]> git.proxmox.com Git - mirror_qemu.git/blame - hw/i386/intel_iommu.c
intel-iommu: remove IntelIOMMUNotifierNode
[mirror_qemu.git] / hw / i386 / intel_iommu.c
CommitLineData
1da12ec4
LT
1/*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
b6a0aa05 22#include "qemu/osdep.h"
4684a204 23#include "qemu/error-report.h"
6333e93c 24#include "qapi/error.h"
1da12ec4
LT
25#include "hw/sysbus.h"
26#include "exec/address-spaces.h"
27#include "intel_iommu_internal.h"
7df953bd 28#include "hw/pci/pci.h"
3cb3b154 29#include "hw/pci/pci_bus.h"
621d983a 30#include "hw/i386/pc.h"
dea651a9 31#include "hw/i386/apic-msidef.h"
04af0e18
PX
32#include "hw/boards.h"
33#include "hw/i386/x86-iommu.h"
cb135f59 34#include "hw/pci-host/q35.h"
4684a204 35#include "sysemu/kvm.h"
32946019 36#include "hw/i386/apic_internal.h"
fb506e70 37#include "kvm_i386.h"
bc535e59 38#include "trace.h"
1da12ec4 39
1da12ec4
LT
40static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
42{
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
46}
47
48static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49{
50 stq_le_p(&s->womask[addr], mask);
51}
52
53static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
55{
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
59}
60
61static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62{
63 stl_le_p(&s->womask[addr], mask);
64}
65
66/* "External" get/set operations */
67static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68{
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74}
75
76static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77{
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83}
84
85static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86{
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
90}
91
92static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93{
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
97}
98
99/* "Internal" get/set operations */
100static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101{
102 return ldq_le_p(&s->csr[addr]);
103}
104
105static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106{
107 return ldl_le_p(&s->csr[addr]);
108}
109
110static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111{
112 stq_le_p(&s->csr[addr], val);
113}
114
115static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
117{
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
121}
122
123static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
125{
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
129}
130
b5a280c0
LT
131/* GHashTable functions */
132static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
133{
134 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
135}
136
137static guint vtd_uint64_hash(gconstpointer v)
138{
139 return (guint)*(const uint64_t *)v;
140}
141
142static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
143 gpointer user_data)
144{
145 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
146 uint16_t domain_id = *(uint16_t *)user_data;
147 return entry->domain_id == domain_id;
148}
149
d66b969b
JW
150/* The shift of an addr for a certain level of paging structure */
151static inline uint32_t vtd_slpt_level_shift(uint32_t level)
152{
7e58326a 153 assert(level != 0);
d66b969b
JW
154 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
155}
156
157static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
158{
159 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
160}
161
b5a280c0
LT
162static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
163 gpointer user_data)
164{
165 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
166 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
d66b969b
JW
167 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
168 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
b5a280c0 169 return (entry->domain_id == info->domain_id) &&
d66b969b
JW
170 (((entry->gfn & info->mask) == gfn) ||
171 (entry->gfn == gfn_tlb));
b5a280c0
LT
172}
173
d92fa2dc
LT
174/* Reset all the gen of VTDAddressSpace to zero and set the gen of
175 * IntelIOMMUState to 1.
176 */
177static void vtd_reset_context_cache(IntelIOMMUState *s)
178{
d92fa2dc 179 VTDAddressSpace *vtd_as;
7df953bd
KO
180 VTDBus *vtd_bus;
181 GHashTableIter bus_it;
d92fa2dc
LT
182 uint32_t devfn_it;
183
7feb51b7
PX
184 trace_vtd_context_cache_reset();
185
7df953bd
KO
186 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
187
7df953bd 188 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
bf33cc75 189 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
7df953bd 190 vtd_as = vtd_bus->dev_as[devfn_it];
d92fa2dc
LT
191 if (!vtd_as) {
192 continue;
193 }
194 vtd_as->context_cache_entry.context_cache_gen = 0;
195 }
196 }
197 s->context_cache_gen = 1;
198}
199
b5a280c0
LT
200static void vtd_reset_iotlb(IntelIOMMUState *s)
201{
202 assert(s->iotlb);
203 g_hash_table_remove_all(s->iotlb);
204}
205
bacabb0a 206static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
d66b969b
JW
207 uint32_t level)
208{
209 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
210 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
211}
212
213static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
214{
215 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
216}
217
b5a280c0
LT
218static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
219 hwaddr addr)
220{
d66b969b 221 VTDIOTLBEntry *entry;
b5a280c0 222 uint64_t key;
d66b969b
JW
223 int level;
224
225 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
226 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
227 source_id, level);
228 entry = g_hash_table_lookup(s->iotlb, &key);
229 if (entry) {
230 goto out;
231 }
232 }
b5a280c0 233
d66b969b
JW
234out:
235 return entry;
b5a280c0
LT
236}
237
238static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
239 uint16_t domain_id, hwaddr addr, uint64_t slpte,
07f7b733 240 uint8_t access_flags, uint32_t level)
b5a280c0
LT
241{
242 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
243 uint64_t *key = g_malloc(sizeof(*key));
d66b969b 244 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
b5a280c0 245
6c441e1d 246 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
b5a280c0 247 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
6c441e1d 248 trace_vtd_iotlb_reset("iotlb exceeds size limit");
b5a280c0
LT
249 vtd_reset_iotlb(s);
250 }
251
252 entry->gfn = gfn;
253 entry->domain_id = domain_id;
254 entry->slpte = slpte;
07f7b733 255 entry->access_flags = access_flags;
d66b969b
JW
256 entry->mask = vtd_slpt_level_page_mask(level);
257 *key = vtd_get_iotlb_key(gfn, source_id, level);
b5a280c0
LT
258 g_hash_table_replace(s->iotlb, key, entry);
259}
260
1da12ec4
LT
261/* Given the reg addr of both the message data and address, generate an
262 * interrupt via MSI.
263 */
264static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
265 hwaddr mesg_data_reg)
266{
32946019 267 MSIMessage msi;
1da12ec4
LT
268
269 assert(mesg_data_reg < DMAR_REG_SIZE);
270 assert(mesg_addr_reg < DMAR_REG_SIZE);
271
32946019
RK
272 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
273 msi.data = vtd_get_long_raw(s, mesg_data_reg);
1da12ec4 274
7feb51b7
PX
275 trace_vtd_irq_generate(msi.address, msi.data);
276
32946019 277 apic_get_class()->send_msi(&msi);
1da12ec4
LT
278}
279
280/* Generate a fault event to software via MSI if conditions are met.
281 * Notice that the value of FSTS_REG being passed to it should be the one
282 * before any update.
283 */
284static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
285{
286 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
287 pre_fsts & VTD_FSTS_IQE) {
7feb51b7
PX
288 trace_vtd_err("There are previous interrupt conditions "
289 "to be serviced by software, fault event "
290 "is not generated.");
1da12ec4
LT
291 return;
292 }
293 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
294 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
7feb51b7 295 trace_vtd_err("Interrupt Mask set, irq is not generated.");
1da12ec4
LT
296 } else {
297 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
298 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
299 }
300}
301
302/* Check if the Fault (F) field of the Fault Recording Register referenced by
303 * @index is Set.
304 */
305static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
306{
307 /* Each reg is 128-bit */
308 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
309 addr += 8; /* Access the high 64-bit half */
310
311 assert(index < DMAR_FRCD_REG_NR);
312
313 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
314}
315
316/* Update the PPF field of Fault Status Register.
317 * Should be called whenever change the F field of any fault recording
318 * registers.
319 */
320static void vtd_update_fsts_ppf(IntelIOMMUState *s)
321{
322 uint32_t i;
323 uint32_t ppf_mask = 0;
324
325 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
326 if (vtd_is_frcd_set(s, i)) {
327 ppf_mask = VTD_FSTS_PPF;
328 break;
329 }
330 }
331 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
7feb51b7 332 trace_vtd_fsts_ppf(!!ppf_mask);
1da12ec4
LT
333}
334
335static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
336{
337 /* Each reg is 128-bit */
338 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
339 addr += 8; /* Access the high 64-bit half */
340
341 assert(index < DMAR_FRCD_REG_NR);
342
343 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
344 vtd_update_fsts_ppf(s);
345}
346
347/* Must not update F field now, should be done later */
348static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
349 uint16_t source_id, hwaddr addr,
350 VTDFaultReason fault, bool is_write)
351{
352 uint64_t hi = 0, lo;
353 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
354
355 assert(index < DMAR_FRCD_REG_NR);
356
357 lo = VTD_FRCD_FI(addr);
358 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
359 if (!is_write) {
360 hi |= VTD_FRCD_T;
361 }
362 vtd_set_quad_raw(s, frcd_reg_addr, lo);
363 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
7feb51b7
PX
364
365 trace_vtd_frr_new(index, hi, lo);
1da12ec4
LT
366}
367
368/* Try to collapse multiple pending faults from the same requester */
369static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
370{
371 uint32_t i;
372 uint64_t frcd_reg;
373 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
374
375 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
376 frcd_reg = vtd_get_quad_raw(s, addr);
1da12ec4
LT
377 if ((frcd_reg & VTD_FRCD_F) &&
378 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
379 return true;
380 }
381 addr += 16; /* 128-bit for each */
382 }
383 return false;
384}
385
386/* Log and report an DMAR (address translation) fault to software */
387static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
388 hwaddr addr, VTDFaultReason fault,
389 bool is_write)
390{
391 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
392
393 assert(fault < VTD_FR_MAX);
394
395 if (fault == VTD_FR_RESERVED_ERR) {
396 /* This is not a normal fault reason case. Drop it. */
397 return;
398 }
7feb51b7
PX
399
400 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
401
1da12ec4 402 if (fsts_reg & VTD_FSTS_PFO) {
7feb51b7
PX
403 trace_vtd_err("New fault is not recorded due to "
404 "Primary Fault Overflow.");
1da12ec4
LT
405 return;
406 }
7feb51b7 407
1da12ec4 408 if (vtd_try_collapse_fault(s, source_id)) {
7feb51b7
PX
409 trace_vtd_err("New fault is not recorded due to "
410 "compression of faults.");
1da12ec4
LT
411 return;
412 }
7feb51b7 413
1da12ec4 414 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
7feb51b7
PX
415 trace_vtd_err("Next Fault Recording Reg is used, "
416 "new fault is not recorded, set PFO field.");
1da12ec4
LT
417 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
418 return;
419 }
420
421 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
422
423 if (fsts_reg & VTD_FSTS_PPF) {
7feb51b7
PX
424 trace_vtd_err("There are pending faults already, "
425 "fault event is not generated.");
1da12ec4
LT
426 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
427 s->next_frcd_reg++;
428 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
429 s->next_frcd_reg = 0;
430 }
431 } else {
432 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
433 VTD_FSTS_FRI(s->next_frcd_reg));
434 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
435 s->next_frcd_reg++;
436 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
437 s->next_frcd_reg = 0;
438 }
439 /* This case actually cause the PPF to be Set.
440 * So generate fault event (interrupt).
441 */
442 vtd_generate_fault_event(s, fsts_reg);
443 }
444}
445
ed7b8fbc
LT
446/* Handle Invalidation Queue Errors of queued invalidation interface error
447 * conditions.
448 */
449static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
450{
451 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
452
453 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
454 vtd_generate_fault_event(s, fsts_reg);
455}
456
457/* Set the IWC field and try to generate an invalidation completion interrupt */
458static void vtd_generate_completion_event(IntelIOMMUState *s)
459{
ed7b8fbc 460 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
bc535e59 461 trace_vtd_inv_desc_wait_irq("One pending, skip current");
ed7b8fbc
LT
462 return;
463 }
464 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
465 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
466 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
bc535e59
PX
467 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
468 "new event not generated");
ed7b8fbc
LT
469 return;
470 } else {
471 /* Generate the interrupt event */
bc535e59 472 trace_vtd_inv_desc_wait_irq("Generating complete event");
ed7b8fbc
LT
473 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
474 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
475 }
476}
477
1da12ec4
LT
478static inline bool vtd_root_entry_present(VTDRootEntry *root)
479{
480 return root->val & VTD_ROOT_ENTRY_P;
481}
482
483static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
484 VTDRootEntry *re)
485{
486 dma_addr_t addr;
487
488 addr = s->root + index * sizeof(*re);
489 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
6c441e1d 490 trace_vtd_re_invalid(re->rsvd, re->val);
1da12ec4
LT
491 re->val = 0;
492 return -VTD_FR_ROOT_TABLE_INV;
493 }
494 re->val = le64_to_cpu(re->val);
495 return 0;
496}
497
8f7d7161 498static inline bool vtd_ce_present(VTDContextEntry *context)
1da12ec4
LT
499{
500 return context->lo & VTD_CONTEXT_ENTRY_P;
501}
502
503static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
504 VTDContextEntry *ce)
505{
506 dma_addr_t addr;
507
6c441e1d 508 /* we have checked that root entry is present */
1da12ec4
LT
509 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
510 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
6c441e1d 511 trace_vtd_re_invalid(root->rsvd, root->val);
1da12ec4
LT
512 return -VTD_FR_CONTEXT_TABLE_INV;
513 }
514 ce->lo = le64_to_cpu(ce->lo);
515 ce->hi = le64_to_cpu(ce->hi);
516 return 0;
517}
518
8f7d7161 519static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
1da12ec4
LT
520{
521 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
522}
523
37f51384 524static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
1da12ec4 525{
37f51384 526 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
1da12ec4
LT
527}
528
529/* Whether the pte indicates the address of the page frame */
530static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
531{
532 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
533}
534
535/* Get the content of a spte located in @base_addr[@index] */
536static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
537{
538 uint64_t slpte;
539
540 assert(index < VTD_SL_PT_ENTRY_NR);
541
542 if (dma_memory_read(&address_space_memory,
543 base_addr + index * sizeof(slpte), &slpte,
544 sizeof(slpte))) {
545 slpte = (uint64_t)-1;
546 return slpte;
547 }
548 slpte = le64_to_cpu(slpte);
549 return slpte;
550}
551
6e905564
PX
552/* Given an iova and the level of paging structure, return the offset
553 * of current level.
1da12ec4 554 */
6e905564 555static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
1da12ec4 556{
6e905564 557 return (iova >> vtd_slpt_level_shift(level)) &
1da12ec4
LT
558 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
559}
560
561/* Check Capability Register to see if the @level of page-table is supported */
562static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
563{
564 return VTD_CAP_SAGAW_MASK & s->cap &
565 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
566}
567
568/* Get the page-table level that hardware should use for the second-level
569 * page-table walk from the Address Width field of context-entry.
570 */
8f7d7161 571static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
1da12ec4
LT
572{
573 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
574}
575
8f7d7161 576static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
1da12ec4
LT
577{
578 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
579}
580
127ff5c3
PX
581static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
582{
583 return ce->lo & VTD_CONTEXT_ENTRY_TT;
584}
585
f80c9874
PX
586/* Return true if check passed, otherwise false */
587static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
588 VTDContextEntry *ce)
589{
590 switch (vtd_ce_get_type(ce)) {
591 case VTD_CONTEXT_TT_MULTI_LEVEL:
592 /* Always supported */
593 break;
594 case VTD_CONTEXT_TT_DEV_IOTLB:
595 if (!x86_iommu->dt_supported) {
596 return false;
597 }
598 break;
dbaabb25
PX
599 case VTD_CONTEXT_TT_PASS_THROUGH:
600 if (!x86_iommu->pt_supported) {
601 return false;
602 }
603 break;
f80c9874
PX
604 default:
605 /* Unknwon type */
606 return false;
607 }
608 return true;
609}
610
37f51384 611static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
f06a696d 612{
8f7d7161 613 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
37f51384 614 return 1ULL << MIN(ce_agaw, aw);
f06a696d
PX
615}
616
617/* Return true if IOVA passes range check, otherwise false. */
37f51384
PS
618static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
619 uint8_t aw)
f06a696d
PX
620{
621 /*
622 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
623 * in CAP_REG and AW in context-entry.
624 */
37f51384 625 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
f06a696d
PX
626}
627
92e5d85e
PS
628/*
629 * Rsvd field masks for spte:
630 * Index [1] to [4] 4k pages
631 * Index [5] to [8] large pages
632 */
633static uint64_t vtd_paging_entry_rsvd_field[9];
1da12ec4
LT
634
635static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
636{
637 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
638 /* Maybe large page */
639 return slpte & vtd_paging_entry_rsvd_field[level + 4];
640 } else {
641 return slpte & vtd_paging_entry_rsvd_field[level];
642 }
643}
644
dbaabb25
PX
645/* Find the VTD address space associated with a given bus number */
646static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
647{
648 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
649 if (!vtd_bus) {
650 /*
651 * Iterate over the registered buses to find the one which
652 * currently hold this bus number, and update the bus_num
653 * lookup table:
654 */
655 GHashTableIter iter;
656
657 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
658 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
659 if (pci_bus_num(vtd_bus->bus) == bus_num) {
660 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
661 return vtd_bus;
662 }
663 }
664 }
665 return vtd_bus;
666}
667
6e905564 668/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1da12ec4
LT
669 * of the translation, can be used for deciding the size of large page.
670 */
6e905564
PX
671static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
672 uint64_t *slptep, uint32_t *slpte_level,
37f51384 673 bool *reads, bool *writes, uint8_t aw_bits)
1da12ec4 674{
8f7d7161
PX
675 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
676 uint32_t level = vtd_ce_get_level(ce);
1da12ec4
LT
677 uint32_t offset;
678 uint64_t slpte;
1da12ec4
LT
679 uint64_t access_right_check;
680
37f51384 681 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
7feb51b7 682 trace_vtd_err_dmar_iova_overflow(iova);
1da12ec4
LT
683 return -VTD_FR_ADDR_BEYOND_MGAW;
684 }
685
686 /* FIXME: what is the Atomics request here? */
687 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
688
689 while (true) {
6e905564 690 offset = vtd_iova_level_offset(iova, level);
1da12ec4
LT
691 slpte = vtd_get_slpte(addr, offset);
692
693 if (slpte == (uint64_t)-1) {
7feb51b7 694 trace_vtd_err_dmar_slpte_read_error(iova, level);
8f7d7161 695 if (level == vtd_ce_get_level(ce)) {
1da12ec4
LT
696 /* Invalid programming of context-entry */
697 return -VTD_FR_CONTEXT_ENTRY_INV;
698 } else {
699 return -VTD_FR_PAGING_ENTRY_INV;
700 }
701 }
702 *reads = (*reads) && (slpte & VTD_SL_R);
703 *writes = (*writes) && (slpte & VTD_SL_W);
704 if (!(slpte & access_right_check)) {
7feb51b7 705 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
1da12ec4
LT
706 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
707 }
708 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
7feb51b7 709 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
1da12ec4
LT
710 return -VTD_FR_PAGING_ENTRY_RSVD;
711 }
712
713 if (vtd_is_last_slpte(slpte, level)) {
714 *slptep = slpte;
715 *slpte_level = level;
716 return 0;
717 }
37f51384 718 addr = vtd_get_slpte_addr(slpte, aw_bits);
1da12ec4
LT
719 level--;
720 }
721}
722
f06a696d
PX
723typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
724
36d2d52b
PX
725static int vtd_page_walk_one(IOMMUTLBEntry *entry, int level,
726 vtd_page_walk_hook hook_fn, void *private)
727{
728 assert(hook_fn);
729 trace_vtd_page_walk_one(level, entry->iova, entry->translated_addr,
730 entry->addr_mask, entry->perm);
731 return hook_fn(entry, private);
732}
733
f06a696d
PX
734/**
735 * vtd_page_walk_level - walk over specific level for IOVA range
736 *
737 * @addr: base GPA addr to start the walk
738 * @start: IOVA range start address
739 * @end: IOVA range end address (start <= addr < end)
740 * @hook_fn: hook func to be called when detected page
741 * @private: private data to be passed into hook func
742 * @read: whether parent level has read permission
743 * @write: whether parent level has write permission
744 * @notify_unmap: whether we should notify invalid entries
37f51384 745 * @aw: maximum address width
f06a696d
PX
746 */
747static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
748 uint64_t end, vtd_page_walk_hook hook_fn,
37f51384
PS
749 void *private, uint32_t level, bool read,
750 bool write, bool notify_unmap, uint8_t aw)
f06a696d
PX
751{
752 bool read_cur, write_cur, entry_valid;
753 uint32_t offset;
754 uint64_t slpte;
755 uint64_t subpage_size, subpage_mask;
756 IOMMUTLBEntry entry;
757 uint64_t iova = start;
758 uint64_t iova_next;
759 int ret = 0;
760
761 trace_vtd_page_walk_level(addr, level, start, end);
762
763 subpage_size = 1ULL << vtd_slpt_level_shift(level);
764 subpage_mask = vtd_slpt_level_page_mask(level);
765
766 while (iova < end) {
767 iova_next = (iova & subpage_mask) + subpage_size;
768
769 offset = vtd_iova_level_offset(iova, level);
770 slpte = vtd_get_slpte(addr, offset);
771
772 if (slpte == (uint64_t)-1) {
773 trace_vtd_page_walk_skip_read(iova, iova_next);
774 goto next;
775 }
776
777 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
778 trace_vtd_page_walk_skip_reserve(iova, iova_next);
779 goto next;
780 }
781
782 /* Permissions are stacked with parents' */
783 read_cur = read && (slpte & VTD_SL_R);
784 write_cur = write && (slpte & VTD_SL_W);
785
786 /*
787 * As long as we have either read/write permission, this is a
788 * valid entry. The rule works for both page entries and page
789 * table entries.
790 */
791 entry_valid = read_cur | write_cur;
792
36d2d52b
PX
793 entry.target_as = &address_space_memory;
794 entry.iova = iova & subpage_mask;
795 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
796 entry.addr_mask = ~subpage_mask;
797
f06a696d 798 if (vtd_is_last_slpte(slpte, level)) {
f06a696d 799 /* NOTE: this is only meaningful if entry_valid == true */
37f51384 800 entry.translated_addr = vtd_get_slpte_addr(slpte, aw);
f06a696d
PX
801 if (!entry_valid && !notify_unmap) {
802 trace_vtd_page_walk_skip_perm(iova, iova_next);
803 goto next;
804 }
36d2d52b
PX
805 ret = vtd_page_walk_one(&entry, level, hook_fn, private);
806 if (ret < 0) {
807 return ret;
f06a696d
PX
808 }
809 } else {
810 if (!entry_valid) {
36d2d52b
PX
811 if (notify_unmap) {
812 /*
813 * The whole entry is invalid; unmap it all.
814 * Translated address is meaningless, zero it.
815 */
816 entry.translated_addr = 0x0;
817 ret = vtd_page_walk_one(&entry, level, hook_fn, private);
818 if (ret < 0) {
819 return ret;
820 }
821 } else {
822 trace_vtd_page_walk_skip_perm(iova, iova_next);
823 }
f06a696d
PX
824 goto next;
825 }
37f51384 826 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, aw), iova,
f06a696d
PX
827 MIN(iova_next, end), hook_fn, private,
828 level - 1, read_cur, write_cur,
37f51384 829 notify_unmap, aw);
f06a696d
PX
830 if (ret < 0) {
831 return ret;
832 }
833 }
834
835next:
836 iova = iova_next;
837 }
838
839 return 0;
840}
841
842/**
843 * vtd_page_walk - walk specific IOVA range, and call the hook
844 *
845 * @ce: context entry to walk upon
846 * @start: IOVA address to start the walk
847 * @end: IOVA range end address (start <= addr < end)
848 * @hook_fn: the hook that to be called for each detected area
849 * @private: private data for the hook function
37f51384 850 * @aw: maximum address width
f06a696d
PX
851 */
852static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
dd4d607e 853 vtd_page_walk_hook hook_fn, void *private,
37f51384 854 bool notify_unmap, uint8_t aw)
f06a696d 855{
8f7d7161
PX
856 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
857 uint32_t level = vtd_ce_get_level(ce);
f06a696d 858
37f51384 859 if (!vtd_iova_range_check(start, ce, aw)) {
f06a696d
PX
860 return -VTD_FR_ADDR_BEYOND_MGAW;
861 }
862
37f51384 863 if (!vtd_iova_range_check(end, ce, aw)) {
f06a696d 864 /* Fix end so that it reaches the maximum */
37f51384 865 end = vtd_iova_limit(ce, aw);
f06a696d
PX
866 }
867
868 return vtd_page_walk_level(addr, start, end, hook_fn, private,
37f51384 869 level, true, true, notify_unmap, aw);
f06a696d
PX
870}
871
1da12ec4
LT
872/* Map a device to its corresponding domain (context-entry) */
873static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
874 uint8_t devfn, VTDContextEntry *ce)
875{
876 VTDRootEntry re;
877 int ret_fr;
f80c9874 878 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1da12ec4
LT
879
880 ret_fr = vtd_get_root_entry(s, bus_num, &re);
881 if (ret_fr) {
882 return ret_fr;
883 }
884
885 if (!vtd_root_entry_present(&re)) {
6c441e1d
PX
886 /* Not error - it's okay we don't have root entry. */
887 trace_vtd_re_not_present(bus_num);
1da12ec4 888 return -VTD_FR_ROOT_ENTRY_P;
f80c9874
PX
889 }
890
37f51384 891 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
6c441e1d 892 trace_vtd_re_invalid(re.rsvd, re.val);
1da12ec4
LT
893 return -VTD_FR_ROOT_ENTRY_RSVD;
894 }
895
896 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
897 if (ret_fr) {
898 return ret_fr;
899 }
900
8f7d7161 901 if (!vtd_ce_present(ce)) {
6c441e1d
PX
902 /* Not error - it's okay we don't have context entry. */
903 trace_vtd_ce_not_present(bus_num, devfn);
1da12ec4 904 return -VTD_FR_CONTEXT_ENTRY_P;
f80c9874
PX
905 }
906
907 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
37f51384 908 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
6c441e1d 909 trace_vtd_ce_invalid(ce->hi, ce->lo);
1da12ec4
LT
910 return -VTD_FR_CONTEXT_ENTRY_RSVD;
911 }
f80c9874 912
1da12ec4 913 /* Check if the programming of context-entry is valid */
8f7d7161 914 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
6c441e1d 915 trace_vtd_ce_invalid(ce->hi, ce->lo);
1da12ec4 916 return -VTD_FR_CONTEXT_ENTRY_INV;
1da12ec4 917 }
f80c9874
PX
918
919 /* Do translation type check */
920 if (!vtd_ce_type_check(x86_iommu, ce)) {
921 trace_vtd_ce_invalid(ce->hi, ce->lo);
922 return -VTD_FR_CONTEXT_ENTRY_INV;
923 }
924
1da12ec4
LT
925 return 0;
926}
927
dbaabb25
PX
928/*
929 * Fetch translation type for specific device. Returns <0 if error
930 * happens, otherwise return the shifted type to check against
931 * VTD_CONTEXT_TT_*.
932 */
933static int vtd_dev_get_trans_type(VTDAddressSpace *as)
934{
935 IntelIOMMUState *s;
936 VTDContextEntry ce;
937 int ret;
938
939 s = as->iommu_state;
940
941 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
942 as->devfn, &ce);
943 if (ret) {
944 return ret;
945 }
946
947 return vtd_ce_get_type(&ce);
948}
949
950static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
951{
952 int ret;
953
954 assert(as);
955
956 ret = vtd_dev_get_trans_type(as);
957 if (ret < 0) {
958 /*
959 * Possibly failed to parse the context entry for some reason
960 * (e.g., during init, or any guest configuration errors on
961 * context entries). We should assume PT not enabled for
962 * safety.
963 */
964 return false;
965 }
966
967 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
968}
969
970/* Return whether the device is using IOMMU translation. */
971static bool vtd_switch_address_space(VTDAddressSpace *as)
972{
973 bool use_iommu;
66a4a031
PX
974 /* Whether we need to take the BQL on our own */
975 bool take_bql = !qemu_mutex_iothread_locked();
dbaabb25
PX
976
977 assert(as);
978
979 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
980
981 trace_vtd_switch_address_space(pci_bus_num(as->bus),
982 VTD_PCI_SLOT(as->devfn),
983 VTD_PCI_FUNC(as->devfn),
984 use_iommu);
985
66a4a031
PX
986 /*
987 * It's possible that we reach here without BQL, e.g., when called
988 * from vtd_pt_enable_fast_path(). However the memory APIs need
989 * it. We'd better make sure we have had it already, or, take it.
990 */
991 if (take_bql) {
992 qemu_mutex_lock_iothread();
993 }
994
dbaabb25
PX
995 /* Turn off first then on the other */
996 if (use_iommu) {
997 memory_region_set_enabled(&as->sys_alias, false);
3df9d748 998 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
dbaabb25 999 } else {
3df9d748 1000 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
dbaabb25
PX
1001 memory_region_set_enabled(&as->sys_alias, true);
1002 }
1003
66a4a031
PX
1004 if (take_bql) {
1005 qemu_mutex_unlock_iothread();
1006 }
1007
dbaabb25
PX
1008 return use_iommu;
1009}
1010
1011static void vtd_switch_address_space_all(IntelIOMMUState *s)
1012{
1013 GHashTableIter iter;
1014 VTDBus *vtd_bus;
1015 int i;
1016
1017 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1018 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
bf33cc75 1019 for (i = 0; i < PCI_DEVFN_MAX; i++) {
dbaabb25
PX
1020 if (!vtd_bus->dev_as[i]) {
1021 continue;
1022 }
1023 vtd_switch_address_space(vtd_bus->dev_as[i]);
1024 }
1025 }
1026}
1027
1da12ec4
LT
1028static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1029{
1030 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1031}
1032
1033static const bool vtd_qualified_faults[] = {
1034 [VTD_FR_RESERVED] = false,
1035 [VTD_FR_ROOT_ENTRY_P] = false,
1036 [VTD_FR_CONTEXT_ENTRY_P] = true,
1037 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1038 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1039 [VTD_FR_WRITE] = true,
1040 [VTD_FR_READ] = true,
1041 [VTD_FR_PAGING_ENTRY_INV] = true,
1042 [VTD_FR_ROOT_TABLE_INV] = false,
1043 [VTD_FR_CONTEXT_TABLE_INV] = false,
1044 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1045 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1046 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1047 [VTD_FR_RESERVED_ERR] = false,
1048 [VTD_FR_MAX] = false,
1049};
1050
1051/* To see if a fault condition is "qualified", which is reported to software
1052 * only if the FPD field in the context-entry used to process the faulting
1053 * request is 0.
1054 */
1055static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1056{
1057 return vtd_qualified_faults[fault];
1058}
1059
1060static inline bool vtd_is_interrupt_addr(hwaddr addr)
1061{
1062 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1063}
1064
dbaabb25
PX
1065static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1066{
1067 VTDBus *vtd_bus;
1068 VTDAddressSpace *vtd_as;
1069 bool success = false;
1070
1071 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1072 if (!vtd_bus) {
1073 goto out;
1074 }
1075
1076 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1077 if (!vtd_as) {
1078 goto out;
1079 }
1080
1081 if (vtd_switch_address_space(vtd_as) == false) {
1082 /* We switched off IOMMU region successfully. */
1083 success = true;
1084 }
1085
1086out:
1087 trace_vtd_pt_enable_fast_path(source_id, success);
1088}
1089
1da12ec4
LT
1090/* Map dev to context-entry then do a paging-structures walk to do a iommu
1091 * translation.
79e2b9ae
PB
1092 *
1093 * Called from RCU critical section.
1094 *
1da12ec4
LT
1095 * @bus_num: The bus number
1096 * @devfn: The devfn, which is the combined of device and function number
1097 * @is_write: The access is a write operation
1098 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
b9313021
PX
1099 *
1100 * Returns true if translation is successful, otherwise false.
1da12ec4 1101 */
b9313021 1102static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1da12ec4
LT
1103 uint8_t devfn, hwaddr addr, bool is_write,
1104 IOMMUTLBEntry *entry)
1105{
d92fa2dc 1106 IntelIOMMUState *s = vtd_as->iommu_state;
1da12ec4 1107 VTDContextEntry ce;
7df953bd 1108 uint8_t bus_num = pci_bus_num(bus);
d92fa2dc 1109 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
d66b969b 1110 uint64_t slpte, page_mask;
1da12ec4
LT
1111 uint32_t level;
1112 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1113 int ret_fr;
1114 bool is_fpd_set = false;
1115 bool reads = true;
1116 bool writes = true;
07f7b733 1117 uint8_t access_flags;
b5a280c0 1118 VTDIOTLBEntry *iotlb_entry;
1da12ec4 1119
046ab7e9
PX
1120 /*
1121 * We have standalone memory region for interrupt addresses, we
1122 * should never receive translation requests in this region.
1123 */
1124 assert(!vtd_is_interrupt_addr(addr));
1125
b5a280c0
LT
1126 /* Try to fetch slpte form IOTLB */
1127 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1128 if (iotlb_entry) {
6c441e1d
PX
1129 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1130 iotlb_entry->domain_id);
b5a280c0 1131 slpte = iotlb_entry->slpte;
07f7b733 1132 access_flags = iotlb_entry->access_flags;
d66b969b 1133 page_mask = iotlb_entry->mask;
b5a280c0
LT
1134 goto out;
1135 }
b9313021 1136
d92fa2dc
LT
1137 /* Try to fetch context-entry from cache first */
1138 if (cc_entry->context_cache_gen == s->context_cache_gen) {
6c441e1d
PX
1139 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1140 cc_entry->context_entry.lo,
1141 cc_entry->context_cache_gen);
d92fa2dc
LT
1142 ce = cc_entry->context_entry;
1143 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1144 } else {
1145 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1146 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1147 if (ret_fr) {
1148 ret_fr = -ret_fr;
1149 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
6c441e1d 1150 trace_vtd_fault_disabled();
d92fa2dc
LT
1151 } else {
1152 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1153 }
b9313021 1154 goto error;
1da12ec4 1155 }
d92fa2dc 1156 /* Update context-cache */
6c441e1d
PX
1157 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1158 cc_entry->context_cache_gen,
1159 s->context_cache_gen);
d92fa2dc
LT
1160 cc_entry->context_entry = ce;
1161 cc_entry->context_cache_gen = s->context_cache_gen;
1da12ec4
LT
1162 }
1163
dbaabb25
PX
1164 /*
1165 * We don't need to translate for pass-through context entries.
1166 * Also, let's ignore IOTLB caching as well for PT devices.
1167 */
1168 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
892721d9 1169 entry->iova = addr & VTD_PAGE_MASK_4K;
dbaabb25 1170 entry->translated_addr = entry->iova;
892721d9 1171 entry->addr_mask = ~VTD_PAGE_MASK_4K;
dbaabb25
PX
1172 entry->perm = IOMMU_RW;
1173 trace_vtd_translate_pt(source_id, entry->iova);
1174
1175 /*
1176 * When this happens, it means firstly caching-mode is not
1177 * enabled, and this is the first passthrough translation for
1178 * the device. Let's enable the fast path for passthrough.
1179 *
1180 * When passthrough is disabled again for the device, we can
1181 * capture it via the context entry invalidation, then the
1182 * IOMMU region can be swapped back.
1183 */
1184 vtd_pt_enable_fast_path(s, source_id);
1185
b9313021 1186 return true;
dbaabb25
PX
1187 }
1188
6e905564 1189 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
37f51384 1190 &reads, &writes, s->aw_bits);
1da12ec4
LT
1191 if (ret_fr) {
1192 ret_fr = -ret_fr;
1193 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
6c441e1d 1194 trace_vtd_fault_disabled();
1da12ec4
LT
1195 } else {
1196 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1197 }
b9313021 1198 goto error;
1da12ec4
LT
1199 }
1200
d66b969b 1201 page_mask = vtd_slpt_level_page_mask(level);
07f7b733 1202 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
b5a280c0 1203 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
07f7b733 1204 access_flags, level);
b5a280c0 1205out:
d66b969b 1206 entry->iova = addr & page_mask;
37f51384 1207 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
d66b969b 1208 entry->addr_mask = ~page_mask;
07f7b733 1209 entry->perm = access_flags;
b9313021
PX
1210 return true;
1211
1212error:
1213 entry->iova = 0;
1214 entry->translated_addr = 0;
1215 entry->addr_mask = 0;
1216 entry->perm = IOMMU_NONE;
1217 return false;
1da12ec4
LT
1218}
1219
1220static void vtd_root_table_setup(IntelIOMMUState *s)
1221{
1222 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1223 s->root_extended = s->root & VTD_RTADDR_RTT;
37f51384 1224 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1da12ec4 1225
7feb51b7 1226 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1da12ec4
LT
1227}
1228
02a2cbc8
PX
1229static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1230 uint32_t index, uint32_t mask)
1231{
1232 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1233}
1234
a5861439
PX
1235static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1236{
1237 uint64_t value = 0;
1238 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1239 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
37f51384 1240 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
28589311 1241 s->intr_eime = value & VTD_IRTA_EIME;
a5861439 1242
02a2cbc8
PX
1243 /* Notify global invalidation */
1244 vtd_iec_notify_all(s, true, 0, 0);
a5861439 1245
7feb51b7 1246 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
a5861439
PX
1247}
1248
dd4d607e
PX
1249static void vtd_iommu_replay_all(IntelIOMMUState *s)
1250{
b4a4ba0d 1251 VTDAddressSpace *vtd_as;
dd4d607e 1252
b4a4ba0d
PX
1253 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1254 memory_region_iommu_replay_all(&vtd_as->iommu);
dd4d607e
PX
1255 }
1256}
1257
d92fa2dc
LT
1258static void vtd_context_global_invalidate(IntelIOMMUState *s)
1259{
bc535e59 1260 trace_vtd_inv_desc_cc_global();
d92fa2dc
LT
1261 s->context_cache_gen++;
1262 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1263 vtd_reset_context_cache(s);
1264 }
dbaabb25 1265 vtd_switch_address_space_all(s);
dd4d607e
PX
1266 /*
1267 * From VT-d spec 6.5.2.1, a global context entry invalidation
1268 * should be followed by a IOTLB global invalidation, so we should
1269 * be safe even without this. Hoewever, let's replay the region as
1270 * well to be safer, and go back here when we need finer tunes for
1271 * VT-d emulation codes.
1272 */
1273 vtd_iommu_replay_all(s);
d92fa2dc
LT
1274}
1275
1276/* Do a context-cache device-selective invalidation.
1277 * @func_mask: FM field after shifting
1278 */
1279static void vtd_context_device_invalidate(IntelIOMMUState *s,
1280 uint16_t source_id,
1281 uint16_t func_mask)
1282{
1283 uint16_t mask;
7df953bd 1284 VTDBus *vtd_bus;
d92fa2dc 1285 VTDAddressSpace *vtd_as;
bc535e59 1286 uint8_t bus_n, devfn;
d92fa2dc
LT
1287 uint16_t devfn_it;
1288
bc535e59
PX
1289 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1290
d92fa2dc
LT
1291 switch (func_mask & 3) {
1292 case 0:
1293 mask = 0; /* No bits in the SID field masked */
1294 break;
1295 case 1:
1296 mask = 4; /* Mask bit 2 in the SID field */
1297 break;
1298 case 2:
1299 mask = 6; /* Mask bit 2:1 in the SID field */
1300 break;
1301 case 3:
1302 mask = 7; /* Mask bit 2:0 in the SID field */
1303 break;
1304 }
6cb99acc 1305 mask = ~mask;
bc535e59
PX
1306
1307 bus_n = VTD_SID_TO_BUS(source_id);
1308 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
7df953bd 1309 if (vtd_bus) {
d92fa2dc 1310 devfn = VTD_SID_TO_DEVFN(source_id);
bf33cc75 1311 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
7df953bd 1312 vtd_as = vtd_bus->dev_as[devfn_it];
d92fa2dc 1313 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
bc535e59
PX
1314 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1315 VTD_PCI_FUNC(devfn_it));
d92fa2dc 1316 vtd_as->context_cache_entry.context_cache_gen = 0;
dbaabb25
PX
1317 /*
1318 * Do switch address space when needed, in case if the
1319 * device passthrough bit is switched.
1320 */
1321 vtd_switch_address_space(vtd_as);
dd4d607e
PX
1322 /*
1323 * So a device is moving out of (or moving into) a
1324 * domain, a replay() suites here to notify all the
1325 * IOMMU_NOTIFIER_MAP registers about this change.
1326 * This won't bring bad even if we have no such
1327 * notifier registered - the IOMMU notification
1328 * framework will skip MAP notifications if that
1329 * happened.
1330 */
1331 memory_region_iommu_replay_all(&vtd_as->iommu);
d92fa2dc
LT
1332 }
1333 }
1334 }
1335}
1336
1da12ec4
LT
1337/* Context-cache invalidation
1338 * Returns the Context Actual Invalidation Granularity.
1339 * @val: the content of the CCMD_REG
1340 */
1341static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1342{
1343 uint64_t caig;
1344 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1345
1346 switch (type) {
d92fa2dc 1347 case VTD_CCMD_DOMAIN_INVL:
d92fa2dc 1348 /* Fall through */
1da12ec4 1349 case VTD_CCMD_GLOBAL_INVL:
1da12ec4 1350 caig = VTD_CCMD_GLOBAL_INVL_A;
d92fa2dc 1351 vtd_context_global_invalidate(s);
1da12ec4
LT
1352 break;
1353
1354 case VTD_CCMD_DEVICE_INVL:
1da12ec4 1355 caig = VTD_CCMD_DEVICE_INVL_A;
d92fa2dc 1356 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1da12ec4
LT
1357 break;
1358
1359 default:
7feb51b7 1360 trace_vtd_err("Context cache invalidate type error.");
1da12ec4
LT
1361 caig = 0;
1362 }
1363 return caig;
1364}
1365
b5a280c0
LT
1366static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1367{
7feb51b7 1368 trace_vtd_inv_desc_iotlb_global();
b5a280c0 1369 vtd_reset_iotlb(s);
dd4d607e 1370 vtd_iommu_replay_all(s);
b5a280c0
LT
1371}
1372
1373static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1374{
dd4d607e
PX
1375 VTDContextEntry ce;
1376 VTDAddressSpace *vtd_as;
1377
7feb51b7
PX
1378 trace_vtd_inv_desc_iotlb_domain(domain_id);
1379
b5a280c0
LT
1380 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1381 &domain_id);
dd4d607e 1382
b4a4ba0d 1383 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
dd4d607e
PX
1384 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1385 vtd_as->devfn, &ce) &&
1386 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1387 memory_region_iommu_replay_all(&vtd_as->iommu);
1388 }
1389 }
1390}
1391
1392static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1393 void *private)
1394{
3df9d748 1395 memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
dd4d607e
PX
1396 return 0;
1397}
1398
1399static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1400 uint16_t domain_id, hwaddr addr,
1401 uint8_t am)
1402{
b4a4ba0d 1403 VTDAddressSpace *vtd_as;
dd4d607e
PX
1404 VTDContextEntry ce;
1405 int ret;
1406
b4a4ba0d 1407 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
dd4d607e
PX
1408 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1409 vtd_as->devfn, &ce);
1410 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1411 vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
1412 vtd_page_invalidate_notify_hook,
37f51384 1413 (void *)&vtd_as->iommu, true, s->aw_bits);
dd4d607e
PX
1414 }
1415 }
b5a280c0
LT
1416}
1417
1418static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1419 hwaddr addr, uint8_t am)
1420{
1421 VTDIOTLBPageInvInfo info;
1422
7feb51b7
PX
1423 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1424
b5a280c0
LT
1425 assert(am <= VTD_MAMV);
1426 info.domain_id = domain_id;
d66b969b 1427 info.addr = addr;
b5a280c0
LT
1428 info.mask = ~((1 << am) - 1);
1429 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
dd4d607e 1430 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
b5a280c0
LT
1431}
1432
1da12ec4
LT
1433/* Flush IOTLB
1434 * Returns the IOTLB Actual Invalidation Granularity.
1435 * @val: the content of the IOTLB_REG
1436 */
1437static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1438{
1439 uint64_t iaig;
1440 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
b5a280c0
LT
1441 uint16_t domain_id;
1442 hwaddr addr;
1443 uint8_t am;
1da12ec4
LT
1444
1445 switch (type) {
1446 case VTD_TLB_GLOBAL_FLUSH:
1da12ec4 1447 iaig = VTD_TLB_GLOBAL_FLUSH_A;
b5a280c0 1448 vtd_iotlb_global_invalidate(s);
1da12ec4
LT
1449 break;
1450
1451 case VTD_TLB_DSI_FLUSH:
b5a280c0 1452 domain_id = VTD_TLB_DID(val);
1da12ec4 1453 iaig = VTD_TLB_DSI_FLUSH_A;
b5a280c0 1454 vtd_iotlb_domain_invalidate(s, domain_id);
1da12ec4
LT
1455 break;
1456
1457 case VTD_TLB_PSI_FLUSH:
b5a280c0
LT
1458 domain_id = VTD_TLB_DID(val);
1459 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1460 am = VTD_IVA_AM(addr);
1461 addr = VTD_IVA_ADDR(addr);
b5a280c0 1462 if (am > VTD_MAMV) {
7feb51b7 1463 trace_vtd_err("IOTLB PSI flush: address mask overflow.");
b5a280c0
LT
1464 iaig = 0;
1465 break;
1466 }
1da12ec4 1467 iaig = VTD_TLB_PSI_FLUSH_A;
b5a280c0 1468 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1da12ec4
LT
1469 break;
1470
1471 default:
7feb51b7 1472 trace_vtd_err("IOTLB flush: invalid granularity.");
1da12ec4
LT
1473 iaig = 0;
1474 }
1475 return iaig;
1476}
1477
8991c460 1478static void vtd_fetch_inv_desc(IntelIOMMUState *s);
ed7b8fbc
LT
1479
1480static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1481{
1482 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1483 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1484}
1485
1486static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1487{
1488 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1489
7feb51b7
PX
1490 trace_vtd_inv_qi_enable(en);
1491
ed7b8fbc 1492 if (en) {
37f51384 1493 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
8991c460
LP
1494 /* 2^(x+8) entries */
1495 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1496 s->qi_enabled = true;
1497 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1498 /* Ok - report back to driver */
1499 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1500
1501 if (s->iq_tail != 0) {
1502 /*
1503 * This is a spec violation but Windows guests are known to set up
1504 * Queued Invalidation this way so we allow the write and process
1505 * Invalidation Descriptors right away.
1506 */
1507 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1508 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1509 vtd_fetch_inv_desc(s);
1510 }
ed7b8fbc
LT
1511 }
1512 } else {
1513 if (vtd_queued_inv_disable_check(s)) {
1514 /* disable Queued Invalidation */
1515 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1516 s->iq_head = 0;
1517 s->qi_enabled = false;
1518 /* Ok - report back to driver */
1519 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1520 } else {
7feb51b7 1521 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
ed7b8fbc
LT
1522 }
1523 }
1524}
1525
1da12ec4
LT
1526/* Set Root Table Pointer */
1527static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1528{
1da12ec4
LT
1529 vtd_root_table_setup(s);
1530 /* Ok - report back to driver */
1531 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1532}
1533
a5861439
PX
1534/* Set Interrupt Remap Table Pointer */
1535static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1536{
a5861439
PX
1537 vtd_interrupt_remap_table_setup(s);
1538 /* Ok - report back to driver */
1539 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1540}
1541
1da12ec4
LT
1542/* Handle Translation Enable/Disable */
1543static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1544{
558e0024
PX
1545 if (s->dmar_enabled == en) {
1546 return;
1547 }
1548
7feb51b7 1549 trace_vtd_dmar_enable(en);
1da12ec4
LT
1550
1551 if (en) {
1552 s->dmar_enabled = true;
1553 /* Ok - report back to driver */
1554 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1555 } else {
1556 s->dmar_enabled = false;
1557
1558 /* Clear the index of Fault Recording Register */
1559 s->next_frcd_reg = 0;
1560 /* Ok - report back to driver */
1561 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1562 }
558e0024
PX
1563
1564 vtd_switch_address_space_all(s);
1da12ec4
LT
1565}
1566
80de52ba
PX
1567/* Handle Interrupt Remap Enable/Disable */
1568static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1569{
7feb51b7 1570 trace_vtd_ir_enable(en);
80de52ba
PX
1571
1572 if (en) {
1573 s->intr_enabled = true;
1574 /* Ok - report back to driver */
1575 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1576 } else {
1577 s->intr_enabled = false;
1578 /* Ok - report back to driver */
1579 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1580 }
1581}
1582
1da12ec4
LT
1583/* Handle write to Global Command Register */
1584static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1585{
1586 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1587 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1588 uint32_t changed = status ^ val;
1589
7feb51b7 1590 trace_vtd_reg_write_gcmd(status, val);
1da12ec4
LT
1591 if (changed & VTD_GCMD_TE) {
1592 /* Translation enable/disable */
1593 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1594 }
1595 if (val & VTD_GCMD_SRTP) {
1596 /* Set/update the root-table pointer */
1597 vtd_handle_gcmd_srtp(s);
1598 }
ed7b8fbc
LT
1599 if (changed & VTD_GCMD_QIE) {
1600 /* Queued Invalidation Enable */
1601 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1602 }
a5861439
PX
1603 if (val & VTD_GCMD_SIRTP) {
1604 /* Set/update the interrupt remapping root-table pointer */
1605 vtd_handle_gcmd_sirtp(s);
1606 }
80de52ba
PX
1607 if (changed & VTD_GCMD_IRE) {
1608 /* Interrupt remap enable/disable */
1609 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1610 }
1da12ec4
LT
1611}
1612
1613/* Handle write to Context Command Register */
1614static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1615{
1616 uint64_t ret;
1617 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1618
1619 /* Context-cache invalidation request */
1620 if (val & VTD_CCMD_ICC) {
ed7b8fbc 1621 if (s->qi_enabled) {
7feb51b7
PX
1622 trace_vtd_err("Queued Invalidation enabled, "
1623 "should not use register-based invalidation");
ed7b8fbc
LT
1624 return;
1625 }
1da12ec4
LT
1626 ret = vtd_context_cache_invalidate(s, val);
1627 /* Invalidation completed. Change something to show */
1628 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1629 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1630 ret);
1da12ec4
LT
1631 }
1632}
1633
1634/* Handle write to IOTLB Invalidation Register */
1635static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1636{
1637 uint64_t ret;
1638 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1639
1640 /* IOTLB invalidation request */
1641 if (val & VTD_TLB_IVT) {
ed7b8fbc 1642 if (s->qi_enabled) {
7feb51b7
PX
1643 trace_vtd_err("Queued Invalidation enabled, "
1644 "should not use register-based invalidation.");
ed7b8fbc
LT
1645 return;
1646 }
1da12ec4
LT
1647 ret = vtd_iotlb_flush(s, val);
1648 /* Invalidation completed. Change something to show */
1649 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1650 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1651 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1da12ec4
LT
1652 }
1653}
1654
ed7b8fbc
LT
1655/* Fetch an Invalidation Descriptor from the Invalidation Queue */
1656static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1657 VTDInvDesc *inv_desc)
1658{
1659 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1660 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1661 sizeof(*inv_desc))) {
7feb51b7 1662 trace_vtd_err("Read INV DESC failed.");
ed7b8fbc
LT
1663 inv_desc->lo = 0;
1664 inv_desc->hi = 0;
ed7b8fbc
LT
1665 return false;
1666 }
1667 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1668 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1669 return true;
1670}
1671
1672static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1673{
1674 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1675 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
bc535e59 1676 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
ed7b8fbc
LT
1677 return false;
1678 }
1679 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1680 /* Status Write */
1681 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1682 VTD_INV_DESC_WAIT_DATA_SHIFT);
1683
1684 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1685
1686 /* FIXME: need to be masked with HAW? */
1687 dma_addr_t status_addr = inv_desc->hi;
bc535e59 1688 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
ed7b8fbc
LT
1689 status_data = cpu_to_le32(status_data);
1690 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1691 sizeof(status_data))) {
bc535e59 1692 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
ed7b8fbc
LT
1693 return false;
1694 }
1695 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1696 /* Interrupt flag */
ed7b8fbc
LT
1697 vtd_generate_completion_event(s);
1698 } else {
bc535e59 1699 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
ed7b8fbc
LT
1700 return false;
1701 }
1702 return true;
1703}
1704
d92fa2dc
LT
1705static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1706 VTDInvDesc *inv_desc)
1707{
bc535e59
PX
1708 uint16_t sid, fmask;
1709
d92fa2dc 1710 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
bc535e59 1711 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
d92fa2dc
LT
1712 return false;
1713 }
1714 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1715 case VTD_INV_DESC_CC_DOMAIN:
bc535e59
PX
1716 trace_vtd_inv_desc_cc_domain(
1717 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
d92fa2dc
LT
1718 /* Fall through */
1719 case VTD_INV_DESC_CC_GLOBAL:
d92fa2dc
LT
1720 vtd_context_global_invalidate(s);
1721 break;
1722
1723 case VTD_INV_DESC_CC_DEVICE:
bc535e59
PX
1724 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1725 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1726 vtd_context_device_invalidate(s, sid, fmask);
d92fa2dc
LT
1727 break;
1728
1729 default:
bc535e59 1730 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
d92fa2dc
LT
1731 return false;
1732 }
1733 return true;
1734}
1735
b5a280c0
LT
1736static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1737{
1738 uint16_t domain_id;
1739 uint8_t am;
1740 hwaddr addr;
1741
1742 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1743 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
bc535e59 1744 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
b5a280c0
LT
1745 return false;
1746 }
1747
1748 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1749 case VTD_INV_DESC_IOTLB_GLOBAL:
b5a280c0
LT
1750 vtd_iotlb_global_invalidate(s);
1751 break;
1752
1753 case VTD_INV_DESC_IOTLB_DOMAIN:
1754 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
b5a280c0
LT
1755 vtd_iotlb_domain_invalidate(s, domain_id);
1756 break;
1757
1758 case VTD_INV_DESC_IOTLB_PAGE:
1759 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1760 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1761 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
b5a280c0 1762 if (am > VTD_MAMV) {
bc535e59 1763 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
b5a280c0
LT
1764 return false;
1765 }
1766 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1767 break;
1768
1769 default:
bc535e59 1770 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
b5a280c0
LT
1771 return false;
1772 }
1773 return true;
1774}
1775
02a2cbc8
PX
1776static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1777 VTDInvDesc *inv_desc)
1778{
7feb51b7
PX
1779 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1780 inv_desc->iec.index,
1781 inv_desc->iec.index_mask);
02a2cbc8
PX
1782
1783 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1784 inv_desc->iec.index,
1785 inv_desc->iec.index_mask);
554f5e16
JW
1786 return true;
1787}
1788
1789static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1790 VTDInvDesc *inv_desc)
1791{
1792 VTDAddressSpace *vtd_dev_as;
1793 IOMMUTLBEntry entry;
1794 struct VTDBus *vtd_bus;
1795 hwaddr addr;
1796 uint64_t sz;
1797 uint16_t sid;
1798 uint8_t devfn;
1799 bool size;
1800 uint8_t bus_num;
1801
1802 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1803 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1804 devfn = sid & 0xff;
1805 bus_num = sid >> 8;
1806 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1807
1808 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1809 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
7feb51b7 1810 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
554f5e16
JW
1811 return false;
1812 }
1813
1814 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1815 if (!vtd_bus) {
1816 goto done;
1817 }
1818
1819 vtd_dev_as = vtd_bus->dev_as[devfn];
1820 if (!vtd_dev_as) {
1821 goto done;
1822 }
1823
04eb6247
JW
1824 /* According to ATS spec table 2.4:
1825 * S = 0, bits 15:12 = xxxx range size: 4K
1826 * S = 1, bits 15:12 = xxx0 range size: 8K
1827 * S = 1, bits 15:12 = xx01 range size: 16K
1828 * S = 1, bits 15:12 = x011 range size: 32K
1829 * S = 1, bits 15:12 = 0111 range size: 64K
1830 * ...
1831 */
554f5e16 1832 if (size) {
04eb6247 1833 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
554f5e16
JW
1834 addr &= ~(sz - 1);
1835 } else {
1836 sz = VTD_PAGE_SIZE;
1837 }
02a2cbc8 1838
554f5e16
JW
1839 entry.target_as = &vtd_dev_as->as;
1840 entry.addr_mask = sz - 1;
1841 entry.iova = addr;
1842 entry.perm = IOMMU_NONE;
1843 entry.translated_addr = 0;
10315b9b 1844 memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
554f5e16
JW
1845
1846done:
02a2cbc8
PX
1847 return true;
1848}
1849
ed7b8fbc
LT
1850static bool vtd_process_inv_desc(IntelIOMMUState *s)
1851{
1852 VTDInvDesc inv_desc;
1853 uint8_t desc_type;
1854
7feb51b7 1855 trace_vtd_inv_qi_head(s->iq_head);
ed7b8fbc
LT
1856 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1857 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1858 return false;
1859 }
1860 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1861 /* FIXME: should update at first or at last? */
1862 s->iq_last_desc_type = desc_type;
1863
1864 switch (desc_type) {
1865 case VTD_INV_DESC_CC:
bc535e59 1866 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
d92fa2dc
LT
1867 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1868 return false;
1869 }
ed7b8fbc
LT
1870 break;
1871
1872 case VTD_INV_DESC_IOTLB:
bc535e59 1873 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
b5a280c0
LT
1874 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1875 return false;
1876 }
ed7b8fbc
LT
1877 break;
1878
1879 case VTD_INV_DESC_WAIT:
bc535e59 1880 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
ed7b8fbc
LT
1881 if (!vtd_process_wait_desc(s, &inv_desc)) {
1882 return false;
1883 }
1884 break;
1885
b7910472 1886 case VTD_INV_DESC_IEC:
bc535e59 1887 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
02a2cbc8
PX
1888 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1889 return false;
1890 }
b7910472
PX
1891 break;
1892
554f5e16 1893 case VTD_INV_DESC_DEVICE:
7feb51b7 1894 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
554f5e16
JW
1895 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1896 return false;
1897 }
1898 break;
1899
ed7b8fbc 1900 default:
bc535e59 1901 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
ed7b8fbc
LT
1902 return false;
1903 }
1904 s->iq_head++;
1905 if (s->iq_head == s->iq_size) {
1906 s->iq_head = 0;
1907 }
1908 return true;
1909}
1910
1911/* Try to fetch and process more Invalidation Descriptors */
1912static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1913{
7feb51b7
PX
1914 trace_vtd_inv_qi_fetch();
1915
ed7b8fbc
LT
1916 if (s->iq_tail >= s->iq_size) {
1917 /* Detects an invalid Tail pointer */
7feb51b7 1918 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
ed7b8fbc
LT
1919 vtd_handle_inv_queue_error(s);
1920 return;
1921 }
1922 while (s->iq_head != s->iq_tail) {
1923 if (!vtd_process_inv_desc(s)) {
1924 /* Invalidation Queue Errors */
1925 vtd_handle_inv_queue_error(s);
1926 break;
1927 }
1928 /* Must update the IQH_REG in time */
1929 vtd_set_quad_raw(s, DMAR_IQH_REG,
1930 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1931 VTD_IQH_QH_MASK);
1932 }
1933}
1934
1935/* Handle write to Invalidation Queue Tail Register */
1936static void vtd_handle_iqt_write(IntelIOMMUState *s)
1937{
1938 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1939
1940 s->iq_tail = VTD_IQT_QT(val);
7feb51b7
PX
1941 trace_vtd_inv_qi_tail(s->iq_tail);
1942
ed7b8fbc
LT
1943 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1944 /* Process Invalidation Queue here */
1945 vtd_fetch_inv_desc(s);
1946 }
1947}
1948
1da12ec4
LT
1949static void vtd_handle_fsts_write(IntelIOMMUState *s)
1950{
1951 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1952 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1953 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1954
1955 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1956 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
7feb51b7 1957 trace_vtd_fsts_clear_ip();
1da12ec4 1958 }
ed7b8fbc
LT
1959 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1960 * Descriptors if there are any when Queued Invalidation is enabled?
1961 */
1da12ec4
LT
1962}
1963
1964static void vtd_handle_fectl_write(IntelIOMMUState *s)
1965{
1966 uint32_t fectl_reg;
1967 /* FIXME: when software clears the IM field, check the IP field. But do we
1968 * need to compare the old value and the new value to conclude that
1969 * software clears the IM field? Or just check if the IM field is zero?
1970 */
1971 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
7feb51b7
PX
1972
1973 trace_vtd_reg_write_fectl(fectl_reg);
1974
1da12ec4
LT
1975 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1976 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1977 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1da12ec4
LT
1978 }
1979}
1980
ed7b8fbc
LT
1981static void vtd_handle_ics_write(IntelIOMMUState *s)
1982{
1983 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1984 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1985
1986 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
7feb51b7 1987 trace_vtd_reg_ics_clear_ip();
ed7b8fbc 1988 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
ed7b8fbc
LT
1989 }
1990}
1991
1992static void vtd_handle_iectl_write(IntelIOMMUState *s)
1993{
1994 uint32_t iectl_reg;
1995 /* FIXME: when software clears the IM field, check the IP field. But do we
1996 * need to compare the old value and the new value to conclude that
1997 * software clears the IM field? Or just check if the IM field is zero?
1998 */
1999 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
7feb51b7
PX
2000
2001 trace_vtd_reg_write_iectl(iectl_reg);
2002
ed7b8fbc
LT
2003 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2004 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2005 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
ed7b8fbc
LT
2006 }
2007}
2008
1da12ec4
LT
2009static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2010{
2011 IntelIOMMUState *s = opaque;
2012 uint64_t val;
2013
7feb51b7
PX
2014 trace_vtd_reg_read(addr, size);
2015
1da12ec4 2016 if (addr + size > DMAR_REG_SIZE) {
7feb51b7 2017 trace_vtd_err("Read MMIO over range.");
1da12ec4
LT
2018 return (uint64_t)-1;
2019 }
2020
2021 switch (addr) {
2022 /* Root Table Address Register, 64-bit */
2023 case DMAR_RTADDR_REG:
2024 if (size == 4) {
2025 val = s->root & ((1ULL << 32) - 1);
2026 } else {
2027 val = s->root;
2028 }
2029 break;
2030
2031 case DMAR_RTADDR_REG_HI:
2032 assert(size == 4);
2033 val = s->root >> 32;
2034 break;
2035
ed7b8fbc
LT
2036 /* Invalidation Queue Address Register, 64-bit */
2037 case DMAR_IQA_REG:
2038 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2039 if (size == 4) {
2040 val = val & ((1ULL << 32) - 1);
2041 }
2042 break;
2043
2044 case DMAR_IQA_REG_HI:
2045 assert(size == 4);
2046 val = s->iq >> 32;
2047 break;
2048
1da12ec4
LT
2049 default:
2050 if (size == 4) {
2051 val = vtd_get_long(s, addr);
2052 } else {
2053 val = vtd_get_quad(s, addr);
2054 }
2055 }
7feb51b7 2056
1da12ec4
LT
2057 return val;
2058}
2059
2060static void vtd_mem_write(void *opaque, hwaddr addr,
2061 uint64_t val, unsigned size)
2062{
2063 IntelIOMMUState *s = opaque;
2064
7feb51b7
PX
2065 trace_vtd_reg_write(addr, size, val);
2066
1da12ec4 2067 if (addr + size > DMAR_REG_SIZE) {
7feb51b7 2068 trace_vtd_err("Write MMIO over range.");
1da12ec4
LT
2069 return;
2070 }
2071
2072 switch (addr) {
2073 /* Global Command Register, 32-bit */
2074 case DMAR_GCMD_REG:
1da12ec4
LT
2075 vtd_set_long(s, addr, val);
2076 vtd_handle_gcmd_write(s);
2077 break;
2078
2079 /* Context Command Register, 64-bit */
2080 case DMAR_CCMD_REG:
1da12ec4
LT
2081 if (size == 4) {
2082 vtd_set_long(s, addr, val);
2083 } else {
2084 vtd_set_quad(s, addr, val);
2085 vtd_handle_ccmd_write(s);
2086 }
2087 break;
2088
2089 case DMAR_CCMD_REG_HI:
1da12ec4
LT
2090 assert(size == 4);
2091 vtd_set_long(s, addr, val);
2092 vtd_handle_ccmd_write(s);
2093 break;
2094
2095 /* IOTLB Invalidation Register, 64-bit */
2096 case DMAR_IOTLB_REG:
1da12ec4
LT
2097 if (size == 4) {
2098 vtd_set_long(s, addr, val);
2099 } else {
2100 vtd_set_quad(s, addr, val);
2101 vtd_handle_iotlb_write(s);
2102 }
2103 break;
2104
2105 case DMAR_IOTLB_REG_HI:
1da12ec4
LT
2106 assert(size == 4);
2107 vtd_set_long(s, addr, val);
2108 vtd_handle_iotlb_write(s);
2109 break;
2110
b5a280c0
LT
2111 /* Invalidate Address Register, 64-bit */
2112 case DMAR_IVA_REG:
b5a280c0
LT
2113 if (size == 4) {
2114 vtd_set_long(s, addr, val);
2115 } else {
2116 vtd_set_quad(s, addr, val);
2117 }
2118 break;
2119
2120 case DMAR_IVA_REG_HI:
b5a280c0
LT
2121 assert(size == 4);
2122 vtd_set_long(s, addr, val);
2123 break;
2124
1da12ec4
LT
2125 /* Fault Status Register, 32-bit */
2126 case DMAR_FSTS_REG:
1da12ec4
LT
2127 assert(size == 4);
2128 vtd_set_long(s, addr, val);
2129 vtd_handle_fsts_write(s);
2130 break;
2131
2132 /* Fault Event Control Register, 32-bit */
2133 case DMAR_FECTL_REG:
1da12ec4
LT
2134 assert(size == 4);
2135 vtd_set_long(s, addr, val);
2136 vtd_handle_fectl_write(s);
2137 break;
2138
2139 /* Fault Event Data Register, 32-bit */
2140 case DMAR_FEDATA_REG:
1da12ec4
LT
2141 assert(size == 4);
2142 vtd_set_long(s, addr, val);
2143 break;
2144
2145 /* Fault Event Address Register, 32-bit */
2146 case DMAR_FEADDR_REG:
b7a7bb35
JK
2147 if (size == 4) {
2148 vtd_set_long(s, addr, val);
2149 } else {
2150 /*
2151 * While the register is 32-bit only, some guests (Xen...) write to
2152 * it with 64-bit.
2153 */
2154 vtd_set_quad(s, addr, val);
2155 }
1da12ec4
LT
2156 break;
2157
2158 /* Fault Event Upper Address Register, 32-bit */
2159 case DMAR_FEUADDR_REG:
1da12ec4
LT
2160 assert(size == 4);
2161 vtd_set_long(s, addr, val);
2162 break;
2163
2164 /* Protected Memory Enable Register, 32-bit */
2165 case DMAR_PMEN_REG:
1da12ec4
LT
2166 assert(size == 4);
2167 vtd_set_long(s, addr, val);
2168 break;
2169
2170 /* Root Table Address Register, 64-bit */
2171 case DMAR_RTADDR_REG:
1da12ec4
LT
2172 if (size == 4) {
2173 vtd_set_long(s, addr, val);
2174 } else {
2175 vtd_set_quad(s, addr, val);
2176 }
2177 break;
2178
2179 case DMAR_RTADDR_REG_HI:
1da12ec4
LT
2180 assert(size == 4);
2181 vtd_set_long(s, addr, val);
2182 break;
2183
ed7b8fbc
LT
2184 /* Invalidation Queue Tail Register, 64-bit */
2185 case DMAR_IQT_REG:
ed7b8fbc
LT
2186 if (size == 4) {
2187 vtd_set_long(s, addr, val);
2188 } else {
2189 vtd_set_quad(s, addr, val);
2190 }
2191 vtd_handle_iqt_write(s);
2192 break;
2193
2194 case DMAR_IQT_REG_HI:
ed7b8fbc
LT
2195 assert(size == 4);
2196 vtd_set_long(s, addr, val);
2197 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2198 break;
2199
2200 /* Invalidation Queue Address Register, 64-bit */
2201 case DMAR_IQA_REG:
ed7b8fbc
LT
2202 if (size == 4) {
2203 vtd_set_long(s, addr, val);
2204 } else {
2205 vtd_set_quad(s, addr, val);
2206 }
2207 break;
2208
2209 case DMAR_IQA_REG_HI:
ed7b8fbc
LT
2210 assert(size == 4);
2211 vtd_set_long(s, addr, val);
2212 break;
2213
2214 /* Invalidation Completion Status Register, 32-bit */
2215 case DMAR_ICS_REG:
ed7b8fbc
LT
2216 assert(size == 4);
2217 vtd_set_long(s, addr, val);
2218 vtd_handle_ics_write(s);
2219 break;
2220
2221 /* Invalidation Event Control Register, 32-bit */
2222 case DMAR_IECTL_REG:
ed7b8fbc
LT
2223 assert(size == 4);
2224 vtd_set_long(s, addr, val);
2225 vtd_handle_iectl_write(s);
2226 break;
2227
2228 /* Invalidation Event Data Register, 32-bit */
2229 case DMAR_IEDATA_REG:
ed7b8fbc
LT
2230 assert(size == 4);
2231 vtd_set_long(s, addr, val);
2232 break;
2233
2234 /* Invalidation Event Address Register, 32-bit */
2235 case DMAR_IEADDR_REG:
ed7b8fbc
LT
2236 assert(size == 4);
2237 vtd_set_long(s, addr, val);
2238 break;
2239
2240 /* Invalidation Event Upper Address Register, 32-bit */
2241 case DMAR_IEUADDR_REG:
ed7b8fbc
LT
2242 assert(size == 4);
2243 vtd_set_long(s, addr, val);
2244 break;
2245
1da12ec4
LT
2246 /* Fault Recording Registers, 128-bit */
2247 case DMAR_FRCD_REG_0_0:
1da12ec4
LT
2248 if (size == 4) {
2249 vtd_set_long(s, addr, val);
2250 } else {
2251 vtd_set_quad(s, addr, val);
2252 }
2253 break;
2254
2255 case DMAR_FRCD_REG_0_1:
1da12ec4
LT
2256 assert(size == 4);
2257 vtd_set_long(s, addr, val);
2258 break;
2259
2260 case DMAR_FRCD_REG_0_2:
1da12ec4
LT
2261 if (size == 4) {
2262 vtd_set_long(s, addr, val);
2263 } else {
2264 vtd_set_quad(s, addr, val);
2265 /* May clear bit 127 (Fault), update PPF */
2266 vtd_update_fsts_ppf(s);
2267 }
2268 break;
2269
2270 case DMAR_FRCD_REG_0_3:
1da12ec4
LT
2271 assert(size == 4);
2272 vtd_set_long(s, addr, val);
2273 /* May clear bit 127 (Fault), update PPF */
2274 vtd_update_fsts_ppf(s);
2275 break;
2276
a5861439 2277 case DMAR_IRTA_REG:
a5861439
PX
2278 if (size == 4) {
2279 vtd_set_long(s, addr, val);
2280 } else {
2281 vtd_set_quad(s, addr, val);
2282 }
2283 break;
2284
2285 case DMAR_IRTA_REG_HI:
a5861439
PX
2286 assert(size == 4);
2287 vtd_set_long(s, addr, val);
2288 break;
2289
1da12ec4 2290 default:
1da12ec4
LT
2291 if (size == 4) {
2292 vtd_set_long(s, addr, val);
2293 } else {
2294 vtd_set_quad(s, addr, val);
2295 }
2296 }
2297}
2298
3df9d748 2299static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
bf55b7af 2300 IOMMUAccessFlags flag)
1da12ec4
LT
2301{
2302 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2303 IntelIOMMUState *s = vtd_as->iommu_state;
b9313021
PX
2304 IOMMUTLBEntry iotlb = {
2305 /* We'll fill in the rest later. */
1da12ec4 2306 .target_as = &address_space_memory,
1da12ec4 2307 };
b9313021 2308 bool success;
1da12ec4 2309
b9313021
PX
2310 if (likely(s->dmar_enabled)) {
2311 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2312 addr, flag & IOMMU_WO, &iotlb);
2313 } else {
1da12ec4 2314 /* DMAR disabled, passthrough, use 4k-page*/
b9313021
PX
2315 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2316 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2317 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2318 iotlb.perm = IOMMU_RW;
2319 success = true;
1da12ec4
LT
2320 }
2321
b9313021
PX
2322 if (likely(success)) {
2323 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2324 VTD_PCI_SLOT(vtd_as->devfn),
2325 VTD_PCI_FUNC(vtd_as->devfn),
2326 iotlb.iova, iotlb.translated_addr,
2327 iotlb.addr_mask);
2328 } else {
2329 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2330 VTD_PCI_SLOT(vtd_as->devfn),
2331 VTD_PCI_FUNC(vtd_as->devfn),
2332 iotlb.iova);
2333 }
7feb51b7 2334
b9313021 2335 return iotlb;
1da12ec4
LT
2336}
2337
3df9d748 2338static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
5bf3d319
PX
2339 IOMMUNotifierFlag old,
2340 IOMMUNotifierFlag new)
3cb3b154
AW
2341{
2342 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
dd4d607e 2343 IntelIOMMUState *s = vtd_as->iommu_state;
3cb3b154 2344
dd4d607e 2345 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
4c427a4c 2346 error_report("We need to set caching-mode=1 for intel-iommu to enable "
dd4d607e 2347 "device assignment with IOMMU protection.");
a3276f78
PX
2348 exit(1);
2349 }
dd4d607e
PX
2350
2351 if (old == IOMMU_NOTIFIER_NONE) {
b4a4ba0d
PX
2352 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2353 } else if (new == IOMMU_NOTIFIER_NONE) {
2354 QLIST_REMOVE(vtd_as, next);
dd4d607e 2355 }
3cb3b154
AW
2356}
2357
552a1e01
PX
2358static int vtd_post_load(void *opaque, int version_id)
2359{
2360 IntelIOMMUState *iommu = opaque;
2361
2362 /*
2363 * Memory regions are dynamically turned on/off depending on
2364 * context entry configurations from the guest. After migration,
2365 * we need to make sure the memory regions are still correct.
2366 */
2367 vtd_switch_address_space_all(iommu);
2368
2369 return 0;
2370}
2371
1da12ec4
LT
2372static const VMStateDescription vtd_vmstate = {
2373 .name = "iommu-intel",
8cdcf3c1
PX
2374 .version_id = 1,
2375 .minimum_version_id = 1,
2376 .priority = MIG_PRI_IOMMU,
552a1e01 2377 .post_load = vtd_post_load,
8cdcf3c1
PX
2378 .fields = (VMStateField[]) {
2379 VMSTATE_UINT64(root, IntelIOMMUState),
2380 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2381 VMSTATE_UINT64(iq, IntelIOMMUState),
2382 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2383 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2384 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2385 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2386 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2387 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2388 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2389 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2390 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2391 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2392 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2393 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2394 VMSTATE_END_OF_LIST()
2395 }
1da12ec4
LT
2396};
2397
2398static const MemoryRegionOps vtd_mem_ops = {
2399 .read = vtd_mem_read,
2400 .write = vtd_mem_write,
2401 .endianness = DEVICE_LITTLE_ENDIAN,
2402 .impl = {
2403 .min_access_size = 4,
2404 .max_access_size = 8,
2405 },
2406 .valid = {
2407 .min_access_size = 4,
2408 .max_access_size = 8,
2409 },
2410};
2411
2412static Property vtd_properties[] = {
2413 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
e6b6af05
RK
2414 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2415 ON_OFF_AUTO_AUTO),
fb506e70 2416 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
37f51384
PS
2417 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2418 VTD_HOST_ADDRESS_WIDTH),
3b40f0e5 2419 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
1da12ec4
LT
2420 DEFINE_PROP_END_OF_LIST(),
2421};
2422
651e4cef
PX
2423/* Read IRTE entry with specific index */
2424static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
bc38ee10 2425 VTD_IR_TableEntry *entry, uint16_t sid)
651e4cef 2426{
ede9c94a
PX
2427 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2428 {0xffff, 0xfffb, 0xfff9, 0xfff8};
651e4cef 2429 dma_addr_t addr = 0x00;
ede9c94a
PX
2430 uint16_t mask, source_id;
2431 uint8_t bus, bus_max, bus_min;
651e4cef
PX
2432
2433 addr = iommu->intr_root + index * sizeof(*entry);
2434 if (dma_memory_read(&address_space_memory, addr, entry,
2435 sizeof(*entry))) {
7feb51b7 2436 trace_vtd_err("Memory read failed for IRTE.");
651e4cef
PX
2437 return -VTD_FR_IR_ROOT_INVAL;
2438 }
2439
7feb51b7
PX
2440 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2441 le64_to_cpu(entry->data[0]));
2442
bc38ee10 2443 if (!entry->irte.present) {
7feb51b7
PX
2444 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2445 le64_to_cpu(entry->data[0]));
651e4cef
PX
2446 return -VTD_FR_IR_ENTRY_P;
2447 }
2448
bc38ee10
MT
2449 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2450 entry->irte.__reserved_2) {
7feb51b7
PX
2451 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2452 le64_to_cpu(entry->data[0]));
651e4cef
PX
2453 return -VTD_FR_IR_IRTE_RSVD;
2454 }
2455
ede9c94a
PX
2456 if (sid != X86_IOMMU_SID_INVALID) {
2457 /* Validate IRTE SID */
bc38ee10
MT
2458 source_id = le32_to_cpu(entry->irte.source_id);
2459 switch (entry->irte.sid_vtype) {
ede9c94a 2460 case VTD_SVT_NONE:
ede9c94a
PX
2461 break;
2462
2463 case VTD_SVT_ALL:
bc38ee10 2464 mask = vtd_svt_mask[entry->irte.sid_q];
ede9c94a 2465 if ((source_id & mask) != (sid & mask)) {
7feb51b7 2466 trace_vtd_err_irte_sid(index, sid, source_id);
ede9c94a
PX
2467 return -VTD_FR_IR_SID_ERR;
2468 }
2469 break;
2470
2471 case VTD_SVT_BUS:
2472 bus_max = source_id >> 8;
2473 bus_min = source_id & 0xff;
2474 bus = sid >> 8;
2475 if (bus > bus_max || bus < bus_min) {
7feb51b7 2476 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
ede9c94a
PX
2477 return -VTD_FR_IR_SID_ERR;
2478 }
2479 break;
2480
2481 default:
7feb51b7 2482 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
ede9c94a
PX
2483 /* Take this as verification failure. */
2484 return -VTD_FR_IR_SID_ERR;
2485 break;
2486 }
2487 }
651e4cef
PX
2488
2489 return 0;
2490}
2491
2492/* Fetch IRQ information of specific IR index */
ede9c94a
PX
2493static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2494 VTDIrq *irq, uint16_t sid)
651e4cef 2495{
bc38ee10 2496 VTD_IR_TableEntry irte = {};
651e4cef
PX
2497 int ret = 0;
2498
ede9c94a 2499 ret = vtd_irte_get(iommu, index, &irte, sid);
651e4cef
PX
2500 if (ret) {
2501 return ret;
2502 }
2503
bc38ee10
MT
2504 irq->trigger_mode = irte.irte.trigger_mode;
2505 irq->vector = irte.irte.vector;
2506 irq->delivery_mode = irte.irte.delivery_mode;
2507 irq->dest = le32_to_cpu(irte.irte.dest_id);
28589311 2508 if (!iommu->intr_eime) {
651e4cef
PX
2509#define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2510#define VTD_IR_APIC_DEST_SHIFT (8)
28589311
JK
2511 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2512 VTD_IR_APIC_DEST_SHIFT;
2513 }
bc38ee10
MT
2514 irq->dest_mode = irte.irte.dest_mode;
2515 irq->redir_hint = irte.irte.redir_hint;
651e4cef 2516
7feb51b7
PX
2517 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2518 irq->delivery_mode, irq->dest, irq->dest_mode);
651e4cef
PX
2519
2520 return 0;
2521}
2522
2523/* Generate one MSI message from VTDIrq info */
2524static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2525{
2526 VTD_MSIMessage msg = {};
2527
2528 /* Generate address bits */
2529 msg.dest_mode = irq->dest_mode;
2530 msg.redir_hint = irq->redir_hint;
2531 msg.dest = irq->dest;
32946019 2532 msg.__addr_hi = irq->dest & 0xffffff00;
651e4cef
PX
2533 msg.__addr_head = cpu_to_le32(0xfee);
2534 /* Keep this from original MSI address bits */
2535 msg.__not_used = irq->msi_addr_last_bits;
2536
2537 /* Generate data bits */
2538 msg.vector = irq->vector;
2539 msg.delivery_mode = irq->delivery_mode;
2540 msg.level = 1;
2541 msg.trigger_mode = irq->trigger_mode;
2542
2543 msg_out->address = msg.msi_addr;
2544 msg_out->data = msg.msi_data;
2545}
2546
2547/* Interrupt remapping for MSI/MSI-X entry */
2548static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2549 MSIMessage *origin,
ede9c94a
PX
2550 MSIMessage *translated,
2551 uint16_t sid)
651e4cef
PX
2552{
2553 int ret = 0;
2554 VTD_IR_MSIAddress addr;
2555 uint16_t index;
09cd058a 2556 VTDIrq irq = {};
651e4cef
PX
2557
2558 assert(origin && translated);
2559
7feb51b7
PX
2560 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2561
651e4cef 2562 if (!iommu || !iommu->intr_enabled) {
e7a3b91f
PX
2563 memcpy(translated, origin, sizeof(*origin));
2564 goto out;
651e4cef
PX
2565 }
2566
2567 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
7feb51b7
PX
2568 trace_vtd_err("MSI address high 32 bits non-zero when "
2569 "Interrupt Remapping enabled.");
651e4cef
PX
2570 return -VTD_FR_IR_REQ_RSVD;
2571 }
2572
2573 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
1a43713b 2574 if (addr.addr.__head != 0xfee) {
7feb51b7 2575 trace_vtd_err("MSI addr low 32 bit invalid.");
651e4cef
PX
2576 return -VTD_FR_IR_REQ_RSVD;
2577 }
2578
2579 /* This is compatible mode. */
bc38ee10 2580 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
e7a3b91f
PX
2581 memcpy(translated, origin, sizeof(*origin));
2582 goto out;
651e4cef
PX
2583 }
2584
bc38ee10 2585 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
651e4cef
PX
2586
2587#define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2588#define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2589
bc38ee10 2590 if (addr.addr.sub_valid) {
651e4cef
PX
2591 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2592 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2593 }
2594
ede9c94a 2595 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
651e4cef
PX
2596 if (ret) {
2597 return ret;
2598 }
2599
bc38ee10 2600 if (addr.addr.sub_valid) {
7feb51b7 2601 trace_vtd_ir_remap_type("MSI");
651e4cef 2602 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
7feb51b7 2603 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
651e4cef
PX
2604 return -VTD_FR_IR_REQ_RSVD;
2605 }
2606 } else {
2607 uint8_t vector = origin->data & 0xff;
dea651a9
FW
2608 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2609
7feb51b7 2610 trace_vtd_ir_remap_type("IOAPIC");
651e4cef
PX
2611 /* IOAPIC entry vector should be aligned with IRTE vector
2612 * (see vt-d spec 5.1.5.1). */
2613 if (vector != irq.vector) {
7feb51b7 2614 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
651e4cef 2615 }
dea651a9
FW
2616
2617 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2618 * (see vt-d spec 5.1.5.1). */
2619 if (trigger_mode != irq.trigger_mode) {
7feb51b7
PX
2620 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2621 irq.trigger_mode);
dea651a9 2622 }
651e4cef
PX
2623 }
2624
2625 /*
2626 * We'd better keep the last two bits, assuming that guest OS
2627 * might modify it. Keep it does not hurt after all.
2628 */
bc38ee10 2629 irq.msi_addr_last_bits = addr.addr.__not_care;
651e4cef
PX
2630
2631 /* Translate VTDIrq to MSI message */
2632 vtd_generate_msi_message(&irq, translated);
2633
e7a3b91f 2634out:
7feb51b7
PX
2635 trace_vtd_ir_remap_msi(origin->address, origin->data,
2636 translated->address, translated->data);
651e4cef
PX
2637 return 0;
2638}
2639
8b5ed7df
PX
2640static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2641 MSIMessage *dst, uint16_t sid)
2642{
ede9c94a
PX
2643 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2644 src, dst, sid);
8b5ed7df
PX
2645}
2646
651e4cef
PX
2647static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2648 uint64_t *data, unsigned size,
2649 MemTxAttrs attrs)
2650{
2651 return MEMTX_OK;
2652}
2653
2654static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2655 uint64_t value, unsigned size,
2656 MemTxAttrs attrs)
2657{
2658 int ret = 0;
09cd058a 2659 MSIMessage from = {}, to = {};
ede9c94a 2660 uint16_t sid = X86_IOMMU_SID_INVALID;
651e4cef
PX
2661
2662 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2663 from.data = (uint32_t) value;
2664
ede9c94a
PX
2665 if (!attrs.unspecified) {
2666 /* We have explicit Source ID */
2667 sid = attrs.requester_id;
2668 }
2669
2670 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
651e4cef
PX
2671 if (ret) {
2672 /* TODO: report error */
651e4cef
PX
2673 /* Drop this interrupt */
2674 return MEMTX_ERROR;
2675 }
2676
32946019 2677 apic_get_class()->send_msi(&to);
651e4cef
PX
2678
2679 return MEMTX_OK;
2680}
2681
2682static const MemoryRegionOps vtd_mem_ir_ops = {
2683 .read_with_attrs = vtd_mem_ir_read,
2684 .write_with_attrs = vtd_mem_ir_write,
2685 .endianness = DEVICE_LITTLE_ENDIAN,
2686 .impl = {
2687 .min_access_size = 4,
2688 .max_access_size = 4,
2689 },
2690 .valid = {
2691 .min_access_size = 4,
2692 .max_access_size = 4,
2693 },
2694};
7df953bd
KO
2695
2696VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2697{
2698 uintptr_t key = (uintptr_t)bus;
2699 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2700 VTDAddressSpace *vtd_dev_as;
e0a3c8cc 2701 char name[128];
7df953bd
KO
2702
2703 if (!vtd_bus) {
2d3fc581
JW
2704 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2705 *new_key = (uintptr_t)bus;
7df953bd 2706 /* No corresponding free() */
04af0e18 2707 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
bf33cc75 2708 PCI_DEVFN_MAX);
7df953bd 2709 vtd_bus->bus = bus;
2d3fc581 2710 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
7df953bd
KO
2711 }
2712
2713 vtd_dev_as = vtd_bus->dev_as[devfn];
2714
2715 if (!vtd_dev_as) {
e0a3c8cc 2716 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
7df953bd
KO
2717 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2718
2719 vtd_dev_as->bus = bus;
2720 vtd_dev_as->devfn = (uint8_t)devfn;
2721 vtd_dev_as->iommu_state = s;
2722 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
558e0024
PX
2723
2724 /*
2725 * Memory region relationships looks like (Address range shows
2726 * only lower 32 bits to make it short in length...):
2727 *
2728 * |-----------------+-------------------+----------|
2729 * | Name | Address range | Priority |
2730 * |-----------------+-------------------+----------+
2731 * | vtd_root | 00000000-ffffffff | 0 |
2732 * | intel_iommu | 00000000-ffffffff | 1 |
2733 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2734 * | intel_iommu_ir | fee00000-feefffff | 64 |
2735 * |-----------------+-------------------+----------|
2736 *
2737 * We enable/disable DMAR by switching enablement for
2738 * vtd_sys_alias and intel_iommu regions. IR region is always
2739 * enabled.
2740 */
1221a474
AK
2741 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2742 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2743 "intel_iommu_dmar",
558e0024
PX
2744 UINT64_MAX);
2745 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2746 "vtd_sys_alias", get_system_memory(),
2747 0, memory_region_size(get_system_memory()));
651e4cef
PX
2748 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2749 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2750 VTD_INTERRUPT_ADDR_SIZE);
558e0024
PX
2751 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2752 "vtd_root", UINT64_MAX);
2753 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2754 VTD_INTERRUPT_ADDR_FIRST,
2755 &vtd_dev_as->iommu_ir, 64);
2756 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2757 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2758 &vtd_dev_as->sys_alias, 1);
2759 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3df9d748
AK
2760 MEMORY_REGION(&vtd_dev_as->iommu),
2761 1);
558e0024 2762 vtd_switch_address_space(vtd_dev_as);
7df953bd
KO
2763 }
2764 return vtd_dev_as;
2765}
2766
dd4d607e
PX
2767/* Unmap the whole range in the notifier's scope. */
2768static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2769{
2770 IOMMUTLBEntry entry;
2771 hwaddr size;
2772 hwaddr start = n->start;
2773 hwaddr end = n->end;
37f51384 2774 IntelIOMMUState *s = as->iommu_state;
dd4d607e
PX
2775
2776 /*
2777 * Note: all the codes in this function has a assumption that IOVA
2778 * bits are no more than VTD_MGAW bits (which is restricted by
2779 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2780 */
2781
37f51384 2782 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
dd4d607e
PX
2783 /*
2784 * Don't need to unmap regions that is bigger than the whole
2785 * VT-d supported address space size
2786 */
37f51384 2787 end = VTD_ADDRESS_SIZE(s->aw_bits);
dd4d607e
PX
2788 }
2789
2790 assert(start <= end);
2791 size = end - start;
2792
2793 if (ctpop64(size) != 1) {
2794 /*
2795 * This size cannot format a correct mask. Let's enlarge it to
2796 * suite the minimum available mask.
2797 */
2798 int n = 64 - clz64(size);
37f51384 2799 if (n > s->aw_bits) {
dd4d607e 2800 /* should not happen, but in case it happens, limit it */
37f51384 2801 n = s->aw_bits;
dd4d607e
PX
2802 }
2803 size = 1ULL << n;
2804 }
2805
2806 entry.target_as = &address_space_memory;
2807 /* Adjust iova for the size */
2808 entry.iova = n->start & ~(size - 1);
2809 /* This field is meaningless for unmap */
2810 entry.translated_addr = 0;
2811 entry.perm = IOMMU_NONE;
2812 entry.addr_mask = size - 1;
2813
2814 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2815 VTD_PCI_SLOT(as->devfn),
2816 VTD_PCI_FUNC(as->devfn),
2817 entry.iova, size);
2818
2819 memory_region_notify_one(n, &entry);
2820}
2821
2822static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2823{
dd4d607e
PX
2824 VTDAddressSpace *vtd_as;
2825 IOMMUNotifier *n;
2826
b4a4ba0d 2827 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
dd4d607e
PX
2828 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2829 vtd_address_space_unmap(vtd_as, n);
2830 }
2831 }
2832}
2833
f06a696d
PX
2834static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2835{
2836 memory_region_notify_one((IOMMUNotifier *)private, entry);
2837 return 0;
2838}
2839
3df9d748 2840static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
f06a696d 2841{
3df9d748 2842 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
f06a696d
PX
2843 IntelIOMMUState *s = vtd_as->iommu_state;
2844 uint8_t bus_n = pci_bus_num(vtd_as->bus);
2845 VTDContextEntry ce;
2846
dd4d607e
PX
2847 /*
2848 * The replay can be triggered by either a invalidation or a newly
2849 * created entry. No matter what, we release existing mappings
2850 * (it means flushing caches for UNMAP-only registers).
2851 */
2852 vtd_address_space_unmap(vtd_as, n);
2853
f06a696d 2854 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
f06a696d
PX
2855 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2856 PCI_FUNC(vtd_as->devfn),
2857 VTD_CONTEXT_ENTRY_DID(ce.hi),
2858 ce.hi, ce.lo);
37f51384
PS
2859 vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false,
2860 s->aw_bits);
f06a696d
PX
2861 } else {
2862 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2863 PCI_FUNC(vtd_as->devfn));
2864 }
2865
2866 return;
2867}
2868
1da12ec4
LT
2869/* Do the initialization. It will also be called when reset, so pay
2870 * attention when adding new initialization stuff.
2871 */
2872static void vtd_init(IntelIOMMUState *s)
2873{
d54bd7f8
PX
2874 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2875
1da12ec4
LT
2876 memset(s->csr, 0, DMAR_REG_SIZE);
2877 memset(s->wmask, 0, DMAR_REG_SIZE);
2878 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2879 memset(s->womask, 0, DMAR_REG_SIZE);
2880
1da12ec4
LT
2881 s->root = 0;
2882 s->root_extended = false;
2883 s->dmar_enabled = false;
2884 s->iq_head = 0;
2885 s->iq_tail = 0;
2886 s->iq = 0;
2887 s->iq_size = 0;
2888 s->qi_enabled = false;
2889 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2890 s->next_frcd_reg = 0;
92e5d85e
PS
2891 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
2892 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
37f51384
PS
2893 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
2894 if (s->aw_bits == VTD_HOST_AW_48BIT) {
2895 s->cap |= VTD_CAP_SAGAW_48bit;
2896 }
ed7b8fbc 2897 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1da12ec4 2898
92e5d85e
PS
2899 /*
2900 * Rsvd field masks for spte
2901 */
2902 vtd_paging_entry_rsvd_field[0] = ~0ULL;
37f51384
PS
2903 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
2904 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
2905 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
2906 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
2907 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
2908 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
2909 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
2910 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
92e5d85e 2911
d54bd7f8 2912 if (x86_iommu->intr_supported) {
e6b6af05
RK
2913 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2914 if (s->intr_eim == ON_OFF_AUTO_ON) {
2915 s->ecap |= VTD_ECAP_EIM;
2916 }
2917 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
d54bd7f8
PX
2918 }
2919
554f5e16
JW
2920 if (x86_iommu->dt_supported) {
2921 s->ecap |= VTD_ECAP_DT;
2922 }
2923
dbaabb25
PX
2924 if (x86_iommu->pt_supported) {
2925 s->ecap |= VTD_ECAP_PT;
2926 }
2927
3b40f0e5
ABD
2928 if (s->caching_mode) {
2929 s->cap |= VTD_CAP_CM;
2930 }
2931
d92fa2dc 2932 vtd_reset_context_cache(s);
b5a280c0 2933 vtd_reset_iotlb(s);
d92fa2dc 2934
1da12ec4
LT
2935 /* Define registers with default values and bit semantics */
2936 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2937 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2938 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2939 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2940 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2941 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2942 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2943 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2944 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2945
2946 /* Advanced Fault Logging not supported */
2947 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2948 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2949 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2950 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2951
2952 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2953 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2954 */
2955 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2956
2957 /* Treated as RO for implementations that PLMR and PHMR fields reported
2958 * as Clear in the CAP_REG.
2959 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2960 */
2961 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2962
ed7b8fbc
LT
2963 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2964 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2965 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2966 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2967 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2968 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2969 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2970 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2971 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2972
1da12ec4
LT
2973 /* IOTLB registers */
2974 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2975 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2976 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2977
2978 /* Fault Recording Registers, 128-bit */
2979 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2980 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
a5861439
PX
2981
2982 /*
28589311 2983 * Interrupt remapping registers.
a5861439 2984 */
28589311 2985 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
1da12ec4
LT
2986}
2987
2988/* Should not reset address_spaces when reset because devices will still use
2989 * the address space they got at first (won't ask the bus again).
2990 */
2991static void vtd_reset(DeviceState *dev)
2992{
2993 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2994
1da12ec4 2995 vtd_init(s);
dd4d607e
PX
2996
2997 /*
2998 * When device reset, throw away all mappings and external caches
2999 */
3000 vtd_address_space_unmap_all(s);
1da12ec4
LT
3001}
3002
621d983a
MA
3003static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3004{
3005 IntelIOMMUState *s = opaque;
3006 VTDAddressSpace *vtd_as;
3007
bf33cc75 3008 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
621d983a
MA
3009
3010 vtd_as = vtd_find_add_as(s, bus, devfn);
3011 return &vtd_as->as;
3012}
3013
e6b6af05 3014static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
6333e93c 3015{
e6b6af05
RK
3016 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3017
6333e93c
RK
3018 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3019 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3020 !kvm_irqchip_is_split()) {
3021 error_setg(errp, "Intel Interrupt Remapping cannot work with "
3022 "kernel-irqchip=on, please use 'split|off'.");
3023 return false;
3024 }
e6b6af05
RK
3025 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3026 error_setg(errp, "eim=on cannot be selected without intremap=on");
3027 return false;
3028 }
3029
3030 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
fb506e70
RK
3031 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3032 && x86_iommu->intr_supported ?
e6b6af05
RK
3033 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3034 }
fb506e70
RK
3035 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3036 if (!kvm_irqchip_in_kernel()) {
3037 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3038 return false;
3039 }
3040 if (!kvm_enable_x2apic()) {
3041 error_setg(errp, "eim=on requires support on the KVM side"
3042 "(X2APIC_API, first shipped in v4.7)");
3043 return false;
3044 }
3045 }
e6b6af05 3046
37f51384
PS
3047 /* Currently only address widths supported are 39 and 48 bits */
3048 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3049 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3050 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3051 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3052 return false;
3053 }
3054
6333e93c
RK
3055 return true;
3056}
3057
1da12ec4
LT
3058static void vtd_realize(DeviceState *dev, Error **errp)
3059{
ef0e8fc7 3060 MachineState *ms = MACHINE(qdev_get_machine());
29396ed9
MG
3061 PCMachineState *pcms = PC_MACHINE(ms);
3062 PCIBus *bus = pcms->bus;
1da12ec4 3063 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4684a204 3064 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
1da12ec4 3065
fb9f5926 3066 x86_iommu->type = TYPE_INTEL;
6333e93c 3067
e6b6af05 3068 if (!vtd_decide_config(s, errp)) {
6333e93c
RK
3069 return;
3070 }
3071
b4a4ba0d 3072 QLIST_INIT(&s->vtd_as_with_notifiers);
7df953bd 3073 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
1da12ec4
LT
3074 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3075 "intel_iommu", DMAR_REG_SIZE);
3076 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
b5a280c0
LT
3077 /* No corresponding destroy */
3078 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3079 g_free, g_free);
7df953bd
KO
3080 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3081 g_free, g_free);
1da12ec4 3082 vtd_init(s);
621d983a
MA
3083 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3084 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
cb135f59
PX
3085 /* Pseudo address space under root PCI bus. */
3086 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
1da12ec4
LT
3087}
3088
3089static void vtd_class_init(ObjectClass *klass, void *data)
3090{
3091 DeviceClass *dc = DEVICE_CLASS(klass);
1c7955c4 3092 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
1da12ec4
LT
3093
3094 dc->reset = vtd_reset;
1da12ec4
LT
3095 dc->vmsd = &vtd_vmstate;
3096 dc->props = vtd_properties;
621d983a 3097 dc->hotpluggable = false;
1c7955c4 3098 x86_class->realize = vtd_realize;
8b5ed7df 3099 x86_class->int_remap = vtd_int_remap;
8ab5700c 3100 /* Supported by the pc-q35-* machine types */
e4f4fb1e 3101 dc->user_creatable = true;
1da12ec4
LT
3102}
3103
3104static const TypeInfo vtd_info = {
3105 .name = TYPE_INTEL_IOMMU_DEVICE,
1c7955c4 3106 .parent = TYPE_X86_IOMMU_DEVICE,
1da12ec4
LT
3107 .instance_size = sizeof(IntelIOMMUState),
3108 .class_init = vtd_class_init,
3109};
3110
1221a474
AK
3111static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3112 void *data)
3113{
3114 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3115
3116 imrc->translate = vtd_iommu_translate;
3117 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3118 imrc->replay = vtd_iommu_replay;
3119}
3120
3121static const TypeInfo vtd_iommu_memory_region_info = {
3122 .parent = TYPE_IOMMU_MEMORY_REGION,
3123 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3124 .class_init = vtd_iommu_memory_region_class_init,
3125};
3126
1da12ec4
LT
3127static void vtd_register_types(void)
3128{
1da12ec4 3129 type_register_static(&vtd_info);
1221a474 3130 type_register_static(&vtd_iommu_memory_region_info);
1da12ec4
LT
3131}
3132
3133type_init(vtd_register_types)