]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: replace tabs by spaces.
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
cc9e98cb 39#include "hw/qdev.h"
74576198 40#include "osdep.h"
7ba1e619 41#include "kvm.h"
29e922b6 42#include "qemu-timer.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
fd052bf6 45#include <signal.h>
f01576f1
JL
46#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
47#include <sys/param.h>
48#if __FreeBSD_version >= 700104
49#define HAVE_KINFO_GETVMMAP
50#define sigqueue sigqueue_freebsd /* avoid redefinition */
51#include <sys/time.h>
52#include <sys/proc.h>
53#include <machine/profile.h>
54#define _KERNEL
55#include <sys/user.h>
56#undef _KERNEL
57#undef sigqueue
58#include <libutil.h>
59#endif
60#endif
53a5960a 61#endif
54936004 62
fd6ce8f6 63//#define DEBUG_TB_INVALIDATE
66e85a21 64//#define DEBUG_FLUSH
9fa3e853 65//#define DEBUG_TLB
67d3b957 66//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
67
68/* make various TB consistency checks */
5fafdf24
TS
69//#define DEBUG_TB_CHECK
70//#define DEBUG_TLB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
24ab68ac 110static uint8_t *code_gen_ptr;
fd6ce8f6 111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
74576198 114static int in_migration;
94a6b54f 115
f471a17e 116RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 117#endif
9fa3e853 118
6a00d601
FB
119CPUState *first_cpu;
120/* current CPU in the current thread. It is only valid inside
121 cpu_exec() */
5fafdf24 122CPUState *cpu_single_env;
2e70f6ef 123/* 0 = Do not count executed instructions.
bf20dc07 124 1 = Precise instruction counting.
2e70f6ef
PB
125 2 = Adaptive rate instruction counting. */
126int use_icount = 0;
127/* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
129int64_t qemu_icount;
6a00d601 130
54936004 131typedef struct PageDesc {
92e873b9 132 /* list of TBs intersecting this ram page */
fd6ce8f6 133 TranslationBlock *first_tb;
9fa3e853
FB
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count;
137 uint8_t *code_bitmap;
138#if defined(CONFIG_USER_ONLY)
139 unsigned long flags;
140#endif
54936004
FB
141} PageDesc;
142
41c1b1c9 143/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
144 while in user mode we want it to be based on virtual addresses. */
145#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
146#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
147# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
148#else
5cd2c5b6 149# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 150#endif
bedb69ea 151#else
5cd2c5b6 152# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 153#endif
54936004 154
5cd2c5b6
RH
155/* Size of the L2 (and L3, etc) page tables. */
156#define L2_BITS 10
54936004
FB
157#define L2_SIZE (1 << L2_BITS)
158
5cd2c5b6
RH
159/* The bits remaining after N lower levels of page tables. */
160#define P_L1_BITS_REM \
161 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162#define V_L1_BITS_REM \
163 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
164
165/* Size of the L1 page table. Avoid silly small sizes. */
166#if P_L1_BITS_REM < 4
167#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
168#else
169#define P_L1_BITS P_L1_BITS_REM
170#endif
171
172#if V_L1_BITS_REM < 4
173#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
174#else
175#define V_L1_BITS V_L1_BITS_REM
176#endif
177
178#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
179#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
180
181#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
182#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
183
83fb7adf
FB
184unsigned long qemu_real_host_page_size;
185unsigned long qemu_host_page_bits;
186unsigned long qemu_host_page_size;
187unsigned long qemu_host_page_mask;
54936004 188
5cd2c5b6
RH
189/* This is a multi-level map on the virtual address space.
190 The bottom level has pointers to PageDesc. */
191static void *l1_map[V_L1_SIZE];
54936004 192
e2eef170 193#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
194typedef struct PhysPageDesc {
195 /* offset in host memory of the page + io_index in the low bits */
196 ram_addr_t phys_offset;
197 ram_addr_t region_offset;
198} PhysPageDesc;
199
5cd2c5b6
RH
200/* This is a multi-level map on the physical address space.
201 The bottom level has pointers to PhysPageDesc. */
202static void *l1_phys_map[P_L1_SIZE];
6d9a1304 203
e2eef170
PB
204static void io_mem_init(void);
205
33417e70 206/* io memory support */
33417e70
FB
207CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
208CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 209void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 210static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
211static int io_mem_watch;
212#endif
33417e70 213
34865134 214/* log support */
1e8b27ca
JR
215#ifdef WIN32
216static const char *logfilename = "qemu.log";
217#else
d9b630fd 218static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 219#endif
34865134
FB
220FILE *logfile;
221int loglevel;
e735b91c 222static int log_append = 0;
34865134 223
e3db7226 224/* statistics */
b3755a91 225#if !defined(CONFIG_USER_ONLY)
e3db7226 226static int tlb_flush_count;
b3755a91 227#endif
e3db7226
FB
228static int tb_flush_count;
229static int tb_phys_invalidate_count;
230
7cb69cae
FB
231#ifdef _WIN32
232static void map_exec(void *addr, long size)
233{
234 DWORD old_protect;
235 VirtualProtect(addr, size,
236 PAGE_EXECUTE_READWRITE, &old_protect);
237
238}
239#else
240static void map_exec(void *addr, long size)
241{
4369415f 242 unsigned long start, end, page_size;
7cb69cae 243
4369415f 244 page_size = getpagesize();
7cb69cae 245 start = (unsigned long)addr;
4369415f 246 start &= ~(page_size - 1);
7cb69cae
FB
247
248 end = (unsigned long)addr + size;
4369415f
FB
249 end += page_size - 1;
250 end &= ~(page_size - 1);
7cb69cae
FB
251
252 mprotect((void *)start, end - start,
253 PROT_READ | PROT_WRITE | PROT_EXEC);
254}
255#endif
256
b346ff46 257static void page_init(void)
54936004 258{
83fb7adf 259 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 260 TARGET_PAGE_SIZE */
c2b48b69
AL
261#ifdef _WIN32
262 {
263 SYSTEM_INFO system_info;
264
265 GetSystemInfo(&system_info);
266 qemu_real_host_page_size = system_info.dwPageSize;
267 }
268#else
269 qemu_real_host_page_size = getpagesize();
270#endif
83fb7adf
FB
271 if (qemu_host_page_size == 0)
272 qemu_host_page_size = qemu_real_host_page_size;
273 if (qemu_host_page_size < TARGET_PAGE_SIZE)
274 qemu_host_page_size = TARGET_PAGE_SIZE;
275 qemu_host_page_bits = 0;
276 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
277 qemu_host_page_bits++;
278 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 279
2e9a5713 280#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 281 {
f01576f1
JL
282#ifdef HAVE_KINFO_GETVMMAP
283 struct kinfo_vmentry *freep;
284 int i, cnt;
285
286 freep = kinfo_getvmmap(getpid(), &cnt);
287 if (freep) {
288 mmap_lock();
289 for (i = 0; i < cnt; i++) {
290 unsigned long startaddr, endaddr;
291
292 startaddr = freep[i].kve_start;
293 endaddr = freep[i].kve_end;
294 if (h2g_valid(startaddr)) {
295 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
296
297 if (h2g_valid(endaddr)) {
298 endaddr = h2g(endaddr);
fd436907 299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
300 } else {
301#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
302 endaddr = ~0ul;
fd436907 303 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
304#endif
305 }
306 }
307 }
308 free(freep);
309 mmap_unlock();
310 }
311#else
50a9569b 312 FILE *f;
50a9569b 313
0776590d 314 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 315
fd436907 316 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 317 if (f) {
5cd2c5b6
RH
318 mmap_lock();
319
50a9569b 320 do {
5cd2c5b6
RH
321 unsigned long startaddr, endaddr;
322 int n;
323
324 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
325
326 if (n == 2 && h2g_valid(startaddr)) {
327 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
328
329 if (h2g_valid(endaddr)) {
330 endaddr = h2g(endaddr);
331 } else {
332 endaddr = ~0ul;
333 }
334 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
335 }
336 } while (!feof(f));
5cd2c5b6 337
50a9569b 338 fclose(f);
5cd2c5b6 339 mmap_unlock();
50a9569b 340 }
f01576f1 341#endif
50a9569b
AZ
342 }
343#endif
54936004
FB
344}
345
41c1b1c9 346static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 347{
41c1b1c9
PB
348 PageDesc *pd;
349 void **lp;
350 int i;
351
5cd2c5b6 352#if defined(CONFIG_USER_ONLY)
2e9a5713 353 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
354# define ALLOC(P, SIZE) \
355 do { \
356 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
357 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
358 } while (0)
359#else
360# define ALLOC(P, SIZE) \
361 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 362#endif
434929bf 363
5cd2c5b6
RH
364 /* Level 1. Always allocated. */
365 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
366
367 /* Level 2..N-1. */
368 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
369 void **p = *lp;
370
371 if (p == NULL) {
372 if (!alloc) {
373 return NULL;
374 }
375 ALLOC(p, sizeof(void *) * L2_SIZE);
376 *lp = p;
17e2377a 377 }
5cd2c5b6
RH
378
379 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
380 }
381
382 pd = *lp;
383 if (pd == NULL) {
384 if (!alloc) {
385 return NULL;
386 }
387 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
388 *lp = pd;
54936004 389 }
5cd2c5b6
RH
390
391#undef ALLOC
5cd2c5b6
RH
392
393 return pd + (index & (L2_SIZE - 1));
54936004
FB
394}
395
41c1b1c9 396static inline PageDesc *page_find(tb_page_addr_t index)
54936004 397{
5cd2c5b6 398 return page_find_alloc(index, 0);
fd6ce8f6
FB
399}
400
6d9a1304 401#if !defined(CONFIG_USER_ONLY)
c227f099 402static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 403{
e3f4e2a4 404 PhysPageDesc *pd;
5cd2c5b6
RH
405 void **lp;
406 int i;
92e873b9 407
5cd2c5b6
RH
408 /* Level 1. Always allocated. */
409 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 410
5cd2c5b6
RH
411 /* Level 2..N-1. */
412 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
413 void **p = *lp;
414 if (p == NULL) {
415 if (!alloc) {
416 return NULL;
417 }
418 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
419 }
420 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 421 }
5cd2c5b6 422
e3f4e2a4 423 pd = *lp;
5cd2c5b6 424 if (pd == NULL) {
e3f4e2a4 425 int i;
5cd2c5b6
RH
426
427 if (!alloc) {
108c49b8 428 return NULL;
5cd2c5b6
RH
429 }
430
431 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
432
67c4d23c 433 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
434 pd[i].phys_offset = IO_MEM_UNASSIGNED;
435 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 436 }
92e873b9 437 }
5cd2c5b6
RH
438
439 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
440}
441
c227f099 442static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 443{
108c49b8 444 return phys_page_find_alloc(index, 0);
92e873b9
FB
445}
446
c227f099
AL
447static void tlb_protect_code(ram_addr_t ram_addr);
448static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 449 target_ulong vaddr);
c8a706fe
PB
450#define mmap_lock() do { } while(0)
451#define mmap_unlock() do { } while(0)
9fa3e853 452#endif
fd6ce8f6 453
4369415f
FB
454#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
455
456#if defined(CONFIG_USER_ONLY)
ccbb4d44 457/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
458 user mode. It will change when a dedicated libc will be used */
459#define USE_STATIC_CODE_GEN_BUFFER
460#endif
461
462#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
463static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
464 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
465#endif
466
8fcd3692 467static void code_gen_alloc(unsigned long tb_size)
26a5f13b 468{
4369415f
FB
469#ifdef USE_STATIC_CODE_GEN_BUFFER
470 code_gen_buffer = static_code_gen_buffer;
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 map_exec(code_gen_buffer, code_gen_buffer_size);
473#else
26a5f13b
FB
474 code_gen_buffer_size = tb_size;
475 if (code_gen_buffer_size == 0) {
4369415f
FB
476#if defined(CONFIG_USER_ONLY)
477 /* in user mode, phys_ram_size is not meaningful */
478 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
479#else
ccbb4d44 480 /* XXX: needs adjustments */
94a6b54f 481 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 482#endif
26a5f13b
FB
483 }
484 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
485 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
486 /* The code gen buffer location may have constraints depending on
487 the host cpu and OS */
488#if defined(__linux__)
489 {
490 int flags;
141ac468
BS
491 void *start = NULL;
492
26a5f13b
FB
493 flags = MAP_PRIVATE | MAP_ANONYMOUS;
494#if defined(__x86_64__)
495 flags |= MAP_32BIT;
496 /* Cannot map more than that */
497 if (code_gen_buffer_size > (800 * 1024 * 1024))
498 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
499#elif defined(__sparc_v9__)
500 // Map the buffer below 2G, so we can use direct calls and branches
501 flags |= MAP_FIXED;
502 start = (void *) 0x60000000UL;
503 if (code_gen_buffer_size > (512 * 1024 * 1024))
504 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 505#elif defined(__arm__)
63d41246 506 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
507 flags |= MAP_FIXED;
508 start = (void *) 0x01000000UL;
509 if (code_gen_buffer_size > 16 * 1024 * 1024)
510 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
511#elif defined(__s390x__)
512 /* Map the buffer so that we can use direct calls and branches. */
513 /* We have a +- 4GB range on the branches; leave some slop. */
514 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
515 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
516 }
517 start = (void *)0x90000000UL;
26a5f13b 518#endif
141ac468
BS
519 code_gen_buffer = mmap(start, code_gen_buffer_size,
520 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
521 flags, -1, 0);
522 if (code_gen_buffer == MAP_FAILED) {
523 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
524 exit(1);
525 }
526 }
a167ba50 527#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
528 {
529 int flags;
530 void *addr = NULL;
531 flags = MAP_PRIVATE | MAP_ANONYMOUS;
532#if defined(__x86_64__)
533 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
534 * 0x40000000 is free */
535 flags |= MAP_FIXED;
536 addr = (void *)0x40000000;
537 /* Cannot map more than that */
538 if (code_gen_buffer_size > (800 * 1024 * 1024))
539 code_gen_buffer_size = (800 * 1024 * 1024);
540#endif
541 code_gen_buffer = mmap(addr, code_gen_buffer_size,
542 PROT_WRITE | PROT_READ | PROT_EXEC,
543 flags, -1, 0);
544 if (code_gen_buffer == MAP_FAILED) {
545 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
546 exit(1);
547 }
548 }
26a5f13b
FB
549#else
550 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
551 map_exec(code_gen_buffer, code_gen_buffer_size);
552#endif
4369415f 553#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
554 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
555 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 556 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
557 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
558 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
559}
560
561/* Must be called before using the QEMU cpus. 'tb_size' is the size
562 (in bytes) allocated to the translation buffer. Zero means default
563 size. */
564void cpu_exec_init_all(unsigned long tb_size)
565{
26a5f13b
FB
566 cpu_gen_init();
567 code_gen_alloc(tb_size);
568 code_gen_ptr = code_gen_buffer;
4369415f 569 page_init();
e2eef170 570#if !defined(CONFIG_USER_ONLY)
26a5f13b 571 io_mem_init();
e2eef170 572#endif
9002ec79
RH
573#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
574 /* There's no guest base to take into account, so go ahead and
575 initialize the prologue now. */
576 tcg_prologue_init(&tcg_ctx);
577#endif
26a5f13b
FB
578}
579
9656f324
PB
580#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
581
e59fb374 582static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
583{
584 CPUState *env = opaque;
9656f324 585
3098dba0
AJ
586 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
587 version_id is increased. */
588 env->interrupt_request &= ~0x01;
9656f324
PB
589 tlb_flush(env, 1);
590
591 return 0;
592}
e7f4eff7
JQ
593
594static const VMStateDescription vmstate_cpu_common = {
595 .name = "cpu_common",
596 .version_id = 1,
597 .minimum_version_id = 1,
598 .minimum_version_id_old = 1,
e7f4eff7
JQ
599 .post_load = cpu_common_post_load,
600 .fields = (VMStateField []) {
601 VMSTATE_UINT32(halted, CPUState),
602 VMSTATE_UINT32(interrupt_request, CPUState),
603 VMSTATE_END_OF_LIST()
604 }
605};
9656f324
PB
606#endif
607
950f1472
GC
608CPUState *qemu_get_cpu(int cpu)
609{
610 CPUState *env = first_cpu;
611
612 while (env) {
613 if (env->cpu_index == cpu)
614 break;
615 env = env->next_cpu;
616 }
617
618 return env;
619}
620
6a00d601 621void cpu_exec_init(CPUState *env)
fd6ce8f6 622{
6a00d601
FB
623 CPUState **penv;
624 int cpu_index;
625
c2764719
PB
626#if defined(CONFIG_USER_ONLY)
627 cpu_list_lock();
628#endif
6a00d601
FB
629 env->next_cpu = NULL;
630 penv = &first_cpu;
631 cpu_index = 0;
632 while (*penv != NULL) {
1e9fa730 633 penv = &(*penv)->next_cpu;
6a00d601
FB
634 cpu_index++;
635 }
636 env->cpu_index = cpu_index;
268a362c 637 env->numa_node = 0;
72cf2d4f
BS
638 QTAILQ_INIT(&env->breakpoints);
639 QTAILQ_INIT(&env->watchpoints);
6a00d601 640 *penv = env;
c2764719
PB
641#if defined(CONFIG_USER_ONLY)
642 cpu_list_unlock();
643#endif
b3c7724c 644#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
645 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
646 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
647 cpu_save, cpu_load, env);
648#endif
fd6ce8f6
FB
649}
650
9fa3e853
FB
651static inline void invalidate_page_bitmap(PageDesc *p)
652{
653 if (p->code_bitmap) {
59817ccb 654 qemu_free(p->code_bitmap);
9fa3e853
FB
655 p->code_bitmap = NULL;
656 }
657 p->code_write_count = 0;
658}
659
5cd2c5b6
RH
660/* Set to NULL all the 'first_tb' fields in all PageDescs. */
661
662static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 663{
5cd2c5b6 664 int i;
fd6ce8f6 665
5cd2c5b6
RH
666 if (*lp == NULL) {
667 return;
668 }
669 if (level == 0) {
670 PageDesc *pd = *lp;
7296abac 671 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
672 pd[i].first_tb = NULL;
673 invalidate_page_bitmap(pd + i);
fd6ce8f6 674 }
5cd2c5b6
RH
675 } else {
676 void **pp = *lp;
7296abac 677 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
678 page_flush_tb_1 (level - 1, pp + i);
679 }
680 }
681}
682
683static void page_flush_tb(void)
684{
685 int i;
686 for (i = 0; i < V_L1_SIZE; i++) {
687 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
688 }
689}
690
691/* flush all the translation blocks */
d4e8164f 692/* XXX: tb_flush is currently not thread safe */
6a00d601 693void tb_flush(CPUState *env1)
fd6ce8f6 694{
6a00d601 695 CPUState *env;
0124311e 696#if defined(DEBUG_FLUSH)
ab3d1727
BS
697 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
698 (unsigned long)(code_gen_ptr - code_gen_buffer),
699 nb_tbs, nb_tbs > 0 ?
700 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 701#endif
26a5f13b 702 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
703 cpu_abort(env1, "Internal error: code buffer overflow\n");
704
fd6ce8f6 705 nb_tbs = 0;
3b46e624 706
6a00d601
FB
707 for(env = first_cpu; env != NULL; env = env->next_cpu) {
708 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
709 }
9fa3e853 710
8a8a608f 711 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 712 page_flush_tb();
9fa3e853 713
fd6ce8f6 714 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
715 /* XXX: flush processor icache at this point if cache flush is
716 expensive */
e3db7226 717 tb_flush_count++;
fd6ce8f6
FB
718}
719
720#ifdef DEBUG_TB_CHECK
721
bc98a7ef 722static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
723{
724 TranslationBlock *tb;
725 int i;
726 address &= TARGET_PAGE_MASK;
99773bd4
PB
727 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
728 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
729 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
730 address >= tb->pc + tb->size)) {
0bf9e31a
BS
731 printf("ERROR invalidate: address=" TARGET_FMT_lx
732 " PC=%08lx size=%04x\n",
99773bd4 733 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
734 }
735 }
736 }
737}
738
739/* verify that all the pages have correct rights for code */
740static void tb_page_check(void)
741{
742 TranslationBlock *tb;
743 int i, flags1, flags2;
3b46e624 744
99773bd4
PB
745 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
746 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
747 flags1 = page_get_flags(tb->pc);
748 flags2 = page_get_flags(tb->pc + tb->size - 1);
749 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
750 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 751 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
752 }
753 }
754 }
755}
756
757#endif
758
759/* invalidate one TB */
760static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
761 int next_offset)
762{
763 TranslationBlock *tb1;
764 for(;;) {
765 tb1 = *ptb;
766 if (tb1 == tb) {
767 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
768 break;
769 }
770 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
771 }
772}
773
9fa3e853
FB
774static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
775{
776 TranslationBlock *tb1;
777 unsigned int n1;
778
779 for(;;) {
780 tb1 = *ptb;
781 n1 = (long)tb1 & 3;
782 tb1 = (TranslationBlock *)((long)tb1 & ~3);
783 if (tb1 == tb) {
784 *ptb = tb1->page_next[n1];
785 break;
786 }
787 ptb = &tb1->page_next[n1];
788 }
789}
790
d4e8164f
FB
791static inline void tb_jmp_remove(TranslationBlock *tb, int n)
792{
793 TranslationBlock *tb1, **ptb;
794 unsigned int n1;
795
796 ptb = &tb->jmp_next[n];
797 tb1 = *ptb;
798 if (tb1) {
799 /* find tb(n) in circular list */
800 for(;;) {
801 tb1 = *ptb;
802 n1 = (long)tb1 & 3;
803 tb1 = (TranslationBlock *)((long)tb1 & ~3);
804 if (n1 == n && tb1 == tb)
805 break;
806 if (n1 == 2) {
807 ptb = &tb1->jmp_first;
808 } else {
809 ptb = &tb1->jmp_next[n1];
810 }
811 }
812 /* now we can suppress tb(n) from the list */
813 *ptb = tb->jmp_next[n];
814
815 tb->jmp_next[n] = NULL;
816 }
817}
818
819/* reset the jump entry 'n' of a TB so that it is not chained to
820 another TB */
821static inline void tb_reset_jump(TranslationBlock *tb, int n)
822{
823 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
824}
825
41c1b1c9 826void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 827{
6a00d601 828 CPUState *env;
8a40a180 829 PageDesc *p;
d4e8164f 830 unsigned int h, n1;
41c1b1c9 831 tb_page_addr_t phys_pc;
8a40a180 832 TranslationBlock *tb1, *tb2;
3b46e624 833
8a40a180
FB
834 /* remove the TB from the hash list */
835 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
836 h = tb_phys_hash_func(phys_pc);
5fafdf24 837 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
838 offsetof(TranslationBlock, phys_hash_next));
839
840 /* remove the TB from the page list */
841 if (tb->page_addr[0] != page_addr) {
842 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
843 tb_page_remove(&p->first_tb, tb);
844 invalidate_page_bitmap(p);
845 }
846 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
847 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
848 tb_page_remove(&p->first_tb, tb);
849 invalidate_page_bitmap(p);
850 }
851
36bdbe54 852 tb_invalidated_flag = 1;
59817ccb 853
fd6ce8f6 854 /* remove the TB from the hash list */
8a40a180 855 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
856 for(env = first_cpu; env != NULL; env = env->next_cpu) {
857 if (env->tb_jmp_cache[h] == tb)
858 env->tb_jmp_cache[h] = NULL;
859 }
d4e8164f
FB
860
861 /* suppress this TB from the two jump lists */
862 tb_jmp_remove(tb, 0);
863 tb_jmp_remove(tb, 1);
864
865 /* suppress any remaining jumps to this TB */
866 tb1 = tb->jmp_first;
867 for(;;) {
868 n1 = (long)tb1 & 3;
869 if (n1 == 2)
870 break;
871 tb1 = (TranslationBlock *)((long)tb1 & ~3);
872 tb2 = tb1->jmp_next[n1];
873 tb_reset_jump(tb1, n1);
874 tb1->jmp_next[n1] = NULL;
875 tb1 = tb2;
876 }
877 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 878
e3db7226 879 tb_phys_invalidate_count++;
9fa3e853
FB
880}
881
882static inline void set_bits(uint8_t *tab, int start, int len)
883{
884 int end, mask, end1;
885
886 end = start + len;
887 tab += start >> 3;
888 mask = 0xff << (start & 7);
889 if ((start & ~7) == (end & ~7)) {
890 if (start < end) {
891 mask &= ~(0xff << (end & 7));
892 *tab |= mask;
893 }
894 } else {
895 *tab++ |= mask;
896 start = (start + 8) & ~7;
897 end1 = end & ~7;
898 while (start < end1) {
899 *tab++ = 0xff;
900 start += 8;
901 }
902 if (start < end) {
903 mask = ~(0xff << (end & 7));
904 *tab |= mask;
905 }
906 }
907}
908
909static void build_page_bitmap(PageDesc *p)
910{
911 int n, tb_start, tb_end;
912 TranslationBlock *tb;
3b46e624 913
b2a7081a 914 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
915
916 tb = p->first_tb;
917 while (tb != NULL) {
918 n = (long)tb & 3;
919 tb = (TranslationBlock *)((long)tb & ~3);
920 /* NOTE: this is subtle as a TB may span two physical pages */
921 if (n == 0) {
922 /* NOTE: tb_end may be after the end of the page, but
923 it is not a problem */
924 tb_start = tb->pc & ~TARGET_PAGE_MASK;
925 tb_end = tb_start + tb->size;
926 if (tb_end > TARGET_PAGE_SIZE)
927 tb_end = TARGET_PAGE_SIZE;
928 } else {
929 tb_start = 0;
930 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
931 }
932 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
933 tb = tb->page_next[n];
934 }
935}
936
2e70f6ef
PB
937TranslationBlock *tb_gen_code(CPUState *env,
938 target_ulong pc, target_ulong cs_base,
939 int flags, int cflags)
d720b93d
FB
940{
941 TranslationBlock *tb;
942 uint8_t *tc_ptr;
41c1b1c9
PB
943 tb_page_addr_t phys_pc, phys_page2;
944 target_ulong virt_page2;
d720b93d
FB
945 int code_gen_size;
946
41c1b1c9 947 phys_pc = get_page_addr_code(env, pc);
c27004ec 948 tb = tb_alloc(pc);
d720b93d
FB
949 if (!tb) {
950 /* flush must be done */
951 tb_flush(env);
952 /* cannot fail at this point */
c27004ec 953 tb = tb_alloc(pc);
2e70f6ef
PB
954 /* Don't forget to invalidate previous TB info. */
955 tb_invalidated_flag = 1;
d720b93d
FB
956 }
957 tc_ptr = code_gen_ptr;
958 tb->tc_ptr = tc_ptr;
959 tb->cs_base = cs_base;
960 tb->flags = flags;
961 tb->cflags = cflags;
d07bde88 962 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 963 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 964
d720b93d 965 /* check next page if needed */
c27004ec 966 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 967 phys_page2 = -1;
c27004ec 968 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 969 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 970 }
41c1b1c9 971 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 972 return tb;
d720b93d 973}
3b46e624 974
9fa3e853
FB
975/* invalidate all TBs which intersect with the target physical page
976 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
977 the same physical page. 'is_cpu_write_access' should be true if called
978 from a real cpu write access: the virtual CPU will exit the current
979 TB if code is modified inside this TB. */
41c1b1c9 980void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
981 int is_cpu_write_access)
982{
6b917547 983 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 984 CPUState *env = cpu_single_env;
41c1b1c9 985 tb_page_addr_t tb_start, tb_end;
6b917547
AL
986 PageDesc *p;
987 int n;
988#ifdef TARGET_HAS_PRECISE_SMC
989 int current_tb_not_found = is_cpu_write_access;
990 TranslationBlock *current_tb = NULL;
991 int current_tb_modified = 0;
992 target_ulong current_pc = 0;
993 target_ulong current_cs_base = 0;
994 int current_flags = 0;
995#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
996
997 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 998 if (!p)
9fa3e853 999 return;
5fafdf24 1000 if (!p->code_bitmap &&
d720b93d
FB
1001 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1002 is_cpu_write_access) {
9fa3e853
FB
1003 /* build code bitmap */
1004 build_page_bitmap(p);
1005 }
1006
1007 /* we remove all the TBs in the range [start, end[ */
1008 /* XXX: see if in some cases it could be faster to invalidate all the code */
1009 tb = p->first_tb;
1010 while (tb != NULL) {
1011 n = (long)tb & 3;
1012 tb = (TranslationBlock *)((long)tb & ~3);
1013 tb_next = tb->page_next[n];
1014 /* NOTE: this is subtle as a TB may span two physical pages */
1015 if (n == 0) {
1016 /* NOTE: tb_end may be after the end of the page, but
1017 it is not a problem */
1018 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1019 tb_end = tb_start + tb->size;
1020 } else {
1021 tb_start = tb->page_addr[1];
1022 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1025#ifdef TARGET_HAS_PRECISE_SMC
1026 if (current_tb_not_found) {
1027 current_tb_not_found = 0;
1028 current_tb = NULL;
2e70f6ef 1029 if (env->mem_io_pc) {
d720b93d 1030 /* now we have a real cpu fault */
2e70f6ef 1031 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1032 }
1033 }
1034 if (current_tb == tb &&
2e70f6ef 1035 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1036 /* If we are modifying the current TB, we must stop
1037 its execution. We could be more precise by checking
1038 that the modification is after the current PC, but it
1039 would require a specialized function to partially
1040 restore the CPU state */
3b46e624 1041
d720b93d 1042 current_tb_modified = 1;
5fafdf24 1043 cpu_restore_state(current_tb, env,
2e70f6ef 1044 env->mem_io_pc, NULL);
6b917547
AL
1045 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1046 &current_flags);
d720b93d
FB
1047 }
1048#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1049 /* we need to do that to handle the case where a signal
1050 occurs while doing tb_phys_invalidate() */
1051 saved_tb = NULL;
1052 if (env) {
1053 saved_tb = env->current_tb;
1054 env->current_tb = NULL;
1055 }
9fa3e853 1056 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1057 if (env) {
1058 env->current_tb = saved_tb;
1059 if (env->interrupt_request && env->current_tb)
1060 cpu_interrupt(env, env->interrupt_request);
1061 }
9fa3e853
FB
1062 }
1063 tb = tb_next;
1064 }
1065#if !defined(CONFIG_USER_ONLY)
1066 /* if no code remaining, no need to continue to use slow writes */
1067 if (!p->first_tb) {
1068 invalidate_page_bitmap(p);
d720b93d 1069 if (is_cpu_write_access) {
2e70f6ef 1070 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1071 }
1072 }
1073#endif
1074#ifdef TARGET_HAS_PRECISE_SMC
1075 if (current_tb_modified) {
1076 /* we generate a block containing just the instruction
1077 modifying the memory. It will ensure that it cannot modify
1078 itself */
ea1c1802 1079 env->current_tb = NULL;
2e70f6ef 1080 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1081 cpu_resume_from_signal(env, NULL);
9fa3e853 1082 }
fd6ce8f6 1083#endif
9fa3e853 1084}
fd6ce8f6 1085
9fa3e853 1086/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1087static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1088{
1089 PageDesc *p;
1090 int offset, b;
59817ccb 1091#if 0
a4193c8a 1092 if (1) {
93fcfe39
AL
1093 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1094 cpu_single_env->mem_io_vaddr, len,
1095 cpu_single_env->eip,
1096 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1097 }
1098#endif
9fa3e853 1099 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1100 if (!p)
9fa3e853
FB
1101 return;
1102 if (p->code_bitmap) {
1103 offset = start & ~TARGET_PAGE_MASK;
1104 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1105 if (b & ((1 << len) - 1))
1106 goto do_invalidate;
1107 } else {
1108 do_invalidate:
d720b93d 1109 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1110 }
1111}
1112
9fa3e853 1113#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1114static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1115 unsigned long pc, void *puc)
9fa3e853 1116{
6b917547 1117 TranslationBlock *tb;
9fa3e853 1118 PageDesc *p;
6b917547 1119 int n;
d720b93d 1120#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1121 TranslationBlock *current_tb = NULL;
d720b93d 1122 CPUState *env = cpu_single_env;
6b917547
AL
1123 int current_tb_modified = 0;
1124 target_ulong current_pc = 0;
1125 target_ulong current_cs_base = 0;
1126 int current_flags = 0;
d720b93d 1127#endif
9fa3e853
FB
1128
1129 addr &= TARGET_PAGE_MASK;
1130 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1131 if (!p)
9fa3e853
FB
1132 return;
1133 tb = p->first_tb;
d720b93d
FB
1134#ifdef TARGET_HAS_PRECISE_SMC
1135 if (tb && pc != 0) {
1136 current_tb = tb_find_pc(pc);
1137 }
1138#endif
9fa3e853
FB
1139 while (tb != NULL) {
1140 n = (long)tb & 3;
1141 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1142#ifdef TARGET_HAS_PRECISE_SMC
1143 if (current_tb == tb &&
2e70f6ef 1144 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1145 /* If we are modifying the current TB, we must stop
1146 its execution. We could be more precise by checking
1147 that the modification is after the current PC, but it
1148 would require a specialized function to partially
1149 restore the CPU state */
3b46e624 1150
d720b93d
FB
1151 current_tb_modified = 1;
1152 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1153 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1154 &current_flags);
d720b93d
FB
1155 }
1156#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1157 tb_phys_invalidate(tb, addr);
1158 tb = tb->page_next[n];
1159 }
fd6ce8f6 1160 p->first_tb = NULL;
d720b93d
FB
1161#ifdef TARGET_HAS_PRECISE_SMC
1162 if (current_tb_modified) {
1163 /* we generate a block containing just the instruction
1164 modifying the memory. It will ensure that it cannot modify
1165 itself */
ea1c1802 1166 env->current_tb = NULL;
2e70f6ef 1167 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1168 cpu_resume_from_signal(env, puc);
1169 }
1170#endif
fd6ce8f6 1171}
9fa3e853 1172#endif
fd6ce8f6
FB
1173
1174/* add the tb in the target page and protect it if necessary */
5fafdf24 1175static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1176 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1177{
1178 PageDesc *p;
9fa3e853
FB
1179 TranslationBlock *last_first_tb;
1180
1181 tb->page_addr[n] = page_addr;
5cd2c5b6 1182 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1183 tb->page_next[n] = p->first_tb;
1184 last_first_tb = p->first_tb;
1185 p->first_tb = (TranslationBlock *)((long)tb | n);
1186 invalidate_page_bitmap(p);
fd6ce8f6 1187
107db443 1188#if defined(TARGET_HAS_SMC) || 1
d720b93d 1189
9fa3e853 1190#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1191 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1192 target_ulong addr;
1193 PageDesc *p2;
9fa3e853
FB
1194 int prot;
1195
fd6ce8f6
FB
1196 /* force the host page as non writable (writes will have a
1197 page fault + mprotect overhead) */
53a5960a 1198 page_addr &= qemu_host_page_mask;
fd6ce8f6 1199 prot = 0;
53a5960a
PB
1200 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1201 addr += TARGET_PAGE_SIZE) {
1202
1203 p2 = page_find (addr >> TARGET_PAGE_BITS);
1204 if (!p2)
1205 continue;
1206 prot |= p2->flags;
1207 p2->flags &= ~PAGE_WRITE;
53a5960a 1208 }
5fafdf24 1209 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1210 (prot & PAGE_BITS) & ~PAGE_WRITE);
1211#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1212 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1213 page_addr);
fd6ce8f6 1214#endif
fd6ce8f6 1215 }
9fa3e853
FB
1216#else
1217 /* if some code is already present, then the pages are already
1218 protected. So we handle the case where only the first TB is
1219 allocated in a physical page */
1220 if (!last_first_tb) {
6a00d601 1221 tlb_protect_code(page_addr);
9fa3e853
FB
1222 }
1223#endif
d720b93d
FB
1224
1225#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1226}
1227
1228/* Allocate a new translation block. Flush the translation buffer if
1229 too many translation blocks or too much generated code. */
c27004ec 1230TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1231{
1232 TranslationBlock *tb;
fd6ce8f6 1233
26a5f13b
FB
1234 if (nb_tbs >= code_gen_max_blocks ||
1235 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1236 return NULL;
fd6ce8f6
FB
1237 tb = &tbs[nb_tbs++];
1238 tb->pc = pc;
b448f2f3 1239 tb->cflags = 0;
d4e8164f
FB
1240 return tb;
1241}
1242
2e70f6ef
PB
1243void tb_free(TranslationBlock *tb)
1244{
bf20dc07 1245 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1246 Ignore the hard cases and just back up if this TB happens to
1247 be the last one generated. */
1248 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1249 code_gen_ptr = tb->tc_ptr;
1250 nb_tbs--;
1251 }
1252}
1253
9fa3e853
FB
1254/* add a new TB and link it to the physical page tables. phys_page2 is
1255 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1256void tb_link_page(TranslationBlock *tb,
1257 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1258{
9fa3e853
FB
1259 unsigned int h;
1260 TranslationBlock **ptb;
1261
c8a706fe
PB
1262 /* Grab the mmap lock to stop another thread invalidating this TB
1263 before we are done. */
1264 mmap_lock();
9fa3e853
FB
1265 /* add in the physical hash table */
1266 h = tb_phys_hash_func(phys_pc);
1267 ptb = &tb_phys_hash[h];
1268 tb->phys_hash_next = *ptb;
1269 *ptb = tb;
fd6ce8f6
FB
1270
1271 /* add in the page list */
9fa3e853
FB
1272 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1273 if (phys_page2 != -1)
1274 tb_alloc_page(tb, 1, phys_page2);
1275 else
1276 tb->page_addr[1] = -1;
9fa3e853 1277
d4e8164f
FB
1278 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1279 tb->jmp_next[0] = NULL;
1280 tb->jmp_next[1] = NULL;
1281
1282 /* init original jump addresses */
1283 if (tb->tb_next_offset[0] != 0xffff)
1284 tb_reset_jump(tb, 0);
1285 if (tb->tb_next_offset[1] != 0xffff)
1286 tb_reset_jump(tb, 1);
8a40a180
FB
1287
1288#ifdef DEBUG_TB_CHECK
1289 tb_page_check();
1290#endif
c8a706fe 1291 mmap_unlock();
fd6ce8f6
FB
1292}
1293
9fa3e853
FB
1294/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1295 tb[1].tc_ptr. Return NULL if not found */
1296TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1297{
9fa3e853
FB
1298 int m_min, m_max, m;
1299 unsigned long v;
1300 TranslationBlock *tb;
a513fe19
FB
1301
1302 if (nb_tbs <= 0)
1303 return NULL;
1304 if (tc_ptr < (unsigned long)code_gen_buffer ||
1305 tc_ptr >= (unsigned long)code_gen_ptr)
1306 return NULL;
1307 /* binary search (cf Knuth) */
1308 m_min = 0;
1309 m_max = nb_tbs - 1;
1310 while (m_min <= m_max) {
1311 m = (m_min + m_max) >> 1;
1312 tb = &tbs[m];
1313 v = (unsigned long)tb->tc_ptr;
1314 if (v == tc_ptr)
1315 return tb;
1316 else if (tc_ptr < v) {
1317 m_max = m - 1;
1318 } else {
1319 m_min = m + 1;
1320 }
5fafdf24 1321 }
a513fe19
FB
1322 return &tbs[m_max];
1323}
7501267e 1324
ea041c0e
FB
1325static void tb_reset_jump_recursive(TranslationBlock *tb);
1326
1327static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1328{
1329 TranslationBlock *tb1, *tb_next, **ptb;
1330 unsigned int n1;
1331
1332 tb1 = tb->jmp_next[n];
1333 if (tb1 != NULL) {
1334 /* find head of list */
1335 for(;;) {
1336 n1 = (long)tb1 & 3;
1337 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1338 if (n1 == 2)
1339 break;
1340 tb1 = tb1->jmp_next[n1];
1341 }
1342 /* we are now sure now that tb jumps to tb1 */
1343 tb_next = tb1;
1344
1345 /* remove tb from the jmp_first list */
1346 ptb = &tb_next->jmp_first;
1347 for(;;) {
1348 tb1 = *ptb;
1349 n1 = (long)tb1 & 3;
1350 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1351 if (n1 == n && tb1 == tb)
1352 break;
1353 ptb = &tb1->jmp_next[n1];
1354 }
1355 *ptb = tb->jmp_next[n];
1356 tb->jmp_next[n] = NULL;
3b46e624 1357
ea041c0e
FB
1358 /* suppress the jump to next tb in generated code */
1359 tb_reset_jump(tb, n);
1360
0124311e 1361 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1362 tb_reset_jump_recursive(tb_next);
1363 }
1364}
1365
1366static void tb_reset_jump_recursive(TranslationBlock *tb)
1367{
1368 tb_reset_jump_recursive2(tb, 0);
1369 tb_reset_jump_recursive2(tb, 1);
1370}
1371
1fddef4b 1372#if defined(TARGET_HAS_ICE)
94df27fd
PB
1373#if defined(CONFIG_USER_ONLY)
1374static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1375{
1376 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1377}
1378#else
d720b93d
FB
1379static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1380{
c227f099 1381 target_phys_addr_t addr;
9b3c35e0 1382 target_ulong pd;
c227f099 1383 ram_addr_t ram_addr;
c2f07f81 1384 PhysPageDesc *p;
d720b93d 1385
c2f07f81
PB
1386 addr = cpu_get_phys_page_debug(env, pc);
1387 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1388 if (!p) {
1389 pd = IO_MEM_UNASSIGNED;
1390 } else {
1391 pd = p->phys_offset;
1392 }
1393 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1394 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1395}
c27004ec 1396#endif
94df27fd 1397#endif /* TARGET_HAS_ICE */
d720b93d 1398
c527ee8f
PB
1399#if defined(CONFIG_USER_ONLY)
1400void cpu_watchpoint_remove_all(CPUState *env, int mask)
1401
1402{
1403}
1404
1405int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1406 int flags, CPUWatchpoint **watchpoint)
1407{
1408 return -ENOSYS;
1409}
1410#else
6658ffb8 1411/* Add a watchpoint. */
a1d1bb31
AL
1412int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1413 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1414{
b4051334 1415 target_ulong len_mask = ~(len - 1);
c0ce998e 1416 CPUWatchpoint *wp;
6658ffb8 1417
b4051334
AL
1418 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1419 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1420 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1421 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1422 return -EINVAL;
1423 }
a1d1bb31 1424 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1425
1426 wp->vaddr = addr;
b4051334 1427 wp->len_mask = len_mask;
a1d1bb31
AL
1428 wp->flags = flags;
1429
2dc9f411 1430 /* keep all GDB-injected watchpoints in front */
c0ce998e 1431 if (flags & BP_GDB)
72cf2d4f 1432 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1433 else
72cf2d4f 1434 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1435
6658ffb8 1436 tlb_flush_page(env, addr);
a1d1bb31
AL
1437
1438 if (watchpoint)
1439 *watchpoint = wp;
1440 return 0;
6658ffb8
PB
1441}
1442
a1d1bb31
AL
1443/* Remove a specific watchpoint. */
1444int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1445 int flags)
6658ffb8 1446{
b4051334 1447 target_ulong len_mask = ~(len - 1);
a1d1bb31 1448 CPUWatchpoint *wp;
6658ffb8 1449
72cf2d4f 1450 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1451 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1452 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1453 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1454 return 0;
1455 }
1456 }
a1d1bb31 1457 return -ENOENT;
6658ffb8
PB
1458}
1459
a1d1bb31
AL
1460/* Remove a specific watchpoint by reference. */
1461void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1462{
72cf2d4f 1463 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1464
a1d1bb31
AL
1465 tlb_flush_page(env, watchpoint->vaddr);
1466
1467 qemu_free(watchpoint);
1468}
1469
1470/* Remove all matching watchpoints. */
1471void cpu_watchpoint_remove_all(CPUState *env, int mask)
1472{
c0ce998e 1473 CPUWatchpoint *wp, *next;
a1d1bb31 1474
72cf2d4f 1475 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1476 if (wp->flags & mask)
1477 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1478 }
7d03f82f 1479}
c527ee8f 1480#endif
7d03f82f 1481
a1d1bb31
AL
1482/* Add a breakpoint. */
1483int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1484 CPUBreakpoint **breakpoint)
4c3a88a2 1485{
1fddef4b 1486#if defined(TARGET_HAS_ICE)
c0ce998e 1487 CPUBreakpoint *bp;
3b46e624 1488
a1d1bb31 1489 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1490
a1d1bb31
AL
1491 bp->pc = pc;
1492 bp->flags = flags;
1493
2dc9f411 1494 /* keep all GDB-injected breakpoints in front */
c0ce998e 1495 if (flags & BP_GDB)
72cf2d4f 1496 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1497 else
72cf2d4f 1498 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1499
d720b93d 1500 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1501
1502 if (breakpoint)
1503 *breakpoint = bp;
4c3a88a2
FB
1504 return 0;
1505#else
a1d1bb31 1506 return -ENOSYS;
4c3a88a2
FB
1507#endif
1508}
1509
a1d1bb31
AL
1510/* Remove a specific breakpoint. */
1511int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1512{
7d03f82f 1513#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1514 CPUBreakpoint *bp;
1515
72cf2d4f 1516 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1517 if (bp->pc == pc && bp->flags == flags) {
1518 cpu_breakpoint_remove_by_ref(env, bp);
1519 return 0;
1520 }
7d03f82f 1521 }
a1d1bb31
AL
1522 return -ENOENT;
1523#else
1524 return -ENOSYS;
7d03f82f
EI
1525#endif
1526}
1527
a1d1bb31
AL
1528/* Remove a specific breakpoint by reference. */
1529void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1530{
1fddef4b 1531#if defined(TARGET_HAS_ICE)
72cf2d4f 1532 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1533
a1d1bb31
AL
1534 breakpoint_invalidate(env, breakpoint->pc);
1535
1536 qemu_free(breakpoint);
1537#endif
1538}
1539
1540/* Remove all matching breakpoints. */
1541void cpu_breakpoint_remove_all(CPUState *env, int mask)
1542{
1543#if defined(TARGET_HAS_ICE)
c0ce998e 1544 CPUBreakpoint *bp, *next;
a1d1bb31 1545
72cf2d4f 1546 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1547 if (bp->flags & mask)
1548 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1549 }
4c3a88a2
FB
1550#endif
1551}
1552
c33a346e
FB
1553/* enable or disable single step mode. EXCP_DEBUG is returned by the
1554 CPU loop after each instruction */
1555void cpu_single_step(CPUState *env, int enabled)
1556{
1fddef4b 1557#if defined(TARGET_HAS_ICE)
c33a346e
FB
1558 if (env->singlestep_enabled != enabled) {
1559 env->singlestep_enabled = enabled;
e22a25c9
AL
1560 if (kvm_enabled())
1561 kvm_update_guest_debug(env, 0);
1562 else {
ccbb4d44 1563 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1564 /* XXX: only flush what is necessary */
1565 tb_flush(env);
1566 }
c33a346e
FB
1567 }
1568#endif
1569}
1570
34865134
FB
1571/* enable or disable low levels log */
1572void cpu_set_log(int log_flags)
1573{
1574 loglevel = log_flags;
1575 if (loglevel && !logfile) {
11fcfab4 1576 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1577 if (!logfile) {
1578 perror(logfilename);
1579 _exit(1);
1580 }
9fa3e853
FB
1581#if !defined(CONFIG_SOFTMMU)
1582 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1583 {
b55266b5 1584 static char logfile_buf[4096];
9fa3e853
FB
1585 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1586 }
bf65f53f
FN
1587#elif !defined(_WIN32)
1588 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1589 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1590#endif
e735b91c
PB
1591 log_append = 1;
1592 }
1593 if (!loglevel && logfile) {
1594 fclose(logfile);
1595 logfile = NULL;
34865134
FB
1596 }
1597}
1598
1599void cpu_set_log_filename(const char *filename)
1600{
1601 logfilename = strdup(filename);
e735b91c
PB
1602 if (logfile) {
1603 fclose(logfile);
1604 logfile = NULL;
1605 }
1606 cpu_set_log(loglevel);
34865134 1607}
c33a346e 1608
3098dba0 1609static void cpu_unlink_tb(CPUState *env)
ea041c0e 1610{
3098dba0
AJ
1611 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1612 problem and hope the cpu will stop of its own accord. For userspace
1613 emulation this often isn't actually as bad as it sounds. Often
1614 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1615 TranslationBlock *tb;
c227f099 1616 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1617
cab1b4bd 1618 spin_lock(&interrupt_lock);
3098dba0
AJ
1619 tb = env->current_tb;
1620 /* if the cpu is currently executing code, we must unlink it and
1621 all the potentially executing TB */
f76cfe56 1622 if (tb) {
3098dba0
AJ
1623 env->current_tb = NULL;
1624 tb_reset_jump_recursive(tb);
be214e6c 1625 }
cab1b4bd 1626 spin_unlock(&interrupt_lock);
3098dba0
AJ
1627}
1628
1629/* mask must never be zero, except for A20 change call */
1630void cpu_interrupt(CPUState *env, int mask)
1631{
1632 int old_mask;
be214e6c 1633
2e70f6ef 1634 old_mask = env->interrupt_request;
68a79315 1635 env->interrupt_request |= mask;
3098dba0 1636
8edac960
AL
1637#ifndef CONFIG_USER_ONLY
1638 /*
1639 * If called from iothread context, wake the target cpu in
1640 * case its halted.
1641 */
1642 if (!qemu_cpu_self(env)) {
1643 qemu_cpu_kick(env);
1644 return;
1645 }
1646#endif
1647
2e70f6ef 1648 if (use_icount) {
266910c4 1649 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1650#ifndef CONFIG_USER_ONLY
2e70f6ef 1651 if (!can_do_io(env)
be214e6c 1652 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1653 cpu_abort(env, "Raised interrupt while not in I/O function");
1654 }
1655#endif
1656 } else {
3098dba0 1657 cpu_unlink_tb(env);
ea041c0e
FB
1658 }
1659}
1660
b54ad049
FB
1661void cpu_reset_interrupt(CPUState *env, int mask)
1662{
1663 env->interrupt_request &= ~mask;
1664}
1665
3098dba0
AJ
1666void cpu_exit(CPUState *env)
1667{
1668 env->exit_request = 1;
1669 cpu_unlink_tb(env);
1670}
1671
c7cd6a37 1672const CPULogItem cpu_log_items[] = {
5fafdf24 1673 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1674 "show generated host assembly code for each compiled TB" },
1675 { CPU_LOG_TB_IN_ASM, "in_asm",
1676 "show target assembly code for each compiled TB" },
5fafdf24 1677 { CPU_LOG_TB_OP, "op",
57fec1fe 1678 "show micro ops for each compiled TB" },
f193c797 1679 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1680 "show micro ops "
1681#ifdef TARGET_I386
1682 "before eflags optimization and "
f193c797 1683#endif
e01a1157 1684 "after liveness analysis" },
f193c797
FB
1685 { CPU_LOG_INT, "int",
1686 "show interrupts/exceptions in short format" },
1687 { CPU_LOG_EXEC, "exec",
1688 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1689 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1690 "show CPU state before block translation" },
f193c797
FB
1691#ifdef TARGET_I386
1692 { CPU_LOG_PCALL, "pcall",
1693 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1694 { CPU_LOG_RESET, "cpu_reset",
1695 "show CPU state before CPU resets" },
f193c797 1696#endif
8e3a9fd2 1697#ifdef DEBUG_IOPORT
fd872598
FB
1698 { CPU_LOG_IOPORT, "ioport",
1699 "show all i/o ports accesses" },
8e3a9fd2 1700#endif
f193c797
FB
1701 { 0, NULL, NULL },
1702};
1703
f6f3fbca
MT
1704#ifndef CONFIG_USER_ONLY
1705static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1706 = QLIST_HEAD_INITIALIZER(memory_client_list);
1707
1708static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26
YT
1709 ram_addr_t size,
1710 ram_addr_t phys_offset)
f6f3fbca
MT
1711{
1712 CPUPhysMemoryClient *client;
1713 QLIST_FOREACH(client, &memory_client_list, list) {
1714 client->set_memory(client, start_addr, size, phys_offset);
1715 }
1716}
1717
1718static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1719 target_phys_addr_t end)
f6f3fbca
MT
1720{
1721 CPUPhysMemoryClient *client;
1722 QLIST_FOREACH(client, &memory_client_list, list) {
1723 int r = client->sync_dirty_bitmap(client, start, end);
1724 if (r < 0)
1725 return r;
1726 }
1727 return 0;
1728}
1729
1730static int cpu_notify_migration_log(int enable)
1731{
1732 CPUPhysMemoryClient *client;
1733 QLIST_FOREACH(client, &memory_client_list, list) {
1734 int r = client->migration_log(client, enable);
1735 if (r < 0)
1736 return r;
1737 }
1738 return 0;
1739}
1740
5cd2c5b6
RH
1741static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1742 int level, void **lp)
f6f3fbca 1743{
5cd2c5b6 1744 int i;
f6f3fbca 1745
5cd2c5b6
RH
1746 if (*lp == NULL) {
1747 return;
1748 }
1749 if (level == 0) {
1750 PhysPageDesc *pd = *lp;
7296abac 1751 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1752 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1753 client->set_memory(client, pd[i].region_offset,
1754 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1755 }
5cd2c5b6
RH
1756 }
1757 } else {
1758 void **pp = *lp;
7296abac 1759 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1760 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1761 }
1762 }
1763}
1764
1765static void phys_page_for_each(CPUPhysMemoryClient *client)
1766{
5cd2c5b6
RH
1767 int i;
1768 for (i = 0; i < P_L1_SIZE; ++i) {
1769 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1770 l1_phys_map + 1);
f6f3fbca 1771 }
f6f3fbca
MT
1772}
1773
1774void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1775{
1776 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1777 phys_page_for_each(client);
1778}
1779
1780void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1781{
1782 QLIST_REMOVE(client, list);
1783}
1784#endif
1785
f193c797
FB
1786static int cmp1(const char *s1, int n, const char *s2)
1787{
1788 if (strlen(s2) != n)
1789 return 0;
1790 return memcmp(s1, s2, n) == 0;
1791}
3b46e624 1792
f193c797
FB
1793/* takes a comma separated list of log masks. Return 0 if error. */
1794int cpu_str_to_log_mask(const char *str)
1795{
c7cd6a37 1796 const CPULogItem *item;
f193c797
FB
1797 int mask;
1798 const char *p, *p1;
1799
1800 p = str;
1801 mask = 0;
1802 for(;;) {
1803 p1 = strchr(p, ',');
1804 if (!p1)
1805 p1 = p + strlen(p);
9742bf26
YT
1806 if(cmp1(p,p1-p,"all")) {
1807 for(item = cpu_log_items; item->mask != 0; item++) {
1808 mask |= item->mask;
1809 }
1810 } else {
1811 for(item = cpu_log_items; item->mask != 0; item++) {
1812 if (cmp1(p, p1 - p, item->name))
1813 goto found;
1814 }
1815 return 0;
f193c797 1816 }
f193c797
FB
1817 found:
1818 mask |= item->mask;
1819 if (*p1 != ',')
1820 break;
1821 p = p1 + 1;
1822 }
1823 return mask;
1824}
ea041c0e 1825
7501267e
FB
1826void cpu_abort(CPUState *env, const char *fmt, ...)
1827{
1828 va_list ap;
493ae1f0 1829 va_list ap2;
7501267e
FB
1830
1831 va_start(ap, fmt);
493ae1f0 1832 va_copy(ap2, ap);
7501267e
FB
1833 fprintf(stderr, "qemu: fatal: ");
1834 vfprintf(stderr, fmt, ap);
1835 fprintf(stderr, "\n");
1836#ifdef TARGET_I386
7fe48483
FB
1837 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1838#else
1839 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1840#endif
93fcfe39
AL
1841 if (qemu_log_enabled()) {
1842 qemu_log("qemu: fatal: ");
1843 qemu_log_vprintf(fmt, ap2);
1844 qemu_log("\n");
f9373291 1845#ifdef TARGET_I386
93fcfe39 1846 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1847#else
93fcfe39 1848 log_cpu_state(env, 0);
f9373291 1849#endif
31b1a7b4 1850 qemu_log_flush();
93fcfe39 1851 qemu_log_close();
924edcae 1852 }
493ae1f0 1853 va_end(ap2);
f9373291 1854 va_end(ap);
fd052bf6
RV
1855#if defined(CONFIG_USER_ONLY)
1856 {
1857 struct sigaction act;
1858 sigfillset(&act.sa_mask);
1859 act.sa_handler = SIG_DFL;
1860 sigaction(SIGABRT, &act, NULL);
1861 }
1862#endif
7501267e
FB
1863 abort();
1864}
1865
c5be9f08
TS
1866CPUState *cpu_copy(CPUState *env)
1867{
01ba9816 1868 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1869 CPUState *next_cpu = new_env->next_cpu;
1870 int cpu_index = new_env->cpu_index;
5a38f081
AL
1871#if defined(TARGET_HAS_ICE)
1872 CPUBreakpoint *bp;
1873 CPUWatchpoint *wp;
1874#endif
1875
c5be9f08 1876 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1877
1878 /* Preserve chaining and index. */
c5be9f08
TS
1879 new_env->next_cpu = next_cpu;
1880 new_env->cpu_index = cpu_index;
5a38f081
AL
1881
1882 /* Clone all break/watchpoints.
1883 Note: Once we support ptrace with hw-debug register access, make sure
1884 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1885 QTAILQ_INIT(&env->breakpoints);
1886 QTAILQ_INIT(&env->watchpoints);
5a38f081 1887#if defined(TARGET_HAS_ICE)
72cf2d4f 1888 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1889 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1890 }
72cf2d4f 1891 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1892 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1893 wp->flags, NULL);
1894 }
1895#endif
1896
c5be9f08
TS
1897 return new_env;
1898}
1899
0124311e
FB
1900#if !defined(CONFIG_USER_ONLY)
1901
5c751e99
EI
1902static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1903{
1904 unsigned int i;
1905
1906 /* Discard jump cache entries for any tb which might potentially
1907 overlap the flushed page. */
1908 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1909 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1910 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1911
1912 i = tb_jmp_cache_hash_page(addr);
1913 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1914 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1915}
1916
08738984
IK
1917static CPUTLBEntry s_cputlb_empty_entry = {
1918 .addr_read = -1,
1919 .addr_write = -1,
1920 .addr_code = -1,
1921 .addend = -1,
1922};
1923
ee8b7021
FB
1924/* NOTE: if flush_global is true, also flush global entries (not
1925 implemented yet) */
1926void tlb_flush(CPUState *env, int flush_global)
33417e70 1927{
33417e70 1928 int i;
0124311e 1929
9fa3e853
FB
1930#if defined(DEBUG_TLB)
1931 printf("tlb_flush:\n");
1932#endif
0124311e
FB
1933 /* must reset current TB so that interrupts cannot modify the
1934 links while we are modifying them */
1935 env->current_tb = NULL;
1936
33417e70 1937 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1938 int mmu_idx;
1939 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1940 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1941 }
33417e70 1942 }
9fa3e853 1943
8a40a180 1944 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1945
d4c430a8
PB
1946 env->tlb_flush_addr = -1;
1947 env->tlb_flush_mask = 0;
e3db7226 1948 tlb_flush_count++;
33417e70
FB
1949}
1950
274da6b2 1951static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1952{
5fafdf24 1953 if (addr == (tlb_entry->addr_read &
84b7b8e7 1954 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1955 addr == (tlb_entry->addr_write &
84b7b8e7 1956 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1957 addr == (tlb_entry->addr_code &
84b7b8e7 1958 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1959 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1960 }
61382a50
FB
1961}
1962
2e12669a 1963void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1964{
8a40a180 1965 int i;
cfde4bd9 1966 int mmu_idx;
0124311e 1967
9fa3e853 1968#if defined(DEBUG_TLB)
108c49b8 1969 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1970#endif
d4c430a8
PB
1971 /* Check if we need to flush due to large pages. */
1972 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1973#if defined(DEBUG_TLB)
1974 printf("tlb_flush_page: forced full flush ("
1975 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1976 env->tlb_flush_addr, env->tlb_flush_mask);
1977#endif
1978 tlb_flush(env, 1);
1979 return;
1980 }
0124311e
FB
1981 /* must reset current TB so that interrupts cannot modify the
1982 links while we are modifying them */
1983 env->current_tb = NULL;
61382a50
FB
1984
1985 addr &= TARGET_PAGE_MASK;
1986 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1987 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1988 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1989
5c751e99 1990 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1991}
1992
9fa3e853
FB
1993/* update the TLBs so that writes to code in the virtual page 'addr'
1994 can be detected */
c227f099 1995static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1996{
5fafdf24 1997 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1998 ram_addr + TARGET_PAGE_SIZE,
1999 CODE_DIRTY_FLAG);
9fa3e853
FB
2000}
2001
9fa3e853 2002/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2003 tested for self modifying code */
c227f099 2004static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2005 target_ulong vaddr)
9fa3e853 2006{
f7c11b53 2007 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2008}
2009
5fafdf24 2010static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2011 unsigned long start, unsigned long length)
2012{
2013 unsigned long addr;
84b7b8e7
FB
2014 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2015 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2016 if ((addr - start) < length) {
0f459d16 2017 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2018 }
2019 }
2020}
2021
5579c7f3 2022/* Note: start and end must be within the same ram block. */
c227f099 2023void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2024 int dirty_flags)
1ccde1cb
FB
2025{
2026 CPUState *env;
4f2ac237 2027 unsigned long length, start1;
f7c11b53 2028 int i;
1ccde1cb
FB
2029
2030 start &= TARGET_PAGE_MASK;
2031 end = TARGET_PAGE_ALIGN(end);
2032
2033 length = end - start;
2034 if (length == 0)
2035 return;
f7c11b53 2036 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2037
1ccde1cb
FB
2038 /* we modify the TLB cache so that the dirty bit will be set again
2039 when accessing the range */
5579c7f3
PB
2040 start1 = (unsigned long)qemu_get_ram_ptr(start);
2041 /* Chek that we don't span multiple blocks - this breaks the
2042 address comparisons below. */
2043 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2044 != (end - 1) - start) {
2045 abort();
2046 }
2047
6a00d601 2048 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2049 int mmu_idx;
2050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2051 for(i = 0; i < CPU_TLB_SIZE; i++)
2052 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2053 start1, length);
2054 }
6a00d601 2055 }
1ccde1cb
FB
2056}
2057
74576198
AL
2058int cpu_physical_memory_set_dirty_tracking(int enable)
2059{
f6f3fbca 2060 int ret = 0;
74576198 2061 in_migration = enable;
f6f3fbca
MT
2062 ret = cpu_notify_migration_log(!!enable);
2063 return ret;
74576198
AL
2064}
2065
2066int cpu_physical_memory_get_dirty_tracking(void)
2067{
2068 return in_migration;
2069}
2070
c227f099
AL
2071int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2072 target_phys_addr_t end_addr)
2bec46dc 2073{
7b8f3b78 2074 int ret;
151f7749 2075
f6f3fbca 2076 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2077 return ret;
2bec46dc
AL
2078}
2079
3a7d929e
FB
2080static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2081{
c227f099 2082 ram_addr_t ram_addr;
5579c7f3 2083 void *p;
3a7d929e 2084
84b7b8e7 2085 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2086 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2087 + tlb_entry->addend);
2088 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2089 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2090 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2091 }
2092 }
2093}
2094
2095/* update the TLB according to the current state of the dirty bits */
2096void cpu_tlb_update_dirty(CPUState *env)
2097{
2098 int i;
cfde4bd9
IY
2099 int mmu_idx;
2100 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2101 for(i = 0; i < CPU_TLB_SIZE; i++)
2102 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2103 }
3a7d929e
FB
2104}
2105
0f459d16 2106static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2107{
0f459d16
PB
2108 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2109 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2110}
2111
0f459d16
PB
2112/* update the TLB corresponding to virtual page vaddr
2113 so that it is no longer dirty */
2114static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2115{
1ccde1cb 2116 int i;
cfde4bd9 2117 int mmu_idx;
1ccde1cb 2118
0f459d16 2119 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2120 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2121 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2122 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2123}
2124
d4c430a8
PB
2125/* Our TLB does not support large pages, so remember the area covered by
2126 large pages and trigger a full TLB flush if these are invalidated. */
2127static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2128 target_ulong size)
2129{
2130 target_ulong mask = ~(size - 1);
2131
2132 if (env->tlb_flush_addr == (target_ulong)-1) {
2133 env->tlb_flush_addr = vaddr & mask;
2134 env->tlb_flush_mask = mask;
2135 return;
2136 }
2137 /* Extend the existing region to include the new page.
2138 This is a compromise between unnecessary flushes and the cost
2139 of maintaining a full variable size TLB. */
2140 mask &= env->tlb_flush_mask;
2141 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2142 mask <<= 1;
2143 }
2144 env->tlb_flush_addr &= mask;
2145 env->tlb_flush_mask = mask;
2146}
2147
2148/* Add a new TLB entry. At most one entry for a given virtual address
2149 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2150 supplied size is only used by tlb_flush_page. */
2151void tlb_set_page(CPUState *env, target_ulong vaddr,
2152 target_phys_addr_t paddr, int prot,
2153 int mmu_idx, target_ulong size)
9fa3e853 2154{
92e873b9 2155 PhysPageDesc *p;
4f2ac237 2156 unsigned long pd;
9fa3e853 2157 unsigned int index;
4f2ac237 2158 target_ulong address;
0f459d16 2159 target_ulong code_address;
355b1943 2160 unsigned long addend;
84b7b8e7 2161 CPUTLBEntry *te;
a1d1bb31 2162 CPUWatchpoint *wp;
c227f099 2163 target_phys_addr_t iotlb;
9fa3e853 2164
d4c430a8
PB
2165 assert(size >= TARGET_PAGE_SIZE);
2166 if (size != TARGET_PAGE_SIZE) {
2167 tlb_add_large_page(env, vaddr, size);
2168 }
92e873b9 2169 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2170 if (!p) {
2171 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2172 } else {
2173 pd = p->phys_offset;
9fa3e853
FB
2174 }
2175#if defined(DEBUG_TLB)
6ebbf390
JM
2176 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2177 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2178#endif
2179
0f459d16
PB
2180 address = vaddr;
2181 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2182 /* IO memory case (romd handled later) */
2183 address |= TLB_MMIO;
2184 }
5579c7f3 2185 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2186 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2187 /* Normal RAM. */
2188 iotlb = pd & TARGET_PAGE_MASK;
2189 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2190 iotlb |= IO_MEM_NOTDIRTY;
2191 else
2192 iotlb |= IO_MEM_ROM;
2193 } else {
ccbb4d44 2194 /* IO handlers are currently passed a physical address.
0f459d16
PB
2195 It would be nice to pass an offset from the base address
2196 of that region. This would avoid having to special case RAM,
2197 and avoid full address decoding in every device.
2198 We can't use the high bits of pd for this because
2199 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2200 iotlb = (pd & ~TARGET_PAGE_MASK);
2201 if (p) {
8da3ff18
PB
2202 iotlb += p->region_offset;
2203 } else {
2204 iotlb += paddr;
2205 }
0f459d16
PB
2206 }
2207
2208 code_address = address;
2209 /* Make accesses to pages with watchpoints go via the
2210 watchpoint trap routines. */
72cf2d4f 2211 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2212 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2213 /* Avoid trapping reads of pages with a write breakpoint. */
2214 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2215 iotlb = io_mem_watch + paddr;
2216 address |= TLB_MMIO;
2217 break;
2218 }
6658ffb8 2219 }
0f459d16 2220 }
d79acba4 2221
0f459d16
PB
2222 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2223 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2224 te = &env->tlb_table[mmu_idx][index];
2225 te->addend = addend - vaddr;
2226 if (prot & PAGE_READ) {
2227 te->addr_read = address;
2228 } else {
2229 te->addr_read = -1;
2230 }
5c751e99 2231
0f459d16
PB
2232 if (prot & PAGE_EXEC) {
2233 te->addr_code = code_address;
2234 } else {
2235 te->addr_code = -1;
2236 }
2237 if (prot & PAGE_WRITE) {
2238 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2239 (pd & IO_MEM_ROMD)) {
2240 /* Write access calls the I/O callback. */
2241 te->addr_write = address | TLB_MMIO;
2242 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2243 !cpu_physical_memory_is_dirty(pd)) {
2244 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2245 } else {
0f459d16 2246 te->addr_write = address;
9fa3e853 2247 }
0f459d16
PB
2248 } else {
2249 te->addr_write = -1;
9fa3e853 2250 }
9fa3e853
FB
2251}
2252
0124311e
FB
2253#else
2254
ee8b7021 2255void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2256{
2257}
2258
2e12669a 2259void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2260{
2261}
2262
edf8e2af
MW
2263/*
2264 * Walks guest process memory "regions" one by one
2265 * and calls callback function 'fn' for each region.
2266 */
5cd2c5b6
RH
2267
2268struct walk_memory_regions_data
2269{
2270 walk_memory_regions_fn fn;
2271 void *priv;
2272 unsigned long start;
2273 int prot;
2274};
2275
2276static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2277 abi_ulong end, int new_prot)
5cd2c5b6
RH
2278{
2279 if (data->start != -1ul) {
2280 int rc = data->fn(data->priv, data->start, end, data->prot);
2281 if (rc != 0) {
2282 return rc;
2283 }
2284 }
2285
2286 data->start = (new_prot ? end : -1ul);
2287 data->prot = new_prot;
2288
2289 return 0;
2290}
2291
2292static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2293 abi_ulong base, int level, void **lp)
5cd2c5b6 2294{
b480d9b7 2295 abi_ulong pa;
5cd2c5b6
RH
2296 int i, rc;
2297
2298 if (*lp == NULL) {
2299 return walk_memory_regions_end(data, base, 0);
2300 }
2301
2302 if (level == 0) {
2303 PageDesc *pd = *lp;
7296abac 2304 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2305 int prot = pd[i].flags;
2306
2307 pa = base | (i << TARGET_PAGE_BITS);
2308 if (prot != data->prot) {
2309 rc = walk_memory_regions_end(data, pa, prot);
2310 if (rc != 0) {
2311 return rc;
9fa3e853 2312 }
9fa3e853 2313 }
5cd2c5b6
RH
2314 }
2315 } else {
2316 void **pp = *lp;
7296abac 2317 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2318 pa = base | ((abi_ulong)i <<
2319 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2320 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2321 if (rc != 0) {
2322 return rc;
2323 }
2324 }
2325 }
2326
2327 return 0;
2328}
2329
2330int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2331{
2332 struct walk_memory_regions_data data;
2333 unsigned long i;
2334
2335 data.fn = fn;
2336 data.priv = priv;
2337 data.start = -1ul;
2338 data.prot = 0;
2339
2340 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2341 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2342 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2343 if (rc != 0) {
2344 return rc;
9fa3e853 2345 }
33417e70 2346 }
5cd2c5b6
RH
2347
2348 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2349}
2350
b480d9b7
PB
2351static int dump_region(void *priv, abi_ulong start,
2352 abi_ulong end, unsigned long prot)
edf8e2af
MW
2353{
2354 FILE *f = (FILE *)priv;
2355
b480d9b7
PB
2356 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2357 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2358 start, end, end - start,
2359 ((prot & PAGE_READ) ? 'r' : '-'),
2360 ((prot & PAGE_WRITE) ? 'w' : '-'),
2361 ((prot & PAGE_EXEC) ? 'x' : '-'));
2362
2363 return (0);
2364}
2365
2366/* dump memory mappings */
2367void page_dump(FILE *f)
2368{
2369 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2370 "start", "end", "size", "prot");
2371 walk_memory_regions(f, dump_region);
33417e70
FB
2372}
2373
53a5960a 2374int page_get_flags(target_ulong address)
33417e70 2375{
9fa3e853
FB
2376 PageDesc *p;
2377
2378 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2379 if (!p)
9fa3e853
FB
2380 return 0;
2381 return p->flags;
2382}
2383
376a7909
RH
2384/* Modify the flags of a page and invalidate the code if necessary.
2385 The flag PAGE_WRITE_ORG is positioned automatically depending
2386 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2387void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2388{
376a7909
RH
2389 target_ulong addr, len;
2390
2391 /* This function should never be called with addresses outside the
2392 guest address space. If this assert fires, it probably indicates
2393 a missing call to h2g_valid. */
b480d9b7
PB
2394#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2395 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2396#endif
2397 assert(start < end);
9fa3e853
FB
2398
2399 start = start & TARGET_PAGE_MASK;
2400 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2401
2402 if (flags & PAGE_WRITE) {
9fa3e853 2403 flags |= PAGE_WRITE_ORG;
376a7909
RH
2404 }
2405
2406 for (addr = start, len = end - start;
2407 len != 0;
2408 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2409 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2410
2411 /* If the write protection bit is set, then we invalidate
2412 the code inside. */
5fafdf24 2413 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2414 (flags & PAGE_WRITE) &&
2415 p->first_tb) {
d720b93d 2416 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2417 }
2418 p->flags = flags;
2419 }
33417e70
FB
2420}
2421
3d97b40b
TS
2422int page_check_range(target_ulong start, target_ulong len, int flags)
2423{
2424 PageDesc *p;
2425 target_ulong end;
2426 target_ulong addr;
2427
376a7909
RH
2428 /* This function should never be called with addresses outside the
2429 guest address space. If this assert fires, it probably indicates
2430 a missing call to h2g_valid. */
338e9e6c
BS
2431#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2432 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2433#endif
2434
3e0650a9
RH
2435 if (len == 0) {
2436 return 0;
2437 }
376a7909
RH
2438 if (start + len - 1 < start) {
2439 /* We've wrapped around. */
55f280c9 2440 return -1;
376a7909 2441 }
55f280c9 2442
3d97b40b
TS
2443 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2444 start = start & TARGET_PAGE_MASK;
2445
376a7909
RH
2446 for (addr = start, len = end - start;
2447 len != 0;
2448 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2449 p = page_find(addr >> TARGET_PAGE_BITS);
2450 if( !p )
2451 return -1;
2452 if( !(p->flags & PAGE_VALID) )
2453 return -1;
2454
dae3270c 2455 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2456 return -1;
dae3270c
FB
2457 if (flags & PAGE_WRITE) {
2458 if (!(p->flags & PAGE_WRITE_ORG))
2459 return -1;
2460 /* unprotect the page if it was put read-only because it
2461 contains translated code */
2462 if (!(p->flags & PAGE_WRITE)) {
2463 if (!page_unprotect(addr, 0, NULL))
2464 return -1;
2465 }
2466 return 0;
2467 }
3d97b40b
TS
2468 }
2469 return 0;
2470}
2471
9fa3e853 2472/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2473 page. Return TRUE if the fault was successfully handled. */
53a5960a 2474int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2475{
45d679d6
AJ
2476 unsigned int prot;
2477 PageDesc *p;
53a5960a 2478 target_ulong host_start, host_end, addr;
9fa3e853 2479
c8a706fe
PB
2480 /* Technically this isn't safe inside a signal handler. However we
2481 know this only ever happens in a synchronous SEGV handler, so in
2482 practice it seems to be ok. */
2483 mmap_lock();
2484
45d679d6
AJ
2485 p = page_find(address >> TARGET_PAGE_BITS);
2486 if (!p) {
c8a706fe 2487 mmap_unlock();
9fa3e853 2488 return 0;
c8a706fe 2489 }
45d679d6 2490
9fa3e853
FB
2491 /* if the page was really writable, then we change its
2492 protection back to writable */
45d679d6
AJ
2493 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2494 host_start = address & qemu_host_page_mask;
2495 host_end = host_start + qemu_host_page_size;
2496
2497 prot = 0;
2498 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2499 p = page_find(addr >> TARGET_PAGE_BITS);
2500 p->flags |= PAGE_WRITE;
2501 prot |= p->flags;
2502
9fa3e853
FB
2503 /* and since the content will be modified, we must invalidate
2504 the corresponding translated code. */
45d679d6 2505 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2506#ifdef DEBUG_TB_CHECK
45d679d6 2507 tb_invalidate_check(addr);
9fa3e853 2508#endif
9fa3e853 2509 }
45d679d6
AJ
2510 mprotect((void *)g2h(host_start), qemu_host_page_size,
2511 prot & PAGE_BITS);
2512
2513 mmap_unlock();
2514 return 1;
9fa3e853 2515 }
c8a706fe 2516 mmap_unlock();
9fa3e853
FB
2517 return 0;
2518}
2519
6a00d601
FB
2520static inline void tlb_set_dirty(CPUState *env,
2521 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2522{
2523}
9fa3e853
FB
2524#endif /* defined(CONFIG_USER_ONLY) */
2525
e2eef170 2526#if !defined(CONFIG_USER_ONLY)
8da3ff18 2527
c04b2b78
PB
2528#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2529typedef struct subpage_t {
2530 target_phys_addr_t base;
f6405247
RH
2531 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2532 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2533} subpage_t;
2534
c227f099
AL
2535static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2536 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2537static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2538 ram_addr_t orig_memory,
2539 ram_addr_t region_offset);
db7b5426
BS
2540#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2541 need_subpage) \
2542 do { \
2543 if (addr > start_addr) \
2544 start_addr2 = 0; \
2545 else { \
2546 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2547 if (start_addr2 > 0) \
2548 need_subpage = 1; \
2549 } \
2550 \
49e9fba2 2551 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2552 end_addr2 = TARGET_PAGE_SIZE - 1; \
2553 else { \
2554 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2555 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2556 need_subpage = 1; \
2557 } \
2558 } while (0)
2559
8f2498f9
MT
2560/* register physical memory.
2561 For RAM, 'size' must be a multiple of the target page size.
2562 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2563 io memory page. The address used when calling the IO function is
2564 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2565 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2566 before calculating this offset. This should not be a problem unless
2567 the low bits of start_addr and region_offset differ. */
c227f099
AL
2568void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2569 ram_addr_t size,
2570 ram_addr_t phys_offset,
2571 ram_addr_t region_offset)
33417e70 2572{
c227f099 2573 target_phys_addr_t addr, end_addr;
92e873b9 2574 PhysPageDesc *p;
9d42037b 2575 CPUState *env;
c227f099 2576 ram_addr_t orig_size = size;
f6405247 2577 subpage_t *subpage;
33417e70 2578
f6f3fbca
MT
2579 cpu_notify_set_memory(start_addr, size, phys_offset);
2580
67c4d23c
PB
2581 if (phys_offset == IO_MEM_UNASSIGNED) {
2582 region_offset = start_addr;
2583 }
8da3ff18 2584 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2585 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2586 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2587 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2588 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2589 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2590 ram_addr_t orig_memory = p->phys_offset;
2591 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2592 int need_subpage = 0;
2593
2594 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2595 need_subpage);
f6405247 2596 if (need_subpage) {
db7b5426
BS
2597 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2598 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2599 &p->phys_offset, orig_memory,
2600 p->region_offset);
db7b5426
BS
2601 } else {
2602 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2603 >> IO_MEM_SHIFT];
2604 }
8da3ff18
PB
2605 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2606 region_offset);
2607 p->region_offset = 0;
db7b5426
BS
2608 } else {
2609 p->phys_offset = phys_offset;
2610 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2611 (phys_offset & IO_MEM_ROMD))
2612 phys_offset += TARGET_PAGE_SIZE;
2613 }
2614 } else {
2615 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2616 p->phys_offset = phys_offset;
8da3ff18 2617 p->region_offset = region_offset;
db7b5426 2618 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2619 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2620 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2621 } else {
c227f099 2622 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2623 int need_subpage = 0;
2624
2625 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2626 end_addr2, need_subpage);
2627
f6405247 2628 if (need_subpage) {
db7b5426 2629 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2630 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2631 addr & TARGET_PAGE_MASK);
db7b5426 2632 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2633 phys_offset, region_offset);
2634 p->region_offset = 0;
db7b5426
BS
2635 }
2636 }
2637 }
8da3ff18 2638 region_offset += TARGET_PAGE_SIZE;
33417e70 2639 }
3b46e624 2640
9d42037b
FB
2641 /* since each CPU stores ram addresses in its TLB cache, we must
2642 reset the modified entries */
2643 /* XXX: slow ! */
2644 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2645 tlb_flush(env, 1);
2646 }
33417e70
FB
2647}
2648
ba863458 2649/* XXX: temporary until new memory mapping API */
c227f099 2650ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2651{
2652 PhysPageDesc *p;
2653
2654 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2655 if (!p)
2656 return IO_MEM_UNASSIGNED;
2657 return p->phys_offset;
2658}
2659
c227f099 2660void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2661{
2662 if (kvm_enabled())
2663 kvm_coalesce_mmio_region(addr, size);
2664}
2665
c227f099 2666void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2667{
2668 if (kvm_enabled())
2669 kvm_uncoalesce_mmio_region(addr, size);
2670}
2671
62a2744c
SY
2672void qemu_flush_coalesced_mmio_buffer(void)
2673{
2674 if (kvm_enabled())
2675 kvm_flush_coalesced_mmio_buffer();
2676}
2677
c902760f
MT
2678#if defined(__linux__) && !defined(TARGET_S390X)
2679
2680#include <sys/vfs.h>
2681
2682#define HUGETLBFS_MAGIC 0x958458f6
2683
2684static long gethugepagesize(const char *path)
2685{
2686 struct statfs fs;
2687 int ret;
2688
2689 do {
9742bf26 2690 ret = statfs(path, &fs);
c902760f
MT
2691 } while (ret != 0 && errno == EINTR);
2692
2693 if (ret != 0) {
9742bf26
YT
2694 perror(path);
2695 return 0;
c902760f
MT
2696 }
2697
2698 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2699 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2700
2701 return fs.f_bsize;
2702}
2703
04b16653
AW
2704static void *file_ram_alloc(RAMBlock *block,
2705 ram_addr_t memory,
2706 const char *path)
c902760f
MT
2707{
2708 char *filename;
2709 void *area;
2710 int fd;
2711#ifdef MAP_POPULATE
2712 int flags;
2713#endif
2714 unsigned long hpagesize;
2715
2716 hpagesize = gethugepagesize(path);
2717 if (!hpagesize) {
9742bf26 2718 return NULL;
c902760f
MT
2719 }
2720
2721 if (memory < hpagesize) {
2722 return NULL;
2723 }
2724
2725 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2726 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2727 return NULL;
2728 }
2729
2730 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2731 return NULL;
c902760f
MT
2732 }
2733
2734 fd = mkstemp(filename);
2735 if (fd < 0) {
9742bf26
YT
2736 perror("unable to create backing store for hugepages");
2737 free(filename);
2738 return NULL;
c902760f
MT
2739 }
2740 unlink(filename);
2741 free(filename);
2742
2743 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2744
2745 /*
2746 * ftruncate is not supported by hugetlbfs in older
2747 * hosts, so don't bother bailing out on errors.
2748 * If anything goes wrong with it under other filesystems,
2749 * mmap will fail.
2750 */
2751 if (ftruncate(fd, memory))
9742bf26 2752 perror("ftruncate");
c902760f
MT
2753
2754#ifdef MAP_POPULATE
2755 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2756 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2757 * to sidestep this quirk.
2758 */
2759 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2760 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2761#else
2762 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2763#endif
2764 if (area == MAP_FAILED) {
9742bf26
YT
2765 perror("file_ram_alloc: can't mmap RAM pages");
2766 close(fd);
2767 return (NULL);
c902760f 2768 }
04b16653 2769 block->fd = fd;
c902760f
MT
2770 return area;
2771}
2772#endif
2773
d17b5288 2774static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2775{
2776 RAMBlock *block, *next_block;
09d7ae90 2777 ram_addr_t offset = 0, mingap = ULONG_MAX;
04b16653
AW
2778
2779 if (QLIST_EMPTY(&ram_list.blocks))
2780 return 0;
2781
2782 QLIST_FOREACH(block, &ram_list.blocks, next) {
2783 ram_addr_t end, next = ULONG_MAX;
2784
2785 end = block->offset + block->length;
2786
2787 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2788 if (next_block->offset >= end) {
2789 next = MIN(next, next_block->offset);
2790 }
2791 }
2792 if (next - end >= size && next - end < mingap) {
2793 offset = end;
2794 mingap = next - end;
2795 }
2796 }
2797 return offset;
2798}
2799
2800static ram_addr_t last_ram_offset(void)
d17b5288
AW
2801{
2802 RAMBlock *block;
2803 ram_addr_t last = 0;
2804
2805 QLIST_FOREACH(block, &ram_list.blocks, next)
2806 last = MAX(last, block->offset + block->length);
2807
2808 return last;
2809}
2810
84b89d78
CM
2811ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2812 ram_addr_t size, void *host)
2813{
2814 RAMBlock *new_block, *block;
2815
2816 size = TARGET_PAGE_ALIGN(size);
2817 new_block = qemu_mallocz(sizeof(*new_block));
2818
2819 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2820 char *id = dev->parent_bus->info->get_dev_path(dev);
2821 if (id) {
2822 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2823 qemu_free(id);
2824 }
2825 }
2826 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2827
2828 QLIST_FOREACH(block, &ram_list.blocks, next) {
2829 if (!strcmp(block->idstr, new_block->idstr)) {
2830 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2831 new_block->idstr);
2832 abort();
2833 }
2834 }
2835
2836 new_block->host = host;
2837
2838 new_block->offset = find_ram_offset(size);
2839 new_block->length = size;
2840
2841 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2842
2843 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2844 last_ram_offset() >> TARGET_PAGE_BITS);
2845 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2846 0xff, size >> TARGET_PAGE_BITS);
2847
2848 if (kvm_enabled())
2849 kvm_setup_guest_memory(new_block->host, size);
2850
2851 return new_block->offset;
2852}
2853
1724f049 2854ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
94a6b54f 2855{
cc9e98cb 2856 RAMBlock *new_block, *block;
94a6b54f 2857
94a6b54f 2858 size = TARGET_PAGE_ALIGN(size);
cc9e98cb
AW
2859 new_block = qemu_mallocz(sizeof(*new_block));
2860
2861 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2862 char *id = dev->parent_bus->info->get_dev_path(dev);
2863 if (id) {
2864 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2865 qemu_free(id);
2866 }
2867 }
2868 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2869
2870 QLIST_FOREACH(block, &ram_list.blocks, next) {
2871 if (!strcmp(block->idstr, new_block->idstr)) {
fb787f81
AW
2872 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2873 new_block->idstr);
2874 abort();
cc9e98cb
AW
2875 }
2876 }
94a6b54f 2877
c902760f
MT
2878 if (mem_path) {
2879#if defined (__linux__) && !defined(TARGET_S390X)
04b16653 2880 new_block->host = file_ram_alloc(new_block, size, mem_path);
618a568d
MT
2881 if (!new_block->host) {
2882 new_block->host = qemu_vmalloc(size);
2883#ifdef MADV_MERGEABLE
2884 madvise(new_block->host, size, MADV_MERGEABLE);
2885#endif
2886 }
c902760f
MT
2887#else
2888 fprintf(stderr, "-mem-path option unsupported\n");
2889 exit(1);
2890#endif
2891 } else {
6b02494d 2892#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2893 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2894 new_block->host = mmap((void*)0x1000000, size,
2895 PROT_EXEC|PROT_READ|PROT_WRITE,
2896 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2897#else
c902760f 2898 new_block->host = qemu_vmalloc(size);
6b02494d 2899#endif
ccb167e9 2900#ifdef MADV_MERGEABLE
c902760f 2901 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2902#endif
c902760f 2903 }
d17b5288 2904 new_block->offset = find_ram_offset(size);
94a6b54f
PB
2905 new_block->length = size;
2906
f471a17e 2907 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2908
f471a17e 2909 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
04b16653 2910 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2911 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2912 0xff, size >> TARGET_PAGE_BITS);
2913
6f0437e8
JK
2914 if (kvm_enabled())
2915 kvm_setup_guest_memory(new_block->host, size);
2916
94a6b54f
PB
2917 return new_block->offset;
2918}
e9a1ab19 2919
c227f099 2920void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2921{
04b16653
AW
2922 RAMBlock *block;
2923
2924 QLIST_FOREACH(block, &ram_list.blocks, next) {
2925 if (addr == block->offset) {
2926 QLIST_REMOVE(block, next);
2927 if (mem_path) {
2928#if defined (__linux__) && !defined(TARGET_S390X)
2929 if (block->fd) {
2930 munmap(block->host, block->length);
2931 close(block->fd);
2932 } else {
2933 qemu_vfree(block->host);
2934 }
2935#endif
2936 } else {
2937#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2938 munmap(block->host, block->length);
2939#else
2940 qemu_vfree(block->host);
2941#endif
2942 }
2943 qemu_free(block);
2944 return;
2945 }
2946 }
2947
e9a1ab19
FB
2948}
2949
dc828ca1 2950/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2951 With the exception of the softmmu code in this file, this should
2952 only be used for local memory (e.g. video ram) that the device owns,
2953 and knows it isn't going to access beyond the end of the block.
2954
2955 It should not be used for general purpose DMA.
2956 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2957 */
c227f099 2958void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2959{
94a6b54f
PB
2960 RAMBlock *block;
2961
f471a17e
AW
2962 QLIST_FOREACH(block, &ram_list.blocks, next) {
2963 if (addr - block->offset < block->length) {
2964 QLIST_REMOVE(block, next);
2965 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2966 return block->host + (addr - block->offset);
2967 }
94a6b54f 2968 }
f471a17e
AW
2969
2970 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2971 abort();
2972
2973 return NULL;
dc828ca1
PB
2974}
2975
5579c7f3
PB
2976/* Some of the softmmu routines need to translate from a host pointer
2977 (typically a TLB entry) back to a ram offset. */
c227f099 2978ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2979{
94a6b54f
PB
2980 RAMBlock *block;
2981 uint8_t *host = ptr;
2982
f471a17e
AW
2983 QLIST_FOREACH(block, &ram_list.blocks, next) {
2984 if (host - block->host < block->length) {
2985 return block->offset + (host - block->host);
2986 }
94a6b54f 2987 }
f471a17e
AW
2988
2989 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2990 abort();
2991
2992 return 0;
5579c7f3
PB
2993}
2994
c227f099 2995static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2996{
67d3b957 2997#ifdef DEBUG_UNASSIGNED
ab3d1727 2998 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2999#endif
faed1c2a 3000#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3001 do_unassigned_access(addr, 0, 0, 0, 1);
3002#endif
3003 return 0;
3004}
3005
c227f099 3006static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3007{
3008#ifdef DEBUG_UNASSIGNED
3009 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3010#endif
faed1c2a 3011#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3012 do_unassigned_access(addr, 0, 0, 0, 2);
3013#endif
3014 return 0;
3015}
3016
c227f099 3017static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3018{
3019#ifdef DEBUG_UNASSIGNED
3020 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3021#endif
faed1c2a 3022#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3023 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 3024#endif
33417e70
FB
3025 return 0;
3026}
3027
c227f099 3028static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3029{
67d3b957 3030#ifdef DEBUG_UNASSIGNED
ab3d1727 3031 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3032#endif
faed1c2a 3033#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3034 do_unassigned_access(addr, 1, 0, 0, 1);
3035#endif
3036}
3037
c227f099 3038static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3039{
3040#ifdef DEBUG_UNASSIGNED
3041 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3042#endif
faed1c2a 3043#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3044 do_unassigned_access(addr, 1, 0, 0, 2);
3045#endif
3046}
3047
c227f099 3048static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3049{
3050#ifdef DEBUG_UNASSIGNED
3051 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3052#endif
faed1c2a 3053#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3054 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 3055#endif
33417e70
FB
3056}
3057
d60efc6b 3058static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3059 unassigned_mem_readb,
e18231a3
BS
3060 unassigned_mem_readw,
3061 unassigned_mem_readl,
33417e70
FB
3062};
3063
d60efc6b 3064static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3065 unassigned_mem_writeb,
e18231a3
BS
3066 unassigned_mem_writew,
3067 unassigned_mem_writel,
33417e70
FB
3068};
3069
c227f099 3070static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3071 uint32_t val)
9fa3e853 3072{
3a7d929e 3073 int dirty_flags;
f7c11b53 3074 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3075 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3076#if !defined(CONFIG_USER_ONLY)
3a7d929e 3077 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3078 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3079#endif
3a7d929e 3080 }
5579c7f3 3081 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3082 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3083 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3084 /* we remove the notdirty callback only if the code has been
3085 flushed */
3086 if (dirty_flags == 0xff)
2e70f6ef 3087 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3088}
3089
c227f099 3090static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3091 uint32_t val)
9fa3e853 3092{
3a7d929e 3093 int dirty_flags;
f7c11b53 3094 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3095 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3096#if !defined(CONFIG_USER_ONLY)
3a7d929e 3097 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3098 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3099#endif
3a7d929e 3100 }
5579c7f3 3101 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3102 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3103 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3104 /* we remove the notdirty callback only if the code has been
3105 flushed */
3106 if (dirty_flags == 0xff)
2e70f6ef 3107 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3108}
3109
c227f099 3110static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3111 uint32_t val)
9fa3e853 3112{
3a7d929e 3113 int dirty_flags;
f7c11b53 3114 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3115 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3116#if !defined(CONFIG_USER_ONLY)
3a7d929e 3117 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3118 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3119#endif
3a7d929e 3120 }
5579c7f3 3121 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3122 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3123 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3124 /* we remove the notdirty callback only if the code has been
3125 flushed */
3126 if (dirty_flags == 0xff)
2e70f6ef 3127 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3128}
3129
d60efc6b 3130static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3131 NULL, /* never used */
3132 NULL, /* never used */
3133 NULL, /* never used */
3134};
3135
d60efc6b 3136static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3137 notdirty_mem_writeb,
3138 notdirty_mem_writew,
3139 notdirty_mem_writel,
3140};
3141
0f459d16 3142/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3143static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3144{
3145 CPUState *env = cpu_single_env;
06d55cc1
AL
3146 target_ulong pc, cs_base;
3147 TranslationBlock *tb;
0f459d16 3148 target_ulong vaddr;
a1d1bb31 3149 CPUWatchpoint *wp;
06d55cc1 3150 int cpu_flags;
0f459d16 3151
06d55cc1
AL
3152 if (env->watchpoint_hit) {
3153 /* We re-entered the check after replacing the TB. Now raise
3154 * the debug interrupt so that is will trigger after the
3155 * current instruction. */
3156 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3157 return;
3158 }
2e70f6ef 3159 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3160 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3161 if ((vaddr == (wp->vaddr & len_mask) ||
3162 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3163 wp->flags |= BP_WATCHPOINT_HIT;
3164 if (!env->watchpoint_hit) {
3165 env->watchpoint_hit = wp;
3166 tb = tb_find_pc(env->mem_io_pc);
3167 if (!tb) {
3168 cpu_abort(env, "check_watchpoint: could not find TB for "
3169 "pc=%p", (void *)env->mem_io_pc);
3170 }
3171 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3172 tb_phys_invalidate(tb, -1);
3173 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3174 env->exception_index = EXCP_DEBUG;
3175 } else {
3176 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3177 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3178 }
3179 cpu_resume_from_signal(env, NULL);
06d55cc1 3180 }
6e140f28
AL
3181 } else {
3182 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3183 }
3184 }
3185}
3186
6658ffb8
PB
3187/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3188 so these check for a hit then pass through to the normal out-of-line
3189 phys routines. */
c227f099 3190static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3191{
b4051334 3192 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3193 return ldub_phys(addr);
3194}
3195
c227f099 3196static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3197{
b4051334 3198 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3199 return lduw_phys(addr);
3200}
3201
c227f099 3202static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3203{
b4051334 3204 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3205 return ldl_phys(addr);
3206}
3207
c227f099 3208static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3209 uint32_t val)
3210{
b4051334 3211 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3212 stb_phys(addr, val);
3213}
3214
c227f099 3215static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3216 uint32_t val)
3217{
b4051334 3218 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3219 stw_phys(addr, val);
3220}
3221
c227f099 3222static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3223 uint32_t val)
3224{
b4051334 3225 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3226 stl_phys(addr, val);
3227}
3228
d60efc6b 3229static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3230 watch_mem_readb,
3231 watch_mem_readw,
3232 watch_mem_readl,
3233};
3234
d60efc6b 3235static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3236 watch_mem_writeb,
3237 watch_mem_writew,
3238 watch_mem_writel,
3239};
6658ffb8 3240
f6405247
RH
3241static inline uint32_t subpage_readlen (subpage_t *mmio,
3242 target_phys_addr_t addr,
3243 unsigned int len)
db7b5426 3244{
f6405247 3245 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3246#if defined(DEBUG_SUBPAGE)
3247 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3248 mmio, len, addr, idx);
3249#endif
db7b5426 3250
f6405247
RH
3251 addr += mmio->region_offset[idx];
3252 idx = mmio->sub_io_index[idx];
3253 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3254}
3255
c227f099 3256static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3257 uint32_t value, unsigned int len)
db7b5426 3258{
f6405247 3259 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3260#if defined(DEBUG_SUBPAGE)
f6405247
RH
3261 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3262 __func__, mmio, len, addr, idx, value);
db7b5426 3263#endif
f6405247
RH
3264
3265 addr += mmio->region_offset[idx];
3266 idx = mmio->sub_io_index[idx];
3267 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3268}
3269
c227f099 3270static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3271{
db7b5426
BS
3272 return subpage_readlen(opaque, addr, 0);
3273}
3274
c227f099 3275static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3276 uint32_t value)
3277{
db7b5426
BS
3278 subpage_writelen(opaque, addr, value, 0);
3279}
3280
c227f099 3281static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3282{
db7b5426
BS
3283 return subpage_readlen(opaque, addr, 1);
3284}
3285
c227f099 3286static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3287 uint32_t value)
3288{
db7b5426
BS
3289 subpage_writelen(opaque, addr, value, 1);
3290}
3291
c227f099 3292static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3293{
db7b5426
BS
3294 return subpage_readlen(opaque, addr, 2);
3295}
3296
f6405247
RH
3297static void subpage_writel (void *opaque, target_phys_addr_t addr,
3298 uint32_t value)
db7b5426 3299{
db7b5426
BS
3300 subpage_writelen(opaque, addr, value, 2);
3301}
3302
d60efc6b 3303static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3304 &subpage_readb,
3305 &subpage_readw,
3306 &subpage_readl,
3307};
3308
d60efc6b 3309static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3310 &subpage_writeb,
3311 &subpage_writew,
3312 &subpage_writel,
3313};
3314
c227f099
AL
3315static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3316 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3317{
3318 int idx, eidx;
3319
3320 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3321 return -1;
3322 idx = SUBPAGE_IDX(start);
3323 eidx = SUBPAGE_IDX(end);
3324#if defined(DEBUG_SUBPAGE)
0bf9e31a 3325 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3326 mmio, start, end, idx, eidx, memory);
3327#endif
f6405247 3328 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3329 for (; idx <= eidx; idx++) {
f6405247
RH
3330 mmio->sub_io_index[idx] = memory;
3331 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3332 }
3333
3334 return 0;
3335}
3336
f6405247
RH
3337static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3338 ram_addr_t orig_memory,
3339 ram_addr_t region_offset)
db7b5426 3340{
c227f099 3341 subpage_t *mmio;
db7b5426
BS
3342 int subpage_memory;
3343
c227f099 3344 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3345
3346 mmio->base = base;
1eed09cb 3347 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3348#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3349 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3350 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3351#endif
1eec614b 3352 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3353 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3354
3355 return mmio;
3356}
3357
88715657
AL
3358static int get_free_io_mem_idx(void)
3359{
3360 int i;
3361
3362 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3363 if (!io_mem_used[i]) {
3364 io_mem_used[i] = 1;
3365 return i;
3366 }
c6703b47 3367 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3368 return -1;
3369}
3370
33417e70
FB
3371/* mem_read and mem_write are arrays of functions containing the
3372 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3373 2). Functions can be omitted with a NULL function pointer.
3ee89922 3374 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3375 modified. If it is zero, a new io zone is allocated. The return
3376 value can be used with cpu_register_physical_memory(). (-1) is
3377 returned if error. */
1eed09cb 3378static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3379 CPUReadMemoryFunc * const *mem_read,
3380 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3381 void *opaque)
33417e70 3382{
3cab721d
RH
3383 int i;
3384
33417e70 3385 if (io_index <= 0) {
88715657
AL
3386 io_index = get_free_io_mem_idx();
3387 if (io_index == -1)
3388 return io_index;
33417e70 3389 } else {
1eed09cb 3390 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3391 if (io_index >= IO_MEM_NB_ENTRIES)
3392 return -1;
3393 }
b5ff1b31 3394
3cab721d
RH
3395 for (i = 0; i < 3; ++i) {
3396 io_mem_read[io_index][i]
3397 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3398 }
3399 for (i = 0; i < 3; ++i) {
3400 io_mem_write[io_index][i]
3401 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3402 }
a4193c8a 3403 io_mem_opaque[io_index] = opaque;
f6405247
RH
3404
3405 return (io_index << IO_MEM_SHIFT);
33417e70 3406}
61382a50 3407
d60efc6b
BS
3408int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3409 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3410 void *opaque)
3411{
3412 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3413}
3414
88715657
AL
3415void cpu_unregister_io_memory(int io_table_address)
3416{
3417 int i;
3418 int io_index = io_table_address >> IO_MEM_SHIFT;
3419
3420 for (i=0;i < 3; i++) {
3421 io_mem_read[io_index][i] = unassigned_mem_read[i];
3422 io_mem_write[io_index][i] = unassigned_mem_write[i];
3423 }
3424 io_mem_opaque[io_index] = NULL;
3425 io_mem_used[io_index] = 0;
3426}
3427
e9179ce1
AK
3428static void io_mem_init(void)
3429{
3430 int i;
3431
3432 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3433 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3434 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3435 for (i=0; i<5; i++)
3436 io_mem_used[i] = 1;
3437
3438 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3439 watch_mem_write, NULL);
e9179ce1
AK
3440}
3441
e2eef170
PB
3442#endif /* !defined(CONFIG_USER_ONLY) */
3443
13eb76e0
FB
3444/* physical memory access (slow version, mainly for debug) */
3445#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3446int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3447 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3448{
3449 int l, flags;
3450 target_ulong page;
53a5960a 3451 void * p;
13eb76e0
FB
3452
3453 while (len > 0) {
3454 page = addr & TARGET_PAGE_MASK;
3455 l = (page + TARGET_PAGE_SIZE) - addr;
3456 if (l > len)
3457 l = len;
3458 flags = page_get_flags(page);
3459 if (!(flags & PAGE_VALID))
a68fe89c 3460 return -1;
13eb76e0
FB
3461 if (is_write) {
3462 if (!(flags & PAGE_WRITE))
a68fe89c 3463 return -1;
579a97f7 3464 /* XXX: this code should not depend on lock_user */
72fb7daa 3465 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3466 return -1;
72fb7daa
AJ
3467 memcpy(p, buf, l);
3468 unlock_user(p, addr, l);
13eb76e0
FB
3469 } else {
3470 if (!(flags & PAGE_READ))
a68fe89c 3471 return -1;
579a97f7 3472 /* XXX: this code should not depend on lock_user */
72fb7daa 3473 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3474 return -1;
72fb7daa 3475 memcpy(buf, p, l);
5b257578 3476 unlock_user(p, addr, 0);
13eb76e0
FB
3477 }
3478 len -= l;
3479 buf += l;
3480 addr += l;
3481 }
a68fe89c 3482 return 0;
13eb76e0 3483}
8df1cd07 3484
13eb76e0 3485#else
c227f099 3486void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3487 int len, int is_write)
3488{
3489 int l, io_index;
3490 uint8_t *ptr;
3491 uint32_t val;
c227f099 3492 target_phys_addr_t page;
2e12669a 3493 unsigned long pd;
92e873b9 3494 PhysPageDesc *p;
3b46e624 3495
13eb76e0
FB
3496 while (len > 0) {
3497 page = addr & TARGET_PAGE_MASK;
3498 l = (page + TARGET_PAGE_SIZE) - addr;
3499 if (l > len)
3500 l = len;
92e873b9 3501 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3502 if (!p) {
3503 pd = IO_MEM_UNASSIGNED;
3504 } else {
3505 pd = p->phys_offset;
3506 }
3b46e624 3507
13eb76e0 3508 if (is_write) {
3a7d929e 3509 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3510 target_phys_addr_t addr1 = addr;
13eb76e0 3511 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3512 if (p)
6c2934db 3513 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3514 /* XXX: could force cpu_single_env to NULL to avoid
3515 potential bugs */
6c2934db 3516 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3517 /* 32 bit write access */
c27004ec 3518 val = ldl_p(buf);
6c2934db 3519 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3520 l = 4;
6c2934db 3521 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3522 /* 16 bit write access */
c27004ec 3523 val = lduw_p(buf);
6c2934db 3524 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3525 l = 2;
3526 } else {
1c213d19 3527 /* 8 bit write access */
c27004ec 3528 val = ldub_p(buf);
6c2934db 3529 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3530 l = 1;
3531 }
3532 } else {
b448f2f3
FB
3533 unsigned long addr1;
3534 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3535 /* RAM case */
5579c7f3 3536 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3537 memcpy(ptr, buf, l);
3a7d929e
FB
3538 if (!cpu_physical_memory_is_dirty(addr1)) {
3539 /* invalidate code */
3540 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3541 /* set dirty bit */
f7c11b53
YT
3542 cpu_physical_memory_set_dirty_flags(
3543 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3544 }
13eb76e0
FB
3545 }
3546 } else {
5fafdf24 3547 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3548 !(pd & IO_MEM_ROMD)) {
c227f099 3549 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3550 /* I/O case */
3551 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3552 if (p)
6c2934db
AJ
3553 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3554 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3555 /* 32 bit read access */
6c2934db 3556 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3557 stl_p(buf, val);
13eb76e0 3558 l = 4;
6c2934db 3559 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3560 /* 16 bit read access */
6c2934db 3561 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3562 stw_p(buf, val);
13eb76e0
FB
3563 l = 2;
3564 } else {
1c213d19 3565 /* 8 bit read access */
6c2934db 3566 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3567 stb_p(buf, val);
13eb76e0
FB
3568 l = 1;
3569 }
3570 } else {
3571 /* RAM case */
5579c7f3 3572 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3573 (addr & ~TARGET_PAGE_MASK);
3574 memcpy(buf, ptr, l);
3575 }
3576 }
3577 len -= l;
3578 buf += l;
3579 addr += l;
3580 }
3581}
8df1cd07 3582
d0ecd2aa 3583/* used for ROM loading : can write in RAM and ROM */
c227f099 3584void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3585 const uint8_t *buf, int len)
3586{
3587 int l;
3588 uint8_t *ptr;
c227f099 3589 target_phys_addr_t page;
d0ecd2aa
FB
3590 unsigned long pd;
3591 PhysPageDesc *p;
3b46e624 3592
d0ecd2aa
FB
3593 while (len > 0) {
3594 page = addr & TARGET_PAGE_MASK;
3595 l = (page + TARGET_PAGE_SIZE) - addr;
3596 if (l > len)
3597 l = len;
3598 p = phys_page_find(page >> TARGET_PAGE_BITS);
3599 if (!p) {
3600 pd = IO_MEM_UNASSIGNED;
3601 } else {
3602 pd = p->phys_offset;
3603 }
3b46e624 3604
d0ecd2aa 3605 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3606 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3607 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3608 /* do nothing */
3609 } else {
3610 unsigned long addr1;
3611 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3612 /* ROM/RAM case */
5579c7f3 3613 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3614 memcpy(ptr, buf, l);
3615 }
3616 len -= l;
3617 buf += l;
3618 addr += l;
3619 }
3620}
3621
6d16c2f8
AL
3622typedef struct {
3623 void *buffer;
c227f099
AL
3624 target_phys_addr_t addr;
3625 target_phys_addr_t len;
6d16c2f8
AL
3626} BounceBuffer;
3627
3628static BounceBuffer bounce;
3629
ba223c29
AL
3630typedef struct MapClient {
3631 void *opaque;
3632 void (*callback)(void *opaque);
72cf2d4f 3633 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3634} MapClient;
3635
72cf2d4f
BS
3636static QLIST_HEAD(map_client_list, MapClient) map_client_list
3637 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3638
3639void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3640{
3641 MapClient *client = qemu_malloc(sizeof(*client));
3642
3643 client->opaque = opaque;
3644 client->callback = callback;
72cf2d4f 3645 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3646 return client;
3647}
3648
3649void cpu_unregister_map_client(void *_client)
3650{
3651 MapClient *client = (MapClient *)_client;
3652
72cf2d4f 3653 QLIST_REMOVE(client, link);
34d5e948 3654 qemu_free(client);
ba223c29
AL
3655}
3656
3657static void cpu_notify_map_clients(void)
3658{
3659 MapClient *client;
3660
72cf2d4f
BS
3661 while (!QLIST_EMPTY(&map_client_list)) {
3662 client = QLIST_FIRST(&map_client_list);
ba223c29 3663 client->callback(client->opaque);
34d5e948 3664 cpu_unregister_map_client(client);
ba223c29
AL
3665 }
3666}
3667
6d16c2f8
AL
3668/* Map a physical memory region into a host virtual address.
3669 * May map a subset of the requested range, given by and returned in *plen.
3670 * May return NULL if resources needed to perform the mapping are exhausted.
3671 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3672 * Use cpu_register_map_client() to know when retrying the map operation is
3673 * likely to succeed.
6d16c2f8 3674 */
c227f099
AL
3675void *cpu_physical_memory_map(target_phys_addr_t addr,
3676 target_phys_addr_t *plen,
6d16c2f8
AL
3677 int is_write)
3678{
c227f099
AL
3679 target_phys_addr_t len = *plen;
3680 target_phys_addr_t done = 0;
6d16c2f8
AL
3681 int l;
3682 uint8_t *ret = NULL;
3683 uint8_t *ptr;
c227f099 3684 target_phys_addr_t page;
6d16c2f8
AL
3685 unsigned long pd;
3686 PhysPageDesc *p;
3687 unsigned long addr1;
3688
3689 while (len > 0) {
3690 page = addr & TARGET_PAGE_MASK;
3691 l = (page + TARGET_PAGE_SIZE) - addr;
3692 if (l > len)
3693 l = len;
3694 p = phys_page_find(page >> TARGET_PAGE_BITS);
3695 if (!p) {
3696 pd = IO_MEM_UNASSIGNED;
3697 } else {
3698 pd = p->phys_offset;
3699 }
3700
3701 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3702 if (done || bounce.buffer) {
3703 break;
3704 }
3705 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3706 bounce.addr = addr;
3707 bounce.len = l;
3708 if (!is_write) {
3709 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3710 }
3711 ptr = bounce.buffer;
3712 } else {
3713 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3714 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3715 }
3716 if (!done) {
3717 ret = ptr;
3718 } else if (ret + done != ptr) {
3719 break;
3720 }
3721
3722 len -= l;
3723 addr += l;
3724 done += l;
3725 }
3726 *plen = done;
3727 return ret;
3728}
3729
3730/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3731 * Will also mark the memory as dirty if is_write == 1. access_len gives
3732 * the amount of memory that was actually read or written by the caller.
3733 */
c227f099
AL
3734void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3735 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3736{
3737 if (buffer != bounce.buffer) {
3738 if (is_write) {
c227f099 3739 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3740 while (access_len) {
3741 unsigned l;
3742 l = TARGET_PAGE_SIZE;
3743 if (l > access_len)
3744 l = access_len;
3745 if (!cpu_physical_memory_is_dirty(addr1)) {
3746 /* invalidate code */
3747 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3748 /* set dirty bit */
f7c11b53
YT
3749 cpu_physical_memory_set_dirty_flags(
3750 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3751 }
3752 addr1 += l;
3753 access_len -= l;
3754 }
3755 }
3756 return;
3757 }
3758 if (is_write) {
3759 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3760 }
f8a83245 3761 qemu_vfree(bounce.buffer);
6d16c2f8 3762 bounce.buffer = NULL;
ba223c29 3763 cpu_notify_map_clients();
6d16c2f8 3764}
d0ecd2aa 3765
8df1cd07 3766/* warning: addr must be aligned */
c227f099 3767uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3768{
3769 int io_index;
3770 uint8_t *ptr;
3771 uint32_t val;
3772 unsigned long pd;
3773 PhysPageDesc *p;
3774
3775 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3776 if (!p) {
3777 pd = IO_MEM_UNASSIGNED;
3778 } else {
3779 pd = p->phys_offset;
3780 }
3b46e624 3781
5fafdf24 3782 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3783 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3784 /* I/O case */
3785 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3786 if (p)
3787 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3788 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3789 } else {
3790 /* RAM case */
5579c7f3 3791 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3792 (addr & ~TARGET_PAGE_MASK);
3793 val = ldl_p(ptr);
3794 }
3795 return val;
3796}
3797
84b7b8e7 3798/* warning: addr must be aligned */
c227f099 3799uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3800{
3801 int io_index;
3802 uint8_t *ptr;
3803 uint64_t val;
3804 unsigned long pd;
3805 PhysPageDesc *p;
3806
3807 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3808 if (!p) {
3809 pd = IO_MEM_UNASSIGNED;
3810 } else {
3811 pd = p->phys_offset;
3812 }
3b46e624 3813
2a4188a3
FB
3814 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3815 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3816 /* I/O case */
3817 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3818 if (p)
3819 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3820#ifdef TARGET_WORDS_BIGENDIAN
3821 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3822 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3823#else
3824 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3825 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3826#endif
3827 } else {
3828 /* RAM case */
5579c7f3 3829 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3830 (addr & ~TARGET_PAGE_MASK);
3831 val = ldq_p(ptr);
3832 }
3833 return val;
3834}
3835
aab33094 3836/* XXX: optimize */
c227f099 3837uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3838{
3839 uint8_t val;
3840 cpu_physical_memory_read(addr, &val, 1);
3841 return val;
3842}
3843
733f0b02 3844/* warning: addr must be aligned */
c227f099 3845uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 3846{
733f0b02
MT
3847 int io_index;
3848 uint8_t *ptr;
3849 uint64_t val;
3850 unsigned long pd;
3851 PhysPageDesc *p;
3852
3853 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3854 if (!p) {
3855 pd = IO_MEM_UNASSIGNED;
3856 } else {
3857 pd = p->phys_offset;
3858 }
3859
3860 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3861 !(pd & IO_MEM_ROMD)) {
3862 /* I/O case */
3863 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3864 if (p)
3865 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3866 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3867 } else {
3868 /* RAM case */
3869 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3870 (addr & ~TARGET_PAGE_MASK);
3871 val = lduw_p(ptr);
3872 }
3873 return val;
aab33094
FB
3874}
3875
8df1cd07
FB
3876/* warning: addr must be aligned. The ram page is not masked as dirty
3877 and the code inside is not invalidated. It is useful if the dirty
3878 bits are used to track modified PTEs */
c227f099 3879void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3880{
3881 int io_index;
3882 uint8_t *ptr;
3883 unsigned long pd;
3884 PhysPageDesc *p;
3885
3886 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3887 if (!p) {
3888 pd = IO_MEM_UNASSIGNED;
3889 } else {
3890 pd = p->phys_offset;
3891 }
3b46e624 3892
3a7d929e 3893 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3894 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3895 if (p)
3896 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3897 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3898 } else {
74576198 3899 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3900 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3901 stl_p(ptr, val);
74576198
AL
3902
3903 if (unlikely(in_migration)) {
3904 if (!cpu_physical_memory_is_dirty(addr1)) {
3905 /* invalidate code */
3906 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3907 /* set dirty bit */
f7c11b53
YT
3908 cpu_physical_memory_set_dirty_flags(
3909 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3910 }
3911 }
8df1cd07
FB
3912 }
3913}
3914
c227f099 3915void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3916{
3917 int io_index;
3918 uint8_t *ptr;
3919 unsigned long pd;
3920 PhysPageDesc *p;
3921
3922 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3923 if (!p) {
3924 pd = IO_MEM_UNASSIGNED;
3925 } else {
3926 pd = p->phys_offset;
3927 }
3b46e624 3928
bc98a7ef
JM
3929 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3930 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3931 if (p)
3932 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3933#ifdef TARGET_WORDS_BIGENDIAN
3934 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3935 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3936#else
3937 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3938 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3939#endif
3940 } else {
5579c7f3 3941 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3942 (addr & ~TARGET_PAGE_MASK);
3943 stq_p(ptr, val);
3944 }
3945}
3946
8df1cd07 3947/* warning: addr must be aligned */
c227f099 3948void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3949{
3950 int io_index;
3951 uint8_t *ptr;
3952 unsigned long pd;
3953 PhysPageDesc *p;
3954
3955 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3956 if (!p) {
3957 pd = IO_MEM_UNASSIGNED;
3958 } else {
3959 pd = p->phys_offset;
3960 }
3b46e624 3961
3a7d929e 3962 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3963 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3964 if (p)
3965 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3966 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3967 } else {
3968 unsigned long addr1;
3969 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3970 /* RAM case */
5579c7f3 3971 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3972 stl_p(ptr, val);
3a7d929e
FB
3973 if (!cpu_physical_memory_is_dirty(addr1)) {
3974 /* invalidate code */
3975 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3976 /* set dirty bit */
f7c11b53
YT
3977 cpu_physical_memory_set_dirty_flags(addr1,
3978 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3979 }
8df1cd07
FB
3980 }
3981}
3982
aab33094 3983/* XXX: optimize */
c227f099 3984void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3985{
3986 uint8_t v = val;
3987 cpu_physical_memory_write(addr, &v, 1);
3988}
3989
733f0b02 3990/* warning: addr must be aligned */
c227f099 3991void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 3992{
733f0b02
MT
3993 int io_index;
3994 uint8_t *ptr;
3995 unsigned long pd;
3996 PhysPageDesc *p;
3997
3998 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3999 if (!p) {
4000 pd = IO_MEM_UNASSIGNED;
4001 } else {
4002 pd = p->phys_offset;
4003 }
4004
4005 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4006 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4007 if (p)
4008 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4009 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4010 } else {
4011 unsigned long addr1;
4012 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4013 /* RAM case */
4014 ptr = qemu_get_ram_ptr(addr1);
4015 stw_p(ptr, val);
4016 if (!cpu_physical_memory_is_dirty(addr1)) {
4017 /* invalidate code */
4018 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4019 /* set dirty bit */
4020 cpu_physical_memory_set_dirty_flags(addr1,
4021 (0xff & ~CODE_DIRTY_FLAG));
4022 }
4023 }
aab33094
FB
4024}
4025
4026/* XXX: optimize */
c227f099 4027void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4028{
4029 val = tswap64(val);
4030 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4031}
4032
5e2972fd 4033/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4034int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4035 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4036{
4037 int l;
c227f099 4038 target_phys_addr_t phys_addr;
9b3c35e0 4039 target_ulong page;
13eb76e0
FB
4040
4041 while (len > 0) {
4042 page = addr & TARGET_PAGE_MASK;
4043 phys_addr = cpu_get_phys_page_debug(env, page);
4044 /* if no physical page mapped, return an error */
4045 if (phys_addr == -1)
4046 return -1;
4047 l = (page + TARGET_PAGE_SIZE) - addr;
4048 if (l > len)
4049 l = len;
5e2972fd 4050 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4051 if (is_write)
4052 cpu_physical_memory_write_rom(phys_addr, buf, l);
4053 else
5e2972fd 4054 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4055 len -= l;
4056 buf += l;
4057 addr += l;
4058 }
4059 return 0;
4060}
a68fe89c 4061#endif
13eb76e0 4062
2e70f6ef
PB
4063/* in deterministic execution mode, instructions doing device I/Os
4064 must be at the end of the TB */
4065void cpu_io_recompile(CPUState *env, void *retaddr)
4066{
4067 TranslationBlock *tb;
4068 uint32_t n, cflags;
4069 target_ulong pc, cs_base;
4070 uint64_t flags;
4071
4072 tb = tb_find_pc((unsigned long)retaddr);
4073 if (!tb) {
4074 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4075 retaddr);
4076 }
4077 n = env->icount_decr.u16.low + tb->icount;
4078 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4079 /* Calculate how many instructions had been executed before the fault
bf20dc07 4080 occurred. */
2e70f6ef
PB
4081 n = n - env->icount_decr.u16.low;
4082 /* Generate a new TB ending on the I/O insn. */
4083 n++;
4084 /* On MIPS and SH, delay slot instructions can only be restarted if
4085 they were already the first instruction in the TB. If this is not
bf20dc07 4086 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4087 branch. */
4088#if defined(TARGET_MIPS)
4089 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4090 env->active_tc.PC -= 4;
4091 env->icount_decr.u16.low++;
4092 env->hflags &= ~MIPS_HFLAG_BMASK;
4093 }
4094#elif defined(TARGET_SH4)
4095 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4096 && n > 1) {
4097 env->pc -= 2;
4098 env->icount_decr.u16.low++;
4099 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4100 }
4101#endif
4102 /* This should never happen. */
4103 if (n > CF_COUNT_MASK)
4104 cpu_abort(env, "TB too big during recompile");
4105
4106 cflags = n | CF_LAST_IO;
4107 pc = tb->pc;
4108 cs_base = tb->cs_base;
4109 flags = tb->flags;
4110 tb_phys_invalidate(tb, -1);
4111 /* FIXME: In theory this could raise an exception. In practice
4112 we have already translated the block once so it's probably ok. */
4113 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4114 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4115 the first in the TB) then we end up generating a whole new TB and
4116 repeating the fault, which is horribly inefficient.
4117 Better would be to execute just this insn uncached, or generate a
4118 second new TB. */
4119 cpu_resume_from_signal(env, NULL);
4120}
4121
b3755a91
PB
4122#if !defined(CONFIG_USER_ONLY)
4123
e3db7226
FB
4124void dump_exec_info(FILE *f,
4125 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4126{
4127 int i, target_code_size, max_target_code_size;
4128 int direct_jmp_count, direct_jmp2_count, cross_page;
4129 TranslationBlock *tb;
3b46e624 4130
e3db7226
FB
4131 target_code_size = 0;
4132 max_target_code_size = 0;
4133 cross_page = 0;
4134 direct_jmp_count = 0;
4135 direct_jmp2_count = 0;
4136 for(i = 0; i < nb_tbs; i++) {
4137 tb = &tbs[i];
4138 target_code_size += tb->size;
4139 if (tb->size > max_target_code_size)
4140 max_target_code_size = tb->size;
4141 if (tb->page_addr[1] != -1)
4142 cross_page++;
4143 if (tb->tb_next_offset[0] != 0xffff) {
4144 direct_jmp_count++;
4145 if (tb->tb_next_offset[1] != 0xffff) {
4146 direct_jmp2_count++;
4147 }
4148 }
4149 }
4150 /* XXX: avoid using doubles ? */
57fec1fe 4151 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4152 cpu_fprintf(f, "gen code size %ld/%ld\n",
4153 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4154 cpu_fprintf(f, "TB count %d/%d\n",
4155 nb_tbs, code_gen_max_blocks);
5fafdf24 4156 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4157 nb_tbs ? target_code_size / nb_tbs : 0,
4158 max_target_code_size);
5fafdf24 4159 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4160 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4161 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4162 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4163 cross_page,
e3db7226
FB
4164 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4165 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4166 direct_jmp_count,
e3db7226
FB
4167 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4168 direct_jmp2_count,
4169 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4170 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4171 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4172 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4173 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4174 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4175}
4176
61382a50
FB
4177#define MMUSUFFIX _cmmu
4178#define GETPC() NULL
4179#define env cpu_single_env
b769d8fe 4180#define SOFTMMU_CODE_ACCESS
61382a50
FB
4181
4182#define SHIFT 0
4183#include "softmmu_template.h"
4184
4185#define SHIFT 1
4186#include "softmmu_template.h"
4187
4188#define SHIFT 2
4189#include "softmmu_template.h"
4190
4191#define SHIFT 3
4192#include "softmmu_template.h"
4193
4194#undef env
4195
4196#endif