]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Add CPU MP data flag to indicate if SEV-ES is enabled
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
dd017041 4 Copyright (c) 2016 - 2020, Intel Corporation. All rights reserved.<BR>\r
4c0f6e34
LD
5 Copyright (c) 2020, AMD Inc. All rights reserved.<BR>\r
6\r
0acd8697 7 SPDX-License-Identifier: BSD-2-Clause-Patent\r
3e8ad6bd
JF
8\r
9**/\r
10\r
11#include "MpLib.h"\r
12\r
93ca4c0f
JF
13EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
14\r
4c0f6e34 15\r
7c3f2a12
JF
16/**\r
17 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
18\r
19 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
20 get the status and sync up the settings.\r
21 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
22 not working actually.\r
7c3f2a12
JF
23\r
24 @retval TRUE BSP Execute Disable is enabled.\r
25 @retval FALSE BSP Execute Disable is not enabled.\r
26**/\r
27BOOLEAN\r
28IsBspExecuteDisableEnabled (\r
29 VOID\r
30 )\r
31{\r
32 UINT32 Eax;\r
33 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
34 MSR_IA32_EFER_REGISTER EferMsr;\r
35 BOOLEAN Enabled;\r
844b2d07 36 IA32_CR0 Cr0;\r
7c3f2a12
JF
37\r
38 Enabled = FALSE;\r
844b2d07
JF
39 Cr0.UintN = AsmReadCr0 ();\r
40 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 41 //\r
844b2d07 42 // If CR0 Paging bit is set\r
7c3f2a12 43 //\r
844b2d07
JF
44 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
45 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
46 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 47 //\r
844b2d07
JF
48 // CPUID 0x80000001\r
49 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 50 //\r
844b2d07
JF
51 if (Edx.Bits.NX != 0) {\r
52 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
53 //\r
54 // MSR 0xC0000080\r
55 // Bit 11: Execute Disable Bit enable.\r
56 //\r
57 if (EferMsr.Bits.NXE != 0) {\r
58 Enabled = TRUE;\r
59 }\r
7c3f2a12
JF
60 }\r
61 }\r
62 }\r
63\r
64 return Enabled;\r
65}\r
66\r
41be0da5
JF
67/**\r
68 Worker function for SwitchBSP().\r
69\r
70 Worker function for SwitchBSP(), assigned to the AP which is intended\r
71 to become BSP.\r
72\r
73 @param[in] Buffer Pointer to CPU MP Data\r
74**/\r
75VOID\r
76EFIAPI\r
77FutureBSPProc (\r
78 IN VOID *Buffer\r
79 )\r
80{\r
81 CPU_MP_DATA *DataInHob;\r
82\r
83 DataInHob = (CPU_MP_DATA *) Buffer;\r
84 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
85}\r
86\r
03a1a925
JF
87/**\r
88 Get the Application Processors state.\r
89\r
90 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
91\r
92 @return The AP status\r
93**/\r
94CPU_STATE\r
95GetApState (\r
96 IN CPU_AP_DATA *CpuData\r
97 )\r
98{\r
99 return CpuData->State;\r
100}\r
101\r
102/**\r
103 Set the Application Processors state.\r
104\r
105 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
106 @param[in] State The AP status\r
107**/\r
108VOID\r
109SetApState (\r
110 IN CPU_AP_DATA *CpuData,\r
111 IN CPU_STATE State\r
112 )\r
113{\r
114 AcquireSpinLock (&CpuData->ApLock);\r
115 CpuData->State = State;\r
116 ReleaseSpinLock (&CpuData->ApLock);\r
117}\r
3e8ad6bd 118\r
ffab2442 119/**\r
f70174d6 120 Save BSP's local APIC timer setting.\r
ffab2442
JF
121\r
122 @param[in] CpuMpData Pointer to CPU MP Data\r
123**/\r
124VOID\r
125SaveLocalApicTimerSetting (\r
126 IN CPU_MP_DATA *CpuMpData\r
127 )\r
128{\r
129 //\r
130 // Record the current local APIC timer setting of BSP\r
131 //\r
132 GetApicTimerState (\r
133 &CpuMpData->DivideValue,\r
134 &CpuMpData->PeriodicMode,\r
135 &CpuMpData->Vector\r
136 );\r
137 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
138 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
139}\r
140\r
141/**\r
142 Sync local APIC timer setting from BSP to AP.\r
143\r
144 @param[in] CpuMpData Pointer to CPU MP Data\r
145**/\r
146VOID\r
147SyncLocalApicTimerSetting (\r
148 IN CPU_MP_DATA *CpuMpData\r
149 )\r
150{\r
151 //\r
152 // Sync local APIC timer setting from BSP to AP\r
153 //\r
154 InitializeApicTimer (\r
155 CpuMpData->DivideValue,\r
156 CpuMpData->CurrentTimerCount,\r
157 CpuMpData->PeriodicMode,\r
158 CpuMpData->Vector\r
159 );\r
160 //\r
161 // Disable AP's local APIC timer interrupt\r
162 //\r
163 DisableApicTimerInterrupt ();\r
164}\r
165\r
68cb9330
JF
166/**\r
167 Save the volatile registers required to be restored following INIT IPI.\r
168\r
169 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
170**/\r
171VOID\r
172SaveVolatileRegisters (\r
173 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
174 )\r
175{\r
176 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
177\r
178 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
179 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
180 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
181\r
182 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
183 if (VersionInfoEdx.Bits.DE != 0) {\r
184 //\r
185 // If processor supports Debugging Extensions feature\r
186 // by CPUID.[EAX=01H]:EDX.BIT2\r
187 //\r
188 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
189 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
190 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
191 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
192 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
193 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
194 }\r
e9415e48
JW
195\r
196 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
197 AsmReadIdtr (&VolatileRegisters->Idtr);\r
198 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
199}\r
200\r
201/**\r
202 Restore the volatile registers following INIT IPI.\r
203\r
204 @param[in] VolatileRegisters Pointer to volatile resisters\r
205 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
206 FALSE: Do not restore DRx\r
207**/\r
208VOID\r
209RestoreVolatileRegisters (\r
210 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
211 IN BOOLEAN IsRestoreDr\r
212 )\r
213{\r
214 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 215 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330 216\r
68cb9330
JF
217 AsmWriteCr3 (VolatileRegisters->Cr3);\r
218 AsmWriteCr4 (VolatileRegisters->Cr4);\r
e09b6b59 219 AsmWriteCr0 (VolatileRegisters->Cr0);\r
68cb9330
JF
220\r
221 if (IsRestoreDr) {\r
222 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
223 if (VersionInfoEdx.Bits.DE != 0) {\r
224 //\r
225 // If processor supports Debugging Extensions feature\r
226 // by CPUID.[EAX=01H]:EDX.BIT2\r
227 //\r
228 AsmWriteDr0 (VolatileRegisters->Dr0);\r
229 AsmWriteDr1 (VolatileRegisters->Dr1);\r
230 AsmWriteDr2 (VolatileRegisters->Dr2);\r
231 AsmWriteDr3 (VolatileRegisters->Dr3);\r
232 AsmWriteDr6 (VolatileRegisters->Dr6);\r
233 AsmWriteDr7 (VolatileRegisters->Dr7);\r
234 }\r
235 }\r
e9415e48
JW
236\r
237 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
238 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
239 if (VolatileRegisters->Tr != 0 &&\r
240 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
241 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
242 VolatileRegisters->Tr);\r
d69ba6a7 243 if (Tss->Bits.P == 1) {\r
e9415e48
JW
244 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
245 AsmWriteTr (VolatileRegisters->Tr);\r
246 }\r
247 }\r
68cb9330
JF
248}\r
249\r
9ebcf0f4
JF
250/**\r
251 Detect whether Mwait-monitor feature is supported.\r
252\r
253 @retval TRUE Mwait-monitor feature is supported.\r
254 @retval FALSE Mwait-monitor feature is not supported.\r
255**/\r
256BOOLEAN\r
257IsMwaitSupport (\r
258 VOID\r
259 )\r
260{\r
261 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
262\r
263 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
264 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
265}\r
266\r
267/**\r
268 Get AP loop mode.\r
269\r
270 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
271\r
272 @return The AP loop mode.\r
273**/\r
274UINT8\r
275GetApLoopMode (\r
276 OUT UINT32 *MonitorFilterSize\r
277 )\r
278{\r
279 UINT8 ApLoopMode;\r
280 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
281\r
282 ASSERT (MonitorFilterSize != NULL);\r
283\r
284 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
285 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
286 if (ApLoopMode == ApInMwaitLoop) {\r
287 if (!IsMwaitSupport ()) {\r
288 //\r
289 // If processor does not support MONITOR/MWAIT feature,\r
290 // force AP in Hlt-loop mode\r
291 //\r
292 ApLoopMode = ApInHltLoop;\r
293 }\r
294 }\r
295\r
296 if (ApLoopMode != ApInMwaitLoop) {\r
297 *MonitorFilterSize = sizeof (UINT32);\r
298 } else {\r
299 //\r
300 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
301 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
302 //\r
303 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
304 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
305 }\r
306\r
307 return ApLoopMode;\r
308}\r
b8b04307 309\r
8a2d564b
JF
310/**\r
311 Sort the APIC ID of all processors.\r
312\r
313 This function sorts the APIC ID of all processors so that processor number is\r
314 assigned in the ascending order of APIC ID which eases MP debugging.\r
315\r
316 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
317**/\r
318VOID\r
319SortApicId (\r
320 IN CPU_MP_DATA *CpuMpData\r
321 )\r
322{\r
323 UINTN Index1;\r
324 UINTN Index2;\r
325 UINTN Index3;\r
326 UINT32 ApicId;\r
31a1e4da 327 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
328 UINT32 ApCount;\r
329 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 330 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
331\r
332 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 333 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
334 if (ApCount != 0) {\r
335 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
336 Index3 = Index1;\r
337 //\r
338 // Sort key is the hardware default APIC ID\r
339 //\r
31a1e4da 340 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 341 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 342 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 343 Index3 = Index2;\r
31a1e4da 344 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
345 }\r
346 }\r
347 if (Index3 != Index1) {\r
31a1e4da 348 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 349 CopyMem (\r
31a1e4da
JF
350 &CpuInfoInHob[Index3],\r
351 &CpuInfoInHob[Index1],\r
352 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 353 );\r
31a1e4da 354 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
355\r
356 //\r
357 // Also exchange the StartupApSignal.\r
358 //\r
359 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
360 CpuMpData->CpuData[Index3].StartupApSignal =\r
361 CpuMpData->CpuData[Index1].StartupApSignal;\r
362 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
363 }\r
364 }\r
365\r
366 //\r
367 // Get the processor number for the BSP\r
368 //\r
369 ApicId = GetInitialApicId ();\r
370 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 371 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
372 CpuMpData->BspNumber = (UINT32) Index1;\r
373 break;\r
374 }\r
375 }\r
8a2d564b
JF
376 }\r
377}\r
378\r
fe627769
JF
379/**\r
380 Enable x2APIC mode on APs.\r
381\r
382 @param[in, out] Buffer Pointer to private data buffer.\r
383**/\r
384VOID\r
385EFIAPI\r
386ApFuncEnableX2Apic (\r
387 IN OUT VOID *Buffer\r
388 )\r
389{\r
390 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
391}\r
392\r
b8b04307
JF
393/**\r
394 Do sync on APs.\r
395\r
396 @param[in, out] Buffer Pointer to private data buffer.\r
397**/\r
398VOID\r
399EFIAPI\r
400ApInitializeSync (\r
401 IN OUT VOID *Buffer\r
402 )\r
403{\r
404 CPU_MP_DATA *CpuMpData;\r
e1ed5573
HW
405 UINTN ProcessorNumber;\r
406 EFI_STATUS Status;\r
b8b04307
JF
407\r
408 CpuMpData = (CPU_MP_DATA *) Buffer;\r
e1ed5573
HW
409 Status = GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
410 ASSERT_EFI_ERROR (Status);\r
b8b04307 411 //\r
b8b04307
JF
412 // Load microcode on AP\r
413 //\r
e1ed5573 414 MicrocodeDetect (CpuMpData, ProcessorNumber);\r
cb811673
JF
415 //\r
416 // Sync BSP's MTRR table to AP\r
417 //\r
418 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
419}\r
420\r
421/**\r
422 Find the current Processor number by APIC ID.\r
423\r
367284e7
DB
424 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
425 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
426\r
427 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
428 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
429**/\r
430EFI_STATUS\r
431GetProcessorNumber (\r
432 IN CPU_MP_DATA *CpuMpData,\r
433 OUT UINTN *ProcessorNumber\r
434 )\r
435{\r
436 UINTN TotalProcessorNumber;\r
437 UINTN Index;\r
31a1e4da 438 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 439 UINT32 CurrentApicId;\r
31a1e4da
JF
440\r
441 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
442\r
443 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 444 CurrentApicId = GetApicId ();\r
b8b04307 445 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 446 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
447 *ProcessorNumber = Index;\r
448 return EFI_SUCCESS;\r
449 }\r
450 }\r
e52838d3 451\r
b8b04307
JF
452 return EFI_NOT_FOUND;\r
453}\r
454\r
03434dff
JF
455/**\r
456 This function will get CPU count in the system.\r
457\r
458 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
459\r
460 @return CPU count detected\r
461**/\r
462UINTN\r
463CollectProcessorCount (\r
464 IN CPU_MP_DATA *CpuMpData\r
465 )\r
466{\r
59a119f0 467 UINTN Index;\r
54d1e76f 468 CPU_INFO_IN_HOB *CpuInfoInHob;\r
fe3ca5fd 469 BOOLEAN X2Apic;\r
59a119f0 470\r
03434dff
JF
471 //\r
472 // Send 1st broadcast IPI to APs to wakeup APs\r
473 //\r
fe3ca5fd 474 CpuMpData->InitFlag = ApInitConfig;\r
cf4e79e4 475 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);\r
03434dff
JF
476 CpuMpData->InitFlag = ApInitDone;\r
477 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
478 //\r
479 // Wait for all APs finished the initialization\r
480 //\r
481 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
482 CpuPause ();\r
483 }\r
484\r
9c33f16f 485\r
54d1e76f
RN
486 //\r
487 // Enable x2APIC mode if\r
488 // 1. Number of CPU is greater than 255; or\r
489 // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater.\r
490 //\r
fe3ca5fd 491 X2Apic = FALSE;\r
71d8226a
JF
492 if (CpuMpData->CpuCount > 255) {\r
493 //\r
494 // If there are more than 255 processor found, force to enable X2APIC\r
495 //\r
fe3ca5fd 496 X2Apic = TRUE;\r
54d1e76f
RN
497 } else {\r
498 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
499 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
500 if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {\r
fe3ca5fd 501 X2Apic = TRUE;\r
54d1e76f
RN
502 break;\r
503 }\r
504 }\r
71d8226a 505 }\r
54d1e76f 506\r
fe3ca5fd 507 if (X2Apic) {\r
fe627769
JF
508 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
509 //\r
510 // Wakeup all APs to enable x2APIC mode\r
511 //\r
cf4e79e4 512 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);\r
fe627769
JF
513 //\r
514 // Wait for all known APs finished\r
515 //\r
516 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
517 CpuPause ();\r
518 }\r
519 //\r
520 // Enable x2APIC on BSP\r
521 //\r
522 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
523 //\r
524 // Set BSP/Aps state to IDLE\r
525 //\r
526 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
527 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
528 }\r
fe627769
JF
529 }\r
530 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
531 //\r
532 // Sort BSP/Aps by CPU APIC ID in ascending order\r
533 //\r
534 SortApicId (CpuMpData);\r
535\r
03434dff
JF
536 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
537\r
538 return CpuMpData->CpuCount;\r
539}\r
540\r
367284e7 541/**\r
03a1a925
JF
542 Initialize CPU AP Data when AP is wakeup at the first time.\r
543\r
544 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
545 @param[in] ProcessorNumber The handle number of processor\r
546 @param[in] BistData Processor BIST data\r
367284e7 547 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
548\r
549**/\r
550VOID\r
551InitializeApData (\r
552 IN OUT CPU_MP_DATA *CpuMpData,\r
553 IN UINTN ProcessorNumber,\r
845c5be1 554 IN UINT32 BistData,\r
dd3fa0cd 555 IN UINT64 ApTopOfStack\r
03a1a925
JF
556 )\r
557{\r
999463c8
HW
558 CPU_INFO_IN_HOB *CpuInfoInHob;\r
559 MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr;\r
31a1e4da
JF
560\r
561 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
562 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
563 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
564 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 565 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 566\r
03a1a925 567 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 568 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
03a1a925 569\r
4c0f6e34
LD
570 //\r
571 // NOTE: PlatformId is not relevant on AMD platforms.\r
572 //\r
573 if (!StandardSignatureIsAuthenticAMD ()) {\r
574 PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);\r
575 CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8)PlatformIdMsr.Bits.PlatformId;\r
576 }\r
999463c8
HW
577\r
578 AsmCpuid (\r
579 CPUID_VERSION_INFO,\r
580 &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature,\r
581 NULL,\r
582 NULL,\r
583 NULL\r
584 );\r
585\r
03a1a925
JF
586 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
587 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
588}\r
589\r
b8b04307
JF
590/**\r
591 This function will be called from AP reset code if BSP uses WakeUpAP.\r
592\r
593 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 594 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
595**/\r
596VOID\r
597EFIAPI\r
598ApWakeupFunction (\r
599 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 600 IN UINTN ApIndex\r
b8b04307
JF
601 )\r
602{\r
603 CPU_MP_DATA *CpuMpData;\r
604 UINTN ProcessorNumber;\r
605 EFI_AP_PROCEDURE Procedure;\r
606 VOID *Parameter;\r
607 UINT32 BistData;\r
608 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 609 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 610 UINT64 ApTopOfStack;\r
c6b0feb3 611 UINTN CurrentApicMode;\r
b8b04307
JF
612\r
613 //\r
614 // AP finished assembly code and begin to execute C code\r
615 //\r
616 CpuMpData = ExchangeInfo->CpuMpData;\r
617\r
ffab2442
JF
618 //\r
619 // AP's local APIC settings will be lost after received INIT IPI\r
620 // We need to re-initialize them at here\r
621 //\r
622 ProgramVirtualWireMode ();\r
a2ea6894
RN
623 //\r
624 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
625 //\r
626 DisableLvtInterrupts ();\r
ffab2442 627 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 628\r
c6b0feb3 629 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
630 while (TRUE) {\r
631 if (CpuMpData->InitFlag == ApInitConfig) {\r
632 //\r
633 // Add CPU number\r
634 //\r
635 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 636 ProcessorNumber = ApIndex;\r
b8b04307
JF
637 //\r
638 // This is first time AP wakeup, get BIST information from AP stack\r
639 //\r
845c5be1 640 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 641 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307 642 //\r
c563077a
RN
643 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
644 // to initialize AP in InitConfig path.\r
645 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
646 //\r
647 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 648 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307 649 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
9fc1b85f
RN
650\r
651 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
652 } else {\r
653 //\r
654 // Execute AP function if AP is ready\r
655 //\r
656 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
657 //\r
658 // Clear AP start-up signal when AP waken up\r
659 //\r
660 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
661 InterlockedCompareExchange32 (\r
662 (UINT32 *) ApStartupSignalBuffer,\r
663 WAKEUP_AP_SIGNAL,\r
664 0\r
665 );\r
052aa07d
ED
666\r
667 if (CpuMpData->InitFlag == ApInitReconfig) {\r
199de896 668 //\r
052aa07d
ED
669 // ApInitReconfig happens when:\r
670 // 1. AP is re-enabled after it's disabled, in either PEI or DXE phase.\r
671 // 2. AP is initialized in DXE phase.\r
672 // In either case, use the volatile registers value derived from BSP.\r
673 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a\r
674 // different IDT shared by all APs.\r
199de896 675 //\r
052aa07d
ED
676 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
677 } else {\r
678 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
679 //\r
680 // Restore AP's volatile registers saved before AP is halted\r
681 //\r
682 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
683 } else {\r
684 //\r
685 // The CPU driver might not flush TLB for APs on spot after updating\r
686 // page attributes. AP in mwait loop mode needs to take care of it when\r
687 // woken up.\r
688 //\r
689 CpuFlushTlb ();\r
690 }\r
b8b04307
JF
691 }\r
692\r
693 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
694 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
695 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
696 if (Procedure != NULL) {\r
697 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
698 //\r
43c9fdcc 699 // Enable source debugging on AP function\r
7367cc6c 700 //\r
43c9fdcc
JF
701 EnableDebugAgent ();\r
702 //\r
b8b04307
JF
703 // Invoke AP function here\r
704 //\r
705 Procedure (Parameter);\r
31a1e4da 706 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
707 if (CpuMpData->SwitchBspFlag) {\r
708 //\r
709 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
710 //\r
711 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
712 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
713 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
714 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
715 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 716 } else {\r
c6b0feb3
JF
717 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
718 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
719 if (CurrentApicMode != GetApicMode ()) {\r
720 //\r
721 // If APIC mode change happened during AP function execution,\r
722 // we do not support APIC ID value changed.\r
723 //\r
724 ASSERT (FALSE);\r
725 CpuDeadLoop ();\r
726 } else {\r
727 //\r
728 // Re-get the CPU APICID and Initial APICID if they are changed\r
729 //\r
730 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
731 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
732 }\r
733 }\r
41be0da5 734 }\r
b8b04307 735 }\r
e048ce88 736 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
b8b04307
JF
737 }\r
738 }\r
739\r
740 //\r
741 // AP finished executing C code\r
742 //\r
743 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
744\r
745 //\r
746 // Place AP is specified loop mode\r
747 //\r
748 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
749 //\r
750 // Save AP volatile registers\r
751 //\r
752 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
753 //\r
754 // Place AP in HLT-loop\r
755 //\r
756 while (TRUE) {\r
757 DisableInterrupts ();\r
758 CpuSleep ();\r
759 CpuPause ();\r
760 }\r
761 }\r
762 while (TRUE) {\r
763 DisableInterrupts ();\r
764 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
765 //\r
766 // Place AP in MWAIT-loop\r
767 //\r
768 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
769 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
770 //\r
771 // Check AP start-up signal again.\r
772 // If AP start-up signal is not set, place AP into\r
773 // the specified C-state\r
774 //\r
775 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
776 }\r
777 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
778 //\r
779 // Place AP in Run-loop\r
780 //\r
781 CpuPause ();\r
782 } else {\r
783 ASSERT (FALSE);\r
784 }\r
785\r
786 //\r
787 // If AP start-up signal is written, AP is waken up\r
788 // otherwise place AP in loop again\r
789 //\r
790 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
791 break;\r
792 }\r
793 }\r
794 }\r
795}\r
796\r
96f5920d
JF
797/**\r
798 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
799\r
800 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
801**/\r
802VOID\r
803WaitApWakeup (\r
804 IN volatile UINT32 *ApStartupSignalBuffer\r
805 )\r
806{\r
807 //\r
808 // If AP is waken up, StartupApSignal should be cleared.\r
809 // Otherwise, write StartupApSignal again till AP waken up.\r
810 //\r
811 while (InterlockedCompareExchange32 (\r
812 (UINT32 *) ApStartupSignalBuffer,\r
813 WAKEUP_AP_SIGNAL,\r
814 WAKEUP_AP_SIGNAL\r
815 ) != 0) {\r
816 CpuPause ();\r
817 }\r
818}\r
819\r
7c3f2a12
JF
820/**\r
821 This function will fill the exchange info structure.\r
822\r
823 @param[in] CpuMpData Pointer to CPU MP Data\r
824\r
825**/\r
826VOID\r
827FillExchangeInfoData (\r
828 IN CPU_MP_DATA *CpuMpData\r
829 )\r
830{\r
831 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
832 UINTN Size;\r
833 IA32_SEGMENT_DESCRIPTOR *Selector;\r
09f69a87 834 IA32_CR4 Cr4;\r
7c3f2a12
JF
835\r
836 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
837 ExchangeInfo->Lock = 0;\r
838 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
839 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
840 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
841 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
842\r
843 ExchangeInfo->CodeSegment = AsmReadCs ();\r
844 ExchangeInfo->DataSegment = AsmReadDs ();\r
845\r
846 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
847\r
848 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 849 ExchangeInfo->ApIndex = 0;\r
0594ec41 850 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
851 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
852 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
853 ExchangeInfo->CpuMpData = CpuMpData;\r
854\r
855 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
856\r
3b2928b4
MK
857 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
858\r
09f69a87
RN
859 //\r
860 // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]\r
861 // to determin whether 5-Level Paging is enabled.\r
862 // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows\r
863 // current system setting.\r
864 // Using latter way is simpler because it also eliminates the needs to\r
865 // check whether platform wants to enable it.\r
866 //\r
867 Cr4.UintN = AsmReadCr4 ();\r
868 ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);\r
869 DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));\r
870\r
7c3f2a12
JF
871 //\r
872 // Get the BSP's data of GDT and IDT\r
873 //\r
874 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
875 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
876\r
877 //\r
878 // Find a 32-bit code segment\r
879 //\r
880 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
881 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
882 while (Size > 0) {\r
883 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
884 ExchangeInfo->ModeTransitionSegment =\r
885 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
886 break;\r
887 }\r
888 Selector += 1;\r
889 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
890 }\r
891\r
892 //\r
893 // Copy all 32-bit code and 64-bit code into memory with type of\r
894 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
895 //\r
66833b2a 896 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
897 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
898 CpuMpData->AddressMap.ModeTransitionOffset;\r
899 CopyMem (\r
66833b2a 900 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
901 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
902 CpuMpData->AddressMap.ModeTransitionOffset,\r
903 Size\r
904 );\r
905\r
66833b2a 906 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
907 } else {\r
908 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
909 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
910 }\r
69dfa8d8
JW
911\r
912 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
913 (UINT32)ExchangeInfo->ModeOffset -\r
914 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
915 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
916}\r
917\r
6e1987f1
LE
918/**\r
919 Helper function that waits until the finished AP count reaches the specified\r
920 limit, or the specified timeout elapses (whichever comes first).\r
921\r
922 @param[in] CpuMpData Pointer to CPU MP Data.\r
923 @param[in] FinishedApLimit The number of finished APs to wait for.\r
924 @param[in] TimeLimit The number of microseconds to wait for.\r
925**/\r
926VOID\r
927TimedWaitForApFinish (\r
928 IN CPU_MP_DATA *CpuMpData,\r
929 IN UINT32 FinishedApLimit,\r
930 IN UINT32 TimeLimit\r
931 );\r
932\r
a6b3d753
SZ
933/**\r
934 Get available system memory below 1MB by specified size.\r
935\r
936 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
937**/\r
938VOID\r
939BackupAndPrepareWakeupBuffer(\r
940 IN CPU_MP_DATA *CpuMpData\r
941 )\r
942{\r
943 CopyMem (\r
944 (VOID *) CpuMpData->BackupBuffer,\r
945 (VOID *) CpuMpData->WakeupBuffer,\r
946 CpuMpData->BackupBufferSize\r
947 );\r
948 CopyMem (\r
949 (VOID *) CpuMpData->WakeupBuffer,\r
950 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
951 CpuMpData->AddressMap.RendezvousFunnelSize\r
952 );\r
953}\r
954\r
955/**\r
956 Restore wakeup buffer data.\r
957\r
958 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
959**/\r
960VOID\r
961RestoreWakeupBuffer(\r
962 IN CPU_MP_DATA *CpuMpData\r
963 )\r
964{\r
965 CopyMem (\r
966 (VOID *) CpuMpData->WakeupBuffer,\r
967 (VOID *) CpuMpData->BackupBuffer,\r
968 CpuMpData->BackupBufferSize\r
969 );\r
970}\r
971\r
972/**\r
973 Allocate reset vector buffer.\r
974\r
975 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
976**/\r
977VOID\r
978AllocateResetVector (\r
979 IN OUT CPU_MP_DATA *CpuMpData\r
980 )\r
981{\r
982 UINTN ApResetVectorSize;\r
983\r
984 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
985 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
986 sizeof (MP_CPU_EXCHANGE_INFO);\r
987\r
988 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
989 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
990 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
991 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
992 CpuMpData->AddressMap.RendezvousFunnelSize -\r
993 CpuMpData->AddressMap.ModeTransitionOffset\r
994 );\r
a6b3d753
SZ
995 }\r
996 BackupAndPrepareWakeupBuffer (CpuMpData);\r
997}\r
998\r
999/**\r
1000 Free AP reset vector buffer.\r
1001\r
1002 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
1003**/\r
1004VOID\r
1005FreeResetVector (\r
1006 IN CPU_MP_DATA *CpuMpData\r
1007 )\r
1008{\r
1009 RestoreWakeupBuffer (CpuMpData);\r
1010}\r
1011\r
96f5920d
JF
1012/**\r
1013 This function will be called by BSP to wakeup AP.\r
1014\r
1015 @param[in] CpuMpData Pointer to CPU MP Data\r
1016 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
1017 FALSE: Send IPI to AP by ApicId\r
1018 @param[in] ProcessorNumber The handle number of specified processor\r
1019 @param[in] Procedure The function to be invoked by AP\r
1020 @param[in] ProcedureArgument The argument to be passed into AP function\r
cf4e79e4 1021 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.\r
96f5920d
JF
1022**/\r
1023VOID\r
1024WakeUpAP (\r
1025 IN CPU_MP_DATA *CpuMpData,\r
1026 IN BOOLEAN Broadcast,\r
1027 IN UINTN ProcessorNumber,\r
1028 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
cf4e79e4
ED
1029 IN VOID *ProcedureArgument, OPTIONAL\r
1030 IN BOOLEAN WakeUpDisabledAps\r
96f5920d
JF
1031 )\r
1032{\r
1033 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
1034 UINTN Index;\r
1035 CPU_AP_DATA *CpuData;\r
1036 BOOLEAN ResetVectorRequired;\r
31a1e4da 1037 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
1038\r
1039 CpuMpData->FinishedCount = 0;\r
1040 ResetVectorRequired = FALSE;\r
1041\r
58942277 1042 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
1043 CpuMpData->InitFlag != ApInitDone) {\r
1044 ResetVectorRequired = TRUE;\r
1045 AllocateResetVector (CpuMpData);\r
1046 FillExchangeInfoData (CpuMpData);\r
ffab2442 1047 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
1048 }\r
1049\r
1050 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
1051 //\r
1052 // Get AP target C-state each time when waking up AP,\r
1053 // for it maybe updated by platform again\r
1054 //\r
1055 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1056 }\r
1057\r
1058 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1059\r
1060 if (Broadcast) {\r
1061 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1062 if (Index != CpuMpData->BspNumber) {\r
1063 CpuData = &CpuMpData->CpuData[Index];\r
cf4e79e4
ED
1064 //\r
1065 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but\r
e23d9c3e 1066 // the AP procedure will be skipped for disabled AP because AP state\r
cf4e79e4
ED
1067 // is not CpuStateReady.\r
1068 //\r
1069 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {\r
1070 continue;\r
1071 }\r
1072\r
96f5920d
JF
1073 CpuData->ApFunction = (UINTN) Procedure;\r
1074 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1075 SetApState (CpuData, CpuStateReady);\r
1076 if (CpuMpData->InitFlag != ApInitConfig) {\r
1077 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1078 }\r
1079 }\r
1080 }\r
1081 if (ResetVectorRequired) {\r
1082 //\r
1083 // Wakeup all APs\r
1084 //\r
1085 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1086 }\r
c1192210 1087 if (CpuMpData->InitFlag == ApInitConfig) {\r
778832bc
LE
1088 if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {\r
1089 //\r
1090 // The AP enumeration algorithm below is suitable only when the\r
1091 // platform can tell us the *exact* boot CPU count in advance.\r
1092 //\r
1093 // The wait below finishes only when the detected AP count reaches\r
1094 // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that\r
1095 // takes. If at least one AP fails to check in (meaning a platform\r
1096 // hardware bug), the detection hangs forever, by design. If the actual\r
1097 // boot CPU count in the system is higher than\r
1098 // PcdCpuBootLogicalProcessorNumber (meaning a platform\r
1099 // misconfiguration), then some APs may complete initialization after\r
1100 // the wait finishes, and cause undefined behavior.\r
1101 //\r
1102 TimedWaitForApFinish (\r
1103 CpuMpData,\r
1104 PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,\r
1105 MAX_UINT32 // approx. 71 minutes\r
1106 );\r
1107 } else {\r
1108 //\r
1109 // The AP enumeration algorithm below is suitable for two use cases.\r
1110 //\r
1111 // (1) The check-in time for an individual AP is bounded, and APs run\r
1112 // through their initialization routines strongly concurrently. In\r
1113 // particular, the number of concurrently running APs\r
1114 // ("NumApsExecuting") is never expected to fall to zero\r
1115 // *temporarily* -- it is expected to fall to zero only when all\r
1116 // APs have checked-in.\r
1117 //\r
1118 // In this case, the platform is supposed to set\r
1119 // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long\r
1120 // enough for one AP to start initialization). The timeout will be\r
1121 // reached soon, and remaining APs are collected by watching\r
1122 // NumApsExecuting fall to zero. If NumApsExecuting falls to zero\r
1123 // mid-process, while some APs have not completed initialization,\r
1124 // the behavior is undefined.\r
1125 //\r
1126 // (2) The check-in time for an individual AP is unbounded, and/or APs\r
1127 // may complete their initializations widely spread out. In\r
1128 // particular, some APs may finish initialization before some APs\r
1129 // even start.\r
1130 //\r
1131 // In this case, the platform is supposed to set\r
1132 // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP\r
1133 // enumeration will always take that long (except when the boot CPU\r
1134 // count happens to be maximal, that is,\r
1135 // PcdCpuMaxLogicalProcessorNumber). All APs are expected to\r
1136 // check-in before the timeout, and NumApsExecuting is assumed zero\r
1137 // at timeout. APs that miss the time-out may cause undefined\r
1138 // behavior.\r
1139 //\r
1140 TimedWaitForApFinish (\r
1141 CpuMpData,\r
1142 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1143 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1144 );\r
0594ec41 1145\r
778832bc
LE
1146 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1147 CpuPause();\r
1148 }\r
0594ec41 1149 }\r
c1192210 1150 } else {\r
96f5920d
JF
1151 //\r
1152 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1153 //\r
1154 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1155 CpuData = &CpuMpData->CpuData[Index];\r
1156 if (Index != CpuMpData->BspNumber) {\r
1157 WaitApWakeup (CpuData->StartupApSignal);\r
1158 }\r
1159 }\r
1160 }\r
1161 } else {\r
1162 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1163 CpuData->ApFunction = (UINTN) Procedure;\r
1164 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1165 SetApState (CpuData, CpuStateReady);\r
1166 //\r
1167 // Wakeup specified AP\r
1168 //\r
1169 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1170 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1171 if (ResetVectorRequired) {\r
31a1e4da 1172 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1173 SendInitSipiSipi (\r
31a1e4da 1174 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1175 (UINT32) ExchangeInfo->BufferStart\r
1176 );\r
1177 }\r
1178 //\r
1179 // Wait specified AP waken up\r
1180 //\r
1181 WaitApWakeup (CpuData->StartupApSignal);\r
1182 }\r
1183\r
1184 if (ResetVectorRequired) {\r
1185 FreeResetVector (CpuMpData);\r
1186 }\r
58942277
ED
1187\r
1188 //\r
1189 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1190 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1191 // S3SmmInitDone Ppi.\r
1192 //\r
1193 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1194}\r
1195\r
08085f08
JF
1196/**\r
1197 Calculate timeout value and return the current performance counter value.\r
1198\r
1199 Calculate the number of performance counter ticks required for a timeout.\r
1200 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1201 as infinity.\r
1202\r
1203 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1204 @param[out] CurrentTime Returns the current value of the performance counter.\r
1205\r
1206 @return Expected time stamp counter for timeout.\r
1207 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1208 as infinity.\r
1209\r
1210**/\r
1211UINT64\r
1212CalculateTimeout (\r
1213 IN UINTN TimeoutInMicroseconds,\r
1214 OUT UINT64 *CurrentTime\r
1215 )\r
1216{\r
48cfb7c0
ED
1217 UINT64 TimeoutInSeconds;\r
1218 UINT64 TimestampCounterFreq;\r
1219\r
08085f08
JF
1220 //\r
1221 // Read the current value of the performance counter\r
1222 //\r
1223 *CurrentTime = GetPerformanceCounter ();\r
1224\r
1225 //\r
1226 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1227 // as infinity.\r
1228 //\r
1229 if (TimeoutInMicroseconds == 0) {\r
1230 return 0;\r
1231 }\r
1232\r
1233 //\r
1234 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1235 // in Hz.\r
48cfb7c0
ED
1236 //\r
1237 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1238\r
08085f08 1239 //\r
48cfb7c0
ED
1240 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1241 //\r
1242 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1243 //\r
1244 // Convert microseconds into seconds if direct multiplication overflows\r
1245 //\r
1246 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1247 //\r
1248 // Assertion if the final tick count exceeds MAX_UINT64\r
1249 //\r
1250 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1251 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1252 } else {\r
1253 //\r
1254 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1255 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1256 //\r
1257 return DivU64x32 (\r
1258 MultU64x64 (\r
1259 TimestampCounterFreq,\r
1260 TimeoutInMicroseconds\r
1261 ),\r
1262 1000000\r
1263 );\r
1264 }\r
08085f08
JF
1265}\r
1266\r
1267/**\r
1268 Checks whether timeout expires.\r
1269\r
1270 Check whether the number of elapsed performance counter ticks required for\r
1271 a timeout condition has been reached.\r
1272 If Timeout is zero, which means infinity, return value is always FALSE.\r
1273\r
1274 @param[in, out] PreviousTime On input, the value of the performance counter\r
1275 when it was last read.\r
1276 On output, the current value of the performance\r
1277 counter\r
1278 @param[in] TotalTime The total amount of elapsed time in performance\r
1279 counter ticks.\r
1280 @param[in] Timeout The number of performance counter ticks required\r
1281 to reach a timeout condition.\r
1282\r
1283 @retval TRUE A timeout condition has been reached.\r
1284 @retval FALSE A timeout condition has not been reached.\r
1285\r
1286**/\r
1287BOOLEAN\r
1288CheckTimeout (\r
1289 IN OUT UINT64 *PreviousTime,\r
1290 IN UINT64 *TotalTime,\r
1291 IN UINT64 Timeout\r
1292 )\r
1293{\r
1294 UINT64 Start;\r
1295 UINT64 End;\r
1296 UINT64 CurrentTime;\r
1297 INT64 Delta;\r
1298 INT64 Cycle;\r
1299\r
1300 if (Timeout == 0) {\r
1301 return FALSE;\r
1302 }\r
1303 GetPerformanceCounterProperties (&Start, &End);\r
1304 Cycle = End - Start;\r
1305 if (Cycle < 0) {\r
1306 Cycle = -Cycle;\r
1307 }\r
1308 Cycle++;\r
1309 CurrentTime = GetPerformanceCounter();\r
1310 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1311 if (Start > End) {\r
1312 Delta = -Delta;\r
1313 }\r
1314 if (Delta < 0) {\r
1315 Delta += Cycle;\r
1316 }\r
1317 *TotalTime += Delta;\r
1318 *PreviousTime = CurrentTime;\r
1319 if (*TotalTime > Timeout) {\r
1320 return TRUE;\r
1321 }\r
1322 return FALSE;\r
1323}\r
1324\r
6e1987f1
LE
1325/**\r
1326 Helper function that waits until the finished AP count reaches the specified\r
1327 limit, or the specified timeout elapses (whichever comes first).\r
1328\r
1329 @param[in] CpuMpData Pointer to CPU MP Data.\r
1330 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1331 @param[in] TimeLimit The number of microseconds to wait for.\r
1332**/\r
1333VOID\r
1334TimedWaitForApFinish (\r
1335 IN CPU_MP_DATA *CpuMpData,\r
1336 IN UINT32 FinishedApLimit,\r
1337 IN UINT32 TimeLimit\r
1338 )\r
1339{\r
1340 //\r
1341 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1342 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1343 //\r
1344 if (TimeLimit == 0) {\r
1345 return;\r
1346 }\r
1347\r
1348 CpuMpData->TotalTime = 0;\r
1349 CpuMpData->ExpectedTime = CalculateTimeout (\r
1350 TimeLimit,\r
1351 &CpuMpData->CurrentTime\r
1352 );\r
1353 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1354 !CheckTimeout (\r
1355 &CpuMpData->CurrentTime,\r
1356 &CpuMpData->TotalTime,\r
1357 CpuMpData->ExpectedTime\r
1358 )) {\r
1359 CpuPause ();\r
1360 }\r
1361\r
1362 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1363 DEBUG ((\r
1364 DEBUG_VERBOSE,\r
1365 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1366 __FUNCTION__,\r
1367 FinishedApLimit,\r
1368 DivU64x64Remainder (\r
1369 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1370 GetPerformanceCounterProperties (NULL, NULL),\r
1371 NULL\r
1372 )\r
1373 ));\r
1374 }\r
1375}\r
1376\r
08085f08
JF
1377/**\r
1378 Reset an AP to Idle state.\r
1379\r
1380 Any task being executed by the AP will be aborted and the AP\r
1381 will be waiting for a new task in Wait-For-SIPI state.\r
1382\r
1383 @param[in] ProcessorNumber The handle number of processor.\r
1384**/\r
1385VOID\r
1386ResetProcessorToIdleState (\r
1387 IN UINTN ProcessorNumber\r
1388 )\r
1389{\r
1390 CPU_MP_DATA *CpuMpData;\r
1391\r
1392 CpuMpData = GetCpuMpData ();\r
1393\r
cb33bde4 1394 CpuMpData->InitFlag = ApInitReconfig;\r
cf4e79e4 1395 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);\r
cb33bde4
JF
1396 while (CpuMpData->FinishedCount < 1) {\r
1397 CpuPause ();\r
1398 }\r
1399 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1400\r
1401 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1402}\r
1403\r
1404/**\r
1405 Searches for the next waiting AP.\r
1406\r
1407 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1408\r
1409 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1410\r
1411 @retval EFI_SUCCESS The next waiting AP has been found.\r
1412 @retval EFI_NOT_FOUND No waiting AP exists.\r
1413\r
1414**/\r
1415EFI_STATUS\r
1416GetNextWaitingProcessorNumber (\r
1417 OUT UINTN *NextProcessorNumber\r
1418 )\r
1419{\r
1420 UINTN ProcessorNumber;\r
1421 CPU_MP_DATA *CpuMpData;\r
1422\r
1423 CpuMpData = GetCpuMpData ();\r
1424\r
1425 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1426 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1427 *NextProcessorNumber = ProcessorNumber;\r
1428 return EFI_SUCCESS;\r
1429 }\r
1430 }\r
1431\r
1432 return EFI_NOT_FOUND;\r
1433}\r
1434\r
1435/** Checks status of specified AP.\r
1436\r
1437 This function checks whether the specified AP has finished the task assigned\r
1438 by StartupThisAP(), and whether timeout expires.\r
1439\r
1440 @param[in] ProcessorNumber The handle number of processor.\r
1441\r
1442 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1443 @retval EFI_TIMEOUT The timeout expires.\r
1444 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1445**/\r
1446EFI_STATUS\r
1447CheckThisAP (\r
1448 IN UINTN ProcessorNumber\r
1449 )\r
1450{\r
1451 CPU_MP_DATA *CpuMpData;\r
1452 CPU_AP_DATA *CpuData;\r
1453\r
1454 CpuMpData = GetCpuMpData ();\r
1455 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1456\r
1457 //\r
2a5997f8 1458 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1459 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1460 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08
JF
1461 //\r
1462 //\r
1463 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1464 //\r
e048ce88 1465 if (GetApState(CpuData) == CpuStateFinished) {\r
08085f08
JF
1466 if (CpuData->Finished != NULL) {\r
1467 *(CpuData->Finished) = TRUE;\r
1468 }\r
e048ce88 1469 SetApState (CpuData, CpuStateIdle);\r
08085f08
JF
1470 return EFI_SUCCESS;\r
1471 } else {\r
1472 //\r
1473 // If timeout expires for StartupThisAP(), report timeout.\r
1474 //\r
1475 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1476 if (CpuData->Finished != NULL) {\r
1477 *(CpuData->Finished) = FALSE;\r
1478 }\r
1479 //\r
1480 // Reset failed AP to idle state\r
1481 //\r
1482 ResetProcessorToIdleState (ProcessorNumber);\r
1483\r
1484 return EFI_TIMEOUT;\r
1485 }\r
1486 }\r
1487 return EFI_NOT_READY;\r
1488}\r
1489\r
1490/**\r
1491 Checks status of all APs.\r
1492\r
1493 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1494 and whether timeout expires.\r
1495\r
1496 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1497 @retval EFI_TIMEOUT The timeout expires.\r
1498 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1499**/\r
1500EFI_STATUS\r
1501CheckAllAPs (\r
1502 VOID\r
1503 )\r
1504{\r
1505 UINTN ProcessorNumber;\r
1506 UINTN NextProcessorNumber;\r
1507 UINTN ListIndex;\r
1508 EFI_STATUS Status;\r
1509 CPU_MP_DATA *CpuMpData;\r
1510 CPU_AP_DATA *CpuData;\r
1511\r
1512 CpuMpData = GetCpuMpData ();\r
1513\r
1514 NextProcessorNumber = 0;\r
1515\r
1516 //\r
1517 // Go through all APs that are responsible for the StartupAllAPs().\r
1518 //\r
1519 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1520 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1521 continue;\r
1522 }\r
1523\r
1524 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1525 //\r
2a5997f8 1526 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1527 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1528 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08 1529 //\r
e048ce88 1530 if (GetApState(CpuData) == CpuStateFinished) {\r
2da3e96c 1531 CpuMpData->RunningCount --;\r
08085f08 1532 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
e048ce88 1533 SetApState(CpuData, CpuStateIdle);\r
08085f08
JF
1534\r
1535 //\r
1536 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1537 //\r
1538 if (CpuMpData->SingleThread) {\r
1539 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1540\r
1541 if (!EFI_ERROR (Status)) {\r
1542 WakeUpAP (\r
1543 CpuMpData,\r
1544 FALSE,\r
1545 (UINT32) NextProcessorNumber,\r
1546 CpuMpData->Procedure,\r
cf4e79e4
ED
1547 CpuMpData->ProcArguments,\r
1548 TRUE\r
08085f08
JF
1549 );\r
1550 }\r
1551 }\r
1552 }\r
1553 }\r
1554\r
1555 //\r
1556 // If all APs finish, return EFI_SUCCESS.\r
1557 //\r
2da3e96c 1558 if (CpuMpData->RunningCount == 0) {\r
08085f08
JF
1559 return EFI_SUCCESS;\r
1560 }\r
1561\r
1562 //\r
1563 // If timeout expires, report timeout.\r
1564 //\r
1565 if (CheckTimeout (\r
1566 &CpuMpData->CurrentTime,\r
1567 &CpuMpData->TotalTime,\r
1568 CpuMpData->ExpectedTime)\r
1569 ) {\r
1570 //\r
1571 // If FailedCpuList is not NULL, record all failed APs in it.\r
1572 //\r
1573 if (CpuMpData->FailedCpuList != NULL) {\r
1574 *CpuMpData->FailedCpuList =\r
2da3e96c 1575 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));\r
08085f08
JF
1576 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1577 }\r
1578 ListIndex = 0;\r
1579\r
1580 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1581 //\r
1582 // Check whether this processor is responsible for StartupAllAPs().\r
1583 //\r
1584 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1585 //\r
1586 // Reset failed APs to idle state\r
1587 //\r
1588 ResetProcessorToIdleState (ProcessorNumber);\r
1589 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1590 if (CpuMpData->FailedCpuList != NULL) {\r
1591 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1592 }\r
1593 }\r
1594 }\r
1595 if (CpuMpData->FailedCpuList != NULL) {\r
1596 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1597 }\r
1598 return EFI_TIMEOUT;\r
1599 }\r
1600 return EFI_NOT_READY;\r
1601}\r
1602\r
3e8ad6bd
JF
1603/**\r
1604 MP Initialize Library initialization.\r
1605\r
1606 This service will allocate AP reset vector and wakeup all APs to do APs\r
1607 initialization.\r
1608\r
1609 This service must be invoked before all other MP Initialize Library\r
1610 service are invoked.\r
1611\r
1612 @retval EFI_SUCCESS MP initialization succeeds.\r
1613 @retval Others MP initialization fails.\r
1614\r
1615**/\r
1616EFI_STATUS\r
1617EFIAPI\r
1618MpInitLibInitialize (\r
1619 VOID\r
1620 )\r
1621{\r
6a2ee2bb
JF
1622 CPU_MP_DATA *OldCpuMpData;\r
1623 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1624 UINT32 MaxLogicalProcessorNumber;\r
1625 UINT32 ApStackSize;\r
f7f85d83 1626 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1627 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1628 UINTN BufferSize;\r
9ebcf0f4 1629 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1630 VOID *MpBuffer;\r
1631 UINTN Buffer;\r
1632 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1633 UINT8 ApLoopMode;\r
e59f8f6b 1634 UINT8 *MonitorBuffer;\r
03a1a925 1635 UINTN Index;\r
f7f85d83 1636 UINTN ApResetVectorSize;\r
e59f8f6b 1637 UINTN BackupBufferAddr;\r
c563077a 1638 UINTN ApIdtBase;\r
6a2ee2bb
JF
1639\r
1640 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1641 if (OldCpuMpData == NULL) {\r
1642 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1643 } else {\r
1644 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1645 }\r
14e8137c 1646 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1647\r
1648 AsmGetAddressMap (&AddressMap);\r
1649 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1650 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1651 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1652\r
c563077a 1653 //\r
e09b6b59 1654 // Save BSP's Control registers for APs.\r
c563077a
RN
1655 //\r
1656 SaveVolatileRegisters (&VolatileRegisters);\r
1657\r
e59f8f6b
JF
1658 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1659 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1660 BufferSize += ApResetVectorSize;\r
c563077a
RN
1661 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1662 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1663 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1664 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1665 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1666 ASSERT (MpBuffer != NULL);\r
1667 ZeroMem (MpBuffer, BufferSize);\r
1668 Buffer = (UINTN) MpBuffer;\r
1669\r
c563077a
RN
1670 //\r
1671 // The layout of the Buffer is as below:\r
1672 //\r
1673 // +--------------------+ <-- Buffer\r
1674 // AP Stacks (N)\r
1675 // +--------------------+ <-- MonitorBuffer\r
1676 // AP Monitor Filters (N)\r
1677 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1678 // Backup Buffer\r
1679 // +--------------------+\r
1680 // Padding\r
1681 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1682 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1683 // +--------------------+ <-- CpuMpData\r
1684 // CPU_MP_DATA\r
1685 // +--------------------+ <-- CpuMpData->CpuData\r
1686 // CPU_AP_DATA (N)\r
1687 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1688 // CPU_INFO_IN_HOB (N)\r
1689 // +--------------------+\r
1690 //\r
e59f8f6b
JF
1691 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1692 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1693 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1694 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1695 CpuMpData->Buffer = Buffer;\r
1696 CpuMpData->CpuApStackSize = ApStackSize;\r
1697 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1698 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1699 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1700 CpuMpData->CpuCount = 1;\r
1701 CpuMpData->BspNumber = 0;\r
1702 CpuMpData->WaitEvent = NULL;\r
41be0da5 1703 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1704 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1705 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1706 InitializeSpinLock(&CpuMpData->MpLock);\r
e88a5b98 1707 CpuMpData->SevEsIsEnabled = PcdGetBool (PcdSevEsIsEnabled);\r
c563077a
RN
1708\r
1709 //\r
1710 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1711 //\r
c563077a
RN
1712 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1713 Buffer + BufferSize);\r
1714\r
1715 //\r
1716 // Duplicate BSP's IDT to APs.\r
1717 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1718 //\r
c563077a
RN
1719 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1720 VolatileRegisters.Idtr.Base = ApIdtBase;\r
e09b6b59
JW
1721 //\r
1722 // Don't pass BSP's TR to APs to avoid AP init failure.\r
1723 //\r
1724 VolatileRegisters.Tr = 0;\r
c563077a 1725 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1726 //\r
03a1a925
JF
1727 // Set BSP basic information\r
1728 //\r
f2655dcf 1729 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1730 //\r
e59f8f6b
JF
1731 // Save assembly code information\r
1732 //\r
1733 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1734 //\r
1735 // Finally set AP loop mode\r
1736 //\r
1737 CpuMpData->ApLoopMode = ApLoopMode;\r
1738 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1739\r
1740 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1741\r
e59f8f6b 1742 //\r
03a1a925
JF
1743 // Set up APs wakeup signal buffer\r
1744 //\r
1745 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1746 CpuMpData->CpuData[Index].StartupApSignal =\r
1747 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1748 }\r
94f63c76 1749 //\r
9d64a9fd
JF
1750 // Enable the local APIC for Virtual Wire Mode.\r
1751 //\r
1752 ProgramVirtualWireMode ();\r
e59f8f6b 1753\r
6a2ee2bb 1754 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1755 if (MaxLogicalProcessorNumber > 1) {\r
1756 //\r
1757 // Wakeup all APs and calculate the processor count in system\r
1758 //\r
1759 CollectProcessorCount (CpuMpData);\r
1760 }\r
6a2ee2bb
JF
1761 } else {\r
1762 //\r
1763 // APs have been wakeup before, just get the CPU Information\r
1764 // from HOB\r
1765 //\r
1766 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1767 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
31a1e4da
JF
1768 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1769 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1770 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1771 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
31a1e4da 1772 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1773 CpuMpData->CpuData[Index].ApFunction = 0;\r
6a2ee2bb 1774 }\r
d786a172
HW
1775 }\r
1776\r
348a34d9
HW
1777 if (!GetMicrocodePatchInfoFromHob (\r
1778 &CpuMpData->MicrocodePatchAddress,\r
1779 &CpuMpData->MicrocodePatchRegionSize\r
1780 )) {\r
1781 //\r
1782 // The microcode patch information cache HOB does not exist, which means\r
1783 // the microcode patches data has not been loaded into memory yet\r
1784 //\r
1785 ShadowMicrocodeUpdatePatch (CpuMpData);\r
1786 }\r
1787\r
d786a172
HW
1788 //\r
1789 // Detect and apply Microcode on BSP\r
1790 //\r
e1ed5573 1791 MicrocodeDetect (CpuMpData, CpuMpData->BspNumber);\r
d786a172
HW
1792 //\r
1793 // Store BSP's MTRR setting\r
1794 //\r
1795 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
1796\r
1797 //\r
1798 // Wakeup APs to do some AP initialize sync (Microcode & MTRR)\r
1799 //\r
1800 if (CpuMpData->CpuCount > 1) {\r
f07fb43b
ED
1801 if (OldCpuMpData != NULL) {\r
1802 //\r
1803 // Only needs to use this flag for DXE phase to update the wake up\r
1804 // buffer. Wakeup buffer allocated in PEI phase is no longer valid\r
1805 // in DXE.\r
1806 //\r
1807 CpuMpData->InitFlag = ApInitReconfig;\r
1808 }\r
d786a172 1809 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);\r
18fcb375
HW
1810 //\r
1811 // Wait for all APs finished initialization\r
1812 //\r
d786a172
HW
1813 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1814 CpuPause ();\r
1815 }\r
f07fb43b
ED
1816 if (OldCpuMpData != NULL) {\r
1817 CpuMpData->InitFlag = ApInitDone;\r
1818 }\r
d786a172
HW
1819 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1820 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
6a2ee2bb
JF
1821 }\r
1822 }\r
93ca4c0f
JF
1823\r
1824 //\r
1825 // Initialize global data for MP support\r
1826 //\r
1827 InitMpGlobalData (CpuMpData);\r
1828\r
f7f85d83 1829 return EFI_SUCCESS;\r
3e8ad6bd
JF
1830}\r
1831\r
1832/**\r
1833 Gets detailed MP-related information on the requested processor at the\r
1834 instant this call is made. This service may only be called from the BSP.\r
1835\r
1836 @param[in] ProcessorNumber The handle number of processor.\r
1837 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1838 the requested processor is deposited.\r
1839 @param[out] HealthData Return processor health data.\r
1840\r
1841 @retval EFI_SUCCESS Processor information was returned.\r
1842 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1843 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1844 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1845 ProcessorNumber does not exist in the platform.\r
1846 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1847\r
1848**/\r
1849EFI_STATUS\r
1850EFIAPI\r
1851MpInitLibGetProcessorInfo (\r
1852 IN UINTN ProcessorNumber,\r
1853 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1854 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1855 )\r
1856{\r
ad52f25e
JF
1857 CPU_MP_DATA *CpuMpData;\r
1858 UINTN CallerNumber;\r
31a1e4da 1859 CPU_INFO_IN_HOB *CpuInfoInHob;\r
9099dcbd 1860 UINTN OriginalProcessorNumber;\r
ad52f25e
JF
1861\r
1862 CpuMpData = GetCpuMpData ();\r
31a1e4da 1863 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e 1864\r
9099dcbd
RN
1865 //\r
1866 // Lower 24 bits contains the actual processor number.\r
1867 //\r
1868 OriginalProcessorNumber = ProcessorNumber;\r
1869 ProcessorNumber &= BIT24 - 1;\r
1870\r
ad52f25e
JF
1871 //\r
1872 // Check whether caller processor is BSP\r
1873 //\r
1874 MpInitLibWhoAmI (&CallerNumber);\r
1875 if (CallerNumber != CpuMpData->BspNumber) {\r
1876 return EFI_DEVICE_ERROR;\r
1877 }\r
1878\r
1879 if (ProcessorInfoBuffer == NULL) {\r
1880 return EFI_INVALID_PARAMETER;\r
1881 }\r
1882\r
1883 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1884 return EFI_NOT_FOUND;\r
1885 }\r
1886\r
31a1e4da 1887 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1888 ProcessorInfoBuffer->StatusFlag = 0;\r
1889 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1890 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1891 }\r
1892 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1893 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1894 }\r
1895 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1896 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1897 } else {\r
1898 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1899 }\r
1900\r
1901 //\r
1902 // Get processor location information\r
1903 //\r
262128e5 1904 GetProcessorLocationByApicId (\r
31a1e4da 1905 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1906 &ProcessorInfoBuffer->Location.Package,\r
1907 &ProcessorInfoBuffer->Location.Core,\r
1908 &ProcessorInfoBuffer->Location.Thread\r
1909 );\r
ad52f25e 1910\r
9099dcbd
RN
1911 if ((OriginalProcessorNumber & CPU_V2_EXTENDED_TOPOLOGY) != 0) {\r
1912 GetProcessorLocation2ByApicId (\r
1913 CpuInfoInHob[ProcessorNumber].ApicId,\r
1914 &ProcessorInfoBuffer->ExtendedInformation.Location2.Package,\r
1915 &ProcessorInfoBuffer->ExtendedInformation.Location2.Die,\r
1916 &ProcessorInfoBuffer->ExtendedInformation.Location2.Tile,\r
1917 &ProcessorInfoBuffer->ExtendedInformation.Location2.Module,\r
1918 &ProcessorInfoBuffer->ExtendedInformation.Location2.Core,\r
1919 &ProcessorInfoBuffer->ExtendedInformation.Location2.Thread\r
1920 );\r
1921 }\r
1922\r
ad52f25e 1923 if (HealthData != NULL) {\r
31a1e4da 1924 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1925 }\r
1926\r
1927 return EFI_SUCCESS;\r
3e8ad6bd 1928}\r
ad52f25e 1929\r
41be0da5
JF
1930/**\r
1931 Worker function to switch the requested AP to be the BSP from that point onward.\r
1932\r
1933 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1934 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1935 enabled AP. Otherwise, it will be disabled.\r
1936\r
1937 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1938 @retval others Failed to switch BSP.\r
41be0da5
JF
1939\r
1940**/\r
1941EFI_STATUS\r
1942SwitchBSPWorker (\r
1943 IN UINTN ProcessorNumber,\r
1944 IN BOOLEAN EnableOldBSP\r
1945 )\r
1946{\r
1947 CPU_MP_DATA *CpuMpData;\r
1948 UINTN CallerNumber;\r
1949 CPU_STATE State;\r
1950 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1951 BOOLEAN OldInterruptState;\r
26b43433 1952 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1953\r
26b43433
JF
1954 //\r
1955 // Save and Disable Local APIC timer interrupt\r
1956 //\r
1957 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1958 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1959 //\r
1960 // Before send both BSP and AP to a procedure to exchange their roles,\r
1961 // interrupt must be disabled. This is because during the exchange role\r
1962 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1963 // be corrupted, since interrupt return address will be pushed to stack\r
1964 // by hardware.\r
1965 //\r
1966 OldInterruptState = SaveAndDisableInterrupts ();\r
1967\r
1968 //\r
1969 // Mask LINT0 & LINT1 for the old BSP\r
1970 //\r
1971 DisableLvtInterrupts ();\r
41be0da5
JF
1972\r
1973 CpuMpData = GetCpuMpData ();\r
1974\r
1975 //\r
1976 // Check whether caller processor is BSP\r
1977 //\r
1978 MpInitLibWhoAmI (&CallerNumber);\r
1979 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1980 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1981 }\r
1982\r
1983 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1984 return EFI_NOT_FOUND;\r
1985 }\r
1986\r
1987 //\r
1988 // Check whether specified AP is disabled\r
1989 //\r
1990 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1991 if (State == CpuStateDisabled) {\r
1992 return EFI_INVALID_PARAMETER;\r
1993 }\r
1994\r
1995 //\r
1996 // Check whether ProcessorNumber specifies the current BSP\r
1997 //\r
1998 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1999 return EFI_INVALID_PARAMETER;\r
2000 }\r
2001\r
2002 //\r
2003 // Check whether specified AP is busy\r
2004 //\r
2005 if (State == CpuStateBusy) {\r
2006 return EFI_NOT_READY;\r
2007 }\r
2008\r
2009 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
2010 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
2011 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 2012 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
2013\r
2014 //\r
2015 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
2016 //\r
2017 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
2018 ApicBaseMsr.Bits.BSP = 0;\r
2019 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
2020\r
2021 //\r
2022 // Need to wakeUp AP (future BSP).\r
2023 //\r
cf4e79e4 2024 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);\r
41be0da5
JF
2025\r
2026 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
2027\r
2028 //\r
2029 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
2030 //\r
2031 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
2032 ApicBaseMsr.Bits.BSP = 1;\r
2033 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 2034 ProgramVirtualWireMode ();\r
41be0da5
JF
2035\r
2036 //\r
2037 // Wait for old BSP finished AP task\r
2038 //\r
e048ce88 2039 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
41be0da5
JF
2040 CpuPause ();\r
2041 }\r
2042\r
2043 CpuMpData->SwitchBspFlag = FALSE;\r
2044 //\r
2045 // Set old BSP enable state\r
2046 //\r
2047 if (!EnableOldBSP) {\r
2048 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
2049 } else {\r
2050 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
2051 }\r
2052 //\r
2053 // Save new BSP number\r
2054 //\r
2055 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
2056\r
a8d75a18
JF
2057 //\r
2058 // Restore interrupt state.\r
2059 //\r
2060 SetInterruptState (OldInterruptState);\r
2061\r
26b43433
JF
2062 if (OldTimerInterruptState) {\r
2063 EnableApicTimerInterrupt ();\r
2064 }\r
a8d75a18 2065\r
41be0da5
JF
2066 return EFI_SUCCESS;\r
2067}\r
ad52f25e 2068\r
e37109bc
JF
2069/**\r
2070 Worker function to let the caller enable or disable an AP from this point onward.\r
2071 This service may only be called from the BSP.\r
2072\r
2073 @param[in] ProcessorNumber The handle number of AP.\r
2074 @param[in] EnableAP Specifies the new state for the processor for\r
2075 enabled, FALSE for disabled.\r
2076 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
2077 the new health status of the AP.\r
2078\r
2079 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
2080 @retval others Failed to Enable/Disable AP.\r
2081\r
2082**/\r
2083EFI_STATUS\r
2084EnableDisableApWorker (\r
2085 IN UINTN ProcessorNumber,\r
2086 IN BOOLEAN EnableAP,\r
2087 IN UINT32 *HealthFlag OPTIONAL\r
2088 )\r
2089{\r
2090 CPU_MP_DATA *CpuMpData;\r
2091 UINTN CallerNumber;\r
2092\r
2093 CpuMpData = GetCpuMpData ();\r
2094\r
2095 //\r
2096 // Check whether caller processor is BSP\r
2097 //\r
2098 MpInitLibWhoAmI (&CallerNumber);\r
2099 if (CallerNumber != CpuMpData->BspNumber) {\r
2100 return EFI_DEVICE_ERROR;\r
2101 }\r
2102\r
2103 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2104 return EFI_INVALID_PARAMETER;\r
2105 }\r
2106\r
2107 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2108 return EFI_NOT_FOUND;\r
2109 }\r
2110\r
2111 if (!EnableAP) {\r
2112 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2113 } else {\r
d5fdae96 2114 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2115 }\r
2116\r
2117 if (HealthFlag != NULL) {\r
2118 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2119 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2120 }\r
2121\r
2122 return EFI_SUCCESS;\r
2123}\r
2124\r
3e8ad6bd
JF
2125/**\r
2126 This return the handle number for the calling processor. This service may be\r
2127 called from the BSP and APs.\r
2128\r
2129 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2130 The range is from 0 to the total number of\r
2131 logical processors minus 1. The total number of\r
2132 logical processors can be retrieved by\r
2133 MpInitLibGetNumberOfProcessors().\r
2134\r
2135 @retval EFI_SUCCESS The current processor handle number was returned\r
2136 in ProcessorNumber.\r
2137 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2138 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2139\r
2140**/\r
2141EFI_STATUS\r
2142EFIAPI\r
2143MpInitLibWhoAmI (\r
2144 OUT UINTN *ProcessorNumber\r
2145 )\r
2146{\r
5c9e0997
JF
2147 CPU_MP_DATA *CpuMpData;\r
2148\r
2149 if (ProcessorNumber == NULL) {\r
2150 return EFI_INVALID_PARAMETER;\r
2151 }\r
2152\r
2153 CpuMpData = GetCpuMpData ();\r
2154\r
2155 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2156}\r
809213a6 2157\r
3e8ad6bd
JF
2158/**\r
2159 Retrieves the number of logical processor in the platform and the number of\r
2160 those logical processors that are enabled on this boot. This service may only\r
2161 be called from the BSP.\r
2162\r
2163 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2164 processors in the system, including the BSP\r
2165 and disabled APs.\r
2166 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2167 processors that exist in system, including\r
2168 the BSP.\r
2169\r
2170 @retval EFI_SUCCESS The number of logical processors and enabled\r
2171 logical processors was retrieved.\r
2172 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2173 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2174 is NULL.\r
2175 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2176\r
2177**/\r
2178EFI_STATUS\r
2179EFIAPI\r
2180MpInitLibGetNumberOfProcessors (\r
2181 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2182 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2183 )\r
2184{\r
809213a6
JF
2185 CPU_MP_DATA *CpuMpData;\r
2186 UINTN CallerNumber;\r
2187 UINTN ProcessorNumber;\r
2188 UINTN EnabledProcessorNumber;\r
2189 UINTN Index;\r
2190\r
2191 CpuMpData = GetCpuMpData ();\r
2192\r
2193 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2194 return EFI_INVALID_PARAMETER;\r
2195 }\r
2196\r
2197 //\r
2198 // Check whether caller processor is BSP\r
2199 //\r
2200 MpInitLibWhoAmI (&CallerNumber);\r
2201 if (CallerNumber != CpuMpData->BspNumber) {\r
2202 return EFI_DEVICE_ERROR;\r
2203 }\r
2204\r
2205 ProcessorNumber = CpuMpData->CpuCount;\r
2206 EnabledProcessorNumber = 0;\r
2207 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2208 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2209 EnabledProcessorNumber ++;\r
2210 }\r
2211 }\r
2212\r
2213 if (NumberOfProcessors != NULL) {\r
2214 *NumberOfProcessors = ProcessorNumber;\r
2215 }\r
2216 if (NumberOfEnabledProcessors != NULL) {\r
2217 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2218 }\r
2219\r
2220 return EFI_SUCCESS;\r
3e8ad6bd 2221}\r
6a2ee2bb 2222\r
809213a6 2223\r
86efe976
JF
2224/**\r
2225 Worker function to execute a caller provided function on all enabled APs.\r
2226\r
2227 @param[in] Procedure A pointer to the function to be run on\r
2228 enabled APs of the system.\r
2229 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2230 the function specified by Procedure one by\r
2231 one, in ascending order of processor handle\r
2232 number. If FALSE, then all the enabled APs\r
2233 execute the function specified by Procedure\r
2234 simultaneously.\r
ee0c39fa 2235 @param[in] ExcludeBsp Whether let BSP also trig this task.\r
86efe976
JF
2236 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2237 service.\r
367284e7 2238 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2239 APs to return from Procedure, either for\r
2240 blocking or non-blocking mode.\r
2241 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2242 all APs.\r
2243 @param[out] FailedCpuList If all APs finish successfully, then its\r
2244 content is set to NULL. If not all APs\r
2245 finish before timeout expires, then its\r
2246 content is set to address of the buffer\r
2247 holding handle numbers of the failed APs.\r
2248\r
2249 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2250 the timeout expired.\r
2251 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2252 to all enabled APs.\r
2253 @retval others Failed to Startup all APs.\r
2254\r
2255**/\r
2256EFI_STATUS\r
ee0c39fa 2257StartupAllCPUsWorker (\r
86efe976
JF
2258 IN EFI_AP_PROCEDURE Procedure,\r
2259 IN BOOLEAN SingleThread,\r
ee0c39fa 2260 IN BOOLEAN ExcludeBsp,\r
86efe976
JF
2261 IN EFI_EVENT WaitEvent OPTIONAL,\r
2262 IN UINTN TimeoutInMicroseconds,\r
2263 IN VOID *ProcedureArgument OPTIONAL,\r
2264 OUT UINTN **FailedCpuList OPTIONAL\r
2265 )\r
2266{\r
2267 EFI_STATUS Status;\r
2268 CPU_MP_DATA *CpuMpData;\r
2269 UINTN ProcessorCount;\r
2270 UINTN ProcessorNumber;\r
2271 UINTN CallerNumber;\r
2272 CPU_AP_DATA *CpuData;\r
2273 BOOLEAN HasEnabledAp;\r
2274 CPU_STATE ApState;\r
2275\r
2276 CpuMpData = GetCpuMpData ();\r
2277\r
2278 if (FailedCpuList != NULL) {\r
2279 *FailedCpuList = NULL;\r
2280 }\r
2281\r
ee0c39fa 2282 if (CpuMpData->CpuCount == 1 && ExcludeBsp) {\r
86efe976
JF
2283 return EFI_NOT_STARTED;\r
2284 }\r
2285\r
2286 if (Procedure == NULL) {\r
2287 return EFI_INVALID_PARAMETER;\r
2288 }\r
2289\r
2290 //\r
2291 // Check whether caller processor is BSP\r
2292 //\r
2293 MpInitLibWhoAmI (&CallerNumber);\r
2294 if (CallerNumber != CpuMpData->BspNumber) {\r
2295 return EFI_DEVICE_ERROR;\r
2296 }\r
2297\r
2298 //\r
2299 // Update AP state\r
2300 //\r
2301 CheckAndUpdateApsStatus ();\r
2302\r
2303 ProcessorCount = CpuMpData->CpuCount;\r
2304 HasEnabledAp = FALSE;\r
2305 //\r
2306 // Check whether all enabled APs are idle.\r
2307 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2308 //\r
2309 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2310 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2311 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2312 ApState = GetApState (CpuData);\r
2313 if (ApState != CpuStateDisabled) {\r
2314 HasEnabledAp = TRUE;\r
2315 if (ApState != CpuStateIdle) {\r
2316 //\r
2317 // If any enabled APs are busy, return EFI_NOT_READY.\r
2318 //\r
2319 return EFI_NOT_READY;\r
2320 }\r
2321 }\r
2322 }\r
2323 }\r
2324\r
ee0c39fa 2325 if (!HasEnabledAp && ExcludeBsp) {\r
86efe976 2326 //\r
ee0c39fa 2327 // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.\r
86efe976
JF
2328 //\r
2329 return EFI_NOT_STARTED;\r
2330 }\r
2331\r
2da3e96c 2332 CpuMpData->RunningCount = 0;\r
86efe976
JF
2333 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2334 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2335 CpuData->Waiting = FALSE;\r
2336 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2337 if (CpuData->State == CpuStateIdle) {\r
2338 //\r
2339 // Mark this processor as responsible for current calling.\r
2340 //\r
2341 CpuData->Waiting = TRUE;\r
2da3e96c 2342 CpuMpData->RunningCount++;\r
86efe976
JF
2343 }\r
2344 }\r
2345 }\r
2346\r
2347 CpuMpData->Procedure = Procedure;\r
2348 CpuMpData->ProcArguments = ProcedureArgument;\r
2349 CpuMpData->SingleThread = SingleThread;\r
2350 CpuMpData->FinishedCount = 0;\r
86efe976
JF
2351 CpuMpData->FailedCpuList = FailedCpuList;\r
2352 CpuMpData->ExpectedTime = CalculateTimeout (\r
2353 TimeoutInMicroseconds,\r
2354 &CpuMpData->CurrentTime\r
2355 );\r
2356 CpuMpData->TotalTime = 0;\r
2357 CpuMpData->WaitEvent = WaitEvent;\r
2358\r
2359 if (!SingleThread) {\r
cf4e79e4 2360 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);\r
86efe976
JF
2361 } else {\r
2362 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2363 if (ProcessorNumber == CallerNumber) {\r
2364 continue;\r
2365 }\r
2366 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
cf4e79e4 2367 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
86efe976
JF
2368 break;\r
2369 }\r
2370 }\r
2371 }\r
2372\r
ee0c39fa
ED
2373 if (!ExcludeBsp) {\r
2374 //\r
2375 // Start BSP.\r
2376 //\r
2377 Procedure (ProcedureArgument);\r
2378 }\r
2379\r
86efe976
JF
2380 Status = EFI_SUCCESS;\r
2381 if (WaitEvent == NULL) {\r
2382 do {\r
2383 Status = CheckAllAPs ();\r
2384 } while (Status == EFI_NOT_READY);\r
2385 }\r
2386\r
2387 return Status;\r
2388}\r
2389\r
20ae5774
JF
2390/**\r
2391 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2392 function.\r
2393\r
2394 @param[in] Procedure A pointer to the function to be run on\r
2395 enabled APs of the system.\r
2396 @param[in] ProcessorNumber The handle number of the AP.\r
2397 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2398 service.\r
367284e7 2399 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2400 APs to return from Procedure, either for\r
2401 blocking or non-blocking mode.\r
2402 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2403 all APs.\r
2404 @param[out] Finished If AP returns from Procedure before the\r
2405 timeout expires, its content is set to TRUE.\r
2406 Otherwise, the value is set to FALSE.\r
2407\r
2408 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2409 the timeout expires.\r
2410 @retval others Failed to Startup AP.\r
2411\r
2412**/\r
2413EFI_STATUS\r
2414StartupThisAPWorker (\r
2415 IN EFI_AP_PROCEDURE Procedure,\r
2416 IN UINTN ProcessorNumber,\r
2417 IN EFI_EVENT WaitEvent OPTIONAL,\r
2418 IN UINTN TimeoutInMicroseconds,\r
2419 IN VOID *ProcedureArgument OPTIONAL,\r
2420 OUT BOOLEAN *Finished OPTIONAL\r
2421 )\r
2422{\r
2423 EFI_STATUS Status;\r
2424 CPU_MP_DATA *CpuMpData;\r
2425 CPU_AP_DATA *CpuData;\r
2426 UINTN CallerNumber;\r
2427\r
2428 CpuMpData = GetCpuMpData ();\r
2429\r
2430 if (Finished != NULL) {\r
2431 *Finished = FALSE;\r
2432 }\r
2433\r
2434 //\r
2435 // Check whether caller processor is BSP\r
2436 //\r
2437 MpInitLibWhoAmI (&CallerNumber);\r
2438 if (CallerNumber != CpuMpData->BspNumber) {\r
2439 return EFI_DEVICE_ERROR;\r
2440 }\r
2441\r
2442 //\r
2443 // Check whether processor with the handle specified by ProcessorNumber exists\r
2444 //\r
2445 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2446 return EFI_NOT_FOUND;\r
2447 }\r
2448\r
2449 //\r
2450 // Check whether specified processor is BSP\r
2451 //\r
2452 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2453 return EFI_INVALID_PARAMETER;\r
2454 }\r
2455\r
2456 //\r
2457 // Check parameter Procedure\r
2458 //\r
2459 if (Procedure == NULL) {\r
2460 return EFI_INVALID_PARAMETER;\r
2461 }\r
2462\r
2463 //\r
2464 // Update AP state\r
2465 //\r
2466 CheckAndUpdateApsStatus ();\r
2467\r
2468 //\r
2469 // Check whether specified AP is disabled\r
2470 //\r
2471 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2472 return EFI_INVALID_PARAMETER;\r
2473 }\r
2474\r
2475 //\r
2476 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2477 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2478 // CheckAPsStatus() will check completion and timeout periodically.\r
2479 //\r
2480 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2481 CpuData->WaitEvent = WaitEvent;\r
2482 CpuData->Finished = Finished;\r
2483 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2484 CpuData->TotalTime = 0;\r
2485\r
cf4e79e4 2486 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
20ae5774
JF
2487\r
2488 //\r
2489 // If WaitEvent is NULL, execute in blocking mode.\r
2490 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2491 //\r
2492 Status = EFI_SUCCESS;\r
2493 if (WaitEvent == NULL) {\r
2494 do {\r
2495 Status = CheckThisAP (ProcessorNumber);\r
2496 } while (Status == EFI_NOT_READY);\r
2497 }\r
2498\r
2499 return Status;\r
2500}\r
2501\r
93ca4c0f
JF
2502/**\r
2503 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2504\r
2505 @return The pointer to CPU MP Data structure.\r
2506**/\r
2507CPU_MP_DATA *\r
2508GetCpuMpDataFromGuidedHob (\r
2509 VOID\r
2510 )\r
2511{\r
2512 EFI_HOB_GUID_TYPE *GuidHob;\r
2513 VOID *DataInHob;\r
2514 CPU_MP_DATA *CpuMpData;\r
2515\r
2516 CpuMpData = NULL;\r
2517 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2518 if (GuidHob != NULL) {\r
2519 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2520 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2521 }\r
2522 return CpuMpData;\r
2523}\r
42c37b3b 2524\r
ee0c39fa
ED
2525/**\r
2526 This service executes a caller provided function on all enabled CPUs.\r
2527\r
2528 @param[in] Procedure A pointer to the function to be run on\r
2529 enabled APs of the system. See type\r
2530 EFI_AP_PROCEDURE.\r
2531 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
2532 APs to return from Procedure, either for\r
2533 blocking or non-blocking mode. Zero means\r
2534 infinity. TimeoutInMicroseconds is ignored\r
2535 for BSP.\r
2536 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2537 all APs.\r
2538\r
2539 @retval EFI_SUCCESS In blocking mode, all CPUs have finished before\r
2540 the timeout expired.\r
2541 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2542 to all enabled CPUs.\r
2543 @retval EFI_DEVICE_ERROR Caller processor is AP.\r
2544 @retval EFI_NOT_READY Any enabled APs are busy.\r
2545 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2546 @retval EFI_TIMEOUT In blocking mode, the timeout expired before\r
2547 all enabled APs have finished.\r
2548 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
2549\r
2550**/\r
2551EFI_STATUS\r
2552EFIAPI\r
2553MpInitLibStartupAllCPUs (\r
2554 IN EFI_AP_PROCEDURE Procedure,\r
2555 IN UINTN TimeoutInMicroseconds,\r
2556 IN VOID *ProcedureArgument OPTIONAL\r
2557 )\r
2558{\r
2559 return StartupAllCPUsWorker (\r
2560 Procedure,\r
2561 FALSE,\r
2562 FALSE,\r
2563 NULL,\r
2564 TimeoutInMicroseconds,\r
2565 ProcedureArgument,\r
2566 NULL\r
2567 );\r
2568}\r