]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Fix possible uninitialized 'InitFlag' field
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
dd017041 4 Copyright (c) 2016 - 2020, Intel Corporation. All rights reserved.<BR>\r
0acd8697 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
3e8ad6bd
JF
6\r
7**/\r
8\r
9#include "MpLib.h"\r
10\r
93ca4c0f
JF
11EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
12\r
7c3f2a12
JF
13/**\r
14 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
15\r
16 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
17 get the status and sync up the settings.\r
18 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
19 not working actually.\r
7c3f2a12
JF
20\r
21 @retval TRUE BSP Execute Disable is enabled.\r
22 @retval FALSE BSP Execute Disable is not enabled.\r
23**/\r
24BOOLEAN\r
25IsBspExecuteDisableEnabled (\r
26 VOID\r
27 )\r
28{\r
29 UINT32 Eax;\r
30 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
31 MSR_IA32_EFER_REGISTER EferMsr;\r
32 BOOLEAN Enabled;\r
844b2d07 33 IA32_CR0 Cr0;\r
7c3f2a12
JF
34\r
35 Enabled = FALSE;\r
844b2d07
JF
36 Cr0.UintN = AsmReadCr0 ();\r
37 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 38 //\r
844b2d07 39 // If CR0 Paging bit is set\r
7c3f2a12 40 //\r
844b2d07
JF
41 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
42 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
43 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 44 //\r
844b2d07
JF
45 // CPUID 0x80000001\r
46 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 47 //\r
844b2d07
JF
48 if (Edx.Bits.NX != 0) {\r
49 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
50 //\r
51 // MSR 0xC0000080\r
52 // Bit 11: Execute Disable Bit enable.\r
53 //\r
54 if (EferMsr.Bits.NXE != 0) {\r
55 Enabled = TRUE;\r
56 }\r
7c3f2a12
JF
57 }\r
58 }\r
59 }\r
60\r
61 return Enabled;\r
62}\r
63\r
41be0da5
JF
64/**\r
65 Worker function for SwitchBSP().\r
66\r
67 Worker function for SwitchBSP(), assigned to the AP which is intended\r
68 to become BSP.\r
69\r
70 @param[in] Buffer Pointer to CPU MP Data\r
71**/\r
72VOID\r
73EFIAPI\r
74FutureBSPProc (\r
75 IN VOID *Buffer\r
76 )\r
77{\r
78 CPU_MP_DATA *DataInHob;\r
79\r
80 DataInHob = (CPU_MP_DATA *) Buffer;\r
81 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
82}\r
83\r
03a1a925
JF
84/**\r
85 Get the Application Processors state.\r
86\r
87 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
88\r
89 @return The AP status\r
90**/\r
91CPU_STATE\r
92GetApState (\r
93 IN CPU_AP_DATA *CpuData\r
94 )\r
95{\r
96 return CpuData->State;\r
97}\r
98\r
99/**\r
100 Set the Application Processors state.\r
101\r
102 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
103 @param[in] State The AP status\r
104**/\r
105VOID\r
106SetApState (\r
107 IN CPU_AP_DATA *CpuData,\r
108 IN CPU_STATE State\r
109 )\r
110{\r
111 AcquireSpinLock (&CpuData->ApLock);\r
112 CpuData->State = State;\r
113 ReleaseSpinLock (&CpuData->ApLock);\r
114}\r
3e8ad6bd 115\r
ffab2442 116/**\r
f70174d6 117 Save BSP's local APIC timer setting.\r
ffab2442
JF
118\r
119 @param[in] CpuMpData Pointer to CPU MP Data\r
120**/\r
121VOID\r
122SaveLocalApicTimerSetting (\r
123 IN CPU_MP_DATA *CpuMpData\r
124 )\r
125{\r
126 //\r
127 // Record the current local APIC timer setting of BSP\r
128 //\r
129 GetApicTimerState (\r
130 &CpuMpData->DivideValue,\r
131 &CpuMpData->PeriodicMode,\r
132 &CpuMpData->Vector\r
133 );\r
134 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
135 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
136}\r
137\r
138/**\r
139 Sync local APIC timer setting from BSP to AP.\r
140\r
141 @param[in] CpuMpData Pointer to CPU MP Data\r
142**/\r
143VOID\r
144SyncLocalApicTimerSetting (\r
145 IN CPU_MP_DATA *CpuMpData\r
146 )\r
147{\r
148 //\r
149 // Sync local APIC timer setting from BSP to AP\r
150 //\r
151 InitializeApicTimer (\r
152 CpuMpData->DivideValue,\r
153 CpuMpData->CurrentTimerCount,\r
154 CpuMpData->PeriodicMode,\r
155 CpuMpData->Vector\r
156 );\r
157 //\r
158 // Disable AP's local APIC timer interrupt\r
159 //\r
160 DisableApicTimerInterrupt ();\r
161}\r
162\r
68cb9330
JF
163/**\r
164 Save the volatile registers required to be restored following INIT IPI.\r
165\r
166 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
167**/\r
168VOID\r
169SaveVolatileRegisters (\r
170 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
171 )\r
172{\r
173 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
174\r
175 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
176 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
177 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
178\r
179 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
180 if (VersionInfoEdx.Bits.DE != 0) {\r
181 //\r
182 // If processor supports Debugging Extensions feature\r
183 // by CPUID.[EAX=01H]:EDX.BIT2\r
184 //\r
185 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
186 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
187 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
188 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
189 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
190 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
191 }\r
e9415e48
JW
192\r
193 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
194 AsmReadIdtr (&VolatileRegisters->Idtr);\r
195 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
196}\r
197\r
198/**\r
199 Restore the volatile registers following INIT IPI.\r
200\r
201 @param[in] VolatileRegisters Pointer to volatile resisters\r
202 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
203 FALSE: Do not restore DRx\r
204**/\r
205VOID\r
206RestoreVolatileRegisters (\r
207 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
208 IN BOOLEAN IsRestoreDr\r
209 )\r
210{\r
211 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 212 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330 213\r
68cb9330
JF
214 AsmWriteCr3 (VolatileRegisters->Cr3);\r
215 AsmWriteCr4 (VolatileRegisters->Cr4);\r
e09b6b59 216 AsmWriteCr0 (VolatileRegisters->Cr0);\r
68cb9330
JF
217\r
218 if (IsRestoreDr) {\r
219 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
220 if (VersionInfoEdx.Bits.DE != 0) {\r
221 //\r
222 // If processor supports Debugging Extensions feature\r
223 // by CPUID.[EAX=01H]:EDX.BIT2\r
224 //\r
225 AsmWriteDr0 (VolatileRegisters->Dr0);\r
226 AsmWriteDr1 (VolatileRegisters->Dr1);\r
227 AsmWriteDr2 (VolatileRegisters->Dr2);\r
228 AsmWriteDr3 (VolatileRegisters->Dr3);\r
229 AsmWriteDr6 (VolatileRegisters->Dr6);\r
230 AsmWriteDr7 (VolatileRegisters->Dr7);\r
231 }\r
232 }\r
e9415e48
JW
233\r
234 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
235 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
236 if (VolatileRegisters->Tr != 0 &&\r
237 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
238 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
239 VolatileRegisters->Tr);\r
d69ba6a7 240 if (Tss->Bits.P == 1) {\r
e9415e48
JW
241 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
242 AsmWriteTr (VolatileRegisters->Tr);\r
243 }\r
244 }\r
68cb9330
JF
245}\r
246\r
9ebcf0f4
JF
247/**\r
248 Detect whether Mwait-monitor feature is supported.\r
249\r
250 @retval TRUE Mwait-monitor feature is supported.\r
251 @retval FALSE Mwait-monitor feature is not supported.\r
252**/\r
253BOOLEAN\r
254IsMwaitSupport (\r
255 VOID\r
256 )\r
257{\r
258 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
259\r
260 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
261 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
262}\r
263\r
264/**\r
265 Get AP loop mode.\r
266\r
267 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
268\r
269 @return The AP loop mode.\r
270**/\r
271UINT8\r
272GetApLoopMode (\r
273 OUT UINT32 *MonitorFilterSize\r
274 )\r
275{\r
276 UINT8 ApLoopMode;\r
277 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
278\r
279 ASSERT (MonitorFilterSize != NULL);\r
280\r
281 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
282 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
283 if (ApLoopMode == ApInMwaitLoop) {\r
284 if (!IsMwaitSupport ()) {\r
285 //\r
286 // If processor does not support MONITOR/MWAIT feature,\r
287 // force AP in Hlt-loop mode\r
288 //\r
289 ApLoopMode = ApInHltLoop;\r
290 }\r
291 }\r
292\r
293 if (ApLoopMode != ApInMwaitLoop) {\r
294 *MonitorFilterSize = sizeof (UINT32);\r
295 } else {\r
296 //\r
297 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
298 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
299 //\r
300 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
301 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
302 }\r
303\r
304 return ApLoopMode;\r
305}\r
b8b04307 306\r
8a2d564b
JF
307/**\r
308 Sort the APIC ID of all processors.\r
309\r
310 This function sorts the APIC ID of all processors so that processor number is\r
311 assigned in the ascending order of APIC ID which eases MP debugging.\r
312\r
313 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
314**/\r
315VOID\r
316SortApicId (\r
317 IN CPU_MP_DATA *CpuMpData\r
318 )\r
319{\r
320 UINTN Index1;\r
321 UINTN Index2;\r
322 UINTN Index3;\r
323 UINT32 ApicId;\r
31a1e4da 324 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
325 UINT32 ApCount;\r
326 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 327 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
328\r
329 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 330 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
331 if (ApCount != 0) {\r
332 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
333 Index3 = Index1;\r
334 //\r
335 // Sort key is the hardware default APIC ID\r
336 //\r
31a1e4da 337 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 338 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 339 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 340 Index3 = Index2;\r
31a1e4da 341 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
342 }\r
343 }\r
344 if (Index3 != Index1) {\r
31a1e4da 345 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 346 CopyMem (\r
31a1e4da
JF
347 &CpuInfoInHob[Index3],\r
348 &CpuInfoInHob[Index1],\r
349 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 350 );\r
31a1e4da 351 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
352\r
353 //\r
354 // Also exchange the StartupApSignal.\r
355 //\r
356 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
357 CpuMpData->CpuData[Index3].StartupApSignal =\r
358 CpuMpData->CpuData[Index1].StartupApSignal;\r
359 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
360 }\r
361 }\r
362\r
363 //\r
364 // Get the processor number for the BSP\r
365 //\r
366 ApicId = GetInitialApicId ();\r
367 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 368 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
369 CpuMpData->BspNumber = (UINT32) Index1;\r
370 break;\r
371 }\r
372 }\r
8a2d564b
JF
373 }\r
374}\r
375\r
fe627769
JF
376/**\r
377 Enable x2APIC mode on APs.\r
378\r
379 @param[in, out] Buffer Pointer to private data buffer.\r
380**/\r
381VOID\r
382EFIAPI\r
383ApFuncEnableX2Apic (\r
384 IN OUT VOID *Buffer\r
385 )\r
386{\r
387 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
388}\r
389\r
b8b04307
JF
390/**\r
391 Do sync on APs.\r
392\r
393 @param[in, out] Buffer Pointer to private data buffer.\r
394**/\r
395VOID\r
396EFIAPI\r
397ApInitializeSync (\r
398 IN OUT VOID *Buffer\r
399 )\r
400{\r
401 CPU_MP_DATA *CpuMpData;\r
e1ed5573
HW
402 UINTN ProcessorNumber;\r
403 EFI_STATUS Status;\r
b8b04307
JF
404\r
405 CpuMpData = (CPU_MP_DATA *) Buffer;\r
e1ed5573
HW
406 Status = GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
407 ASSERT_EFI_ERROR (Status);\r
b8b04307 408 //\r
b8b04307
JF
409 // Load microcode on AP\r
410 //\r
e1ed5573 411 MicrocodeDetect (CpuMpData, ProcessorNumber);\r
cb811673
JF
412 //\r
413 // Sync BSP's MTRR table to AP\r
414 //\r
415 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
416}\r
417\r
418/**\r
419 Find the current Processor number by APIC ID.\r
420\r
367284e7
DB
421 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
422 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
423\r
424 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
425 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
426**/\r
427EFI_STATUS\r
428GetProcessorNumber (\r
429 IN CPU_MP_DATA *CpuMpData,\r
430 OUT UINTN *ProcessorNumber\r
431 )\r
432{\r
433 UINTN TotalProcessorNumber;\r
434 UINTN Index;\r
31a1e4da 435 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 436 UINT32 CurrentApicId;\r
31a1e4da
JF
437\r
438 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
439\r
440 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 441 CurrentApicId = GetApicId ();\r
b8b04307 442 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 443 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
444 *ProcessorNumber = Index;\r
445 return EFI_SUCCESS;\r
446 }\r
447 }\r
e52838d3 448\r
b8b04307
JF
449 return EFI_NOT_FOUND;\r
450}\r
451\r
03434dff
JF
452/**\r
453 This function will get CPU count in the system.\r
454\r
455 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
456\r
457 @return CPU count detected\r
458**/\r
459UINTN\r
460CollectProcessorCount (\r
461 IN CPU_MP_DATA *CpuMpData\r
462 )\r
463{\r
59a119f0 464 UINTN Index;\r
54d1e76f 465 CPU_INFO_IN_HOB *CpuInfoInHob;\r
fe3ca5fd 466 BOOLEAN X2Apic;\r
59a119f0 467\r
03434dff
JF
468 //\r
469 // Send 1st broadcast IPI to APs to wakeup APs\r
470 //\r
fe3ca5fd 471 CpuMpData->InitFlag = ApInitConfig;\r
cf4e79e4 472 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);\r
03434dff
JF
473 CpuMpData->InitFlag = ApInitDone;\r
474 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
475 //\r
476 // Wait for all APs finished the initialization\r
477 //\r
478 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
479 CpuPause ();\r
480 }\r
481\r
9c33f16f 482\r
54d1e76f
RN
483 //\r
484 // Enable x2APIC mode if\r
485 // 1. Number of CPU is greater than 255; or\r
486 // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater.\r
487 //\r
fe3ca5fd 488 X2Apic = FALSE;\r
71d8226a
JF
489 if (CpuMpData->CpuCount > 255) {\r
490 //\r
491 // If there are more than 255 processor found, force to enable X2APIC\r
492 //\r
fe3ca5fd 493 X2Apic = TRUE;\r
54d1e76f
RN
494 } else {\r
495 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
496 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
497 if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {\r
fe3ca5fd 498 X2Apic = TRUE;\r
54d1e76f
RN
499 break;\r
500 }\r
501 }\r
71d8226a 502 }\r
54d1e76f 503\r
fe3ca5fd 504 if (X2Apic) {\r
fe627769
JF
505 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
506 //\r
507 // Wakeup all APs to enable x2APIC mode\r
508 //\r
cf4e79e4 509 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);\r
fe627769
JF
510 //\r
511 // Wait for all known APs finished\r
512 //\r
513 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
514 CpuPause ();\r
515 }\r
516 //\r
517 // Enable x2APIC on BSP\r
518 //\r
519 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
520 //\r
521 // Set BSP/Aps state to IDLE\r
522 //\r
523 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
524 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
525 }\r
fe627769
JF
526 }\r
527 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
528 //\r
529 // Sort BSP/Aps by CPU APIC ID in ascending order\r
530 //\r
531 SortApicId (CpuMpData);\r
532\r
03434dff
JF
533 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
534\r
535 return CpuMpData->CpuCount;\r
536}\r
537\r
367284e7 538/**\r
03a1a925
JF
539 Initialize CPU AP Data when AP is wakeup at the first time.\r
540\r
541 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
542 @param[in] ProcessorNumber The handle number of processor\r
543 @param[in] BistData Processor BIST data\r
367284e7 544 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
545\r
546**/\r
547VOID\r
548InitializeApData (\r
549 IN OUT CPU_MP_DATA *CpuMpData,\r
550 IN UINTN ProcessorNumber,\r
845c5be1 551 IN UINT32 BistData,\r
dd3fa0cd 552 IN UINT64 ApTopOfStack\r
03a1a925
JF
553 )\r
554{\r
999463c8
HW
555 CPU_INFO_IN_HOB *CpuInfoInHob;\r
556 MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr;\r
31a1e4da
JF
557\r
558 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
559 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
560 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
561 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 562 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 563\r
03a1a925 564 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 565 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
03a1a925 566\r
999463c8
HW
567 PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);\r
568 CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8) PlatformIdMsr.Bits.PlatformId;\r
569\r
570 AsmCpuid (\r
571 CPUID_VERSION_INFO,\r
572 &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature,\r
573 NULL,\r
574 NULL,\r
575 NULL\r
576 );\r
577\r
03a1a925
JF
578 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
579 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
580}\r
581\r
b8b04307
JF
582/**\r
583 This function will be called from AP reset code if BSP uses WakeUpAP.\r
584\r
585 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 586 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
587**/\r
588VOID\r
589EFIAPI\r
590ApWakeupFunction (\r
591 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 592 IN UINTN ApIndex\r
b8b04307
JF
593 )\r
594{\r
595 CPU_MP_DATA *CpuMpData;\r
596 UINTN ProcessorNumber;\r
597 EFI_AP_PROCEDURE Procedure;\r
598 VOID *Parameter;\r
599 UINT32 BistData;\r
600 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 601 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 602 UINT64 ApTopOfStack;\r
c6b0feb3 603 UINTN CurrentApicMode;\r
b8b04307
JF
604\r
605 //\r
606 // AP finished assembly code and begin to execute C code\r
607 //\r
608 CpuMpData = ExchangeInfo->CpuMpData;\r
609\r
ffab2442
JF
610 //\r
611 // AP's local APIC settings will be lost after received INIT IPI\r
612 // We need to re-initialize them at here\r
613 //\r
614 ProgramVirtualWireMode ();\r
a2ea6894
RN
615 //\r
616 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
617 //\r
618 DisableLvtInterrupts ();\r
ffab2442 619 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 620\r
c6b0feb3 621 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
622 while (TRUE) {\r
623 if (CpuMpData->InitFlag == ApInitConfig) {\r
624 //\r
625 // Add CPU number\r
626 //\r
627 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 628 ProcessorNumber = ApIndex;\r
b8b04307
JF
629 //\r
630 // This is first time AP wakeup, get BIST information from AP stack\r
631 //\r
845c5be1 632 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 633 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307 634 //\r
c563077a
RN
635 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
636 // to initialize AP in InitConfig path.\r
637 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
638 //\r
639 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 640 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307 641 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
9fc1b85f
RN
642\r
643 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
644 } else {\r
645 //\r
646 // Execute AP function if AP is ready\r
647 //\r
648 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
649 //\r
650 // Clear AP start-up signal when AP waken up\r
651 //\r
652 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
653 InterlockedCompareExchange32 (\r
654 (UINT32 *) ApStartupSignalBuffer,\r
655 WAKEUP_AP_SIGNAL,\r
656 0\r
657 );\r
658 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
659 //\r
660 // Restore AP's volatile registers saved\r
661 //\r
662 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
663 } else {\r
664 //\r
665 // The CPU driver might not flush TLB for APs on spot after updating\r
666 // page attributes. AP in mwait loop mode needs to take care of it when\r
667 // woken up.\r
668 //\r
669 CpuFlushTlb ();\r
b8b04307
JF
670 }\r
671\r
672 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
673 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
674 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
675 if (Procedure != NULL) {\r
676 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
677 //\r
43c9fdcc 678 // Enable source debugging on AP function\r
7367cc6c 679 //\r
43c9fdcc
JF
680 EnableDebugAgent ();\r
681 //\r
b8b04307
JF
682 // Invoke AP function here\r
683 //\r
684 Procedure (Parameter);\r
31a1e4da 685 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
686 if (CpuMpData->SwitchBspFlag) {\r
687 //\r
688 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
689 //\r
690 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
691 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
692 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
693 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
694 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 695 } else {\r
c6b0feb3
JF
696 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
697 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
698 if (CurrentApicMode != GetApicMode ()) {\r
699 //\r
700 // If APIC mode change happened during AP function execution,\r
701 // we do not support APIC ID value changed.\r
702 //\r
703 ASSERT (FALSE);\r
704 CpuDeadLoop ();\r
705 } else {\r
706 //\r
707 // Re-get the CPU APICID and Initial APICID if they are changed\r
708 //\r
709 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
710 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
711 }\r
712 }\r
41be0da5 713 }\r
b8b04307 714 }\r
e048ce88 715 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
b8b04307
JF
716 }\r
717 }\r
718\r
719 //\r
720 // AP finished executing C code\r
721 //\r
722 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
723\r
724 //\r
725 // Place AP is specified loop mode\r
726 //\r
727 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
728 //\r
729 // Save AP volatile registers\r
730 //\r
731 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
732 //\r
733 // Place AP in HLT-loop\r
734 //\r
735 while (TRUE) {\r
736 DisableInterrupts ();\r
737 CpuSleep ();\r
738 CpuPause ();\r
739 }\r
740 }\r
741 while (TRUE) {\r
742 DisableInterrupts ();\r
743 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
744 //\r
745 // Place AP in MWAIT-loop\r
746 //\r
747 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
748 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
749 //\r
750 // Check AP start-up signal again.\r
751 // If AP start-up signal is not set, place AP into\r
752 // the specified C-state\r
753 //\r
754 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
755 }\r
756 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
757 //\r
758 // Place AP in Run-loop\r
759 //\r
760 CpuPause ();\r
761 } else {\r
762 ASSERT (FALSE);\r
763 }\r
764\r
765 //\r
766 // If AP start-up signal is written, AP is waken up\r
767 // otherwise place AP in loop again\r
768 //\r
769 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
770 break;\r
771 }\r
772 }\r
773 }\r
774}\r
775\r
96f5920d
JF
776/**\r
777 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
778\r
779 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
780**/\r
781VOID\r
782WaitApWakeup (\r
783 IN volatile UINT32 *ApStartupSignalBuffer\r
784 )\r
785{\r
786 //\r
787 // If AP is waken up, StartupApSignal should be cleared.\r
788 // Otherwise, write StartupApSignal again till AP waken up.\r
789 //\r
790 while (InterlockedCompareExchange32 (\r
791 (UINT32 *) ApStartupSignalBuffer,\r
792 WAKEUP_AP_SIGNAL,\r
793 WAKEUP_AP_SIGNAL\r
794 ) != 0) {\r
795 CpuPause ();\r
796 }\r
797}\r
798\r
7c3f2a12
JF
799/**\r
800 This function will fill the exchange info structure.\r
801\r
802 @param[in] CpuMpData Pointer to CPU MP Data\r
803\r
804**/\r
805VOID\r
806FillExchangeInfoData (\r
807 IN CPU_MP_DATA *CpuMpData\r
808 )\r
809{\r
810 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
811 UINTN Size;\r
812 IA32_SEGMENT_DESCRIPTOR *Selector;\r
09f69a87 813 IA32_CR4 Cr4;\r
7c3f2a12
JF
814\r
815 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
816 ExchangeInfo->Lock = 0;\r
817 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
818 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
819 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
820 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
821\r
822 ExchangeInfo->CodeSegment = AsmReadCs ();\r
823 ExchangeInfo->DataSegment = AsmReadDs ();\r
824\r
825 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
826\r
827 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 828 ExchangeInfo->ApIndex = 0;\r
0594ec41 829 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
830 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
831 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
832 ExchangeInfo->CpuMpData = CpuMpData;\r
833\r
834 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
835\r
3b2928b4
MK
836 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
837\r
09f69a87
RN
838 //\r
839 // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]\r
840 // to determin whether 5-Level Paging is enabled.\r
841 // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows\r
842 // current system setting.\r
843 // Using latter way is simpler because it also eliminates the needs to\r
844 // check whether platform wants to enable it.\r
845 //\r
846 Cr4.UintN = AsmReadCr4 ();\r
847 ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);\r
848 DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));\r
849\r
7c3f2a12
JF
850 //\r
851 // Get the BSP's data of GDT and IDT\r
852 //\r
853 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
854 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
855\r
856 //\r
857 // Find a 32-bit code segment\r
858 //\r
859 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
860 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
861 while (Size > 0) {\r
862 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
863 ExchangeInfo->ModeTransitionSegment =\r
864 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
865 break;\r
866 }\r
867 Selector += 1;\r
868 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
869 }\r
870\r
871 //\r
872 // Copy all 32-bit code and 64-bit code into memory with type of\r
873 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
874 //\r
66833b2a 875 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
876 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
877 CpuMpData->AddressMap.ModeTransitionOffset;\r
878 CopyMem (\r
66833b2a 879 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
880 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
881 CpuMpData->AddressMap.ModeTransitionOffset,\r
882 Size\r
883 );\r
884\r
66833b2a 885 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
886 } else {\r
887 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
888 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
889 }\r
69dfa8d8
JW
890\r
891 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
892 (UINT32)ExchangeInfo->ModeOffset -\r
893 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
894 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
895}\r
896\r
6e1987f1
LE
897/**\r
898 Helper function that waits until the finished AP count reaches the specified\r
899 limit, or the specified timeout elapses (whichever comes first).\r
900\r
901 @param[in] CpuMpData Pointer to CPU MP Data.\r
902 @param[in] FinishedApLimit The number of finished APs to wait for.\r
903 @param[in] TimeLimit The number of microseconds to wait for.\r
904**/\r
905VOID\r
906TimedWaitForApFinish (\r
907 IN CPU_MP_DATA *CpuMpData,\r
908 IN UINT32 FinishedApLimit,\r
909 IN UINT32 TimeLimit\r
910 );\r
911\r
a6b3d753
SZ
912/**\r
913 Get available system memory below 1MB by specified size.\r
914\r
915 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
916**/\r
917VOID\r
918BackupAndPrepareWakeupBuffer(\r
919 IN CPU_MP_DATA *CpuMpData\r
920 )\r
921{\r
922 CopyMem (\r
923 (VOID *) CpuMpData->BackupBuffer,\r
924 (VOID *) CpuMpData->WakeupBuffer,\r
925 CpuMpData->BackupBufferSize\r
926 );\r
927 CopyMem (\r
928 (VOID *) CpuMpData->WakeupBuffer,\r
929 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
930 CpuMpData->AddressMap.RendezvousFunnelSize\r
931 );\r
932}\r
933\r
934/**\r
935 Restore wakeup buffer data.\r
936\r
937 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
938**/\r
939VOID\r
940RestoreWakeupBuffer(\r
941 IN CPU_MP_DATA *CpuMpData\r
942 )\r
943{\r
944 CopyMem (\r
945 (VOID *) CpuMpData->WakeupBuffer,\r
946 (VOID *) CpuMpData->BackupBuffer,\r
947 CpuMpData->BackupBufferSize\r
948 );\r
949}\r
950\r
951/**\r
952 Allocate reset vector buffer.\r
953\r
954 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
955**/\r
956VOID\r
957AllocateResetVector (\r
958 IN OUT CPU_MP_DATA *CpuMpData\r
959 )\r
960{\r
961 UINTN ApResetVectorSize;\r
962\r
963 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
964 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
965 sizeof (MP_CPU_EXCHANGE_INFO);\r
966\r
967 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
968 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
969 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
970 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
971 CpuMpData->AddressMap.RendezvousFunnelSize -\r
972 CpuMpData->AddressMap.ModeTransitionOffset\r
973 );\r
a6b3d753
SZ
974 }\r
975 BackupAndPrepareWakeupBuffer (CpuMpData);\r
976}\r
977\r
978/**\r
979 Free AP reset vector buffer.\r
980\r
981 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
982**/\r
983VOID\r
984FreeResetVector (\r
985 IN CPU_MP_DATA *CpuMpData\r
986 )\r
987{\r
988 RestoreWakeupBuffer (CpuMpData);\r
989}\r
990\r
96f5920d
JF
991/**\r
992 This function will be called by BSP to wakeup AP.\r
993\r
994 @param[in] CpuMpData Pointer to CPU MP Data\r
995 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
996 FALSE: Send IPI to AP by ApicId\r
997 @param[in] ProcessorNumber The handle number of specified processor\r
998 @param[in] Procedure The function to be invoked by AP\r
999 @param[in] ProcedureArgument The argument to be passed into AP function\r
cf4e79e4 1000 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.\r
96f5920d
JF
1001**/\r
1002VOID\r
1003WakeUpAP (\r
1004 IN CPU_MP_DATA *CpuMpData,\r
1005 IN BOOLEAN Broadcast,\r
1006 IN UINTN ProcessorNumber,\r
1007 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
cf4e79e4
ED
1008 IN VOID *ProcedureArgument, OPTIONAL\r
1009 IN BOOLEAN WakeUpDisabledAps\r
96f5920d
JF
1010 )\r
1011{\r
1012 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
1013 UINTN Index;\r
1014 CPU_AP_DATA *CpuData;\r
1015 BOOLEAN ResetVectorRequired;\r
31a1e4da 1016 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
1017\r
1018 CpuMpData->FinishedCount = 0;\r
1019 ResetVectorRequired = FALSE;\r
1020\r
58942277 1021 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
1022 CpuMpData->InitFlag != ApInitDone) {\r
1023 ResetVectorRequired = TRUE;\r
1024 AllocateResetVector (CpuMpData);\r
1025 FillExchangeInfoData (CpuMpData);\r
ffab2442 1026 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
1027 }\r
1028\r
1029 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
1030 //\r
1031 // Get AP target C-state each time when waking up AP,\r
1032 // for it maybe updated by platform again\r
1033 //\r
1034 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1035 }\r
1036\r
1037 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1038\r
1039 if (Broadcast) {\r
1040 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1041 if (Index != CpuMpData->BspNumber) {\r
1042 CpuData = &CpuMpData->CpuData[Index];\r
cf4e79e4
ED
1043 //\r
1044 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but\r
e23d9c3e 1045 // the AP procedure will be skipped for disabled AP because AP state\r
cf4e79e4
ED
1046 // is not CpuStateReady.\r
1047 //\r
1048 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {\r
1049 continue;\r
1050 }\r
1051\r
96f5920d
JF
1052 CpuData->ApFunction = (UINTN) Procedure;\r
1053 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1054 SetApState (CpuData, CpuStateReady);\r
1055 if (CpuMpData->InitFlag != ApInitConfig) {\r
1056 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1057 }\r
1058 }\r
1059 }\r
1060 if (ResetVectorRequired) {\r
1061 //\r
1062 // Wakeup all APs\r
1063 //\r
1064 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1065 }\r
c1192210 1066 if (CpuMpData->InitFlag == ApInitConfig) {\r
778832bc
LE
1067 if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {\r
1068 //\r
1069 // The AP enumeration algorithm below is suitable only when the\r
1070 // platform can tell us the *exact* boot CPU count in advance.\r
1071 //\r
1072 // The wait below finishes only when the detected AP count reaches\r
1073 // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that\r
1074 // takes. If at least one AP fails to check in (meaning a platform\r
1075 // hardware bug), the detection hangs forever, by design. If the actual\r
1076 // boot CPU count in the system is higher than\r
1077 // PcdCpuBootLogicalProcessorNumber (meaning a platform\r
1078 // misconfiguration), then some APs may complete initialization after\r
1079 // the wait finishes, and cause undefined behavior.\r
1080 //\r
1081 TimedWaitForApFinish (\r
1082 CpuMpData,\r
1083 PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,\r
1084 MAX_UINT32 // approx. 71 minutes\r
1085 );\r
1086 } else {\r
1087 //\r
1088 // The AP enumeration algorithm below is suitable for two use cases.\r
1089 //\r
1090 // (1) The check-in time for an individual AP is bounded, and APs run\r
1091 // through their initialization routines strongly concurrently. In\r
1092 // particular, the number of concurrently running APs\r
1093 // ("NumApsExecuting") is never expected to fall to zero\r
1094 // *temporarily* -- it is expected to fall to zero only when all\r
1095 // APs have checked-in.\r
1096 //\r
1097 // In this case, the platform is supposed to set\r
1098 // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long\r
1099 // enough for one AP to start initialization). The timeout will be\r
1100 // reached soon, and remaining APs are collected by watching\r
1101 // NumApsExecuting fall to zero. If NumApsExecuting falls to zero\r
1102 // mid-process, while some APs have not completed initialization,\r
1103 // the behavior is undefined.\r
1104 //\r
1105 // (2) The check-in time for an individual AP is unbounded, and/or APs\r
1106 // may complete their initializations widely spread out. In\r
1107 // particular, some APs may finish initialization before some APs\r
1108 // even start.\r
1109 //\r
1110 // In this case, the platform is supposed to set\r
1111 // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP\r
1112 // enumeration will always take that long (except when the boot CPU\r
1113 // count happens to be maximal, that is,\r
1114 // PcdCpuMaxLogicalProcessorNumber). All APs are expected to\r
1115 // check-in before the timeout, and NumApsExecuting is assumed zero\r
1116 // at timeout. APs that miss the time-out may cause undefined\r
1117 // behavior.\r
1118 //\r
1119 TimedWaitForApFinish (\r
1120 CpuMpData,\r
1121 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1122 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1123 );\r
0594ec41 1124\r
778832bc
LE
1125 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1126 CpuPause();\r
1127 }\r
0594ec41 1128 }\r
c1192210 1129 } else {\r
96f5920d
JF
1130 //\r
1131 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1132 //\r
1133 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1134 CpuData = &CpuMpData->CpuData[Index];\r
1135 if (Index != CpuMpData->BspNumber) {\r
1136 WaitApWakeup (CpuData->StartupApSignal);\r
1137 }\r
1138 }\r
1139 }\r
1140 } else {\r
1141 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1142 CpuData->ApFunction = (UINTN) Procedure;\r
1143 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1144 SetApState (CpuData, CpuStateReady);\r
1145 //\r
1146 // Wakeup specified AP\r
1147 //\r
1148 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1149 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1150 if (ResetVectorRequired) {\r
31a1e4da 1151 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1152 SendInitSipiSipi (\r
31a1e4da 1153 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1154 (UINT32) ExchangeInfo->BufferStart\r
1155 );\r
1156 }\r
1157 //\r
1158 // Wait specified AP waken up\r
1159 //\r
1160 WaitApWakeup (CpuData->StartupApSignal);\r
1161 }\r
1162\r
1163 if (ResetVectorRequired) {\r
1164 FreeResetVector (CpuMpData);\r
1165 }\r
58942277
ED
1166\r
1167 //\r
1168 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1169 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1170 // S3SmmInitDone Ppi.\r
1171 //\r
1172 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1173}\r
1174\r
08085f08
JF
1175/**\r
1176 Calculate timeout value and return the current performance counter value.\r
1177\r
1178 Calculate the number of performance counter ticks required for a timeout.\r
1179 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1180 as infinity.\r
1181\r
1182 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1183 @param[out] CurrentTime Returns the current value of the performance counter.\r
1184\r
1185 @return Expected time stamp counter for timeout.\r
1186 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1187 as infinity.\r
1188\r
1189**/\r
1190UINT64\r
1191CalculateTimeout (\r
1192 IN UINTN TimeoutInMicroseconds,\r
1193 OUT UINT64 *CurrentTime\r
1194 )\r
1195{\r
48cfb7c0
ED
1196 UINT64 TimeoutInSeconds;\r
1197 UINT64 TimestampCounterFreq;\r
1198\r
08085f08
JF
1199 //\r
1200 // Read the current value of the performance counter\r
1201 //\r
1202 *CurrentTime = GetPerformanceCounter ();\r
1203\r
1204 //\r
1205 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1206 // as infinity.\r
1207 //\r
1208 if (TimeoutInMicroseconds == 0) {\r
1209 return 0;\r
1210 }\r
1211\r
1212 //\r
1213 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1214 // in Hz.\r
48cfb7c0
ED
1215 //\r
1216 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1217\r
08085f08 1218 //\r
48cfb7c0
ED
1219 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1220 //\r
1221 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1222 //\r
1223 // Convert microseconds into seconds if direct multiplication overflows\r
1224 //\r
1225 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1226 //\r
1227 // Assertion if the final tick count exceeds MAX_UINT64\r
1228 //\r
1229 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1230 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1231 } else {\r
1232 //\r
1233 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1234 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1235 //\r
1236 return DivU64x32 (\r
1237 MultU64x64 (\r
1238 TimestampCounterFreq,\r
1239 TimeoutInMicroseconds\r
1240 ),\r
1241 1000000\r
1242 );\r
1243 }\r
08085f08
JF
1244}\r
1245\r
1246/**\r
1247 Checks whether timeout expires.\r
1248\r
1249 Check whether the number of elapsed performance counter ticks required for\r
1250 a timeout condition has been reached.\r
1251 If Timeout is zero, which means infinity, return value is always FALSE.\r
1252\r
1253 @param[in, out] PreviousTime On input, the value of the performance counter\r
1254 when it was last read.\r
1255 On output, the current value of the performance\r
1256 counter\r
1257 @param[in] TotalTime The total amount of elapsed time in performance\r
1258 counter ticks.\r
1259 @param[in] Timeout The number of performance counter ticks required\r
1260 to reach a timeout condition.\r
1261\r
1262 @retval TRUE A timeout condition has been reached.\r
1263 @retval FALSE A timeout condition has not been reached.\r
1264\r
1265**/\r
1266BOOLEAN\r
1267CheckTimeout (\r
1268 IN OUT UINT64 *PreviousTime,\r
1269 IN UINT64 *TotalTime,\r
1270 IN UINT64 Timeout\r
1271 )\r
1272{\r
1273 UINT64 Start;\r
1274 UINT64 End;\r
1275 UINT64 CurrentTime;\r
1276 INT64 Delta;\r
1277 INT64 Cycle;\r
1278\r
1279 if (Timeout == 0) {\r
1280 return FALSE;\r
1281 }\r
1282 GetPerformanceCounterProperties (&Start, &End);\r
1283 Cycle = End - Start;\r
1284 if (Cycle < 0) {\r
1285 Cycle = -Cycle;\r
1286 }\r
1287 Cycle++;\r
1288 CurrentTime = GetPerformanceCounter();\r
1289 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1290 if (Start > End) {\r
1291 Delta = -Delta;\r
1292 }\r
1293 if (Delta < 0) {\r
1294 Delta += Cycle;\r
1295 }\r
1296 *TotalTime += Delta;\r
1297 *PreviousTime = CurrentTime;\r
1298 if (*TotalTime > Timeout) {\r
1299 return TRUE;\r
1300 }\r
1301 return FALSE;\r
1302}\r
1303\r
6e1987f1
LE
1304/**\r
1305 Helper function that waits until the finished AP count reaches the specified\r
1306 limit, or the specified timeout elapses (whichever comes first).\r
1307\r
1308 @param[in] CpuMpData Pointer to CPU MP Data.\r
1309 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1310 @param[in] TimeLimit The number of microseconds to wait for.\r
1311**/\r
1312VOID\r
1313TimedWaitForApFinish (\r
1314 IN CPU_MP_DATA *CpuMpData,\r
1315 IN UINT32 FinishedApLimit,\r
1316 IN UINT32 TimeLimit\r
1317 )\r
1318{\r
1319 //\r
1320 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1321 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1322 //\r
1323 if (TimeLimit == 0) {\r
1324 return;\r
1325 }\r
1326\r
1327 CpuMpData->TotalTime = 0;\r
1328 CpuMpData->ExpectedTime = CalculateTimeout (\r
1329 TimeLimit,\r
1330 &CpuMpData->CurrentTime\r
1331 );\r
1332 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1333 !CheckTimeout (\r
1334 &CpuMpData->CurrentTime,\r
1335 &CpuMpData->TotalTime,\r
1336 CpuMpData->ExpectedTime\r
1337 )) {\r
1338 CpuPause ();\r
1339 }\r
1340\r
1341 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1342 DEBUG ((\r
1343 DEBUG_VERBOSE,\r
1344 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1345 __FUNCTION__,\r
1346 FinishedApLimit,\r
1347 DivU64x64Remainder (\r
1348 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1349 GetPerformanceCounterProperties (NULL, NULL),\r
1350 NULL\r
1351 )\r
1352 ));\r
1353 }\r
1354}\r
1355\r
08085f08
JF
1356/**\r
1357 Reset an AP to Idle state.\r
1358\r
1359 Any task being executed by the AP will be aborted and the AP\r
1360 will be waiting for a new task in Wait-For-SIPI state.\r
1361\r
1362 @param[in] ProcessorNumber The handle number of processor.\r
1363**/\r
1364VOID\r
1365ResetProcessorToIdleState (\r
1366 IN UINTN ProcessorNumber\r
1367 )\r
1368{\r
1369 CPU_MP_DATA *CpuMpData;\r
1370\r
1371 CpuMpData = GetCpuMpData ();\r
1372\r
cb33bde4 1373 CpuMpData->InitFlag = ApInitReconfig;\r
cf4e79e4 1374 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);\r
cb33bde4
JF
1375 while (CpuMpData->FinishedCount < 1) {\r
1376 CpuPause ();\r
1377 }\r
1378 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1379\r
1380 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1381}\r
1382\r
1383/**\r
1384 Searches for the next waiting AP.\r
1385\r
1386 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1387\r
1388 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1389\r
1390 @retval EFI_SUCCESS The next waiting AP has been found.\r
1391 @retval EFI_NOT_FOUND No waiting AP exists.\r
1392\r
1393**/\r
1394EFI_STATUS\r
1395GetNextWaitingProcessorNumber (\r
1396 OUT UINTN *NextProcessorNumber\r
1397 )\r
1398{\r
1399 UINTN ProcessorNumber;\r
1400 CPU_MP_DATA *CpuMpData;\r
1401\r
1402 CpuMpData = GetCpuMpData ();\r
1403\r
1404 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1405 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1406 *NextProcessorNumber = ProcessorNumber;\r
1407 return EFI_SUCCESS;\r
1408 }\r
1409 }\r
1410\r
1411 return EFI_NOT_FOUND;\r
1412}\r
1413\r
1414/** Checks status of specified AP.\r
1415\r
1416 This function checks whether the specified AP has finished the task assigned\r
1417 by StartupThisAP(), and whether timeout expires.\r
1418\r
1419 @param[in] ProcessorNumber The handle number of processor.\r
1420\r
1421 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1422 @retval EFI_TIMEOUT The timeout expires.\r
1423 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1424**/\r
1425EFI_STATUS\r
1426CheckThisAP (\r
1427 IN UINTN ProcessorNumber\r
1428 )\r
1429{\r
1430 CPU_MP_DATA *CpuMpData;\r
1431 CPU_AP_DATA *CpuData;\r
1432\r
1433 CpuMpData = GetCpuMpData ();\r
1434 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1435\r
1436 //\r
2a5997f8 1437 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1438 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1439 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08
JF
1440 //\r
1441 //\r
1442 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1443 //\r
e048ce88 1444 if (GetApState(CpuData) == CpuStateFinished) {\r
08085f08
JF
1445 if (CpuData->Finished != NULL) {\r
1446 *(CpuData->Finished) = TRUE;\r
1447 }\r
e048ce88 1448 SetApState (CpuData, CpuStateIdle);\r
08085f08
JF
1449 return EFI_SUCCESS;\r
1450 } else {\r
1451 //\r
1452 // If timeout expires for StartupThisAP(), report timeout.\r
1453 //\r
1454 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1455 if (CpuData->Finished != NULL) {\r
1456 *(CpuData->Finished) = FALSE;\r
1457 }\r
1458 //\r
1459 // Reset failed AP to idle state\r
1460 //\r
1461 ResetProcessorToIdleState (ProcessorNumber);\r
1462\r
1463 return EFI_TIMEOUT;\r
1464 }\r
1465 }\r
1466 return EFI_NOT_READY;\r
1467}\r
1468\r
1469/**\r
1470 Checks status of all APs.\r
1471\r
1472 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1473 and whether timeout expires.\r
1474\r
1475 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1476 @retval EFI_TIMEOUT The timeout expires.\r
1477 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1478**/\r
1479EFI_STATUS\r
1480CheckAllAPs (\r
1481 VOID\r
1482 )\r
1483{\r
1484 UINTN ProcessorNumber;\r
1485 UINTN NextProcessorNumber;\r
1486 UINTN ListIndex;\r
1487 EFI_STATUS Status;\r
1488 CPU_MP_DATA *CpuMpData;\r
1489 CPU_AP_DATA *CpuData;\r
1490\r
1491 CpuMpData = GetCpuMpData ();\r
1492\r
1493 NextProcessorNumber = 0;\r
1494\r
1495 //\r
1496 // Go through all APs that are responsible for the StartupAllAPs().\r
1497 //\r
1498 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1499 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1500 continue;\r
1501 }\r
1502\r
1503 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1504 //\r
2a5997f8 1505 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1506 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1507 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08 1508 //\r
e048ce88 1509 if (GetApState(CpuData) == CpuStateFinished) {\r
2da3e96c 1510 CpuMpData->RunningCount --;\r
08085f08 1511 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
e048ce88 1512 SetApState(CpuData, CpuStateIdle);\r
08085f08
JF
1513\r
1514 //\r
1515 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1516 //\r
1517 if (CpuMpData->SingleThread) {\r
1518 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1519\r
1520 if (!EFI_ERROR (Status)) {\r
1521 WakeUpAP (\r
1522 CpuMpData,\r
1523 FALSE,\r
1524 (UINT32) NextProcessorNumber,\r
1525 CpuMpData->Procedure,\r
cf4e79e4
ED
1526 CpuMpData->ProcArguments,\r
1527 TRUE\r
08085f08
JF
1528 );\r
1529 }\r
1530 }\r
1531 }\r
1532 }\r
1533\r
1534 //\r
1535 // If all APs finish, return EFI_SUCCESS.\r
1536 //\r
2da3e96c 1537 if (CpuMpData->RunningCount == 0) {\r
08085f08
JF
1538 return EFI_SUCCESS;\r
1539 }\r
1540\r
1541 //\r
1542 // If timeout expires, report timeout.\r
1543 //\r
1544 if (CheckTimeout (\r
1545 &CpuMpData->CurrentTime,\r
1546 &CpuMpData->TotalTime,\r
1547 CpuMpData->ExpectedTime)\r
1548 ) {\r
1549 //\r
1550 // If FailedCpuList is not NULL, record all failed APs in it.\r
1551 //\r
1552 if (CpuMpData->FailedCpuList != NULL) {\r
1553 *CpuMpData->FailedCpuList =\r
2da3e96c 1554 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));\r
08085f08
JF
1555 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1556 }\r
1557 ListIndex = 0;\r
1558\r
1559 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1560 //\r
1561 // Check whether this processor is responsible for StartupAllAPs().\r
1562 //\r
1563 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1564 //\r
1565 // Reset failed APs to idle state\r
1566 //\r
1567 ResetProcessorToIdleState (ProcessorNumber);\r
1568 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1569 if (CpuMpData->FailedCpuList != NULL) {\r
1570 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1571 }\r
1572 }\r
1573 }\r
1574 if (CpuMpData->FailedCpuList != NULL) {\r
1575 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1576 }\r
1577 return EFI_TIMEOUT;\r
1578 }\r
1579 return EFI_NOT_READY;\r
1580}\r
1581\r
3e8ad6bd
JF
1582/**\r
1583 MP Initialize Library initialization.\r
1584\r
1585 This service will allocate AP reset vector and wakeup all APs to do APs\r
1586 initialization.\r
1587\r
1588 This service must be invoked before all other MP Initialize Library\r
1589 service are invoked.\r
1590\r
1591 @retval EFI_SUCCESS MP initialization succeeds.\r
1592 @retval Others MP initialization fails.\r
1593\r
1594**/\r
1595EFI_STATUS\r
1596EFIAPI\r
1597MpInitLibInitialize (\r
1598 VOID\r
1599 )\r
1600{\r
6a2ee2bb
JF
1601 CPU_MP_DATA *OldCpuMpData;\r
1602 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1603 UINT32 MaxLogicalProcessorNumber;\r
1604 UINT32 ApStackSize;\r
f7f85d83 1605 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1606 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1607 UINTN BufferSize;\r
9ebcf0f4 1608 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1609 VOID *MpBuffer;\r
1610 UINTN Buffer;\r
1611 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1612 UINT8 ApLoopMode;\r
e59f8f6b 1613 UINT8 *MonitorBuffer;\r
03a1a925 1614 UINTN Index;\r
f7f85d83 1615 UINTN ApResetVectorSize;\r
e59f8f6b 1616 UINTN BackupBufferAddr;\r
c563077a 1617 UINTN ApIdtBase;\r
6a2ee2bb
JF
1618\r
1619 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1620 if (OldCpuMpData == NULL) {\r
1621 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1622 } else {\r
1623 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1624 }\r
14e8137c 1625 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1626\r
1627 AsmGetAddressMap (&AddressMap);\r
1628 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1629 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1630 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1631\r
c563077a 1632 //\r
e09b6b59 1633 // Save BSP's Control registers for APs.\r
c563077a
RN
1634 //\r
1635 SaveVolatileRegisters (&VolatileRegisters);\r
1636\r
e59f8f6b
JF
1637 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1638 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1639 BufferSize += ApResetVectorSize;\r
c563077a
RN
1640 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1641 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1642 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1643 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1644 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1645 ASSERT (MpBuffer != NULL);\r
1646 ZeroMem (MpBuffer, BufferSize);\r
1647 Buffer = (UINTN) MpBuffer;\r
1648\r
c563077a
RN
1649 //\r
1650 // The layout of the Buffer is as below:\r
1651 //\r
1652 // +--------------------+ <-- Buffer\r
1653 // AP Stacks (N)\r
1654 // +--------------------+ <-- MonitorBuffer\r
1655 // AP Monitor Filters (N)\r
1656 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1657 // Backup Buffer\r
1658 // +--------------------+\r
1659 // Padding\r
1660 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1661 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1662 // +--------------------+ <-- CpuMpData\r
1663 // CPU_MP_DATA\r
1664 // +--------------------+ <-- CpuMpData->CpuData\r
1665 // CPU_AP_DATA (N)\r
1666 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1667 // CPU_INFO_IN_HOB (N)\r
1668 // +--------------------+\r
1669 //\r
e59f8f6b
JF
1670 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1671 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1672 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1673 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1674 CpuMpData->Buffer = Buffer;\r
1675 CpuMpData->CpuApStackSize = ApStackSize;\r
1676 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1677 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1678 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1679 CpuMpData->CpuCount = 1;\r
1680 CpuMpData->BspNumber = 0;\r
1681 CpuMpData->WaitEvent = NULL;\r
41be0da5 1682 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1683 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1684 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
d786a172 1685 if (OldCpuMpData != NULL) {\r
89164bab
ED
1686 CpuMpData->MicrocodePatchRegionSize = OldCpuMpData->MicrocodePatchRegionSize;\r
1687 CpuMpData->MicrocodePatchAddress = OldCpuMpData->MicrocodePatchAddress;\r
6936ee03 1688 }\r
e59f8f6b 1689 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1690\r
1691 //\r
1692 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1693 //\r
c563077a
RN
1694 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1695 Buffer + BufferSize);\r
1696\r
1697 //\r
1698 // Duplicate BSP's IDT to APs.\r
1699 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1700 //\r
c563077a
RN
1701 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1702 VolatileRegisters.Idtr.Base = ApIdtBase;\r
e09b6b59
JW
1703 //\r
1704 // Don't pass BSP's TR to APs to avoid AP init failure.\r
1705 //\r
1706 VolatileRegisters.Tr = 0;\r
c563077a 1707 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1708 //\r
03a1a925
JF
1709 // Set BSP basic information\r
1710 //\r
f2655dcf 1711 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1712 //\r
e59f8f6b
JF
1713 // Save assembly code information\r
1714 //\r
1715 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1716 //\r
1717 // Finally set AP loop mode\r
1718 //\r
1719 CpuMpData->ApLoopMode = ApLoopMode;\r
1720 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1721\r
1722 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1723\r
e59f8f6b 1724 //\r
03a1a925
JF
1725 // Set up APs wakeup signal buffer\r
1726 //\r
1727 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1728 CpuMpData->CpuData[Index].StartupApSignal =\r
1729 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1730 }\r
94f63c76 1731 //\r
9d64a9fd
JF
1732 // Enable the local APIC for Virtual Wire Mode.\r
1733 //\r
1734 ProgramVirtualWireMode ();\r
e59f8f6b 1735\r
6a2ee2bb 1736 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1737 if (MaxLogicalProcessorNumber > 1) {\r
1738 //\r
1739 // Wakeup all APs and calculate the processor count in system\r
1740 //\r
1741 CollectProcessorCount (CpuMpData);\r
1742 }\r
d786a172
HW
1743\r
1744 //\r
1745 // Load required microcode patches data into memory\r
1746 //\r
dd017041 1747 ShadowMicrocodeUpdatePatch (CpuMpData);\r
6a2ee2bb
JF
1748 } else {\r
1749 //\r
1750 // APs have been wakeup before, just get the CPU Information\r
1751 // from HOB\r
1752 //\r
1753 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1754 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
31a1e4da
JF
1755 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1756 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1757 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1758 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
31a1e4da 1759 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1760 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1761 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1762 }\r
d786a172
HW
1763 }\r
1764\r
1765 //\r
1766 // Detect and apply Microcode on BSP\r
1767 //\r
e1ed5573 1768 MicrocodeDetect (CpuMpData, CpuMpData->BspNumber);\r
d786a172
HW
1769 //\r
1770 // Store BSP's MTRR setting\r
1771 //\r
1772 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
1773\r
1774 //\r
1775 // Wakeup APs to do some AP initialize sync (Microcode & MTRR)\r
1776 //\r
1777 if (CpuMpData->CpuCount > 1) {\r
18fcb375 1778 CpuMpData->InitFlag = ApInitReconfig;\r
d786a172 1779 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);\r
18fcb375
HW
1780 //\r
1781 // Wait for all APs finished initialization\r
1782 //\r
d786a172
HW
1783 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1784 CpuPause ();\r
1785 }\r
18fcb375 1786 CpuMpData->InitFlag = ApInitDone;\r
d786a172
HW
1787 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1788 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
6a2ee2bb
JF
1789 }\r
1790 }\r
93ca4c0f
JF
1791\r
1792 //\r
1793 // Initialize global data for MP support\r
1794 //\r
1795 InitMpGlobalData (CpuMpData);\r
1796\r
f7f85d83 1797 return EFI_SUCCESS;\r
3e8ad6bd
JF
1798}\r
1799\r
1800/**\r
1801 Gets detailed MP-related information on the requested processor at the\r
1802 instant this call is made. This service may only be called from the BSP.\r
1803\r
1804 @param[in] ProcessorNumber The handle number of processor.\r
1805 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1806 the requested processor is deposited.\r
1807 @param[out] HealthData Return processor health data.\r
1808\r
1809 @retval EFI_SUCCESS Processor information was returned.\r
1810 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1811 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1812 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1813 ProcessorNumber does not exist in the platform.\r
1814 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1815\r
1816**/\r
1817EFI_STATUS\r
1818EFIAPI\r
1819MpInitLibGetProcessorInfo (\r
1820 IN UINTN ProcessorNumber,\r
1821 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1822 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1823 )\r
1824{\r
ad52f25e
JF
1825 CPU_MP_DATA *CpuMpData;\r
1826 UINTN CallerNumber;\r
31a1e4da 1827 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1828\r
1829 CpuMpData = GetCpuMpData ();\r
31a1e4da 1830 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1831\r
1832 //\r
1833 // Check whether caller processor is BSP\r
1834 //\r
1835 MpInitLibWhoAmI (&CallerNumber);\r
1836 if (CallerNumber != CpuMpData->BspNumber) {\r
1837 return EFI_DEVICE_ERROR;\r
1838 }\r
1839\r
1840 if (ProcessorInfoBuffer == NULL) {\r
1841 return EFI_INVALID_PARAMETER;\r
1842 }\r
1843\r
1844 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1845 return EFI_NOT_FOUND;\r
1846 }\r
1847\r
31a1e4da 1848 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1849 ProcessorInfoBuffer->StatusFlag = 0;\r
1850 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1851 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1852 }\r
1853 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1854 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1855 }\r
1856 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1857 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1858 } else {\r
1859 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1860 }\r
1861\r
1862 //\r
1863 // Get processor location information\r
1864 //\r
262128e5 1865 GetProcessorLocationByApicId (\r
31a1e4da 1866 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1867 &ProcessorInfoBuffer->Location.Package,\r
1868 &ProcessorInfoBuffer->Location.Core,\r
1869 &ProcessorInfoBuffer->Location.Thread\r
1870 );\r
ad52f25e
JF
1871\r
1872 if (HealthData != NULL) {\r
31a1e4da 1873 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1874 }\r
1875\r
1876 return EFI_SUCCESS;\r
3e8ad6bd 1877}\r
ad52f25e 1878\r
41be0da5
JF
1879/**\r
1880 Worker function to switch the requested AP to be the BSP from that point onward.\r
1881\r
1882 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1883 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1884 enabled AP. Otherwise, it will be disabled.\r
1885\r
1886 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1887 @retval others Failed to switch BSP.\r
41be0da5
JF
1888\r
1889**/\r
1890EFI_STATUS\r
1891SwitchBSPWorker (\r
1892 IN UINTN ProcessorNumber,\r
1893 IN BOOLEAN EnableOldBSP\r
1894 )\r
1895{\r
1896 CPU_MP_DATA *CpuMpData;\r
1897 UINTN CallerNumber;\r
1898 CPU_STATE State;\r
1899 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1900 BOOLEAN OldInterruptState;\r
26b43433 1901 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1902\r
26b43433
JF
1903 //\r
1904 // Save and Disable Local APIC timer interrupt\r
1905 //\r
1906 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1907 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1908 //\r
1909 // Before send both BSP and AP to a procedure to exchange their roles,\r
1910 // interrupt must be disabled. This is because during the exchange role\r
1911 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1912 // be corrupted, since interrupt return address will be pushed to stack\r
1913 // by hardware.\r
1914 //\r
1915 OldInterruptState = SaveAndDisableInterrupts ();\r
1916\r
1917 //\r
1918 // Mask LINT0 & LINT1 for the old BSP\r
1919 //\r
1920 DisableLvtInterrupts ();\r
41be0da5
JF
1921\r
1922 CpuMpData = GetCpuMpData ();\r
1923\r
1924 //\r
1925 // Check whether caller processor is BSP\r
1926 //\r
1927 MpInitLibWhoAmI (&CallerNumber);\r
1928 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1929 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1930 }\r
1931\r
1932 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1933 return EFI_NOT_FOUND;\r
1934 }\r
1935\r
1936 //\r
1937 // Check whether specified AP is disabled\r
1938 //\r
1939 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1940 if (State == CpuStateDisabled) {\r
1941 return EFI_INVALID_PARAMETER;\r
1942 }\r
1943\r
1944 //\r
1945 // Check whether ProcessorNumber specifies the current BSP\r
1946 //\r
1947 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1948 return EFI_INVALID_PARAMETER;\r
1949 }\r
1950\r
1951 //\r
1952 // Check whether specified AP is busy\r
1953 //\r
1954 if (State == CpuStateBusy) {\r
1955 return EFI_NOT_READY;\r
1956 }\r
1957\r
1958 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1959 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1960 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1961 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1962\r
1963 //\r
1964 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1965 //\r
1966 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1967 ApicBaseMsr.Bits.BSP = 0;\r
1968 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1969\r
1970 //\r
1971 // Need to wakeUp AP (future BSP).\r
1972 //\r
cf4e79e4 1973 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);\r
41be0da5
JF
1974\r
1975 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1976\r
1977 //\r
1978 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1979 //\r
1980 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1981 ApicBaseMsr.Bits.BSP = 1;\r
1982 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 1983 ProgramVirtualWireMode ();\r
41be0da5
JF
1984\r
1985 //\r
1986 // Wait for old BSP finished AP task\r
1987 //\r
e048ce88 1988 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
41be0da5
JF
1989 CpuPause ();\r
1990 }\r
1991\r
1992 CpuMpData->SwitchBspFlag = FALSE;\r
1993 //\r
1994 // Set old BSP enable state\r
1995 //\r
1996 if (!EnableOldBSP) {\r
1997 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1998 } else {\r
1999 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
2000 }\r
2001 //\r
2002 // Save new BSP number\r
2003 //\r
2004 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
2005\r
a8d75a18
JF
2006 //\r
2007 // Restore interrupt state.\r
2008 //\r
2009 SetInterruptState (OldInterruptState);\r
2010\r
26b43433
JF
2011 if (OldTimerInterruptState) {\r
2012 EnableApicTimerInterrupt ();\r
2013 }\r
a8d75a18 2014\r
41be0da5
JF
2015 return EFI_SUCCESS;\r
2016}\r
ad52f25e 2017\r
e37109bc
JF
2018/**\r
2019 Worker function to let the caller enable or disable an AP from this point onward.\r
2020 This service may only be called from the BSP.\r
2021\r
2022 @param[in] ProcessorNumber The handle number of AP.\r
2023 @param[in] EnableAP Specifies the new state for the processor for\r
2024 enabled, FALSE for disabled.\r
2025 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
2026 the new health status of the AP.\r
2027\r
2028 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
2029 @retval others Failed to Enable/Disable AP.\r
2030\r
2031**/\r
2032EFI_STATUS\r
2033EnableDisableApWorker (\r
2034 IN UINTN ProcessorNumber,\r
2035 IN BOOLEAN EnableAP,\r
2036 IN UINT32 *HealthFlag OPTIONAL\r
2037 )\r
2038{\r
2039 CPU_MP_DATA *CpuMpData;\r
2040 UINTN CallerNumber;\r
2041\r
2042 CpuMpData = GetCpuMpData ();\r
2043\r
2044 //\r
2045 // Check whether caller processor is BSP\r
2046 //\r
2047 MpInitLibWhoAmI (&CallerNumber);\r
2048 if (CallerNumber != CpuMpData->BspNumber) {\r
2049 return EFI_DEVICE_ERROR;\r
2050 }\r
2051\r
2052 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2053 return EFI_INVALID_PARAMETER;\r
2054 }\r
2055\r
2056 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2057 return EFI_NOT_FOUND;\r
2058 }\r
2059\r
2060 if (!EnableAP) {\r
2061 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2062 } else {\r
d5fdae96 2063 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2064 }\r
2065\r
2066 if (HealthFlag != NULL) {\r
2067 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2068 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2069 }\r
2070\r
2071 return EFI_SUCCESS;\r
2072}\r
2073\r
3e8ad6bd
JF
2074/**\r
2075 This return the handle number for the calling processor. This service may be\r
2076 called from the BSP and APs.\r
2077\r
2078 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2079 The range is from 0 to the total number of\r
2080 logical processors minus 1. The total number of\r
2081 logical processors can be retrieved by\r
2082 MpInitLibGetNumberOfProcessors().\r
2083\r
2084 @retval EFI_SUCCESS The current processor handle number was returned\r
2085 in ProcessorNumber.\r
2086 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2087 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2088\r
2089**/\r
2090EFI_STATUS\r
2091EFIAPI\r
2092MpInitLibWhoAmI (\r
2093 OUT UINTN *ProcessorNumber\r
2094 )\r
2095{\r
5c9e0997
JF
2096 CPU_MP_DATA *CpuMpData;\r
2097\r
2098 if (ProcessorNumber == NULL) {\r
2099 return EFI_INVALID_PARAMETER;\r
2100 }\r
2101\r
2102 CpuMpData = GetCpuMpData ();\r
2103\r
2104 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2105}\r
809213a6 2106\r
3e8ad6bd
JF
2107/**\r
2108 Retrieves the number of logical processor in the platform and the number of\r
2109 those logical processors that are enabled on this boot. This service may only\r
2110 be called from the BSP.\r
2111\r
2112 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2113 processors in the system, including the BSP\r
2114 and disabled APs.\r
2115 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2116 processors that exist in system, including\r
2117 the BSP.\r
2118\r
2119 @retval EFI_SUCCESS The number of logical processors and enabled\r
2120 logical processors was retrieved.\r
2121 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2122 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2123 is NULL.\r
2124 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2125\r
2126**/\r
2127EFI_STATUS\r
2128EFIAPI\r
2129MpInitLibGetNumberOfProcessors (\r
2130 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2131 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2132 )\r
2133{\r
809213a6
JF
2134 CPU_MP_DATA *CpuMpData;\r
2135 UINTN CallerNumber;\r
2136 UINTN ProcessorNumber;\r
2137 UINTN EnabledProcessorNumber;\r
2138 UINTN Index;\r
2139\r
2140 CpuMpData = GetCpuMpData ();\r
2141\r
2142 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2143 return EFI_INVALID_PARAMETER;\r
2144 }\r
2145\r
2146 //\r
2147 // Check whether caller processor is BSP\r
2148 //\r
2149 MpInitLibWhoAmI (&CallerNumber);\r
2150 if (CallerNumber != CpuMpData->BspNumber) {\r
2151 return EFI_DEVICE_ERROR;\r
2152 }\r
2153\r
2154 ProcessorNumber = CpuMpData->CpuCount;\r
2155 EnabledProcessorNumber = 0;\r
2156 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2157 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2158 EnabledProcessorNumber ++;\r
2159 }\r
2160 }\r
2161\r
2162 if (NumberOfProcessors != NULL) {\r
2163 *NumberOfProcessors = ProcessorNumber;\r
2164 }\r
2165 if (NumberOfEnabledProcessors != NULL) {\r
2166 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2167 }\r
2168\r
2169 return EFI_SUCCESS;\r
3e8ad6bd 2170}\r
6a2ee2bb 2171\r
809213a6 2172\r
86efe976
JF
2173/**\r
2174 Worker function to execute a caller provided function on all enabled APs.\r
2175\r
2176 @param[in] Procedure A pointer to the function to be run on\r
2177 enabled APs of the system.\r
2178 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2179 the function specified by Procedure one by\r
2180 one, in ascending order of processor handle\r
2181 number. If FALSE, then all the enabled APs\r
2182 execute the function specified by Procedure\r
2183 simultaneously.\r
ee0c39fa 2184 @param[in] ExcludeBsp Whether let BSP also trig this task.\r
86efe976
JF
2185 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2186 service.\r
367284e7 2187 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2188 APs to return from Procedure, either for\r
2189 blocking or non-blocking mode.\r
2190 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2191 all APs.\r
2192 @param[out] FailedCpuList If all APs finish successfully, then its\r
2193 content is set to NULL. If not all APs\r
2194 finish before timeout expires, then its\r
2195 content is set to address of the buffer\r
2196 holding handle numbers of the failed APs.\r
2197\r
2198 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2199 the timeout expired.\r
2200 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2201 to all enabled APs.\r
2202 @retval others Failed to Startup all APs.\r
2203\r
2204**/\r
2205EFI_STATUS\r
ee0c39fa 2206StartupAllCPUsWorker (\r
86efe976
JF
2207 IN EFI_AP_PROCEDURE Procedure,\r
2208 IN BOOLEAN SingleThread,\r
ee0c39fa 2209 IN BOOLEAN ExcludeBsp,\r
86efe976
JF
2210 IN EFI_EVENT WaitEvent OPTIONAL,\r
2211 IN UINTN TimeoutInMicroseconds,\r
2212 IN VOID *ProcedureArgument OPTIONAL,\r
2213 OUT UINTN **FailedCpuList OPTIONAL\r
2214 )\r
2215{\r
2216 EFI_STATUS Status;\r
2217 CPU_MP_DATA *CpuMpData;\r
2218 UINTN ProcessorCount;\r
2219 UINTN ProcessorNumber;\r
2220 UINTN CallerNumber;\r
2221 CPU_AP_DATA *CpuData;\r
2222 BOOLEAN HasEnabledAp;\r
2223 CPU_STATE ApState;\r
2224\r
2225 CpuMpData = GetCpuMpData ();\r
2226\r
2227 if (FailedCpuList != NULL) {\r
2228 *FailedCpuList = NULL;\r
2229 }\r
2230\r
ee0c39fa 2231 if (CpuMpData->CpuCount == 1 && ExcludeBsp) {\r
86efe976
JF
2232 return EFI_NOT_STARTED;\r
2233 }\r
2234\r
2235 if (Procedure == NULL) {\r
2236 return EFI_INVALID_PARAMETER;\r
2237 }\r
2238\r
2239 //\r
2240 // Check whether caller processor is BSP\r
2241 //\r
2242 MpInitLibWhoAmI (&CallerNumber);\r
2243 if (CallerNumber != CpuMpData->BspNumber) {\r
2244 return EFI_DEVICE_ERROR;\r
2245 }\r
2246\r
2247 //\r
2248 // Update AP state\r
2249 //\r
2250 CheckAndUpdateApsStatus ();\r
2251\r
2252 ProcessorCount = CpuMpData->CpuCount;\r
2253 HasEnabledAp = FALSE;\r
2254 //\r
2255 // Check whether all enabled APs are idle.\r
2256 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2257 //\r
2258 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2259 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2260 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2261 ApState = GetApState (CpuData);\r
2262 if (ApState != CpuStateDisabled) {\r
2263 HasEnabledAp = TRUE;\r
2264 if (ApState != CpuStateIdle) {\r
2265 //\r
2266 // If any enabled APs are busy, return EFI_NOT_READY.\r
2267 //\r
2268 return EFI_NOT_READY;\r
2269 }\r
2270 }\r
2271 }\r
2272 }\r
2273\r
ee0c39fa 2274 if (!HasEnabledAp && ExcludeBsp) {\r
86efe976 2275 //\r
ee0c39fa 2276 // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.\r
86efe976
JF
2277 //\r
2278 return EFI_NOT_STARTED;\r
2279 }\r
2280\r
2da3e96c 2281 CpuMpData->RunningCount = 0;\r
86efe976
JF
2282 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2283 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2284 CpuData->Waiting = FALSE;\r
2285 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2286 if (CpuData->State == CpuStateIdle) {\r
2287 //\r
2288 // Mark this processor as responsible for current calling.\r
2289 //\r
2290 CpuData->Waiting = TRUE;\r
2da3e96c 2291 CpuMpData->RunningCount++;\r
86efe976
JF
2292 }\r
2293 }\r
2294 }\r
2295\r
2296 CpuMpData->Procedure = Procedure;\r
2297 CpuMpData->ProcArguments = ProcedureArgument;\r
2298 CpuMpData->SingleThread = SingleThread;\r
2299 CpuMpData->FinishedCount = 0;\r
86efe976
JF
2300 CpuMpData->FailedCpuList = FailedCpuList;\r
2301 CpuMpData->ExpectedTime = CalculateTimeout (\r
2302 TimeoutInMicroseconds,\r
2303 &CpuMpData->CurrentTime\r
2304 );\r
2305 CpuMpData->TotalTime = 0;\r
2306 CpuMpData->WaitEvent = WaitEvent;\r
2307\r
2308 if (!SingleThread) {\r
cf4e79e4 2309 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);\r
86efe976
JF
2310 } else {\r
2311 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2312 if (ProcessorNumber == CallerNumber) {\r
2313 continue;\r
2314 }\r
2315 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
cf4e79e4 2316 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
86efe976
JF
2317 break;\r
2318 }\r
2319 }\r
2320 }\r
2321\r
ee0c39fa
ED
2322 if (!ExcludeBsp) {\r
2323 //\r
2324 // Start BSP.\r
2325 //\r
2326 Procedure (ProcedureArgument);\r
2327 }\r
2328\r
86efe976
JF
2329 Status = EFI_SUCCESS;\r
2330 if (WaitEvent == NULL) {\r
2331 do {\r
2332 Status = CheckAllAPs ();\r
2333 } while (Status == EFI_NOT_READY);\r
2334 }\r
2335\r
2336 return Status;\r
2337}\r
2338\r
20ae5774
JF
2339/**\r
2340 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2341 function.\r
2342\r
2343 @param[in] Procedure A pointer to the function to be run on\r
2344 enabled APs of the system.\r
2345 @param[in] ProcessorNumber The handle number of the AP.\r
2346 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2347 service.\r
367284e7 2348 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2349 APs to return from Procedure, either for\r
2350 blocking or non-blocking mode.\r
2351 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2352 all APs.\r
2353 @param[out] Finished If AP returns from Procedure before the\r
2354 timeout expires, its content is set to TRUE.\r
2355 Otherwise, the value is set to FALSE.\r
2356\r
2357 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2358 the timeout expires.\r
2359 @retval others Failed to Startup AP.\r
2360\r
2361**/\r
2362EFI_STATUS\r
2363StartupThisAPWorker (\r
2364 IN EFI_AP_PROCEDURE Procedure,\r
2365 IN UINTN ProcessorNumber,\r
2366 IN EFI_EVENT WaitEvent OPTIONAL,\r
2367 IN UINTN TimeoutInMicroseconds,\r
2368 IN VOID *ProcedureArgument OPTIONAL,\r
2369 OUT BOOLEAN *Finished OPTIONAL\r
2370 )\r
2371{\r
2372 EFI_STATUS Status;\r
2373 CPU_MP_DATA *CpuMpData;\r
2374 CPU_AP_DATA *CpuData;\r
2375 UINTN CallerNumber;\r
2376\r
2377 CpuMpData = GetCpuMpData ();\r
2378\r
2379 if (Finished != NULL) {\r
2380 *Finished = FALSE;\r
2381 }\r
2382\r
2383 //\r
2384 // Check whether caller processor is BSP\r
2385 //\r
2386 MpInitLibWhoAmI (&CallerNumber);\r
2387 if (CallerNumber != CpuMpData->BspNumber) {\r
2388 return EFI_DEVICE_ERROR;\r
2389 }\r
2390\r
2391 //\r
2392 // Check whether processor with the handle specified by ProcessorNumber exists\r
2393 //\r
2394 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2395 return EFI_NOT_FOUND;\r
2396 }\r
2397\r
2398 //\r
2399 // Check whether specified processor is BSP\r
2400 //\r
2401 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2402 return EFI_INVALID_PARAMETER;\r
2403 }\r
2404\r
2405 //\r
2406 // Check parameter Procedure\r
2407 //\r
2408 if (Procedure == NULL) {\r
2409 return EFI_INVALID_PARAMETER;\r
2410 }\r
2411\r
2412 //\r
2413 // Update AP state\r
2414 //\r
2415 CheckAndUpdateApsStatus ();\r
2416\r
2417 //\r
2418 // Check whether specified AP is disabled\r
2419 //\r
2420 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2421 return EFI_INVALID_PARAMETER;\r
2422 }\r
2423\r
2424 //\r
2425 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2426 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2427 // CheckAPsStatus() will check completion and timeout periodically.\r
2428 //\r
2429 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2430 CpuData->WaitEvent = WaitEvent;\r
2431 CpuData->Finished = Finished;\r
2432 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2433 CpuData->TotalTime = 0;\r
2434\r
cf4e79e4 2435 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
20ae5774
JF
2436\r
2437 //\r
2438 // If WaitEvent is NULL, execute in blocking mode.\r
2439 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2440 //\r
2441 Status = EFI_SUCCESS;\r
2442 if (WaitEvent == NULL) {\r
2443 do {\r
2444 Status = CheckThisAP (ProcessorNumber);\r
2445 } while (Status == EFI_NOT_READY);\r
2446 }\r
2447\r
2448 return Status;\r
2449}\r
2450\r
93ca4c0f
JF
2451/**\r
2452 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2453\r
2454 @return The pointer to CPU MP Data structure.\r
2455**/\r
2456CPU_MP_DATA *\r
2457GetCpuMpDataFromGuidedHob (\r
2458 VOID\r
2459 )\r
2460{\r
2461 EFI_HOB_GUID_TYPE *GuidHob;\r
2462 VOID *DataInHob;\r
2463 CPU_MP_DATA *CpuMpData;\r
2464\r
2465 CpuMpData = NULL;\r
2466 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2467 if (GuidHob != NULL) {\r
2468 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2469 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2470 }\r
2471 return CpuMpData;\r
2472}\r
42c37b3b 2473\r
ee0c39fa
ED
2474/**\r
2475 This service executes a caller provided function on all enabled CPUs.\r
2476\r
2477 @param[in] Procedure A pointer to the function to be run on\r
2478 enabled APs of the system. See type\r
2479 EFI_AP_PROCEDURE.\r
2480 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
2481 APs to return from Procedure, either for\r
2482 blocking or non-blocking mode. Zero means\r
2483 infinity. TimeoutInMicroseconds is ignored\r
2484 for BSP.\r
2485 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2486 all APs.\r
2487\r
2488 @retval EFI_SUCCESS In blocking mode, all CPUs have finished before\r
2489 the timeout expired.\r
2490 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2491 to all enabled CPUs.\r
2492 @retval EFI_DEVICE_ERROR Caller processor is AP.\r
2493 @retval EFI_NOT_READY Any enabled APs are busy.\r
2494 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2495 @retval EFI_TIMEOUT In blocking mode, the timeout expired before\r
2496 all enabled APs have finished.\r
2497 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
2498\r
2499**/\r
2500EFI_STATUS\r
2501EFIAPI\r
2502MpInitLibStartupAllCPUs (\r
2503 IN EFI_AP_PROCEDURE Procedure,\r
2504 IN UINTN TimeoutInMicroseconds,\r
2505 IN VOID *ProcedureArgument OPTIONAL\r
2506 )\r
2507{\r
2508 return StartupAllCPUsWorker (\r
2509 Procedure,\r
2510 FALSE,\r
2511 FALSE,\r
2512 NULL,\r
2513 TimeoutInMicroseconds,\r
2514 ProcedureArgument,\r
2515 NULL\r
2516 );\r
2517}\r