]> git.proxmox.com Git - mirror_qemu.git/blame - hw/i386/intel_iommu.c
memory: allow memory_region_register_iommu_notifier() to fail
[mirror_qemu.git] / hw / i386 / intel_iommu.c
CommitLineData
1da12ec4
LT
1/*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
b6a0aa05 22#include "qemu/osdep.h"
4684a204 23#include "qemu/error-report.h"
db725815 24#include "qemu/main-loop.h"
6333e93c 25#include "qapi/error.h"
1da12ec4
LT
26#include "hw/sysbus.h"
27#include "exec/address-spaces.h"
28#include "intel_iommu_internal.h"
7df953bd 29#include "hw/pci/pci.h"
3cb3b154 30#include "hw/pci/pci_bus.h"
a27bd6c7 31#include "hw/qdev-properties.h"
621d983a 32#include "hw/i386/pc.h"
dea651a9 33#include "hw/i386/apic-msidef.h"
04af0e18
PX
34#include "hw/boards.h"
35#include "hw/i386/x86-iommu.h"
cb135f59 36#include "hw/pci-host/q35.h"
4684a204 37#include "sysemu/kvm.h"
28cf553a 38#include "sysemu/sysemu.h"
32946019 39#include "hw/i386/apic_internal.h"
fb506e70 40#include "kvm_i386.h"
d6454270 41#include "migration/vmstate.h"
bc535e59 42#include "trace.h"
1da12ec4 43
fb43cf73
LY
44/* context entry operations */
45#define VTD_CE_GET_RID2PASID(ce) \
46 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
47#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
48 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49
50/* pe operations */
51#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
52#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
53#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
54 if (ret_fr) { \
55 ret_fr = -ret_fr; \
56 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
57 trace_vtd_fault_disabled(); \
58 } else { \
59 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
60 } \
61 goto error; \
62 } \
63}
64
2cc9ddcc 65static void vtd_address_space_refresh_all(IntelIOMMUState *s);
c28b535d 66static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
2cc9ddcc 67
28cf553a
PX
68static void vtd_panic_require_caching_mode(void)
69{
70 error_report("We need to set caching-mode=on for intel-iommu to enable "
71 "device assignment with IOMMU protection.");
72 exit(1);
73}
74
1da12ec4
LT
75static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
76 uint64_t wmask, uint64_t w1cmask)
77{
78 stq_le_p(&s->csr[addr], val);
79 stq_le_p(&s->wmask[addr], wmask);
80 stq_le_p(&s->w1cmask[addr], w1cmask);
81}
82
83static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
84{
85 stq_le_p(&s->womask[addr], mask);
86}
87
88static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
89 uint32_t wmask, uint32_t w1cmask)
90{
91 stl_le_p(&s->csr[addr], val);
92 stl_le_p(&s->wmask[addr], wmask);
93 stl_le_p(&s->w1cmask[addr], w1cmask);
94}
95
96static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
97{
98 stl_le_p(&s->womask[addr], mask);
99}
100
101/* "External" get/set operations */
102static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
103{
104 uint64_t oldval = ldq_le_p(&s->csr[addr]);
105 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
106 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
107 stq_le_p(&s->csr[addr],
108 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
109}
110
111static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
112{
113 uint32_t oldval = ldl_le_p(&s->csr[addr]);
114 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
115 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
116 stl_le_p(&s->csr[addr],
117 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
118}
119
120static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
121{
122 uint64_t val = ldq_le_p(&s->csr[addr]);
123 uint64_t womask = ldq_le_p(&s->womask[addr]);
124 return val & ~womask;
125}
126
127static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
128{
129 uint32_t val = ldl_le_p(&s->csr[addr]);
130 uint32_t womask = ldl_le_p(&s->womask[addr]);
131 return val & ~womask;
132}
133
134/* "Internal" get/set operations */
135static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
136{
137 return ldq_le_p(&s->csr[addr]);
138}
139
140static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
141{
142 return ldl_le_p(&s->csr[addr]);
143}
144
145static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
146{
147 stq_le_p(&s->csr[addr], val);
148}
149
150static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
151 uint32_t clear, uint32_t mask)
152{
153 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
154 stl_le_p(&s->csr[addr], new_val);
155 return new_val;
156}
157
158static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
159 uint64_t clear, uint64_t mask)
160{
161 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
162 stq_le_p(&s->csr[addr], new_val);
163 return new_val;
164}
165
1d9efa73
PX
166static inline void vtd_iommu_lock(IntelIOMMUState *s)
167{
168 qemu_mutex_lock(&s->iommu_lock);
169}
170
171static inline void vtd_iommu_unlock(IntelIOMMUState *s)
172{
173 qemu_mutex_unlock(&s->iommu_lock);
174}
175
2811af3b
PX
176static void vtd_update_scalable_state(IntelIOMMUState *s)
177{
178 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
179
180 if (s->scalable_mode) {
181 s->root_scalable = val & VTD_RTADDR_SMT;
182 }
183}
184
4f8a62a9
PX
185/* Whether the address space needs to notify new mappings */
186static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
187{
188 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
189}
190
b5a280c0
LT
191/* GHashTable functions */
192static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
193{
194 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
195}
196
197static guint vtd_uint64_hash(gconstpointer v)
198{
199 return (guint)*(const uint64_t *)v;
200}
201
202static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
203 gpointer user_data)
204{
205 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
206 uint16_t domain_id = *(uint16_t *)user_data;
207 return entry->domain_id == domain_id;
208}
209
d66b969b
JW
210/* The shift of an addr for a certain level of paging structure */
211static inline uint32_t vtd_slpt_level_shift(uint32_t level)
212{
7e58326a 213 assert(level != 0);
d66b969b
JW
214 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
215}
216
217static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
218{
219 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
220}
221
b5a280c0
LT
222static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
223 gpointer user_data)
224{
225 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
226 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
d66b969b
JW
227 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
228 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
b5a280c0 229 return (entry->domain_id == info->domain_id) &&
d66b969b
JW
230 (((entry->gfn & info->mask) == gfn) ||
231 (entry->gfn == gfn_tlb));
b5a280c0
LT
232}
233
d92fa2dc 234/* Reset all the gen of VTDAddressSpace to zero and set the gen of
1d9efa73 235 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
d92fa2dc 236 */
1d9efa73 237static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
d92fa2dc 238{
d92fa2dc 239 VTDAddressSpace *vtd_as;
7df953bd
KO
240 VTDBus *vtd_bus;
241 GHashTableIter bus_it;
d92fa2dc
LT
242 uint32_t devfn_it;
243
7feb51b7
PX
244 trace_vtd_context_cache_reset();
245
7df953bd
KO
246 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
247
7df953bd 248 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
bf33cc75 249 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
7df953bd 250 vtd_as = vtd_bus->dev_as[devfn_it];
d92fa2dc
LT
251 if (!vtd_as) {
252 continue;
253 }
254 vtd_as->context_cache_entry.context_cache_gen = 0;
255 }
256 }
257 s->context_cache_gen = 1;
258}
259
1d9efa73
PX
260/* Must be called with IOMMU lock held. */
261static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
b5a280c0
LT
262{
263 assert(s->iotlb);
264 g_hash_table_remove_all(s->iotlb);
265}
266
1d9efa73
PX
267static void vtd_reset_iotlb(IntelIOMMUState *s)
268{
269 vtd_iommu_lock(s);
270 vtd_reset_iotlb_locked(s);
271 vtd_iommu_unlock(s);
272}
273
06aba4ca
PX
274static void vtd_reset_caches(IntelIOMMUState *s)
275{
276 vtd_iommu_lock(s);
277 vtd_reset_iotlb_locked(s);
278 vtd_reset_context_cache_locked(s);
279 vtd_iommu_unlock(s);
280}
281
bacabb0a 282static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
d66b969b
JW
283 uint32_t level)
284{
285 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
286 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
287}
288
289static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
290{
291 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
292}
293
1d9efa73 294/* Must be called with IOMMU lock held */
b5a280c0
LT
295static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
296 hwaddr addr)
297{
d66b969b 298 VTDIOTLBEntry *entry;
b5a280c0 299 uint64_t key;
d66b969b
JW
300 int level;
301
302 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
303 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
304 source_id, level);
305 entry = g_hash_table_lookup(s->iotlb, &key);
306 if (entry) {
307 goto out;
308 }
309 }
b5a280c0 310
d66b969b
JW
311out:
312 return entry;
b5a280c0
LT
313}
314
1d9efa73 315/* Must be with IOMMU lock held */
b5a280c0
LT
316static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
317 uint16_t domain_id, hwaddr addr, uint64_t slpte,
07f7b733 318 uint8_t access_flags, uint32_t level)
b5a280c0
LT
319{
320 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
321 uint64_t *key = g_malloc(sizeof(*key));
d66b969b 322 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
b5a280c0 323
6c441e1d 324 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
b5a280c0 325 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
6c441e1d 326 trace_vtd_iotlb_reset("iotlb exceeds size limit");
1d9efa73 327 vtd_reset_iotlb_locked(s);
b5a280c0
LT
328 }
329
330 entry->gfn = gfn;
331 entry->domain_id = domain_id;
332 entry->slpte = slpte;
07f7b733 333 entry->access_flags = access_flags;
d66b969b
JW
334 entry->mask = vtd_slpt_level_page_mask(level);
335 *key = vtd_get_iotlb_key(gfn, source_id, level);
b5a280c0
LT
336 g_hash_table_replace(s->iotlb, key, entry);
337}
338
1da12ec4
LT
339/* Given the reg addr of both the message data and address, generate an
340 * interrupt via MSI.
341 */
342static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
343 hwaddr mesg_data_reg)
344{
32946019 345 MSIMessage msi;
1da12ec4
LT
346
347 assert(mesg_data_reg < DMAR_REG_SIZE);
348 assert(mesg_addr_reg < DMAR_REG_SIZE);
349
32946019
RK
350 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
351 msi.data = vtd_get_long_raw(s, mesg_data_reg);
1da12ec4 352
7feb51b7
PX
353 trace_vtd_irq_generate(msi.address, msi.data);
354
32946019 355 apic_get_class()->send_msi(&msi);
1da12ec4
LT
356}
357
358/* Generate a fault event to software via MSI if conditions are met.
359 * Notice that the value of FSTS_REG being passed to it should be the one
360 * before any update.
361 */
362static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
363{
364 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
365 pre_fsts & VTD_FSTS_IQE) {
1376211f
PX
366 error_report_once("There are previous interrupt conditions "
367 "to be serviced by software, fault event "
368 "is not generated");
1da12ec4
LT
369 return;
370 }
371 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
372 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
1376211f 373 error_report_once("Interrupt Mask set, irq is not generated");
1da12ec4
LT
374 } else {
375 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
376 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
377 }
378}
379
380/* Check if the Fault (F) field of the Fault Recording Register referenced by
381 * @index is Set.
382 */
383static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
384{
385 /* Each reg is 128-bit */
386 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
387 addr += 8; /* Access the high 64-bit half */
388
389 assert(index < DMAR_FRCD_REG_NR);
390
391 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
392}
393
394/* Update the PPF field of Fault Status Register.
395 * Should be called whenever change the F field of any fault recording
396 * registers.
397 */
398static void vtd_update_fsts_ppf(IntelIOMMUState *s)
399{
400 uint32_t i;
401 uint32_t ppf_mask = 0;
402
403 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
404 if (vtd_is_frcd_set(s, i)) {
405 ppf_mask = VTD_FSTS_PPF;
406 break;
407 }
408 }
409 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
7feb51b7 410 trace_vtd_fsts_ppf(!!ppf_mask);
1da12ec4
LT
411}
412
413static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
414{
415 /* Each reg is 128-bit */
416 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
417 addr += 8; /* Access the high 64-bit half */
418
419 assert(index < DMAR_FRCD_REG_NR);
420
421 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
422 vtd_update_fsts_ppf(s);
423}
424
425/* Must not update F field now, should be done later */
426static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
427 uint16_t source_id, hwaddr addr,
428 VTDFaultReason fault, bool is_write)
429{
430 uint64_t hi = 0, lo;
431 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432
433 assert(index < DMAR_FRCD_REG_NR);
434
435 lo = VTD_FRCD_FI(addr);
436 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
437 if (!is_write) {
438 hi |= VTD_FRCD_T;
439 }
440 vtd_set_quad_raw(s, frcd_reg_addr, lo);
441 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
7feb51b7
PX
442
443 trace_vtd_frr_new(index, hi, lo);
1da12ec4
LT
444}
445
446/* Try to collapse multiple pending faults from the same requester */
447static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
448{
449 uint32_t i;
450 uint64_t frcd_reg;
451 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
452
453 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
454 frcd_reg = vtd_get_quad_raw(s, addr);
1da12ec4
LT
455 if ((frcd_reg & VTD_FRCD_F) &&
456 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
457 return true;
458 }
459 addr += 16; /* 128-bit for each */
460 }
461 return false;
462}
463
464/* Log and report an DMAR (address translation) fault to software */
465static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
466 hwaddr addr, VTDFaultReason fault,
467 bool is_write)
468{
469 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
470
471 assert(fault < VTD_FR_MAX);
472
473 if (fault == VTD_FR_RESERVED_ERR) {
474 /* This is not a normal fault reason case. Drop it. */
475 return;
476 }
7feb51b7
PX
477
478 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
479
1da12ec4 480 if (fsts_reg & VTD_FSTS_PFO) {
1376211f
PX
481 error_report_once("New fault is not recorded due to "
482 "Primary Fault Overflow");
1da12ec4
LT
483 return;
484 }
7feb51b7 485
1da12ec4 486 if (vtd_try_collapse_fault(s, source_id)) {
1376211f
PX
487 error_report_once("New fault is not recorded due to "
488 "compression of faults");
1da12ec4
LT
489 return;
490 }
7feb51b7 491
1da12ec4 492 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
1376211f
PX
493 error_report_once("Next Fault Recording Reg is used, "
494 "new fault is not recorded, set PFO field");
1da12ec4
LT
495 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
496 return;
497 }
498
499 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
500
501 if (fsts_reg & VTD_FSTS_PPF) {
1376211f
PX
502 error_report_once("There are pending faults already, "
503 "fault event is not generated");
1da12ec4
LT
504 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
505 s->next_frcd_reg++;
506 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
507 s->next_frcd_reg = 0;
508 }
509 } else {
510 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
511 VTD_FSTS_FRI(s->next_frcd_reg));
512 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
513 s->next_frcd_reg++;
514 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
515 s->next_frcd_reg = 0;
516 }
517 /* This case actually cause the PPF to be Set.
518 * So generate fault event (interrupt).
519 */
520 vtd_generate_fault_event(s, fsts_reg);
521 }
522}
523
ed7b8fbc
LT
524/* Handle Invalidation Queue Errors of queued invalidation interface error
525 * conditions.
526 */
527static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
528{
529 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
530
531 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
532 vtd_generate_fault_event(s, fsts_reg);
533}
534
535/* Set the IWC field and try to generate an invalidation completion interrupt */
536static void vtd_generate_completion_event(IntelIOMMUState *s)
537{
ed7b8fbc 538 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
bc535e59 539 trace_vtd_inv_desc_wait_irq("One pending, skip current");
ed7b8fbc
LT
540 return;
541 }
542 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
543 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
544 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
bc535e59
PX
545 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
546 "new event not generated");
ed7b8fbc
LT
547 return;
548 } else {
549 /* Generate the interrupt event */
bc535e59 550 trace_vtd_inv_desc_wait_irq("Generating complete event");
ed7b8fbc
LT
551 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
552 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
553 }
554}
555
fb43cf73
LY
556static inline bool vtd_root_entry_present(IntelIOMMUState *s,
557 VTDRootEntry *re,
558 uint8_t devfn)
1da12ec4 559{
fb43cf73
LY
560 if (s->root_scalable && devfn > UINT8_MAX / 2) {
561 return re->hi & VTD_ROOT_ENTRY_P;
562 }
563
564 return re->lo & VTD_ROOT_ENTRY_P;
1da12ec4
LT
565}
566
567static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
568 VTDRootEntry *re)
569{
570 dma_addr_t addr;
571
572 addr = s->root + index * sizeof(*re);
573 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
fb43cf73 574 re->lo = 0;
1da12ec4
LT
575 return -VTD_FR_ROOT_TABLE_INV;
576 }
fb43cf73
LY
577 re->lo = le64_to_cpu(re->lo);
578 re->hi = le64_to_cpu(re->hi);
1da12ec4
LT
579 return 0;
580}
581
8f7d7161 582static inline bool vtd_ce_present(VTDContextEntry *context)
1da12ec4
LT
583{
584 return context->lo & VTD_CONTEXT_ENTRY_P;
585}
586
fb43cf73
LY
587static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
588 VTDRootEntry *re,
589 uint8_t index,
1da12ec4
LT
590 VTDContextEntry *ce)
591{
fb43cf73 592 dma_addr_t addr, ce_size;
1da12ec4 593
6c441e1d 594 /* we have checked that root entry is present */
fb43cf73
LY
595 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
596 VTD_CTX_ENTRY_LEGACY_SIZE;
597
598 if (s->root_scalable && index > UINT8_MAX / 2) {
599 index = index & (~VTD_DEVFN_CHECK_MASK);
600 addr = re->hi & VTD_ROOT_ENTRY_CTP;
601 } else {
602 addr = re->lo & VTD_ROOT_ENTRY_CTP;
603 }
604
605 addr = addr + index * ce_size;
606 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
1da12ec4
LT
607 return -VTD_FR_CONTEXT_TABLE_INV;
608 }
fb43cf73 609
1da12ec4
LT
610 ce->lo = le64_to_cpu(ce->lo);
611 ce->hi = le64_to_cpu(ce->hi);
fb43cf73
LY
612 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
613 ce->val[2] = le64_to_cpu(ce->val[2]);
614 ce->val[3] = le64_to_cpu(ce->val[3]);
615 }
1da12ec4
LT
616 return 0;
617}
618
8f7d7161 619static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
1da12ec4
LT
620{
621 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
622}
623
37f51384 624static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
1da12ec4 625{
37f51384 626 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
1da12ec4
LT
627}
628
629/* Whether the pte indicates the address of the page frame */
630static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
631{
632 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
633}
634
635/* Get the content of a spte located in @base_addr[@index] */
636static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
637{
638 uint64_t slpte;
639
640 assert(index < VTD_SL_PT_ENTRY_NR);
641
642 if (dma_memory_read(&address_space_memory,
643 base_addr + index * sizeof(slpte), &slpte,
644 sizeof(slpte))) {
645 slpte = (uint64_t)-1;
646 return slpte;
647 }
648 slpte = le64_to_cpu(slpte);
649 return slpte;
650}
651
6e905564
PX
652/* Given an iova and the level of paging structure, return the offset
653 * of current level.
1da12ec4 654 */
6e905564 655static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
1da12ec4 656{
6e905564 657 return (iova >> vtd_slpt_level_shift(level)) &
1da12ec4
LT
658 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
659}
660
661/* Check Capability Register to see if the @level of page-table is supported */
662static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
663{
664 return VTD_CAP_SAGAW_MASK & s->cap &
665 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
666}
667
fb43cf73
LY
668/* Return true if check passed, otherwise false */
669static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
670 VTDPASIDEntry *pe)
671{
672 switch (VTD_PE_GET_TYPE(pe)) {
673 case VTD_SM_PASID_ENTRY_FLT:
674 case VTD_SM_PASID_ENTRY_SLT:
675 case VTD_SM_PASID_ENTRY_NESTED:
676 break;
677 case VTD_SM_PASID_ENTRY_PT:
678 if (!x86_iommu->pt_supported) {
679 return false;
680 }
681 break;
682 default:
683 /* Unknwon type */
684 return false;
685 }
686 return true;
687}
688
689static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
690 uint32_t pasid,
691 VTDPASIDDirEntry *pdire)
692{
693 uint32_t index;
694 dma_addr_t addr, entry_size;
695
696 index = VTD_PASID_DIR_INDEX(pasid);
697 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
698 addr = pasid_dir_base + index * entry_size;
699 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
700 return -VTD_FR_PASID_TABLE_INV;
701 }
702
703 return 0;
704}
705
706static int vtd_get_pasid_entry(IntelIOMMUState *s,
707 uint32_t pasid,
708 VTDPASIDDirEntry *pdire,
709 VTDPASIDEntry *pe)
710{
711 uint32_t index;
712 dma_addr_t addr, entry_size;
713 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
714
715 index = VTD_PASID_TABLE_INDEX(pasid);
716 entry_size = VTD_PASID_ENTRY_SIZE;
717 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
718 addr = addr + index * entry_size;
719 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
720 return -VTD_FR_PASID_TABLE_INV;
721 }
722
723 /* Do translation type check */
724 if (!vtd_pe_type_check(x86_iommu, pe)) {
725 return -VTD_FR_PASID_TABLE_INV;
726 }
727
728 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
729 return -VTD_FR_PASID_TABLE_INV;
730 }
731
732 return 0;
733}
734
735static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
736 dma_addr_t pasid_dir_base,
737 uint32_t pasid,
738 VTDPASIDEntry *pe)
739{
740 int ret;
741 VTDPASIDDirEntry pdire;
742
743 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
744 if (ret) {
745 return ret;
746 }
747
748 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
749 if (ret) {
750 return ret;
751 }
752
753 return ret;
754}
755
756static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
757 VTDContextEntry *ce,
758 VTDPASIDEntry *pe)
759{
760 uint32_t pasid;
761 dma_addr_t pasid_dir_base;
762 int ret = 0;
763
764 pasid = VTD_CE_GET_RID2PASID(ce);
765 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
766 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
767
768 return ret;
769}
770
771static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
772 VTDContextEntry *ce,
773 bool *pe_fpd_set)
774{
775 int ret;
776 uint32_t pasid;
777 dma_addr_t pasid_dir_base;
778 VTDPASIDDirEntry pdire;
779 VTDPASIDEntry pe;
780
781 pasid = VTD_CE_GET_RID2PASID(ce);
782 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
783
784 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
785 if (ret) {
786 return ret;
787 }
788
789 if (pdire.val & VTD_PASID_DIR_FPD) {
790 *pe_fpd_set = true;
791 return 0;
792 }
793
794 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
795 if (ret) {
796 return ret;
797 }
798
799 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
800 *pe_fpd_set = true;
801 }
802
803 return 0;
804}
805
1da12ec4
LT
806/* Get the page-table level that hardware should use for the second-level
807 * page-table walk from the Address Width field of context-entry.
808 */
8f7d7161 809static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
1da12ec4
LT
810{
811 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
812}
813
fb43cf73
LY
814static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
815 VTDContextEntry *ce)
816{
817 VTDPASIDEntry pe;
818
819 if (s->root_scalable) {
820 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
821 return VTD_PE_GET_LEVEL(&pe);
822 }
823
824 return vtd_ce_get_level(ce);
825}
826
8f7d7161 827static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
1da12ec4
LT
828{
829 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
830}
831
fb43cf73
LY
832static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
833 VTDContextEntry *ce)
834{
835 VTDPASIDEntry pe;
836
837 if (s->root_scalable) {
838 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
839 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
840 }
841
842 return vtd_ce_get_agaw(ce);
843}
844
127ff5c3
PX
845static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
846{
847 return ce->lo & VTD_CONTEXT_ENTRY_TT;
848}
849
fb43cf73 850/* Only for Legacy Mode. Return true if check passed, otherwise false */
f80c9874
PX
851static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
852 VTDContextEntry *ce)
853{
854 switch (vtd_ce_get_type(ce)) {
855 case VTD_CONTEXT_TT_MULTI_LEVEL:
856 /* Always supported */
857 break;
858 case VTD_CONTEXT_TT_DEV_IOTLB:
859 if (!x86_iommu->dt_supported) {
095955b2 860 error_report_once("%s: DT specified but not supported", __func__);
f80c9874
PX
861 return false;
862 }
863 break;
dbaabb25
PX
864 case VTD_CONTEXT_TT_PASS_THROUGH:
865 if (!x86_iommu->pt_supported) {
095955b2 866 error_report_once("%s: PT specified but not supported", __func__);
dbaabb25
PX
867 return false;
868 }
869 break;
f80c9874 870 default:
fb43cf73 871 /* Unknown type */
095955b2
PX
872 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
873 vtd_ce_get_type(ce));
f80c9874
PX
874 return false;
875 }
876 return true;
877}
878
fb43cf73
LY
879static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
880 VTDContextEntry *ce, uint8_t aw)
f06a696d 881{
fb43cf73 882 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
37f51384 883 return 1ULL << MIN(ce_agaw, aw);
f06a696d
PX
884}
885
886/* Return true if IOVA passes range check, otherwise false. */
fb43cf73
LY
887static inline bool vtd_iova_range_check(IntelIOMMUState *s,
888 uint64_t iova, VTDContextEntry *ce,
37f51384 889 uint8_t aw)
f06a696d
PX
890{
891 /*
892 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
893 * in CAP_REG and AW in context-entry.
894 */
fb43cf73
LY
895 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
896}
897
898static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
899 VTDContextEntry *ce)
900{
901 VTDPASIDEntry pe;
902
903 if (s->root_scalable) {
904 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
905 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
906 }
907
908 return vtd_ce_get_slpt_base(ce);
f06a696d
PX
909}
910
92e5d85e
PS
911/*
912 * Rsvd field masks for spte:
913 * Index [1] to [4] 4k pages
914 * Index [5] to [8] large pages
915 */
916static uint64_t vtd_paging_entry_rsvd_field[9];
1da12ec4
LT
917
918static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
919{
920 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
921 /* Maybe large page */
922 return slpte & vtd_paging_entry_rsvd_field[level + 4];
923 } else {
924 return slpte & vtd_paging_entry_rsvd_field[level];
925 }
926}
927
dbaabb25
PX
928/* Find the VTD address space associated with a given bus number */
929static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
930{
931 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
932 if (!vtd_bus) {
933 /*
934 * Iterate over the registered buses to find the one which
935 * currently hold this bus number, and update the bus_num
936 * lookup table:
937 */
938 GHashTableIter iter;
939
940 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
941 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
942 if (pci_bus_num(vtd_bus->bus) == bus_num) {
943 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
944 return vtd_bus;
945 }
946 }
947 }
948 return vtd_bus;
949}
950
6e905564 951/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1da12ec4
LT
952 * of the translation, can be used for deciding the size of large page.
953 */
fb43cf73
LY
954static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
955 uint64_t iova, bool is_write,
6e905564 956 uint64_t *slptep, uint32_t *slpte_level,
37f51384 957 bool *reads, bool *writes, uint8_t aw_bits)
1da12ec4 958{
fb43cf73
LY
959 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
960 uint32_t level = vtd_get_iova_level(s, ce);
1da12ec4
LT
961 uint32_t offset;
962 uint64_t slpte;
1da12ec4
LT
963 uint64_t access_right_check;
964
fb43cf73 965 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
4e4abd11
PX
966 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
967 __func__, iova);
1da12ec4
LT
968 return -VTD_FR_ADDR_BEYOND_MGAW;
969 }
970
971 /* FIXME: what is the Atomics request here? */
972 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
973
974 while (true) {
6e905564 975 offset = vtd_iova_level_offset(iova, level);
1da12ec4
LT
976 slpte = vtd_get_slpte(addr, offset);
977
978 if (slpte == (uint64_t)-1) {
4e4abd11
PX
979 error_report_once("%s: detected read error on DMAR slpte "
980 "(iova=0x%" PRIx64 ")", __func__, iova);
fb43cf73 981 if (level == vtd_get_iova_level(s, ce)) {
1da12ec4
LT
982 /* Invalid programming of context-entry */
983 return -VTD_FR_CONTEXT_ENTRY_INV;
984 } else {
985 return -VTD_FR_PAGING_ENTRY_INV;
986 }
987 }
988 *reads = (*reads) && (slpte & VTD_SL_R);
989 *writes = (*writes) && (slpte & VTD_SL_W);
990 if (!(slpte & access_right_check)) {
4e4abd11
PX
991 error_report_once("%s: detected slpte permission error "
992 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
993 "slpte=0x%" PRIx64 ", write=%d)", __func__,
994 iova, level, slpte, is_write);
1da12ec4
LT
995 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
996 }
997 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
4e4abd11
PX
998 error_report_once("%s: detected splte reserve non-zero "
999 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1000 "slpte=0x%" PRIx64 ")", __func__, iova,
1001 level, slpte);
1da12ec4
LT
1002 return -VTD_FR_PAGING_ENTRY_RSVD;
1003 }
1004
1005 if (vtd_is_last_slpte(slpte, level)) {
1006 *slptep = slpte;
1007 *slpte_level = level;
1008 return 0;
1009 }
37f51384 1010 addr = vtd_get_slpte_addr(slpte, aw_bits);
1da12ec4
LT
1011 level--;
1012 }
1013}
1014
f06a696d
PX
1015typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1016
fe215b0c
PX
1017/**
1018 * Constant information used during page walking
1019 *
1020 * @hook_fn: hook func to be called when detected page
1021 * @private: private data to be passed into hook func
1022 * @notify_unmap: whether we should notify invalid entries
2f764fa8 1023 * @as: VT-d address space of the device
fe215b0c 1024 * @aw: maximum address width
d118c06e 1025 * @domain: domain ID of the page walk
fe215b0c
PX
1026 */
1027typedef struct {
2f764fa8 1028 VTDAddressSpace *as;
fe215b0c
PX
1029 vtd_page_walk_hook hook_fn;
1030 void *private;
1031 bool notify_unmap;
1032 uint8_t aw;
d118c06e 1033 uint16_t domain_id;
fe215b0c
PX
1034} vtd_page_walk_info;
1035
d118c06e 1036static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
36d2d52b 1037{
63b88968 1038 VTDAddressSpace *as = info->as;
fe215b0c
PX
1039 vtd_page_walk_hook hook_fn = info->hook_fn;
1040 void *private = info->private;
63b88968
PX
1041 DMAMap target = {
1042 .iova = entry->iova,
1043 .size = entry->addr_mask,
1044 .translated_addr = entry->translated_addr,
1045 .perm = entry->perm,
1046 };
1047 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1048
1049 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1050 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1051 return 0;
1052 }
fe215b0c 1053
36d2d52b 1054 assert(hook_fn);
63b88968
PX
1055
1056 /* Update local IOVA mapped ranges */
1057 if (entry->perm) {
1058 if (mapped) {
1059 /* If it's exactly the same translation, skip */
1060 if (!memcmp(mapped, &target, sizeof(target))) {
1061 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1062 entry->translated_addr);
1063 return 0;
1064 } else {
1065 /*
1066 * Translation changed. Normally this should not
1067 * happen, but it can happen when with buggy guest
1068 * OSes. Note that there will be a small window that
1069 * we don't have map at all. But that's the best
1070 * effort we can do. The ideal way to emulate this is
1071 * atomically modify the PTE to follow what has
1072 * changed, but we can't. One example is that vfio
1073 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1074 * interface to modify a mapping (meanwhile it seems
1075 * meaningless to even provide one). Anyway, let's
1076 * mark this as a TODO in case one day we'll have
1077 * a better solution.
1078 */
1079 IOMMUAccessFlags cache_perm = entry->perm;
1080 int ret;
1081
1082 /* Emulate an UNMAP */
1083 entry->perm = IOMMU_NONE;
1084 trace_vtd_page_walk_one(info->domain_id,
1085 entry->iova,
1086 entry->translated_addr,
1087 entry->addr_mask,
1088 entry->perm);
1089 ret = hook_fn(entry, private);
1090 if (ret) {
1091 return ret;
1092 }
1093 /* Drop any existing mapping */
1094 iova_tree_remove(as->iova_tree, &target);
1095 /* Recover the correct permission */
1096 entry->perm = cache_perm;
1097 }
1098 }
1099 iova_tree_insert(as->iova_tree, &target);
1100 } else {
1101 if (!mapped) {
1102 /* Skip since we didn't map this range at all */
1103 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1104 return 0;
1105 }
1106 iova_tree_remove(as->iova_tree, &target);
1107 }
1108
d118c06e
PX
1109 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1110 entry->translated_addr, entry->addr_mask,
1111 entry->perm);
36d2d52b
PX
1112 return hook_fn(entry, private);
1113}
1114
f06a696d
PX
1115/**
1116 * vtd_page_walk_level - walk over specific level for IOVA range
1117 *
1118 * @addr: base GPA addr to start the walk
1119 * @start: IOVA range start address
1120 * @end: IOVA range end address (start <= addr < end)
f06a696d
PX
1121 * @read: whether parent level has read permission
1122 * @write: whether parent level has write permission
fe215b0c 1123 * @info: constant information for the page walk
f06a696d
PX
1124 */
1125static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
fe215b0c
PX
1126 uint64_t end, uint32_t level, bool read,
1127 bool write, vtd_page_walk_info *info)
f06a696d
PX
1128{
1129 bool read_cur, write_cur, entry_valid;
1130 uint32_t offset;
1131 uint64_t slpte;
1132 uint64_t subpage_size, subpage_mask;
1133 IOMMUTLBEntry entry;
1134 uint64_t iova = start;
1135 uint64_t iova_next;
1136 int ret = 0;
1137
1138 trace_vtd_page_walk_level(addr, level, start, end);
1139
1140 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1141 subpage_mask = vtd_slpt_level_page_mask(level);
1142
1143 while (iova < end) {
1144 iova_next = (iova & subpage_mask) + subpage_size;
1145
1146 offset = vtd_iova_level_offset(iova, level);
1147 slpte = vtd_get_slpte(addr, offset);
1148
1149 if (slpte == (uint64_t)-1) {
1150 trace_vtd_page_walk_skip_read(iova, iova_next);
1151 goto next;
1152 }
1153
1154 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1155 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1156 goto next;
1157 }
1158
1159 /* Permissions are stacked with parents' */
1160 read_cur = read && (slpte & VTD_SL_R);
1161 write_cur = write && (slpte & VTD_SL_W);
1162
1163 /*
1164 * As long as we have either read/write permission, this is a
1165 * valid entry. The rule works for both page entries and page
1166 * table entries.
1167 */
1168 entry_valid = read_cur | write_cur;
1169
63b88968
PX
1170 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1171 /*
1172 * This is a valid PDE (or even bigger than PDE). We need
1173 * to walk one further level.
1174 */
fe215b0c
PX
1175 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1176 iova, MIN(iova_next, end), level - 1,
1177 read_cur, write_cur, info);
63b88968
PX
1178 } else {
1179 /*
1180 * This means we are either:
1181 *
1182 * (1) the real page entry (either 4K page, or huge page)
1183 * (2) the whole range is invalid
1184 *
1185 * In either case, we send an IOTLB notification down.
1186 */
1187 entry.target_as = &address_space_memory;
1188 entry.iova = iova & subpage_mask;
1189 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1190 entry.addr_mask = ~subpage_mask;
1191 /* NOTE: this is only meaningful if entry_valid == true */
1192 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1193 ret = vtd_page_walk_one(&entry, info);
1194 }
1195
1196 if (ret < 0) {
1197 return ret;
f06a696d
PX
1198 }
1199
1200next:
1201 iova = iova_next;
1202 }
1203
1204 return 0;
1205}
1206
1207/**
1208 * vtd_page_walk - walk specific IOVA range, and call the hook
1209 *
fb43cf73 1210 * @s: intel iommu state
f06a696d
PX
1211 * @ce: context entry to walk upon
1212 * @start: IOVA address to start the walk
1213 * @end: IOVA range end address (start <= addr < end)
fe215b0c 1214 * @info: page walking information struct
f06a696d 1215 */
fb43cf73
LY
1216static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1217 uint64_t start, uint64_t end,
fe215b0c 1218 vtd_page_walk_info *info)
f06a696d 1219{
fb43cf73
LY
1220 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1221 uint32_t level = vtd_get_iova_level(s, ce);
f06a696d 1222
fb43cf73 1223 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
f06a696d
PX
1224 return -VTD_FR_ADDR_BEYOND_MGAW;
1225 }
1226
fb43cf73 1227 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
f06a696d 1228 /* Fix end so that it reaches the maximum */
fb43cf73 1229 end = vtd_iova_limit(s, ce, info->aw);
f06a696d
PX
1230 }
1231
fe215b0c 1232 return vtd_page_walk_level(addr, start, end, level, true, true, info);
f06a696d
PX
1233}
1234
fb43cf73
LY
1235static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1236 VTDRootEntry *re)
1237{
1238 /* Legacy Mode reserved bits check */
1239 if (!s->root_scalable &&
1240 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1241 goto rsvd_err;
1242
1243 /* Scalable Mode reserved bits check */
1244 if (s->root_scalable &&
1245 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1246 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1247 goto rsvd_err;
1248
1249 return 0;
1250
1251rsvd_err:
1252 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1253 ", lo=0x%"PRIx64,
1254 __func__, re->hi, re->lo);
1255 return -VTD_FR_ROOT_ENTRY_RSVD;
1256}
1257
1258static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1259 VTDContextEntry *ce)
1260{
1261 if (!s->root_scalable &&
1262 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1263 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1264 error_report_once("%s: invalid context entry: hi=%"PRIx64
1265 ", lo=%"PRIx64" (reserved nonzero)",
1266 __func__, ce->hi, ce->lo);
1267 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1268 }
1269
1270 if (s->root_scalable &&
1271 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1272 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1273 ce->val[2] ||
1274 ce->val[3])) {
1275 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1276 ", val[2]=%"PRIx64
1277 ", val[1]=%"PRIx64
1278 ", val[0]=%"PRIx64" (reserved nonzero)",
1279 __func__, ce->val[3], ce->val[2],
1280 ce->val[1], ce->val[0]);
1281 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1282 }
1283
1284 return 0;
1285}
1286
1287static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1288 VTDContextEntry *ce)
1289{
1290 VTDPASIDEntry pe;
1291
1292 /*
1293 * Make sure in Scalable Mode, a present context entry
1294 * has valid rid2pasid setting, which includes valid
1295 * rid2pasid field and corresponding pasid entry setting
1296 */
1297 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1298}
1299
1da12ec4
LT
1300/* Map a device to its corresponding domain (context-entry) */
1301static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1302 uint8_t devfn, VTDContextEntry *ce)
1303{
1304 VTDRootEntry re;
1305 int ret_fr;
f80c9874 1306 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1da12ec4
LT
1307
1308 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1309 if (ret_fr) {
1310 return ret_fr;
1311 }
1312
fb43cf73 1313 if (!vtd_root_entry_present(s, &re, devfn)) {
6c441e1d
PX
1314 /* Not error - it's okay we don't have root entry. */
1315 trace_vtd_re_not_present(bus_num);
1da12ec4 1316 return -VTD_FR_ROOT_ENTRY_P;
f80c9874
PX
1317 }
1318
fb43cf73
LY
1319 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1320 if (ret_fr) {
1321 return ret_fr;
1da12ec4
LT
1322 }
1323
fb43cf73 1324 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1da12ec4
LT
1325 if (ret_fr) {
1326 return ret_fr;
1327 }
1328
8f7d7161 1329 if (!vtd_ce_present(ce)) {
6c441e1d
PX
1330 /* Not error - it's okay we don't have context entry. */
1331 trace_vtd_ce_not_present(bus_num, devfn);
1da12ec4 1332 return -VTD_FR_CONTEXT_ENTRY_P;
f80c9874
PX
1333 }
1334
fb43cf73
LY
1335 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1336 if (ret_fr) {
1337 return ret_fr;
1da12ec4 1338 }
f80c9874 1339
1da12ec4 1340 /* Check if the programming of context-entry is valid */
fb43cf73
LY
1341 if (!s->root_scalable &&
1342 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
095955b2
PX
1343 error_report_once("%s: invalid context entry: hi=%"PRIx64
1344 ", lo=%"PRIx64" (level %d not supported)",
fb43cf73
LY
1345 __func__, ce->hi, ce->lo,
1346 vtd_ce_get_level(ce));
1da12ec4 1347 return -VTD_FR_CONTEXT_ENTRY_INV;
1da12ec4 1348 }
f80c9874 1349
fb43cf73
LY
1350 if (!s->root_scalable) {
1351 /* Do translation type check */
1352 if (!vtd_ce_type_check(x86_iommu, ce)) {
1353 /* Errors dumped in vtd_ce_type_check() */
1354 return -VTD_FR_CONTEXT_ENTRY_INV;
1355 }
1356 } else {
1357 /*
1358 * Check if the programming of context-entry.rid2pasid
1359 * and corresponding pasid setting is valid, and thus
1360 * avoids to check pasid entry fetching result in future
1361 * helper function calling.
1362 */
1363 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1364 if (ret_fr) {
1365 return ret_fr;
1366 }
f80c9874
PX
1367 }
1368
1da12ec4
LT
1369 return 0;
1370}
1371
63b88968
PX
1372static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1373 void *private)
1374{
cb1efcf4 1375 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
63b88968
PX
1376 return 0;
1377}
1378
fb43cf73
LY
1379static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1380 VTDContextEntry *ce)
1381{
1382 VTDPASIDEntry pe;
1383
1384 if (s->root_scalable) {
1385 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1386 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1387 }
1388
1389 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1390}
1391
63b88968
PX
1392static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1393 VTDContextEntry *ce,
1394 hwaddr addr, hwaddr size)
1395{
1396 IntelIOMMUState *s = vtd_as->iommu_state;
1397 vtd_page_walk_info info = {
1398 .hook_fn = vtd_sync_shadow_page_hook,
1399 .private = (void *)&vtd_as->iommu,
1400 .notify_unmap = true,
1401 .aw = s->aw_bits,
1402 .as = vtd_as,
fb43cf73 1403 .domain_id = vtd_get_domain_id(s, ce),
63b88968 1404 };
63b88968 1405
fb43cf73 1406 return vtd_page_walk(s, ce, addr, addr + size, &info);
63b88968
PX
1407}
1408
1409static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1410{
95ecd3df
PX
1411 int ret;
1412 VTDContextEntry ce;
c28b535d 1413 IOMMUNotifier *n;
95ecd3df
PX
1414
1415 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1416 pci_bus_num(vtd_as->bus),
1417 vtd_as->devfn, &ce);
1418 if (ret) {
c28b535d
PX
1419 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1420 /*
1421 * It's a valid scenario to have a context entry that is
1422 * not present. For example, when a device is removed
1423 * from an existing domain then the context entry will be
1424 * zeroed by the guest before it was put into another
1425 * domain. When this happens, instead of synchronizing
1426 * the shadow pages we should invalidate all existing
1427 * mappings and notify the backends.
1428 */
1429 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1430 vtd_address_space_unmap(vtd_as, n);
1431 }
1432 ret = 0;
1433 }
95ecd3df
PX
1434 return ret;
1435 }
1436
1437 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
63b88968
PX
1438}
1439
dbaabb25 1440/*
fb43cf73
LY
1441 * Check if specific device is configed to bypass address
1442 * translation for DMA requests. In Scalable Mode, bypass
1443 * 1st-level translation or 2nd-level translation, it depends
1444 * on PGTT setting.
dbaabb25 1445 */
fb43cf73 1446static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
dbaabb25
PX
1447{
1448 IntelIOMMUState *s;
1449 VTDContextEntry ce;
fb43cf73 1450 VTDPASIDEntry pe;
dbaabb25
PX
1451 int ret;
1452
fb43cf73 1453 assert(as);
dbaabb25 1454
fb43cf73 1455 s = as->iommu_state;
dbaabb25
PX
1456 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1457 as->devfn, &ce);
1458 if (ret) {
dbaabb25
PX
1459 /*
1460 * Possibly failed to parse the context entry for some reason
1461 * (e.g., during init, or any guest configuration errors on
1462 * context entries). We should assume PT not enabled for
1463 * safety.
1464 */
1465 return false;
1466 }
1467
fb43cf73
LY
1468 if (s->root_scalable) {
1469 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1470 if (ret) {
1471 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1472 __func__, ret);
1473 return false;
1474 }
1475 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1476 }
1477
1478 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
dbaabb25
PX
1479}
1480
1481/* Return whether the device is using IOMMU translation. */
1482static bool vtd_switch_address_space(VTDAddressSpace *as)
1483{
1484 bool use_iommu;
66a4a031
PX
1485 /* Whether we need to take the BQL on our own */
1486 bool take_bql = !qemu_mutex_iothread_locked();
dbaabb25
PX
1487
1488 assert(as);
1489
2a078b10 1490 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
dbaabb25
PX
1491
1492 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1493 VTD_PCI_SLOT(as->devfn),
1494 VTD_PCI_FUNC(as->devfn),
1495 use_iommu);
1496
66a4a031
PX
1497 /*
1498 * It's possible that we reach here without BQL, e.g., when called
1499 * from vtd_pt_enable_fast_path(). However the memory APIs need
1500 * it. We'd better make sure we have had it already, or, take it.
1501 */
1502 if (take_bql) {
1503 qemu_mutex_lock_iothread();
1504 }
1505
dbaabb25
PX
1506 /* Turn off first then on the other */
1507 if (use_iommu) {
4b519ef1 1508 memory_region_set_enabled(&as->nodmar, false);
3df9d748 1509 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
dbaabb25 1510 } else {
3df9d748 1511 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
4b519ef1 1512 memory_region_set_enabled(&as->nodmar, true);
dbaabb25
PX
1513 }
1514
66a4a031
PX
1515 if (take_bql) {
1516 qemu_mutex_unlock_iothread();
1517 }
1518
dbaabb25
PX
1519 return use_iommu;
1520}
1521
1522static void vtd_switch_address_space_all(IntelIOMMUState *s)
1523{
1524 GHashTableIter iter;
1525 VTDBus *vtd_bus;
1526 int i;
1527
1528 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1529 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
bf33cc75 1530 for (i = 0; i < PCI_DEVFN_MAX; i++) {
dbaabb25
PX
1531 if (!vtd_bus->dev_as[i]) {
1532 continue;
1533 }
1534 vtd_switch_address_space(vtd_bus->dev_as[i]);
1535 }
1536 }
1537}
1538
1da12ec4
LT
1539static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1540{
1541 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1542}
1543
1544static const bool vtd_qualified_faults[] = {
1545 [VTD_FR_RESERVED] = false,
1546 [VTD_FR_ROOT_ENTRY_P] = false,
1547 [VTD_FR_CONTEXT_ENTRY_P] = true,
1548 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1549 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1550 [VTD_FR_WRITE] = true,
1551 [VTD_FR_READ] = true,
1552 [VTD_FR_PAGING_ENTRY_INV] = true,
1553 [VTD_FR_ROOT_TABLE_INV] = false,
1554 [VTD_FR_CONTEXT_TABLE_INV] = false,
1555 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1556 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1557 [VTD_FR_CONTEXT_ENTRY_TT] = true,
fb43cf73 1558 [VTD_FR_PASID_TABLE_INV] = false,
1da12ec4
LT
1559 [VTD_FR_RESERVED_ERR] = false,
1560 [VTD_FR_MAX] = false,
1561};
1562
1563/* To see if a fault condition is "qualified", which is reported to software
1564 * only if the FPD field in the context-entry used to process the faulting
1565 * request is 0.
1566 */
1567static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1568{
1569 return vtd_qualified_faults[fault];
1570}
1571
1572static inline bool vtd_is_interrupt_addr(hwaddr addr)
1573{
1574 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1575}
1576
dbaabb25
PX
1577static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1578{
1579 VTDBus *vtd_bus;
1580 VTDAddressSpace *vtd_as;
1581 bool success = false;
1582
1583 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1584 if (!vtd_bus) {
1585 goto out;
1586 }
1587
1588 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1589 if (!vtd_as) {
1590 goto out;
1591 }
1592
1593 if (vtd_switch_address_space(vtd_as) == false) {
1594 /* We switched off IOMMU region successfully. */
1595 success = true;
1596 }
1597
1598out:
1599 trace_vtd_pt_enable_fast_path(source_id, success);
1600}
1601
1da12ec4
LT
1602/* Map dev to context-entry then do a paging-structures walk to do a iommu
1603 * translation.
79e2b9ae
PB
1604 *
1605 * Called from RCU critical section.
1606 *
1da12ec4
LT
1607 * @bus_num: The bus number
1608 * @devfn: The devfn, which is the combined of device and function number
1609 * @is_write: The access is a write operation
1610 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
b9313021
PX
1611 *
1612 * Returns true if translation is successful, otherwise false.
1da12ec4 1613 */
b9313021 1614static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1da12ec4
LT
1615 uint8_t devfn, hwaddr addr, bool is_write,
1616 IOMMUTLBEntry *entry)
1617{
d92fa2dc 1618 IntelIOMMUState *s = vtd_as->iommu_state;
1da12ec4 1619 VTDContextEntry ce;
7df953bd 1620 uint8_t bus_num = pci_bus_num(bus);
1d9efa73 1621 VTDContextCacheEntry *cc_entry;
d66b969b 1622 uint64_t slpte, page_mask;
1da12ec4
LT
1623 uint32_t level;
1624 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1625 int ret_fr;
1626 bool is_fpd_set = false;
1627 bool reads = true;
1628 bool writes = true;
07f7b733 1629 uint8_t access_flags;
b5a280c0 1630 VTDIOTLBEntry *iotlb_entry;
1da12ec4 1631
046ab7e9
PX
1632 /*
1633 * We have standalone memory region for interrupt addresses, we
1634 * should never receive translation requests in this region.
1635 */
1636 assert(!vtd_is_interrupt_addr(addr));
1637
1d9efa73
PX
1638 vtd_iommu_lock(s);
1639
1640 cc_entry = &vtd_as->context_cache_entry;
1641
b5a280c0
LT
1642 /* Try to fetch slpte form IOTLB */
1643 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1644 if (iotlb_entry) {
6c441e1d
PX
1645 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1646 iotlb_entry->domain_id);
b5a280c0 1647 slpte = iotlb_entry->slpte;
07f7b733 1648 access_flags = iotlb_entry->access_flags;
d66b969b 1649 page_mask = iotlb_entry->mask;
b5a280c0
LT
1650 goto out;
1651 }
b9313021 1652
d92fa2dc
LT
1653 /* Try to fetch context-entry from cache first */
1654 if (cc_entry->context_cache_gen == s->context_cache_gen) {
6c441e1d
PX
1655 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1656 cc_entry->context_entry.lo,
1657 cc_entry->context_cache_gen);
d92fa2dc
LT
1658 ce = cc_entry->context_entry;
1659 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
fb43cf73
LY
1660 if (!is_fpd_set && s->root_scalable) {
1661 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1662 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1663 }
d92fa2dc
LT
1664 } else {
1665 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1666 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
fb43cf73
LY
1667 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1668 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1da12ec4 1669 }
fb43cf73 1670 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
d92fa2dc 1671 /* Update context-cache */
6c441e1d
PX
1672 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1673 cc_entry->context_cache_gen,
1674 s->context_cache_gen);
d92fa2dc
LT
1675 cc_entry->context_entry = ce;
1676 cc_entry->context_cache_gen = s->context_cache_gen;
1da12ec4
LT
1677 }
1678
dbaabb25
PX
1679 /*
1680 * We don't need to translate for pass-through context entries.
1681 * Also, let's ignore IOTLB caching as well for PT devices.
1682 */
1683 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
892721d9 1684 entry->iova = addr & VTD_PAGE_MASK_4K;
dbaabb25 1685 entry->translated_addr = entry->iova;
892721d9 1686 entry->addr_mask = ~VTD_PAGE_MASK_4K;
dbaabb25
PX
1687 entry->perm = IOMMU_RW;
1688 trace_vtd_translate_pt(source_id, entry->iova);
1689
1690 /*
1691 * When this happens, it means firstly caching-mode is not
1692 * enabled, and this is the first passthrough translation for
1693 * the device. Let's enable the fast path for passthrough.
1694 *
1695 * When passthrough is disabled again for the device, we can
1696 * capture it via the context entry invalidation, then the
1697 * IOMMU region can be swapped back.
1698 */
1699 vtd_pt_enable_fast_path(s, source_id);
1d9efa73 1700 vtd_iommu_unlock(s);
b9313021 1701 return true;
dbaabb25
PX
1702 }
1703
fb43cf73 1704 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
37f51384 1705 &reads, &writes, s->aw_bits);
fb43cf73 1706 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1da12ec4 1707
d66b969b 1708 page_mask = vtd_slpt_level_page_mask(level);
07f7b733 1709 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
fb43cf73 1710 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
07f7b733 1711 access_flags, level);
b5a280c0 1712out:
1d9efa73 1713 vtd_iommu_unlock(s);
d66b969b 1714 entry->iova = addr & page_mask;
37f51384 1715 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
d66b969b 1716 entry->addr_mask = ~page_mask;
07f7b733 1717 entry->perm = access_flags;
b9313021
PX
1718 return true;
1719
1720error:
1d9efa73 1721 vtd_iommu_unlock(s);
b9313021
PX
1722 entry->iova = 0;
1723 entry->translated_addr = 0;
1724 entry->addr_mask = 0;
1725 entry->perm = IOMMU_NONE;
1726 return false;
1da12ec4
LT
1727}
1728
1729static void vtd_root_table_setup(IntelIOMMUState *s)
1730{
1731 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
37f51384 1732 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1da12ec4 1733
2811af3b
PX
1734 vtd_update_scalable_state(s);
1735
81fb1e64 1736 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1da12ec4
LT
1737}
1738
02a2cbc8
PX
1739static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1740 uint32_t index, uint32_t mask)
1741{
1742 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1743}
1744
a5861439
PX
1745static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1746{
1747 uint64_t value = 0;
1748 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1749 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
37f51384 1750 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
28589311 1751 s->intr_eime = value & VTD_IRTA_EIME;
a5861439 1752
02a2cbc8
PX
1753 /* Notify global invalidation */
1754 vtd_iec_notify_all(s, true, 0, 0);
a5861439 1755
7feb51b7 1756 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
a5861439
PX
1757}
1758
dd4d607e
PX
1759static void vtd_iommu_replay_all(IntelIOMMUState *s)
1760{
b4a4ba0d 1761 VTDAddressSpace *vtd_as;
dd4d607e 1762
b4a4ba0d 1763 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
63b88968 1764 vtd_sync_shadow_page_table(vtd_as);
dd4d607e
PX
1765 }
1766}
1767
d92fa2dc
LT
1768static void vtd_context_global_invalidate(IntelIOMMUState *s)
1769{
bc535e59 1770 trace_vtd_inv_desc_cc_global();
1d9efa73
PX
1771 /* Protects context cache */
1772 vtd_iommu_lock(s);
d92fa2dc
LT
1773 s->context_cache_gen++;
1774 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1d9efa73 1775 vtd_reset_context_cache_locked(s);
d92fa2dc 1776 }
1d9efa73 1777 vtd_iommu_unlock(s);
2cc9ddcc 1778 vtd_address_space_refresh_all(s);
dd4d607e
PX
1779 /*
1780 * From VT-d spec 6.5.2.1, a global context entry invalidation
1781 * should be followed by a IOTLB global invalidation, so we should
1782 * be safe even without this. Hoewever, let's replay the region as
1783 * well to be safer, and go back here when we need finer tunes for
1784 * VT-d emulation codes.
1785 */
1786 vtd_iommu_replay_all(s);
d92fa2dc
LT
1787}
1788
1789/* Do a context-cache device-selective invalidation.
1790 * @func_mask: FM field after shifting
1791 */
1792static void vtd_context_device_invalidate(IntelIOMMUState *s,
1793 uint16_t source_id,
1794 uint16_t func_mask)
1795{
1796 uint16_t mask;
7df953bd 1797 VTDBus *vtd_bus;
d92fa2dc 1798 VTDAddressSpace *vtd_as;
bc535e59 1799 uint8_t bus_n, devfn;
d92fa2dc
LT
1800 uint16_t devfn_it;
1801
bc535e59
PX
1802 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1803
d92fa2dc
LT
1804 switch (func_mask & 3) {
1805 case 0:
1806 mask = 0; /* No bits in the SID field masked */
1807 break;
1808 case 1:
1809 mask = 4; /* Mask bit 2 in the SID field */
1810 break;
1811 case 2:
1812 mask = 6; /* Mask bit 2:1 in the SID field */
1813 break;
1814 case 3:
1815 mask = 7; /* Mask bit 2:0 in the SID field */
1816 break;
1817 }
6cb99acc 1818 mask = ~mask;
bc535e59
PX
1819
1820 bus_n = VTD_SID_TO_BUS(source_id);
1821 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
7df953bd 1822 if (vtd_bus) {
d92fa2dc 1823 devfn = VTD_SID_TO_DEVFN(source_id);
bf33cc75 1824 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
7df953bd 1825 vtd_as = vtd_bus->dev_as[devfn_it];
d92fa2dc 1826 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
bc535e59
PX
1827 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1828 VTD_PCI_FUNC(devfn_it));
1d9efa73 1829 vtd_iommu_lock(s);
d92fa2dc 1830 vtd_as->context_cache_entry.context_cache_gen = 0;
1d9efa73 1831 vtd_iommu_unlock(s);
dbaabb25
PX
1832 /*
1833 * Do switch address space when needed, in case if the
1834 * device passthrough bit is switched.
1835 */
1836 vtd_switch_address_space(vtd_as);
dd4d607e
PX
1837 /*
1838 * So a device is moving out of (or moving into) a
63b88968 1839 * domain, resync the shadow page table.
dd4d607e
PX
1840 * This won't bring bad even if we have no such
1841 * notifier registered - the IOMMU notification
1842 * framework will skip MAP notifications if that
1843 * happened.
1844 */
63b88968 1845 vtd_sync_shadow_page_table(vtd_as);
d92fa2dc
LT
1846 }
1847 }
1848 }
1849}
1850
1da12ec4
LT
1851/* Context-cache invalidation
1852 * Returns the Context Actual Invalidation Granularity.
1853 * @val: the content of the CCMD_REG
1854 */
1855static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1856{
1857 uint64_t caig;
1858 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1859
1860 switch (type) {
d92fa2dc 1861 case VTD_CCMD_DOMAIN_INVL:
d92fa2dc 1862 /* Fall through */
1da12ec4 1863 case VTD_CCMD_GLOBAL_INVL:
1da12ec4 1864 caig = VTD_CCMD_GLOBAL_INVL_A;
d92fa2dc 1865 vtd_context_global_invalidate(s);
1da12ec4
LT
1866 break;
1867
1868 case VTD_CCMD_DEVICE_INVL:
1da12ec4 1869 caig = VTD_CCMD_DEVICE_INVL_A;
d92fa2dc 1870 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1da12ec4
LT
1871 break;
1872
1873 default:
1376211f
PX
1874 error_report_once("%s: invalid context: 0x%" PRIx64,
1875 __func__, val);
1da12ec4
LT
1876 caig = 0;
1877 }
1878 return caig;
1879}
1880
b5a280c0
LT
1881static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1882{
7feb51b7 1883 trace_vtd_inv_desc_iotlb_global();
b5a280c0 1884 vtd_reset_iotlb(s);
dd4d607e 1885 vtd_iommu_replay_all(s);
b5a280c0
LT
1886}
1887
1888static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1889{
dd4d607e
PX
1890 VTDContextEntry ce;
1891 VTDAddressSpace *vtd_as;
1892
7feb51b7
PX
1893 trace_vtd_inv_desc_iotlb_domain(domain_id);
1894
1d9efa73 1895 vtd_iommu_lock(s);
b5a280c0
LT
1896 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1897 &domain_id);
1d9efa73 1898 vtd_iommu_unlock(s);
dd4d607e 1899
b4a4ba0d 1900 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
dd4d607e
PX
1901 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1902 vtd_as->devfn, &ce) &&
fb43cf73 1903 domain_id == vtd_get_domain_id(s, &ce)) {
63b88968 1904 vtd_sync_shadow_page_table(vtd_as);
dd4d607e
PX
1905 }
1906 }
1907}
1908
dd4d607e
PX
1909static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1910 uint16_t domain_id, hwaddr addr,
1911 uint8_t am)
1912{
b4a4ba0d 1913 VTDAddressSpace *vtd_as;
dd4d607e
PX
1914 VTDContextEntry ce;
1915 int ret;
4f8a62a9 1916 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
dd4d607e 1917
b4a4ba0d 1918 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
dd4d607e
PX
1919 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1920 vtd_as->devfn, &ce);
fb43cf73 1921 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
4f8a62a9
PX
1922 if (vtd_as_has_map_notifier(vtd_as)) {
1923 /*
1924 * As long as we have MAP notifications registered in
1925 * any of our IOMMU notifiers, we need to sync the
1926 * shadow page table.
1927 */
63b88968 1928 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
4f8a62a9
PX
1929 } else {
1930 /*
1931 * For UNMAP-only notifiers, we don't need to walk the
1932 * page tables. We just deliver the PSI down to
1933 * invalidate caches.
1934 */
1935 IOMMUTLBEntry entry = {
1936 .target_as = &address_space_memory,
1937 .iova = addr,
1938 .translated_addr = 0,
1939 .addr_mask = size - 1,
1940 .perm = IOMMU_NONE,
1941 };
cb1efcf4 1942 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
4f8a62a9 1943 }
dd4d607e
PX
1944 }
1945 }
b5a280c0
LT
1946}
1947
1948static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1949 hwaddr addr, uint8_t am)
1950{
1951 VTDIOTLBPageInvInfo info;
1952
7feb51b7
PX
1953 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1954
b5a280c0
LT
1955 assert(am <= VTD_MAMV);
1956 info.domain_id = domain_id;
d66b969b 1957 info.addr = addr;
b5a280c0 1958 info.mask = ~((1 << am) - 1);
1d9efa73 1959 vtd_iommu_lock(s);
b5a280c0 1960 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1d9efa73 1961 vtd_iommu_unlock(s);
dd4d607e 1962 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
b5a280c0
LT
1963}
1964
1da12ec4
LT
1965/* Flush IOTLB
1966 * Returns the IOTLB Actual Invalidation Granularity.
1967 * @val: the content of the IOTLB_REG
1968 */
1969static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1970{
1971 uint64_t iaig;
1972 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
b5a280c0
LT
1973 uint16_t domain_id;
1974 hwaddr addr;
1975 uint8_t am;
1da12ec4
LT
1976
1977 switch (type) {
1978 case VTD_TLB_GLOBAL_FLUSH:
1da12ec4 1979 iaig = VTD_TLB_GLOBAL_FLUSH_A;
b5a280c0 1980 vtd_iotlb_global_invalidate(s);
1da12ec4
LT
1981 break;
1982
1983 case VTD_TLB_DSI_FLUSH:
b5a280c0 1984 domain_id = VTD_TLB_DID(val);
1da12ec4 1985 iaig = VTD_TLB_DSI_FLUSH_A;
b5a280c0 1986 vtd_iotlb_domain_invalidate(s, domain_id);
1da12ec4
LT
1987 break;
1988
1989 case VTD_TLB_PSI_FLUSH:
b5a280c0
LT
1990 domain_id = VTD_TLB_DID(val);
1991 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1992 am = VTD_IVA_AM(addr);
1993 addr = VTD_IVA_ADDR(addr);
b5a280c0 1994 if (am > VTD_MAMV) {
1376211f
PX
1995 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1996 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
b5a280c0
LT
1997 iaig = 0;
1998 break;
1999 }
1da12ec4 2000 iaig = VTD_TLB_PSI_FLUSH_A;
b5a280c0 2001 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1da12ec4
LT
2002 break;
2003
2004 default:
1376211f
PX
2005 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2006 __func__, val);
1da12ec4
LT
2007 iaig = 0;
2008 }
2009 return iaig;
2010}
2011
8991c460 2012static void vtd_fetch_inv_desc(IntelIOMMUState *s);
ed7b8fbc
LT
2013
2014static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2015{
2016 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2017 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2018}
2019
2020static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2021{
2022 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2023
7feb51b7
PX
2024 trace_vtd_inv_qi_enable(en);
2025
ed7b8fbc 2026 if (en) {
37f51384 2027 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
8991c460 2028 /* 2^(x+8) entries */
c0c1d351 2029 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
8991c460
LP
2030 s->qi_enabled = true;
2031 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2032 /* Ok - report back to driver */
2033 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2034
2035 if (s->iq_tail != 0) {
2036 /*
2037 * This is a spec violation but Windows guests are known to set up
2038 * Queued Invalidation this way so we allow the write and process
2039 * Invalidation Descriptors right away.
2040 */
2041 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2042 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2043 vtd_fetch_inv_desc(s);
2044 }
ed7b8fbc
LT
2045 }
2046 } else {
2047 if (vtd_queued_inv_disable_check(s)) {
2048 /* disable Queued Invalidation */
2049 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2050 s->iq_head = 0;
2051 s->qi_enabled = false;
2052 /* Ok - report back to driver */
2053 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2054 } else {
4e4abd11
PX
2055 error_report_once("%s: detected improper state when disable QI "
2056 "(head=0x%x, tail=0x%x, last_type=%d)",
2057 __func__,
2058 s->iq_head, s->iq_tail, s->iq_last_desc_type);
ed7b8fbc
LT
2059 }
2060 }
2061}
2062
1da12ec4
LT
2063/* Set Root Table Pointer */
2064static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2065{
1da12ec4
LT
2066 vtd_root_table_setup(s);
2067 /* Ok - report back to driver */
2068 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2cc9ddcc
PX
2069 vtd_reset_caches(s);
2070 vtd_address_space_refresh_all(s);
1da12ec4
LT
2071}
2072
a5861439
PX
2073/* Set Interrupt Remap Table Pointer */
2074static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2075{
a5861439
PX
2076 vtd_interrupt_remap_table_setup(s);
2077 /* Ok - report back to driver */
2078 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2079}
2080
1da12ec4
LT
2081/* Handle Translation Enable/Disable */
2082static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2083{
558e0024
PX
2084 if (s->dmar_enabled == en) {
2085 return;
2086 }
2087
7feb51b7 2088 trace_vtd_dmar_enable(en);
1da12ec4
LT
2089
2090 if (en) {
2091 s->dmar_enabled = true;
2092 /* Ok - report back to driver */
2093 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2094 } else {
2095 s->dmar_enabled = false;
2096
2097 /* Clear the index of Fault Recording Register */
2098 s->next_frcd_reg = 0;
2099 /* Ok - report back to driver */
2100 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2101 }
558e0024 2102
2cc9ddcc
PX
2103 vtd_reset_caches(s);
2104 vtd_address_space_refresh_all(s);
1da12ec4
LT
2105}
2106
80de52ba
PX
2107/* Handle Interrupt Remap Enable/Disable */
2108static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2109{
7feb51b7 2110 trace_vtd_ir_enable(en);
80de52ba
PX
2111
2112 if (en) {
2113 s->intr_enabled = true;
2114 /* Ok - report back to driver */
2115 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2116 } else {
2117 s->intr_enabled = false;
2118 /* Ok - report back to driver */
2119 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2120 }
2121}
2122
1da12ec4
LT
2123/* Handle write to Global Command Register */
2124static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2125{
2126 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2127 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2128 uint32_t changed = status ^ val;
2129
7feb51b7 2130 trace_vtd_reg_write_gcmd(status, val);
1da12ec4
LT
2131 if (changed & VTD_GCMD_TE) {
2132 /* Translation enable/disable */
2133 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2134 }
2135 if (val & VTD_GCMD_SRTP) {
2136 /* Set/update the root-table pointer */
2137 vtd_handle_gcmd_srtp(s);
2138 }
ed7b8fbc
LT
2139 if (changed & VTD_GCMD_QIE) {
2140 /* Queued Invalidation Enable */
2141 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2142 }
a5861439
PX
2143 if (val & VTD_GCMD_SIRTP) {
2144 /* Set/update the interrupt remapping root-table pointer */
2145 vtd_handle_gcmd_sirtp(s);
2146 }
80de52ba
PX
2147 if (changed & VTD_GCMD_IRE) {
2148 /* Interrupt remap enable/disable */
2149 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2150 }
1da12ec4
LT
2151}
2152
2153/* Handle write to Context Command Register */
2154static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2155{
2156 uint64_t ret;
2157 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2158
2159 /* Context-cache invalidation request */
2160 if (val & VTD_CCMD_ICC) {
ed7b8fbc 2161 if (s->qi_enabled) {
1376211f
PX
2162 error_report_once("Queued Invalidation enabled, "
2163 "should not use register-based invalidation");
ed7b8fbc
LT
2164 return;
2165 }
1da12ec4
LT
2166 ret = vtd_context_cache_invalidate(s, val);
2167 /* Invalidation completed. Change something to show */
2168 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2169 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2170 ret);
1da12ec4
LT
2171 }
2172}
2173
2174/* Handle write to IOTLB Invalidation Register */
2175static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2176{
2177 uint64_t ret;
2178 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2179
2180 /* IOTLB invalidation request */
2181 if (val & VTD_TLB_IVT) {
ed7b8fbc 2182 if (s->qi_enabled) {
1376211f
PX
2183 error_report_once("Queued Invalidation enabled, "
2184 "should not use register-based invalidation");
ed7b8fbc
LT
2185 return;
2186 }
1da12ec4
LT
2187 ret = vtd_iotlb_flush(s, val);
2188 /* Invalidation completed. Change something to show */
2189 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2190 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2191 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1da12ec4
LT
2192 }
2193}
2194
ed7b8fbc 2195/* Fetch an Invalidation Descriptor from the Invalidation Queue */
c0c1d351 2196static bool vtd_get_inv_desc(IntelIOMMUState *s,
ed7b8fbc
LT
2197 VTDInvDesc *inv_desc)
2198{
c0c1d351
LY
2199 dma_addr_t base_addr = s->iq;
2200 uint32_t offset = s->iq_head;
2201 uint32_t dw = s->iq_dw ? 32 : 16;
2202 dma_addr_t addr = base_addr + offset * dw;
2203
2204 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2205 error_report_once("Read INV DESC failed.");
ed7b8fbc
LT
2206 return false;
2207 }
2208 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2209 inv_desc->hi = le64_to_cpu(inv_desc->hi);
c0c1d351
LY
2210 if (dw == 32) {
2211 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2212 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2213 }
ed7b8fbc
LT
2214 return true;
2215}
2216
2217static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2218{
2219 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2220 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
095955b2
PX
2221 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2222 " (reserved nonzero)", __func__, inv_desc->hi,
2223 inv_desc->lo);
ed7b8fbc
LT
2224 return false;
2225 }
2226 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2227 /* Status Write */
2228 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2229 VTD_INV_DESC_WAIT_DATA_SHIFT);
2230
2231 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2232
2233 /* FIXME: need to be masked with HAW? */
2234 dma_addr_t status_addr = inv_desc->hi;
bc535e59 2235 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
ed7b8fbc
LT
2236 status_data = cpu_to_le32(status_data);
2237 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2238 sizeof(status_data))) {
bc535e59 2239 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
ed7b8fbc
LT
2240 return false;
2241 }
2242 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2243 /* Interrupt flag */
ed7b8fbc
LT
2244 vtd_generate_completion_event(s);
2245 } else {
095955b2
PX
2246 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2247 " (unknown type)", __func__, inv_desc->hi,
2248 inv_desc->lo);
ed7b8fbc
LT
2249 return false;
2250 }
2251 return true;
2252}
2253
d92fa2dc
LT
2254static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2255 VTDInvDesc *inv_desc)
2256{
bc535e59
PX
2257 uint16_t sid, fmask;
2258
d92fa2dc 2259 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
095955b2
PX
2260 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2261 " (reserved nonzero)", __func__, inv_desc->hi,
2262 inv_desc->lo);
d92fa2dc
LT
2263 return false;
2264 }
2265 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2266 case VTD_INV_DESC_CC_DOMAIN:
bc535e59
PX
2267 trace_vtd_inv_desc_cc_domain(
2268 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
d92fa2dc
LT
2269 /* Fall through */
2270 case VTD_INV_DESC_CC_GLOBAL:
d92fa2dc
LT
2271 vtd_context_global_invalidate(s);
2272 break;
2273
2274 case VTD_INV_DESC_CC_DEVICE:
bc535e59
PX
2275 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2276 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2277 vtd_context_device_invalidate(s, sid, fmask);
d92fa2dc
LT
2278 break;
2279
2280 default:
095955b2
PX
2281 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2282 " (invalid type)", __func__, inv_desc->hi,
2283 inv_desc->lo);
d92fa2dc
LT
2284 return false;
2285 }
2286 return true;
2287}
2288
b5a280c0
LT
2289static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2290{
2291 uint16_t domain_id;
2292 uint8_t am;
2293 hwaddr addr;
2294
2295 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2296 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
095955b2
PX
2297 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2298 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2299 __func__, inv_desc->hi, inv_desc->lo);
b5a280c0
LT
2300 return false;
2301 }
2302
2303 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2304 case VTD_INV_DESC_IOTLB_GLOBAL:
b5a280c0
LT
2305 vtd_iotlb_global_invalidate(s);
2306 break;
2307
2308 case VTD_INV_DESC_IOTLB_DOMAIN:
2309 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
b5a280c0
LT
2310 vtd_iotlb_domain_invalidate(s, domain_id);
2311 break;
2312
2313 case VTD_INV_DESC_IOTLB_PAGE:
2314 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2315 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2316 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
b5a280c0 2317 if (am > VTD_MAMV) {
095955b2
PX
2318 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2319 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2320 __func__, inv_desc->hi, inv_desc->lo,
2321 am, (unsigned)VTD_MAMV);
b5a280c0
LT
2322 return false;
2323 }
2324 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2325 break;
2326
2327 default:
095955b2
PX
2328 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2329 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2330 __func__, inv_desc->hi, inv_desc->lo,
2331 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
b5a280c0
LT
2332 return false;
2333 }
2334 return true;
2335}
2336
02a2cbc8
PX
2337static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2338 VTDInvDesc *inv_desc)
2339{
7feb51b7
PX
2340 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2341 inv_desc->iec.index,
2342 inv_desc->iec.index_mask);
02a2cbc8
PX
2343
2344 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2345 inv_desc->iec.index,
2346 inv_desc->iec.index_mask);
554f5e16
JW
2347 return true;
2348}
2349
2350static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2351 VTDInvDesc *inv_desc)
2352{
2353 VTDAddressSpace *vtd_dev_as;
2354 IOMMUTLBEntry entry;
2355 struct VTDBus *vtd_bus;
2356 hwaddr addr;
2357 uint64_t sz;
2358 uint16_t sid;
2359 uint8_t devfn;
2360 bool size;
2361 uint8_t bus_num;
2362
2363 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2364 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2365 devfn = sid & 0xff;
2366 bus_num = sid >> 8;
2367 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2368
2369 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2370 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
095955b2
PX
2371 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2372 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2373 inv_desc->hi, inv_desc->lo);
554f5e16
JW
2374 return false;
2375 }
2376
2377 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2378 if (!vtd_bus) {
2379 goto done;
2380 }
2381
2382 vtd_dev_as = vtd_bus->dev_as[devfn];
2383 if (!vtd_dev_as) {
2384 goto done;
2385 }
2386
04eb6247
JW
2387 /* According to ATS spec table 2.4:
2388 * S = 0, bits 15:12 = xxxx range size: 4K
2389 * S = 1, bits 15:12 = xxx0 range size: 8K
2390 * S = 1, bits 15:12 = xx01 range size: 16K
2391 * S = 1, bits 15:12 = x011 range size: 32K
2392 * S = 1, bits 15:12 = 0111 range size: 64K
2393 * ...
2394 */
554f5e16 2395 if (size) {
04eb6247 2396 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
554f5e16
JW
2397 addr &= ~(sz - 1);
2398 } else {
2399 sz = VTD_PAGE_SIZE;
2400 }
02a2cbc8 2401
554f5e16
JW
2402 entry.target_as = &vtd_dev_as->as;
2403 entry.addr_mask = sz - 1;
2404 entry.iova = addr;
2405 entry.perm = IOMMU_NONE;
2406 entry.translated_addr = 0;
cb1efcf4 2407 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
554f5e16
JW
2408
2409done:
02a2cbc8
PX
2410 return true;
2411}
2412
ed7b8fbc
LT
2413static bool vtd_process_inv_desc(IntelIOMMUState *s)
2414{
2415 VTDInvDesc inv_desc;
2416 uint8_t desc_type;
2417
7feb51b7 2418 trace_vtd_inv_qi_head(s->iq_head);
c0c1d351 2419 if (!vtd_get_inv_desc(s, &inv_desc)) {
ed7b8fbc
LT
2420 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2421 return false;
2422 }
c0c1d351 2423
ed7b8fbc
LT
2424 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2425 /* FIXME: should update at first or at last? */
2426 s->iq_last_desc_type = desc_type;
2427
2428 switch (desc_type) {
2429 case VTD_INV_DESC_CC:
bc535e59 2430 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
d92fa2dc
LT
2431 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2432 return false;
2433 }
ed7b8fbc
LT
2434 break;
2435
2436 case VTD_INV_DESC_IOTLB:
bc535e59 2437 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
b5a280c0
LT
2438 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2439 return false;
2440 }
ed7b8fbc
LT
2441 break;
2442
4a4f219e
YS
2443 /*
2444 * TODO: the entity of below two cases will be implemented in future series.
2445 * To make guest (which integrates scalable mode support patch set in
2446 * iommu driver) work, just return true is enough so far.
2447 */
2448 case VTD_INV_DESC_PC:
2449 break;
2450
2451 case VTD_INV_DESC_PIOTLB:
2452 break;
2453
ed7b8fbc 2454 case VTD_INV_DESC_WAIT:
bc535e59 2455 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
ed7b8fbc
LT
2456 if (!vtd_process_wait_desc(s, &inv_desc)) {
2457 return false;
2458 }
2459 break;
2460
b7910472 2461 case VTD_INV_DESC_IEC:
bc535e59 2462 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
02a2cbc8
PX
2463 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2464 return false;
2465 }
b7910472
PX
2466 break;
2467
554f5e16 2468 case VTD_INV_DESC_DEVICE:
7feb51b7 2469 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
554f5e16
JW
2470 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2471 return false;
2472 }
2473 break;
2474
ed7b8fbc 2475 default:
095955b2
PX
2476 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2477 " (unknown type)", __func__, inv_desc.hi,
2478 inv_desc.lo);
ed7b8fbc
LT
2479 return false;
2480 }
2481 s->iq_head++;
2482 if (s->iq_head == s->iq_size) {
2483 s->iq_head = 0;
2484 }
2485 return true;
2486}
2487
2488/* Try to fetch and process more Invalidation Descriptors */
2489static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2490{
7feb51b7
PX
2491 trace_vtd_inv_qi_fetch();
2492
ed7b8fbc
LT
2493 if (s->iq_tail >= s->iq_size) {
2494 /* Detects an invalid Tail pointer */
4e4abd11
PX
2495 error_report_once("%s: detected invalid QI tail "
2496 "(tail=0x%x, size=0x%x)",
2497 __func__, s->iq_tail, s->iq_size);
ed7b8fbc
LT
2498 vtd_handle_inv_queue_error(s);
2499 return;
2500 }
2501 while (s->iq_head != s->iq_tail) {
2502 if (!vtd_process_inv_desc(s)) {
2503 /* Invalidation Queue Errors */
2504 vtd_handle_inv_queue_error(s);
2505 break;
2506 }
2507 /* Must update the IQH_REG in time */
2508 vtd_set_quad_raw(s, DMAR_IQH_REG,
2509 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2510 VTD_IQH_QH_MASK);
2511 }
2512}
2513
2514/* Handle write to Invalidation Queue Tail Register */
2515static void vtd_handle_iqt_write(IntelIOMMUState *s)
2516{
2517 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2518
c0c1d351
LY
2519 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2520 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2521 __func__, val);
2522 return;
2523 }
2524 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
7feb51b7
PX
2525 trace_vtd_inv_qi_tail(s->iq_tail);
2526
ed7b8fbc
LT
2527 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2528 /* Process Invalidation Queue here */
2529 vtd_fetch_inv_desc(s);
2530 }
2531}
2532
1da12ec4
LT
2533static void vtd_handle_fsts_write(IntelIOMMUState *s)
2534{
2535 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2536 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2537 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2538
2539 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2540 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
7feb51b7 2541 trace_vtd_fsts_clear_ip();
1da12ec4 2542 }
ed7b8fbc
LT
2543 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2544 * Descriptors if there are any when Queued Invalidation is enabled?
2545 */
1da12ec4
LT
2546}
2547
2548static void vtd_handle_fectl_write(IntelIOMMUState *s)
2549{
2550 uint32_t fectl_reg;
2551 /* FIXME: when software clears the IM field, check the IP field. But do we
2552 * need to compare the old value and the new value to conclude that
2553 * software clears the IM field? Or just check if the IM field is zero?
2554 */
2555 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
7feb51b7
PX
2556
2557 trace_vtd_reg_write_fectl(fectl_reg);
2558
1da12ec4
LT
2559 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2560 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2561 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1da12ec4
LT
2562 }
2563}
2564
ed7b8fbc
LT
2565static void vtd_handle_ics_write(IntelIOMMUState *s)
2566{
2567 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2568 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2569
2570 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
7feb51b7 2571 trace_vtd_reg_ics_clear_ip();
ed7b8fbc 2572 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
ed7b8fbc
LT
2573 }
2574}
2575
2576static void vtd_handle_iectl_write(IntelIOMMUState *s)
2577{
2578 uint32_t iectl_reg;
2579 /* FIXME: when software clears the IM field, check the IP field. But do we
2580 * need to compare the old value and the new value to conclude that
2581 * software clears the IM field? Or just check if the IM field is zero?
2582 */
2583 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
7feb51b7
PX
2584
2585 trace_vtd_reg_write_iectl(iectl_reg);
2586
ed7b8fbc
LT
2587 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2588 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2589 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
ed7b8fbc
LT
2590 }
2591}
2592
1da12ec4
LT
2593static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2594{
2595 IntelIOMMUState *s = opaque;
2596 uint64_t val;
2597
7feb51b7
PX
2598 trace_vtd_reg_read(addr, size);
2599
1da12ec4 2600 if (addr + size > DMAR_REG_SIZE) {
1376211f
PX
2601 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2602 " size=0x%u", __func__, addr, size);
1da12ec4
LT
2603 return (uint64_t)-1;
2604 }
2605
2606 switch (addr) {
2607 /* Root Table Address Register, 64-bit */
2608 case DMAR_RTADDR_REG:
2609 if (size == 4) {
2610 val = s->root & ((1ULL << 32) - 1);
2611 } else {
2612 val = s->root;
2613 }
2614 break;
2615
2616 case DMAR_RTADDR_REG_HI:
2617 assert(size == 4);
2618 val = s->root >> 32;
2619 break;
2620
ed7b8fbc
LT
2621 /* Invalidation Queue Address Register, 64-bit */
2622 case DMAR_IQA_REG:
2623 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2624 if (size == 4) {
2625 val = val & ((1ULL << 32) - 1);
2626 }
2627 break;
2628
2629 case DMAR_IQA_REG_HI:
2630 assert(size == 4);
2631 val = s->iq >> 32;
2632 break;
2633
1da12ec4
LT
2634 default:
2635 if (size == 4) {
2636 val = vtd_get_long(s, addr);
2637 } else {
2638 val = vtd_get_quad(s, addr);
2639 }
2640 }
7feb51b7 2641
1da12ec4
LT
2642 return val;
2643}
2644
2645static void vtd_mem_write(void *opaque, hwaddr addr,
2646 uint64_t val, unsigned size)
2647{
2648 IntelIOMMUState *s = opaque;
2649
7feb51b7
PX
2650 trace_vtd_reg_write(addr, size, val);
2651
1da12ec4 2652 if (addr + size > DMAR_REG_SIZE) {
1376211f
PX
2653 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2654 " size=0x%u", __func__, addr, size);
1da12ec4
LT
2655 return;
2656 }
2657
2658 switch (addr) {
2659 /* Global Command Register, 32-bit */
2660 case DMAR_GCMD_REG:
1da12ec4
LT
2661 vtd_set_long(s, addr, val);
2662 vtd_handle_gcmd_write(s);
2663 break;
2664
2665 /* Context Command Register, 64-bit */
2666 case DMAR_CCMD_REG:
1da12ec4
LT
2667 if (size == 4) {
2668 vtd_set_long(s, addr, val);
2669 } else {
2670 vtd_set_quad(s, addr, val);
2671 vtd_handle_ccmd_write(s);
2672 }
2673 break;
2674
2675 case DMAR_CCMD_REG_HI:
1da12ec4
LT
2676 assert(size == 4);
2677 vtd_set_long(s, addr, val);
2678 vtd_handle_ccmd_write(s);
2679 break;
2680
2681 /* IOTLB Invalidation Register, 64-bit */
2682 case DMAR_IOTLB_REG:
1da12ec4
LT
2683 if (size == 4) {
2684 vtd_set_long(s, addr, val);
2685 } else {
2686 vtd_set_quad(s, addr, val);
2687 vtd_handle_iotlb_write(s);
2688 }
2689 break;
2690
2691 case DMAR_IOTLB_REG_HI:
1da12ec4
LT
2692 assert(size == 4);
2693 vtd_set_long(s, addr, val);
2694 vtd_handle_iotlb_write(s);
2695 break;
2696
b5a280c0
LT
2697 /* Invalidate Address Register, 64-bit */
2698 case DMAR_IVA_REG:
b5a280c0
LT
2699 if (size == 4) {
2700 vtd_set_long(s, addr, val);
2701 } else {
2702 vtd_set_quad(s, addr, val);
2703 }
2704 break;
2705
2706 case DMAR_IVA_REG_HI:
b5a280c0
LT
2707 assert(size == 4);
2708 vtd_set_long(s, addr, val);
2709 break;
2710
1da12ec4
LT
2711 /* Fault Status Register, 32-bit */
2712 case DMAR_FSTS_REG:
1da12ec4
LT
2713 assert(size == 4);
2714 vtd_set_long(s, addr, val);
2715 vtd_handle_fsts_write(s);
2716 break;
2717
2718 /* Fault Event Control Register, 32-bit */
2719 case DMAR_FECTL_REG:
1da12ec4
LT
2720 assert(size == 4);
2721 vtd_set_long(s, addr, val);
2722 vtd_handle_fectl_write(s);
2723 break;
2724
2725 /* Fault Event Data Register, 32-bit */
2726 case DMAR_FEDATA_REG:
1da12ec4
LT
2727 assert(size == 4);
2728 vtd_set_long(s, addr, val);
2729 break;
2730
2731 /* Fault Event Address Register, 32-bit */
2732 case DMAR_FEADDR_REG:
b7a7bb35
JK
2733 if (size == 4) {
2734 vtd_set_long(s, addr, val);
2735 } else {
2736 /*
2737 * While the register is 32-bit only, some guests (Xen...) write to
2738 * it with 64-bit.
2739 */
2740 vtd_set_quad(s, addr, val);
2741 }
1da12ec4
LT
2742 break;
2743
2744 /* Fault Event Upper Address Register, 32-bit */
2745 case DMAR_FEUADDR_REG:
1da12ec4
LT
2746 assert(size == 4);
2747 vtd_set_long(s, addr, val);
2748 break;
2749
2750 /* Protected Memory Enable Register, 32-bit */
2751 case DMAR_PMEN_REG:
1da12ec4
LT
2752 assert(size == 4);
2753 vtd_set_long(s, addr, val);
2754 break;
2755
2756 /* Root Table Address Register, 64-bit */
2757 case DMAR_RTADDR_REG:
1da12ec4
LT
2758 if (size == 4) {
2759 vtd_set_long(s, addr, val);
2760 } else {
2761 vtd_set_quad(s, addr, val);
2762 }
2763 break;
2764
2765 case DMAR_RTADDR_REG_HI:
1da12ec4
LT
2766 assert(size == 4);
2767 vtd_set_long(s, addr, val);
2768 break;
2769
ed7b8fbc
LT
2770 /* Invalidation Queue Tail Register, 64-bit */
2771 case DMAR_IQT_REG:
ed7b8fbc
LT
2772 if (size == 4) {
2773 vtd_set_long(s, addr, val);
2774 } else {
2775 vtd_set_quad(s, addr, val);
2776 }
2777 vtd_handle_iqt_write(s);
2778 break;
2779
2780 case DMAR_IQT_REG_HI:
ed7b8fbc
LT
2781 assert(size == 4);
2782 vtd_set_long(s, addr, val);
2783 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2784 break;
2785
2786 /* Invalidation Queue Address Register, 64-bit */
2787 case DMAR_IQA_REG:
ed7b8fbc
LT
2788 if (size == 4) {
2789 vtd_set_long(s, addr, val);
2790 } else {
2791 vtd_set_quad(s, addr, val);
2792 }
c0c1d351
LY
2793 if (s->ecap & VTD_ECAP_SMTS &&
2794 val & VTD_IQA_DW_MASK) {
2795 s->iq_dw = true;
2796 } else {
2797 s->iq_dw = false;
2798 }
ed7b8fbc
LT
2799 break;
2800
2801 case DMAR_IQA_REG_HI:
ed7b8fbc
LT
2802 assert(size == 4);
2803 vtd_set_long(s, addr, val);
2804 break;
2805
2806 /* Invalidation Completion Status Register, 32-bit */
2807 case DMAR_ICS_REG:
ed7b8fbc
LT
2808 assert(size == 4);
2809 vtd_set_long(s, addr, val);
2810 vtd_handle_ics_write(s);
2811 break;
2812
2813 /* Invalidation Event Control Register, 32-bit */
2814 case DMAR_IECTL_REG:
ed7b8fbc
LT
2815 assert(size == 4);
2816 vtd_set_long(s, addr, val);
2817 vtd_handle_iectl_write(s);
2818 break;
2819
2820 /* Invalidation Event Data Register, 32-bit */
2821 case DMAR_IEDATA_REG:
ed7b8fbc
LT
2822 assert(size == 4);
2823 vtd_set_long(s, addr, val);
2824 break;
2825
2826 /* Invalidation Event Address Register, 32-bit */
2827 case DMAR_IEADDR_REG:
ed7b8fbc
LT
2828 assert(size == 4);
2829 vtd_set_long(s, addr, val);
2830 break;
2831
2832 /* Invalidation Event Upper Address Register, 32-bit */
2833 case DMAR_IEUADDR_REG:
ed7b8fbc
LT
2834 assert(size == 4);
2835 vtd_set_long(s, addr, val);
2836 break;
2837
1da12ec4
LT
2838 /* Fault Recording Registers, 128-bit */
2839 case DMAR_FRCD_REG_0_0:
1da12ec4
LT
2840 if (size == 4) {
2841 vtd_set_long(s, addr, val);
2842 } else {
2843 vtd_set_quad(s, addr, val);
2844 }
2845 break;
2846
2847 case DMAR_FRCD_REG_0_1:
1da12ec4
LT
2848 assert(size == 4);
2849 vtd_set_long(s, addr, val);
2850 break;
2851
2852 case DMAR_FRCD_REG_0_2:
1da12ec4
LT
2853 if (size == 4) {
2854 vtd_set_long(s, addr, val);
2855 } else {
2856 vtd_set_quad(s, addr, val);
2857 /* May clear bit 127 (Fault), update PPF */
2858 vtd_update_fsts_ppf(s);
2859 }
2860 break;
2861
2862 case DMAR_FRCD_REG_0_3:
1da12ec4
LT
2863 assert(size == 4);
2864 vtd_set_long(s, addr, val);
2865 /* May clear bit 127 (Fault), update PPF */
2866 vtd_update_fsts_ppf(s);
2867 break;
2868
a5861439 2869 case DMAR_IRTA_REG:
a5861439
PX
2870 if (size == 4) {
2871 vtd_set_long(s, addr, val);
2872 } else {
2873 vtd_set_quad(s, addr, val);
2874 }
2875 break;
2876
2877 case DMAR_IRTA_REG_HI:
a5861439
PX
2878 assert(size == 4);
2879 vtd_set_long(s, addr, val);
2880 break;
2881
1da12ec4 2882 default:
1da12ec4
LT
2883 if (size == 4) {
2884 vtd_set_long(s, addr, val);
2885 } else {
2886 vtd_set_quad(s, addr, val);
2887 }
2888 }
2889}
2890
3df9d748 2891static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2c91bcf2 2892 IOMMUAccessFlags flag, int iommu_idx)
1da12ec4
LT
2893{
2894 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2895 IntelIOMMUState *s = vtd_as->iommu_state;
b9313021
PX
2896 IOMMUTLBEntry iotlb = {
2897 /* We'll fill in the rest later. */
1da12ec4 2898 .target_as = &address_space_memory,
1da12ec4 2899 };
b9313021 2900 bool success;
1da12ec4 2901
b9313021
PX
2902 if (likely(s->dmar_enabled)) {
2903 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2904 addr, flag & IOMMU_WO, &iotlb);
2905 } else {
1da12ec4 2906 /* DMAR disabled, passthrough, use 4k-page*/
b9313021
PX
2907 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2908 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2909 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2910 iotlb.perm = IOMMU_RW;
2911 success = true;
1da12ec4
LT
2912 }
2913
b9313021
PX
2914 if (likely(success)) {
2915 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2916 VTD_PCI_SLOT(vtd_as->devfn),
2917 VTD_PCI_FUNC(vtd_as->devfn),
2918 iotlb.iova, iotlb.translated_addr,
2919 iotlb.addr_mask);
2920 } else {
4e4abd11
PX
2921 error_report_once("%s: detected translation failure "
2922 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2923 __func__, pci_bus_num(vtd_as->bus),
2924 VTD_PCI_SLOT(vtd_as->devfn),
2925 VTD_PCI_FUNC(vtd_as->devfn),
662b4b69 2926 addr);
b9313021 2927 }
7feb51b7 2928
b9313021 2929 return iotlb;
1da12ec4
LT
2930}
2931
549d4005
EA
2932static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2933 IOMMUNotifierFlag old,
2934 IOMMUNotifierFlag new,
2935 Error **errp)
3cb3b154
AW
2936{
2937 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
dd4d607e 2938 IntelIOMMUState *s = vtd_as->iommu_state;
3cb3b154 2939
4f8a62a9
PX
2940 /* Update per-address-space notifier flags */
2941 vtd_as->notifier_flags = new;
2942
dd4d607e 2943 if (old == IOMMU_NOTIFIER_NONE) {
b4a4ba0d
PX
2944 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2945 } else if (new == IOMMU_NOTIFIER_NONE) {
2946 QLIST_REMOVE(vtd_as, next);
dd4d607e 2947 }
549d4005 2948 return 0;
3cb3b154
AW
2949}
2950
552a1e01
PX
2951static int vtd_post_load(void *opaque, int version_id)
2952{
2953 IntelIOMMUState *iommu = opaque;
2954
2955 /*
2956 * Memory regions are dynamically turned on/off depending on
2957 * context entry configurations from the guest. After migration,
2958 * we need to make sure the memory regions are still correct.
2959 */
2960 vtd_switch_address_space_all(iommu);
2961
2811af3b
PX
2962 /*
2963 * We don't need to migrate the root_scalable because we can
2964 * simply do the calculation after the loading is complete. We
2965 * can actually do similar things with root, dmar_enabled, etc.
2966 * however since we've had them already so we'd better keep them
2967 * for compatibility of migration.
2968 */
2969 vtd_update_scalable_state(iommu);
2970
552a1e01
PX
2971 return 0;
2972}
2973
1da12ec4
LT
2974static const VMStateDescription vtd_vmstate = {
2975 .name = "iommu-intel",
8cdcf3c1
PX
2976 .version_id = 1,
2977 .minimum_version_id = 1,
2978 .priority = MIG_PRI_IOMMU,
552a1e01 2979 .post_load = vtd_post_load,
8cdcf3c1
PX
2980 .fields = (VMStateField[]) {
2981 VMSTATE_UINT64(root, IntelIOMMUState),
2982 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2983 VMSTATE_UINT64(iq, IntelIOMMUState),
2984 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2985 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2986 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2987 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2988 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2989 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2990 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
81fb1e64 2991 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
8cdcf3c1
PX
2992 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2993 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2994 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2995 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2996 VMSTATE_END_OF_LIST()
2997 }
1da12ec4
LT
2998};
2999
3000static const MemoryRegionOps vtd_mem_ops = {
3001 .read = vtd_mem_read,
3002 .write = vtd_mem_write,
3003 .endianness = DEVICE_LITTLE_ENDIAN,
3004 .impl = {
3005 .min_access_size = 4,
3006 .max_access_size = 8,
3007 },
3008 .valid = {
3009 .min_access_size = 4,
3010 .max_access_size = 8,
3011 },
3012};
3013
3014static Property vtd_properties[] = {
3015 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
e6b6af05
RK
3016 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3017 ON_OFF_AUTO_AUTO),
fb506e70 3018 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
4b49b586 3019 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
37f51384 3020 VTD_HOST_ADDRESS_WIDTH),
3b40f0e5 3021 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
4a4f219e 3022 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
ccc23bb0 3023 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
1da12ec4
LT
3024 DEFINE_PROP_END_OF_LIST(),
3025};
3026
651e4cef
PX
3027/* Read IRTE entry with specific index */
3028static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
bc38ee10 3029 VTD_IR_TableEntry *entry, uint16_t sid)
651e4cef 3030{
ede9c94a
PX
3031 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3032 {0xffff, 0xfffb, 0xfff9, 0xfff8};
651e4cef 3033 dma_addr_t addr = 0x00;
ede9c94a
PX
3034 uint16_t mask, source_id;
3035 uint8_t bus, bus_max, bus_min;
651e4cef
PX
3036
3037 addr = iommu->intr_root + index * sizeof(*entry);
3038 if (dma_memory_read(&address_space_memory, addr, entry,
3039 sizeof(*entry))) {
1376211f
PX
3040 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3041 __func__, index, addr);
651e4cef
PX
3042 return -VTD_FR_IR_ROOT_INVAL;
3043 }
3044
7feb51b7
PX
3045 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3046 le64_to_cpu(entry->data[0]));
3047
bc38ee10 3048 if (!entry->irte.present) {
4e4abd11
PX
3049 error_report_once("%s: detected non-present IRTE "
3050 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3051 __func__, index, le64_to_cpu(entry->data[1]),
3052 le64_to_cpu(entry->data[0]));
651e4cef
PX
3053 return -VTD_FR_IR_ENTRY_P;
3054 }
3055
bc38ee10
MT
3056 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3057 entry->irte.__reserved_2) {
4e4abd11
PX
3058 error_report_once("%s: detected non-zero reserved IRTE "
3059 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3060 __func__, index, le64_to_cpu(entry->data[1]),
3061 le64_to_cpu(entry->data[0]));
651e4cef
PX
3062 return -VTD_FR_IR_IRTE_RSVD;
3063 }
3064
ede9c94a
PX
3065 if (sid != X86_IOMMU_SID_INVALID) {
3066 /* Validate IRTE SID */
bc38ee10
MT
3067 source_id = le32_to_cpu(entry->irte.source_id);
3068 switch (entry->irte.sid_vtype) {
ede9c94a 3069 case VTD_SVT_NONE:
ede9c94a
PX
3070 break;
3071
3072 case VTD_SVT_ALL:
bc38ee10 3073 mask = vtd_svt_mask[entry->irte.sid_q];
ede9c94a 3074 if ((source_id & mask) != (sid & mask)) {
4e4abd11
PX
3075 error_report_once("%s: invalid IRTE SID "
3076 "(index=%u, sid=%u, source_id=%u)",
3077 __func__, index, sid, source_id);
ede9c94a
PX
3078 return -VTD_FR_IR_SID_ERR;
3079 }
3080 break;
3081
3082 case VTD_SVT_BUS:
3083 bus_max = source_id >> 8;
3084 bus_min = source_id & 0xff;
3085 bus = sid >> 8;
3086 if (bus > bus_max || bus < bus_min) {
4e4abd11
PX
3087 error_report_once("%s: invalid SVT_BUS "
3088 "(index=%u, bus=%u, min=%u, max=%u)",
3089 __func__, index, bus, bus_min, bus_max);
ede9c94a
PX
3090 return -VTD_FR_IR_SID_ERR;
3091 }
3092 break;
3093
3094 default:
4e4abd11
PX
3095 error_report_once("%s: detected invalid IRTE SVT "
3096 "(index=%u, type=%d)", __func__,
3097 index, entry->irte.sid_vtype);
ede9c94a
PX
3098 /* Take this as verification failure. */
3099 return -VTD_FR_IR_SID_ERR;
3100 break;
3101 }
3102 }
651e4cef
PX
3103
3104 return 0;
3105}
3106
3107/* Fetch IRQ information of specific IR index */
ede9c94a 3108static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
35c24501 3109 X86IOMMUIrq *irq, uint16_t sid)
651e4cef 3110{
bc38ee10 3111 VTD_IR_TableEntry irte = {};
651e4cef
PX
3112 int ret = 0;
3113
ede9c94a 3114 ret = vtd_irte_get(iommu, index, &irte, sid);
651e4cef
PX
3115 if (ret) {
3116 return ret;
3117 }
3118
bc38ee10
MT
3119 irq->trigger_mode = irte.irte.trigger_mode;
3120 irq->vector = irte.irte.vector;
3121 irq->delivery_mode = irte.irte.delivery_mode;
3122 irq->dest = le32_to_cpu(irte.irte.dest_id);
28589311 3123 if (!iommu->intr_eime) {
651e4cef
PX
3124#define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3125#define VTD_IR_APIC_DEST_SHIFT (8)
28589311
JK
3126 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3127 VTD_IR_APIC_DEST_SHIFT;
3128 }
bc38ee10
MT
3129 irq->dest_mode = irte.irte.dest_mode;
3130 irq->redir_hint = irte.irte.redir_hint;
651e4cef 3131
7feb51b7
PX
3132 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3133 irq->delivery_mode, irq->dest, irq->dest_mode);
651e4cef
PX
3134
3135 return 0;
3136}
3137
651e4cef
PX
3138/* Interrupt remapping for MSI/MSI-X entry */
3139static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3140 MSIMessage *origin,
ede9c94a
PX
3141 MSIMessage *translated,
3142 uint16_t sid)
651e4cef
PX
3143{
3144 int ret = 0;
3145 VTD_IR_MSIAddress addr;
3146 uint16_t index;
35c24501 3147 X86IOMMUIrq irq = {};
651e4cef
PX
3148
3149 assert(origin && translated);
3150
7feb51b7
PX
3151 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3152
651e4cef 3153 if (!iommu || !iommu->intr_enabled) {
e7a3b91f
PX
3154 memcpy(translated, origin, sizeof(*origin));
3155 goto out;
651e4cef
PX
3156 }
3157
3158 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
1376211f
PX
3159 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3160 "address=0x%" PRIx64, __func__, origin->address);
651e4cef
PX
3161 return -VTD_FR_IR_REQ_RSVD;
3162 }
3163
3164 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
1a43713b 3165 if (addr.addr.__head != 0xfee) {
1376211f
PX
3166 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3167 __func__, addr.data);
651e4cef
PX
3168 return -VTD_FR_IR_REQ_RSVD;
3169 }
3170
3171 /* This is compatible mode. */
bc38ee10 3172 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
e7a3b91f
PX
3173 memcpy(translated, origin, sizeof(*origin));
3174 goto out;
651e4cef
PX
3175 }
3176
bc38ee10 3177 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
651e4cef
PX
3178
3179#define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3180#define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3181
bc38ee10 3182 if (addr.addr.sub_valid) {
651e4cef
PX
3183 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3184 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3185 }
3186
ede9c94a 3187 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
651e4cef
PX
3188 if (ret) {
3189 return ret;
3190 }
3191
bc38ee10 3192 if (addr.addr.sub_valid) {
7feb51b7 3193 trace_vtd_ir_remap_type("MSI");
651e4cef 3194 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
4e4abd11
PX
3195 error_report_once("%s: invalid IR MSI "
3196 "(sid=%u, address=0x%" PRIx64
3197 ", data=0x%" PRIx32 ")",
3198 __func__, sid, origin->address, origin->data);
651e4cef
PX
3199 return -VTD_FR_IR_REQ_RSVD;
3200 }
3201 } else {
3202 uint8_t vector = origin->data & 0xff;
dea651a9
FW
3203 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3204
7feb51b7 3205 trace_vtd_ir_remap_type("IOAPIC");
651e4cef
PX
3206 /* IOAPIC entry vector should be aligned with IRTE vector
3207 * (see vt-d spec 5.1.5.1). */
3208 if (vector != irq.vector) {
7feb51b7 3209 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
651e4cef 3210 }
dea651a9
FW
3211
3212 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3213 * (see vt-d spec 5.1.5.1). */
3214 if (trigger_mode != irq.trigger_mode) {
7feb51b7
PX
3215 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3216 irq.trigger_mode);
dea651a9 3217 }
651e4cef
PX
3218 }
3219
3220 /*
3221 * We'd better keep the last two bits, assuming that guest OS
3222 * might modify it. Keep it does not hurt after all.
3223 */
bc38ee10 3224 irq.msi_addr_last_bits = addr.addr.__not_care;
651e4cef 3225
35c24501
BS
3226 /* Translate X86IOMMUIrq to MSI message */
3227 x86_iommu_irq_to_msi_message(&irq, translated);
651e4cef 3228
e7a3b91f 3229out:
7feb51b7
PX
3230 trace_vtd_ir_remap_msi(origin->address, origin->data,
3231 translated->address, translated->data);
651e4cef
PX
3232 return 0;
3233}
3234
8b5ed7df
PX
3235static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3236 MSIMessage *dst, uint16_t sid)
3237{
ede9c94a
PX
3238 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3239 src, dst, sid);
8b5ed7df
PX
3240}
3241
651e4cef
PX
3242static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3243 uint64_t *data, unsigned size,
3244 MemTxAttrs attrs)
3245{
3246 return MEMTX_OK;
3247}
3248
3249static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3250 uint64_t value, unsigned size,
3251 MemTxAttrs attrs)
3252{
3253 int ret = 0;
09cd058a 3254 MSIMessage from = {}, to = {};
ede9c94a 3255 uint16_t sid = X86_IOMMU_SID_INVALID;
651e4cef
PX
3256
3257 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3258 from.data = (uint32_t) value;
3259
ede9c94a
PX
3260 if (!attrs.unspecified) {
3261 /* We have explicit Source ID */
3262 sid = attrs.requester_id;
3263 }
3264
3265 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
651e4cef
PX
3266 if (ret) {
3267 /* TODO: report error */
651e4cef
PX
3268 /* Drop this interrupt */
3269 return MEMTX_ERROR;
3270 }
3271
32946019 3272 apic_get_class()->send_msi(&to);
651e4cef
PX
3273
3274 return MEMTX_OK;
3275}
3276
3277static const MemoryRegionOps vtd_mem_ir_ops = {
3278 .read_with_attrs = vtd_mem_ir_read,
3279 .write_with_attrs = vtd_mem_ir_write,
3280 .endianness = DEVICE_LITTLE_ENDIAN,
3281 .impl = {
3282 .min_access_size = 4,
3283 .max_access_size = 4,
3284 },
3285 .valid = {
3286 .min_access_size = 4,
3287 .max_access_size = 4,
3288 },
3289};
7df953bd
KO
3290
3291VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3292{
3293 uintptr_t key = (uintptr_t)bus;
3294 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3295 VTDAddressSpace *vtd_dev_as;
e0a3c8cc 3296 char name[128];
7df953bd
KO
3297
3298 if (!vtd_bus) {
2d3fc581
JW
3299 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3300 *new_key = (uintptr_t)bus;
7df953bd 3301 /* No corresponding free() */
04af0e18 3302 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
bf33cc75 3303 PCI_DEVFN_MAX);
7df953bd 3304 vtd_bus->bus = bus;
2d3fc581 3305 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
7df953bd
KO
3306 }
3307
3308 vtd_dev_as = vtd_bus->dev_as[devfn];
3309
3310 if (!vtd_dev_as) {
4b519ef1
PX
3311 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3312 PCI_FUNC(devfn));
7df953bd
KO
3313 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3314
3315 vtd_dev_as->bus = bus;
3316 vtd_dev_as->devfn = (uint8_t)devfn;
3317 vtd_dev_as->iommu_state = s;
3318 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
63b88968 3319 vtd_dev_as->iova_tree = iova_tree_new();
558e0024 3320
4b519ef1
PX
3321 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3322 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3323
558e0024 3324 /*
4b519ef1
PX
3325 * Build the DMAR-disabled container with aliases to the
3326 * shared MRs. Note that aliasing to a shared memory region
3327 * could help the memory API to detect same FlatViews so we
3328 * can have devices to share the same FlatView when DMAR is
3329 * disabled (either by not providing "intel_iommu=on" or with
3330 * "iommu=pt"). It will greatly reduce the total number of
3331 * FlatViews of the system hence VM runs faster.
3332 */
3333 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3334 "vtd-nodmar", &s->mr_nodmar, 0,
3335 memory_region_size(&s->mr_nodmar));
3336
3337 /*
3338 * Build the per-device DMAR-enabled container.
558e0024 3339 *
4b519ef1
PX
3340 * TODO: currently we have per-device IOMMU memory region only
3341 * because we have per-device IOMMU notifiers for devices. If
3342 * one day we can abstract the IOMMU notifiers out of the
3343 * memory regions then we can also share the same memory
3344 * region here just like what we've done above with the nodmar
3345 * region.
558e0024 3346 */
4b519ef1 3347 strcat(name, "-dmar");
1221a474
AK
3348 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3349 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
4b519ef1
PX
3350 name, UINT64_MAX);
3351 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3352 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3353 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
558e0024 3354 VTD_INTERRUPT_ADDR_FIRST,
4b519ef1
PX
3355 &vtd_dev_as->iommu_ir, 1);
3356
3357 /*
3358 * Hook both the containers under the root container, we
3359 * switch between DMAR & noDMAR by enable/disable
3360 * corresponding sub-containers
3361 */
558e0024 3362 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3df9d748 3363 MEMORY_REGION(&vtd_dev_as->iommu),
4b519ef1
PX
3364 0);
3365 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3366 &vtd_dev_as->nodmar, 0);
3367
558e0024 3368 vtd_switch_address_space(vtd_dev_as);
7df953bd
KO
3369 }
3370 return vtd_dev_as;
3371}
3372
9a4bb839
PX
3373static uint64_t get_naturally_aligned_size(uint64_t start,
3374 uint64_t size, int gaw)
3375{
3376 uint64_t max_mask = 1ULL << gaw;
3377 uint64_t alignment = start ? start & -start : max_mask;
3378
3379 alignment = MIN(alignment, max_mask);
3380 size = MIN(size, max_mask);
3381
3382 if (alignment <= size) {
3383 /* Increase the alignment of start */
3384 return alignment;
3385 } else {
3386 /* Find the largest page mask from size */
3387 return 1ULL << (63 - clz64(size));
3388 }
3389}
3390
dd4d607e
PX
3391/* Unmap the whole range in the notifier's scope. */
3392static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3393{
9a4bb839 3394 hwaddr size, remain;
dd4d607e
PX
3395 hwaddr start = n->start;
3396 hwaddr end = n->end;
37f51384 3397 IntelIOMMUState *s = as->iommu_state;
63b88968 3398 DMAMap map;
dd4d607e
PX
3399
3400 /*
3401 * Note: all the codes in this function has a assumption that IOVA
3402 * bits are no more than VTD_MGAW bits (which is restricted by
3403 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3404 */
3405
d6d10793 3406 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
dd4d607e
PX
3407 /*
3408 * Don't need to unmap regions that is bigger than the whole
3409 * VT-d supported address space size
3410 */
d6d10793 3411 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
dd4d607e
PX
3412 }
3413
3414 assert(start <= end);
9a4bb839 3415 size = remain = end - start + 1;
dd4d607e 3416
9a4bb839
PX
3417 while (remain >= VTD_PAGE_SIZE) {
3418 IOMMUTLBEntry entry;
3419 uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3420
3421 assert(mask);
3422
3423 entry.iova = start;
3424 entry.addr_mask = mask - 1;
3425 entry.target_as = &address_space_memory;
3426 entry.perm = IOMMU_NONE;
3427 /* This field is meaningless for unmap */
3428 entry.translated_addr = 0;
3429
3430 memory_region_notify_one(n, &entry);
3431
3432 start += mask;
3433 remain -= mask;
dd4d607e
PX
3434 }
3435
9a4bb839 3436 assert(!remain);
dd4d607e
PX
3437
3438 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3439 VTD_PCI_SLOT(as->devfn),
3440 VTD_PCI_FUNC(as->devfn),
9a4bb839 3441 n->start, size);
dd4d607e 3442
9a4bb839
PX
3443 map.iova = n->start;
3444 map.size = size;
63b88968 3445 iova_tree_remove(as->iova_tree, &map);
dd4d607e
PX
3446}
3447
3448static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3449{
dd4d607e
PX
3450 VTDAddressSpace *vtd_as;
3451 IOMMUNotifier *n;
3452
b4a4ba0d 3453 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
dd4d607e
PX
3454 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3455 vtd_address_space_unmap(vtd_as, n);
3456 }
3457 }
3458}
3459
2cc9ddcc
PX
3460static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3461{
3462 vtd_address_space_unmap_all(s);
3463 vtd_switch_address_space_all(s);
3464}
3465
f06a696d
PX
3466static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3467{
3468 memory_region_notify_one((IOMMUNotifier *)private, entry);
3469 return 0;
3470}
3471
3df9d748 3472static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
f06a696d 3473{
3df9d748 3474 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
f06a696d
PX
3475 IntelIOMMUState *s = vtd_as->iommu_state;
3476 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3477 VTDContextEntry ce;
3478
dd4d607e
PX
3479 /*
3480 * The replay can be triggered by either a invalidation or a newly
3481 * created entry. No matter what, we release existing mappings
3482 * (it means flushing caches for UNMAP-only registers).
3483 */
3484 vtd_address_space_unmap(vtd_as, n);
3485
f06a696d 3486 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
fb43cf73
LY
3487 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3488 "legacy mode",
3489 bus_n, PCI_SLOT(vtd_as->devfn),
f06a696d 3490 PCI_FUNC(vtd_as->devfn),
fb43cf73 3491 vtd_get_domain_id(s, &ce),
f06a696d 3492 ce.hi, ce.lo);
4f8a62a9
PX
3493 if (vtd_as_has_map_notifier(vtd_as)) {
3494 /* This is required only for MAP typed notifiers */
fe215b0c
PX
3495 vtd_page_walk_info info = {
3496 .hook_fn = vtd_replay_hook,
3497 .private = (void *)n,
3498 .notify_unmap = false,
3499 .aw = s->aw_bits,
2f764fa8 3500 .as = vtd_as,
fb43cf73 3501 .domain_id = vtd_get_domain_id(s, &ce),
fe215b0c
PX
3502 };
3503
fb43cf73 3504 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
4f8a62a9 3505 }
f06a696d
PX
3506 } else {
3507 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3508 PCI_FUNC(vtd_as->devfn));
3509 }
3510
3511 return;
3512}
3513
1da12ec4
LT
3514/* Do the initialization. It will also be called when reset, so pay
3515 * attention when adding new initialization stuff.
3516 */
3517static void vtd_init(IntelIOMMUState *s)
3518{
d54bd7f8
PX
3519 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3520
1da12ec4
LT
3521 memset(s->csr, 0, DMAR_REG_SIZE);
3522 memset(s->wmask, 0, DMAR_REG_SIZE);
3523 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3524 memset(s->womask, 0, DMAR_REG_SIZE);
3525
1da12ec4 3526 s->root = 0;
fb43cf73 3527 s->root_scalable = false;
1da12ec4 3528 s->dmar_enabled = false;
d7bb469a 3529 s->intr_enabled = false;
1da12ec4
LT
3530 s->iq_head = 0;
3531 s->iq_tail = 0;
3532 s->iq = 0;
3533 s->iq_size = 0;
3534 s->qi_enabled = false;
3535 s->iq_last_desc_type = VTD_INV_DESC_NONE;
c0c1d351 3536 s->iq_dw = false;
1da12ec4 3537 s->next_frcd_reg = 0;
92e5d85e
PS
3538 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3539 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
37f51384 3540 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
ccc23bb0
PX
3541 if (s->dma_drain) {
3542 s->cap |= VTD_CAP_DRAIN;
3543 }
37f51384
PS
3544 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3545 s->cap |= VTD_CAP_SAGAW_48bit;
3546 }
ed7b8fbc 3547 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1da12ec4 3548
92e5d85e
PS
3549 /*
3550 * Rsvd field masks for spte
3551 */
3552 vtd_paging_entry_rsvd_field[0] = ~0ULL;
37f51384
PS
3553 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3554 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3555 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3556 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3557 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3558 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3559 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3560 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
92e5d85e 3561
a924b3d8 3562 if (x86_iommu_ir_supported(x86_iommu)) {
e6b6af05
RK
3563 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3564 if (s->intr_eim == ON_OFF_AUTO_ON) {
3565 s->ecap |= VTD_ECAP_EIM;
3566 }
3567 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
d54bd7f8
PX
3568 }
3569
554f5e16
JW
3570 if (x86_iommu->dt_supported) {
3571 s->ecap |= VTD_ECAP_DT;
3572 }
3573
dbaabb25
PX
3574 if (x86_iommu->pt_supported) {
3575 s->ecap |= VTD_ECAP_PT;
3576 }
3577
3b40f0e5
ABD
3578 if (s->caching_mode) {
3579 s->cap |= VTD_CAP_CM;
3580 }
3581
4a4f219e
YS
3582 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3583 if (s->scalable_mode) {
3584 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3585 }
3586
06aba4ca 3587 vtd_reset_caches(s);
d92fa2dc 3588
1da12ec4
LT
3589 /* Define registers with default values and bit semantics */
3590 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3591 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3592 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3593 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3594 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3595 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
fb43cf73 3596 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
1da12ec4
LT
3597 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3598 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3599
3600 /* Advanced Fault Logging not supported */
3601 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3602 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3603 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3604 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3605
3606 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3607 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3608 */
3609 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3610
3611 /* Treated as RO for implementations that PLMR and PHMR fields reported
3612 * as Clear in the CAP_REG.
3613 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3614 */
3615 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3616
ed7b8fbc
LT
3617 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3618 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
c0c1d351 3619 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
ed7b8fbc
LT
3620 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3621 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3622 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3623 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3624 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3625 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3626
1da12ec4
LT
3627 /* IOTLB registers */
3628 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3629 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3630 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3631
3632 /* Fault Recording Registers, 128-bit */
3633 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3634 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
a5861439
PX
3635
3636 /*
28589311 3637 * Interrupt remapping registers.
a5861439 3638 */
28589311 3639 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
1da12ec4
LT
3640}
3641
3642/* Should not reset address_spaces when reset because devices will still use
3643 * the address space they got at first (won't ask the bus again).
3644 */
3645static void vtd_reset(DeviceState *dev)
3646{
3647 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3648
1da12ec4 3649 vtd_init(s);
2cc9ddcc 3650 vtd_address_space_refresh_all(s);
1da12ec4
LT
3651}
3652
621d983a
MA
3653static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3654{
3655 IntelIOMMUState *s = opaque;
3656 VTDAddressSpace *vtd_as;
3657
bf33cc75 3658 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
621d983a
MA
3659
3660 vtd_as = vtd_find_add_as(s, bus, devfn);
3661 return &vtd_as->as;
3662}
3663
e6b6af05 3664static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
6333e93c 3665{
e6b6af05
RK
3666 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3667
a924b3d8 3668 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
e6b6af05
RK
3669 error_setg(errp, "eim=on cannot be selected without intremap=on");
3670 return false;
3671 }
3672
3673 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
fb506e70 3674 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
a924b3d8 3675 && x86_iommu_ir_supported(x86_iommu) ?
e6b6af05
RK
3676 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3677 }
fb506e70
RK
3678 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3679 if (!kvm_irqchip_in_kernel()) {
3680 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3681 return false;
3682 }
3683 if (!kvm_enable_x2apic()) {
3684 error_setg(errp, "eim=on requires support on the KVM side"
3685 "(X2APIC_API, first shipped in v4.7)");
3686 return false;
3687 }
3688 }
e6b6af05 3689
37f51384
PS
3690 /* Currently only address widths supported are 39 and 48 bits */
3691 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3692 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3693 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3694 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3695 return false;
3696 }
3697
4a4f219e
YS
3698 if (s->scalable_mode && !s->dma_drain) {
3699 error_setg(errp, "Need to set dma_drain for scalable mode");
3700 return false;
3701 }
3702
6333e93c
RK
3703 return true;
3704}
3705
28cf553a
PX
3706static int vtd_machine_done_notify_one(Object *child, void *unused)
3707{
3708 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3709
3710 /*
3711 * We hard-coded here because vfio-pci is the only special case
3712 * here. Let's be more elegant in the future when we can, but so
3713 * far there seems to be no better way.
3714 */
3715 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3716 vtd_panic_require_caching_mode();
3717 }
3718
3719 return 0;
3720}
3721
3722static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3723{
3724 object_child_foreach_recursive(object_get_root(),
3725 vtd_machine_done_notify_one, NULL);
3726}
3727
3728static Notifier vtd_machine_done_notify = {
3729 .notify = vtd_machine_done_hook,
3730};
3731
1da12ec4
LT
3732static void vtd_realize(DeviceState *dev, Error **errp)
3733{
ef0e8fc7 3734 MachineState *ms = MACHINE(qdev_get_machine());
29396ed9
MG
3735 PCMachineState *pcms = PC_MACHINE(ms);
3736 PCIBus *bus = pcms->bus;
1da12ec4 3737 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4684a204 3738 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
1da12ec4 3739
fb9f5926 3740 x86_iommu->type = TYPE_INTEL;
6333e93c 3741
e6b6af05 3742 if (!vtd_decide_config(s, errp)) {
6333e93c
RK
3743 return;
3744 }
3745
b4a4ba0d 3746 QLIST_INIT(&s->vtd_as_with_notifiers);
1d9efa73 3747 qemu_mutex_init(&s->iommu_lock);
7df953bd 3748 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
1da12ec4
LT
3749 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3750 "intel_iommu", DMAR_REG_SIZE);
4b519ef1
PX
3751
3752 /* Create the shared memory regions by all devices */
3753 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3754 UINT64_MAX);
3755 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3756 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3757 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3758 "vtd-sys-alias", get_system_memory(), 0,
3759 memory_region_size(get_system_memory()));
3760 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3761 &s->mr_sys_alias, 0);
3762 memory_region_add_subregion_overlap(&s->mr_nodmar,
3763 VTD_INTERRUPT_ADDR_FIRST,
3764 &s->mr_ir, 1);
3765
1da12ec4 3766 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
b5a280c0
LT
3767 /* No corresponding destroy */
3768 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3769 g_free, g_free);
7df953bd
KO
3770 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3771 g_free, g_free);
1da12ec4 3772 vtd_init(s);
621d983a
MA
3773 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3774 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
cb135f59
PX
3775 /* Pseudo address space under root PCI bus. */
3776 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
28cf553a 3777 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
1da12ec4
LT
3778}
3779
3780static void vtd_class_init(ObjectClass *klass, void *data)
3781{
3782 DeviceClass *dc = DEVICE_CLASS(klass);
1c7955c4 3783 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
1da12ec4
LT
3784
3785 dc->reset = vtd_reset;
1da12ec4
LT
3786 dc->vmsd = &vtd_vmstate;
3787 dc->props = vtd_properties;
621d983a 3788 dc->hotpluggable = false;
1c7955c4 3789 x86_class->realize = vtd_realize;
8b5ed7df 3790 x86_class->int_remap = vtd_int_remap;
8ab5700c 3791 /* Supported by the pc-q35-* machine types */
e4f4fb1e 3792 dc->user_creatable = true;
1ec202c9
EE
3793 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3794 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
1da12ec4
LT
3795}
3796
3797static const TypeInfo vtd_info = {
3798 .name = TYPE_INTEL_IOMMU_DEVICE,
1c7955c4 3799 .parent = TYPE_X86_IOMMU_DEVICE,
1da12ec4
LT
3800 .instance_size = sizeof(IntelIOMMUState),
3801 .class_init = vtd_class_init,
3802};
3803
1221a474
AK
3804static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3805 void *data)
3806{
3807 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3808
3809 imrc->translate = vtd_iommu_translate;
3810 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3811 imrc->replay = vtd_iommu_replay;
3812}
3813
3814static const TypeInfo vtd_iommu_memory_region_info = {
3815 .parent = TYPE_IOMMU_MEMORY_REGION,
3816 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3817 .class_init = vtd_iommu_memory_region_class_init,
3818};
3819
1da12ec4
LT
3820static void vtd_register_types(void)
3821{
1da12ec4 3822 type_register_static(&vtd_info);
1221a474 3823 type_register_static(&vtd_iommu_memory_region_info);
1da12ec4
LT
3824}
3825
3826type_init(vtd_register_types)