]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
xen: Introduce Xen Interrupt Controller
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181
FB
28#include "cpu.h"
29#include "exec-all.h"
b67d9a52 30#include "tcg.h"
b3c7724c 31#include "hw/hw.h"
cc9e98cb 32#include "hw/qdev.h"
74576198 33#include "osdep.h"
7ba1e619 34#include "kvm.h"
29e922b6 35#include "qemu-timer.h"
53a5960a
PB
36#if defined(CONFIG_USER_ONLY)
37#include <qemu.h>
fd052bf6 38#include <signal.h>
f01576f1
JL
39#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40#include <sys/param.h>
41#if __FreeBSD_version >= 700104
42#define HAVE_KINFO_GETVMMAP
43#define sigqueue sigqueue_freebsd /* avoid redefinition */
44#include <sys/time.h>
45#include <sys/proc.h>
46#include <machine/profile.h>
47#define _KERNEL
48#include <sys/user.h>
49#undef _KERNEL
50#undef sigqueue
51#include <libutil.h>
52#endif
53#endif
53a5960a 54#endif
54936004 55
fd6ce8f6 56//#define DEBUG_TB_INVALIDATE
66e85a21 57//#define DEBUG_FLUSH
9fa3e853 58//#define DEBUG_TLB
67d3b957 59//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
60
61/* make various TB consistency checks */
5fafdf24
TS
62//#define DEBUG_TB_CHECK
63//#define DEBUG_TLB_CHECK
fd6ce8f6 64
1196be37 65//#define DEBUG_IOPORT
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
99773bd4
PB
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
9fa3e853
FB
73#define SMC_BITMAP_USE_THRESHOLD 10
74
bdaf78e0 75static TranslationBlock *tbs;
24ab68ac 76static int code_gen_max_blocks;
9fa3e853 77TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 78static int nb_tbs;
eb51d102 79/* any access to the tbs or the page table must use this lock */
c227f099 80spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 81
141ac468
BS
82#if defined(__arm__) || defined(__sparc_v9__)
83/* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
85 section close to code segment. */
86#define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
f8e2af11
SW
89#elif defined(_WIN32)
90/* Maximum alignment for Win32 is 16. */
91#define code_gen_section \
92 __attribute__((aligned (16)))
d03d860b
BS
93#else
94#define code_gen_section \
95 __attribute__((aligned (32)))
96#endif
97
98uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
99static uint8_t *code_gen_buffer;
100static unsigned long code_gen_buffer_size;
26a5f13b 101/* threshold to flush the translated code buffer */
bdaf78e0 102static unsigned long code_gen_buffer_max_size;
24ab68ac 103static uint8_t *code_gen_ptr;
fd6ce8f6 104
e2eef170 105#if !defined(CONFIG_USER_ONLY)
9fa3e853 106int phys_ram_fd;
74576198 107static int in_migration;
94a6b54f 108
f471a17e 109RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 110#endif
9fa3e853 111
6a00d601
FB
112CPUState *first_cpu;
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
5fafdf24 115CPUState *cpu_single_env;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef
PB
118 2 = Adaptive rate instruction counting. */
119int use_icount = 0;
120/* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122int64_t qemu_icount;
6a00d601 123
54936004 124typedef struct PageDesc {
92e873b9 125 /* list of TBs intersecting this ram page */
fd6ce8f6 126 TranslationBlock *first_tb;
9fa3e853
FB
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131#if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133#endif
54936004
FB
134} PageDesc;
135
41c1b1c9 136/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
137 while in user mode we want it to be based on virtual addresses. */
138#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
139#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141#else
5cd2c5b6 142# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 143#endif
bedb69ea 144#else
5cd2c5b6 145# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 146#endif
54936004 147
5cd2c5b6
RH
148/* Size of the L2 (and L3, etc) page tables. */
149#define L2_BITS 10
54936004
FB
150#define L2_SIZE (1 << L2_BITS)
151
5cd2c5b6
RH
152/* The bits remaining after N lower levels of page tables. */
153#define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155#define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157
158/* Size of the L1 page table. Avoid silly small sizes. */
159#if P_L1_BITS_REM < 4
160#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161#else
162#define P_L1_BITS P_L1_BITS_REM
163#endif
164
165#if V_L1_BITS_REM < 4
166#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167#else
168#define V_L1_BITS V_L1_BITS_REM
169#endif
170
171#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
173
174#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
176
83fb7adf
FB
177unsigned long qemu_real_host_page_size;
178unsigned long qemu_host_page_bits;
179unsigned long qemu_host_page_size;
180unsigned long qemu_host_page_mask;
54936004 181
5cd2c5b6
RH
182/* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184static void *l1_map[V_L1_SIZE];
54936004 185
e2eef170 186#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
187typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191} PhysPageDesc;
192
5cd2c5b6
RH
193/* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195static void *l1_phys_map[P_L1_SIZE];
6d9a1304 196
e2eef170
PB
197static void io_mem_init(void);
198
33417e70 199/* io memory support */
33417e70
FB
200CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 202void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 203static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
204static int io_mem_watch;
205#endif
33417e70 206
34865134 207/* log support */
1e8b27ca
JR
208#ifdef WIN32
209static const char *logfilename = "qemu.log";
210#else
d9b630fd 211static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 212#endif
34865134
FB
213FILE *logfile;
214int loglevel;
e735b91c 215static int log_append = 0;
34865134 216
e3db7226 217/* statistics */
b3755a91 218#if !defined(CONFIG_USER_ONLY)
e3db7226 219static int tlb_flush_count;
b3755a91 220#endif
e3db7226
FB
221static int tb_flush_count;
222static int tb_phys_invalidate_count;
223
7cb69cae
FB
224#ifdef _WIN32
225static void map_exec(void *addr, long size)
226{
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
230
231}
232#else
233static void map_exec(void *addr, long size)
234{
4369415f 235 unsigned long start, end, page_size;
7cb69cae 236
4369415f 237 page_size = getpagesize();
7cb69cae 238 start = (unsigned long)addr;
4369415f 239 start &= ~(page_size - 1);
7cb69cae
FB
240
241 end = (unsigned long)addr + size;
4369415f
FB
242 end += page_size - 1;
243 end &= ~(page_size - 1);
7cb69cae
FB
244
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
247}
248#endif
249
b346ff46 250static void page_init(void)
54936004 251{
83fb7adf 252 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 253 TARGET_PAGE_SIZE */
c2b48b69
AL
254#ifdef _WIN32
255 {
256 SYSTEM_INFO system_info;
257
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
260 }
261#else
262 qemu_real_host_page_size = getpagesize();
263#endif
83fb7adf
FB
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 272
2e9a5713 273#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 274 {
f01576f1
JL
275#ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
278
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
284
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
289
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
fd436907 292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
293 } else {
294#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
fd436907 296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
297#endif
298 }
299 }
300 }
301 free(freep);
302 mmap_unlock();
303 }
304#else
50a9569b 305 FILE *f;
50a9569b 306
0776590d 307 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 308
fd436907 309 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 310 if (f) {
5cd2c5b6
RH
311 mmap_lock();
312
50a9569b 313 do {
5cd2c5b6
RH
314 unsigned long startaddr, endaddr;
315 int n;
316
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
318
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
321
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
326 }
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
328 }
329 } while (!feof(f));
5cd2c5b6 330
50a9569b 331 fclose(f);
5cd2c5b6 332 mmap_unlock();
50a9569b 333 }
f01576f1 334#endif
50a9569b
AZ
335 }
336#endif
54936004
FB
337}
338
41c1b1c9 339static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 340{
41c1b1c9
PB
341 PageDesc *pd;
342 void **lp;
343 int i;
344
5cd2c5b6 345#if defined(CONFIG_USER_ONLY)
2e9a5713 346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
347# define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
351 } while (0)
352#else
353# define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 355#endif
434929bf 356
5cd2c5b6
RH
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
359
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
363
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
367 }
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
17e2377a 370 }
5cd2c5b6
RH
371
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
373 }
374
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
379 }
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
54936004 382 }
5cd2c5b6
RH
383
384#undef ALLOC
5cd2c5b6
RH
385
386 return pd + (index & (L2_SIZE - 1));
54936004
FB
387}
388
41c1b1c9 389static inline PageDesc *page_find(tb_page_addr_t index)
54936004 390{
5cd2c5b6 391 return page_find_alloc(index, 0);
fd6ce8f6
FB
392}
393
6d9a1304 394#if !defined(CONFIG_USER_ONLY)
c227f099 395static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 396{
e3f4e2a4 397 PhysPageDesc *pd;
5cd2c5b6
RH
398 void **lp;
399 int i;
92e873b9 400
5cd2c5b6
RH
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 403
5cd2c5b6
RH
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
410 }
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
412 }
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 414 }
5cd2c5b6 415
e3f4e2a4 416 pd = *lp;
5cd2c5b6 417 if (pd == NULL) {
e3f4e2a4 418 int i;
5cd2c5b6
RH
419
420 if (!alloc) {
108c49b8 421 return NULL;
5cd2c5b6
RH
422 }
423
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
425
67c4d23c 426 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 429 }
92e873b9 430 }
5cd2c5b6
RH
431
432 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
433}
434
c227f099 435static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 436{
108c49b8 437 return phys_page_find_alloc(index, 0);
92e873b9
FB
438}
439
c227f099
AL
440static void tlb_protect_code(ram_addr_t ram_addr);
441static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 442 target_ulong vaddr);
c8a706fe
PB
443#define mmap_lock() do { } while(0)
444#define mmap_unlock() do { } while(0)
9fa3e853 445#endif
fd6ce8f6 446
4369415f
FB
447#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
448
449#if defined(CONFIG_USER_ONLY)
ccbb4d44 450/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
451 user mode. It will change when a dedicated libc will be used */
452#define USE_STATIC_CODE_GEN_BUFFER
453#endif
454
455#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
456static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
458#endif
459
8fcd3692 460static void code_gen_alloc(unsigned long tb_size)
26a5f13b 461{
4369415f
FB
462#ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466#else
26a5f13b
FB
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
4369415f
FB
469#if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472#else
ccbb4d44 473 /* XXX: needs adjustments */
94a6b54f 474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 475#endif
26a5f13b
FB
476 }
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481#if defined(__linux__)
482 {
483 int flags;
141ac468
BS
484 void *start = NULL;
485
26a5f13b
FB
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487#if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
492#elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 498#elif defined(__arm__)
63d41246 499 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
504#elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
26a5f13b 511#endif
141ac468
BS
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
cbb608a5
BS
520#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
06e67a82
AL
522 {
523 int flags;
524 void *addr = NULL;
525 flags = MAP_PRIVATE | MAP_ANONYMOUS;
526#if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
529 flags |= MAP_FIXED;
530 addr = (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size > (800 * 1024 * 1024))
533 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
534#elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
536 flags |= MAP_FIXED;
537 addr = (void *) 0x60000000UL;
538 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
539 code_gen_buffer_size = (512 * 1024 * 1024);
540 }
06e67a82
AL
541#endif
542 code_gen_buffer = mmap(addr, code_gen_buffer_size,
543 PROT_WRITE | PROT_READ | PROT_EXEC,
544 flags, -1, 0);
545 if (code_gen_buffer == MAP_FAILED) {
546 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
547 exit(1);
548 }
549 }
26a5f13b
FB
550#else
551 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
552 map_exec(code_gen_buffer, code_gen_buffer_size);
553#endif
4369415f 554#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
555 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
556 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 557 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
558 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
559 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
560}
561
562/* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
564 size. */
565void cpu_exec_init_all(unsigned long tb_size)
566{
26a5f13b
FB
567 cpu_gen_init();
568 code_gen_alloc(tb_size);
569 code_gen_ptr = code_gen_buffer;
4369415f 570 page_init();
e2eef170 571#if !defined(CONFIG_USER_ONLY)
26a5f13b 572 io_mem_init();
e2eef170 573#endif
9002ec79
RH
574#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578#endif
26a5f13b
FB
579}
580
9656f324
PB
581#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
582
e59fb374 583static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
584{
585 CPUState *env = opaque;
9656f324 586
3098dba0
AJ
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env->interrupt_request &= ~0x01;
9656f324
PB
590 tlb_flush(env, 1);
591
592 return 0;
593}
e7f4eff7
JQ
594
595static const VMStateDescription vmstate_cpu_common = {
596 .name = "cpu_common",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .minimum_version_id_old = 1,
e7f4eff7
JQ
600 .post_load = cpu_common_post_load,
601 .fields = (VMStateField []) {
602 VMSTATE_UINT32(halted, CPUState),
603 VMSTATE_UINT32(interrupt_request, CPUState),
604 VMSTATE_END_OF_LIST()
605 }
606};
9656f324
PB
607#endif
608
950f1472
GC
609CPUState *qemu_get_cpu(int cpu)
610{
611 CPUState *env = first_cpu;
612
613 while (env) {
614 if (env->cpu_index == cpu)
615 break;
616 env = env->next_cpu;
617 }
618
619 return env;
620}
621
6a00d601 622void cpu_exec_init(CPUState *env)
fd6ce8f6 623{
6a00d601
FB
624 CPUState **penv;
625 int cpu_index;
626
c2764719
PB
627#if defined(CONFIG_USER_ONLY)
628 cpu_list_lock();
629#endif
6a00d601
FB
630 env->next_cpu = NULL;
631 penv = &first_cpu;
632 cpu_index = 0;
633 while (*penv != NULL) {
1e9fa730 634 penv = &(*penv)->next_cpu;
6a00d601
FB
635 cpu_index++;
636 }
637 env->cpu_index = cpu_index;
268a362c 638 env->numa_node = 0;
72cf2d4f
BS
639 QTAILQ_INIT(&env->breakpoints);
640 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
641#ifndef CONFIG_USER_ONLY
642 env->thread_id = qemu_get_thread_id();
643#endif
6a00d601 644 *penv = env;
c2764719
PB
645#if defined(CONFIG_USER_ONLY)
646 cpu_list_unlock();
647#endif
b3c7724c 648#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
649 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
650 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
651 cpu_save, cpu_load, env);
652#endif
fd6ce8f6
FB
653}
654
d1a1eb74
TG
655/* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657static TranslationBlock *tb_alloc(target_ulong pc)
658{
659 TranslationBlock *tb;
660
661 if (nb_tbs >= code_gen_max_blocks ||
662 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
663 return NULL;
664 tb = &tbs[nb_tbs++];
665 tb->pc = pc;
666 tb->cflags = 0;
667 return tb;
668}
669
670void tb_free(TranslationBlock *tb)
671{
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
676 code_gen_ptr = tb->tc_ptr;
677 nb_tbs--;
678 }
679}
680
9fa3e853
FB
681static inline void invalidate_page_bitmap(PageDesc *p)
682{
683 if (p->code_bitmap) {
59817ccb 684 qemu_free(p->code_bitmap);
9fa3e853
FB
685 p->code_bitmap = NULL;
686 }
687 p->code_write_count = 0;
688}
689
5cd2c5b6
RH
690/* Set to NULL all the 'first_tb' fields in all PageDescs. */
691
692static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 693{
5cd2c5b6 694 int i;
fd6ce8f6 695
5cd2c5b6
RH
696 if (*lp == NULL) {
697 return;
698 }
699 if (level == 0) {
700 PageDesc *pd = *lp;
7296abac 701 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
702 pd[i].first_tb = NULL;
703 invalidate_page_bitmap(pd + i);
fd6ce8f6 704 }
5cd2c5b6
RH
705 } else {
706 void **pp = *lp;
7296abac 707 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
708 page_flush_tb_1 (level - 1, pp + i);
709 }
710 }
711}
712
713static void page_flush_tb(void)
714{
715 int i;
716 for (i = 0; i < V_L1_SIZE; i++) {
717 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
718 }
719}
720
721/* flush all the translation blocks */
d4e8164f 722/* XXX: tb_flush is currently not thread safe */
6a00d601 723void tb_flush(CPUState *env1)
fd6ce8f6 724{
6a00d601 725 CPUState *env;
0124311e 726#if defined(DEBUG_FLUSH)
ab3d1727
BS
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr - code_gen_buffer),
729 nb_tbs, nb_tbs > 0 ?
730 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 731#endif
26a5f13b 732 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
733 cpu_abort(env1, "Internal error: code buffer overflow\n");
734
fd6ce8f6 735 nb_tbs = 0;
3b46e624 736
6a00d601
FB
737 for(env = first_cpu; env != NULL; env = env->next_cpu) {
738 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
739 }
9fa3e853 740
8a8a608f 741 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 742 page_flush_tb();
9fa3e853 743
fd6ce8f6 744 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
745 /* XXX: flush processor icache at this point if cache flush is
746 expensive */
e3db7226 747 tb_flush_count++;
fd6ce8f6
FB
748}
749
750#ifdef DEBUG_TB_CHECK
751
bc98a7ef 752static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
753{
754 TranslationBlock *tb;
755 int i;
756 address &= TARGET_PAGE_MASK;
99773bd4
PB
757 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
758 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
759 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
760 address >= tb->pc + tb->size)) {
0bf9e31a
BS
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
99773bd4 763 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
764 }
765 }
766 }
767}
768
769/* verify that all the pages have correct rights for code */
770static void tb_page_check(void)
771{
772 TranslationBlock *tb;
773 int i, flags1, flags2;
3b46e624 774
99773bd4
PB
775 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
776 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
777 flags1 = page_get_flags(tb->pc);
778 flags2 = page_get_flags(tb->pc + tb->size - 1);
779 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 781 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
782 }
783 }
784 }
785}
786
787#endif
788
789/* invalidate one TB */
790static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
791 int next_offset)
792{
793 TranslationBlock *tb1;
794 for(;;) {
795 tb1 = *ptb;
796 if (tb1 == tb) {
797 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
798 break;
799 }
800 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
801 }
802}
803
9fa3e853
FB
804static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
805{
806 TranslationBlock *tb1;
807 unsigned int n1;
808
809 for(;;) {
810 tb1 = *ptb;
811 n1 = (long)tb1 & 3;
812 tb1 = (TranslationBlock *)((long)tb1 & ~3);
813 if (tb1 == tb) {
814 *ptb = tb1->page_next[n1];
815 break;
816 }
817 ptb = &tb1->page_next[n1];
818 }
819}
820
d4e8164f
FB
821static inline void tb_jmp_remove(TranslationBlock *tb, int n)
822{
823 TranslationBlock *tb1, **ptb;
824 unsigned int n1;
825
826 ptb = &tb->jmp_next[n];
827 tb1 = *ptb;
828 if (tb1) {
829 /* find tb(n) in circular list */
830 for(;;) {
831 tb1 = *ptb;
832 n1 = (long)tb1 & 3;
833 tb1 = (TranslationBlock *)((long)tb1 & ~3);
834 if (n1 == n && tb1 == tb)
835 break;
836 if (n1 == 2) {
837 ptb = &tb1->jmp_first;
838 } else {
839 ptb = &tb1->jmp_next[n1];
840 }
841 }
842 /* now we can suppress tb(n) from the list */
843 *ptb = tb->jmp_next[n];
844
845 tb->jmp_next[n] = NULL;
846 }
847}
848
849/* reset the jump entry 'n' of a TB so that it is not chained to
850 another TB */
851static inline void tb_reset_jump(TranslationBlock *tb, int n)
852{
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
854}
855
41c1b1c9 856void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 857{
6a00d601 858 CPUState *env;
8a40a180 859 PageDesc *p;
d4e8164f 860 unsigned int h, n1;
41c1b1c9 861 tb_page_addr_t phys_pc;
8a40a180 862 TranslationBlock *tb1, *tb2;
3b46e624 863
8a40a180
FB
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
5fafdf24 867 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
868 offsetof(TranslationBlock, phys_hash_next));
869
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
880 }
881
36bdbe54 882 tb_invalidated_flag = 1;
59817ccb 883
fd6ce8f6 884 /* remove the TB from the hash list */
8a40a180 885 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
889 }
d4e8164f
FB
890
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
894
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
906 }
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 908
e3db7226 909 tb_phys_invalidate_count++;
9fa3e853
FB
910}
911
912static inline void set_bits(uint8_t *tab, int start, int len)
913{
914 int end, mask, end1;
915
916 end = start + len;
917 tab += start >> 3;
918 mask = 0xff << (start & 7);
919 if ((start & ~7) == (end & ~7)) {
920 if (start < end) {
921 mask &= ~(0xff << (end & 7));
922 *tab |= mask;
923 }
924 } else {
925 *tab++ |= mask;
926 start = (start + 8) & ~7;
927 end1 = end & ~7;
928 while (start < end1) {
929 *tab++ = 0xff;
930 start += 8;
931 }
932 if (start < end) {
933 mask = ~(0xff << (end & 7));
934 *tab |= mask;
935 }
936 }
937}
938
939static void build_page_bitmap(PageDesc *p)
940{
941 int n, tb_start, tb_end;
942 TranslationBlock *tb;
3b46e624 943
b2a7081a 944 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
945
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->pc & ~TARGET_PAGE_MASK;
955 tb_end = tb_start + tb->size;
956 if (tb_end > TARGET_PAGE_SIZE)
957 tb_end = TARGET_PAGE_SIZE;
958 } else {
959 tb_start = 0;
960 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
961 }
962 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
963 tb = tb->page_next[n];
964 }
965}
966
2e70f6ef
PB
967TranslationBlock *tb_gen_code(CPUState *env,
968 target_ulong pc, target_ulong cs_base,
969 int flags, int cflags)
d720b93d
FB
970{
971 TranslationBlock *tb;
972 uint8_t *tc_ptr;
41c1b1c9
PB
973 tb_page_addr_t phys_pc, phys_page2;
974 target_ulong virt_page2;
d720b93d
FB
975 int code_gen_size;
976
41c1b1c9 977 phys_pc = get_page_addr_code(env, pc);
c27004ec 978 tb = tb_alloc(pc);
d720b93d
FB
979 if (!tb) {
980 /* flush must be done */
981 tb_flush(env);
982 /* cannot fail at this point */
c27004ec 983 tb = tb_alloc(pc);
2e70f6ef
PB
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag = 1;
d720b93d
FB
986 }
987 tc_ptr = code_gen_ptr;
988 tb->tc_ptr = tc_ptr;
989 tb->cs_base = cs_base;
990 tb->flags = flags;
991 tb->cflags = cflags;
d07bde88 992 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 993 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 994
d720b93d 995 /* check next page if needed */
c27004ec 996 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 997 phys_page2 = -1;
c27004ec 998 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 999 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1000 }
41c1b1c9 1001 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1002 return tb;
d720b93d 1003}
3b46e624 1004
9fa3e853
FB
1005/* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
41c1b1c9 1010void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1011 int is_cpu_write_access)
1012{
6b917547 1013 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1014 CPUState *env = cpu_single_env;
41c1b1c9 1015 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1016 PageDesc *p;
1017 int n;
1018#ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found = is_cpu_write_access;
1020 TranslationBlock *current_tb = NULL;
1021 int current_tb_modified = 0;
1022 target_ulong current_pc = 0;
1023 target_ulong current_cs_base = 0;
1024 int current_flags = 0;
1025#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1026
1027 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1028 if (!p)
9fa3e853 1029 return;
5fafdf24 1030 if (!p->code_bitmap &&
d720b93d
FB
1031 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1032 is_cpu_write_access) {
9fa3e853
FB
1033 /* build code bitmap */
1034 build_page_bitmap(p);
1035 }
1036
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1039 tb = p->first_tb;
1040 while (tb != NULL) {
1041 n = (long)tb & 3;
1042 tb = (TranslationBlock *)((long)tb & ~3);
1043 tb_next = tb->page_next[n];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1045 if (n == 0) {
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1049 tb_end = tb_start + tb->size;
1050 } else {
1051 tb_start = tb->page_addr[1];
1052 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1053 }
1054 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1055#ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found) {
1057 current_tb_not_found = 0;
1058 current_tb = NULL;
2e70f6ef 1059 if (env->mem_io_pc) {
d720b93d 1060 /* now we have a real cpu fault */
2e70f6ef 1061 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1062 }
1063 }
1064 if (current_tb == tb &&
2e70f6ef 1065 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
3b46e624 1071
d720b93d 1072 current_tb_modified = 1;
618ba8e6 1073 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1074 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1075 &current_flags);
d720b93d
FB
1076 }
1077#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1078 /* we need to do that to handle the case where a signal
1079 occurs while doing tb_phys_invalidate() */
1080 saved_tb = NULL;
1081 if (env) {
1082 saved_tb = env->current_tb;
1083 env->current_tb = NULL;
1084 }
9fa3e853 1085 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1086 if (env) {
1087 env->current_tb = saved_tb;
1088 if (env->interrupt_request && env->current_tb)
1089 cpu_interrupt(env, env->interrupt_request);
1090 }
9fa3e853
FB
1091 }
1092 tb = tb_next;
1093 }
1094#if !defined(CONFIG_USER_ONLY)
1095 /* if no code remaining, no need to continue to use slow writes */
1096 if (!p->first_tb) {
1097 invalidate_page_bitmap(p);
d720b93d 1098 if (is_cpu_write_access) {
2e70f6ef 1099 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1100 }
1101 }
1102#endif
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
ea1c1802 1108 env->current_tb = NULL;
2e70f6ef 1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1110 cpu_resume_from_signal(env, NULL);
9fa3e853 1111 }
fd6ce8f6 1112#endif
9fa3e853 1113}
fd6ce8f6 1114
9fa3e853 1115/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1116static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1117{
1118 PageDesc *p;
1119 int offset, b;
59817ccb 1120#if 0
a4193c8a 1121 if (1) {
93fcfe39
AL
1122 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1123 cpu_single_env->mem_io_vaddr, len,
1124 cpu_single_env->eip,
1125 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1126 }
1127#endif
9fa3e853 1128 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1129 if (!p)
9fa3e853
FB
1130 return;
1131 if (p->code_bitmap) {
1132 offset = start & ~TARGET_PAGE_MASK;
1133 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1134 if (b & ((1 << len) - 1))
1135 goto do_invalidate;
1136 } else {
1137 do_invalidate:
d720b93d 1138 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1139 }
1140}
1141
9fa3e853 1142#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1143static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1144 unsigned long pc, void *puc)
9fa3e853 1145{
6b917547 1146 TranslationBlock *tb;
9fa3e853 1147 PageDesc *p;
6b917547 1148 int n;
d720b93d 1149#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1150 TranslationBlock *current_tb = NULL;
d720b93d 1151 CPUState *env = cpu_single_env;
6b917547
AL
1152 int current_tb_modified = 0;
1153 target_ulong current_pc = 0;
1154 target_ulong current_cs_base = 0;
1155 int current_flags = 0;
d720b93d 1156#endif
9fa3e853
FB
1157
1158 addr &= TARGET_PAGE_MASK;
1159 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1160 if (!p)
9fa3e853
FB
1161 return;
1162 tb = p->first_tb;
d720b93d
FB
1163#ifdef TARGET_HAS_PRECISE_SMC
1164 if (tb && pc != 0) {
1165 current_tb = tb_find_pc(pc);
1166 }
1167#endif
9fa3e853
FB
1168 while (tb != NULL) {
1169 n = (long)tb & 3;
1170 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1171#ifdef TARGET_HAS_PRECISE_SMC
1172 if (current_tb == tb &&
2e70f6ef 1173 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1174 /* If we are modifying the current TB, we must stop
1175 its execution. We could be more precise by checking
1176 that the modification is after the current PC, but it
1177 would require a specialized function to partially
1178 restore the CPU state */
3b46e624 1179
d720b93d 1180 current_tb_modified = 1;
618ba8e6 1181 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1182 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1183 &current_flags);
d720b93d
FB
1184 }
1185#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1186 tb_phys_invalidate(tb, addr);
1187 tb = tb->page_next[n];
1188 }
fd6ce8f6 1189 p->first_tb = NULL;
d720b93d
FB
1190#ifdef TARGET_HAS_PRECISE_SMC
1191 if (current_tb_modified) {
1192 /* we generate a block containing just the instruction
1193 modifying the memory. It will ensure that it cannot modify
1194 itself */
ea1c1802 1195 env->current_tb = NULL;
2e70f6ef 1196 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1197 cpu_resume_from_signal(env, puc);
1198 }
1199#endif
fd6ce8f6 1200}
9fa3e853 1201#endif
fd6ce8f6
FB
1202
1203/* add the tb in the target page and protect it if necessary */
5fafdf24 1204static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1205 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1206{
1207 PageDesc *p;
9fa3e853
FB
1208 TranslationBlock *last_first_tb;
1209
1210 tb->page_addr[n] = page_addr;
5cd2c5b6 1211 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1212 tb->page_next[n] = p->first_tb;
1213 last_first_tb = p->first_tb;
1214 p->first_tb = (TranslationBlock *)((long)tb | n);
1215 invalidate_page_bitmap(p);
fd6ce8f6 1216
107db443 1217#if defined(TARGET_HAS_SMC) || 1
d720b93d 1218
9fa3e853 1219#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1220 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1221 target_ulong addr;
1222 PageDesc *p2;
9fa3e853
FB
1223 int prot;
1224
fd6ce8f6
FB
1225 /* force the host page as non writable (writes will have a
1226 page fault + mprotect overhead) */
53a5960a 1227 page_addr &= qemu_host_page_mask;
fd6ce8f6 1228 prot = 0;
53a5960a
PB
1229 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1230 addr += TARGET_PAGE_SIZE) {
1231
1232 p2 = page_find (addr >> TARGET_PAGE_BITS);
1233 if (!p2)
1234 continue;
1235 prot |= p2->flags;
1236 p2->flags &= ~PAGE_WRITE;
53a5960a 1237 }
5fafdf24 1238 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1239 (prot & PAGE_BITS) & ~PAGE_WRITE);
1240#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1241 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1242 page_addr);
fd6ce8f6 1243#endif
fd6ce8f6 1244 }
9fa3e853
FB
1245#else
1246 /* if some code is already present, then the pages are already
1247 protected. So we handle the case where only the first TB is
1248 allocated in a physical page */
1249 if (!last_first_tb) {
6a00d601 1250 tlb_protect_code(page_addr);
9fa3e853
FB
1251 }
1252#endif
d720b93d
FB
1253
1254#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1255}
1256
9fa3e853
FB
1257/* add a new TB and link it to the physical page tables. phys_page2 is
1258 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1259void tb_link_page(TranslationBlock *tb,
1260 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1261{
9fa3e853
FB
1262 unsigned int h;
1263 TranslationBlock **ptb;
1264
c8a706fe
PB
1265 /* Grab the mmap lock to stop another thread invalidating this TB
1266 before we are done. */
1267 mmap_lock();
9fa3e853
FB
1268 /* add in the physical hash table */
1269 h = tb_phys_hash_func(phys_pc);
1270 ptb = &tb_phys_hash[h];
1271 tb->phys_hash_next = *ptb;
1272 *ptb = tb;
fd6ce8f6
FB
1273
1274 /* add in the page list */
9fa3e853
FB
1275 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1276 if (phys_page2 != -1)
1277 tb_alloc_page(tb, 1, phys_page2);
1278 else
1279 tb->page_addr[1] = -1;
9fa3e853 1280
d4e8164f
FB
1281 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1282 tb->jmp_next[0] = NULL;
1283 tb->jmp_next[1] = NULL;
1284
1285 /* init original jump addresses */
1286 if (tb->tb_next_offset[0] != 0xffff)
1287 tb_reset_jump(tb, 0);
1288 if (tb->tb_next_offset[1] != 0xffff)
1289 tb_reset_jump(tb, 1);
8a40a180
FB
1290
1291#ifdef DEBUG_TB_CHECK
1292 tb_page_check();
1293#endif
c8a706fe 1294 mmap_unlock();
fd6ce8f6
FB
1295}
1296
9fa3e853
FB
1297/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1298 tb[1].tc_ptr. Return NULL if not found */
1299TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1300{
9fa3e853
FB
1301 int m_min, m_max, m;
1302 unsigned long v;
1303 TranslationBlock *tb;
a513fe19
FB
1304
1305 if (nb_tbs <= 0)
1306 return NULL;
1307 if (tc_ptr < (unsigned long)code_gen_buffer ||
1308 tc_ptr >= (unsigned long)code_gen_ptr)
1309 return NULL;
1310 /* binary search (cf Knuth) */
1311 m_min = 0;
1312 m_max = nb_tbs - 1;
1313 while (m_min <= m_max) {
1314 m = (m_min + m_max) >> 1;
1315 tb = &tbs[m];
1316 v = (unsigned long)tb->tc_ptr;
1317 if (v == tc_ptr)
1318 return tb;
1319 else if (tc_ptr < v) {
1320 m_max = m - 1;
1321 } else {
1322 m_min = m + 1;
1323 }
5fafdf24 1324 }
a513fe19
FB
1325 return &tbs[m_max];
1326}
7501267e 1327
ea041c0e
FB
1328static void tb_reset_jump_recursive(TranslationBlock *tb);
1329
1330static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1331{
1332 TranslationBlock *tb1, *tb_next, **ptb;
1333 unsigned int n1;
1334
1335 tb1 = tb->jmp_next[n];
1336 if (tb1 != NULL) {
1337 /* find head of list */
1338 for(;;) {
1339 n1 = (long)tb1 & 3;
1340 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1341 if (n1 == 2)
1342 break;
1343 tb1 = tb1->jmp_next[n1];
1344 }
1345 /* we are now sure now that tb jumps to tb1 */
1346 tb_next = tb1;
1347
1348 /* remove tb from the jmp_first list */
1349 ptb = &tb_next->jmp_first;
1350 for(;;) {
1351 tb1 = *ptb;
1352 n1 = (long)tb1 & 3;
1353 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1354 if (n1 == n && tb1 == tb)
1355 break;
1356 ptb = &tb1->jmp_next[n1];
1357 }
1358 *ptb = tb->jmp_next[n];
1359 tb->jmp_next[n] = NULL;
3b46e624 1360
ea041c0e
FB
1361 /* suppress the jump to next tb in generated code */
1362 tb_reset_jump(tb, n);
1363
0124311e 1364 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1365 tb_reset_jump_recursive(tb_next);
1366 }
1367}
1368
1369static void tb_reset_jump_recursive(TranslationBlock *tb)
1370{
1371 tb_reset_jump_recursive2(tb, 0);
1372 tb_reset_jump_recursive2(tb, 1);
1373}
1374
1fddef4b 1375#if defined(TARGET_HAS_ICE)
94df27fd
PB
1376#if defined(CONFIG_USER_ONLY)
1377static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1378{
1379 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1380}
1381#else
d720b93d
FB
1382static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1383{
c227f099 1384 target_phys_addr_t addr;
9b3c35e0 1385 target_ulong pd;
c227f099 1386 ram_addr_t ram_addr;
c2f07f81 1387 PhysPageDesc *p;
d720b93d 1388
c2f07f81
PB
1389 addr = cpu_get_phys_page_debug(env, pc);
1390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1391 if (!p) {
1392 pd = IO_MEM_UNASSIGNED;
1393 } else {
1394 pd = p->phys_offset;
1395 }
1396 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1397 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1398}
c27004ec 1399#endif
94df27fd 1400#endif /* TARGET_HAS_ICE */
d720b93d 1401
c527ee8f
PB
1402#if defined(CONFIG_USER_ONLY)
1403void cpu_watchpoint_remove_all(CPUState *env, int mask)
1404
1405{
1406}
1407
1408int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1409 int flags, CPUWatchpoint **watchpoint)
1410{
1411 return -ENOSYS;
1412}
1413#else
6658ffb8 1414/* Add a watchpoint. */
a1d1bb31
AL
1415int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1416 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1417{
b4051334 1418 target_ulong len_mask = ~(len - 1);
c0ce998e 1419 CPUWatchpoint *wp;
6658ffb8 1420
b4051334
AL
1421 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1422 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1423 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1424 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1425 return -EINVAL;
1426 }
a1d1bb31 1427 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1428
1429 wp->vaddr = addr;
b4051334 1430 wp->len_mask = len_mask;
a1d1bb31
AL
1431 wp->flags = flags;
1432
2dc9f411 1433 /* keep all GDB-injected watchpoints in front */
c0ce998e 1434 if (flags & BP_GDB)
72cf2d4f 1435 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1436 else
72cf2d4f 1437 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1438
6658ffb8 1439 tlb_flush_page(env, addr);
a1d1bb31
AL
1440
1441 if (watchpoint)
1442 *watchpoint = wp;
1443 return 0;
6658ffb8
PB
1444}
1445
a1d1bb31
AL
1446/* Remove a specific watchpoint. */
1447int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1448 int flags)
6658ffb8 1449{
b4051334 1450 target_ulong len_mask = ~(len - 1);
a1d1bb31 1451 CPUWatchpoint *wp;
6658ffb8 1452
72cf2d4f 1453 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1454 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1455 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1456 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1457 return 0;
1458 }
1459 }
a1d1bb31 1460 return -ENOENT;
6658ffb8
PB
1461}
1462
a1d1bb31
AL
1463/* Remove a specific watchpoint by reference. */
1464void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1465{
72cf2d4f 1466 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1467
a1d1bb31
AL
1468 tlb_flush_page(env, watchpoint->vaddr);
1469
1470 qemu_free(watchpoint);
1471}
1472
1473/* Remove all matching watchpoints. */
1474void cpu_watchpoint_remove_all(CPUState *env, int mask)
1475{
c0ce998e 1476 CPUWatchpoint *wp, *next;
a1d1bb31 1477
72cf2d4f 1478 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1479 if (wp->flags & mask)
1480 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1481 }
7d03f82f 1482}
c527ee8f 1483#endif
7d03f82f 1484
a1d1bb31
AL
1485/* Add a breakpoint. */
1486int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1487 CPUBreakpoint **breakpoint)
4c3a88a2 1488{
1fddef4b 1489#if defined(TARGET_HAS_ICE)
c0ce998e 1490 CPUBreakpoint *bp;
3b46e624 1491
a1d1bb31 1492 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1493
a1d1bb31
AL
1494 bp->pc = pc;
1495 bp->flags = flags;
1496
2dc9f411 1497 /* keep all GDB-injected breakpoints in front */
c0ce998e 1498 if (flags & BP_GDB)
72cf2d4f 1499 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1500 else
72cf2d4f 1501 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1502
d720b93d 1503 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1504
1505 if (breakpoint)
1506 *breakpoint = bp;
4c3a88a2
FB
1507 return 0;
1508#else
a1d1bb31 1509 return -ENOSYS;
4c3a88a2
FB
1510#endif
1511}
1512
a1d1bb31
AL
1513/* Remove a specific breakpoint. */
1514int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1515{
7d03f82f 1516#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1517 CPUBreakpoint *bp;
1518
72cf2d4f 1519 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1520 if (bp->pc == pc && bp->flags == flags) {
1521 cpu_breakpoint_remove_by_ref(env, bp);
1522 return 0;
1523 }
7d03f82f 1524 }
a1d1bb31
AL
1525 return -ENOENT;
1526#else
1527 return -ENOSYS;
7d03f82f
EI
1528#endif
1529}
1530
a1d1bb31
AL
1531/* Remove a specific breakpoint by reference. */
1532void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1533{
1fddef4b 1534#if defined(TARGET_HAS_ICE)
72cf2d4f 1535 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1536
a1d1bb31
AL
1537 breakpoint_invalidate(env, breakpoint->pc);
1538
1539 qemu_free(breakpoint);
1540#endif
1541}
1542
1543/* Remove all matching breakpoints. */
1544void cpu_breakpoint_remove_all(CPUState *env, int mask)
1545{
1546#if defined(TARGET_HAS_ICE)
c0ce998e 1547 CPUBreakpoint *bp, *next;
a1d1bb31 1548
72cf2d4f 1549 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1550 if (bp->flags & mask)
1551 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1552 }
4c3a88a2
FB
1553#endif
1554}
1555
c33a346e
FB
1556/* enable or disable single step mode. EXCP_DEBUG is returned by the
1557 CPU loop after each instruction */
1558void cpu_single_step(CPUState *env, int enabled)
1559{
1fddef4b 1560#if defined(TARGET_HAS_ICE)
c33a346e
FB
1561 if (env->singlestep_enabled != enabled) {
1562 env->singlestep_enabled = enabled;
e22a25c9
AL
1563 if (kvm_enabled())
1564 kvm_update_guest_debug(env, 0);
1565 else {
ccbb4d44 1566 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1567 /* XXX: only flush what is necessary */
1568 tb_flush(env);
1569 }
c33a346e
FB
1570 }
1571#endif
1572}
1573
34865134
FB
1574/* enable or disable low levels log */
1575void cpu_set_log(int log_flags)
1576{
1577 loglevel = log_flags;
1578 if (loglevel && !logfile) {
11fcfab4 1579 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1580 if (!logfile) {
1581 perror(logfilename);
1582 _exit(1);
1583 }
9fa3e853
FB
1584#if !defined(CONFIG_SOFTMMU)
1585 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1586 {
b55266b5 1587 static char logfile_buf[4096];
9fa3e853
FB
1588 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1589 }
bf65f53f
FN
1590#elif !defined(_WIN32)
1591 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1592 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1593#endif
e735b91c
PB
1594 log_append = 1;
1595 }
1596 if (!loglevel && logfile) {
1597 fclose(logfile);
1598 logfile = NULL;
34865134
FB
1599 }
1600}
1601
1602void cpu_set_log_filename(const char *filename)
1603{
1604 logfilename = strdup(filename);
e735b91c
PB
1605 if (logfile) {
1606 fclose(logfile);
1607 logfile = NULL;
1608 }
1609 cpu_set_log(loglevel);
34865134 1610}
c33a346e 1611
3098dba0 1612static void cpu_unlink_tb(CPUState *env)
ea041c0e 1613{
3098dba0
AJ
1614 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1615 problem and hope the cpu will stop of its own accord. For userspace
1616 emulation this often isn't actually as bad as it sounds. Often
1617 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1618 TranslationBlock *tb;
c227f099 1619 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1620
cab1b4bd 1621 spin_lock(&interrupt_lock);
3098dba0
AJ
1622 tb = env->current_tb;
1623 /* if the cpu is currently executing code, we must unlink it and
1624 all the potentially executing TB */
f76cfe56 1625 if (tb) {
3098dba0
AJ
1626 env->current_tb = NULL;
1627 tb_reset_jump_recursive(tb);
be214e6c 1628 }
cab1b4bd 1629 spin_unlock(&interrupt_lock);
3098dba0
AJ
1630}
1631
97ffbd8d 1632#ifndef CONFIG_USER_ONLY
3098dba0 1633/* mask must never be zero, except for A20 change call */
ec6959d0 1634static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1635{
1636 int old_mask;
be214e6c 1637
2e70f6ef 1638 old_mask = env->interrupt_request;
68a79315 1639 env->interrupt_request |= mask;
3098dba0 1640
8edac960
AL
1641 /*
1642 * If called from iothread context, wake the target cpu in
1643 * case its halted.
1644 */
b7680cb6 1645 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1646 qemu_cpu_kick(env);
1647 return;
1648 }
8edac960 1649
2e70f6ef 1650 if (use_icount) {
266910c4 1651 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1652 if (!can_do_io(env)
be214e6c 1653 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1654 cpu_abort(env, "Raised interrupt while not in I/O function");
1655 }
2e70f6ef 1656 } else {
3098dba0 1657 cpu_unlink_tb(env);
ea041c0e
FB
1658 }
1659}
1660
ec6959d0
JK
1661CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1662
97ffbd8d
JK
1663#else /* CONFIG_USER_ONLY */
1664
1665void cpu_interrupt(CPUState *env, int mask)
1666{
1667 env->interrupt_request |= mask;
1668 cpu_unlink_tb(env);
1669}
1670#endif /* CONFIG_USER_ONLY */
1671
b54ad049
FB
1672void cpu_reset_interrupt(CPUState *env, int mask)
1673{
1674 env->interrupt_request &= ~mask;
1675}
1676
3098dba0
AJ
1677void cpu_exit(CPUState *env)
1678{
1679 env->exit_request = 1;
1680 cpu_unlink_tb(env);
1681}
1682
c7cd6a37 1683const CPULogItem cpu_log_items[] = {
5fafdf24 1684 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1685 "show generated host assembly code for each compiled TB" },
1686 { CPU_LOG_TB_IN_ASM, "in_asm",
1687 "show target assembly code for each compiled TB" },
5fafdf24 1688 { CPU_LOG_TB_OP, "op",
57fec1fe 1689 "show micro ops for each compiled TB" },
f193c797 1690 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1691 "show micro ops "
1692#ifdef TARGET_I386
1693 "before eflags optimization and "
f193c797 1694#endif
e01a1157 1695 "after liveness analysis" },
f193c797
FB
1696 { CPU_LOG_INT, "int",
1697 "show interrupts/exceptions in short format" },
1698 { CPU_LOG_EXEC, "exec",
1699 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1700 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1701 "show CPU state before block translation" },
f193c797
FB
1702#ifdef TARGET_I386
1703 { CPU_LOG_PCALL, "pcall",
1704 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1705 { CPU_LOG_RESET, "cpu_reset",
1706 "show CPU state before CPU resets" },
f193c797 1707#endif
8e3a9fd2 1708#ifdef DEBUG_IOPORT
fd872598
FB
1709 { CPU_LOG_IOPORT, "ioport",
1710 "show all i/o ports accesses" },
8e3a9fd2 1711#endif
f193c797
FB
1712 { 0, NULL, NULL },
1713};
1714
f6f3fbca
MT
1715#ifndef CONFIG_USER_ONLY
1716static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1717 = QLIST_HEAD_INITIALIZER(memory_client_list);
1718
1719static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1720 ram_addr_t size,
0fd542fb
MT
1721 ram_addr_t phys_offset,
1722 bool log_dirty)
f6f3fbca
MT
1723{
1724 CPUPhysMemoryClient *client;
1725 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1726 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1727 }
1728}
1729
1730static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1731 target_phys_addr_t end)
f6f3fbca
MT
1732{
1733 CPUPhysMemoryClient *client;
1734 QLIST_FOREACH(client, &memory_client_list, list) {
1735 int r = client->sync_dirty_bitmap(client, start, end);
1736 if (r < 0)
1737 return r;
1738 }
1739 return 0;
1740}
1741
1742static int cpu_notify_migration_log(int enable)
1743{
1744 CPUPhysMemoryClient *client;
1745 QLIST_FOREACH(client, &memory_client_list, list) {
1746 int r = client->migration_log(client, enable);
1747 if (r < 0)
1748 return r;
1749 }
1750 return 0;
1751}
1752
8d4c78e7
AW
1753/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1754 * address. Each intermediate table provides the next L2_BITs of guest
1755 * physical address space. The number of levels vary based on host and
1756 * guest configuration, making it efficient to build the final guest
1757 * physical address by seeding the L1 offset and shifting and adding in
1758 * each L2 offset as we recurse through them. */
5cd2c5b6 1759static void phys_page_for_each_1(CPUPhysMemoryClient *client,
8d4c78e7 1760 int level, void **lp, target_phys_addr_t addr)
f6f3fbca 1761{
5cd2c5b6 1762 int i;
f6f3fbca 1763
5cd2c5b6
RH
1764 if (*lp == NULL) {
1765 return;
1766 }
1767 if (level == 0) {
1768 PhysPageDesc *pd = *lp;
8d4c78e7 1769 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1770 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1771 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
8d4c78e7 1772 client->set_memory(client, addr | i << TARGET_PAGE_BITS,
0fd542fb 1773 TARGET_PAGE_SIZE, pd[i].phys_offset, false);
f6f3fbca 1774 }
5cd2c5b6
RH
1775 }
1776 } else {
1777 void **pp = *lp;
7296abac 1778 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7
AW
1779 phys_page_for_each_1(client, level - 1, pp + i,
1780 (addr << L2_BITS) | i);
f6f3fbca
MT
1781 }
1782 }
1783}
1784
1785static void phys_page_for_each(CPUPhysMemoryClient *client)
1786{
5cd2c5b6
RH
1787 int i;
1788 for (i = 0; i < P_L1_SIZE; ++i) {
1789 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
8d4c78e7 1790 l1_phys_map + i, i);
f6f3fbca 1791 }
f6f3fbca
MT
1792}
1793
1794void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1795{
1796 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1797 phys_page_for_each(client);
1798}
1799
1800void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1801{
1802 QLIST_REMOVE(client, list);
1803}
1804#endif
1805
f193c797
FB
1806static int cmp1(const char *s1, int n, const char *s2)
1807{
1808 if (strlen(s2) != n)
1809 return 0;
1810 return memcmp(s1, s2, n) == 0;
1811}
3b46e624 1812
f193c797
FB
1813/* takes a comma separated list of log masks. Return 0 if error. */
1814int cpu_str_to_log_mask(const char *str)
1815{
c7cd6a37 1816 const CPULogItem *item;
f193c797
FB
1817 int mask;
1818 const char *p, *p1;
1819
1820 p = str;
1821 mask = 0;
1822 for(;;) {
1823 p1 = strchr(p, ',');
1824 if (!p1)
1825 p1 = p + strlen(p);
9742bf26
YT
1826 if(cmp1(p,p1-p,"all")) {
1827 for(item = cpu_log_items; item->mask != 0; item++) {
1828 mask |= item->mask;
1829 }
1830 } else {
1831 for(item = cpu_log_items; item->mask != 0; item++) {
1832 if (cmp1(p, p1 - p, item->name))
1833 goto found;
1834 }
1835 return 0;
f193c797 1836 }
f193c797
FB
1837 found:
1838 mask |= item->mask;
1839 if (*p1 != ',')
1840 break;
1841 p = p1 + 1;
1842 }
1843 return mask;
1844}
ea041c0e 1845
7501267e
FB
1846void cpu_abort(CPUState *env, const char *fmt, ...)
1847{
1848 va_list ap;
493ae1f0 1849 va_list ap2;
7501267e
FB
1850
1851 va_start(ap, fmt);
493ae1f0 1852 va_copy(ap2, ap);
7501267e
FB
1853 fprintf(stderr, "qemu: fatal: ");
1854 vfprintf(stderr, fmt, ap);
1855 fprintf(stderr, "\n");
1856#ifdef TARGET_I386
7fe48483
FB
1857 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1858#else
1859 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1860#endif
93fcfe39
AL
1861 if (qemu_log_enabled()) {
1862 qemu_log("qemu: fatal: ");
1863 qemu_log_vprintf(fmt, ap2);
1864 qemu_log("\n");
f9373291 1865#ifdef TARGET_I386
93fcfe39 1866 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1867#else
93fcfe39 1868 log_cpu_state(env, 0);
f9373291 1869#endif
31b1a7b4 1870 qemu_log_flush();
93fcfe39 1871 qemu_log_close();
924edcae 1872 }
493ae1f0 1873 va_end(ap2);
f9373291 1874 va_end(ap);
fd052bf6
RV
1875#if defined(CONFIG_USER_ONLY)
1876 {
1877 struct sigaction act;
1878 sigfillset(&act.sa_mask);
1879 act.sa_handler = SIG_DFL;
1880 sigaction(SIGABRT, &act, NULL);
1881 }
1882#endif
7501267e
FB
1883 abort();
1884}
1885
c5be9f08
TS
1886CPUState *cpu_copy(CPUState *env)
1887{
01ba9816 1888 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1889 CPUState *next_cpu = new_env->next_cpu;
1890 int cpu_index = new_env->cpu_index;
5a38f081
AL
1891#if defined(TARGET_HAS_ICE)
1892 CPUBreakpoint *bp;
1893 CPUWatchpoint *wp;
1894#endif
1895
c5be9f08 1896 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1897
1898 /* Preserve chaining and index. */
c5be9f08
TS
1899 new_env->next_cpu = next_cpu;
1900 new_env->cpu_index = cpu_index;
5a38f081
AL
1901
1902 /* Clone all break/watchpoints.
1903 Note: Once we support ptrace with hw-debug register access, make sure
1904 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1905 QTAILQ_INIT(&env->breakpoints);
1906 QTAILQ_INIT(&env->watchpoints);
5a38f081 1907#if defined(TARGET_HAS_ICE)
72cf2d4f 1908 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1909 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1910 }
72cf2d4f 1911 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1912 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1913 wp->flags, NULL);
1914 }
1915#endif
1916
c5be9f08
TS
1917 return new_env;
1918}
1919
0124311e
FB
1920#if !defined(CONFIG_USER_ONLY)
1921
5c751e99
EI
1922static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1923{
1924 unsigned int i;
1925
1926 /* Discard jump cache entries for any tb which might potentially
1927 overlap the flushed page. */
1928 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1929 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1930 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1931
1932 i = tb_jmp_cache_hash_page(addr);
1933 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1934 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1935}
1936
08738984
IK
1937static CPUTLBEntry s_cputlb_empty_entry = {
1938 .addr_read = -1,
1939 .addr_write = -1,
1940 .addr_code = -1,
1941 .addend = -1,
1942};
1943
ee8b7021
FB
1944/* NOTE: if flush_global is true, also flush global entries (not
1945 implemented yet) */
1946void tlb_flush(CPUState *env, int flush_global)
33417e70 1947{
33417e70 1948 int i;
0124311e 1949
9fa3e853
FB
1950#if defined(DEBUG_TLB)
1951 printf("tlb_flush:\n");
1952#endif
0124311e
FB
1953 /* must reset current TB so that interrupts cannot modify the
1954 links while we are modifying them */
1955 env->current_tb = NULL;
1956
33417e70 1957 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1958 int mmu_idx;
1959 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1960 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1961 }
33417e70 1962 }
9fa3e853 1963
8a40a180 1964 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1965
d4c430a8
PB
1966 env->tlb_flush_addr = -1;
1967 env->tlb_flush_mask = 0;
e3db7226 1968 tlb_flush_count++;
33417e70
FB
1969}
1970
274da6b2 1971static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1972{
5fafdf24 1973 if (addr == (tlb_entry->addr_read &
84b7b8e7 1974 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1975 addr == (tlb_entry->addr_write &
84b7b8e7 1976 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1977 addr == (tlb_entry->addr_code &
84b7b8e7 1978 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1979 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1980 }
61382a50
FB
1981}
1982
2e12669a 1983void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1984{
8a40a180 1985 int i;
cfde4bd9 1986 int mmu_idx;
0124311e 1987
9fa3e853 1988#if defined(DEBUG_TLB)
108c49b8 1989 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1990#endif
d4c430a8
PB
1991 /* Check if we need to flush due to large pages. */
1992 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1993#if defined(DEBUG_TLB)
1994 printf("tlb_flush_page: forced full flush ("
1995 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1996 env->tlb_flush_addr, env->tlb_flush_mask);
1997#endif
1998 tlb_flush(env, 1);
1999 return;
2000 }
0124311e
FB
2001 /* must reset current TB so that interrupts cannot modify the
2002 links while we are modifying them */
2003 env->current_tb = NULL;
61382a50
FB
2004
2005 addr &= TARGET_PAGE_MASK;
2006 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2007 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2008 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2009
5c751e99 2010 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2011}
2012
9fa3e853
FB
2013/* update the TLBs so that writes to code in the virtual page 'addr'
2014 can be detected */
c227f099 2015static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2016{
5fafdf24 2017 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2018 ram_addr + TARGET_PAGE_SIZE,
2019 CODE_DIRTY_FLAG);
9fa3e853
FB
2020}
2021
9fa3e853 2022/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2023 tested for self modifying code */
c227f099 2024static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2025 target_ulong vaddr)
9fa3e853 2026{
f7c11b53 2027 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2028}
2029
5fafdf24 2030static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2031 unsigned long start, unsigned long length)
2032{
2033 unsigned long addr;
84b7b8e7
FB
2034 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2035 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2036 if ((addr - start) < length) {
0f459d16 2037 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2038 }
2039 }
2040}
2041
5579c7f3 2042/* Note: start and end must be within the same ram block. */
c227f099 2043void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2044 int dirty_flags)
1ccde1cb
FB
2045{
2046 CPUState *env;
4f2ac237 2047 unsigned long length, start1;
f7c11b53 2048 int i;
1ccde1cb
FB
2049
2050 start &= TARGET_PAGE_MASK;
2051 end = TARGET_PAGE_ALIGN(end);
2052
2053 length = end - start;
2054 if (length == 0)
2055 return;
f7c11b53 2056 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2057
1ccde1cb
FB
2058 /* we modify the TLB cache so that the dirty bit will be set again
2059 when accessing the range */
b2e0a138 2060 start1 = (unsigned long)qemu_safe_ram_ptr(start);
5579c7f3
PB
2061 /* Chek that we don't span multiple blocks - this breaks the
2062 address comparisons below. */
b2e0a138 2063 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2064 != (end - 1) - start) {
2065 abort();
2066 }
2067
6a00d601 2068 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2069 int mmu_idx;
2070 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2071 for(i = 0; i < CPU_TLB_SIZE; i++)
2072 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2073 start1, length);
2074 }
6a00d601 2075 }
1ccde1cb
FB
2076}
2077
74576198
AL
2078int cpu_physical_memory_set_dirty_tracking(int enable)
2079{
f6f3fbca 2080 int ret = 0;
74576198 2081 in_migration = enable;
f6f3fbca
MT
2082 ret = cpu_notify_migration_log(!!enable);
2083 return ret;
74576198
AL
2084}
2085
2086int cpu_physical_memory_get_dirty_tracking(void)
2087{
2088 return in_migration;
2089}
2090
c227f099
AL
2091int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2092 target_phys_addr_t end_addr)
2bec46dc 2093{
7b8f3b78 2094 int ret;
151f7749 2095
f6f3fbca 2096 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2097 return ret;
2bec46dc
AL
2098}
2099
e5896b12
AP
2100int cpu_physical_log_start(target_phys_addr_t start_addr,
2101 ram_addr_t size)
2102{
2103 CPUPhysMemoryClient *client;
2104 QLIST_FOREACH(client, &memory_client_list, list) {
2105 if (client->log_start) {
2106 int r = client->log_start(client, start_addr, size);
2107 if (r < 0) {
2108 return r;
2109 }
2110 }
2111 }
2112 return 0;
2113}
2114
2115int cpu_physical_log_stop(target_phys_addr_t start_addr,
2116 ram_addr_t size)
2117{
2118 CPUPhysMemoryClient *client;
2119 QLIST_FOREACH(client, &memory_client_list, list) {
2120 if (client->log_stop) {
2121 int r = client->log_stop(client, start_addr, size);
2122 if (r < 0) {
2123 return r;
2124 }
2125 }
2126 }
2127 return 0;
2128}
2129
3a7d929e
FB
2130static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2131{
c227f099 2132 ram_addr_t ram_addr;
5579c7f3 2133 void *p;
3a7d929e 2134
84b7b8e7 2135 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2136 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2137 + tlb_entry->addend);
e890261f 2138 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2139 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2140 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2141 }
2142 }
2143}
2144
2145/* update the TLB according to the current state of the dirty bits */
2146void cpu_tlb_update_dirty(CPUState *env)
2147{
2148 int i;
cfde4bd9
IY
2149 int mmu_idx;
2150 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2151 for(i = 0; i < CPU_TLB_SIZE; i++)
2152 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2153 }
3a7d929e
FB
2154}
2155
0f459d16 2156static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2157{
0f459d16
PB
2158 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2159 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2160}
2161
0f459d16
PB
2162/* update the TLB corresponding to virtual page vaddr
2163 so that it is no longer dirty */
2164static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2165{
1ccde1cb 2166 int i;
cfde4bd9 2167 int mmu_idx;
1ccde1cb 2168
0f459d16 2169 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2170 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2171 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2172 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2173}
2174
d4c430a8
PB
2175/* Our TLB does not support large pages, so remember the area covered by
2176 large pages and trigger a full TLB flush if these are invalidated. */
2177static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2178 target_ulong size)
2179{
2180 target_ulong mask = ~(size - 1);
2181
2182 if (env->tlb_flush_addr == (target_ulong)-1) {
2183 env->tlb_flush_addr = vaddr & mask;
2184 env->tlb_flush_mask = mask;
2185 return;
2186 }
2187 /* Extend the existing region to include the new page.
2188 This is a compromise between unnecessary flushes and the cost
2189 of maintaining a full variable size TLB. */
2190 mask &= env->tlb_flush_mask;
2191 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2192 mask <<= 1;
2193 }
2194 env->tlb_flush_addr &= mask;
2195 env->tlb_flush_mask = mask;
2196}
2197
2198/* Add a new TLB entry. At most one entry for a given virtual address
2199 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2200 supplied size is only used by tlb_flush_page. */
2201void tlb_set_page(CPUState *env, target_ulong vaddr,
2202 target_phys_addr_t paddr, int prot,
2203 int mmu_idx, target_ulong size)
9fa3e853 2204{
92e873b9 2205 PhysPageDesc *p;
4f2ac237 2206 unsigned long pd;
9fa3e853 2207 unsigned int index;
4f2ac237 2208 target_ulong address;
0f459d16 2209 target_ulong code_address;
355b1943 2210 unsigned long addend;
84b7b8e7 2211 CPUTLBEntry *te;
a1d1bb31 2212 CPUWatchpoint *wp;
c227f099 2213 target_phys_addr_t iotlb;
9fa3e853 2214
d4c430a8
PB
2215 assert(size >= TARGET_PAGE_SIZE);
2216 if (size != TARGET_PAGE_SIZE) {
2217 tlb_add_large_page(env, vaddr, size);
2218 }
92e873b9 2219 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2220 if (!p) {
2221 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2222 } else {
2223 pd = p->phys_offset;
9fa3e853
FB
2224 }
2225#if defined(DEBUG_TLB)
7fd3f494
SW
2226 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2227 " prot=%x idx=%d pd=0x%08lx\n",
2228 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2229#endif
2230
0f459d16
PB
2231 address = vaddr;
2232 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2233 /* IO memory case (romd handled later) */
2234 address |= TLB_MMIO;
2235 }
5579c7f3 2236 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2237 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2238 /* Normal RAM. */
2239 iotlb = pd & TARGET_PAGE_MASK;
2240 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2241 iotlb |= IO_MEM_NOTDIRTY;
2242 else
2243 iotlb |= IO_MEM_ROM;
2244 } else {
ccbb4d44 2245 /* IO handlers are currently passed a physical address.
0f459d16
PB
2246 It would be nice to pass an offset from the base address
2247 of that region. This would avoid having to special case RAM,
2248 and avoid full address decoding in every device.
2249 We can't use the high bits of pd for this because
2250 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2251 iotlb = (pd & ~TARGET_PAGE_MASK);
2252 if (p) {
8da3ff18
PB
2253 iotlb += p->region_offset;
2254 } else {
2255 iotlb += paddr;
2256 }
0f459d16
PB
2257 }
2258
2259 code_address = address;
2260 /* Make accesses to pages with watchpoints go via the
2261 watchpoint trap routines. */
72cf2d4f 2262 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2263 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2264 /* Avoid trapping reads of pages with a write breakpoint. */
2265 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2266 iotlb = io_mem_watch + paddr;
2267 address |= TLB_MMIO;
2268 break;
2269 }
6658ffb8 2270 }
0f459d16 2271 }
d79acba4 2272
0f459d16
PB
2273 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2274 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2275 te = &env->tlb_table[mmu_idx][index];
2276 te->addend = addend - vaddr;
2277 if (prot & PAGE_READ) {
2278 te->addr_read = address;
2279 } else {
2280 te->addr_read = -1;
2281 }
5c751e99 2282
0f459d16
PB
2283 if (prot & PAGE_EXEC) {
2284 te->addr_code = code_address;
2285 } else {
2286 te->addr_code = -1;
2287 }
2288 if (prot & PAGE_WRITE) {
2289 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2290 (pd & IO_MEM_ROMD)) {
2291 /* Write access calls the I/O callback. */
2292 te->addr_write = address | TLB_MMIO;
2293 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2294 !cpu_physical_memory_is_dirty(pd)) {
2295 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2296 } else {
0f459d16 2297 te->addr_write = address;
9fa3e853 2298 }
0f459d16
PB
2299 } else {
2300 te->addr_write = -1;
9fa3e853 2301 }
9fa3e853
FB
2302}
2303
0124311e
FB
2304#else
2305
ee8b7021 2306void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2307{
2308}
2309
2e12669a 2310void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2311{
2312}
2313
edf8e2af
MW
2314/*
2315 * Walks guest process memory "regions" one by one
2316 * and calls callback function 'fn' for each region.
2317 */
5cd2c5b6
RH
2318
2319struct walk_memory_regions_data
2320{
2321 walk_memory_regions_fn fn;
2322 void *priv;
2323 unsigned long start;
2324 int prot;
2325};
2326
2327static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2328 abi_ulong end, int new_prot)
5cd2c5b6
RH
2329{
2330 if (data->start != -1ul) {
2331 int rc = data->fn(data->priv, data->start, end, data->prot);
2332 if (rc != 0) {
2333 return rc;
2334 }
2335 }
2336
2337 data->start = (new_prot ? end : -1ul);
2338 data->prot = new_prot;
2339
2340 return 0;
2341}
2342
2343static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2344 abi_ulong base, int level, void **lp)
5cd2c5b6 2345{
b480d9b7 2346 abi_ulong pa;
5cd2c5b6
RH
2347 int i, rc;
2348
2349 if (*lp == NULL) {
2350 return walk_memory_regions_end(data, base, 0);
2351 }
2352
2353 if (level == 0) {
2354 PageDesc *pd = *lp;
7296abac 2355 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2356 int prot = pd[i].flags;
2357
2358 pa = base | (i << TARGET_PAGE_BITS);
2359 if (prot != data->prot) {
2360 rc = walk_memory_regions_end(data, pa, prot);
2361 if (rc != 0) {
2362 return rc;
9fa3e853 2363 }
9fa3e853 2364 }
5cd2c5b6
RH
2365 }
2366 } else {
2367 void **pp = *lp;
7296abac 2368 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2369 pa = base | ((abi_ulong)i <<
2370 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2371 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2372 if (rc != 0) {
2373 return rc;
2374 }
2375 }
2376 }
2377
2378 return 0;
2379}
2380
2381int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2382{
2383 struct walk_memory_regions_data data;
2384 unsigned long i;
2385
2386 data.fn = fn;
2387 data.priv = priv;
2388 data.start = -1ul;
2389 data.prot = 0;
2390
2391 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2392 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2393 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2394 if (rc != 0) {
2395 return rc;
9fa3e853 2396 }
33417e70 2397 }
5cd2c5b6
RH
2398
2399 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2400}
2401
b480d9b7
PB
2402static int dump_region(void *priv, abi_ulong start,
2403 abi_ulong end, unsigned long prot)
edf8e2af
MW
2404{
2405 FILE *f = (FILE *)priv;
2406
b480d9b7
PB
2407 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2408 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2409 start, end, end - start,
2410 ((prot & PAGE_READ) ? 'r' : '-'),
2411 ((prot & PAGE_WRITE) ? 'w' : '-'),
2412 ((prot & PAGE_EXEC) ? 'x' : '-'));
2413
2414 return (0);
2415}
2416
2417/* dump memory mappings */
2418void page_dump(FILE *f)
2419{
2420 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2421 "start", "end", "size", "prot");
2422 walk_memory_regions(f, dump_region);
33417e70
FB
2423}
2424
53a5960a 2425int page_get_flags(target_ulong address)
33417e70 2426{
9fa3e853
FB
2427 PageDesc *p;
2428
2429 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2430 if (!p)
9fa3e853
FB
2431 return 0;
2432 return p->flags;
2433}
2434
376a7909
RH
2435/* Modify the flags of a page and invalidate the code if necessary.
2436 The flag PAGE_WRITE_ORG is positioned automatically depending
2437 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2438void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2439{
376a7909
RH
2440 target_ulong addr, len;
2441
2442 /* This function should never be called with addresses outside the
2443 guest address space. If this assert fires, it probably indicates
2444 a missing call to h2g_valid. */
b480d9b7
PB
2445#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2446 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2447#endif
2448 assert(start < end);
9fa3e853
FB
2449
2450 start = start & TARGET_PAGE_MASK;
2451 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2452
2453 if (flags & PAGE_WRITE) {
9fa3e853 2454 flags |= PAGE_WRITE_ORG;
376a7909
RH
2455 }
2456
2457 for (addr = start, len = end - start;
2458 len != 0;
2459 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2460 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2461
2462 /* If the write protection bit is set, then we invalidate
2463 the code inside. */
5fafdf24 2464 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2465 (flags & PAGE_WRITE) &&
2466 p->first_tb) {
d720b93d 2467 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2468 }
2469 p->flags = flags;
2470 }
33417e70
FB
2471}
2472
3d97b40b
TS
2473int page_check_range(target_ulong start, target_ulong len, int flags)
2474{
2475 PageDesc *p;
2476 target_ulong end;
2477 target_ulong addr;
2478
376a7909
RH
2479 /* This function should never be called with addresses outside the
2480 guest address space. If this assert fires, it probably indicates
2481 a missing call to h2g_valid. */
338e9e6c
BS
2482#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2483 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2484#endif
2485
3e0650a9
RH
2486 if (len == 0) {
2487 return 0;
2488 }
376a7909
RH
2489 if (start + len - 1 < start) {
2490 /* We've wrapped around. */
55f280c9 2491 return -1;
376a7909 2492 }
55f280c9 2493
3d97b40b
TS
2494 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2495 start = start & TARGET_PAGE_MASK;
2496
376a7909
RH
2497 for (addr = start, len = end - start;
2498 len != 0;
2499 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2500 p = page_find(addr >> TARGET_PAGE_BITS);
2501 if( !p )
2502 return -1;
2503 if( !(p->flags & PAGE_VALID) )
2504 return -1;
2505
dae3270c 2506 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2507 return -1;
dae3270c
FB
2508 if (flags & PAGE_WRITE) {
2509 if (!(p->flags & PAGE_WRITE_ORG))
2510 return -1;
2511 /* unprotect the page if it was put read-only because it
2512 contains translated code */
2513 if (!(p->flags & PAGE_WRITE)) {
2514 if (!page_unprotect(addr, 0, NULL))
2515 return -1;
2516 }
2517 return 0;
2518 }
3d97b40b
TS
2519 }
2520 return 0;
2521}
2522
9fa3e853 2523/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2524 page. Return TRUE if the fault was successfully handled. */
53a5960a 2525int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2526{
45d679d6
AJ
2527 unsigned int prot;
2528 PageDesc *p;
53a5960a 2529 target_ulong host_start, host_end, addr;
9fa3e853 2530
c8a706fe
PB
2531 /* Technically this isn't safe inside a signal handler. However we
2532 know this only ever happens in a synchronous SEGV handler, so in
2533 practice it seems to be ok. */
2534 mmap_lock();
2535
45d679d6
AJ
2536 p = page_find(address >> TARGET_PAGE_BITS);
2537 if (!p) {
c8a706fe 2538 mmap_unlock();
9fa3e853 2539 return 0;
c8a706fe 2540 }
45d679d6 2541
9fa3e853
FB
2542 /* if the page was really writable, then we change its
2543 protection back to writable */
45d679d6
AJ
2544 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2545 host_start = address & qemu_host_page_mask;
2546 host_end = host_start + qemu_host_page_size;
2547
2548 prot = 0;
2549 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2550 p = page_find(addr >> TARGET_PAGE_BITS);
2551 p->flags |= PAGE_WRITE;
2552 prot |= p->flags;
2553
9fa3e853
FB
2554 /* and since the content will be modified, we must invalidate
2555 the corresponding translated code. */
45d679d6 2556 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2557#ifdef DEBUG_TB_CHECK
45d679d6 2558 tb_invalidate_check(addr);
9fa3e853 2559#endif
9fa3e853 2560 }
45d679d6
AJ
2561 mprotect((void *)g2h(host_start), qemu_host_page_size,
2562 prot & PAGE_BITS);
2563
2564 mmap_unlock();
2565 return 1;
9fa3e853 2566 }
c8a706fe 2567 mmap_unlock();
9fa3e853
FB
2568 return 0;
2569}
2570
6a00d601
FB
2571static inline void tlb_set_dirty(CPUState *env,
2572 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2573{
2574}
9fa3e853
FB
2575#endif /* defined(CONFIG_USER_ONLY) */
2576
e2eef170 2577#if !defined(CONFIG_USER_ONLY)
8da3ff18 2578
c04b2b78
PB
2579#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2580typedef struct subpage_t {
2581 target_phys_addr_t base;
f6405247
RH
2582 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2583 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2584} subpage_t;
2585
c227f099
AL
2586static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2587 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2588static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2589 ram_addr_t orig_memory,
2590 ram_addr_t region_offset);
db7b5426
BS
2591#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2592 need_subpage) \
2593 do { \
2594 if (addr > start_addr) \
2595 start_addr2 = 0; \
2596 else { \
2597 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2598 if (start_addr2 > 0) \
2599 need_subpage = 1; \
2600 } \
2601 \
49e9fba2 2602 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2603 end_addr2 = TARGET_PAGE_SIZE - 1; \
2604 else { \
2605 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2606 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2607 need_subpage = 1; \
2608 } \
2609 } while (0)
2610
8f2498f9
MT
2611/* register physical memory.
2612 For RAM, 'size' must be a multiple of the target page size.
2613 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2614 io memory page. The address used when calling the IO function is
2615 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2616 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2617 before calculating this offset. This should not be a problem unless
2618 the low bits of start_addr and region_offset differ. */
0fd542fb 2619void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2620 ram_addr_t size,
2621 ram_addr_t phys_offset,
0fd542fb
MT
2622 ram_addr_t region_offset,
2623 bool log_dirty)
33417e70 2624{
c227f099 2625 target_phys_addr_t addr, end_addr;
92e873b9 2626 PhysPageDesc *p;
9d42037b 2627 CPUState *env;
c227f099 2628 ram_addr_t orig_size = size;
f6405247 2629 subpage_t *subpage;
33417e70 2630
3b8e6a2d 2631 assert(size);
0fd542fb 2632 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2633
67c4d23c
PB
2634 if (phys_offset == IO_MEM_UNASSIGNED) {
2635 region_offset = start_addr;
2636 }
8da3ff18 2637 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2638 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2639 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2640
2641 addr = start_addr;
2642 do {
db7b5426
BS
2643 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2644 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2645 ram_addr_t orig_memory = p->phys_offset;
2646 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2647 int need_subpage = 0;
2648
2649 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2650 need_subpage);
f6405247 2651 if (need_subpage) {
db7b5426
BS
2652 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2653 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2654 &p->phys_offset, orig_memory,
2655 p->region_offset);
db7b5426
BS
2656 } else {
2657 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2658 >> IO_MEM_SHIFT];
2659 }
8da3ff18
PB
2660 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2661 region_offset);
2662 p->region_offset = 0;
db7b5426
BS
2663 } else {
2664 p->phys_offset = phys_offset;
2665 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2666 (phys_offset & IO_MEM_ROMD))
2667 phys_offset += TARGET_PAGE_SIZE;
2668 }
2669 } else {
2670 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2671 p->phys_offset = phys_offset;
8da3ff18 2672 p->region_offset = region_offset;
db7b5426 2673 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2674 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2675 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2676 } else {
c227f099 2677 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2678 int need_subpage = 0;
2679
2680 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2681 end_addr2, need_subpage);
2682
f6405247 2683 if (need_subpage) {
db7b5426 2684 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2685 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2686 addr & TARGET_PAGE_MASK);
db7b5426 2687 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2688 phys_offset, region_offset);
2689 p->region_offset = 0;
db7b5426
BS
2690 }
2691 }
2692 }
8da3ff18 2693 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2694 addr += TARGET_PAGE_SIZE;
2695 } while (addr != end_addr);
3b46e624 2696
9d42037b
FB
2697 /* since each CPU stores ram addresses in its TLB cache, we must
2698 reset the modified entries */
2699 /* XXX: slow ! */
2700 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2701 tlb_flush(env, 1);
2702 }
33417e70
FB
2703}
2704
ba863458 2705/* XXX: temporary until new memory mapping API */
c227f099 2706ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2707{
2708 PhysPageDesc *p;
2709
2710 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2711 if (!p)
2712 return IO_MEM_UNASSIGNED;
2713 return p->phys_offset;
2714}
2715
c227f099 2716void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2717{
2718 if (kvm_enabled())
2719 kvm_coalesce_mmio_region(addr, size);
2720}
2721
c227f099 2722void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2723{
2724 if (kvm_enabled())
2725 kvm_uncoalesce_mmio_region(addr, size);
2726}
2727
62a2744c
SY
2728void qemu_flush_coalesced_mmio_buffer(void)
2729{
2730 if (kvm_enabled())
2731 kvm_flush_coalesced_mmio_buffer();
2732}
2733
c902760f
MT
2734#if defined(__linux__) && !defined(TARGET_S390X)
2735
2736#include <sys/vfs.h>
2737
2738#define HUGETLBFS_MAGIC 0x958458f6
2739
2740static long gethugepagesize(const char *path)
2741{
2742 struct statfs fs;
2743 int ret;
2744
2745 do {
9742bf26 2746 ret = statfs(path, &fs);
c902760f
MT
2747 } while (ret != 0 && errno == EINTR);
2748
2749 if (ret != 0) {
9742bf26
YT
2750 perror(path);
2751 return 0;
c902760f
MT
2752 }
2753
2754 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2755 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2756
2757 return fs.f_bsize;
2758}
2759
04b16653
AW
2760static void *file_ram_alloc(RAMBlock *block,
2761 ram_addr_t memory,
2762 const char *path)
c902760f
MT
2763{
2764 char *filename;
2765 void *area;
2766 int fd;
2767#ifdef MAP_POPULATE
2768 int flags;
2769#endif
2770 unsigned long hpagesize;
2771
2772 hpagesize = gethugepagesize(path);
2773 if (!hpagesize) {
9742bf26 2774 return NULL;
c902760f
MT
2775 }
2776
2777 if (memory < hpagesize) {
2778 return NULL;
2779 }
2780
2781 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2782 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2783 return NULL;
2784 }
2785
2786 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2787 return NULL;
c902760f
MT
2788 }
2789
2790 fd = mkstemp(filename);
2791 if (fd < 0) {
9742bf26
YT
2792 perror("unable to create backing store for hugepages");
2793 free(filename);
2794 return NULL;
c902760f
MT
2795 }
2796 unlink(filename);
2797 free(filename);
2798
2799 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2800
2801 /*
2802 * ftruncate is not supported by hugetlbfs in older
2803 * hosts, so don't bother bailing out on errors.
2804 * If anything goes wrong with it under other filesystems,
2805 * mmap will fail.
2806 */
2807 if (ftruncate(fd, memory))
9742bf26 2808 perror("ftruncate");
c902760f
MT
2809
2810#ifdef MAP_POPULATE
2811 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2812 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2813 * to sidestep this quirk.
2814 */
2815 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2816 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2817#else
2818 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2819#endif
2820 if (area == MAP_FAILED) {
9742bf26
YT
2821 perror("file_ram_alloc: can't mmap RAM pages");
2822 close(fd);
2823 return (NULL);
c902760f 2824 }
04b16653 2825 block->fd = fd;
c902760f
MT
2826 return area;
2827}
2828#endif
2829
d17b5288 2830static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2831{
2832 RAMBlock *block, *next_block;
09d7ae90 2833 ram_addr_t offset = 0, mingap = ULONG_MAX;
04b16653
AW
2834
2835 if (QLIST_EMPTY(&ram_list.blocks))
2836 return 0;
2837
2838 QLIST_FOREACH(block, &ram_list.blocks, next) {
2839 ram_addr_t end, next = ULONG_MAX;
2840
2841 end = block->offset + block->length;
2842
2843 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2844 if (next_block->offset >= end) {
2845 next = MIN(next, next_block->offset);
2846 }
2847 }
2848 if (next - end >= size && next - end < mingap) {
2849 offset = end;
2850 mingap = next - end;
2851 }
2852 }
2853 return offset;
2854}
2855
2856static ram_addr_t last_ram_offset(void)
d17b5288
AW
2857{
2858 RAMBlock *block;
2859 ram_addr_t last = 0;
2860
2861 QLIST_FOREACH(block, &ram_list.blocks, next)
2862 last = MAX(last, block->offset + block->length);
2863
2864 return last;
2865}
2866
84b89d78 2867ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2868 ram_addr_t size, void *host)
84b89d78
CM
2869{
2870 RAMBlock *new_block, *block;
2871
2872 size = TARGET_PAGE_ALIGN(size);
2873 new_block = qemu_mallocz(sizeof(*new_block));
2874
2875 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2876 char *id = dev->parent_bus->info->get_dev_path(dev);
2877 if (id) {
2878 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2879 qemu_free(id);
2880 }
2881 }
2882 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2883
2884 QLIST_FOREACH(block, &ram_list.blocks, next) {
2885 if (!strcmp(block->idstr, new_block->idstr)) {
2886 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2887 new_block->idstr);
2888 abort();
2889 }
2890 }
2891
6977dfe6
YT
2892 if (host) {
2893 new_block->host = host;
cd19cfa2 2894 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2895 } else {
2896 if (mem_path) {
c902760f 2897#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2898 new_block->host = file_ram_alloc(new_block, size, mem_path);
2899 if (!new_block->host) {
2900 new_block->host = qemu_vmalloc(size);
e78815a5 2901 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2902 }
c902760f 2903#else
6977dfe6
YT
2904 fprintf(stderr, "-mem-path option unsupported\n");
2905 exit(1);
c902760f 2906#endif
6977dfe6 2907 } else {
6b02494d 2908#if defined(TARGET_S390X) && defined(CONFIG_KVM)
6977dfe6
YT
2909 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2910 new_block->host = mmap((void*)0x1000000, size,
2911 PROT_EXEC|PROT_READ|PROT_WRITE,
2912 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2913#else
6977dfe6 2914 new_block->host = qemu_vmalloc(size);
6b02494d 2915#endif
e78815a5 2916 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2917 }
c902760f 2918 }
6977dfe6 2919
d17b5288 2920 new_block->offset = find_ram_offset(size);
94a6b54f
PB
2921 new_block->length = size;
2922
f471a17e 2923 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2924
f471a17e 2925 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
04b16653 2926 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2927 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2928 0xff, size >> TARGET_PAGE_BITS);
2929
6f0437e8
JK
2930 if (kvm_enabled())
2931 kvm_setup_guest_memory(new_block->host, size);
2932
94a6b54f
PB
2933 return new_block->offset;
2934}
e9a1ab19 2935
6977dfe6
YT
2936ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2937{
2938 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2939}
2940
c227f099 2941void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2942{
04b16653
AW
2943 RAMBlock *block;
2944
2945 QLIST_FOREACH(block, &ram_list.blocks, next) {
2946 if (addr == block->offset) {
2947 QLIST_REMOVE(block, next);
cd19cfa2
HY
2948 if (block->flags & RAM_PREALLOC_MASK) {
2949 ;
2950 } else if (mem_path) {
04b16653
AW
2951#if defined (__linux__) && !defined(TARGET_S390X)
2952 if (block->fd) {
2953 munmap(block->host, block->length);
2954 close(block->fd);
2955 } else {
2956 qemu_vfree(block->host);
2957 }
fd28aa13
JK
2958#else
2959 abort();
04b16653
AW
2960#endif
2961 } else {
2962#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2963 munmap(block->host, block->length);
2964#else
2965 qemu_vfree(block->host);
2966#endif
2967 }
2968 qemu_free(block);
2969 return;
2970 }
2971 }
2972
e9a1ab19
FB
2973}
2974
cd19cfa2
HY
2975#ifndef _WIN32
2976void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2977{
2978 RAMBlock *block;
2979 ram_addr_t offset;
2980 int flags;
2981 void *area, *vaddr;
2982
2983 QLIST_FOREACH(block, &ram_list.blocks, next) {
2984 offset = addr - block->offset;
2985 if (offset < block->length) {
2986 vaddr = block->host + offset;
2987 if (block->flags & RAM_PREALLOC_MASK) {
2988 ;
2989 } else {
2990 flags = MAP_FIXED;
2991 munmap(vaddr, length);
2992 if (mem_path) {
2993#if defined(__linux__) && !defined(TARGET_S390X)
2994 if (block->fd) {
2995#ifdef MAP_POPULATE
2996 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2997 MAP_PRIVATE;
2998#else
2999 flags |= MAP_PRIVATE;
3000#endif
3001 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3002 flags, block->fd, offset);
3003 } else {
3004 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3005 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3006 flags, -1, 0);
3007 }
fd28aa13
JK
3008#else
3009 abort();
cd19cfa2
HY
3010#endif
3011 } else {
3012#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3013 flags |= MAP_SHARED | MAP_ANONYMOUS;
3014 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3015 flags, -1, 0);
3016#else
3017 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3018 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3019 flags, -1, 0);
3020#endif
3021 }
3022 if (area != vaddr) {
3023 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3024 length, addr);
3025 exit(1);
3026 }
3027 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3028 }
3029 return;
3030 }
3031 }
3032}
3033#endif /* !_WIN32 */
3034
dc828ca1 3035/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3036 With the exception of the softmmu code in this file, this should
3037 only be used for local memory (e.g. video ram) that the device owns,
3038 and knows it isn't going to access beyond the end of the block.
3039
3040 It should not be used for general purpose DMA.
3041 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3042 */
c227f099 3043void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3044{
94a6b54f
PB
3045 RAMBlock *block;
3046
f471a17e
AW
3047 QLIST_FOREACH(block, &ram_list.blocks, next) {
3048 if (addr - block->offset < block->length) {
7d82af38
VP
3049 /* Move this entry to to start of the list. */
3050 if (block != QLIST_FIRST(&ram_list.blocks)) {
3051 QLIST_REMOVE(block, next);
3052 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3053 }
f471a17e
AW
3054 return block->host + (addr - block->offset);
3055 }
94a6b54f 3056 }
f471a17e
AW
3057
3058 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3059 abort();
3060
3061 return NULL;
dc828ca1
PB
3062}
3063
b2e0a138
MT
3064/* Return a host pointer to ram allocated with qemu_ram_alloc.
3065 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3066 */
3067void *qemu_safe_ram_ptr(ram_addr_t addr)
3068{
3069 RAMBlock *block;
3070
3071 QLIST_FOREACH(block, &ram_list.blocks, next) {
3072 if (addr - block->offset < block->length) {
3073 return block->host + (addr - block->offset);
3074 }
3075 }
3076
3077 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3078 abort();
3079
3080 return NULL;
3081}
3082
e890261f 3083int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3084{
94a6b54f
PB
3085 RAMBlock *block;
3086 uint8_t *host = ptr;
3087
f471a17e
AW
3088 QLIST_FOREACH(block, &ram_list.blocks, next) {
3089 if (host - block->host < block->length) {
e890261f
MT
3090 *ram_addr = block->offset + (host - block->host);
3091 return 0;
f471a17e 3092 }
94a6b54f 3093 }
e890261f
MT
3094 return -1;
3095}
f471a17e 3096
e890261f
MT
3097/* Some of the softmmu routines need to translate from a host pointer
3098 (typically a TLB entry) back to a ram offset. */
3099ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3100{
3101 ram_addr_t ram_addr;
f471a17e 3102
e890261f
MT
3103 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3104 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3105 abort();
3106 }
3107 return ram_addr;
5579c7f3
PB
3108}
3109
c227f099 3110static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3111{
67d3b957 3112#ifdef DEBUG_UNASSIGNED
ab3d1727 3113 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3114#endif
faed1c2a 3115#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3116 do_unassigned_access(addr, 0, 0, 0, 1);
3117#endif
3118 return 0;
3119}
3120
c227f099 3121static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3122{
3123#ifdef DEBUG_UNASSIGNED
3124 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3125#endif
faed1c2a 3126#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3127 do_unassigned_access(addr, 0, 0, 0, 2);
3128#endif
3129 return 0;
3130}
3131
c227f099 3132static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3133{
3134#ifdef DEBUG_UNASSIGNED
3135 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3136#endif
faed1c2a 3137#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3138 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 3139#endif
33417e70
FB
3140 return 0;
3141}
3142
c227f099 3143static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3144{
67d3b957 3145#ifdef DEBUG_UNASSIGNED
ab3d1727 3146 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3147#endif
faed1c2a 3148#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3149 do_unassigned_access(addr, 1, 0, 0, 1);
3150#endif
3151}
3152
c227f099 3153static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3154{
3155#ifdef DEBUG_UNASSIGNED
3156 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3157#endif
faed1c2a 3158#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3159 do_unassigned_access(addr, 1, 0, 0, 2);
3160#endif
3161}
3162
c227f099 3163static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3164{
3165#ifdef DEBUG_UNASSIGNED
3166 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3167#endif
faed1c2a 3168#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3169 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 3170#endif
33417e70
FB
3171}
3172
d60efc6b 3173static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3174 unassigned_mem_readb,
e18231a3
BS
3175 unassigned_mem_readw,
3176 unassigned_mem_readl,
33417e70
FB
3177};
3178
d60efc6b 3179static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3180 unassigned_mem_writeb,
e18231a3
BS
3181 unassigned_mem_writew,
3182 unassigned_mem_writel,
33417e70
FB
3183};
3184
c227f099 3185static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3186 uint32_t val)
9fa3e853 3187{
3a7d929e 3188 int dirty_flags;
f7c11b53 3189 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3190 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3191#if !defined(CONFIG_USER_ONLY)
3a7d929e 3192 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3193 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3194#endif
3a7d929e 3195 }
5579c7f3 3196 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3197 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3198 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3199 /* we remove the notdirty callback only if the code has been
3200 flushed */
3201 if (dirty_flags == 0xff)
2e70f6ef 3202 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3203}
3204
c227f099 3205static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3206 uint32_t val)
9fa3e853 3207{
3a7d929e 3208 int dirty_flags;
f7c11b53 3209 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3210 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3211#if !defined(CONFIG_USER_ONLY)
3a7d929e 3212 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3213 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3214#endif
3a7d929e 3215 }
5579c7f3 3216 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3217 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3218 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3219 /* we remove the notdirty callback only if the code has been
3220 flushed */
3221 if (dirty_flags == 0xff)
2e70f6ef 3222 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3223}
3224
c227f099 3225static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3226 uint32_t val)
9fa3e853 3227{
3a7d929e 3228 int dirty_flags;
f7c11b53 3229 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3230 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3231#if !defined(CONFIG_USER_ONLY)
3a7d929e 3232 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3233 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3234#endif
3a7d929e 3235 }
5579c7f3 3236 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3237 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3238 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3239 /* we remove the notdirty callback only if the code has been
3240 flushed */
3241 if (dirty_flags == 0xff)
2e70f6ef 3242 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3243}
3244
d60efc6b 3245static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3246 NULL, /* never used */
3247 NULL, /* never used */
3248 NULL, /* never used */
3249};
3250
d60efc6b 3251static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3252 notdirty_mem_writeb,
3253 notdirty_mem_writew,
3254 notdirty_mem_writel,
3255};
3256
0f459d16 3257/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3258static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3259{
3260 CPUState *env = cpu_single_env;
06d55cc1
AL
3261 target_ulong pc, cs_base;
3262 TranslationBlock *tb;
0f459d16 3263 target_ulong vaddr;
a1d1bb31 3264 CPUWatchpoint *wp;
06d55cc1 3265 int cpu_flags;
0f459d16 3266
06d55cc1
AL
3267 if (env->watchpoint_hit) {
3268 /* We re-entered the check after replacing the TB. Now raise
3269 * the debug interrupt so that is will trigger after the
3270 * current instruction. */
3271 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3272 return;
3273 }
2e70f6ef 3274 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3275 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3276 if ((vaddr == (wp->vaddr & len_mask) ||
3277 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3278 wp->flags |= BP_WATCHPOINT_HIT;
3279 if (!env->watchpoint_hit) {
3280 env->watchpoint_hit = wp;
3281 tb = tb_find_pc(env->mem_io_pc);
3282 if (!tb) {
3283 cpu_abort(env, "check_watchpoint: could not find TB for "
3284 "pc=%p", (void *)env->mem_io_pc);
3285 }
618ba8e6 3286 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3287 tb_phys_invalidate(tb, -1);
3288 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3289 env->exception_index = EXCP_DEBUG;
3290 } else {
3291 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3292 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3293 }
3294 cpu_resume_from_signal(env, NULL);
06d55cc1 3295 }
6e140f28
AL
3296 } else {
3297 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3298 }
3299 }
3300}
3301
6658ffb8
PB
3302/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3303 so these check for a hit then pass through to the normal out-of-line
3304 phys routines. */
c227f099 3305static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3306{
b4051334 3307 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3308 return ldub_phys(addr);
3309}
3310
c227f099 3311static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3312{
b4051334 3313 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3314 return lduw_phys(addr);
3315}
3316
c227f099 3317static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3318{
b4051334 3319 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3320 return ldl_phys(addr);
3321}
3322
c227f099 3323static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3324 uint32_t val)
3325{
b4051334 3326 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3327 stb_phys(addr, val);
3328}
3329
c227f099 3330static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3331 uint32_t val)
3332{
b4051334 3333 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3334 stw_phys(addr, val);
3335}
3336
c227f099 3337static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3338 uint32_t val)
3339{
b4051334 3340 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3341 stl_phys(addr, val);
3342}
3343
d60efc6b 3344static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3345 watch_mem_readb,
3346 watch_mem_readw,
3347 watch_mem_readl,
3348};
3349
d60efc6b 3350static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3351 watch_mem_writeb,
3352 watch_mem_writew,
3353 watch_mem_writel,
3354};
6658ffb8 3355
f6405247
RH
3356static inline uint32_t subpage_readlen (subpage_t *mmio,
3357 target_phys_addr_t addr,
3358 unsigned int len)
db7b5426 3359{
f6405247 3360 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3361#if defined(DEBUG_SUBPAGE)
3362 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3363 mmio, len, addr, idx);
3364#endif
db7b5426 3365
f6405247
RH
3366 addr += mmio->region_offset[idx];
3367 idx = mmio->sub_io_index[idx];
3368 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3369}
3370
c227f099 3371static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3372 uint32_t value, unsigned int len)
db7b5426 3373{
f6405247 3374 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3375#if defined(DEBUG_SUBPAGE)
f6405247
RH
3376 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3377 __func__, mmio, len, addr, idx, value);
db7b5426 3378#endif
f6405247
RH
3379
3380 addr += mmio->region_offset[idx];
3381 idx = mmio->sub_io_index[idx];
3382 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3383}
3384
c227f099 3385static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3386{
db7b5426
BS
3387 return subpage_readlen(opaque, addr, 0);
3388}
3389
c227f099 3390static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3391 uint32_t value)
3392{
db7b5426
BS
3393 subpage_writelen(opaque, addr, value, 0);
3394}
3395
c227f099 3396static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3397{
db7b5426
BS
3398 return subpage_readlen(opaque, addr, 1);
3399}
3400
c227f099 3401static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3402 uint32_t value)
3403{
db7b5426
BS
3404 subpage_writelen(opaque, addr, value, 1);
3405}
3406
c227f099 3407static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3408{
db7b5426
BS
3409 return subpage_readlen(opaque, addr, 2);
3410}
3411
f6405247
RH
3412static void subpage_writel (void *opaque, target_phys_addr_t addr,
3413 uint32_t value)
db7b5426 3414{
db7b5426
BS
3415 subpage_writelen(opaque, addr, value, 2);
3416}
3417
d60efc6b 3418static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3419 &subpage_readb,
3420 &subpage_readw,
3421 &subpage_readl,
3422};
3423
d60efc6b 3424static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3425 &subpage_writeb,
3426 &subpage_writew,
3427 &subpage_writel,
3428};
3429
c227f099
AL
3430static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3431 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3432{
3433 int idx, eidx;
3434
3435 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3436 return -1;
3437 idx = SUBPAGE_IDX(start);
3438 eidx = SUBPAGE_IDX(end);
3439#if defined(DEBUG_SUBPAGE)
0bf9e31a 3440 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3441 mmio, start, end, idx, eidx, memory);
3442#endif
95c318f5
GN
3443 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3444 memory = IO_MEM_UNASSIGNED;
f6405247 3445 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3446 for (; idx <= eidx; idx++) {
f6405247
RH
3447 mmio->sub_io_index[idx] = memory;
3448 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3449 }
3450
3451 return 0;
3452}
3453
f6405247
RH
3454static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3455 ram_addr_t orig_memory,
3456 ram_addr_t region_offset)
db7b5426 3457{
c227f099 3458 subpage_t *mmio;
db7b5426
BS
3459 int subpage_memory;
3460
c227f099 3461 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3462
3463 mmio->base = base;
2507c12a
AG
3464 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3465 DEVICE_NATIVE_ENDIAN);
db7b5426 3466#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3467 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3468 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3469#endif
1eec614b 3470 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3471 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3472
3473 return mmio;
3474}
3475
88715657
AL
3476static int get_free_io_mem_idx(void)
3477{
3478 int i;
3479
3480 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3481 if (!io_mem_used[i]) {
3482 io_mem_used[i] = 1;
3483 return i;
3484 }
c6703b47 3485 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3486 return -1;
3487}
3488
dd310534
AG
3489/*
3490 * Usually, devices operate in little endian mode. There are devices out
3491 * there that operate in big endian too. Each device gets byte swapped
3492 * mmio if plugged onto a CPU that does the other endianness.
3493 *
3494 * CPU Device swap?
3495 *
3496 * little little no
3497 * little big yes
3498 * big little yes
3499 * big big no
3500 */
3501
3502typedef struct SwapEndianContainer {
3503 CPUReadMemoryFunc *read[3];
3504 CPUWriteMemoryFunc *write[3];
3505 void *opaque;
3506} SwapEndianContainer;
3507
3508static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3509{
3510 uint32_t val;
3511 SwapEndianContainer *c = opaque;
3512 val = c->read[0](c->opaque, addr);
3513 return val;
3514}
3515
3516static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3517{
3518 uint32_t val;
3519 SwapEndianContainer *c = opaque;
3520 val = bswap16(c->read[1](c->opaque, addr));
3521 return val;
3522}
3523
3524static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3525{
3526 uint32_t val;
3527 SwapEndianContainer *c = opaque;
3528 val = bswap32(c->read[2](c->opaque, addr));
3529 return val;
3530}
3531
3532static CPUReadMemoryFunc * const swapendian_readfn[3]={
3533 swapendian_mem_readb,
3534 swapendian_mem_readw,
3535 swapendian_mem_readl
3536};
3537
3538static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3539 uint32_t val)
3540{
3541 SwapEndianContainer *c = opaque;
3542 c->write[0](c->opaque, addr, val);
3543}
3544
3545static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3546 uint32_t val)
3547{
3548 SwapEndianContainer *c = opaque;
3549 c->write[1](c->opaque, addr, bswap16(val));
3550}
3551
3552static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3553 uint32_t val)
3554{
3555 SwapEndianContainer *c = opaque;
3556 c->write[2](c->opaque, addr, bswap32(val));
3557}
3558
3559static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3560 swapendian_mem_writeb,
3561 swapendian_mem_writew,
3562 swapendian_mem_writel
3563};
3564
3565static void swapendian_init(int io_index)
3566{
3567 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3568 int i;
3569
3570 /* Swap mmio for big endian targets */
3571 c->opaque = io_mem_opaque[io_index];
3572 for (i = 0; i < 3; i++) {
3573 c->read[i] = io_mem_read[io_index][i];
3574 c->write[i] = io_mem_write[io_index][i];
3575
3576 io_mem_read[io_index][i] = swapendian_readfn[i];
3577 io_mem_write[io_index][i] = swapendian_writefn[i];
3578 }
3579 io_mem_opaque[io_index] = c;
3580}
3581
3582static void swapendian_del(int io_index)
3583{
3584 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3585 qemu_free(io_mem_opaque[io_index]);
3586 }
3587}
3588
33417e70
FB
3589/* mem_read and mem_write are arrays of functions containing the
3590 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3591 2). Functions can be omitted with a NULL function pointer.
3ee89922 3592 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3593 modified. If it is zero, a new io zone is allocated. The return
3594 value can be used with cpu_register_physical_memory(). (-1) is
3595 returned if error. */
1eed09cb 3596static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3597 CPUReadMemoryFunc * const *mem_read,
3598 CPUWriteMemoryFunc * const *mem_write,
dd310534 3599 void *opaque, enum device_endian endian)
33417e70 3600{
3cab721d
RH
3601 int i;
3602
33417e70 3603 if (io_index <= 0) {
88715657
AL
3604 io_index = get_free_io_mem_idx();
3605 if (io_index == -1)
3606 return io_index;
33417e70 3607 } else {
1eed09cb 3608 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3609 if (io_index >= IO_MEM_NB_ENTRIES)
3610 return -1;
3611 }
b5ff1b31 3612
3cab721d
RH
3613 for (i = 0; i < 3; ++i) {
3614 io_mem_read[io_index][i]
3615 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3616 }
3617 for (i = 0; i < 3; ++i) {
3618 io_mem_write[io_index][i]
3619 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3620 }
a4193c8a 3621 io_mem_opaque[io_index] = opaque;
f6405247 3622
dd310534
AG
3623 switch (endian) {
3624 case DEVICE_BIG_ENDIAN:
3625#ifndef TARGET_WORDS_BIGENDIAN
3626 swapendian_init(io_index);
3627#endif
3628 break;
3629 case DEVICE_LITTLE_ENDIAN:
3630#ifdef TARGET_WORDS_BIGENDIAN
3631 swapendian_init(io_index);
3632#endif
3633 break;
3634 case DEVICE_NATIVE_ENDIAN:
3635 default:
3636 break;
3637 }
3638
f6405247 3639 return (io_index << IO_MEM_SHIFT);
33417e70 3640}
61382a50 3641
d60efc6b
BS
3642int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3643 CPUWriteMemoryFunc * const *mem_write,
dd310534 3644 void *opaque, enum device_endian endian)
1eed09cb 3645{
2507c12a 3646 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3647}
3648
88715657
AL
3649void cpu_unregister_io_memory(int io_table_address)
3650{
3651 int i;
3652 int io_index = io_table_address >> IO_MEM_SHIFT;
3653
dd310534
AG
3654 swapendian_del(io_index);
3655
88715657
AL
3656 for (i=0;i < 3; i++) {
3657 io_mem_read[io_index][i] = unassigned_mem_read[i];
3658 io_mem_write[io_index][i] = unassigned_mem_write[i];
3659 }
3660 io_mem_opaque[io_index] = NULL;
3661 io_mem_used[io_index] = 0;
3662}
3663
e9179ce1
AK
3664static void io_mem_init(void)
3665{
3666 int i;
3667
2507c12a
AG
3668 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3669 unassigned_mem_write, NULL,
3670 DEVICE_NATIVE_ENDIAN);
3671 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3672 unassigned_mem_write, NULL,
3673 DEVICE_NATIVE_ENDIAN);
3674 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3675 notdirty_mem_write, NULL,
3676 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3677 for (i=0; i<5; i++)
3678 io_mem_used[i] = 1;
3679
3680 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3681 watch_mem_write, NULL,
3682 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3683}
3684
e2eef170
PB
3685#endif /* !defined(CONFIG_USER_ONLY) */
3686
13eb76e0
FB
3687/* physical memory access (slow version, mainly for debug) */
3688#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3689int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3690 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3691{
3692 int l, flags;
3693 target_ulong page;
53a5960a 3694 void * p;
13eb76e0
FB
3695
3696 while (len > 0) {
3697 page = addr & TARGET_PAGE_MASK;
3698 l = (page + TARGET_PAGE_SIZE) - addr;
3699 if (l > len)
3700 l = len;
3701 flags = page_get_flags(page);
3702 if (!(flags & PAGE_VALID))
a68fe89c 3703 return -1;
13eb76e0
FB
3704 if (is_write) {
3705 if (!(flags & PAGE_WRITE))
a68fe89c 3706 return -1;
579a97f7 3707 /* XXX: this code should not depend on lock_user */
72fb7daa 3708 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3709 return -1;
72fb7daa
AJ
3710 memcpy(p, buf, l);
3711 unlock_user(p, addr, l);
13eb76e0
FB
3712 } else {
3713 if (!(flags & PAGE_READ))
a68fe89c 3714 return -1;
579a97f7 3715 /* XXX: this code should not depend on lock_user */
72fb7daa 3716 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3717 return -1;
72fb7daa 3718 memcpy(buf, p, l);
5b257578 3719 unlock_user(p, addr, 0);
13eb76e0
FB
3720 }
3721 len -= l;
3722 buf += l;
3723 addr += l;
3724 }
a68fe89c 3725 return 0;
13eb76e0 3726}
8df1cd07 3727
13eb76e0 3728#else
c227f099 3729void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3730 int len, int is_write)
3731{
3732 int l, io_index;
3733 uint8_t *ptr;
3734 uint32_t val;
c227f099 3735 target_phys_addr_t page;
2e12669a 3736 unsigned long pd;
92e873b9 3737 PhysPageDesc *p;
3b46e624 3738
13eb76e0
FB
3739 while (len > 0) {
3740 page = addr & TARGET_PAGE_MASK;
3741 l = (page + TARGET_PAGE_SIZE) - addr;
3742 if (l > len)
3743 l = len;
92e873b9 3744 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3745 if (!p) {
3746 pd = IO_MEM_UNASSIGNED;
3747 } else {
3748 pd = p->phys_offset;
3749 }
3b46e624 3750
13eb76e0 3751 if (is_write) {
3a7d929e 3752 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3753 target_phys_addr_t addr1 = addr;
13eb76e0 3754 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3755 if (p)
6c2934db 3756 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3757 /* XXX: could force cpu_single_env to NULL to avoid
3758 potential bugs */
6c2934db 3759 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3760 /* 32 bit write access */
c27004ec 3761 val = ldl_p(buf);
6c2934db 3762 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3763 l = 4;
6c2934db 3764 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3765 /* 16 bit write access */
c27004ec 3766 val = lduw_p(buf);
6c2934db 3767 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3768 l = 2;
3769 } else {
1c213d19 3770 /* 8 bit write access */
c27004ec 3771 val = ldub_p(buf);
6c2934db 3772 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3773 l = 1;
3774 }
3775 } else {
b448f2f3
FB
3776 unsigned long addr1;
3777 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3778 /* RAM case */
5579c7f3 3779 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3780 memcpy(ptr, buf, l);
3a7d929e
FB
3781 if (!cpu_physical_memory_is_dirty(addr1)) {
3782 /* invalidate code */
3783 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3784 /* set dirty bit */
f7c11b53
YT
3785 cpu_physical_memory_set_dirty_flags(
3786 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3787 }
13eb76e0
FB
3788 }
3789 } else {
5fafdf24 3790 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3791 !(pd & IO_MEM_ROMD)) {
c227f099 3792 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3793 /* I/O case */
3794 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3795 if (p)
6c2934db
AJ
3796 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3797 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3798 /* 32 bit read access */
6c2934db 3799 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3800 stl_p(buf, val);
13eb76e0 3801 l = 4;
6c2934db 3802 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3803 /* 16 bit read access */
6c2934db 3804 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3805 stw_p(buf, val);
13eb76e0
FB
3806 l = 2;
3807 } else {
1c213d19 3808 /* 8 bit read access */
6c2934db 3809 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3810 stb_p(buf, val);
13eb76e0
FB
3811 l = 1;
3812 }
3813 } else {
3814 /* RAM case */
5579c7f3 3815 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3816 (addr & ~TARGET_PAGE_MASK);
3817 memcpy(buf, ptr, l);
3818 }
3819 }
3820 len -= l;
3821 buf += l;
3822 addr += l;
3823 }
3824}
8df1cd07 3825
d0ecd2aa 3826/* used for ROM loading : can write in RAM and ROM */
c227f099 3827void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3828 const uint8_t *buf, int len)
3829{
3830 int l;
3831 uint8_t *ptr;
c227f099 3832 target_phys_addr_t page;
d0ecd2aa
FB
3833 unsigned long pd;
3834 PhysPageDesc *p;
3b46e624 3835
d0ecd2aa
FB
3836 while (len > 0) {
3837 page = addr & TARGET_PAGE_MASK;
3838 l = (page + TARGET_PAGE_SIZE) - addr;
3839 if (l > len)
3840 l = len;
3841 p = phys_page_find(page >> TARGET_PAGE_BITS);
3842 if (!p) {
3843 pd = IO_MEM_UNASSIGNED;
3844 } else {
3845 pd = p->phys_offset;
3846 }
3b46e624 3847
d0ecd2aa 3848 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3849 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3850 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3851 /* do nothing */
3852 } else {
3853 unsigned long addr1;
3854 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3855 /* ROM/RAM case */
5579c7f3 3856 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3857 memcpy(ptr, buf, l);
3858 }
3859 len -= l;
3860 buf += l;
3861 addr += l;
3862 }
3863}
3864
6d16c2f8
AL
3865typedef struct {
3866 void *buffer;
c227f099
AL
3867 target_phys_addr_t addr;
3868 target_phys_addr_t len;
6d16c2f8
AL
3869} BounceBuffer;
3870
3871static BounceBuffer bounce;
3872
ba223c29
AL
3873typedef struct MapClient {
3874 void *opaque;
3875 void (*callback)(void *opaque);
72cf2d4f 3876 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3877} MapClient;
3878
72cf2d4f
BS
3879static QLIST_HEAD(map_client_list, MapClient) map_client_list
3880 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3881
3882void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3883{
3884 MapClient *client = qemu_malloc(sizeof(*client));
3885
3886 client->opaque = opaque;
3887 client->callback = callback;
72cf2d4f 3888 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3889 return client;
3890}
3891
3892void cpu_unregister_map_client(void *_client)
3893{
3894 MapClient *client = (MapClient *)_client;
3895
72cf2d4f 3896 QLIST_REMOVE(client, link);
34d5e948 3897 qemu_free(client);
ba223c29
AL
3898}
3899
3900static void cpu_notify_map_clients(void)
3901{
3902 MapClient *client;
3903
72cf2d4f
BS
3904 while (!QLIST_EMPTY(&map_client_list)) {
3905 client = QLIST_FIRST(&map_client_list);
ba223c29 3906 client->callback(client->opaque);
34d5e948 3907 cpu_unregister_map_client(client);
ba223c29
AL
3908 }
3909}
3910
6d16c2f8
AL
3911/* Map a physical memory region into a host virtual address.
3912 * May map a subset of the requested range, given by and returned in *plen.
3913 * May return NULL if resources needed to perform the mapping are exhausted.
3914 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3915 * Use cpu_register_map_client() to know when retrying the map operation is
3916 * likely to succeed.
6d16c2f8 3917 */
c227f099
AL
3918void *cpu_physical_memory_map(target_phys_addr_t addr,
3919 target_phys_addr_t *plen,
6d16c2f8
AL
3920 int is_write)
3921{
c227f099
AL
3922 target_phys_addr_t len = *plen;
3923 target_phys_addr_t done = 0;
6d16c2f8
AL
3924 int l;
3925 uint8_t *ret = NULL;
3926 uint8_t *ptr;
c227f099 3927 target_phys_addr_t page;
6d16c2f8
AL
3928 unsigned long pd;
3929 PhysPageDesc *p;
3930 unsigned long addr1;
3931
3932 while (len > 0) {
3933 page = addr & TARGET_PAGE_MASK;
3934 l = (page + TARGET_PAGE_SIZE) - addr;
3935 if (l > len)
3936 l = len;
3937 p = phys_page_find(page >> TARGET_PAGE_BITS);
3938 if (!p) {
3939 pd = IO_MEM_UNASSIGNED;
3940 } else {
3941 pd = p->phys_offset;
3942 }
3943
3944 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3945 if (done || bounce.buffer) {
3946 break;
3947 }
3948 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3949 bounce.addr = addr;
3950 bounce.len = l;
3951 if (!is_write) {
54f7b4a3 3952 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8
AL
3953 }
3954 ptr = bounce.buffer;
3955 } else {
3956 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3957 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3958 }
3959 if (!done) {
3960 ret = ptr;
3961 } else if (ret + done != ptr) {
3962 break;
3963 }
3964
3965 len -= l;
3966 addr += l;
3967 done += l;
3968 }
3969 *plen = done;
3970 return ret;
3971}
3972
3973/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3974 * Will also mark the memory as dirty if is_write == 1. access_len gives
3975 * the amount of memory that was actually read or written by the caller.
3976 */
c227f099
AL
3977void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3978 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3979{
3980 if (buffer != bounce.buffer) {
3981 if (is_write) {
e890261f 3982 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3983 while (access_len) {
3984 unsigned l;
3985 l = TARGET_PAGE_SIZE;
3986 if (l > access_len)
3987 l = access_len;
3988 if (!cpu_physical_memory_is_dirty(addr1)) {
3989 /* invalidate code */
3990 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3991 /* set dirty bit */
f7c11b53
YT
3992 cpu_physical_memory_set_dirty_flags(
3993 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3994 }
3995 addr1 += l;
3996 access_len -= l;
3997 }
3998 }
3999 return;
4000 }
4001 if (is_write) {
4002 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4003 }
f8a83245 4004 qemu_vfree(bounce.buffer);
6d16c2f8 4005 bounce.buffer = NULL;
ba223c29 4006 cpu_notify_map_clients();
6d16c2f8 4007}
d0ecd2aa 4008
8df1cd07 4009/* warning: addr must be aligned */
c227f099 4010uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
4011{
4012 int io_index;
4013 uint8_t *ptr;
4014 uint32_t val;
4015 unsigned long pd;
4016 PhysPageDesc *p;
4017
4018 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4019 if (!p) {
4020 pd = IO_MEM_UNASSIGNED;
4021 } else {
4022 pd = p->phys_offset;
4023 }
3b46e624 4024
5fafdf24 4025 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4026 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4027 /* I/O case */
4028 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4029 if (p)
4030 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4031 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4032 } else {
4033 /* RAM case */
5579c7f3 4034 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
4035 (addr & ~TARGET_PAGE_MASK);
4036 val = ldl_p(ptr);
4037 }
4038 return val;
4039}
4040
84b7b8e7 4041/* warning: addr must be aligned */
c227f099 4042uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
4043{
4044 int io_index;
4045 uint8_t *ptr;
4046 uint64_t val;
4047 unsigned long pd;
4048 PhysPageDesc *p;
4049
4050 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4051 if (!p) {
4052 pd = IO_MEM_UNASSIGNED;
4053 } else {
4054 pd = p->phys_offset;
4055 }
3b46e624 4056
2a4188a3
FB
4057 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4058 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4059 /* I/O case */
4060 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4061 if (p)
4062 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
4063#ifdef TARGET_WORDS_BIGENDIAN
4064 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4065 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4066#else
4067 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4068 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4069#endif
4070 } else {
4071 /* RAM case */
5579c7f3 4072 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
4073 (addr & ~TARGET_PAGE_MASK);
4074 val = ldq_p(ptr);
4075 }
4076 return val;
4077}
4078
aab33094 4079/* XXX: optimize */
c227f099 4080uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4081{
4082 uint8_t val;
4083 cpu_physical_memory_read(addr, &val, 1);
4084 return val;
4085}
4086
733f0b02 4087/* warning: addr must be aligned */
c227f099 4088uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 4089{
733f0b02
MT
4090 int io_index;
4091 uint8_t *ptr;
4092 uint64_t val;
4093 unsigned long pd;
4094 PhysPageDesc *p;
4095
4096 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4097 if (!p) {
4098 pd = IO_MEM_UNASSIGNED;
4099 } else {
4100 pd = p->phys_offset;
4101 }
4102
4103 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4104 !(pd & IO_MEM_ROMD)) {
4105 /* I/O case */
4106 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4107 if (p)
4108 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4109 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4110 } else {
4111 /* RAM case */
4112 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4113 (addr & ~TARGET_PAGE_MASK);
4114 val = lduw_p(ptr);
4115 }
4116 return val;
aab33094
FB
4117}
4118
8df1cd07
FB
4119/* warning: addr must be aligned. The ram page is not masked as dirty
4120 and the code inside is not invalidated. It is useful if the dirty
4121 bits are used to track modified PTEs */
c227f099 4122void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4123{
4124 int io_index;
4125 uint8_t *ptr;
4126 unsigned long pd;
4127 PhysPageDesc *p;
4128
4129 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4130 if (!p) {
4131 pd = IO_MEM_UNASSIGNED;
4132 } else {
4133 pd = p->phys_offset;
4134 }
3b46e624 4135
3a7d929e 4136 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4137 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4138 if (p)
4139 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4140 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4141 } else {
74576198 4142 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4143 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4144 stl_p(ptr, val);
74576198
AL
4145
4146 if (unlikely(in_migration)) {
4147 if (!cpu_physical_memory_is_dirty(addr1)) {
4148 /* invalidate code */
4149 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4150 /* set dirty bit */
f7c11b53
YT
4151 cpu_physical_memory_set_dirty_flags(
4152 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4153 }
4154 }
8df1cd07
FB
4155 }
4156}
4157
c227f099 4158void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4159{
4160 int io_index;
4161 uint8_t *ptr;
4162 unsigned long pd;
4163 PhysPageDesc *p;
4164
4165 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4166 if (!p) {
4167 pd = IO_MEM_UNASSIGNED;
4168 } else {
4169 pd = p->phys_offset;
4170 }
3b46e624 4171
bc98a7ef
JM
4172 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4173 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4174 if (p)
4175 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4176#ifdef TARGET_WORDS_BIGENDIAN
4177 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4178 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4179#else
4180 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4181 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4182#endif
4183 } else {
5579c7f3 4184 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4185 (addr & ~TARGET_PAGE_MASK);
4186 stq_p(ptr, val);
4187 }
4188}
4189
8df1cd07 4190/* warning: addr must be aligned */
c227f099 4191void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4192{
4193 int io_index;
4194 uint8_t *ptr;
4195 unsigned long pd;
4196 PhysPageDesc *p;
4197
4198 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4199 if (!p) {
4200 pd = IO_MEM_UNASSIGNED;
4201 } else {
4202 pd = p->phys_offset;
4203 }
3b46e624 4204
3a7d929e 4205 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4206 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4207 if (p)
4208 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4209 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4210 } else {
4211 unsigned long addr1;
4212 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4213 /* RAM case */
5579c7f3 4214 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4215 stl_p(ptr, val);
3a7d929e
FB
4216 if (!cpu_physical_memory_is_dirty(addr1)) {
4217 /* invalidate code */
4218 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4219 /* set dirty bit */
f7c11b53
YT
4220 cpu_physical_memory_set_dirty_flags(addr1,
4221 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4222 }
8df1cd07
FB
4223 }
4224}
4225
aab33094 4226/* XXX: optimize */
c227f099 4227void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4228{
4229 uint8_t v = val;
4230 cpu_physical_memory_write(addr, &v, 1);
4231}
4232
733f0b02 4233/* warning: addr must be aligned */
c227f099 4234void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 4235{
733f0b02
MT
4236 int io_index;
4237 uint8_t *ptr;
4238 unsigned long pd;
4239 PhysPageDesc *p;
4240
4241 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4242 if (!p) {
4243 pd = IO_MEM_UNASSIGNED;
4244 } else {
4245 pd = p->phys_offset;
4246 }
4247
4248 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4249 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4250 if (p)
4251 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4252 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4253 } else {
4254 unsigned long addr1;
4255 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4256 /* RAM case */
4257 ptr = qemu_get_ram_ptr(addr1);
4258 stw_p(ptr, val);
4259 if (!cpu_physical_memory_is_dirty(addr1)) {
4260 /* invalidate code */
4261 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4262 /* set dirty bit */
4263 cpu_physical_memory_set_dirty_flags(addr1,
4264 (0xff & ~CODE_DIRTY_FLAG));
4265 }
4266 }
aab33094
FB
4267}
4268
4269/* XXX: optimize */
c227f099 4270void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4271{
4272 val = tswap64(val);
71d2b725 4273 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4274}
4275
5e2972fd 4276/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4277int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4278 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4279{
4280 int l;
c227f099 4281 target_phys_addr_t phys_addr;
9b3c35e0 4282 target_ulong page;
13eb76e0
FB
4283
4284 while (len > 0) {
4285 page = addr & TARGET_PAGE_MASK;
4286 phys_addr = cpu_get_phys_page_debug(env, page);
4287 /* if no physical page mapped, return an error */
4288 if (phys_addr == -1)
4289 return -1;
4290 l = (page + TARGET_PAGE_SIZE) - addr;
4291 if (l > len)
4292 l = len;
5e2972fd 4293 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4294 if (is_write)
4295 cpu_physical_memory_write_rom(phys_addr, buf, l);
4296 else
5e2972fd 4297 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4298 len -= l;
4299 buf += l;
4300 addr += l;
4301 }
4302 return 0;
4303}
a68fe89c 4304#endif
13eb76e0 4305
2e70f6ef
PB
4306/* in deterministic execution mode, instructions doing device I/Os
4307 must be at the end of the TB */
4308void cpu_io_recompile(CPUState *env, void *retaddr)
4309{
4310 TranslationBlock *tb;
4311 uint32_t n, cflags;
4312 target_ulong pc, cs_base;
4313 uint64_t flags;
4314
4315 tb = tb_find_pc((unsigned long)retaddr);
4316 if (!tb) {
4317 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4318 retaddr);
4319 }
4320 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4321 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4322 /* Calculate how many instructions had been executed before the fault
bf20dc07 4323 occurred. */
2e70f6ef
PB
4324 n = n - env->icount_decr.u16.low;
4325 /* Generate a new TB ending on the I/O insn. */
4326 n++;
4327 /* On MIPS and SH, delay slot instructions can only be restarted if
4328 they were already the first instruction in the TB. If this is not
bf20dc07 4329 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4330 branch. */
4331#if defined(TARGET_MIPS)
4332 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4333 env->active_tc.PC -= 4;
4334 env->icount_decr.u16.low++;
4335 env->hflags &= ~MIPS_HFLAG_BMASK;
4336 }
4337#elif defined(TARGET_SH4)
4338 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4339 && n > 1) {
4340 env->pc -= 2;
4341 env->icount_decr.u16.low++;
4342 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4343 }
4344#endif
4345 /* This should never happen. */
4346 if (n > CF_COUNT_MASK)
4347 cpu_abort(env, "TB too big during recompile");
4348
4349 cflags = n | CF_LAST_IO;
4350 pc = tb->pc;
4351 cs_base = tb->cs_base;
4352 flags = tb->flags;
4353 tb_phys_invalidate(tb, -1);
4354 /* FIXME: In theory this could raise an exception. In practice
4355 we have already translated the block once so it's probably ok. */
4356 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4357 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4358 the first in the TB) then we end up generating a whole new TB and
4359 repeating the fault, which is horribly inefficient.
4360 Better would be to execute just this insn uncached, or generate a
4361 second new TB. */
4362 cpu_resume_from_signal(env, NULL);
4363}
4364
b3755a91
PB
4365#if !defined(CONFIG_USER_ONLY)
4366
055403b2 4367void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4368{
4369 int i, target_code_size, max_target_code_size;
4370 int direct_jmp_count, direct_jmp2_count, cross_page;
4371 TranslationBlock *tb;
3b46e624 4372
e3db7226
FB
4373 target_code_size = 0;
4374 max_target_code_size = 0;
4375 cross_page = 0;
4376 direct_jmp_count = 0;
4377 direct_jmp2_count = 0;
4378 for(i = 0; i < nb_tbs; i++) {
4379 tb = &tbs[i];
4380 target_code_size += tb->size;
4381 if (tb->size > max_target_code_size)
4382 max_target_code_size = tb->size;
4383 if (tb->page_addr[1] != -1)
4384 cross_page++;
4385 if (tb->tb_next_offset[0] != 0xffff) {
4386 direct_jmp_count++;
4387 if (tb->tb_next_offset[1] != 0xffff) {
4388 direct_jmp2_count++;
4389 }
4390 }
4391 }
4392 /* XXX: avoid using doubles ? */
57fec1fe 4393 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4394 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4395 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4396 cpu_fprintf(f, "TB count %d/%d\n",
4397 nb_tbs, code_gen_max_blocks);
5fafdf24 4398 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4399 nb_tbs ? target_code_size / nb_tbs : 0,
4400 max_target_code_size);
055403b2 4401 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4402 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4403 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4404 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4405 cross_page,
e3db7226
FB
4406 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4407 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4408 direct_jmp_count,
e3db7226
FB
4409 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4410 direct_jmp2_count,
4411 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4412 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4413 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4414 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4415 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4416 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4417}
4418
61382a50
FB
4419#define MMUSUFFIX _cmmu
4420#define GETPC() NULL
4421#define env cpu_single_env
b769d8fe 4422#define SOFTMMU_CODE_ACCESS
61382a50
FB
4423
4424#define SHIFT 0
4425#include "softmmu_template.h"
4426
4427#define SHIFT 1
4428#include "softmmu_template.h"
4429
4430#define SHIFT 2
4431#include "softmmu_template.h"
4432
4433#define SHIFT 3
4434#include "softmmu_template.h"
4435
4436#undef env
4437
4438#endif