]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
dca145ff 83int sysctl_tcp_max_reordering __read_mostly = 300;
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
25429d7b 88EXPORT_SYMBOL(sysctl_tcp_timestamps);
1da177e4 89
282f23c6 90/* rfc5961 challenge ack rate limiting */
75ff39cc 91int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 92
ab32ea5d
BH
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 96int sysctl_tcp_frto __read_mostly = 2;
f6722583 97int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
1da177e4 98
7e380175
AP
99int sysctl_tcp_thin_dupack __read_mostly;
100
ab32ea5d 101int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 102int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 103int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 104
1da177e4
LT
105#define FLAG_DATA 0x01 /* Incoming frame contained data. */
106#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110#define FLAG_DATA_SACKED 0x20 /* New SACK. */
111#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 112#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 113#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 114#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 115#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 116#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 117#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 118#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
119
120#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124
1da177e4 125#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 126#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 127
e662ca40
YC
128#define REXMIT_NONE 0 /* no loss recovery to do */
129#define REXMIT_LOST 1 /* retransmit packets marked lost */
130#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
131
dcb17d22
MRL
132static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
133{
134 static bool __once __read_mostly;
135
136 if (!__once) {
137 struct net_device *dev;
138
139 __once = true;
140
141 rcu_read_lock();
142 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
143 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
144 dev ? dev->name : "Unknown driver");
145 rcu_read_unlock();
146 }
147}
148
e905a9ed 149/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 150 * real world.
e905a9ed 151 */
056834d9 152static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 153{
463c84b9 154 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 155 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 156 unsigned int len;
1da177e4 157
e905a9ed 158 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
159
160 /* skb->len may jitter because of SACKs, even if peer
161 * sends good full-sized frames.
162 */
056834d9 163 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 164 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
165 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
166 tcp_sk(sk)->advmss);
167 if (unlikely(icsk->icsk_ack.rcv_mss != len))
168 tcp_gro_dev_warn(sk, skb);
1da177e4
LT
169 } else {
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
172 *
173 * "len" is invariant segment length, including TCP header.
174 */
9c70220b 175 len += skb->data - skb_transport_header(skb);
bee7ca9e 176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
181 */
182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
187 */
463c84b9
ACM
188 len -= tcp_sk(sk)->tcp_header_len;
189 icsk->icsk_ack.last_seg_size = len;
1da177e4 190 if (len == lss) {
463c84b9 191 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
192 return;
193 }
194 }
1ef9696c
AK
195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
198 }
199}
200
463c84b9 201static void tcp_incr_quickack(struct sock *sk)
1da177e4 202{
463c84b9 203 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 205
056834d9
IJ
206 if (quickacks == 0)
207 quickacks = 2;
463c84b9
ACM
208 if (quickacks > icsk->icsk_ack.quick)
209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
210}
211
1b9f4092 212static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 213{
463c84b9
ACM
214 struct inet_connection_sock *icsk = inet_csk(sk);
215 tcp_incr_quickack(sk);
216 icsk->icsk_ack.pingpong = 0;
217 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
218}
219
220/* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
222 */
223
2251ae46 224static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 225{
463c84b9 226 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 227 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 228
2251ae46
JM
229 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
231}
232
735d3831 233static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 234{
056834d9 235 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237}
238
735d3831 239static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
240{
241 if (tcp_hdr(skb)->cwr)
242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243}
244
735d3831 245static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
246{
247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248}
249
735d3831 250static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 251{
b82d1bb4 252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 253 case INET_ECN_NOT_ECT:
bdf1ee5d 254 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
257 */
258 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 259 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
260 break;
261 case INET_ECN_CE:
9890092e
FW
262 if (tcp_ca_needs_ecn((struct sock *)tp))
263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264
aae06bf5
ED
265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock *)tp);
268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 }
9890092e
FW
270 tp->ecn_flags |= TCP_ECN_SEEN;
271 break;
7a269ffa 272 default:
9890092e
FW
273 if (tcp_ca_needs_ecn((struct sock *)tp))
274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 275 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 276 break;
bdf1ee5d
IJ
277 }
278}
279
735d3831
FW
280static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281{
282 if (tp->ecn_flags & TCP_ECN_OK)
283 __tcp_ecn_check_ce(tp, skb);
284}
285
286static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 287{
056834d9 288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
289 tp->ecn_flags &= ~TCP_ECN_OK;
290}
291
735d3831 292static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 293{
056834d9 294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
295 tp->ecn_flags &= ~TCP_ECN_OK;
296}
297
735d3831 298static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 299{
056834d9 300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
301 return true;
302 return false;
bdf1ee5d
IJ
303}
304
1da177e4
LT
305/* Buffer size and advertised window tuning.
306 *
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308 */
309
6ae70532 310static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 311{
6ae70532 312 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
314 int sndmem, per_mss;
315 u32 nr_segs;
316
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
319 */
320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 MAX_TCP_HEADER +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323
324 per_mss = roundup_pow_of_two(per_mss) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff));
326
327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
333 */
77bfc174
YC
334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 sndmem *= nr_segs * per_mss;
1da177e4 336
06a59ecb
ED
337 if (sk->sk_sndbuf < sndmem)
338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
339}
340
341/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342 *
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
352 *
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
360 *
361 * The scheme does not work when sender sends good segments opening
caa20d9a 362 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
363 * in common situations. Otherwise, we have to rely on queue collapsing.
364 */
365
366/* Slow part of check#2. */
9e412ba7 367static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 368{
9e412ba7 369 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 370 /* Optimize this! */
dfd4f0ae
ED
371 int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
373
374 while (tp->rcv_ssthresh <= window) {
375 if (truesize <= skb->len)
463c84b9 376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
377
378 truesize >>= 1;
379 window >>= 1;
380 }
381 return 0;
382}
383
cf533ea5 384static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 385{
9e412ba7
IJ
386 struct tcp_sock *tp = tcp_sk(sk);
387
1da177e4
LT
388 /* Check #1 */
389 if (tp->rcv_ssthresh < tp->window_clamp &&
390 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 391 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
392 int incr;
393
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
396 */
397 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 398 incr = 2 * tp->advmss;
1da177e4 399 else
9e412ba7 400 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
401
402 if (incr) {
4d846f02 403 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 tp->window_clamp);
463c84b9 406 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
407 }
408 }
409}
410
411/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
412static void tcp_fixup_rcvbuf(struct sock *sk)
413{
e9266a02 414 u32 mss = tcp_sk(sk)->advmss;
e9266a02 415 int rcvmem;
1da177e4 416
85f16525
YC
417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 tcp_default_init_rwnd(mss);
e9266a02 419
b0983d3c
ED
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
422 */
423 if (sysctl_tcp_moderate_rcvbuf)
424 rcvmem <<= 2;
425
e9266a02
ED
426 if (sk->sk_rcvbuf < rcvmem)
427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
428}
429
caa20d9a 430/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
431 * established state.
432 */
10467163 433void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
434{
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
437
438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 tcp_fixup_rcvbuf(sk);
440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 441 tcp_sndbuf_expand(sk);
1da177e4
LT
442
443 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
444 tp->rcvq_space.time = tcp_time_stamp;
445 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
446
447 maxwin = tcp_full_space(sk);
448
449 if (tp->window_clamp >= maxwin) {
450 tp->window_clamp = maxwin;
451
452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
453 tp->window_clamp = max(maxwin -
454 (maxwin >> sysctl_tcp_app_win),
455 4 * tp->advmss);
456 }
457
458 /* Force reservation of one segment. */
459 if (sysctl_tcp_app_win &&
460 tp->window_clamp > 2 * tp->advmss &&
461 tp->window_clamp + tp->advmss > maxwin)
462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463
464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
465 tp->snd_cwnd_stamp = tcp_time_stamp;
466}
467
1da177e4 468/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 469static void tcp_clamp_window(struct sock *sk)
1da177e4 470{
9e412ba7 471 struct tcp_sock *tp = tcp_sk(sk);
6687e988 472 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 473
6687e988 474 icsk->icsk_ack.quick = 0;
1da177e4 475
326f36e9
JH
476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 478 !tcp_under_memory_pressure(sk) &&
180d8cd9 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 sysctl_tcp_rmem[2]);
1da177e4 482 }
326f36e9 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
485}
486
40efc6fa
SH
487/* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493 */
494void tcp_initialize_rcv_mss(struct sock *sk)
495{
cf533ea5 496 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498
056834d9 499 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 500 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
501 hint = max(hint, TCP_MIN_MSS);
502
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
504}
4bc2f18b 505EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 506
1da177e4
LT
507/* Receiver "autotuning" code.
508 *
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
512 *
513 * More detail on this code can be found at
631dd1a8 514 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
515 * though this reference is out of date. A new paper
516 * is pending.
517 */
518static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519{
520 u32 new_sample = tp->rcv_rtt_est.rtt;
521 long m = sample;
522
523 if (m == 0)
524 m = 1;
525
526 if (new_sample != 0) {
527 /* If we sample in larger samples in the non-timestamp
528 * case, we could grossly overestimate the RTT especially
529 * with chatty applications or bulk transfer apps which
530 * are stalled on filesystem I/O.
531 *
532 * Also, since we are only going for a minimum in the
31f34269 533 * non-timestamp case, we do not smooth things out
caa20d9a 534 * else with timestamps disabled convergence takes too
1da177e4
LT
535 * long.
536 */
537 if (!win_dep) {
538 m -= (new_sample >> 3);
539 new_sample += m;
18a223e0
NC
540 } else {
541 m <<= 3;
542 if (m < new_sample)
543 new_sample = m;
544 }
1da177e4 545 } else {
caa20d9a 546 /* No previous measure. */
1da177e4
LT
547 new_sample = m << 3;
548 }
549
550 if (tp->rcv_rtt_est.rtt != new_sample)
551 tp->rcv_rtt_est.rtt = new_sample;
552}
553
554static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555{
556 if (tp->rcv_rtt_est.time == 0)
557 goto new_measure;
558 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
559 return;
651913ce 560 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
561
562new_measure:
563 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
564 tp->rcv_rtt_est.time = tcp_time_stamp;
565}
566
056834d9
IJ
567static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
568 const struct sk_buff *skb)
1da177e4 569{
463c84b9 570 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
571 if (tp->rx_opt.rcv_tsecr &&
572 (TCP_SKB_CB(skb)->end_seq -
463c84b9 573 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
574 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
575}
576
577/*
578 * This function should be called every time data is copied to user space.
579 * It calculates the appropriate TCP receive buffer space.
580 */
581void tcp_rcv_space_adjust(struct sock *sk)
582{
583 struct tcp_sock *tp = tcp_sk(sk);
584 int time;
b0983d3c 585 int copied;
e905a9ed 586
1da177e4 587 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 588 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 589 return;
e905a9ed 590
b0983d3c
ED
591 /* Number of bytes copied to user in last RTT */
592 copied = tp->copied_seq - tp->rcvq_space.seq;
593 if (copied <= tp->rcvq_space.space)
594 goto new_measure;
595
596 /* A bit of theory :
597 * copied = bytes received in previous RTT, our base window
598 * To cope with packet losses, we need a 2x factor
599 * To cope with slow start, and sender growing its cwin by 100 %
600 * every RTT, we need a 4x factor, because the ACK we are sending
601 * now is for the next RTT, not the current one :
602 * <prev RTT . ><current RTT .. ><next RTT .... >
603 */
604
605 if (sysctl_tcp_moderate_rcvbuf &&
606 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
607 int rcvwin, rcvmem, rcvbuf;
1da177e4 608
b0983d3c
ED
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
611 */
612 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 613
b0983d3c
ED
614 /* If rate increased by 25%,
615 * assume slow start, rcvwin = 3 * copied
616 * If rate increased by 50%,
617 * assume sender can use 2x growth, rcvwin = 4 * copied
618 */
619 if (copied >=
620 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
621 if (copied >=
622 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
623 rcvwin <<= 1;
624 else
625 rcvwin += (rcvwin >> 1);
626 }
1da177e4 627
b0983d3c
ED
628 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
629 while (tcp_win_from_space(rcvmem) < tp->advmss)
630 rcvmem += 128;
1da177e4 631
b0983d3c
ED
632 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
633 if (rcvbuf > sk->sk_rcvbuf) {
634 sk->sk_rcvbuf = rcvbuf;
1da177e4 635
b0983d3c
ED
636 /* Make the window clamp follow along. */
637 tp->window_clamp = rcvwin;
1da177e4
LT
638 }
639 }
b0983d3c 640 tp->rcvq_space.space = copied;
e905a9ed 641
1da177e4
LT
642new_measure:
643 tp->rcvq_space.seq = tp->copied_seq;
644 tp->rcvq_space.time = tcp_time_stamp;
645}
646
647/* There is something which you must keep in mind when you analyze the
648 * behavior of the tp->ato delayed ack timeout interval. When a
649 * connection starts up, we want to ack as quickly as possible. The
650 * problem is that "good" TCP's do slow start at the beginning of data
651 * transmission. The means that until we send the first few ACK's the
652 * sender will sit on his end and only queue most of his data, because
653 * he can only send snd_cwnd unacked packets at any given time. For
654 * each ACK we send, he increments snd_cwnd and transmits more of his
655 * queue. -DaveM
656 */
9e412ba7 657static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 658{
9e412ba7 659 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 660 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
661 u32 now;
662
463c84b9 663 inet_csk_schedule_ack(sk);
1da177e4 664
463c84b9 665 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
666
667 tcp_rcv_rtt_measure(tp);
e905a9ed 668
1da177e4
LT
669 now = tcp_time_stamp;
670
463c84b9 671 if (!icsk->icsk_ack.ato) {
1da177e4
LT
672 /* The _first_ data packet received, initialize
673 * delayed ACK engine.
674 */
463c84b9
ACM
675 tcp_incr_quickack(sk);
676 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 677 } else {
463c84b9 678 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 679
056834d9 680 if (m <= TCP_ATO_MIN / 2) {
1da177e4 681 /* The fastest case is the first. */
463c84b9
ACM
682 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
683 } else if (m < icsk->icsk_ack.ato) {
684 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
685 if (icsk->icsk_ack.ato > icsk->icsk_rto)
686 icsk->icsk_ack.ato = icsk->icsk_rto;
687 } else if (m > icsk->icsk_rto) {
caa20d9a 688 /* Too long gap. Apparently sender failed to
1da177e4
LT
689 * restart window, so that we send ACKs quickly.
690 */
463c84b9 691 tcp_incr_quickack(sk);
3ab224be 692 sk_mem_reclaim(sk);
1da177e4
LT
693 }
694 }
463c84b9 695 icsk->icsk_ack.lrcvtime = now;
1da177e4 696
735d3831 697 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
698
699 if (skb->len >= 128)
9e412ba7 700 tcp_grow_window(sk, skb);
1da177e4
LT
701}
702
1da177e4
LT
703/* Called to compute a smoothed rtt estimate. The data fed to this
704 * routine either comes from timestamps, or from segments that were
705 * known _not_ to have been retransmitted [see Karn/Partridge
706 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
707 * piece by Van Jacobson.
708 * NOTE: the next three routines used to be one big routine.
709 * To save cycles in the RFC 1323 implementation it was better to break
710 * it up into three procedures. -- erics
711 */
740b0f18 712static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 713{
6687e988 714 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
715 long m = mrtt_us; /* RTT */
716 u32 srtt = tp->srtt_us;
1da177e4 717
1da177e4
LT
718 /* The following amusing code comes from Jacobson's
719 * article in SIGCOMM '88. Note that rtt and mdev
720 * are scaled versions of rtt and mean deviation.
e905a9ed 721 * This is designed to be as fast as possible
1da177e4
LT
722 * m stands for "measurement".
723 *
724 * On a 1990 paper the rto value is changed to:
725 * RTO = rtt + 4 * mdev
726 *
727 * Funny. This algorithm seems to be very broken.
728 * These formulae increase RTO, when it should be decreased, increase
31f34269 729 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
730 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
731 * does not matter how to _calculate_ it. Seems, it was trap
732 * that VJ failed to avoid. 8)
733 */
4a5ab4e2
ED
734 if (srtt != 0) {
735 m -= (srtt >> 3); /* m is now error in rtt est */
736 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
737 if (m < 0) {
738 m = -m; /* m is now abs(error) */
740b0f18 739 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
740 /* This is similar to one of Eifel findings.
741 * Eifel blocks mdev updates when rtt decreases.
742 * This solution is a bit different: we use finer gain
743 * for mdev in this case (alpha*beta).
744 * Like Eifel it also prevents growth of rto,
745 * but also it limits too fast rto decreases,
746 * happening in pure Eifel.
747 */
748 if (m > 0)
749 m >>= 3;
750 } else {
740b0f18 751 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 752 }
740b0f18
ED
753 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
754 if (tp->mdev_us > tp->mdev_max_us) {
755 tp->mdev_max_us = tp->mdev_us;
756 if (tp->mdev_max_us > tp->rttvar_us)
757 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
758 }
759 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
760 if (tp->mdev_max_us < tp->rttvar_us)
761 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 762 tp->rtt_seq = tp->snd_nxt;
740b0f18 763 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
764 }
765 } else {
766 /* no previous measure. */
4a5ab4e2 767 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
768 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
769 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
770 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
771 tp->rtt_seq = tp->snd_nxt;
772 }
740b0f18 773 tp->srtt_us = max(1U, srtt);
1da177e4
LT
774}
775
95bd09eb
ED
776/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
777 * Note: TCP stack does not yet implement pacing.
778 * FQ packet scheduler can be used to implement cheap but effective
779 * TCP pacing, to smooth the burst on large writes when packets
780 * in flight is significantly lower than cwnd (or rwin)
781 */
43e122b0
ED
782int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
783int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
784
95bd09eb
ED
785static void tcp_update_pacing_rate(struct sock *sk)
786{
787 const struct tcp_sock *tp = tcp_sk(sk);
788 u64 rate;
789
790 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
791 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
792
793 /* current rate is (cwnd * mss) / srtt
794 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
795 * In Congestion Avoidance phase, set it to 120 % the current rate.
796 *
797 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
798 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
799 * end of slow start and should slow down.
800 */
801 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
802 rate *= sysctl_tcp_pacing_ss_ratio;
803 else
804 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
805
806 rate *= max(tp->snd_cwnd, tp->packets_out);
807
740b0f18
ED
808 if (likely(tp->srtt_us))
809 do_div(rate, tp->srtt_us);
95bd09eb 810
ba537427
ED
811 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
812 * without any lock. We want to make sure compiler wont store
813 * intermediate values in this location.
814 */
815 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
816 sk->sk_max_pacing_rate);
95bd09eb
ED
817}
818
1da177e4
LT
819/* Calculate rto without backoff. This is the second half of Van Jacobson's
820 * routine referred to above.
821 */
f7e56a76 822static void tcp_set_rto(struct sock *sk)
1da177e4 823{
463c84b9 824 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
825 /* Old crap is replaced with new one. 8)
826 *
827 * More seriously:
828 * 1. If rtt variance happened to be less 50msec, it is hallucination.
829 * It cannot be less due to utterly erratic ACK generation made
830 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
831 * to do with delayed acks, because at cwnd>2 true delack timeout
832 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 833 * ACKs in some circumstances.
1da177e4 834 */
f1ecd5d9 835 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
836
837 /* 2. Fixups made earlier cannot be right.
838 * If we do not estimate RTO correctly without them,
839 * all the algo is pure shit and should be replaced
caa20d9a 840 * with correct one. It is exactly, which we pretend to do.
1da177e4 841 */
1da177e4 842
ee6aac59
IJ
843 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
844 * guarantees that rto is higher.
845 */
f1ecd5d9 846 tcp_bound_rto(sk);
1da177e4
LT
847}
848
cf533ea5 849__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
850{
851 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
852
22b71c8f 853 if (!cwnd)
442b9635 854 cwnd = TCP_INIT_CWND;
1da177e4
LT
855 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
856}
857
e60402d0
IJ
858/*
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
861 */
4aabd8ef 862void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 863{
85cc391c
IJ
864 /* RFC3517 uses different metric in lost marker => reset on change */
865 if (tcp_is_fack(tp))
866 tp->lost_skb_hint = NULL;
ab56222a 867 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
868}
869
564262c1 870/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
871static void tcp_dsack_seen(struct tcp_sock *tp)
872{
ab56222a 873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
874}
875
6687e988
ACM
876static void tcp_update_reordering(struct sock *sk, const int metric,
877 const int ts)
1da177e4 878{
6687e988 879 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 880 if (metric > tp->reordering) {
40b215e5
PE
881 int mib_idx;
882
dca145ff 883 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
884
885 /* This exciting event is worth to be remembered. 8) */
886 if (ts)
40b215e5 887 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 888 else if (tcp_is_reno(tp))
40b215e5 889 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 890 else if (tcp_is_fack(tp))
40b215e5 891 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 892 else
40b215e5
PE
893 mib_idx = LINUX_MIB_TCPSACKREORDER;
894
c10d9310 895 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4 896#if FASTRETRANS_DEBUG > 1
91df42be
JP
897 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
898 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
899 tp->reordering,
900 tp->fackets_out,
901 tp->sacked_out,
902 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 903#endif
e60402d0 904 tcp_disable_fack(tp);
1da177e4 905 }
eed530b6
YC
906
907 if (metric > 0)
908 tcp_disable_early_retrans(tp);
4f41b1c5 909 tp->rack.reord = 1;
1da177e4
LT
910}
911
006f582c 912/* This must be called before lost_out is incremented */
c8c213f2
IJ
913static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
914{
51456b29 915 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
916 before(TCP_SKB_CB(skb)->seq,
917 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
918 tp->retransmit_skb_hint = skb;
919
920 if (!tp->lost_out ||
921 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
922 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
923}
924
0682e690
NC
925/* Sum the number of packets on the wire we have marked as lost.
926 * There are two cases we care about here:
927 * a) Packet hasn't been marked lost (nor retransmitted),
928 * and this is the first loss.
929 * b) Packet has been marked both lost and retransmitted,
930 * and this means we think it was lost again.
931 */
932static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
933{
934 __u8 sacked = TCP_SKB_CB(skb)->sacked;
935
936 if (!(sacked & TCPCB_LOST) ||
937 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
938 tp->lost += tcp_skb_pcount(skb);
939}
940
41ea36e3
IJ
941static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
942{
943 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
944 tcp_verify_retransmit_hint(tp, skb);
945
946 tp->lost_out += tcp_skb_pcount(skb);
0682e690 947 tcp_sum_lost(tp, skb);
41ea36e3
IJ
948 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
949 }
950}
951
4f41b1c5 952void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
953{
954 tcp_verify_retransmit_hint(tp, skb);
955
0682e690 956 tcp_sum_lost(tp, skb);
006f582c
IJ
957 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
958 tp->lost_out += tcp_skb_pcount(skb);
959 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
960 }
961}
962
1da177e4
LT
963/* This procedure tags the retransmission queue when SACKs arrive.
964 *
965 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
966 * Packets in queue with these bits set are counted in variables
967 * sacked_out, retrans_out and lost_out, correspondingly.
968 *
969 * Valid combinations are:
970 * Tag InFlight Description
971 * 0 1 - orig segment is in flight.
972 * S 0 - nothing flies, orig reached receiver.
973 * L 0 - nothing flies, orig lost by net.
974 * R 2 - both orig and retransmit are in flight.
975 * L|R 1 - orig is lost, retransmit is in flight.
976 * S|R 1 - orig reached receiver, retrans is still in flight.
977 * (L|S|R is logically valid, it could occur when L|R is sacked,
978 * but it is equivalent to plain S and code short-curcuits it to S.
979 * L|S is logically invalid, it would mean -1 packet in flight 8))
980 *
981 * These 6 states form finite state machine, controlled by the following events:
982 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
983 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 984 * 3. Loss detection event of two flavors:
1da177e4
LT
985 * A. Scoreboard estimator decided the packet is lost.
986 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
987 * A''. Its FACK modification, head until snd.fack is lost.
988 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
989 * segment was retransmitted.
990 * 4. D-SACK added new rule: D-SACK changes any tag to S.
991 *
992 * It is pleasant to note, that state diagram turns out to be commutative,
993 * so that we are allowed not to be bothered by order of our actions,
994 * when multiple events arrive simultaneously. (see the function below).
995 *
996 * Reordering detection.
997 * --------------------
998 * Reordering metric is maximal distance, which a packet can be displaced
999 * in packet stream. With SACKs we can estimate it:
1000 *
1001 * 1. SACK fills old hole and the corresponding segment was not
1002 * ever retransmitted -> reordering. Alas, we cannot use it
1003 * when segment was retransmitted.
1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1005 * for retransmitted and already SACKed segment -> reordering..
1006 * Both of these heuristics are not used in Loss state, when we cannot
1007 * account for retransmits accurately.
5b3c9882
IJ
1008 *
1009 * SACK block validation.
1010 * ----------------------
1011 *
1012 * SACK block range validation checks that the received SACK block fits to
1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1014 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1015 * it means that the receiver is rather inconsistent with itself reporting
1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1017 * perfectly valid, however, in light of RFC2018 which explicitly states
1018 * that "SACK block MUST reflect the newest segment. Even if the newest
1019 * segment is going to be discarded ...", not that it looks very clever
1020 * in case of head skb. Due to potentional receiver driven attacks, we
1021 * choose to avoid immediate execution of a walk in write queue due to
1022 * reneging and defer head skb's loss recovery to standard loss recovery
1023 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1024 *
1025 * Implements also blockage to start_seq wrap-around. Problem lies in the
1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1027 * there's no guarantee that it will be before snd_nxt (n). The problem
1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1029 * wrap (s_w):
1030 *
1031 * <- outs wnd -> <- wrapzone ->
1032 * u e n u_w e_w s n_w
1033 * | | | | | | |
1034 * |<------------+------+----- TCP seqno space --------------+---------->|
1035 * ...-- <2^31 ->| |<--------...
1036 * ...---- >2^31 ------>| |<--------...
1037 *
1038 * Current code wouldn't be vulnerable but it's better still to discard such
1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1042 * equal to the ideal case (infinite seqno space without wrap caused issues).
1043 *
1044 * With D-SACK the lower bound is extended to cover sequence space below
1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1046 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1047 * for the normal SACK blocks, explained above). But there all simplicity
1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1049 * fully below undo_marker they do not affect behavior in anyway and can
1050 * therefore be safely ignored. In rare cases (which are more or less
1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1052 * fragmentation and packet reordering past skb's retransmission. To consider
1053 * them correctly, the acceptable range must be extended even more though
1054 * the exact amount is rather hard to quantify. However, tp->max_window can
1055 * be used as an exaggerated estimate.
1da177e4 1056 */
a2a385d6
ED
1057static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1058 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1059{
1060 /* Too far in future, or reversed (interpretation is ambiguous) */
1061 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1062 return false;
5b3c9882
IJ
1063
1064 /* Nasty start_seq wrap-around check (see comments above) */
1065 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1066 return false;
5b3c9882 1067
564262c1 1068 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1069 * start_seq == snd_una is non-sensical (see comments above)
1070 */
1071 if (after(start_seq, tp->snd_una))
a2a385d6 1072 return true;
5b3c9882
IJ
1073
1074 if (!is_dsack || !tp->undo_marker)
a2a385d6 1075 return false;
5b3c9882
IJ
1076
1077 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1078 if (after(end_seq, tp->snd_una))
a2a385d6 1079 return false;
5b3c9882
IJ
1080
1081 if (!before(start_seq, tp->undo_marker))
a2a385d6 1082 return true;
5b3c9882
IJ
1083
1084 /* Too old */
1085 if (!after(end_seq, tp->undo_marker))
a2a385d6 1086 return false;
5b3c9882
IJ
1087
1088 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1089 * start_seq < undo_marker and end_seq >= undo_marker.
1090 */
1091 return !before(start_seq, end_seq - tp->max_window);
1092}
1093
a2a385d6
ED
1094static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 struct tcp_sack_block_wire *sp, int num_sacks,
1096 u32 prior_snd_una)
d06e021d 1097{
1ed83465 1098 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1101 bool dup_sack = false;
d06e021d
DM
1102
1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1104 dup_sack = true;
e60402d0 1105 tcp_dsack_seen(tp);
c10d9310 1106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1107 } else if (num_sacks > 1) {
d3e2ce3b
HH
1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1110
1111 if (!after(end_seq_0, end_seq_1) &&
1112 !before(start_seq_0, start_seq_1)) {
a2a385d6 1113 dup_sack = true;
e60402d0 1114 tcp_dsack_seen(tp);
c10d9310 1115 NET_INC_STATS(sock_net(sk),
de0744af 1116 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1117 }
1118 }
1119
1120 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1122 !after(end_seq_0, prior_snd_una) &&
1123 after(end_seq_0, tp->undo_marker))
1124 tp->undo_retrans--;
1125
1126 return dup_sack;
1127}
1128
a1197f5a 1129struct tcp_sacktag_state {
740b0f18
ED
1130 int reord;
1131 int fack_count;
31231a8a
KKJ
1132 /* Timestamps for earliest and latest never-retransmitted segment
1133 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1134 * but congestion control should still get an accurate delay signal.
1135 */
1136 struct skb_mstamp first_sackt;
1137 struct skb_mstamp last_sackt;
b9f64820 1138 struct rate_sample *rate;
740b0f18 1139 int flag;
a1197f5a
IJ
1140};
1141
d1935942
IJ
1142/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143 * the incoming SACK may not exactly match but we can find smaller MSS
1144 * aligned portion of it that matches. Therefore we might need to fragment
1145 * which may fail and creates some hassle (caller must handle error case
1146 * returns).
832d11c5
IJ
1147 *
1148 * FIXME: this could be merged to shift decision code
d1935942 1149 */
0f79efdc 1150static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1151 u32 start_seq, u32 end_seq)
d1935942 1152{
a2a385d6
ED
1153 int err;
1154 bool in_sack;
d1935942 1155 unsigned int pkt_len;
adb92db8 1156 unsigned int mss;
d1935942
IJ
1157
1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160
1161 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1163 mss = tcp_skb_mss(skb);
d1935942
IJ
1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165
adb92db8 1166 if (!in_sack) {
d1935942 1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1168 if (pkt_len < mss)
1169 pkt_len = mss;
1170 } else {
d1935942 1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1172 if (pkt_len < mss)
1173 return -EINVAL;
1174 }
1175
1176 /* Round if necessary so that SACKs cover only full MSSes
1177 * and/or the remaining small portion (if present)
1178 */
1179 if (pkt_len > mss) {
1180 unsigned int new_len = (pkt_len / mss) * mss;
1181 if (!in_sack && new_len < pkt_len) {
1182 new_len += mss;
2cd0d743 1183 if (new_len >= skb->len)
adb92db8
IJ
1184 return 0;
1185 }
1186 pkt_len = new_len;
1187 }
6cc55e09 1188 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1189 if (err < 0)
1190 return err;
1191 }
1192
1193 return in_sack;
1194}
1195
cc9a672e
NC
1196/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197static u8 tcp_sacktag_one(struct sock *sk,
1198 struct tcp_sacktag_state *state, u8 sacked,
1199 u32 start_seq, u32 end_seq,
740b0f18
ED
1200 int dup_sack, int pcount,
1201 const struct skb_mstamp *xmit_time)
9e10c47c 1202{
6859d494 1203 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1204 int fack_count = state->fack_count;
9e10c47c
IJ
1205
1206 /* Account D-SACK for retransmitted packet. */
1207 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1208 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1209 after(end_seq, tp->undo_marker))
9e10c47c 1210 tp->undo_retrans--;
ede9f3b1 1211 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1212 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1213 }
1214
1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1216 if (!after(end_seq, tp->snd_una))
a1197f5a 1217 return sacked;
9e10c47c
IJ
1218
1219 if (!(sacked & TCPCB_SACKED_ACKED)) {
659a8ad5
YC
1220 tcp_rack_advance(tp, xmit_time, sacked);
1221
9e10c47c
IJ
1222 if (sacked & TCPCB_SACKED_RETRANS) {
1223 /* If the segment is not tagged as lost,
1224 * we do not clear RETRANS, believing
1225 * that retransmission is still in flight.
1226 */
1227 if (sacked & TCPCB_LOST) {
a1197f5a 1228 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1229 tp->lost_out -= pcount;
1230 tp->retrans_out -= pcount;
9e10c47c
IJ
1231 }
1232 } else {
1233 if (!(sacked & TCPCB_RETRANS)) {
1234 /* New sack for not retransmitted frame,
1235 * which was in hole. It is reordering.
1236 */
cc9a672e 1237 if (before(start_seq,
9e10c47c 1238 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1239 state->reord = min(fack_count,
1240 state->reord);
e33099f9
YC
1241 if (!after(end_seq, tp->high_seq))
1242 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1243 if (state->first_sackt.v64 == 0)
1244 state->first_sackt = *xmit_time;
1245 state->last_sackt = *xmit_time;
9e10c47c
IJ
1246 }
1247
1248 if (sacked & TCPCB_LOST) {
a1197f5a 1249 sacked &= ~TCPCB_LOST;
f58b22fd 1250 tp->lost_out -= pcount;
9e10c47c
IJ
1251 }
1252 }
1253
a1197f5a
IJ
1254 sacked |= TCPCB_SACKED_ACKED;
1255 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1256 tp->sacked_out += pcount;
ddf1af6f 1257 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1258
f58b22fd 1259 fack_count += pcount;
9e10c47c
IJ
1260
1261 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1262 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1263 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1264 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1265
1266 if (fack_count > tp->fackets_out)
1267 tp->fackets_out = fack_count;
9e10c47c
IJ
1268 }
1269
1270 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1271 * frames and clear it. undo_retrans is decreased above, L|R frames
1272 * are accounted above as well.
1273 */
a1197f5a
IJ
1274 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1275 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1276 tp->retrans_out -= pcount;
9e10c47c
IJ
1277 }
1278
a1197f5a 1279 return sacked;
9e10c47c
IJ
1280}
1281
daef52ba
NC
1282/* Shift newly-SACKed bytes from this skb to the immediately previous
1283 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1284 */
a2a385d6
ED
1285static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1286 struct tcp_sacktag_state *state,
1287 unsigned int pcount, int shifted, int mss,
1288 bool dup_sack)
832d11c5
IJ
1289{
1290 struct tcp_sock *tp = tcp_sk(sk);
50133161 1291 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1292 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1293 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1294
1295 BUG_ON(!pcount);
1296
4c90d3b3
NC
1297 /* Adjust counters and hints for the newly sacked sequence
1298 * range but discard the return value since prev is already
1299 * marked. We must tag the range first because the seq
1300 * advancement below implicitly advances
1301 * tcp_highest_sack_seq() when skb is highest_sack.
1302 */
1303 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1304 start_seq, end_seq, dup_sack, pcount,
740b0f18 1305 &skb->skb_mstamp);
b9f64820 1306 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1307
1308 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1309 tp->lost_cnt_hint += pcount;
1310
832d11c5
IJ
1311 TCP_SKB_CB(prev)->end_seq += shifted;
1312 TCP_SKB_CB(skb)->seq += shifted;
1313
cd7d8498
ED
1314 tcp_skb_pcount_add(prev, pcount);
1315 BUG_ON(tcp_skb_pcount(skb) < pcount);
1316 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1317
1318 /* When we're adding to gso_segs == 1, gso_size will be zero,
1319 * in theory this shouldn't be necessary but as long as DSACK
1320 * code can come after this skb later on it's better to keep
1321 * setting gso_size to something.
1322 */
f69ad292
ED
1323 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1324 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1325
1326 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1327 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1328 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1329
832d11c5
IJ
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332
832d11c5
IJ
1333 if (skb->len > 0) {
1334 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1335 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1336 return false;
832d11c5
IJ
1337 }
1338
1339 /* Whole SKB was eaten :-) */
1340
92ee76b6
IJ
1341 if (skb == tp->retransmit_skb_hint)
1342 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1343 if (skb == tp->lost_skb_hint) {
1344 tp->lost_skb_hint = prev;
1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 }
1347
5e8a402f 1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1349 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1350 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1351 TCP_SKB_CB(prev)->end_seq++;
1352
832d11c5
IJ
1353 if (skb == tcp_highest_sack(sk))
1354 tcp_advance_highest_sack(sk, skb);
1355
cfea5a68 1356 tcp_skb_collapse_tstamp(prev, skb);
b9f64820
YC
1357 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1358 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1359
832d11c5
IJ
1360 tcp_unlink_write_queue(skb, sk);
1361 sk_wmem_free_skb(sk, skb);
1362
c10d9310 1363 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1364
a2a385d6 1365 return true;
832d11c5
IJ
1366}
1367
1368/* I wish gso_size would have a bit more sane initialization than
1369 * something-or-zero which complicates things
1370 */
cf533ea5 1371static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1372{
775ffabf 1373 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1374}
1375
1376/* Shifting pages past head area doesn't work */
cf533ea5 1377static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1378{
1379 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1380}
1381
1382/* Try collapsing SACK blocks spanning across multiple skbs to a single
1383 * skb.
1384 */
1385static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1386 struct tcp_sacktag_state *state,
832d11c5 1387 u32 start_seq, u32 end_seq,
a2a385d6 1388 bool dup_sack)
832d11c5
IJ
1389{
1390 struct tcp_sock *tp = tcp_sk(sk);
1391 struct sk_buff *prev;
1392 int mss;
1393 int pcount = 0;
1394 int len;
1395 int in_sack;
1396
1397 if (!sk_can_gso(sk))
1398 goto fallback;
1399
1400 /* Normally R but no L won't result in plain S */
1401 if (!dup_sack &&
9969ca5f 1402 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1403 goto fallback;
1404 if (!skb_can_shift(skb))
1405 goto fallback;
1406 /* This frame is about to be dropped (was ACKed). */
1407 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1408 goto fallback;
1409
1410 /* Can only happen with delayed DSACK + discard craziness */
1411 if (unlikely(skb == tcp_write_queue_head(sk)))
1412 goto fallback;
1413 prev = tcp_write_queue_prev(sk, skb);
1414
1415 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1416 goto fallback;
1417
a643b5d4
MKL
1418 if (!tcp_skb_can_collapse_to(prev))
1419 goto fallback;
1420
832d11c5
IJ
1421 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1422 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1423
1424 if (in_sack) {
1425 len = skb->len;
1426 pcount = tcp_skb_pcount(skb);
775ffabf 1427 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1428
1429 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1430 * drop this restriction as unnecessary
1431 */
775ffabf 1432 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1433 goto fallback;
1434 } else {
1435 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1436 goto noop;
1437 /* CHECKME: This is non-MSS split case only?, this will
1438 * cause skipped skbs due to advancing loop btw, original
1439 * has that feature too
1440 */
1441 if (tcp_skb_pcount(skb) <= 1)
1442 goto noop;
1443
1444 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1445 if (!in_sack) {
1446 /* TODO: head merge to next could be attempted here
1447 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1448 * though it might not be worth of the additional hassle
1449 *
1450 * ...we can probably just fallback to what was done
1451 * previously. We could try merging non-SACKed ones
1452 * as well but it probably isn't going to buy off
1453 * because later SACKs might again split them, and
1454 * it would make skb timestamp tracking considerably
1455 * harder problem.
1456 */
1457 goto fallback;
1458 }
1459
1460 len = end_seq - TCP_SKB_CB(skb)->seq;
1461 BUG_ON(len < 0);
1462 BUG_ON(len > skb->len);
1463
1464 /* MSS boundaries should be honoured or else pcount will
1465 * severely break even though it makes things bit trickier.
1466 * Optimize common case to avoid most of the divides
1467 */
1468 mss = tcp_skb_mss(skb);
1469
1470 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1471 * drop this restriction as unnecessary
1472 */
775ffabf 1473 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1474 goto fallback;
1475
1476 if (len == mss) {
1477 pcount = 1;
1478 } else if (len < mss) {
1479 goto noop;
1480 } else {
1481 pcount = len / mss;
1482 len = pcount * mss;
1483 }
1484 }
1485
4648dc97
NC
1486 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1487 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1488 goto fallback;
1489
832d11c5
IJ
1490 if (!skb_shift(prev, skb, len))
1491 goto fallback;
9ec06ff5 1492 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1493 goto out;
1494
1495 /* Hole filled allows collapsing with the next as well, this is very
1496 * useful when hole on every nth skb pattern happens
1497 */
1498 if (prev == tcp_write_queue_tail(sk))
1499 goto out;
1500 skb = tcp_write_queue_next(sk, prev);
1501
f0bc52f3
IJ
1502 if (!skb_can_shift(skb) ||
1503 (skb == tcp_send_head(sk)) ||
1504 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1505 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1506 goto out;
1507
1508 len = skb->len;
1509 if (skb_shift(prev, skb, len)) {
1510 pcount += tcp_skb_pcount(skb);
9ec06ff5 1511 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1512 }
1513
1514out:
a1197f5a 1515 state->fack_count += pcount;
832d11c5
IJ
1516 return prev;
1517
1518noop:
1519 return skb;
1520
1521fallback:
c10d9310 1522 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1523 return NULL;
1524}
1525
68f8353b
IJ
1526static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1527 struct tcp_sack_block *next_dup,
a1197f5a 1528 struct tcp_sacktag_state *state,
68f8353b 1529 u32 start_seq, u32 end_seq,
a2a385d6 1530 bool dup_sack_in)
68f8353b 1531{
832d11c5
IJ
1532 struct tcp_sock *tp = tcp_sk(sk);
1533 struct sk_buff *tmp;
1534
68f8353b
IJ
1535 tcp_for_write_queue_from(skb, sk) {
1536 int in_sack = 0;
a2a385d6 1537 bool dup_sack = dup_sack_in;
68f8353b
IJ
1538
1539 if (skb == tcp_send_head(sk))
1540 break;
1541
1542 /* queue is in-order => we can short-circuit the walk early */
1543 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1544 break;
1545
00db4124 1546 if (next_dup &&
68f8353b
IJ
1547 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1548 in_sack = tcp_match_skb_to_sack(sk, skb,
1549 next_dup->start_seq,
1550 next_dup->end_seq);
1551 if (in_sack > 0)
a2a385d6 1552 dup_sack = true;
68f8353b
IJ
1553 }
1554
832d11c5
IJ
1555 /* skb reference here is a bit tricky to get right, since
1556 * shifting can eat and free both this skb and the next,
1557 * so not even _safe variant of the loop is enough.
1558 */
1559 if (in_sack <= 0) {
a1197f5a
IJ
1560 tmp = tcp_shift_skb_data(sk, skb, state,
1561 start_seq, end_seq, dup_sack);
00db4124 1562 if (tmp) {
832d11c5
IJ
1563 if (tmp != skb) {
1564 skb = tmp;
1565 continue;
1566 }
1567
1568 in_sack = 0;
1569 } else {
1570 in_sack = tcp_match_skb_to_sack(sk, skb,
1571 start_seq,
1572 end_seq);
1573 }
1574 }
1575
68f8353b
IJ
1576 if (unlikely(in_sack < 0))
1577 break;
1578
832d11c5 1579 if (in_sack) {
cc9a672e
NC
1580 TCP_SKB_CB(skb)->sacked =
1581 tcp_sacktag_one(sk,
1582 state,
1583 TCP_SKB_CB(skb)->sacked,
1584 TCP_SKB_CB(skb)->seq,
1585 TCP_SKB_CB(skb)->end_seq,
1586 dup_sack,
59c9af42 1587 tcp_skb_pcount(skb),
740b0f18 1588 &skb->skb_mstamp);
b9f64820 1589 tcp_rate_skb_delivered(sk, skb, state->rate);
68f8353b 1590
832d11c5
IJ
1591 if (!before(TCP_SKB_CB(skb)->seq,
1592 tcp_highest_sack_seq(tp)))
1593 tcp_advance_highest_sack(sk, skb);
1594 }
1595
a1197f5a 1596 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1597 }
1598 return skb;
1599}
1600
1601/* Avoid all extra work that is being done by sacktag while walking in
1602 * a normal way
1603 */
1604static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1605 struct tcp_sacktag_state *state,
1606 u32 skip_to_seq)
68f8353b
IJ
1607{
1608 tcp_for_write_queue_from(skb, sk) {
1609 if (skb == tcp_send_head(sk))
1610 break;
1611
e8bae275 1612 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1613 break;
d152a7d8 1614
a1197f5a 1615 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1616 }
1617 return skb;
1618}
1619
1620static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1621 struct sock *sk,
1622 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1623 struct tcp_sacktag_state *state,
1624 u32 skip_to_seq)
68f8353b 1625{
51456b29 1626 if (!next_dup)
68f8353b
IJ
1627 return skb;
1628
1629 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1630 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1631 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1632 next_dup->start_seq, next_dup->end_seq,
1633 1);
68f8353b
IJ
1634 }
1635
1636 return skb;
1637}
1638
cf533ea5 1639static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1640{
1641 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1642}
1643
1da177e4 1644static int
cf533ea5 1645tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1646 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1647{
1648 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1649 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1650 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1651 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1652 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1653 struct tcp_sack_block *cache;
1654 struct sk_buff *skb;
4389dded 1655 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1656 int used_sacks;
a2a385d6 1657 bool found_dup_sack = false;
68f8353b 1658 int i, j;
fda03fbb 1659 int first_sack_index;
1da177e4 1660
196da974
KKJ
1661 state->flag = 0;
1662 state->reord = tp->packets_out;
a1197f5a 1663
d738cd8f 1664 if (!tp->sacked_out) {
de83c058
IJ
1665 if (WARN_ON(tp->fackets_out))
1666 tp->fackets_out = 0;
6859d494 1667 tcp_highest_sack_reset(sk);
d738cd8f 1668 }
1da177e4 1669
1ed83465 1670 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1671 num_sacks, prior_snd_una);
b9f64820 1672 if (found_dup_sack) {
196da974 1673 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1674 tp->delivered++; /* A spurious retransmission is delivered */
1675 }
6f74651a
BE
1676
1677 /* Eliminate too old ACKs, but take into
1678 * account more or less fresh ones, they can
1679 * contain valid SACK info.
1680 */
1681 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1682 return 0;
1683