]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm: remove vma arg from page_evictable
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
2b575eb6 27 * anon_vma->mutex
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
9b679320
PZ
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
01d8b20d
PZ
69 struct anon_vma *anon_vma;
70
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
74 /*
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
77 */
78 anon_vma->root = anon_vma;
79 }
80
81 return anon_vma;
fdd2e5f8
AB
82}
83
01d8b20d 84static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 85{
01d8b20d 86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
87
88 /*
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
92 *
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 *
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
101 *
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
104 */
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
108 }
109
fdd2e5f8
AB
110 kmem_cache_free(anon_vma_cachep, anon_vma);
111}
1da177e4 112
dd34739c 113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 114{
dd34739c 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
116}
117
e574b5fd 118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
119{
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121}
122
6583a843
KC
123static void anon_vma_chain_link(struct vm_area_struct *vma,
124 struct anon_vma_chain *avc,
125 struct anon_vma *anon_vma)
126{
127 avc->vma = vma;
128 avc->anon_vma = anon_vma;
129 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 130 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
131}
132
d9d332e0
LT
133/**
134 * anon_vma_prepare - attach an anon_vma to a memory region
135 * @vma: the memory region in question
136 *
137 * This makes sure the memory mapping described by 'vma' has
138 * an 'anon_vma' attached to it, so that we can associate the
139 * anonymous pages mapped into it with that anon_vma.
140 *
141 * The common case will be that we already have one, but if
23a0790a 142 * not we either need to find an adjacent mapping that we
d9d332e0
LT
143 * can re-use the anon_vma from (very common when the only
144 * reason for splitting a vma has been mprotect()), or we
145 * allocate a new one.
146 *
147 * Anon-vma allocations are very subtle, because we may have
148 * optimistically looked up an anon_vma in page_lock_anon_vma()
149 * and that may actually touch the spinlock even in the newly
150 * allocated vma (it depends on RCU to make sure that the
151 * anon_vma isn't actually destroyed).
152 *
153 * As a result, we need to do proper anon_vma locking even
154 * for the new allocation. At the same time, we do not want
155 * to do any locking for the common case of already having
156 * an anon_vma.
157 *
158 * This must be called with the mmap_sem held for reading.
159 */
1da177e4
LT
160int anon_vma_prepare(struct vm_area_struct *vma)
161{
162 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 163 struct anon_vma_chain *avc;
1da177e4
LT
164
165 might_sleep();
166 if (unlikely(!anon_vma)) {
167 struct mm_struct *mm = vma->vm_mm;
d9d332e0 168 struct anon_vma *allocated;
1da177e4 169
dd34739c 170 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
171 if (!avc)
172 goto out_enomem;
173
1da177e4 174 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
175 allocated = NULL;
176 if (!anon_vma) {
1da177e4
LT
177 anon_vma = anon_vma_alloc();
178 if (unlikely(!anon_vma))
5beb4930 179 goto out_enomem_free_avc;
1da177e4 180 allocated = anon_vma;
1da177e4
LT
181 }
182
cba48b98 183 anon_vma_lock(anon_vma);
1da177e4
LT
184 /* page_table_lock to protect against threads */
185 spin_lock(&mm->page_table_lock);
186 if (likely(!vma->anon_vma)) {
187 vma->anon_vma = anon_vma;
6583a843 188 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 189 allocated = NULL;
31f2b0eb 190 avc = NULL;
1da177e4
LT
191 }
192 spin_unlock(&mm->page_table_lock);
cba48b98 193 anon_vma_unlock(anon_vma);
31f2b0eb
ON
194
195 if (unlikely(allocated))
01d8b20d 196 put_anon_vma(allocated);
31f2b0eb 197 if (unlikely(avc))
5beb4930 198 anon_vma_chain_free(avc);
1da177e4
LT
199 }
200 return 0;
5beb4930
RR
201
202 out_enomem_free_avc:
203 anon_vma_chain_free(avc);
204 out_enomem:
205 return -ENOMEM;
1da177e4
LT
206}
207
bb4aa396
LT
208/*
209 * This is a useful helper function for locking the anon_vma root as
210 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
211 * have the same vma.
212 *
213 * Such anon_vma's should have the same root, so you'd expect to see
214 * just a single mutex_lock for the whole traversal.
215 */
216static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
217{
218 struct anon_vma *new_root = anon_vma->root;
219 if (new_root != root) {
220 if (WARN_ON_ONCE(root))
221 mutex_unlock(&root->mutex);
222 root = new_root;
223 mutex_lock(&root->mutex);
224 }
225 return root;
226}
227
228static inline void unlock_anon_vma_root(struct anon_vma *root)
229{
230 if (root)
231 mutex_unlock(&root->mutex);
232}
233
5beb4930
RR
234/*
235 * Attach the anon_vmas from src to dst.
236 * Returns 0 on success, -ENOMEM on failure.
237 */
238int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 239{
5beb4930 240 struct anon_vma_chain *avc, *pavc;
bb4aa396 241 struct anon_vma *root = NULL;
5beb4930 242
646d87b4 243 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
244 struct anon_vma *anon_vma;
245
dd34739c
LT
246 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
247 if (unlikely(!avc)) {
248 unlock_anon_vma_root(root);
249 root = NULL;
250 avc = anon_vma_chain_alloc(GFP_KERNEL);
251 if (!avc)
252 goto enomem_failure;
253 }
bb4aa396
LT
254 anon_vma = pavc->anon_vma;
255 root = lock_anon_vma_root(root, anon_vma);
256 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 257 }
bb4aa396 258 unlock_anon_vma_root(root);
5beb4930 259 return 0;
1da177e4 260
5beb4930
RR
261 enomem_failure:
262 unlink_anon_vmas(dst);
263 return -ENOMEM;
1da177e4
LT
264}
265
5beb4930
RR
266/*
267 * Attach vma to its own anon_vma, as well as to the anon_vmas that
268 * the corresponding VMA in the parent process is attached to.
269 * Returns 0 on success, non-zero on failure.
270 */
271int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 272{
5beb4930
RR
273 struct anon_vma_chain *avc;
274 struct anon_vma *anon_vma;
1da177e4 275
5beb4930
RR
276 /* Don't bother if the parent process has no anon_vma here. */
277 if (!pvma->anon_vma)
278 return 0;
279
280 /*
281 * First, attach the new VMA to the parent VMA's anon_vmas,
282 * so rmap can find non-COWed pages in child processes.
283 */
284 if (anon_vma_clone(vma, pvma))
285 return -ENOMEM;
286
287 /* Then add our own anon_vma. */
288 anon_vma = anon_vma_alloc();
289 if (!anon_vma)
290 goto out_error;
dd34739c 291 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
292 if (!avc)
293 goto out_error_free_anon_vma;
5c341ee1
RR
294
295 /*
296 * The root anon_vma's spinlock is the lock actually used when we
297 * lock any of the anon_vmas in this anon_vma tree.
298 */
299 anon_vma->root = pvma->anon_vma->root;
76545066 300 /*
01d8b20d
PZ
301 * With refcounts, an anon_vma can stay around longer than the
302 * process it belongs to. The root anon_vma needs to be pinned until
303 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
304 */
305 get_anon_vma(anon_vma->root);
5beb4930
RR
306 /* Mark this anon_vma as the one where our new (COWed) pages go. */
307 vma->anon_vma = anon_vma;
bb4aa396 308 anon_vma_lock(anon_vma);
5c341ee1 309 anon_vma_chain_link(vma, avc, anon_vma);
bb4aa396 310 anon_vma_unlock(anon_vma);
5beb4930
RR
311
312 return 0;
313
314 out_error_free_anon_vma:
01d8b20d 315 put_anon_vma(anon_vma);
5beb4930 316 out_error:
4946d54c 317 unlink_anon_vmas(vma);
5beb4930 318 return -ENOMEM;
1da177e4
LT
319}
320
5beb4930
RR
321void unlink_anon_vmas(struct vm_area_struct *vma)
322{
323 struct anon_vma_chain *avc, *next;
eee2acba 324 struct anon_vma *root = NULL;
5beb4930 325
5c341ee1
RR
326 /*
327 * Unlink each anon_vma chained to the VMA. This list is ordered
328 * from newest to oldest, ensuring the root anon_vma gets freed last.
329 */
5beb4930 330 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
331 struct anon_vma *anon_vma = avc->anon_vma;
332
333 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 334 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
335
336 /*
337 * Leave empty anon_vmas on the list - we'll need
338 * to free them outside the lock.
339 */
bf181b9f 340 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
341 continue;
342
343 list_del(&avc->same_vma);
344 anon_vma_chain_free(avc);
345 }
346 unlock_anon_vma_root(root);
347
348 /*
349 * Iterate the list once more, it now only contains empty and unlinked
350 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
351 * needing to acquire the anon_vma->root->mutex.
352 */
353 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
354 struct anon_vma *anon_vma = avc->anon_vma;
355
356 put_anon_vma(anon_vma);
357
5beb4930
RR
358 list_del(&avc->same_vma);
359 anon_vma_chain_free(avc);
360 }
361}
362
51cc5068 363static void anon_vma_ctor(void *data)
1da177e4 364{
a35afb83 365 struct anon_vma *anon_vma = data;
1da177e4 366
2b575eb6 367 mutex_init(&anon_vma->mutex);
83813267 368 atomic_set(&anon_vma->refcount, 0);
bf181b9f 369 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
370}
371
372void __init anon_vma_init(void)
373{
374 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 375 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 376 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
377}
378
379/*
6111e4ca
PZ
380 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
381 *
382 * Since there is no serialization what so ever against page_remove_rmap()
383 * the best this function can do is return a locked anon_vma that might
384 * have been relevant to this page.
385 *
386 * The page might have been remapped to a different anon_vma or the anon_vma
387 * returned may already be freed (and even reused).
388 *
bc658c96
PZ
389 * In case it was remapped to a different anon_vma, the new anon_vma will be a
390 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
391 * ensure that any anon_vma obtained from the page will still be valid for as
392 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
393 *
6111e4ca
PZ
394 * All users of this function must be very careful when walking the anon_vma
395 * chain and verify that the page in question is indeed mapped in it
396 * [ something equivalent to page_mapped_in_vma() ].
397 *
398 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
399 * that the anon_vma pointer from page->mapping is valid if there is a
400 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 401 */
746b18d4 402struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 403{
746b18d4 404 struct anon_vma *anon_vma = NULL;
1da177e4
LT
405 unsigned long anon_mapping;
406
407 rcu_read_lock();
80e14822 408 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 409 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
410 goto out;
411 if (!page_mapped(page))
412 goto out;
413
414 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
415 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
416 anon_vma = NULL;
417 goto out;
418 }
f1819427
HD
419
420 /*
421 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
422 * freed. But if it has been unmapped, we have no security against the
423 * anon_vma structure being freed and reused (for another anon_vma:
424 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
425 * above cannot corrupt).
f1819427 426 */
746b18d4
PZ
427 if (!page_mapped(page)) {
428 put_anon_vma(anon_vma);
429 anon_vma = NULL;
430 }
1da177e4
LT
431out:
432 rcu_read_unlock();
746b18d4
PZ
433
434 return anon_vma;
435}
436
88c22088
PZ
437/*
438 * Similar to page_get_anon_vma() except it locks the anon_vma.
439 *
440 * Its a little more complex as it tries to keep the fast path to a single
441 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
442 * reference like with page_get_anon_vma() and then block on the mutex.
443 */
746b18d4
PZ
444struct anon_vma *page_lock_anon_vma(struct page *page)
445{
88c22088 446 struct anon_vma *anon_vma = NULL;
eee0f252 447 struct anon_vma *root_anon_vma;
88c22088 448 unsigned long anon_mapping;
746b18d4 449
88c22088
PZ
450 rcu_read_lock();
451 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
452 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
453 goto out;
454 if (!page_mapped(page))
455 goto out;
456
457 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252
HD
458 root_anon_vma = ACCESS_ONCE(anon_vma->root);
459 if (mutex_trylock(&root_anon_vma->mutex)) {
88c22088 460 /*
eee0f252
HD
461 * If the page is still mapped, then this anon_vma is still
462 * its anon_vma, and holding the mutex ensures that it will
bc658c96 463 * not go away, see anon_vma_free().
88c22088 464 */
eee0f252
HD
465 if (!page_mapped(page)) {
466 mutex_unlock(&root_anon_vma->mutex);
88c22088
PZ
467 anon_vma = NULL;
468 }
469 goto out;
470 }
746b18d4 471
88c22088
PZ
472 /* trylock failed, we got to sleep */
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
477
478 if (!page_mapped(page)) {
479 put_anon_vma(anon_vma);
480 anon_vma = NULL;
481 goto out;
482 }
483
484 /* we pinned the anon_vma, its safe to sleep */
485 rcu_read_unlock();
486 anon_vma_lock(anon_vma);
487
488 if (atomic_dec_and_test(&anon_vma->refcount)) {
489 /*
490 * Oops, we held the last refcount, release the lock
491 * and bail -- can't simply use put_anon_vma() because
492 * we'll deadlock on the anon_vma_lock() recursion.
493 */
494 anon_vma_unlock(anon_vma);
495 __put_anon_vma(anon_vma);
496 anon_vma = NULL;
497 }
498
499 return anon_vma;
500
501out:
502 rcu_read_unlock();
746b18d4 503 return anon_vma;
34bbd704
ON
504}
505
10be22df 506void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 507{
cba48b98 508 anon_vma_unlock(anon_vma);
1da177e4
LT
509}
510
511/*
3ad33b24 512 * At what user virtual address is page expected in @vma?
1da177e4 513 */
86c2ad19
ML
514static inline unsigned long
515__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4
LT
516{
517 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1da177e4 518
0fe6e20b
NH
519 if (unlikely(is_vm_hugetlb_page(vma)))
520 pgoff = page->index << huge_page_order(page_hstate(page));
86c2ad19
ML
521
522 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
523}
524
525inline unsigned long
526vma_address(struct page *page, struct vm_area_struct *vma)
527{
528 unsigned long address = __vma_address(page, vma);
529
530 /* page should be within @vma mapping range */
531 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
532
1da177e4
LT
533 return address;
534}
535
536/*
bf89c8c8 537 * At what user virtual address is page expected in vma?
ab941e0f 538 * Caller should check the page is actually part of the vma.
1da177e4
LT
539 */
540unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
541{
86c2ad19 542 unsigned long address;
21d0d443 543 if (PageAnon(page)) {
4829b906
HD
544 struct anon_vma *page__anon_vma = page_anon_vma(page);
545 /*
546 * Note: swapoff's unuse_vma() is more efficient with this
547 * check, and needs it to match anon_vma when KSM is active.
548 */
549 if (!vma->anon_vma || !page__anon_vma ||
550 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
551 return -EFAULT;
552 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
553 if (!vma->vm_file ||
554 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
555 return -EFAULT;
556 } else
557 return -EFAULT;
86c2ad19
ML
558 address = __vma_address(page, vma);
559 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
560 return -EFAULT;
561 return address;
1da177e4
LT
562}
563
81b4082d
ND
564/*
565 * Check that @page is mapped at @address into @mm.
566 *
479db0bf
NP
567 * If @sync is false, page_check_address may perform a racy check to avoid
568 * the page table lock when the pte is not present (helpful when reclaiming
569 * highly shared pages).
570 *
b8072f09 571 * On success returns with pte mapped and locked.
81b4082d 572 */
e9a81a82 573pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 574 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
575{
576 pgd_t *pgd;
577 pud_t *pud;
578 pmd_t *pmd;
579 pte_t *pte;
c0718806 580 spinlock_t *ptl;
81b4082d 581
0fe6e20b
NH
582 if (unlikely(PageHuge(page))) {
583 pte = huge_pte_offset(mm, address);
584 ptl = &mm->page_table_lock;
585 goto check;
586 }
587
81b4082d 588 pgd = pgd_offset(mm, address);
c0718806
HD
589 if (!pgd_present(*pgd))
590 return NULL;
591
592 pud = pud_offset(pgd, address);
593 if (!pud_present(*pud))
594 return NULL;
595
596 pmd = pmd_offset(pud, address);
597 if (!pmd_present(*pmd))
598 return NULL;
71e3aac0
AA
599 if (pmd_trans_huge(*pmd))
600 return NULL;
c0718806
HD
601
602 pte = pte_offset_map(pmd, address);
603 /* Make a quick check before getting the lock */
479db0bf 604 if (!sync && !pte_present(*pte)) {
c0718806
HD
605 pte_unmap(pte);
606 return NULL;
607 }
608
4c21e2f2 609 ptl = pte_lockptr(mm, pmd);
0fe6e20b 610check:
c0718806
HD
611 spin_lock(ptl);
612 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
613 *ptlp = ptl;
614 return pte;
81b4082d 615 }
c0718806
HD
616 pte_unmap_unlock(pte, ptl);
617 return NULL;
81b4082d
ND
618}
619
b291f000
NP
620/**
621 * page_mapped_in_vma - check whether a page is really mapped in a VMA
622 * @page: the page to test
623 * @vma: the VMA to test
624 *
625 * Returns 1 if the page is mapped into the page tables of the VMA, 0
626 * if the page is not mapped into the page tables of this VMA. Only
627 * valid for normal file or anonymous VMAs.
628 */
6a46079c 629int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
630{
631 unsigned long address;
632 pte_t *pte;
633 spinlock_t *ptl;
634
86c2ad19
ML
635 address = __vma_address(page, vma);
636 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
637 return 0;
638 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
639 if (!pte) /* the page is not in this mm */
640 return 0;
641 pte_unmap_unlock(pte, ptl);
642
643 return 1;
644}
645
1da177e4
LT
646/*
647 * Subfunctions of page_referenced: page_referenced_one called
648 * repeatedly from either page_referenced_anon or page_referenced_file.
649 */
5ad64688
HD
650int page_referenced_one(struct page *page, struct vm_area_struct *vma,
651 unsigned long address, unsigned int *mapcount,
652 unsigned long *vm_flags)
1da177e4
LT
653{
654 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
655 int referenced = 0;
656
71e3aac0
AA
657 if (unlikely(PageTransHuge(page))) {
658 pmd_t *pmd;
659
660 spin_lock(&mm->page_table_lock);
2da28bfd
AA
661 /*
662 * rmap might return false positives; we must filter
663 * these out using page_check_address_pmd().
664 */
71e3aac0
AA
665 pmd = page_check_address_pmd(page, mm, address,
666 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
667 if (!pmd) {
668 spin_unlock(&mm->page_table_lock);
669 goto out;
670 }
671
672 if (vma->vm_flags & VM_LOCKED) {
673 spin_unlock(&mm->page_table_lock);
674 *mapcount = 0; /* break early from loop */
675 *vm_flags |= VM_LOCKED;
676 goto out;
677 }
678
679 /* go ahead even if the pmd is pmd_trans_splitting() */
680 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
681 referenced++;
682 spin_unlock(&mm->page_table_lock);
683 } else {
684 pte_t *pte;
685 spinlock_t *ptl;
686
2da28bfd
AA
687 /*
688 * rmap might return false positives; we must filter
689 * these out using page_check_address().
690 */
71e3aac0
AA
691 pte = page_check_address(page, mm, address, &ptl, 0);
692 if (!pte)
693 goto out;
694
2da28bfd
AA
695 if (vma->vm_flags & VM_LOCKED) {
696 pte_unmap_unlock(pte, ptl);
697 *mapcount = 0; /* break early from loop */
698 *vm_flags |= VM_LOCKED;
699 goto out;
700 }
701
71e3aac0
AA
702 if (ptep_clear_flush_young_notify(vma, address, pte)) {
703 /*
704 * Don't treat a reference through a sequentially read
705 * mapping as such. If the page has been used in
706 * another mapping, we will catch it; if this other
707 * mapping is already gone, the unmap path will have
708 * set PG_referenced or activated the page.
709 */
710 if (likely(!VM_SequentialReadHint(vma)))
711 referenced++;
712 }
713 pte_unmap_unlock(pte, ptl);
714 }
715
c0718806 716 (*mapcount)--;
273f047e 717
6fe6b7e3
WF
718 if (referenced)
719 *vm_flags |= vma->vm_flags;
273f047e 720out:
1da177e4
LT
721 return referenced;
722}
723
bed7161a 724static int page_referenced_anon(struct page *page,
72835c86 725 struct mem_cgroup *memcg,
6fe6b7e3 726 unsigned long *vm_flags)
1da177e4
LT
727{
728 unsigned int mapcount;
729 struct anon_vma *anon_vma;
bf181b9f 730 pgoff_t pgoff;
5beb4930 731 struct anon_vma_chain *avc;
1da177e4
LT
732 int referenced = 0;
733
734 anon_vma = page_lock_anon_vma(page);
735 if (!anon_vma)
736 return referenced;
737
738 mapcount = page_mapcount(page);
bf181b9f
ML
739 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
740 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 741 struct vm_area_struct *vma = avc->vma;
1cb1729b 742 unsigned long address = vma_address(page, vma);
bed7161a
BS
743 /*
744 * If we are reclaiming on behalf of a cgroup, skip
745 * counting on behalf of references from different
746 * cgroups
747 */
72835c86 748 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 749 continue;
1cb1729b 750 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 751 &mapcount, vm_flags);
1da177e4
LT
752 if (!mapcount)
753 break;
754 }
34bbd704
ON
755
756 page_unlock_anon_vma(anon_vma);
1da177e4
LT
757 return referenced;
758}
759
760/**
761 * page_referenced_file - referenced check for object-based rmap
762 * @page: the page we're checking references on.
72835c86 763 * @memcg: target memory control group
6fe6b7e3 764 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
765 *
766 * For an object-based mapped page, find all the places it is mapped and
767 * check/clear the referenced flag. This is done by following the page->mapping
768 * pointer, then walking the chain of vmas it holds. It returns the number
769 * of references it found.
770 *
771 * This function is only called from page_referenced for object-based pages.
772 */
bed7161a 773static int page_referenced_file(struct page *page,
72835c86 774 struct mem_cgroup *memcg,
6fe6b7e3 775 unsigned long *vm_flags)
1da177e4
LT
776{
777 unsigned int mapcount;
778 struct address_space *mapping = page->mapping;
779 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
780 struct vm_area_struct *vma;
1da177e4
LT
781 int referenced = 0;
782
783 /*
784 * The caller's checks on page->mapping and !PageAnon have made
785 * sure that this is a file page: the check for page->mapping
786 * excludes the case just before it gets set on an anon page.
787 */
788 BUG_ON(PageAnon(page));
789
790 /*
791 * The page lock not only makes sure that page->mapping cannot
792 * suddenly be NULLified by truncation, it makes sure that the
793 * structure at mapping cannot be freed and reused yet,
3d48ae45 794 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
795 */
796 BUG_ON(!PageLocked(page));
797
3d48ae45 798 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
799
800 /*
3d48ae45 801 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
802 * is more likely to be accurate if we note it after spinning.
803 */
804 mapcount = page_mapcount(page);
805
6b2dbba8 806 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b 807 unsigned long address = vma_address(page, vma);
bed7161a
BS
808 /*
809 * If we are reclaiming on behalf of a cgroup, skip
810 * counting on behalf of references from different
811 * cgroups
812 */
72835c86 813 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 814 continue;
1cb1729b 815 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 816 &mapcount, vm_flags);
1da177e4
LT
817 if (!mapcount)
818 break;
819 }
820
3d48ae45 821 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
822 return referenced;
823}
824
825/**
826 * page_referenced - test if the page was referenced
827 * @page: the page to test
828 * @is_locked: caller holds lock on the page
72835c86 829 * @memcg: target memory cgroup
6fe6b7e3 830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
831 *
832 * Quick test_and_clear_referenced for all mappings to a page,
833 * returns the number of ptes which referenced the page.
834 */
6fe6b7e3
WF
835int page_referenced(struct page *page,
836 int is_locked,
72835c86 837 struct mem_cgroup *memcg,
6fe6b7e3 838 unsigned long *vm_flags)
1da177e4
LT
839{
840 int referenced = 0;
5ad64688 841 int we_locked = 0;
1da177e4 842
6fe6b7e3 843 *vm_flags = 0;
3ca7b3c5 844 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
845 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
846 we_locked = trylock_page(page);
847 if (!we_locked) {
848 referenced++;
849 goto out;
850 }
851 }
852 if (unlikely(PageKsm(page)))
72835c86 853 referenced += page_referenced_ksm(page, memcg,
5ad64688
HD
854 vm_flags);
855 else if (PageAnon(page))
72835c86 856 referenced += page_referenced_anon(page, memcg,
6fe6b7e3 857 vm_flags);
5ad64688 858 else if (page->mapping)
72835c86 859 referenced += page_referenced_file(page, memcg,
6fe6b7e3 860 vm_flags);
5ad64688 861 if (we_locked)
1da177e4 862 unlock_page(page);
50a15981
MS
863
864 if (page_test_and_clear_young(page_to_pfn(page)))
865 referenced++;
1da177e4 866 }
5ad64688 867out:
1da177e4
LT
868 return referenced;
869}
870
1cb1729b
HD
871static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
872 unsigned long address)
d08b3851
PZ
873{
874 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 875 pte_t *pte;
d08b3851
PZ
876 spinlock_t *ptl;
877 int ret = 0;
878
479db0bf 879 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
880 if (!pte)
881 goto out;
882
c2fda5fe
PZ
883 if (pte_dirty(*pte) || pte_write(*pte)) {
884 pte_t entry;
d08b3851 885
c2fda5fe 886 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 887 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
888 entry = pte_wrprotect(entry);
889 entry = pte_mkclean(entry);
d6e88e67 890 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
891 ret = 1;
892 }
d08b3851 893
d08b3851
PZ
894 pte_unmap_unlock(pte, ptl);
895out:
896 return ret;
897}
898
899static int page_mkclean_file(struct address_space *mapping, struct page *page)
900{
901 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
902 struct vm_area_struct *vma;
d08b3851
PZ
903 int ret = 0;
904
905 BUG_ON(PageAnon(page));
906
3d48ae45 907 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 908 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
909 if (vma->vm_flags & VM_SHARED) {
910 unsigned long address = vma_address(page, vma);
1cb1729b
HD
911 ret += page_mkclean_one(page, vma, address);
912 }
d08b3851 913 }
3d48ae45 914 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
915 return ret;
916}
917
918int page_mkclean(struct page *page)
919{
920 int ret = 0;
921
922 BUG_ON(!PageLocked(page));
923
924 if (page_mapped(page)) {
925 struct address_space *mapping = page_mapping(page);
ce7e9fae 926 if (mapping) {
d08b3851 927 ret = page_mkclean_file(mapping, page);
2d42552d 928 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 929 ret = 1;
6c210482 930 }
d08b3851
PZ
931 }
932
933 return ret;
934}
60b59bea 935EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 936
c44b6743
RR
937/**
938 * page_move_anon_rmap - move a page to our anon_vma
939 * @page: the page to move to our anon_vma
940 * @vma: the vma the page belongs to
941 * @address: the user virtual address mapped
942 *
943 * When a page belongs exclusively to one process after a COW event,
944 * that page can be moved into the anon_vma that belongs to just that
945 * process, so the rmap code will not search the parent or sibling
946 * processes.
947 */
948void page_move_anon_rmap(struct page *page,
949 struct vm_area_struct *vma, unsigned long address)
950{
951 struct anon_vma *anon_vma = vma->anon_vma;
952
953 VM_BUG_ON(!PageLocked(page));
954 VM_BUG_ON(!anon_vma);
955 VM_BUG_ON(page->index != linear_page_index(vma, address));
956
957 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
958 page->mapping = (struct address_space *) anon_vma;
959}
960
9617d95e 961/**
4e1c1975
AK
962 * __page_set_anon_rmap - set up new anonymous rmap
963 * @page: Page to add to rmap
964 * @vma: VM area to add page to.
965 * @address: User virtual address of the mapping
e8a03feb 966 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
967 */
968static void __page_set_anon_rmap(struct page *page,
e8a03feb 969 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 970{
e8a03feb 971 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 972
e8a03feb 973 BUG_ON(!anon_vma);
ea90002b 974
4e1c1975
AK
975 if (PageAnon(page))
976 return;
977
ea90002b 978 /*
e8a03feb
RR
979 * If the page isn't exclusively mapped into this vma,
980 * we must use the _oldest_ possible anon_vma for the
981 * page mapping!
ea90002b 982 */
4e1c1975 983 if (!exclusive)
288468c3 984 anon_vma = anon_vma->root;
9617d95e 985
9617d95e
NP
986 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
987 page->mapping = (struct address_space *) anon_vma;
9617d95e 988 page->index = linear_page_index(vma, address);
9617d95e
NP
989}
990
c97a9e10 991/**
43d8eac4 992 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
993 * @page: the page to add the mapping to
994 * @vma: the vm area in which the mapping is added
995 * @address: the user virtual address mapped
996 */
997static void __page_check_anon_rmap(struct page *page,
998 struct vm_area_struct *vma, unsigned long address)
999{
1000#ifdef CONFIG_DEBUG_VM
1001 /*
1002 * The page's anon-rmap details (mapping and index) are guaranteed to
1003 * be set up correctly at this point.
1004 *
1005 * We have exclusion against page_add_anon_rmap because the caller
1006 * always holds the page locked, except if called from page_dup_rmap,
1007 * in which case the page is already known to be setup.
1008 *
1009 * We have exclusion against page_add_new_anon_rmap because those pages
1010 * are initially only visible via the pagetables, and the pte is locked
1011 * over the call to page_add_new_anon_rmap.
1012 */
44ab57a0 1013 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1014 BUG_ON(page->index != linear_page_index(vma, address));
1015#endif
1016}
1017
1da177e4
LT
1018/**
1019 * page_add_anon_rmap - add pte mapping to an anonymous page
1020 * @page: the page to add the mapping to
1021 * @vma: the vm area in which the mapping is added
1022 * @address: the user virtual address mapped
1023 *
5ad64688 1024 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1025 * the anon_vma case: to serialize mapping,index checking after setting,
1026 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1027 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1028 */
1029void page_add_anon_rmap(struct page *page,
1030 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1031{
1032 do_page_add_anon_rmap(page, vma, address, 0);
1033}
1034
1035/*
1036 * Special version of the above for do_swap_page, which often runs
1037 * into pages that are exclusively owned by the current process.
1038 * Everybody else should continue to use page_add_anon_rmap above.
1039 */
1040void do_page_add_anon_rmap(struct page *page,
1041 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1042{
5ad64688 1043 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1044 if (first) {
1045 if (!PageTransHuge(page))
1046 __inc_zone_page_state(page, NR_ANON_PAGES);
1047 else
1048 __inc_zone_page_state(page,
1049 NR_ANON_TRANSPARENT_HUGEPAGES);
1050 }
5ad64688
HD
1051 if (unlikely(PageKsm(page)))
1052 return;
1053
c97a9e10 1054 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1055 /* address might be in next vma when migration races vma_adjust */
5ad64688 1056 if (first)
ad8c2ee8 1057 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1058 else
c97a9e10 1059 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1060}
1061
43d8eac4 1062/**
9617d95e
NP
1063 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1064 * @page: the page to add the mapping to
1065 * @vma: the vm area in which the mapping is added
1066 * @address: the user virtual address mapped
1067 *
1068 * Same as page_add_anon_rmap but must only be called on *new* pages.
1069 * This means the inc-and-test can be bypassed.
c97a9e10 1070 * Page does not have to be locked.
9617d95e
NP
1071 */
1072void page_add_new_anon_rmap(struct page *page,
1073 struct vm_area_struct *vma, unsigned long address)
1074{
b5934c53 1075 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1076 SetPageSwapBacked(page);
1077 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1078 if (!PageTransHuge(page))
1079 __inc_zone_page_state(page, NR_ANON_PAGES);
1080 else
1081 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1082 __page_set_anon_rmap(page, vma, address, 1);
39b5f29a 1083 if (!mlocked_vma_newpage(vma, page))
cbf84b7a 1084 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1085 else
1086 add_page_to_unevictable_list(page);
9617d95e
NP
1087}
1088
1da177e4
LT
1089/**
1090 * page_add_file_rmap - add pte mapping to a file page
1091 * @page: the page to add the mapping to
1092 *
b8072f09 1093 * The caller needs to hold the pte lock.
1da177e4
LT
1094 */
1095void page_add_file_rmap(struct page *page)
1096{
89c06bd5
KH
1097 bool locked;
1098 unsigned long flags;
1099
1100 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
d69b042f 1101 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1102 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1103 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1104 }
89c06bd5 1105 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1106}
1107
1108/**
1109 * page_remove_rmap - take down pte mapping from a page
1110 * @page: page to remove mapping from
1111 *
b8072f09 1112 * The caller needs to hold the pte lock.
1da177e4 1113 */
edc315fd 1114void page_remove_rmap(struct page *page)
1da177e4 1115{
89c06bd5
KH
1116 bool anon = PageAnon(page);
1117 bool locked;
1118 unsigned long flags;
1119
1120 /*
1121 * The anon case has no mem_cgroup page_stat to update; but may
1122 * uncharge_page() below, where the lock ordering can deadlock if
1123 * we hold the lock against page_stat move: so avoid it on anon.
1124 */
1125 if (!anon)
1126 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1127
b904dcfe
KM
1128 /* page still mapped by someone else? */
1129 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1130 goto out;
b904dcfe
KM
1131
1132 /*
1133 * Now that the last pte has gone, s390 must transfer dirty
1134 * flag from storage key to struct page. We can usually skip
1135 * this if the page is anon, so about to be freed; but perhaps
1136 * not if it's in swapcache - there might be another pte slot
1137 * containing the swap entry, but page not yet written to swap.
1138 */
89c06bd5 1139 if ((!anon || PageSwapCache(page)) &&
2d42552d 1140 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1141 set_page_dirty(page);
0fe6e20b
NH
1142 /*
1143 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1144 * and not charged by memcg for now.
1145 */
1146 if (unlikely(PageHuge(page)))
89c06bd5
KH
1147 goto out;
1148 if (anon) {
b904dcfe 1149 mem_cgroup_uncharge_page(page);
79134171
AA
1150 if (!PageTransHuge(page))
1151 __dec_zone_page_state(page, NR_ANON_PAGES);
1152 else
1153 __dec_zone_page_state(page,
1154 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1155 } else {
1156 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1157 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 1158 }
b904dcfe
KM
1159 /*
1160 * It would be tidy to reset the PageAnon mapping here,
1161 * but that might overwrite a racing page_add_anon_rmap
1162 * which increments mapcount after us but sets mapping
1163 * before us: so leave the reset to free_hot_cold_page,
1164 * and remember that it's only reliable while mapped.
1165 * Leaving it set also helps swapoff to reinstate ptes
1166 * faster for those pages still in swapcache.
1167 */
89c06bd5
KH
1168out:
1169 if (!anon)
1170 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1171}
1172
1173/*
1174 * Subfunctions of try_to_unmap: try_to_unmap_one called
99ef0315 1175 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1da177e4 1176 */
5ad64688
HD
1177int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1178 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1179{
1180 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1181 pte_t *pte;
1182 pte_t pteval;
c0718806 1183 spinlock_t *ptl;
1da177e4
LT
1184 int ret = SWAP_AGAIN;
1185
479db0bf 1186 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1187 if (!pte)
81b4082d 1188 goto out;
1da177e4
LT
1189
1190 /*
1191 * If the page is mlock()d, we cannot swap it out.
1192 * If it's recently referenced (perhaps page_referenced
1193 * skipped over this mm) then we should reactivate it.
1194 */
14fa31b8 1195 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1196 if (vma->vm_flags & VM_LOCKED)
1197 goto out_mlock;
1198
af8e3354 1199 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1200 goto out_unmap;
14fa31b8
AK
1201 }
1202 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1203 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1204 ret = SWAP_FAIL;
1205 goto out_unmap;
1206 }
1207 }
1da177e4 1208
1da177e4
LT
1209 /* Nuke the page table entry. */
1210 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1211 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1212
1213 /* Move the dirty bit to the physical page now the pte is gone. */
1214 if (pte_dirty(pteval))
1215 set_page_dirty(page);
1216
365e9c87
HD
1217 /* Update high watermark before we lower rss */
1218 update_hiwater_rss(mm);
1219
888b9f7c
AK
1220 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1221 if (PageAnon(page))
d559db08 1222 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1223 else
d559db08 1224 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1225 set_pte_at(mm, address, pte,
1226 swp_entry_to_pte(make_hwpoison_entry(page)));
1227 } else if (PageAnon(page)) {
4c21e2f2 1228 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1229
1230 if (PageSwapCache(page)) {
1231 /*
1232 * Store the swap location in the pte.
1233 * See handle_pte_fault() ...
1234 */
570a335b
HD
1235 if (swap_duplicate(entry) < 0) {
1236 set_pte_at(mm, address, pte, pteval);
1237 ret = SWAP_FAIL;
1238 goto out_unmap;
1239 }
0697212a
CL
1240 if (list_empty(&mm->mmlist)) {
1241 spin_lock(&mmlist_lock);
1242 if (list_empty(&mm->mmlist))
1243 list_add(&mm->mmlist, &init_mm.mmlist);
1244 spin_unlock(&mmlist_lock);
1245 }
d559db08 1246 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1247 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1248 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1249 /*
1250 * Store the pfn of the page in a special migration
1251 * pte. do_swap_page() will wait until the migration
1252 * pte is removed and then restart fault handling.
1253 */
14fa31b8 1254 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1255 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1256 }
1257 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1258 BUG_ON(pte_file(*pte));
ce1744f4
KK
1259 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1260 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1261 /* Establish migration entry for a file page */
1262 swp_entry_t entry;
1263 entry = make_migration_entry(page, pte_write(pteval));
1264 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1265 } else
d559db08 1266 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1267
edc315fd 1268 page_remove_rmap(page);
1da177e4
LT
1269 page_cache_release(page);
1270
1271out_unmap:
c0718806 1272 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1273out:
1274 return ret;
53f79acb 1275
caed0f48
KM
1276out_mlock:
1277 pte_unmap_unlock(pte, ptl);
1278
1279
1280 /*
1281 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1282 * unstable result and race. Plus, We can't wait here because
2b575eb6 1283 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
caed0f48
KM
1284 * if trylock failed, the page remain in evictable lru and later
1285 * vmscan could retry to move the page to unevictable lru if the
1286 * page is actually mlocked.
1287 */
1288 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1289 if (vma->vm_flags & VM_LOCKED) {
1290 mlock_vma_page(page);
1291 ret = SWAP_MLOCK;
53f79acb 1292 }
caed0f48 1293 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1294 }
1da177e4
LT
1295 return ret;
1296}
1297
1298/*
1299 * objrmap doesn't work for nonlinear VMAs because the assumption that
1300 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1301 * Consequently, given a particular page and its ->index, we cannot locate the
1302 * ptes which are mapping that page without an exhaustive linear search.
1303 *
1304 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1305 * maps the file to which the target page belongs. The ->vm_private_data field
1306 * holds the current cursor into that scan. Successive searches will circulate
1307 * around the vma's virtual address space.
1308 *
1309 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1310 * more scanning pressure is placed against them as well. Eventually pages
1311 * will become fully unmapped and are eligible for eviction.
1312 *
1313 * For very sparsely populated VMAs this is a little inefficient - chances are
1314 * there there won't be many ptes located within the scan cluster. In this case
1315 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1316 *
1317 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1318 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1319 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1320 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1321 */
1322#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1323#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1324
b291f000
NP
1325static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1326 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1327{
1328 struct mm_struct *mm = vma->vm_mm;
1329 pgd_t *pgd;
1330 pud_t *pud;
1331 pmd_t *pmd;
c0718806 1332 pte_t *pte;
1da177e4 1333 pte_t pteval;
c0718806 1334 spinlock_t *ptl;
1da177e4
LT
1335 struct page *page;
1336 unsigned long address;
1337 unsigned long end;
b291f000
NP
1338 int ret = SWAP_AGAIN;
1339 int locked_vma = 0;
1da177e4 1340
1da177e4
LT
1341 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1342 end = address + CLUSTER_SIZE;
1343 if (address < vma->vm_start)
1344 address = vma->vm_start;
1345 if (end > vma->vm_end)
1346 end = vma->vm_end;
1347
1348 pgd = pgd_offset(mm, address);
1349 if (!pgd_present(*pgd))
b291f000 1350 return ret;
1da177e4
LT
1351
1352 pud = pud_offset(pgd, address);
1353 if (!pud_present(*pud))
b291f000 1354 return ret;
1da177e4
LT
1355
1356 pmd = pmd_offset(pud, address);
1357 if (!pmd_present(*pmd))
b291f000
NP
1358 return ret;
1359
1360 /*
af8e3354 1361 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1362 * keep the sem while scanning the cluster for mlocking pages.
1363 */
af8e3354 1364 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1365 locked_vma = (vma->vm_flags & VM_LOCKED);
1366 if (!locked_vma)
1367 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1368 }
c0718806
HD
1369
1370 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1371
365e9c87
HD
1372 /* Update high watermark before we lower rss */
1373 update_hiwater_rss(mm);
1374
c0718806 1375 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1376 if (!pte_present(*pte))
1377 continue;
6aab341e
LT
1378 page = vm_normal_page(vma, address, *pte);
1379 BUG_ON(!page || PageAnon(page));
1da177e4 1380
b291f000
NP
1381 if (locked_vma) {
1382 mlock_vma_page(page); /* no-op if already mlocked */
1383 if (page == check_page)
1384 ret = SWAP_MLOCK;
1385 continue; /* don't unmap */
1386 }
1387
cddb8a5c 1388 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1389 continue;
1390
1391 /* Nuke the page table entry. */
eca35133 1392 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1393 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1394
1395 /* If nonlinear, store the file page offset in the pte. */
1396 if (page->index != linear_page_index(vma, address))
1397 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1398
1399 /* Move the dirty bit to the physical page now the pte is gone. */
1400 if (pte_dirty(pteval))
1401 set_page_dirty(page);
1402
edc315fd 1403 page_remove_rmap(page);
1da177e4 1404 page_cache_release(page);
d559db08 1405 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1406 (*mapcount)--;
1407 }
c0718806 1408 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1409 if (locked_vma)
1410 up_read(&vma->vm_mm->mmap_sem);
1411 return ret;
1da177e4
LT
1412}
1413
71e3aac0 1414bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1415{
1416 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1417
1418 if (!maybe_stack)
1419 return false;
1420
1421 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1422 VM_STACK_INCOMPLETE_SETUP)
1423 return true;
1424
1425 return false;
1426}
1427
b291f000
NP
1428/**
1429 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1430 * rmap method
1431 * @page: the page to unmap/unlock
8051be5e 1432 * @flags: action and flags
b291f000
NP
1433 *
1434 * Find all the mappings of a page using the mapping pointer and the vma chains
1435 * contained in the anon_vma struct it points to.
1436 *
1437 * This function is only called from try_to_unmap/try_to_munlock for
1438 * anonymous pages.
1439 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1440 * where the page was found will be held for write. So, we won't recheck
1441 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1442 * 'LOCKED.
1443 */
14fa31b8 1444static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1445{
1446 struct anon_vma *anon_vma;
bf181b9f 1447 pgoff_t pgoff;
5beb4930 1448 struct anon_vma_chain *avc;
1da177e4 1449 int ret = SWAP_AGAIN;
b291f000 1450
1da177e4
LT
1451 anon_vma = page_lock_anon_vma(page);
1452 if (!anon_vma)
1453 return ret;
1454
bf181b9f
ML
1455 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1456 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1457 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1458 unsigned long address;
1459
1460 /*
1461 * During exec, a temporary VMA is setup and later moved.
1462 * The VMA is moved under the anon_vma lock but not the
1463 * page tables leading to a race where migration cannot
1464 * find the migration ptes. Rather than increasing the
1465 * locking requirements of exec(), migration skips
1466 * temporary VMAs until after exec() completes.
1467 */
ce1744f4 1468 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
a8bef8ff
MG
1469 is_vma_temporary_stack(vma))
1470 continue;
1471
1472 address = vma_address(page, vma);
1cb1729b 1473 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1474 if (ret != SWAP_AGAIN || !page_mapped(page))
1475 break;
1da177e4 1476 }
34bbd704
ON
1477
1478 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1479 return ret;
1480}
1481
1482/**
b291f000
NP
1483 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1484 * @page: the page to unmap/unlock
14fa31b8 1485 * @flags: action and flags
1da177e4
LT
1486 *
1487 * Find all the mappings of a page using the mapping pointer and the vma chains
1488 * contained in the address_space struct it points to.
1489 *
b291f000
NP
1490 * This function is only called from try_to_unmap/try_to_munlock for
1491 * object-based pages.
1492 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1493 * where the page was found will be held for write. So, we won't recheck
1494 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1495 * 'LOCKED.
1da177e4 1496 */
14fa31b8 1497static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1498{
1499 struct address_space *mapping = page->mapping;
1500 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1501 struct vm_area_struct *vma;
1da177e4
LT
1502 int ret = SWAP_AGAIN;
1503 unsigned long cursor;
1504 unsigned long max_nl_cursor = 0;
1505 unsigned long max_nl_size = 0;
1506 unsigned int mapcount;
1507
3d48ae45 1508 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1509 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b 1510 unsigned long address = vma_address(page, vma);
1cb1729b 1511 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1512 if (ret != SWAP_AGAIN || !page_mapped(page))
1513 goto out;
1da177e4
LT
1514 }
1515
1516 if (list_empty(&mapping->i_mmap_nonlinear))
1517 goto out;
1518
53f79acb
HD
1519 /*
1520 * We don't bother to try to find the munlocked page in nonlinears.
1521 * It's costly. Instead, later, page reclaim logic may call
1522 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1523 */
1524 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1525 goto out;
1526
1da177e4 1527 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1528 shared.nonlinear) {
1da177e4
LT
1529 cursor = (unsigned long) vma->vm_private_data;
1530 if (cursor > max_nl_cursor)
1531 max_nl_cursor = cursor;
1532 cursor = vma->vm_end - vma->vm_start;
1533 if (cursor > max_nl_size)
1534 max_nl_size = cursor;
1535 }
1536
b291f000 1537 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1538 ret = SWAP_FAIL;
1539 goto out;
1540 }
1541
1542 /*
1543 * We don't try to search for this page in the nonlinear vmas,
1544 * and page_referenced wouldn't have found it anyway. Instead
1545 * just walk the nonlinear vmas trying to age and unmap some.
1546 * The mapcount of the page we came in with is irrelevant,
1547 * but even so use it as a guide to how hard we should try?
1548 */
1549 mapcount = page_mapcount(page);
1550 if (!mapcount)
1551 goto out;
3d48ae45 1552 cond_resched();
1da177e4
LT
1553
1554 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1555 if (max_nl_cursor == 0)
1556 max_nl_cursor = CLUSTER_SIZE;
1557
1558 do {
1559 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1560 shared.nonlinear) {
1da177e4 1561 cursor = (unsigned long) vma->vm_private_data;
839b9685 1562 while ( cursor < max_nl_cursor &&
1da177e4 1563 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1564 if (try_to_unmap_cluster(cursor, &mapcount,
1565 vma, page) == SWAP_MLOCK)
1566 ret = SWAP_MLOCK;
1da177e4
LT
1567 cursor += CLUSTER_SIZE;
1568 vma->vm_private_data = (void *) cursor;
1569 if ((int)mapcount <= 0)
1570 goto out;
1571 }
1572 vma->vm_private_data = (void *) max_nl_cursor;
1573 }
3d48ae45 1574 cond_resched();
1da177e4
LT
1575 max_nl_cursor += CLUSTER_SIZE;
1576 } while (max_nl_cursor <= max_nl_size);
1577
1578 /*
1579 * Don't loop forever (perhaps all the remaining pages are
1580 * in locked vmas). Reset cursor on all unreserved nonlinear
1581 * vmas, now forgetting on which ones it had fallen behind.
1582 */
6b2dbba8 1583 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
101d2be7 1584 vma->vm_private_data = NULL;
1da177e4 1585out:
3d48ae45 1586 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1587 return ret;
1588}
1589
1590/**
1591 * try_to_unmap - try to remove all page table mappings to a page
1592 * @page: the page to get unmapped
14fa31b8 1593 * @flags: action and flags
1da177e4
LT
1594 *
1595 * Tries to remove all the page table entries which are mapping this
1596 * page, used in the pageout path. Caller must hold the page lock.
1597 * Return values are:
1598 *
1599 * SWAP_SUCCESS - we succeeded in removing all mappings
1600 * SWAP_AGAIN - we missed a mapping, try again later
1601 * SWAP_FAIL - the page is unswappable
b291f000 1602 * SWAP_MLOCK - page is mlocked.
1da177e4 1603 */
14fa31b8 1604int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1605{
1606 int ret;
1607
1da177e4 1608 BUG_ON(!PageLocked(page));
91600e9e 1609 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1610
5ad64688
HD
1611 if (unlikely(PageKsm(page)))
1612 ret = try_to_unmap_ksm(page, flags);
1613 else if (PageAnon(page))
14fa31b8 1614 ret = try_to_unmap_anon(page, flags);
1da177e4 1615 else
14fa31b8 1616 ret = try_to_unmap_file(page, flags);
b291f000 1617 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1618 ret = SWAP_SUCCESS;
1619 return ret;
1620}
81b4082d 1621
b291f000
NP
1622/**
1623 * try_to_munlock - try to munlock a page
1624 * @page: the page to be munlocked
1625 *
1626 * Called from munlock code. Checks all of the VMAs mapping the page
1627 * to make sure nobody else has this page mlocked. The page will be
1628 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1629 *
1630 * Return values are:
1631 *
53f79acb 1632 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1633 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1634 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1635 * SWAP_MLOCK - page is now mlocked.
1636 */
1637int try_to_munlock(struct page *page)
1638{
1639 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1640
5ad64688
HD
1641 if (unlikely(PageKsm(page)))
1642 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1643 else if (PageAnon(page))
14fa31b8 1644 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1645 else
14fa31b8 1646 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1647}
e9995ef9 1648
01d8b20d 1649void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1650{
01d8b20d 1651 struct anon_vma *root = anon_vma->root;
76545066 1652
01d8b20d
PZ
1653 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1654 anon_vma_free(root);
76545066 1655
01d8b20d 1656 anon_vma_free(anon_vma);
76545066 1657}
76545066 1658
e9995ef9
HD
1659#ifdef CONFIG_MIGRATION
1660/*
1661 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1662 * Called by migrate.c to remove migration ptes, but might be used more later.
1663 */
1664static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1665 struct vm_area_struct *, unsigned long, void *), void *arg)
1666{
1667 struct anon_vma *anon_vma;
bf181b9f 1668 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
5beb4930 1669 struct anon_vma_chain *avc;
e9995ef9
HD
1670 int ret = SWAP_AGAIN;
1671
1672 /*
1673 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1674 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1675 * are holding mmap_sem. Users without mmap_sem are required to
1676 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1677 */
1678 anon_vma = page_anon_vma(page);
1679 if (!anon_vma)
1680 return ret;
cba48b98 1681 anon_vma_lock(anon_vma);
bf181b9f 1682 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1683 struct vm_area_struct *vma = avc->vma;
e9995ef9 1684 unsigned long address = vma_address(page, vma);
e9995ef9
HD
1685 ret = rmap_one(page, vma, address, arg);
1686 if (ret != SWAP_AGAIN)
1687 break;
1688 }
cba48b98 1689 anon_vma_unlock(anon_vma);
e9995ef9
HD
1690 return ret;
1691}
1692
1693static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1694 struct vm_area_struct *, unsigned long, void *), void *arg)
1695{
1696 struct address_space *mapping = page->mapping;
1697 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1698 struct vm_area_struct *vma;
e9995ef9
HD
1699 int ret = SWAP_AGAIN;
1700
1701 if (!mapping)
1702 return ret;
3d48ae45 1703 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1704 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1705 unsigned long address = vma_address(page, vma);
e9995ef9
HD
1706 ret = rmap_one(page, vma, address, arg);
1707 if (ret != SWAP_AGAIN)
1708 break;
1709 }
1710 /*
1711 * No nonlinear handling: being always shared, nonlinear vmas
1712 * never contain migration ptes. Decide what to do about this
1713 * limitation to linear when we need rmap_walk() on nonlinear.
1714 */
3d48ae45 1715 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1716 return ret;
1717}
1718
1719int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1720 struct vm_area_struct *, unsigned long, void *), void *arg)
1721{
1722 VM_BUG_ON(!PageLocked(page));
1723
1724 if (unlikely(PageKsm(page)))
1725 return rmap_walk_ksm(page, rmap_one, arg);
1726 else if (PageAnon(page))
1727 return rmap_walk_anon(page, rmap_one, arg);
1728 else
1729 return rmap_walk_file(page, rmap_one, arg);
1730}
1731#endif /* CONFIG_MIGRATION */
0fe6e20b 1732
e3390f67 1733#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1734/*
1735 * The following three functions are for anonymous (private mapped) hugepages.
1736 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1737 * and no lru code, because we handle hugepages differently from common pages.
1738 */
1739static void __hugepage_set_anon_rmap(struct page *page,
1740 struct vm_area_struct *vma, unsigned long address, int exclusive)
1741{
1742 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1743
0fe6e20b 1744 BUG_ON(!anon_vma);
433abed6
NH
1745
1746 if (PageAnon(page))
1747 return;
1748 if (!exclusive)
1749 anon_vma = anon_vma->root;
1750
0fe6e20b
NH
1751 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1752 page->mapping = (struct address_space *) anon_vma;
1753 page->index = linear_page_index(vma, address);
1754}
1755
1756void hugepage_add_anon_rmap(struct page *page,
1757 struct vm_area_struct *vma, unsigned long address)
1758{
1759 struct anon_vma *anon_vma = vma->anon_vma;
1760 int first;
a850ea30
NH
1761
1762 BUG_ON(!PageLocked(page));
0fe6e20b 1763 BUG_ON(!anon_vma);
5dbe0af4 1764 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1765 first = atomic_inc_and_test(&page->_mapcount);
1766 if (first)
1767 __hugepage_set_anon_rmap(page, vma, address, 0);
1768}
1769
1770void hugepage_add_new_anon_rmap(struct page *page,
1771 struct vm_area_struct *vma, unsigned long address)
1772{
1773 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1774 atomic_set(&page->_mapcount, 0);
1775 __hugepage_set_anon_rmap(page, vma, address, 1);
1776}
e3390f67 1777#endif /* CONFIG_HUGETLB_PAGE */