
1715 QLIST_FOREACH(client, &memory_client_list, list) {
1716 int r = client->sync_dirty_bitmap(client, start, end);
1717 if (r < 0)
1718 return r;
1719 }
1720 return 0;
1721}
1722
1723static int cpu_notify_migration_log(int enable)
1724{
1725 CPUPhysMemoryClient *client;
1726 QLIST_FOREACH(client, &memory_client_list, list) {
1727 int r = client->migration_log(client, enable);
1728 if (r < 0)
1729 return r;
1730 }
1731 return 0;
1732}
1733
5cd2c5b6
RH
1734static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1735 int level, void **lp)
f6f3fbca 1736{
5cd2c5b6 1737 int i;
f6f3fbca 1738
5cd2c5b6
RH
1739 if (*lp == NULL) {
1740 return;
1741 }
1742 if (level == 0) {
1743 PhysPageDesc *pd = *lp;
7296abac 1744 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1745 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1746 client->set_memory(client, pd[i].region_offset,
1747 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1748 }
5cd2c5b6
RH
1749 }
1750 } else {
1751 void **pp = *lp;
7296abac 1752 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1753 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1754 }
1755 }
1756}
1757
1758static void phys_page_for_each(CPUPhysMemoryClient *client)
1759{
5cd2c5b6
RH
1760 int i;
1761 for (i = 0; i < P_L1_SIZE; ++i) {
1762 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1763 l1_phys_map + 1);
f6f3fbca 1764 }
f6f3fbca
MT
1765}
1766
1767void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1768{
1769 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1770 phys_page_for_each(client);
1771}
1772
1773void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1774{
1775 QLIST_REMOVE(client, list);
1776}
1777#endif
1778
f193c797
FB
1779static int cmp1(const char *s1, int n, const char *s2)
1780{
1781 if (strlen(s2) != n)
1782 return 0;
1783 return memcmp(s1, s2, n) == 0;
1784}
3b46e624 1785
f193c797
FB
1786/* takes a comma separated list of log masks. Return 0 if error. */
1787int cpu_str_to_log_mask(const char *str)
1788{
c7cd6a37 1789 const CPULogItem *item;
f193c797
FB
1790 int mask;
1791 const char *p, *p1;
1792
1793 p = str;
1794 mask = 0;
1795 for(;;) {
1796 p1 = strchr(p, ',');
1797 if (!p1)
1798 p1 = p + strlen(p);
9742bf26
YT
1799 if(cmp1(p,p1-p,"all")) {
1800 for(item = cpu_log_items; item->mask != 0; item++) {
1801 mask |= item->mask;
1802 }
1803 } else {
1804 for(item = cpu_log_items; item->mask != 0; item++) {
1805 if (cmp1(p, p1 - p, item->name))
1806 goto found;
1807 }
1808 return 0;
f193c797 1809 }
f193c797
FB
1810 found:
1811 mask |= item->mask;
1812 if (*p1 != ',')
1813 break;
1814 p = p1 + 1;
1815 }
1816 return mask;
1817}
ea041c0e 1818
7501267e
FB
1819void cpu_abort(CPUState *env, const char *fmt, ...)
1820{
1821 va_list ap;
493ae1f0 1822 va_list ap2;
7501267e
FB
1823
1824 va_start(ap, fmt);
493ae1f0 1825 va_copy(ap2, ap);
7501267e
FB
1826 fprintf(stderr, "qemu: fatal: ");
1827 vfprintf(stderr, fmt, ap);
1828 fprintf(stderr, "\n");
1829#ifdef TARGET_I386
7fe48483
FB
1830 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1831#else
1832 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1833#endif
93fcfe39
AL
1834 if (qemu_log_enabled()) {
1835 qemu_log("qemu: fatal: ");
1836 qemu_log_vprintf(fmt, ap2);
1837 qemu_log("\n");
f9373291 1838#ifdef TARGET_I386
93fcfe39 1839 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1840#else
93fcfe39 1841 log_cpu_state(env, 0);
f9373291 1842#endif
31b1a7b4 1843 qemu_log_flush();
93fcfe39 1844 qemu_log_close();
924edcae 1845 }
493ae1f0 1846 va_end(ap2);
f9373291 1847 va_end(ap);
fd052bf6
RV
1848#if defined(CONFIG_USER_ONLY)
1849 {
1850 struct sigaction act;
1851 sigfillset(&act.sa_mask);
1852 act.sa_handler = SIG_DFL;
1853 sigaction(SIGABRT, &act, NULL);
1854 }
1855#endif
7501267e
FB
1856 abort();
1857}
1858
c5be9f08
TS
1859CPUState *cpu_copy(CPUState *env)
1860{
01ba9816 1861 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1862 CPUState *next_cpu = new_env->next_cpu;
1863 int cpu_index = new_env->cpu_index;
5a38f081
AL
1864#if defined(TARGET_HAS_ICE)
1865 CPUBreakpoint *bp;
1866 CPUWatchpoint *wp;
1867#endif
1868
c5be9f08 1869 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1870
1871 /* Preserve chaining and index. */
c5be9f08
TS
1872 new_env->next_cpu = next_cpu;
1873 new_env->cpu_index = cpu_index;
5a38f081
AL
1874
1875 /* Clone all break/watchpoints.
1876 Note: Once we support ptrace with hw-debug register access, make sure
1877 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1878 QTAILQ_INIT(&env->breakpoints);
1879 QTAILQ_INIT(&env->watchpoints);
5a38f081 1880#if defined(TARGET_HAS_ICE)
72cf2d4f 1881 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1882 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1883 }
72cf2d4f 1884 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1885 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1886 wp->flags, NULL);
1887 }
1888#endif
1889
c5be9f08
TS
1890 return new_env;
1891}
1892
0124311e
FB
1893#if !defined(CONFIG_USER_ONLY)
1894
5c751e99
EI
1895static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1896{
1897 unsigned int i;
1898
1899 /* Discard jump cache entries for any tb which might potentially
1900 overlap the flushed page. */
1901 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1902 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1903 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1904
1905 i = tb_jmp_cache_hash_page(addr);
1906 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1907 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1908}
1909
08738984
IK
1910static CPUTLBEntry s_cputlb_empty_entry = {
1911 .addr_read = -1,
1912 .addr_write = -1,
1913 .addr_code = -1,
1914 .addend = -1,
1915};
1916
ee8b7021
FB
1917/* NOTE: if flush_global is true, also flush global entries (not
1918 implemented yet) */
1919void tlb_flush(CPUState *env, int flush_global)
33417e70 1920{
33417e70 1921 int i;
0124311e 1922
9fa3e853
FB
1923#if defined(DEBUG_TLB)
1924 printf("tlb_flush:\n");
1925#endif
0124311e
FB
1926 /* must reset current TB so that interrupts cannot modify the
1927 links while we are modifying them */
1928 env->current_tb = NULL;
1929
33417e70 1930 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1931 int mmu_idx;
1932 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1933 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1934 }
33417e70 1935 }
9fa3e853 1936
8a40a180 1937 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1938
d4c430a8
PB
1939 env->tlb_flush_addr = -1;
1940 env->tlb_flush_mask = 0;
e3db7226 1941 tlb_flush_count++;
33417e70
FB
1942}
1943
274da6b2 1944static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1945{
5fafdf24 1946 if (addr == (tlb_entry->addr_read &
84b7b8e7 1947 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1948 addr == (tlb_entry->addr_write &
84b7b8e7 1949 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1950 addr == (tlb_entry->addr_code &
84b7b8e7 1951 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1952 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1953 }
61382a50
FB
1954}
1955
2e12669a 1956void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1957{
8a40a180 1958 int i;
cfde4bd9 1959 int mmu_idx;
0124311e 1960
9fa3e853 1961#if defined(DEBUG_TLB)
108c49b8 1962 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1963#endif
d4c430a8
PB
1964 /* Check if we need to flush due to large pages. */
1965 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1966#if defined(DEBUG_TLB)
1967 printf("tlb_flush_page: forced full flush ("
1968 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1969 env->tlb_flush_addr, env->tlb_flush_mask);
1970#endif
1971 tlb_flush(env, 1);
1972 return;
1973 }
0124311e
FB
1974 /* must reset current TB so that interrupts cannot modify the
1975 links while we are modifying them */
1976 env->current_tb = NULL;
61382a50
FB
1977
1978 addr &= TARGET_PAGE_MASK;
1979 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1980 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1981 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1982
5c751e99 1983 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1984}
1985
9fa3e853
FB
1986/* update the TLBs so that writes to code in the virtual page 'addr'
1987 can be detected */
c227f099 1988static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1989{
5fafdf24 1990 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1991 ram_addr + TARGET_PAGE_SIZE,
1992 CODE_DIRTY_FLAG);
9fa3e853
FB
1993}
1994
9fa3e853 1995/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1996 tested for self modifying code */
c227f099 1997static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1998 target_ulong vaddr)
9fa3e853 1999{
f7c11b53 2000 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2001}
2002
5fafdf24 2003static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2004 unsigned long start, unsigned long length)
2005{
2006 unsigned long addr;
84b7b8e7
FB
2007 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2008 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2009 if ((addr - start) < length) {
0f459d16 2010 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2011 }
2012 }
2013}
2014
5579c7f3 2015/* Note: start and end must be within the same ram block. */
c227f099 2016void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2017 int dirty_flags)
1ccde1cb
FB
2018{
2019 CPUState *env;
4f2ac237 2020 unsigned long length, start1;
f7c11b53 2021 int i;
1ccde1cb
FB
2022
2023 start &= TARGET_PAGE_MASK;
2024 end = TARGET_PAGE_ALIGN(end);
2025
2026 length = end - start;
2027 if (length == 0)
2028 return;
f7c11b53 2029 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2030
1ccde1cb
FB
2031 /* we modify the TLB cache so that the dirty bit will be set again
2032 when accessing the range */
b2e0a138 2033 start1 = (unsigned long)qemu_safe_ram_ptr(start);
5579c7f3
PB
2034 /* Chek that we don't span multiple blocks - this breaks the
2035 address comparisons below. */
b2e0a138 2036 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2037 != (end - 1) - start) {
2038 abort();
2039 }
2040
6a00d601 2041 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2042 int mmu_idx;
2043 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2044 for(i = 0; i < CPU_TLB_SIZE; i++)
2045 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2046 start1, length);
2047 }
6a00d601 2048 }
1ccde1cb
FB
2049}
2050
74576198
AL
2051int cpu_physical_memory_set_dirty_tracking(int enable)
2052{
f6f3fbca 2053 int ret = 0;
74576198 2054 in_migration = enable;
f6f3fbca
MT
2055 ret = cpu_notify_migration_log(!!enable);
2056 return ret;
74576198
AL
2057}
2058
2059int cpu_physical_memory_get_dirty_tracking(void)
2060{
2061 return in_migration;
2062}
2063
c227f099
AL
2064int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2065 target_phys_addr_t end_addr)
2bec46dc 2066{
7b8f3b78 2067 int ret;
151f7749 2068
f6f3fbca 2069 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2070 return ret;
2bec46dc
AL
2071}
2072
3a7d929e
FB
2073static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2074{
c227f099 2075 ram_addr_t ram_addr;
5579c7f3 2076 void *p;
3a7d929e 2077
84b7b8e7 2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2079 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2080 + tlb_entry->addend);
e890261f 2081 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2082 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2083 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2084 }
2085 }
2086}
2087
2088/* update the TLB according to the current state of the dirty bits */
2089void cpu_tlb_update_dirty(CPUState *env)
2090{
2091 int i;
cfde4bd9
IY
2092 int mmu_idx;
2093 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2094 for(i = 0; i < CPU_TLB_SIZE; i++)
2095 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2096 }
3a7d929e
FB
2097}
2098
0f459d16 2099static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2100{
0f459d16
PB
2101 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2102 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2103}
2104
0f459d16
PB
2105/* update the TLB corresponding to virtual page vaddr
2106 so that it is no longer dirty */
2107static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2108{
1ccde1cb 2109 int i;
cfde4bd9 2110 int mmu_idx;
1ccde1cb 2111
0f459d16 2112 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2113 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2115 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2116}
2117
d4c430a8
PB
2118/* Our TLB does not support large pages, so remember the area covered by
2119 large pages and trigger a full TLB flush if these are invalidated. */
2120static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2121 target_ulong size)
2122{
2123 target_ulong mask = ~(size - 1);
2124
2125 if (env->tlb_flush_addr == (target_ulong)-1) {
2126 env->tlb_flush_addr = vaddr & mask;
2127 env->tlb_flush_mask = mask;
2128 return;
2129 }
2130 /* Extend the existing region to include the new page.
2131 This is a compromise between unnecessary flushes and the cost
2132 of maintaining a full variable size TLB. */
2133 mask &= env->tlb_flush_mask;
2134 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2135 mask <<= 1;
2136 }
2137 env->tlb_flush_addr &= mask;
2138 env->tlb_flush_mask = mask;
2139}
2140
2141/* Add a new TLB entry. At most one entry for a given virtual address
2142 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2143 supplied size is only used by tlb_flush_page. */
2144void tlb_set_page(CPUState *env, target_ulong vaddr,
2145 target_phys_addr_t paddr, int prot,
2146 int mmu_idx, target_ulong size)
9fa3e853 2147{
92e873b9 2148 PhysPageDesc *p;
4f2ac237 2149 unsigned long pd;
9fa3e853 2150 unsigned int index;
4f2ac237 2151 target_ulong address;
0f459d16 2152 target_ulong code_address;
355b1943 2153 unsigned long addend;
84b7b8e7 2154 CPUTLBEntry *te;
a1d1bb31 2155 CPUWatchpoint *wp;
c227f099 2156 target_phys_addr_t iotlb;
9fa3e853 2157
d4c430a8
PB
2158 assert(size >= TARGET_PAGE_SIZE);
2159 if (size != TARGET_PAGE_SIZE) {
2160 tlb_add_large_page(env, vaddr, size);
2161 }
92e873b9 2162 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2163 if (!p) {
2164 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2165 } else {
2166 pd = p->phys_offset;
9fa3e853
FB
2167 }
2168#if defined(DEBUG_TLB)
7fd3f494
SW
2169 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2170 " prot=%x idx=%d pd=0x%08lx\n",
2171 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2172#endif
2173
0f459d16
PB
2174 address = vaddr;
2175 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2176 /* IO memory case (romd handled later) */
2177 address |= TLB_MMIO;
2178 }
5579c7f3 2179 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2180 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2181 /* Normal RAM. */
2182 iotlb = pd & TARGET_PAGE_MASK;
2183 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2184 iotlb |= IO_MEM_NOTDIRTY;
2185 else
2186 iotlb |= IO_MEM_ROM;
2187 } else {
ccbb4d44 2188 /* IO handlers are currently passed a physical address.
0f459d16
PB
2189 It would be nice to pass an offset from the base address
2190 of that region. This would avoid having to special case RAM,
2191 and avoid full address decoding in every device.
2192 We can't use the high bits of pd for this because
2193 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2194 iotlb = (pd & ~TARGET_PAGE_MASK);
2195 if (p) {
8da3ff18
PB
2196 iotlb += p->region_offset;
2197 } else {
2198 iotlb += paddr;
2199 }
0f459d16
PB
2200 }
2201
2202 code_address = address;
2203 /* Make accesses to pages with watchpoints go via the
2204 watchpoint trap routines. */
72cf2d4f 2205 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2206 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2207 /* Avoid trapping reads of pages with a write breakpoint. */
2208 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2209 iotlb = io_mem_watch + paddr;
2210 address |= TLB_MMIO;
2211 break;
2212 }
6658ffb8 2213 }
0f459d16 2214 }
d79acba4 2215
0f459d16
PB
2216 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2217 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2218 te = &env->tlb_table[mmu_idx][index];
2219 te->addend = addend - vaddr;
2220 if (prot & PAGE_READ) {
2221 te->addr_read = address;
2222 } else {
2223 te->addr_read = -1;
2224 }
5c751e99 2225
0f459d16
PB
2226 if (prot & PAGE_EXEC) {
2227 te->addr_code = code_address;
2228 } else {
2229 te->addr_code = -1;
2230 }
2231 if (prot & PAGE_WRITE) {
2232 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2233 (pd & IO_MEM_ROMD)) {
2234 /* Write access calls the I/O callback. */
2235 te->addr_write = address | TLB_MMIO;
2236 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2237 !cpu_physical_memory_is_dirty(pd)) {
2238 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2239 } else {
0f459d16 2240 te->addr_write = address;
9fa3e853 2241 }
0f459d16
PB
2242 } else {
2243 te->addr_write = -1;
9fa3e853 2244 }
9fa3e853
FB
2245}
2246
0124311e
FB
2247#else
2248
ee8b7021 2249void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2250{
2251}
2252
2e12669a 2253void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2254{
2255}
2256
edf8e2af
MW
2257/*
2258 * Walks guest process memory "regions" one by one
2259 * and calls callback function 'fn' for each region.
2260 */
5cd2c5b6
RH
2261
2262struct walk_memory_regions_data
2263{
2264 walk_memory_regions_fn fn;
2265 void *priv;
2266 unsigned long start;
2267 int prot;
2268};
2269
2270static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2271 abi_ulong end, int new_prot)
5cd2c5b6
RH
2272{
2273 if (data->start != -1ul) {
2274 int rc = data->fn(data->priv, data->start, end, data->prot);
2275 if (rc != 0) {
2276 return rc;
2277 }
2278 }
2279
2280 data->start = (new_prot ? end : -1ul);
2281 data->prot = new_prot;
2282
2283 return 0;
2284}
2285
2286static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2287 abi_ulong base, int level, void **lp)
5cd2c5b6 2288{
b480d9b7 2289 abi_ulong pa;
5cd2c5b6
RH
2290 int i, rc;
2291
2292 if (*lp == NULL) {
2293 return walk_memory_regions_end(data, base, 0);
2294 }
2295
2296 if (level == 0) {
2297 PageDesc *pd = *lp;
7296abac 2298 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2299 int prot = pd[i].flags;
2300
2301 pa = base | (i << TARGET_PAGE_BITS);
2302 if (prot != data->prot) {
2303 rc = walk_memory_regions_end(data, pa, prot);
2304 if (rc != 0) {
2305 return rc;
9fa3e853 2306 }
9fa3e853 2307 }
5cd2c5b6
RH
2308 }
2309 } else {
2310 void **pp = *lp;
7296abac 2311 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2312 pa = base | ((abi_ulong)i <<
2313 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2314 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2315 if (rc != 0) {
2316 return rc;
2317 }
2318 }
2319 }
2320
2321 return 0;
2322}
2323
2324int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2325{
2326 struct walk_memory_regions_data data;
2327 unsigned long i;
2328
2329 data.fn = fn;
2330 data.priv = priv;
2331 data.start = -1ul;
2332 data.prot = 0;
2333
2334 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2335 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2336 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2337 if (rc != 0) {
2338 return rc;
9fa3e853 2339 }
33417e70 2340 }
5cd2c5b6
RH
2341
2342 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2343}
2344
b480d9b7
PB
2345static int dump_region(void *priv, abi_ulong start,
2346 abi_ulong end, unsigned long prot)
edf8e2af
MW
2347{
2348 FILE *f = (FILE *)priv;
2349
b480d9b7
PB
2350 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2351 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2352 start, end, end - start,
2353 ((prot & PAGE_READ) ? 'r' : '-'),
2354 ((prot & PAGE_WRITE) ? 'w' : '-'),
2355 ((prot & PAGE_EXEC) ? 'x' : '-'));
2356
2357 return (0);
2358}
2359
2360/* dump memory mappings */
2361void page_dump(FILE *f)
2362{
2363 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2364 "start", "end", "size", "prot");
2365 walk_memory_regions(f, dump_region);
33417e70
FB
2366}
2367
53a5960a 2368int page_get_flags(target_ulong address)
33417e70 2369{
9fa3e853
FB
2370 PageDesc *p;
2371
2372 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2373 if (!p)
9fa3e853
FB
2374 return 0;
2375 return p->flags;
2376}
2377
376a7909
RH
2378/* Modify the flags of a page and invalidate the code if necessary.
2379 The flag PAGE_WRITE_ORG is positioned automatically depending
2380 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2381void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2382{
376a7909
RH
2383 target_ulong addr, len;
2384
2385 /* This function should never be called with addresses outside the
2386 guest address space. If this assert fires, it probably indicates
2387 a missing call to h2g_valid. */
b480d9b7
PB
2388#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2389 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2390#endif
2391 assert(start < end);
9fa3e853
FB
2392
2393 start = start & TARGET_PAGE_MASK;
2394 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2395
2396 if (flags & PAGE_WRITE) {
9fa3e853 2397 flags |= PAGE_WRITE_ORG;
376a7909
RH
2398 }
2399
2400 for (addr = start, len = end - start;
2401 len != 0;
2402 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2403 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2404
2405 /* If the write protection bit is set, then we invalidate
2406 the code inside. */
5fafdf24 2407 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2408 (flags & PAGE_WRITE) &&
2409 p->first_tb) {
d720b93d 2410 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2411 }
2412 p->flags = flags;
2413 }
33417e70
FB
2414}
2415
3d97b40b
TS
2416int page_check_range(target_ulong start, target_ulong len, int flags)
2417{
2418 PageDesc *p;
2419 target_ulong end;
2420 target_ulong addr;
2421
376a7909
RH
2422 /* This function should never be called with addresses outside the
2423 guest address space. If this assert fires, it probably indicates
2424 a missing call to h2g_valid. */
338e9e6c
BS
2425#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2426 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2427#endif
2428
3e0650a9
RH
2429 if (len == 0) {
2430 return 0;
2431 }
376a7909
RH
2432 if (start + len - 1 < start) {
2433 /* We've wrapped around. */
55f280c9 2434 return -1;
376a7909 2435 }
55f280c9 2436
3d97b40b
TS
2437 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2438 start = start & TARGET_PAGE_MASK;
2439
376a7909
RH
2440 for (addr = start, len = end - start;
2441 len != 0;
2442 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2443 p = page_find(addr >> TARGET_PAGE_BITS);
2444 if( !p )
2445 return -1;
2446 if( !(p->flags & PAGE_VALID) )
2447 return -1;
2448
dae3270c 2449 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2450 return -1;
dae3270c
FB
2451 if (flags & PAGE_WRITE) {
2452 if (!(p->flags & PAGE_WRITE_ORG))
2453 return -1;
2454 /* unprotect the page if it was put read-only because it
2455 contains translated code */
2456 if (!(p->flags & PAGE_WRITE)) {
2457 if (!page_unprotect(addr, 0, NULL))
2458 return -1;
2459 }
2460 return 0;
2461 }
3d97b40b
TS
2462 }
2463 return 0;
2464}
2465
9fa3e853 2466/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2467 page. Return TRUE if the fault was successfully handled. */
53a5960a 2468int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2469{
45d679d6
AJ
2470 unsigned int prot;
2471 PageDesc *p;
53a5960a 2472 target_ulong host_start, host_end, addr;
9fa3e853 2473
c8a706fe
PB
2474 /* Technically this isn't safe inside a signal handler. However we
2475 know this only ever happens in a synchronous SEGV handler, so in
2476 practice it seems to be ok. */
2477 mmap_lock();
2478
45d679d6
AJ
2479 p = page_find(address >> TARGET_PAGE_BITS);
2480 if (!p) {
c8a706fe 2481 mmap_unlock();
9fa3e853 2482 return 0;
c8a706fe 2483 }
45d679d6 2484
9fa3e853
FB
2485 /* if the page was really writable, then we change its
2486 protection back to writable */
45d679d6
AJ
2487 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2488 host_start = address & qemu_host_page_mask;
2489 host_end = host_start + qemu_host_page_size;
2490
2491 prot = 0;
2492 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2493 p = page_find(addr >> TARGET_PAGE_BITS);
2494 p->flags |= PAGE_WRITE;
2495 prot |= p->flags;
2496
9fa3e853
FB
2497 /* and since the content will be modified, we must invalidate
2498 the corresponding translated code. */
45d679d6 2499 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2500#ifdef DEBUG_TB_CHECK
45d679d6 2501 tb_invalidate_check(addr);
9fa3e853 2502#endif
9fa3e853 2503 }
45d679d6
AJ
2504 mprotect((void *)g2h(host_start), qemu_host_page_size,
2505 prot & PAGE_BITS);
2506
2507 mmap_unlock();
2508 return 1;
9fa3e853 2509 }
c8a706fe 2510 mmap_unlock();
9fa3e853
FB
2511 return 0;
2512}
2513
6a00d601
FB
2514static inline void tlb_set_dirty(CPUState *env,
2515 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2516{
2517}
9fa3e853
FB
2518#endif /* defined(CONFIG_USER_ONLY) */
2519
e2eef170 2520#if !defined(CONFIG_USER_ONLY)
8da3ff18 2521
c04b2b78
PB
2522#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2523typedef struct subpage_t {
2524 target_phys_addr_t base;
f6405247
RH
2525 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2526 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2527} subpage_t;
2528
c227f099
AL
2529static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2530 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2531static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2532 ram_addr_t orig_memory,
2533 ram_addr_t region_offset);
db7b5426
BS
2534#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2535 need_subpage) \
2536 do { \
2537 if (addr > start_addr) \
2538 start_addr2 = 0; \
2539 else { \
2540 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2541 if (start_addr2 > 0) \
2542 need_subpage = 1; \
2543 } \
2544 \
49e9fba2 2545 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2546 end_addr2 = TARGET_PAGE_SIZE - 1; \
2547 else { \
2548 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2549 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2550 need_subpage = 1; \
2551 } \
2552 } while (0)
2553
8f2498f9
MT
2554/* register physical memory.
2555 For RAM, 'size' must be a multiple of the target page size.
2556 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2557 io memory page. The address used when calling the IO function is
2558 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2559 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2560 before calculating this offset. This should not be a problem unless
2561 the low bits of start_addr and region_offset differ. */
c227f099
AL
2562void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2563 ram_addr_t size,
2564 ram_addr_t phys_offset,
2565 ram_addr_t region_offset)
33417e70 2566{
c227f099 2567 target_phys_addr_t addr, end_addr;
92e873b9 2568 PhysPageDesc *p;
9d42037b 2569 CPUState *env;
c227f099 2570 ram_addr_t orig_size = size;
f6405247 2571 subpage_t *subpage;
33417e70 2572
f6f3fbca
MT
2573 cpu_notify_set_memory(start_addr, size, phys_offset);
2574
67c4d23c
PB
2575 if (phys_offset == IO_MEM_UNASSIGNED) {
2576 region_offset = start_addr;
2577 }
8da3ff18 2578 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2579 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2580 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2581 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2582 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2583 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2584 ram_addr_t orig_memory = p->phys_offset;
2585 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2586 int need_subpage = 0;
2587
2588 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2589 need_subpage);
f6405247 2590 if (need_subpage) {
db7b5426
BS
2591 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2592 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2593 &p->phys_offset, orig_memory,
2594 p->region_offset);
db7b5426
BS
2595 } else {
2596 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2597 >> IO_MEM_SHIFT];
2598 }
8da3ff18
PB
2599 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2600 region_offset);
2601 p->region_offset = 0;
db7b5426
BS
2602 } else {
2603 p->phys_offset = phys_offset;
2604 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2605 (phys_offset & IO_MEM_ROMD))
2606 phys_offset += TARGET_PAGE_SIZE;
2607 }
2608 } else {
2609 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2610 p->phys_offset = phys_offset;
8da3ff18 2611 p->region_offset = region_offset;
db7b5426 2612 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2613 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2614 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2615 } else {
c227f099 2616 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2617 int need_subpage = 0;
2618
2619 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2620 end_addr2, need_subpage);
2621
f6405247 2622 if (need_subpage) {
db7b5426 2623 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2624 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2625 addr & TARGET_PAGE_MASK);
db7b5426 2626 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2627 phys_offset, region_offset);
2628 p->region_offset = 0;
db7b5426
BS
2629 }
2630 }
2631 }
8da3ff18 2632 region_offset += TARGET_PAGE_SIZE;
33417e70 2633 }
3b46e624 2634
9d42037b
FB
2635 /* since each CPU stores ram addresses in its TLB cache, we must
2636 reset the modified entries */
2637 /* XXX: slow ! */
2638 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2639 tlb_flush(env, 1);
2640 }
33417e70
FB
2641}
2642
ba863458 2643/* XXX: temporary until new memory mapping API */
c227f099 2644ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2645{
2646 PhysPageDesc *p;
2647
2648 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2649 if (!p)
2650 return IO_MEM_UNASSIGNED;
2651 return p->phys_offset;
2652}
2653
c227f099 2654void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2655{
2656 if (kvm_enabled())
2657 kvm_coalesce_mmio_region(addr, size);
2658}
2659
c227f099 2660void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2661{
2662 if (kvm_enabled())
2663 kvm_uncoalesce_mmio_region(addr, size);
2664}
2665
62a2744c
SY
2666void qemu_flush_coalesced_mmio_buffer(void)
2667{
2668 if (kvm_enabled())
2669 kvm_flush_coalesced_mmio_buffer();
2670}
2671
c902760f
MT
2672#if defined(__linux__) && !defined(TARGET_S390X)
2673
2674#include <sys/vfs.h>
2675
2676#define HUGETLBFS_MAGIC 0x958458f6
2677
2678static long gethugepagesize(const char *path)
2679{
2680 struct statfs fs;
2681 int ret;
2682
2683 do {
9742bf26 2684 ret = statfs(path, &fs);
c902760f
MT
2685 } while (ret != 0 && errno == EINTR);
2686
2687 if (ret != 0) {
9742bf26
YT
2688 perror(path);
2689 return 0;
c902760f
MT
2690 }
2691
2692 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2693 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2694
2695 return fs.f_bsize;
2696}
2697
04b16653
AW
2698static void *file_ram_alloc(RAMBlock *block,
2699 ram_addr_t memory,
2700 const char *path)
c902760f
MT
2701{
2702 char *filename;
2703 void *area;
2704 int fd;
2705#ifdef MAP_POPULATE
2706 int flags;
2707#endif
2708 unsigned long hpagesize;
2709
2710 hpagesize = gethugepagesize(path);
2711 if (!hpagesize) {
9742bf26 2712 return NULL;
c902760f
MT
2713 }
2714
2715 if (memory < hpagesize) {
2716 return NULL;
2717 }
2718
2719 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2720 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2721 return NULL;
2722 }
2723
2724 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2725 return NULL;
c902760f
MT
2726 }
2727
2728 fd = mkstemp(filename);
2729 if (fd < 0) {
9742bf26
YT
2730 perror("unable to create backing store for hugepages");
2731 free(filename);
2732 return NULL;
c902760f
MT
2733 }
2734 unlink(filename);
2735 free(filename);
2736
2737 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2738
2739 /*
2740 * ftruncate is not supported by hugetlbfs in older
2741 * hosts, so don't bother bailing out on errors.
2742 * If anything goes wrong with it under other filesystems,
2743 * mmap will fail.
2744 */
2745 if (ftruncate(fd, memory))
9742bf26 2746 perror("ftruncate");
c902760f
MT
2747
2748#ifdef MAP_POPULATE
2749 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2750 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2751 * to sidestep this quirk.
2752 */
2753 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2754 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2755#else
2756 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2757#endif
2758 if (area == MAP_FAILED) {
9742bf26
YT
2759 perror("file_ram_alloc: can't mmap RAM pages");
2760 close(fd);
2761 return (NULL);
c902760f 2762 }
04b16653 2763 block->fd = fd;
c902760f
MT
2764 return area;
2765}
2766#endif
2767
d17b5288 2768static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2769{
2770 RAMBlock *block, *next_block;
09d7ae90 2771 ram_addr_t offset = 0, mingap = ULONG_MAX;
04b16653
AW
2772
2773 if (QLIST_EMPTY(&ram_list.blocks))
2774 return 0;
2775
2776 QLIST_FOREACH(block, &ram_list.blocks, next) {
2777 ram_addr_t end, next = ULONG_MAX;
2778
2779 end = block->offset + block->length;
2780
2781 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2782 if (next_block->offset >= end) {
2783 next = MIN(next, next_block->offset);
2784 }
2785 }
2786 if (next - end >= size && next - end < mingap) {
2787 offset = end;
2788 mingap = next - end;
2789 }
2790 }
2791 return offset;
2792}
2793
2794static ram_addr_t last_ram_offset(void)
d17b5288
AW
2795{
2796 RAMBlock *block;
2797 ram_addr_t last = 0;
2798
2799 QLIST_FOREACH(block, &ram_list.blocks, next)
2800 last = MAX(last, block->offset + block->length);
2801
2802 return last;
2803}
2804
84b89d78 2805ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2806 ram_addr_t size, void *host)
84b89d78
CM
2807{
2808 RAMBlock *new_block, *block;
2809
2810 size = TARGET_PAGE_ALIGN(size);
2811 new_block = qemu_mallocz(sizeof(*new_block));
2812
2813 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2814 char *id = dev->parent_bus->info->get_dev_path(dev);
2815 if (id) {
2816 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2817 qemu_free(id);
2818 }
2819 }
2820 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2821
2822 QLIST_FOREACH(block, &ram_list.blocks, next) {
2823 if (!strcmp(block->idstr, new_block->idstr)) {
2824 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2825 new_block->idstr);
2826 abort();
2827 }
2828 }
2829
6977dfe6
YT
2830 if (host) {
2831 new_block->host = host;
2832 } else {
2833 if (mem_path) {
c902760f 2834#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2835 new_block->host = file_ram_alloc(new_block, size, mem_path);
2836 if (!new_block->host) {
2837 new_block->host = qemu_vmalloc(size);
e78815a5 2838 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2839 }
c902760f 2840#else
6977dfe6
YT
2841 fprintf(stderr, "-mem-path option unsupported\n");
2842 exit(1);
c902760f 2843#endif
6977dfe6 2844 } else {
6b02494d 2845#if defined(TARGET_S390X) && defined(CONFIG_KVM)
6977dfe6
YT
2846 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2847 new_block->host = mmap((void*)0x1000000, size,
2848 PROT_EXEC|PROT_READ|PROT_WRITE,
2849 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2850#else
6977dfe6 2851 new_block->host = qemu_vmalloc(size);
6b02494d 2852#endif
e78815a5 2853 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2854 }
c902760f 2855 }
6977dfe6 2856
d17b5288 2857 new_block->offset = find_ram_offset(size);
94a6b54f
PB
2858 new_block->length = size;
2859
f471a17e 2860 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2861
f471a17e 2862 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
04b16653 2863 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2864 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2865 0xff, size >> TARGET_PAGE_BITS);
2866
6f0437e8
JK
2867 if (kvm_enabled())
2868 kvm_setup_guest_memory(new_block->host, size);
2869
94a6b54f
PB
2870 return new_block->offset;
2871}
e9a1ab19 2872
6977dfe6
YT
2873ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2874{
2875 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2876}
2877
c227f099 2878void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2879{
04b16653
AW
2880 RAMBlock *block;
2881
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
2883 if (addr == block->offset) {
2884 QLIST_REMOVE(block, next);
2885 if (mem_path) {
2886#if defined (__linux__) && !defined(TARGET_S390X)
2887 if (block->fd) {
2888 munmap(block->host, block->length);
2889 close(block->fd);
2890 } else {
2891 qemu_vfree(block->host);
2892 }
2893#endif
2894 } else {
2895#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2896 munmap(block->host, block->length);
2897#else
2898 qemu_vfree(block->host);
2899#endif
2900 }
2901 qemu_free(block);
2902 return;
2903 }
2904 }
2905
e9a1ab19
FB
2906}
2907
dc828ca1 2908/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2909 With the exception of the softmmu code in this file, this should
2910 only be used for local memory (e.g. video ram) that the device owns,
2911 and knows it isn't going to access beyond the end of the block.
2912
2913 It should not be used for general purpose DMA.
2914 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2915 */
c227f099 2916void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2917{
94a6b54f
PB
2918 RAMBlock *block;
2919
f471a17e
AW
2920 QLIST_FOREACH(block, &ram_list.blocks, next) {
2921 if (addr - block->offset < block->length) {
2922 QLIST_REMOVE(block, next);
2923 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2924 return block->host + (addr - block->offset);
2925 }
94a6b54f 2926 }
f471a17e
AW
2927
2928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2929 abort();
2930
2931 return NULL;
dc828ca1
PB
2932}
2933
b2e0a138
MT
2934/* Return a host pointer to ram allocated with qemu_ram_alloc.
2935 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2936 */
2937void *qemu_safe_ram_ptr(ram_addr_t addr)
2938{
2939 RAMBlock *block;
2940
2941 QLIST_FOREACH(block, &ram_list.blocks, next) {
2942 if (addr - block->offset < block->length) {
2943 return block->host + (addr - block->offset);
2944 }
2945 }
2946
2947 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2948 abort();
2949
2950 return NULL;
2951}
2952
e890261f 2953int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 2954{
94a6b54f
PB
2955 RAMBlock *block;
2956 uint8_t *host = ptr;
2957
f471a17e
AW
2958 QLIST_FOREACH(block, &ram_list.blocks, next) {
2959 if (host - block->host < block->length) {
e890261f
MT
2960 *ram_addr = block->offset + (host - block->host);
2961 return 0;
f471a17e 2962 }
94a6b54f 2963 }
e890261f
MT
2964 return -1;
2965}
f471a17e 2966
e890261f
MT
2967/* Some of the softmmu routines need to translate from a host pointer
2968 (typically a TLB entry) back to a ram offset. */
2969ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2970{
2971 ram_addr_t ram_addr;
f471a17e 2972
e890261f
MT
2973 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2974 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2975 abort();
2976 }
2977 return ram_addr;
5579c7f3
PB
2978}
2979
c227f099 2980static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2981{
67d3b957 2982#ifdef DEBUG_UNASSIGNED
ab3d1727 2983 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2984#endif
faed1c2a 2985#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2986 do_unassigned_access(addr, 0, 0, 0, 1);
2987#endif
2988 return 0;
2989}
2990
c227f099 2991static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2992{
2993#ifdef DEBUG_UNASSIGNED
2994 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2995#endif
faed1c2a 2996#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2997 do_unassigned_access(addr, 0, 0, 0, 2);
2998#endif
2999 return 0;
3000}
3001
c227f099 3002static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3003{
3004#ifdef DEBUG_UNASSIGNED
3005 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3006#endif
faed1c2a 3007#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3008 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 3009#endif
33417e70
FB
3010 return 0;
3011}
3012
c227f099 3013static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3014{
67d3b957 3015#ifdef DEBUG_UNASSIGNED
ab3d1727 3016 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3017#endif
faed1c2a 3018#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3019 do_unassigned_access(addr, 1, 0, 0, 1);
3020#endif
3021}
3022
c227f099 3023static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3024{
3025#ifdef DEBUG_UNASSIGNED
3026 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3027#endif
faed1c2a 3028#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3029 do_unassigned_access(addr, 1, 0, 0, 2);
3030#endif
3031}
3032
c227f099 3033static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3034{
3035#ifdef DEBUG_UNASSIGNED
3036 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3037#endif
faed1c2a 3038#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3039 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 3040#endif
33417e70
FB
3041}
3042
d60efc6b 3043static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3044 unassigned_mem_readb,
e18231a3
BS
3045 unassigned_mem_readw,
3046 unassigned_mem_readl,
33417e70
FB
3047};
3048
d60efc6b 3049static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3050 unassigned_mem_writeb,
e18231a3
BS
3051 unassigned_mem_writew,
3052 unassigned_mem_writel,
33417e70
FB
3053};
3054
c227f099 3055static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3056 uint32_t val)
9fa3e853 3057{
3a7d929e 3058 int dirty_flags;
f7c11b53 3059 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3060 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3061#if !defined(CONFIG_USER_ONLY)
3a7d929e 3062 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3063 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3064#endif
3a7d929e 3065 }
5579c7f3 3066 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3067 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3068 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3069 /* we remove the notdirty callback only if the code has been
3070 flushed */
3071 if (dirty_flags == 0xff)
2e70f6ef 3072 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3073}
3074
c227f099 3075static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3076 uint32_t val)
9fa3e853 3077{
3a7d929e 3078 int dirty_flags;
f7c11b53 3079 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3080 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3081#if !defined(CONFIG_USER_ONLY)
3a7d929e 3082 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3083 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3084#endif
3a7d929e 3085 }
5579c7f3 3086 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3087 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3088 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3089 /* we remove the notdirty callback only if the code has been
3090 flushed */
3091 if (dirty_flags == 0xff)
2e70f6ef 3092 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3093}
3094
c227f099 3095static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3096 uint32_t val)
9fa3e853 3097{
3a7d929e 3098 int dirty_flags;
f7c11b53 3099 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3100 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3101#if !defined(CONFIG_USER_ONLY)
3a7d929e 3102 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3103 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3104#endif
3a7d929e 3105 }
5579c7f3 3106 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3107 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3108 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3109 /* we remove the notdirty callback only if the code has been
3110 flushed */
3111 if (dirty_flags == 0xff)
2e70f6ef 3112 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3113}
3114
d60efc6b 3115static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3116 NULL, /* never used */
3117 NULL, /* never used */
3118 NULL, /* never used */
3119};
3120
d60efc6b 3121static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3122 notdirty_mem_writeb,
3123 notdirty_mem_writew,
3124 notdirty_mem_writel,
3125};
3126
0f459d16 3127/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3128static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3129{
3130 CPUState *env = cpu_single_env;
06d55cc1
AL
3131 target_ulong pc, cs_base;
3132 TranslationBlock *tb;
0f459d16 3133 target_ulong vaddr;
a1d1bb31 3134 CPUWatchpoint *wp;
06d55cc1 3135 int cpu_flags;
0f459d16 3136
06d55cc1
AL
3137 if (env->watchpoint_hit) {
3138 /* We re-entered the check after replacing the TB. Now raise
3139 * the debug interrupt so that is will trigger after the
3140 * current instruction. */
3141 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3142 return;
3143 }
2e70f6ef 3144 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3145 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3146 if ((vaddr == (wp->vaddr & len_mask) ||
3147 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3148 wp->flags |= BP_WATCHPOINT_HIT;
3149 if (!env->watchpoint_hit) {
3150 env->watchpoint_hit = wp;
3151 tb = tb_find_pc(env->mem_io_pc);
3152 if (!tb) {
3153 cpu_abort(env, "check_watchpoint: could not find TB for "
3154 "pc=%p", (void *)env->mem_io_pc);
3155 }
3156 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3157 tb_phys_invalidate(tb, -1);
3158 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3159 env->exception_index = EXCP_DEBUG;
3160 } else {
3161 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3162 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3163 }
3164 cpu_resume_from_signal(env, NULL);
06d55cc1 3165 }
6e140f28
AL
3166 } else {
3167 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3168 }
3169 }
3170}
3171
6658ffb8
PB
3172/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3173 so these check for a hit then pass through to the normal out-of-line
3174 phys routines. */
c227f099 3175static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3176{
b4051334 3177 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3178 return ldub_phys(addr);
3179}
3180
c227f099 3181static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3182{
b4051334 3183 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3184 return lduw_phys(addr);
3185}
3186
c227f099 3187static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3188{
b4051334 3189 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3190 return ldl_phys(addr);
3191}
3192
c227f099 3193static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3194 uint32_t val)
3195{
b4051334 3196 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3197 stb_phys(addr, val);
3198}
3199
c227f099 3200static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3201 uint32_t val)
3202{
b4051334 3203 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3204 stw_phys(addr, val);
3205}
3206
c227f099 3207static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3208 uint32_t val)
3209{
b4051334 3210 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3211 stl_phys(addr, val);
3212}
3213
d60efc6b 3214static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3215 watch_mem_readb,
3216 watch_mem_readw,
3217 watch_mem_readl,
3218};
3219
d60efc6b 3220static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3221 watch_mem_writeb,
3222 watch_mem_writew,
3223 watch_mem_writel,
3224};
6658ffb8 3225
f6405247
RH
3226static inline uint32_t subpage_readlen (subpage_t *mmio,
3227 target_phys_addr_t addr,
3228 unsigned int len)
db7b5426 3229{
f6405247 3230 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3231#if defined(DEBUG_SUBPAGE)
3232 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3233 mmio, len, addr, idx);
3234#endif
db7b5426 3235
f6405247
RH
3236 addr += mmio->region_offset[idx];
3237 idx = mmio->sub_io_index[idx];
3238 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3239}
3240
c227f099 3241static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3242 uint32_t value, unsigned int len)
db7b5426 3243{
f6405247 3244 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3245#if defined(DEBUG_SUBPAGE)
f6405247
RH
3246 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3247 __func__, mmio, len, addr, idx, value);
db7b5426 3248#endif
f6405247
RH
3249
3250 addr += mmio->region_offset[idx];
3251 idx = mmio->sub_io_index[idx];
3252 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3253}
3254
c227f099 3255static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3256{
db7b5426
BS
3257 return subpage_readlen(opaque, addr, 0);
3258}
3259
c227f099 3260static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3261 uint32_t value)
3262{
db7b5426
BS
3263 subpage_writelen(opaque, addr, value, 0);
3264}
3265
c227f099 3266static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3267{
db7b5426
BS
3268 return subpage_readlen(opaque, addr, 1);
3269}
3270
c227f099 3271static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3272 uint32_t value)
3273{
db7b5426
BS
3274 subpage_writelen(opaque, addr, value, 1);
3275}
3276
c227f099 3277static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3278{
db7b5426
BS
3279 return subpage_readlen(opaque, addr, 2);
3280}
3281
f6405247
RH
3282static void subpage_writel (void *opaque, target_phys_addr_t addr,
3283 uint32_t value)
db7b5426 3284{
db7b5426
BS
3285 subpage_writelen(opaque, addr, value, 2);
3286}
3287
d60efc6b 3288static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3289 &subpage_readb,
3290 &subpage_readw,
3291 &subpage_readl,
3292};
3293
d60efc6b 3294static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3295 &subpage_writeb,
3296 &subpage_writew,
3297 &subpage_writel,
3298};
3299
c227f099
AL
3300static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3301 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3302{
3303 int idx, eidx;
3304
3305 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3306 return -1;
3307 idx = SUBPAGE_IDX(start);
3308 eidx = SUBPAGE_IDX(end);
3309#if defined(DEBUG_SUBPAGE)
0bf9e31a 3310 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3311 mmio, start, end, idx, eidx, memory);
3312#endif
95c318f5
GN
3313 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3314 memory = IO_MEM_UNASSIGNED;
f6405247 3315 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3316 for (; idx <= eidx; idx++) {
f6405247
RH
3317 mmio->sub_io_index[idx] = memory;
3318 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3319 }
3320
3321 return 0;
3322}
3323
f6405247
RH
3324static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3325 ram_addr_t orig_memory,
3326 ram_addr_t region_offset)
db7b5426 3327{
c227f099 3328 subpage_t *mmio;
db7b5426
BS
3329 int subpage_memory;
3330
c227f099 3331 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3332
3333 mmio->base = base;
1eed09cb 3334 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3335#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3336 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3337 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3338#endif
1eec614b 3339 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3340 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3341
3342 return mmio;
3343}
3344
88715657
AL
3345static int get_free_io_mem_idx(void)
3346{
3347 int i;
3348
3349 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3350 if (!io_mem_used[i]) {
3351 io_mem_used[i] = 1;
3352 return i;
3353 }
c6703b47 3354 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3355 return -1;
3356}
3357
33417e70
FB
3358/* mem_read and mem_write are arrays of functions containing the
3359 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3360 2). Functions can be omitted with a NULL function pointer.
3ee89922 3361 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3362 modified. If it is zero, a new io zone is allocated. The return
3363 value can be used with cpu_register_physical_memory(). (-1) is
3364 returned if error. */
1eed09cb 3365static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3366 CPUReadMemoryFunc * const *mem_read,
3367 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3368 void *opaque)
33417e70 3369{
3cab721d
RH
3370 int i;
3371
33417e70 3372 if (io_index <= 0) {
88715657
AL
3373 io_index = get_free_io_mem_idx();
3374 if (io_index == -1)
3375 return io_index;
33417e70 3376 } else {
1eed09cb 3377 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3378 if (io_index >= IO_MEM_NB_ENTRIES)
3379 return -1;
3380 }
b5ff1b31 3381
3cab721d
RH
3382 for (i = 0; i < 3; ++i) {
3383 io_mem_read[io_index][i]
3384 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3385 }
3386 for (i = 0; i < 3; ++i) {
3387 io_mem_write[io_index][i]
3388 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3389 }
a4193c8a 3390 io_mem_opaque[io_index] = opaque;
f6405247
RH
3391
3392 return (io_index << IO_MEM_SHIFT);
33417e70 3393}
61382a50 3394
d60efc6b
BS
3395int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3396 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3397 void *opaque)
3398{
3399 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3400}
3401
88715657
AL
3402void cpu_unregister_io_memory(int io_table_address)
3403{
3404 int i;
3405 int io_index = io_table_address >> IO_MEM_SHIFT;
3406
3407 for (i=0;i < 3; i++) {
3408 io_mem_read[io_index][i] = unassigned_mem_read[i];
3409 io_mem_write[io_index][i] = unassigned_mem_write[i];
3410 }
3411 io_mem_opaque[io_index] = NULL;
3412 io_mem_used[io_index] = 0;
3413}
3414
e9179ce1
AK
3415static void io_mem_init(void)
3416{
3417 int i;
3418
3419 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3420 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3421 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3422 for (i=0; i<5; i++)
3423 io_mem_used[i] = 1;
3424
3425 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3426 watch_mem_write, NULL);
e9179ce1
AK
3427}
3428
e2eef170
PB
3429#endif /* !defined(CONFIG_USER_ONLY) */
3430
13eb76e0
FB
3431/* physical memory access (slow version, mainly for debug) */
3432#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3433int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3434 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3435{
3436 int l, flags;
3437 target_ulong page;
53a5960a 3438 void * p;
13eb76e0
FB
3439
3440 while (len > 0) {
3441 page = addr & TARGET_PAGE_MASK;
3442 l = (page + TARGET_PAGE_SIZE) - addr;
3443 if (l > len)
3444 l = len;
3445 flags = page_get_flags(page);
3446 if (!(flags & PAGE_VALID))
a68fe89c 3447 return -1;
13eb76e0
FB
3448 if (is_write) {
3449 if (!(flags & PAGE_WRITE))
a68fe89c 3450 return -1;
579a97f7 3451 /* XXX: this code should not depend on lock_user */
72fb7daa 3452 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3453 return -1;
72fb7daa
AJ
3454 memcpy(p, buf, l);
3455 unlock_user(p, addr, l);
13eb76e0
FB
3456 } else {
3457 if (!(flags & PAGE_READ))
a68fe89c 3458 return -1;
579a97f7 3459 /* XXX: this code should not depend on lock_user */
72fb7daa 3460 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3461 return -1;
72fb7daa 3462 memcpy(buf, p, l);
5b257578 3463 unlock_user(p, addr, 0);
13eb76e0
FB
3464 }
3465 len -= l;
3466 buf += l;
3467 addr += l;
3468 }
a68fe89c 3469 return 0;
13eb76e0 3470}
8df1cd07 3471
13eb76e0 3472#else
c227f099 3473void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3474 int len, int is_write)
3475{
3476 int l, io_index;
3477 uint8_t *ptr;
3478 uint32_t val;
c227f099 3479 target_phys_addr_t page;
2e12669a 3480 unsigned long pd;
92e873b9 3481 PhysPageDesc *p;
3b46e624 3482
13eb76e0
FB
3483 while (len > 0) {
3484 page = addr & TARGET_PAGE_MASK;
3485 l = (page + TARGET_PAGE_SIZE) - addr;
3486 if (l > len)
3487 l = len;
92e873b9 3488 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3489 if (!p) {
3490 pd = IO_MEM_UNASSIGNED;
3491 } else {
3492 pd = p->phys_offset;
3493 }
3b46e624 3494
13eb76e0 3495 if (is_write) {
3a7d929e 3496 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3497 target_phys_addr_t addr1 = addr;
13eb76e0 3498 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3499 if (p)
6c2934db 3500 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3501 /* XXX: could force cpu_single_env to NULL to avoid
3502 potential bugs */
6c2934db 3503 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3504 /* 32 bit write access */
c27004ec 3505 val = ldl_p(buf);
6c2934db 3506 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3507 l = 4;
6c2934db 3508 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3509 /* 16 bit write access */
c27004ec 3510 val = lduw_p(buf);
6c2934db 3511 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3512 l = 2;
3513 } else {
1c213d19 3514 /* 8 bit write access */
c27004ec 3515 val = ldub_p(buf);
6c2934db 3516 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3517 l = 1;
3518 }
3519 } else {
b448f2f3
FB
3520 unsigned long addr1;
3521 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3522 /* RAM case */
5579c7f3 3523 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3524 memcpy(ptr, buf, l);
3a7d929e
FB
3525 if (!cpu_physical_memory_is_dirty(addr1)) {
3526 /* invalidate code */
3527 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3528 /* set dirty bit */
f7c11b53
YT
3529 cpu_physical_memory_set_dirty_flags(
3530 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3531 }
13eb76e0
FB
3532 }
3533 } else {
5fafdf24 3534 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3535 !(pd & IO_MEM_ROMD)) {
c227f099 3536 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3537 /* I/O case */
3538 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3539 if (p)
6c2934db
AJ
3540 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3541 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3542 /* 32 bit read access */
6c2934db 3543 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3544 stl_p(buf, val);
13eb76e0 3545 l = 4;
6c2934db 3546 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3547 /* 16 bit read access */
6c2934db 3548 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3549 stw_p(buf, val);
13eb76e0
FB
3550 l = 2;
3551 } else {
1c213d19 3552 /* 8 bit read access */
6c2934db 3553 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3554 stb_p(buf, val);
13eb76e0
FB
3555 l = 1;
3556 }
3557 } else {
3558 /* RAM case */
5579c7f3 3559 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3560 (addr & ~TARGET_PAGE_MASK);
3561 memcpy(buf, ptr, l);
3562 }
3563 }
3564 len -= l;
3565 buf += l;
3566 addr += l;
3567 }
3568}
8df1cd07 3569
d0ecd2aa 3570/* used for ROM loading : can write in RAM and ROM */
c227f099 3571void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3572 const uint8_t *buf, int len)
3573{
3574 int l;
3575 uint8_t *ptr;
c227f099 3576 target_phys_addr_t page;
d0ecd2aa
FB
3577 unsigned long pd;
3578 PhysPageDesc *p;
3b46e624 3579
d0ecd2aa
FB
3580 while (len > 0) {
3581 page = addr & TARGET_PAGE_MASK;
3582 l = (page + TARGET_PAGE_SIZE) - addr;
3583 if (l > len)
3584 l = len;
3585 p = phys_page_find(page >> TARGET_PAGE_BITS);
3586 if (!p) {
3587 pd = IO_MEM_UNASSIGNED;
3588 } else {
3589 pd = p->phys_offset;
3590 }
3b46e624 3591
d0ecd2aa 3592 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3593 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3594 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3595 /* do nothing */
3596 } else {
3597 unsigned long addr1;
3598 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3599 /* ROM/RAM case */
5579c7f3 3600 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3601 memcpy(ptr, buf, l);
3602 }
3603 len -= l;
3604 buf += l;
3605 addr += l;
3606 }
3607}
3608
6d16c2f8
AL
3609typedef struct {
3610 void *buffer;
c227f099
AL
3611 target_phys_addr_t addr;
3612 target_phys_addr_t len;
6d16c2f8
AL
3613} BounceBuffer;
3614
3615static BounceBuffer bounce;
3616
ba223c29
AL
3617typedef struct MapClient {
3618 void *opaque;
3619 void (*callback)(void *opaque);
72cf2d4f 3620 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3621} MapClient;
3622
72cf2d4f
BS
3623static QLIST_HEAD(map_client_list, MapClient) map_client_list
3624 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3625
3626void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3627{
3628 MapClient *client = qemu_malloc(sizeof(*client));
3629
3630 client->opaque = opaque;
3631 client->callback = callback;
72cf2d4f 3632 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3633 return client;
3634}
3635
3636void cpu_unregister_map_client(void *_client)
3637{
3638 MapClient *client = (MapClient *)_client;
3639
72cf2d4f 3640 QLIST_REMOVE(client, link);
34d5e948 3641 qemu_free(client);
ba223c29
AL
3642}
3643
3644static void cpu_notify_map_clients(void)
3645{
3646 MapClient *client;
3647
72cf2d4f
BS
3648 while (!QLIST_EMPTY(&map_client_list)) {
3649 client = QLIST_FIRST(&map_client_list);
ba223c29 3650 client->callback(client->opaque);
34d5e948 3651 cpu_unregister_map_client(client);
ba223c29
AL
3652 }
3653}
3654
6d16c2f8
AL
3655/* Map a physical memory region into a host virtual address.
3656 * May map a subset of the requested range, given by and returned in *plen.
3657 * May return NULL if resources needed to perform the mapping are exhausted.
3658 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3659 * Use cpu_register_map_client() to know when retrying the map operation is
3660 * likely to succeed.
6d16c2f8 3661 */
c227f099
AL
3662void *cpu_physical_memory_map(target_phys_addr_t addr,
3663 target_phys_addr_t *plen,
6d16c2f8
AL
3664 int is_write)
3665{
c227f099
AL
3666 target_phys_addr_t len = *plen;
3667 target_phys_addr_t done = 0;
6d16c2f8
AL
3668 int l;
3669 uint8_t *ret = NULL;
3670 uint8_t *ptr;
c227f099 3671 target_phys_addr_t page;
6d16c2f8
AL
3672 unsigned long pd;
3673 PhysPageDesc *p;
3674 unsigned long addr1;
3675
3676 while (len > 0) {
3677 page = addr & TARGET_PAGE_MASK;
3678 l = (page + TARGET_PAGE_SIZE) - addr;
3679 if (l > len)
3680 l = len;
3681 p = phys_page_find(page >> TARGET_PAGE_BITS);
3682 if (!p) {
3683 pd = IO_MEM_UNASSIGNED;
3684 } else {
3685 pd = p->phys_offset;
3686 }
3687
3688 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3689 if (done || bounce.buffer) {
3690 break;
3691 }
3692 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3693 bounce.addr = addr;
3694 bounce.len = l;
3695 if (!is_write) {
3696 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3697 }
3698 ptr = bounce.buffer;
3699 } else {
3700 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3701 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3702 }
3703 if (!done) {
3704 ret = ptr;
3705 } else if (ret + done != ptr) {
3706 break;
3707 }
3708
3709 len -= l;
3710 addr += l;
3711 done += l;
3712 }
3713 *plen = done;
3714 return ret;
3715}
3716
3717/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3718 * Will also mark the memory as dirty if is_write == 1. access_len gives
3719 * the amount of memory that was actually read or written by the caller.
3720 */
c227f099
AL
3721void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3722 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3723{
3724 if (buffer != bounce.buffer) {
3725 if (is_write) {
e890261f 3726 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3727 while (access_len) {
3728 unsigned l;
3729 l = TARGET_PAGE_SIZE;
3730 if (l > access_len)
3731 l = access_len;
3732 if (!cpu_physical_memory_is_dirty(addr1)) {
3733 /* invalidate code */
3734 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3735 /* set dirty bit */
f7c11b53
YT
3736 cpu_physical_memory_set_dirty_flags(
3737 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3738 }
3739 addr1 += l;
3740 access_len -= l;
3741 }
3742 }
3743 return;
3744 }
3745 if (is_write) {
3746 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3747 }
f8a83245 3748 qemu_vfree(bounce.buffer);
6d16c2f8 3749 bounce.buffer = NULL;
ba223c29 3750 cpu_notify_map_clients();
6d16c2f8 3751}
d0ecd2aa 3752
8df1cd07 3753/* warning: addr must be aligned */
c227f099 3754uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3755{
3756 int io_index;
3757 uint8_t *ptr;
3758 uint32_t val;
3759 unsigned long pd;
3760 PhysPageDesc *p;
3761
3762 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3763 if (!p) {
3764 pd = IO_MEM_UNASSIGNED;
3765 } else {
3766 pd = p->phys_offset;
3767 }
3b46e624 3768
5fafdf24 3769 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3770 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3771 /* I/O case */
3772 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3773 if (p)
3774 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3775 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3776 } else {
3777 /* RAM case */
5579c7f3 3778 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3779 (addr & ~TARGET_PAGE_MASK);
3780 val = ldl_p(ptr);
3781 }
3782 return val;
3783}
3784
84b7b8e7 3785/* warning: addr must be aligned */
c227f099 3786uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3787{
3788 int io_index;
3789 uint8_t *ptr;
3790 uint64_t val;
3791 unsigned long pd;
3792 PhysPageDesc *p;
3793
3794 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3795 if (!p) {
3796 pd = IO_MEM_UNASSIGNED;
3797 } else {
3798 pd = p->phys_offset;
3799 }
3b46e624 3800
2a4188a3
FB
3801 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3802 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3803 /* I/O case */
3804 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3805 if (p)
3806 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3807#ifdef TARGET_WORDS_BIGENDIAN
3808 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3809 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3810#else
3811 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3812 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3813#endif
3814 } else {
3815 /* RAM case */
5579c7f3 3816 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3817 (addr & ~TARGET_PAGE_MASK);
3818 val = ldq_p(ptr);
3819 }
3820 return val;
3821}
3822
aab33094 3823/* XXX: optimize */
c227f099 3824uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3825{
3826 uint8_t val;
3827 cpu_physical_memory_read(addr, &val, 1);
3828 return val;
3829}
3830
733f0b02 3831/* warning: addr must be aligned */
c227f099 3832uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 3833{
733f0b02
MT
3834 int io_index;
3835 uint8_t *ptr;
3836 uint64_t val;
3837 unsigned long pd;
3838 PhysPageDesc *p;
3839
3840 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3841 if (!p) {
3842 pd = IO_MEM_UNASSIGNED;
3843 } else {
3844 pd = p->phys_offset;
3845 }
3846
3847 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3848 !(pd & IO_MEM_ROMD)) {
3849 /* I/O case */
3850 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3851 if (p)
3852 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3853 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3854 } else {
3855 /* RAM case */
3856 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3857 (addr & ~TARGET_PAGE_MASK);
3858 val = lduw_p(ptr);
3859 }
3860 return val;
aab33094
FB
3861}
3862
8df1cd07
FB
3863/* warning: addr must be aligned. The ram page is not masked as dirty
3864 and the code inside is not invalidated. It is useful if the dirty
3865 bits are used to track modified PTEs */
c227f099 3866void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3867{
3868 int io_index;
3869 uint8_t *ptr;
3870 unsigned long pd;
3871 PhysPageDesc *p;
3872
3873 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3874 if (!p) {
3875 pd = IO_MEM_UNASSIGNED;
3876 } else {
3877 pd = p->phys_offset;
3878 }
3b46e624 3879
3a7d929e 3880 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3881 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3882 if (p)
3883 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3884 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3885 } else {
74576198 3886 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3887 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3888 stl_p(ptr, val);
74576198
AL
3889
3890 if (unlikely(in_migration)) {
3891 if (!cpu_physical_memory_is_dirty(addr1)) {
3892 /* invalidate code */
3893 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3894 /* set dirty bit */
f7c11b53
YT
3895 cpu_physical_memory_set_dirty_flags(
3896 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3897 }
3898 }
8df1cd07
FB
3899 }
3900}
3901
c227f099 3902void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3903{
3904 int io_index;
3905 uint8_t *ptr;
3906 unsigned long pd;
3907 PhysPageDesc *p;
3908
3909 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3910 if (!p) {
3911 pd = IO_MEM_UNASSIGNED;
3912 } else {
3913 pd = p->phys_offset;
3914 }
3b46e624 3915
bc98a7ef
JM
3916 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3917 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3918 if (p)
3919 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3920#ifdef TARGET_WORDS_BIGENDIAN
3921 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3922 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3923#else
3924 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3925 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3926#endif
3927 } else {
5579c7f3 3928 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3929 (addr & ~TARGET_PAGE_MASK);
3930 stq_p(ptr, val);
3931 }
3932}
3933
8df1cd07 3934/* warning: addr must be aligned */
c227f099 3935void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3936{
3937 int io_index;
3938 uint8_t *ptr;
3939 unsigned long pd;
3940 PhysPageDesc *p;
3941
3942 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3943 if (!p) {
3944 pd = IO_MEM_UNASSIGNED;
3945 } else {
3946 pd = p->phys_offset;
3947 }
3b46e624 3948
3a7d929e 3949 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3950 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3951 if (p)
3952 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3953 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3954 } else {
3955 unsigned long addr1;
3956 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3957 /* RAM case */
5579c7f3 3958 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3959 stl_p(ptr, val);
3a7d929e
FB
3960 if (!cpu_physical_memory_is_dirty(addr1)) {
3961 /* invalidate code */
3962 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3963 /* set dirty bit */
f7c11b53
YT
3964 cpu_physical_memory_set_dirty_flags(addr1,
3965 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3966 }
8df1cd07
FB
3967 }
3968}
3969
aab33094 3970/* XXX: optimize */
c227f099 3971void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3972{
3973 uint8_t v = val;
3974 cpu_physical_memory_write(addr, &v, 1);
3975}
3976
733f0b02 3977/* warning: addr must be aligned */
c227f099 3978void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 3979{
733f0b02
MT
3980 int io_index;
3981 uint8_t *ptr;
3982 unsigned long pd;
3983 PhysPageDesc *p;
3984
3985 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3986 if (!p) {
3987 pd = IO_MEM_UNASSIGNED;
3988 } else {
3989 pd = p->phys_offset;
3990 }
3991
3992 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3993 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3994 if (p)
3995 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3996 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3997 } else {
3998 unsigned long addr1;
3999 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4000 /* RAM case */
4001 ptr = qemu_get_ram_ptr(addr1);
4002 stw_p(ptr, val);
4003 if (!cpu_physical_memory_is_dirty(addr1)) {
4004 /* invalidate code */
4005 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4006 /* set dirty bit */
4007 cpu_physical_memory_set_dirty_flags(addr1,
4008 (0xff & ~CODE_DIRTY_FLAG));
4009 }
4010 }
aab33094
FB
4011}
4012
4013/* XXX: optimize */
c227f099 4014void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4015{
4016 val = tswap64(val);
4017 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4018}
4019
5e2972fd 4020/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4021int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4022 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4023{
4024 int l;
c227f099 4025 target_phys_addr_t phys_addr;
9b3c35e0 4026 target_ulong page;
13eb76e0
FB
4027
4028 while (len > 0) {
4029 page = addr & TARGET_PAGE_MASK;
4030 phys_addr = cpu_get_phys_page_debug(env, page);
4031 /* if no physical page mapped, return an error */
4032 if (phys_addr == -1)
4033 return -1;
4034 l = (page + TARGET_PAGE_SIZE) - addr;
4035 if (l > len)
4036 l = len;
5e2972fd 4037 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4038 if (is_write)
4039 cpu_physical_memory_write_rom(phys_addr, buf, l);
4040 else
5e2972fd 4041 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4042 len -= l;
4043 buf += l;
4044 addr += l;
4045 }
4046 return 0;
4047}
a68fe89c 4048#endif
13eb76e0 4049
2e70f6ef
PB
4050/* in deterministic execution mode, instructions doing device I/Os
4051 must be at the end of the TB */
4052void cpu_io_recompile(CPUState *env, void *retaddr)
4053{
4054 TranslationBlock *tb;
4055 uint32_t n, cflags;
4056 target_ulong pc, cs_base;
4057 uint64_t flags;
4058
4059 tb = tb_find_pc((unsigned long)retaddr);
4060 if (!tb) {
4061 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4062 retaddr);
4063 }
4064 n = env->icount_decr.u16.low + tb->icount;
4065 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4066 /* Calculate how many instructions had been executed before the fault
bf20dc07 4067 occurred. */
2e70f6ef
PB
4068 n = n - env->icount_decr.u16.low;
4069 /* Generate a new TB ending on the I/O insn. */
4070 n++;
4071 /* On MIPS and SH, delay slot instructions can only be restarted if
4072 they were already the first instruction in the TB. If this is not
bf20dc07 4073 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4074 branch. */
4075#if defined(TARGET_MIPS)
4076 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4077 env->active_tc.PC -= 4;
4078 env->icount_decr.u16.low++;
4079 env->hflags &= ~MIPS_HFLAG_BMASK;
4080 }
4081#elif defined(TARGET_SH4)
4082 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4083 && n > 1) {
4084 env->pc -= 2;
4085 env->icount_decr.u16.low++;
4086 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4087 }
4088#endif
4089 /* This should never happen. */
4090 if (n > CF_COUNT_MASK)
4091 cpu_abort(env, "TB too big during recompile");
4092
4093 cflags = n | CF_LAST_IO;
4094 pc = tb->pc;
4095 cs_base = tb->cs_base;
4096 flags = tb->flags;
4097 tb_phys_invalidate(tb, -1);
4098 /* FIXME: In theory this could raise an exception. In practice
4099 we have already translated the block once so it's probably ok. */
4100 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4101 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4102 the first in the TB) then we end up generating a whole new TB and
4103 repeating the fault, which is horribly inefficient.
4104 Better would be to execute just this insn uncached, or generate a
4105 second new TB. */
4106 cpu_resume_from_signal(env, NULL);
4107}
4108
b3755a91
PB
4109#if !defined(CONFIG_USER_ONLY)
4110
055403b2 4111void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4112{
4113 int i, target_code_size, max_target_code_size;
4114 int direct_jmp_count, direct_jmp2_count, cross_page;
4115 TranslationBlock *tb;
3b46e624 4116
e3db7226
FB
4117 target_code_size = 0;
4118 max_target_code_size = 0;
4119 cross_page = 0;
4120 direct_jmp_count = 0;
4121 direct_jmp2_count = 0;
4122 for(i = 0; i < nb_tbs; i++) {
4123 tb = &tbs[i];
4124 target_code_size += tb->size;
4125 if (tb->size > max_target_code_size)
4126 max_target_code_size = tb->size;
4127 if (tb->page_addr[1] != -1)
4128 cross_page++;
4129 if (tb->tb_next_offset[0] != 0xffff) {
4130 direct_jmp_count++;
4131 if (tb->tb_next_offset[1] != 0xffff) {
4132 direct_jmp2_count++;
4133 }
4134 }
4135 }
4136 /* XXX: avoid using doubles ? */
57fec1fe 4137 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4138 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4139 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4140 cpu_fprintf(f, "TB count %d/%d\n",
4141 nb_tbs, code_gen_max_blocks);
5fafdf24 4142 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4143 nb_tbs ? target_code_size / nb_tbs : 0,
4144 max_target_code_size);
055403b2 4145 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4146 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4147 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4148 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4149 cross_page,
e3db7226
FB
4150 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4151 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4152 direct_jmp_count,
e3db7226
FB
4153 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4154 direct_jmp2_count,
4155 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4156 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4157 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4158 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4159 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4160 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4161}
4162
61382a50
FB
4163#define MMUSUFFIX _cmmu
4164#define GETPC() NULL
4165#define env cpu_single_env
b769d8fe 4166#define SOFTMMU_CODE_ACCESS
61382a50
FB
4167
4168#define SHIFT 0
4169#include "softmmu_template.h"
4170
4171#define SHIFT 1
4172#include "softmmu_template.h"
4173
4174#define SHIFT 2
4175#include "softmmu_template.h"
4176
4177#define SHIFT 3
4178#include "softmmu_template.h"
4179
4180#undef env
4181
4182#endif