]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Convert the subpage wrapper to be a MemoryRegion
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
67d95c15
AK
60#define WANT_EXEC_OBSOLETE
61#include "exec-obsolete.h"
62
fd6ce8f6 63//#define DEBUG_TB_INVALIDATE
66e85a21 64//#define DEBUG_FLUSH
9fa3e853 65//#define DEBUG_TLB
67d3b957 66//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
67
68/* make various TB consistency checks */
5fafdf24
TS
69//#define DEBUG_TB_CHECK
70//#define DEBUG_TLB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
24ab68ac 110static uint8_t *code_gen_ptr;
fd6ce8f6 111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
74576198 114static int in_migration;
94a6b54f 115
85d59fef 116RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
117
118static MemoryRegion *system_memory;
309cb471 119static MemoryRegion *system_io;
62152b8a 120
0e0df1e2
AK
121MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
122
e2eef170 123#endif
9fa3e853 124
6a00d601
FB
125CPUState *first_cpu;
126/* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
b3c4bbe5 128DEFINE_TLS(CPUState *,cpu_single_env);
2e70f6ef 129/* 0 = Do not count executed instructions.
bf20dc07 130 1 = Precise instruction counting.
2e70f6ef
PB
131 2 = Adaptive rate instruction counting. */
132int use_icount = 0;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
41c1b1c9 146/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
147 while in user mode we want it to be based on virtual addresses. */
148#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
149#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151#else
5cd2c5b6 152# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 153#endif
bedb69ea 154#else
5cd2c5b6 155# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 156#endif
54936004 157
5cd2c5b6
RH
158/* Size of the L2 (and L3, etc) page tables. */
159#define L2_BITS 10
54936004
FB
160#define L2_SIZE (1 << L2_BITS)
161
5cd2c5b6
RH
162/* The bits remaining after N lower levels of page tables. */
163#define P_L1_BITS_REM \
164 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
165#define V_L1_BITS_REM \
166 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
167
168/* Size of the L1 page table. Avoid silly small sizes. */
169#if P_L1_BITS_REM < 4
170#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
171#else
172#define P_L1_BITS P_L1_BITS_REM
173#endif
174
175#if V_L1_BITS_REM < 4
176#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
177#else
178#define V_L1_BITS V_L1_BITS_REM
179#endif
180
181#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
182#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
183
184#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
185#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
186
83fb7adf 187unsigned long qemu_real_host_page_size;
83fb7adf
FB
188unsigned long qemu_host_page_size;
189unsigned long qemu_host_page_mask;
54936004 190
5cd2c5b6
RH
191/* This is a multi-level map on the virtual address space.
192 The bottom level has pointers to PageDesc. */
193static void *l1_map[V_L1_SIZE];
54936004 194
e2eef170 195#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
196typedef struct PhysPageDesc {
197 /* offset in host memory of the page + io_index in the low bits */
198 ram_addr_t phys_offset;
199 ram_addr_t region_offset;
200} PhysPageDesc;
201
5cd2c5b6
RH
202/* This is a multi-level map on the physical address space.
203 The bottom level has pointers to PhysPageDesc. */
204static void *l1_phys_map[P_L1_SIZE];
6d9a1304 205
e2eef170 206static void io_mem_init(void);
62152b8a 207static void memory_map_init(void);
e2eef170 208
33417e70 209/* io memory support */
acbbec5d
AK
210CPUWriteMemoryFunc *_io_mem_write[IO_MEM_NB_ENTRIES][4];
211CPUReadMemoryFunc *_io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 212void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 213static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
214static int io_mem_watch;
215#endif
33417e70 216
34865134 217/* log support */
1e8b27ca
JR
218#ifdef WIN32
219static const char *logfilename = "qemu.log";
220#else
d9b630fd 221static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 222#endif
34865134
FB
223FILE *logfile;
224int loglevel;
e735b91c 225static int log_append = 0;
34865134 226
e3db7226 227/* statistics */
b3755a91 228#if !defined(CONFIG_USER_ONLY)
e3db7226 229static int tlb_flush_count;
b3755a91 230#endif
e3db7226
FB
231static int tb_flush_count;
232static int tb_phys_invalidate_count;
233
7cb69cae
FB
234#ifdef _WIN32
235static void map_exec(void *addr, long size)
236{
237 DWORD old_protect;
238 VirtualProtect(addr, size,
239 PAGE_EXECUTE_READWRITE, &old_protect);
240
241}
242#else
243static void map_exec(void *addr, long size)
244{
4369415f 245 unsigned long start, end, page_size;
7cb69cae 246
4369415f 247 page_size = getpagesize();
7cb69cae 248 start = (unsigned long)addr;
4369415f 249 start &= ~(page_size - 1);
7cb69cae
FB
250
251 end = (unsigned long)addr + size;
4369415f
FB
252 end += page_size - 1;
253 end &= ~(page_size - 1);
7cb69cae
FB
254
255 mprotect((void *)start, end - start,
256 PROT_READ | PROT_WRITE | PROT_EXEC);
257}
258#endif
259
b346ff46 260static void page_init(void)
54936004 261{
83fb7adf 262 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 263 TARGET_PAGE_SIZE */
c2b48b69
AL
264#ifdef _WIN32
265 {
266 SYSTEM_INFO system_info;
267
268 GetSystemInfo(&system_info);
269 qemu_real_host_page_size = system_info.dwPageSize;
270 }
271#else
272 qemu_real_host_page_size = getpagesize();
273#endif
83fb7adf
FB
274 if (qemu_host_page_size == 0)
275 qemu_host_page_size = qemu_real_host_page_size;
276 if (qemu_host_page_size < TARGET_PAGE_SIZE)
277 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 278 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 279
2e9a5713 280#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 281 {
f01576f1
JL
282#ifdef HAVE_KINFO_GETVMMAP
283 struct kinfo_vmentry *freep;
284 int i, cnt;
285
286 freep = kinfo_getvmmap(getpid(), &cnt);
287 if (freep) {
288 mmap_lock();
289 for (i = 0; i < cnt; i++) {
290 unsigned long startaddr, endaddr;
291
292 startaddr = freep[i].kve_start;
293 endaddr = freep[i].kve_end;
294 if (h2g_valid(startaddr)) {
295 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
296
297 if (h2g_valid(endaddr)) {
298 endaddr = h2g(endaddr);
fd436907 299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
300 } else {
301#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
302 endaddr = ~0ul;
fd436907 303 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
304#endif
305 }
306 }
307 }
308 free(freep);
309 mmap_unlock();
310 }
311#else
50a9569b 312 FILE *f;
50a9569b 313
0776590d 314 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 315
fd436907 316 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 317 if (f) {
5cd2c5b6
RH
318 mmap_lock();
319
50a9569b 320 do {
5cd2c5b6
RH
321 unsigned long startaddr, endaddr;
322 int n;
323
324 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
325
326 if (n == 2 && h2g_valid(startaddr)) {
327 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
328
329 if (h2g_valid(endaddr)) {
330 endaddr = h2g(endaddr);
331 } else {
332 endaddr = ~0ul;
333 }
334 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
335 }
336 } while (!feof(f));
5cd2c5b6 337
50a9569b 338 fclose(f);
5cd2c5b6 339 mmap_unlock();
50a9569b 340 }
f01576f1 341#endif
50a9569b
AZ
342 }
343#endif
54936004
FB
344}
345
41c1b1c9 346static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 347{
41c1b1c9
PB
348 PageDesc *pd;
349 void **lp;
350 int i;
351
5cd2c5b6 352#if defined(CONFIG_USER_ONLY)
7267c094 353 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
354# define ALLOC(P, SIZE) \
355 do { \
356 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
357 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
358 } while (0)
359#else
360# define ALLOC(P, SIZE) \
7267c094 361 do { P = g_malloc0(SIZE); } while (0)
17e2377a 362#endif
434929bf 363
5cd2c5b6
RH
364 /* Level 1. Always allocated. */
365 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
366
367 /* Level 2..N-1. */
368 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
369 void **p = *lp;
370
371 if (p == NULL) {
372 if (!alloc) {
373 return NULL;
374 }
375 ALLOC(p, sizeof(void *) * L2_SIZE);
376 *lp = p;
17e2377a 377 }
5cd2c5b6
RH
378
379 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
380 }
381
382 pd = *lp;
383 if (pd == NULL) {
384 if (!alloc) {
385 return NULL;
386 }
387 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
388 *lp = pd;
54936004 389 }
5cd2c5b6
RH
390
391#undef ALLOC
5cd2c5b6
RH
392
393 return pd + (index & (L2_SIZE - 1));
54936004
FB
394}
395
41c1b1c9 396static inline PageDesc *page_find(tb_page_addr_t index)
54936004 397{
5cd2c5b6 398 return page_find_alloc(index, 0);
fd6ce8f6
FB
399}
400
6d9a1304 401#if !defined(CONFIG_USER_ONLY)
c227f099 402static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 403{
e3f4e2a4 404 PhysPageDesc *pd;
5cd2c5b6
RH
405 void **lp;
406 int i;
92e873b9 407
5cd2c5b6
RH
408 /* Level 1. Always allocated. */
409 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 410
5cd2c5b6
RH
411 /* Level 2..N-1. */
412 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
413 void **p = *lp;
414 if (p == NULL) {
415 if (!alloc) {
416 return NULL;
417 }
7267c094 418 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
5cd2c5b6
RH
419 }
420 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 421 }
5cd2c5b6 422
e3f4e2a4 423 pd = *lp;
5cd2c5b6 424 if (pd == NULL) {
e3f4e2a4 425 int i;
5ab97b7f 426 int first_index = index & ~(L2_SIZE - 1);
5cd2c5b6
RH
427
428 if (!alloc) {
108c49b8 429 return NULL;
5cd2c5b6
RH
430 }
431
7267c094 432 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
5cd2c5b6 433
67c4d23c 434 for (i = 0; i < L2_SIZE; i++) {
0e0df1e2 435 pd[i].phys_offset = io_mem_unassigned.ram_addr;
5ab97b7f 436 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
67c4d23c 437 }
92e873b9 438 }
5cd2c5b6
RH
439
440 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
441}
442
f1f6e3b8 443static inline PhysPageDesc phys_page_find(target_phys_addr_t index)
92e873b9 444{
f1f6e3b8
AK
445 PhysPageDesc *p = phys_page_find_alloc(index, 0);
446
447 if (p) {
448 return *p;
449 } else {
450 return (PhysPageDesc) {
0e0df1e2 451 .phys_offset = io_mem_unassigned.ram_addr,
f1f6e3b8
AK
452 .region_offset = index << TARGET_PAGE_BITS,
453 };
454 }
92e873b9
FB
455}
456
c227f099
AL
457static void tlb_protect_code(ram_addr_t ram_addr);
458static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 459 target_ulong vaddr);
c8a706fe
PB
460#define mmap_lock() do { } while(0)
461#define mmap_unlock() do { } while(0)
9fa3e853 462#endif
fd6ce8f6 463
4369415f
FB
464#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
465
466#if defined(CONFIG_USER_ONLY)
ccbb4d44 467/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
468 user mode. It will change when a dedicated libc will be used */
469#define USE_STATIC_CODE_GEN_BUFFER
470#endif
471
472#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
473static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
474 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
475#endif
476
8fcd3692 477static void code_gen_alloc(unsigned long tb_size)
26a5f13b 478{
4369415f
FB
479#ifdef USE_STATIC_CODE_GEN_BUFFER
480 code_gen_buffer = static_code_gen_buffer;
481 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
482 map_exec(code_gen_buffer, code_gen_buffer_size);
483#else
26a5f13b
FB
484 code_gen_buffer_size = tb_size;
485 if (code_gen_buffer_size == 0) {
4369415f 486#if defined(CONFIG_USER_ONLY)
4369415f
FB
487 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
488#else
ccbb4d44 489 /* XXX: needs adjustments */
94a6b54f 490 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 491#endif
26a5f13b
FB
492 }
493 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
494 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
495 /* The code gen buffer location may have constraints depending on
496 the host cpu and OS */
497#if defined(__linux__)
498 {
499 int flags;
141ac468
BS
500 void *start = NULL;
501
26a5f13b
FB
502 flags = MAP_PRIVATE | MAP_ANONYMOUS;
503#if defined(__x86_64__)
504 flags |= MAP_32BIT;
505 /* Cannot map more than that */
506 if (code_gen_buffer_size > (800 * 1024 * 1024))
507 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
508#elif defined(__sparc_v9__)
509 // Map the buffer below 2G, so we can use direct calls and branches
510 flags |= MAP_FIXED;
511 start = (void *) 0x60000000UL;
512 if (code_gen_buffer_size > (512 * 1024 * 1024))
513 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 514#elif defined(__arm__)
222f23f5 515 /* Keep the buffer no bigger than 16GB to branch between blocks */
1cb0661e
AZ
516 if (code_gen_buffer_size > 16 * 1024 * 1024)
517 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
518#elif defined(__s390x__)
519 /* Map the buffer so that we can use direct calls and branches. */
520 /* We have a +- 4GB range on the branches; leave some slop. */
521 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
522 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
523 }
524 start = (void *)0x90000000UL;
26a5f13b 525#endif
141ac468
BS
526 code_gen_buffer = mmap(start, code_gen_buffer_size,
527 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
528 flags, -1, 0);
529 if (code_gen_buffer == MAP_FAILED) {
530 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
531 exit(1);
532 }
533 }
cbb608a5 534#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
535 || defined(__DragonFly__) || defined(__OpenBSD__) \
536 || defined(__NetBSD__)
06e67a82
AL
537 {
538 int flags;
539 void *addr = NULL;
540 flags = MAP_PRIVATE | MAP_ANONYMOUS;
541#if defined(__x86_64__)
542 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
543 * 0x40000000 is free */
544 flags |= MAP_FIXED;
545 addr = (void *)0x40000000;
546 /* Cannot map more than that */
547 if (code_gen_buffer_size > (800 * 1024 * 1024))
548 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
549#elif defined(__sparc_v9__)
550 // Map the buffer below 2G, so we can use direct calls and branches
551 flags |= MAP_FIXED;
552 addr = (void *) 0x60000000UL;
553 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
554 code_gen_buffer_size = (512 * 1024 * 1024);
555 }
06e67a82
AL
556#endif
557 code_gen_buffer = mmap(addr, code_gen_buffer_size,
558 PROT_WRITE | PROT_READ | PROT_EXEC,
559 flags, -1, 0);
560 if (code_gen_buffer == MAP_FAILED) {
561 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
562 exit(1);
563 }
564 }
26a5f13b 565#else
7267c094 566 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
567 map_exec(code_gen_buffer, code_gen_buffer_size);
568#endif
4369415f 569#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 570 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
571 code_gen_buffer_max_size = code_gen_buffer_size -
572 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 573 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 574 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
575}
576
577/* Must be called before using the QEMU cpus. 'tb_size' is the size
578 (in bytes) allocated to the translation buffer. Zero means default
579 size. */
d5ab9713 580void tcg_exec_init(unsigned long tb_size)
26a5f13b 581{
26a5f13b
FB
582 cpu_gen_init();
583 code_gen_alloc(tb_size);
584 code_gen_ptr = code_gen_buffer;
4369415f 585 page_init();
9002ec79
RH
586#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
587 /* There's no guest base to take into account, so go ahead and
588 initialize the prologue now. */
589 tcg_prologue_init(&tcg_ctx);
590#endif
26a5f13b
FB
591}
592
d5ab9713
JK
593bool tcg_enabled(void)
594{
595 return code_gen_buffer != NULL;
596}
597
598void cpu_exec_init_all(void)
599{
600#if !defined(CONFIG_USER_ONLY)
601 memory_map_init();
602 io_mem_init();
603#endif
604}
605
9656f324
PB
606#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
607
e59fb374 608static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
609{
610 CPUState *env = opaque;
9656f324 611
3098dba0
AJ
612 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
613 version_id is increased. */
614 env->interrupt_request &= ~0x01;
9656f324
PB
615 tlb_flush(env, 1);
616
617 return 0;
618}
e7f4eff7
JQ
619
620static const VMStateDescription vmstate_cpu_common = {
621 .name = "cpu_common",
622 .version_id = 1,
623 .minimum_version_id = 1,
624 .minimum_version_id_old = 1,
e7f4eff7
JQ
625 .post_load = cpu_common_post_load,
626 .fields = (VMStateField []) {
627 VMSTATE_UINT32(halted, CPUState),
628 VMSTATE_UINT32(interrupt_request, CPUState),
629 VMSTATE_END_OF_LIST()
630 }
631};
9656f324
PB
632#endif
633
950f1472
GC
634CPUState *qemu_get_cpu(int cpu)
635{
636 CPUState *env = first_cpu;
637
638 while (env) {
639 if (env->cpu_index == cpu)
640 break;
641 env = env->next_cpu;
642 }
643
644 return env;
645}
646
6a00d601 647void cpu_exec_init(CPUState *env)
fd6ce8f6 648{
6a00d601
FB
649 CPUState **penv;
650 int cpu_index;
651
c2764719
PB
652#if defined(CONFIG_USER_ONLY)
653 cpu_list_lock();
654#endif
6a00d601
FB
655 env->next_cpu = NULL;
656 penv = &first_cpu;
657 cpu_index = 0;
658 while (*penv != NULL) {
1e9fa730 659 penv = &(*penv)->next_cpu;
6a00d601
FB
660 cpu_index++;
661 }
662 env->cpu_index = cpu_index;
268a362c 663 env->numa_node = 0;
72cf2d4f
BS
664 QTAILQ_INIT(&env->breakpoints);
665 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
666#ifndef CONFIG_USER_ONLY
667 env->thread_id = qemu_get_thread_id();
668#endif
6a00d601 669 *penv = env;
c2764719
PB
670#if defined(CONFIG_USER_ONLY)
671 cpu_list_unlock();
672#endif
b3c7724c 673#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
674 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
675 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
676 cpu_save, cpu_load, env);
677#endif
fd6ce8f6
FB
678}
679
d1a1eb74
TG
680/* Allocate a new translation block. Flush the translation buffer if
681 too many translation blocks or too much generated code. */
682static TranslationBlock *tb_alloc(target_ulong pc)
683{
684 TranslationBlock *tb;
685
686 if (nb_tbs >= code_gen_max_blocks ||
687 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
688 return NULL;
689 tb = &tbs[nb_tbs++];
690 tb->pc = pc;
691 tb->cflags = 0;
692 return tb;
693}
694
695void tb_free(TranslationBlock *tb)
696{
697 /* In practice this is mostly used for single use temporary TB
698 Ignore the hard cases and just back up if this TB happens to
699 be the last one generated. */
700 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
701 code_gen_ptr = tb->tc_ptr;
702 nb_tbs--;
703 }
704}
705
9fa3e853
FB
706static inline void invalidate_page_bitmap(PageDesc *p)
707{
708 if (p->code_bitmap) {
7267c094 709 g_free(p->code_bitmap);
9fa3e853
FB
710 p->code_bitmap = NULL;
711 }
712 p->code_write_count = 0;
713}
714
5cd2c5b6
RH
715/* Set to NULL all the 'first_tb' fields in all PageDescs. */
716
717static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 718{
5cd2c5b6 719 int i;
fd6ce8f6 720
5cd2c5b6
RH
721 if (*lp == NULL) {
722 return;
723 }
724 if (level == 0) {
725 PageDesc *pd = *lp;
7296abac 726 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
727 pd[i].first_tb = NULL;
728 invalidate_page_bitmap(pd + i);
fd6ce8f6 729 }
5cd2c5b6
RH
730 } else {
731 void **pp = *lp;
7296abac 732 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
733 page_flush_tb_1 (level - 1, pp + i);
734 }
735 }
736}
737
738static void page_flush_tb(void)
739{
740 int i;
741 for (i = 0; i < V_L1_SIZE; i++) {
742 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
743 }
744}
745
746/* flush all the translation blocks */
d4e8164f 747/* XXX: tb_flush is currently not thread safe */
6a00d601 748void tb_flush(CPUState *env1)
fd6ce8f6 749{
6a00d601 750 CPUState *env;
0124311e 751#if defined(DEBUG_FLUSH)
ab3d1727
BS
752 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
753 (unsigned long)(code_gen_ptr - code_gen_buffer),
754 nb_tbs, nb_tbs > 0 ?
755 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 756#endif
26a5f13b 757 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
758 cpu_abort(env1, "Internal error: code buffer overflow\n");
759
fd6ce8f6 760 nb_tbs = 0;
3b46e624 761
6a00d601
FB
762 for(env = first_cpu; env != NULL; env = env->next_cpu) {
763 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
764 }
9fa3e853 765
8a8a608f 766 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 767 page_flush_tb();
9fa3e853 768
fd6ce8f6 769 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
770 /* XXX: flush processor icache at this point if cache flush is
771 expensive */
e3db7226 772 tb_flush_count++;
fd6ce8f6
FB
773}
774
775#ifdef DEBUG_TB_CHECK
776
bc98a7ef 777static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
778{
779 TranslationBlock *tb;
780 int i;
781 address &= TARGET_PAGE_MASK;
99773bd4
PB
782 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
783 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
784 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
785 address >= tb->pc + tb->size)) {
0bf9e31a
BS
786 printf("ERROR invalidate: address=" TARGET_FMT_lx
787 " PC=%08lx size=%04x\n",
99773bd4 788 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
789 }
790 }
791 }
792}
793
794/* verify that all the pages have correct rights for code */
795static void tb_page_check(void)
796{
797 TranslationBlock *tb;
798 int i, flags1, flags2;
3b46e624 799
99773bd4
PB
800 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
801 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
802 flags1 = page_get_flags(tb->pc);
803 flags2 = page_get_flags(tb->pc + tb->size - 1);
804 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
805 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 806 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
807 }
808 }
809 }
810}
811
812#endif
813
814/* invalidate one TB */
815static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
816 int next_offset)
817{
818 TranslationBlock *tb1;
819 for(;;) {
820 tb1 = *ptb;
821 if (tb1 == tb) {
822 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
823 break;
824 }
825 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
826 }
827}
828
9fa3e853
FB
829static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
830{
831 TranslationBlock *tb1;
832 unsigned int n1;
833
834 for(;;) {
835 tb1 = *ptb;
836 n1 = (long)tb1 & 3;
837 tb1 = (TranslationBlock *)((long)tb1 & ~3);
838 if (tb1 == tb) {
839 *ptb = tb1->page_next[n1];
840 break;
841 }
842 ptb = &tb1->page_next[n1];
843 }
844}
845
d4e8164f
FB
846static inline void tb_jmp_remove(TranslationBlock *tb, int n)
847{
848 TranslationBlock *tb1, **ptb;
849 unsigned int n1;
850
851 ptb = &tb->jmp_next[n];
852 tb1 = *ptb;
853 if (tb1) {
854 /* find tb(n) in circular list */
855 for(;;) {
856 tb1 = *ptb;
857 n1 = (long)tb1 & 3;
858 tb1 = (TranslationBlock *)((long)tb1 & ~3);
859 if (n1 == n && tb1 == tb)
860 break;
861 if (n1 == 2) {
862 ptb = &tb1->jmp_first;
863 } else {
864 ptb = &tb1->jmp_next[n1];
865 }
866 }
867 /* now we can suppress tb(n) from the list */
868 *ptb = tb->jmp_next[n];
869
870 tb->jmp_next[n] = NULL;
871 }
872}
873
874/* reset the jump entry 'n' of a TB so that it is not chained to
875 another TB */
876static inline void tb_reset_jump(TranslationBlock *tb, int n)
877{
878 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
879}
880
41c1b1c9 881void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 882{
6a00d601 883 CPUState *env;
8a40a180 884 PageDesc *p;
d4e8164f 885 unsigned int h, n1;
41c1b1c9 886 tb_page_addr_t phys_pc;
8a40a180 887 TranslationBlock *tb1, *tb2;
3b46e624 888
8a40a180
FB
889 /* remove the TB from the hash list */
890 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
891 h = tb_phys_hash_func(phys_pc);
5fafdf24 892 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
893 offsetof(TranslationBlock, phys_hash_next));
894
895 /* remove the TB from the page list */
896 if (tb->page_addr[0] != page_addr) {
897 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
898 tb_page_remove(&p->first_tb, tb);
899 invalidate_page_bitmap(p);
900 }
901 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
902 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
903 tb_page_remove(&p->first_tb, tb);
904 invalidate_page_bitmap(p);
905 }
906
36bdbe54 907 tb_invalidated_flag = 1;
59817ccb 908
fd6ce8f6 909 /* remove the TB from the hash list */
8a40a180 910 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
911 for(env = first_cpu; env != NULL; env = env->next_cpu) {
912 if (env->tb_jmp_cache[h] == tb)
913 env->tb_jmp_cache[h] = NULL;
914 }
d4e8164f
FB
915
916 /* suppress this TB from the two jump lists */
917 tb_jmp_remove(tb, 0);
918 tb_jmp_remove(tb, 1);
919
920 /* suppress any remaining jumps to this TB */
921 tb1 = tb->jmp_first;
922 for(;;) {
923 n1 = (long)tb1 & 3;
924 if (n1 == 2)
925 break;
926 tb1 = (TranslationBlock *)((long)tb1 & ~3);
927 tb2 = tb1->jmp_next[n1];
928 tb_reset_jump(tb1, n1);
929 tb1->jmp_next[n1] = NULL;
930 tb1 = tb2;
931 }
932 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 933
e3db7226 934 tb_phys_invalidate_count++;
9fa3e853
FB
935}
936
937static inline void set_bits(uint8_t *tab, int start, int len)
938{
939 int end, mask, end1;
940
941 end = start + len;
942 tab += start >> 3;
943 mask = 0xff << (start & 7);
944 if ((start & ~7) == (end & ~7)) {
945 if (start < end) {
946 mask &= ~(0xff << (end & 7));
947 *tab |= mask;
948 }
949 } else {
950 *tab++ |= mask;
951 start = (start + 8) & ~7;
952 end1 = end & ~7;
953 while (start < end1) {
954 *tab++ = 0xff;
955 start += 8;
956 }
957 if (start < end) {
958 mask = ~(0xff << (end & 7));
959 *tab |= mask;
960 }
961 }
962}
963
964static void build_page_bitmap(PageDesc *p)
965{
966 int n, tb_start, tb_end;
967 TranslationBlock *tb;
3b46e624 968
7267c094 969 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
970
971 tb = p->first_tb;
972 while (tb != NULL) {
973 n = (long)tb & 3;
974 tb = (TranslationBlock *)((long)tb & ~3);
975 /* NOTE: this is subtle as a TB may span two physical pages */
976 if (n == 0) {
977 /* NOTE: tb_end may be after the end of the page, but
978 it is not a problem */
979 tb_start = tb->pc & ~TARGET_PAGE_MASK;
980 tb_end = tb_start + tb->size;
981 if (tb_end > TARGET_PAGE_SIZE)
982 tb_end = TARGET_PAGE_SIZE;
983 } else {
984 tb_start = 0;
985 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
986 }
987 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
988 tb = tb->page_next[n];
989 }
990}
991
2e70f6ef
PB
992TranslationBlock *tb_gen_code(CPUState *env,
993 target_ulong pc, target_ulong cs_base,
994 int flags, int cflags)
d720b93d
FB
995{
996 TranslationBlock *tb;
997 uint8_t *tc_ptr;
41c1b1c9
PB
998 tb_page_addr_t phys_pc, phys_page2;
999 target_ulong virt_page2;
d720b93d
FB
1000 int code_gen_size;
1001
41c1b1c9 1002 phys_pc = get_page_addr_code(env, pc);
c27004ec 1003 tb = tb_alloc(pc);
d720b93d
FB
1004 if (!tb) {
1005 /* flush must be done */
1006 tb_flush(env);
1007 /* cannot fail at this point */
c27004ec 1008 tb = tb_alloc(pc);
2e70f6ef
PB
1009 /* Don't forget to invalidate previous TB info. */
1010 tb_invalidated_flag = 1;
d720b93d
FB
1011 }
1012 tc_ptr = code_gen_ptr;
1013 tb->tc_ptr = tc_ptr;
1014 tb->cs_base = cs_base;
1015 tb->flags = flags;
1016 tb->cflags = cflags;
d07bde88 1017 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1018 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1019
d720b93d 1020 /* check next page if needed */
c27004ec 1021 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1022 phys_page2 = -1;
c27004ec 1023 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1024 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1025 }
41c1b1c9 1026 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1027 return tb;
d720b93d 1028}
3b46e624 1029
9fa3e853
FB
1030/* invalidate all TBs which intersect with the target physical page
1031 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1032 the same physical page. 'is_cpu_write_access' should be true if called
1033 from a real cpu write access: the virtual CPU will exit the current
1034 TB if code is modified inside this TB. */
41c1b1c9 1035void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1036 int is_cpu_write_access)
1037{
6b917547 1038 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1039 CPUState *env = cpu_single_env;
41c1b1c9 1040 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1041 PageDesc *p;
1042 int n;
1043#ifdef TARGET_HAS_PRECISE_SMC
1044 int current_tb_not_found = is_cpu_write_access;
1045 TranslationBlock *current_tb = NULL;
1046 int current_tb_modified = 0;
1047 target_ulong current_pc = 0;
1048 target_ulong current_cs_base = 0;
1049 int current_flags = 0;
1050#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1051
1052 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1053 if (!p)
9fa3e853 1054 return;
5fafdf24 1055 if (!p->code_bitmap &&
d720b93d
FB
1056 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1057 is_cpu_write_access) {
9fa3e853
FB
1058 /* build code bitmap */
1059 build_page_bitmap(p);
1060 }
1061
1062 /* we remove all the TBs in the range [start, end[ */
1063 /* XXX: see if in some cases it could be faster to invalidate all the code */
1064 tb = p->first_tb;
1065 while (tb != NULL) {
1066 n = (long)tb & 3;
1067 tb = (TranslationBlock *)((long)tb & ~3);
1068 tb_next = tb->page_next[n];
1069 /* NOTE: this is subtle as a TB may span two physical pages */
1070 if (n == 0) {
1071 /* NOTE: tb_end may be after the end of the page, but
1072 it is not a problem */
1073 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1074 tb_end = tb_start + tb->size;
1075 } else {
1076 tb_start = tb->page_addr[1];
1077 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1078 }
1079 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1080#ifdef TARGET_HAS_PRECISE_SMC
1081 if (current_tb_not_found) {
1082 current_tb_not_found = 0;
1083 current_tb = NULL;
2e70f6ef 1084 if (env->mem_io_pc) {
d720b93d 1085 /* now we have a real cpu fault */
2e70f6ef 1086 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1087 }
1088 }
1089 if (current_tb == tb &&
2e70f6ef 1090 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1091 /* If we are modifying the current TB, we must stop
1092 its execution. We could be more precise by checking
1093 that the modification is after the current PC, but it
1094 would require a specialized function to partially
1095 restore the CPU state */
3b46e624 1096
d720b93d 1097 current_tb_modified = 1;
618ba8e6 1098 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1099 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1100 &current_flags);
d720b93d
FB
1101 }
1102#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1103 /* we need to do that to handle the case where a signal
1104 occurs while doing tb_phys_invalidate() */
1105 saved_tb = NULL;
1106 if (env) {
1107 saved_tb = env->current_tb;
1108 env->current_tb = NULL;
1109 }
9fa3e853 1110 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1111 if (env) {
1112 env->current_tb = saved_tb;
1113 if (env->interrupt_request && env->current_tb)
1114 cpu_interrupt(env, env->interrupt_request);
1115 }
9fa3e853
FB
1116 }
1117 tb = tb_next;
1118 }
1119#if !defined(CONFIG_USER_ONLY)
1120 /* if no code remaining, no need to continue to use slow writes */
1121 if (!p->first_tb) {
1122 invalidate_page_bitmap(p);
d720b93d 1123 if (is_cpu_write_access) {
2e70f6ef 1124 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1125 }
1126 }
1127#endif
1128#ifdef TARGET_HAS_PRECISE_SMC
1129 if (current_tb_modified) {
1130 /* we generate a block containing just the instruction
1131 modifying the memory. It will ensure that it cannot modify
1132 itself */
ea1c1802 1133 env->current_tb = NULL;
2e70f6ef 1134 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1135 cpu_resume_from_signal(env, NULL);
9fa3e853 1136 }
fd6ce8f6 1137#endif
9fa3e853 1138}
fd6ce8f6 1139
9fa3e853 1140/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1141static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1142{
1143 PageDesc *p;
1144 int offset, b;
59817ccb 1145#if 0
a4193c8a 1146 if (1) {
93fcfe39
AL
1147 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1148 cpu_single_env->mem_io_vaddr, len,
1149 cpu_single_env->eip,
1150 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1151 }
1152#endif
9fa3e853 1153 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1154 if (!p)
9fa3e853
FB
1155 return;
1156 if (p->code_bitmap) {
1157 offset = start & ~TARGET_PAGE_MASK;
1158 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1159 if (b & ((1 << len) - 1))
1160 goto do_invalidate;
1161 } else {
1162 do_invalidate:
d720b93d 1163 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1164 }
1165}
1166
9fa3e853 1167#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1168static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1169 unsigned long pc, void *puc)
9fa3e853 1170{
6b917547 1171 TranslationBlock *tb;
9fa3e853 1172 PageDesc *p;
6b917547 1173 int n;
d720b93d 1174#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1175 TranslationBlock *current_tb = NULL;
d720b93d 1176 CPUState *env = cpu_single_env;
6b917547
AL
1177 int current_tb_modified = 0;
1178 target_ulong current_pc = 0;
1179 target_ulong current_cs_base = 0;
1180 int current_flags = 0;
d720b93d 1181#endif
9fa3e853
FB
1182
1183 addr &= TARGET_PAGE_MASK;
1184 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1185 if (!p)
9fa3e853
FB
1186 return;
1187 tb = p->first_tb;
d720b93d
FB
1188#ifdef TARGET_HAS_PRECISE_SMC
1189 if (tb && pc != 0) {
1190 current_tb = tb_find_pc(pc);
1191 }
1192#endif
9fa3e853
FB
1193 while (tb != NULL) {
1194 n = (long)tb & 3;
1195 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1196#ifdef TARGET_HAS_PRECISE_SMC
1197 if (current_tb == tb &&
2e70f6ef 1198 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1199 /* If we are modifying the current TB, we must stop
1200 its execution. We could be more precise by checking
1201 that the modification is after the current PC, but it
1202 would require a specialized function to partially
1203 restore the CPU state */
3b46e624 1204
d720b93d 1205 current_tb_modified = 1;
618ba8e6 1206 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1207 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1208 &current_flags);
d720b93d
FB
1209 }
1210#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1211 tb_phys_invalidate(tb, addr);
1212 tb = tb->page_next[n];
1213 }
fd6ce8f6 1214 p->first_tb = NULL;
d720b93d
FB
1215#ifdef TARGET_HAS_PRECISE_SMC
1216 if (current_tb_modified) {
1217 /* we generate a block containing just the instruction
1218 modifying the memory. It will ensure that it cannot modify
1219 itself */
ea1c1802 1220 env->current_tb = NULL;
2e70f6ef 1221 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1222 cpu_resume_from_signal(env, puc);
1223 }
1224#endif
fd6ce8f6 1225}
9fa3e853 1226#endif
fd6ce8f6
FB
1227
1228/* add the tb in the target page and protect it if necessary */
5fafdf24 1229static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1230 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1231{
1232 PageDesc *p;
4429ab44
JQ
1233#ifndef CONFIG_USER_ONLY
1234 bool page_already_protected;
1235#endif
9fa3e853
FB
1236
1237 tb->page_addr[n] = page_addr;
5cd2c5b6 1238 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1239 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1240#ifndef CONFIG_USER_ONLY
1241 page_already_protected = p->first_tb != NULL;
1242#endif
9fa3e853
FB
1243 p->first_tb = (TranslationBlock *)((long)tb | n);
1244 invalidate_page_bitmap(p);
fd6ce8f6 1245
107db443 1246#if defined(TARGET_HAS_SMC) || 1
d720b93d 1247
9fa3e853 1248#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1249 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1250 target_ulong addr;
1251 PageDesc *p2;
9fa3e853
FB
1252 int prot;
1253
fd6ce8f6
FB
1254 /* force the host page as non writable (writes will have a
1255 page fault + mprotect overhead) */
53a5960a 1256 page_addr &= qemu_host_page_mask;
fd6ce8f6 1257 prot = 0;
53a5960a
PB
1258 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1259 addr += TARGET_PAGE_SIZE) {
1260
1261 p2 = page_find (addr >> TARGET_PAGE_BITS);
1262 if (!p2)
1263 continue;
1264 prot |= p2->flags;
1265 p2->flags &= ~PAGE_WRITE;
53a5960a 1266 }
5fafdf24 1267 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1268 (prot & PAGE_BITS) & ~PAGE_WRITE);
1269#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1270 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1271 page_addr);
fd6ce8f6 1272#endif
fd6ce8f6 1273 }
9fa3e853
FB
1274#else
1275 /* if some code is already present, then the pages are already
1276 protected. So we handle the case where only the first TB is
1277 allocated in a physical page */
4429ab44 1278 if (!page_already_protected) {
6a00d601 1279 tlb_protect_code(page_addr);
9fa3e853
FB
1280 }
1281#endif
d720b93d
FB
1282
1283#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1284}
1285
9fa3e853
FB
1286/* add a new TB and link it to the physical page tables. phys_page2 is
1287 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1288void tb_link_page(TranslationBlock *tb,
1289 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1290{
9fa3e853
FB
1291 unsigned int h;
1292 TranslationBlock **ptb;
1293
c8a706fe
PB
1294 /* Grab the mmap lock to stop another thread invalidating this TB
1295 before we are done. */
1296 mmap_lock();
9fa3e853
FB
1297 /* add in the physical hash table */
1298 h = tb_phys_hash_func(phys_pc);
1299 ptb = &tb_phys_hash[h];
1300 tb->phys_hash_next = *ptb;
1301 *ptb = tb;
fd6ce8f6
FB
1302
1303 /* add in the page list */
9fa3e853
FB
1304 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1305 if (phys_page2 != -1)
1306 tb_alloc_page(tb, 1, phys_page2);
1307 else
1308 tb->page_addr[1] = -1;
9fa3e853 1309
d4e8164f
FB
1310 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1311 tb->jmp_next[0] = NULL;
1312 tb->jmp_next[1] = NULL;
1313
1314 /* init original jump addresses */
1315 if (tb->tb_next_offset[0] != 0xffff)
1316 tb_reset_jump(tb, 0);
1317 if (tb->tb_next_offset[1] != 0xffff)
1318 tb_reset_jump(tb, 1);
8a40a180
FB
1319
1320#ifdef DEBUG_TB_CHECK
1321 tb_page_check();
1322#endif
c8a706fe 1323 mmap_unlock();
fd6ce8f6
FB
1324}
1325
9fa3e853
FB
1326/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1327 tb[1].tc_ptr. Return NULL if not found */
1328TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1329{
9fa3e853
FB
1330 int m_min, m_max, m;
1331 unsigned long v;
1332 TranslationBlock *tb;
a513fe19
FB
1333
1334 if (nb_tbs <= 0)
1335 return NULL;
1336 if (tc_ptr < (unsigned long)code_gen_buffer ||
1337 tc_ptr >= (unsigned long)code_gen_ptr)
1338 return NULL;
1339 /* binary search (cf Knuth) */
1340 m_min = 0;
1341 m_max = nb_tbs - 1;
1342 while (m_min <= m_max) {
1343 m = (m_min + m_max) >> 1;
1344 tb = &tbs[m];
1345 v = (unsigned long)tb->tc_ptr;
1346 if (v == tc_ptr)
1347 return tb;
1348 else if (tc_ptr < v) {
1349 m_max = m - 1;
1350 } else {
1351 m_min = m + 1;
1352 }
5fafdf24 1353 }
a513fe19
FB
1354 return &tbs[m_max];
1355}
7501267e 1356
ea041c0e
FB
1357static void tb_reset_jump_recursive(TranslationBlock *tb);
1358
1359static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1360{
1361 TranslationBlock *tb1, *tb_next, **ptb;
1362 unsigned int n1;
1363
1364 tb1 = tb->jmp_next[n];
1365 if (tb1 != NULL) {
1366 /* find head of list */
1367 for(;;) {
1368 n1 = (long)tb1 & 3;
1369 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1370 if (n1 == 2)
1371 break;
1372 tb1 = tb1->jmp_next[n1];
1373 }
1374 /* we are now sure now that tb jumps to tb1 */
1375 tb_next = tb1;
1376
1377 /* remove tb from the jmp_first list */
1378 ptb = &tb_next->jmp_first;
1379 for(;;) {
1380 tb1 = *ptb;
1381 n1 = (long)tb1 & 3;
1382 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1383 if (n1 == n && tb1 == tb)
1384 break;
1385 ptb = &tb1->jmp_next[n1];
1386 }
1387 *ptb = tb->jmp_next[n];
1388 tb->jmp_next[n] = NULL;
3b46e624 1389
ea041c0e
FB
1390 /* suppress the jump to next tb in generated code */
1391 tb_reset_jump(tb, n);
1392
0124311e 1393 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1394 tb_reset_jump_recursive(tb_next);
1395 }
1396}
1397
1398static void tb_reset_jump_recursive(TranslationBlock *tb)
1399{
1400 tb_reset_jump_recursive2(tb, 0);
1401 tb_reset_jump_recursive2(tb, 1);
1402}
1403
1fddef4b 1404#if defined(TARGET_HAS_ICE)
94df27fd
PB
1405#if defined(CONFIG_USER_ONLY)
1406static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1407{
1408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1409}
1410#else
d720b93d
FB
1411static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1412{
c227f099 1413 target_phys_addr_t addr;
9b3c35e0 1414 target_ulong pd;
c227f099 1415 ram_addr_t ram_addr;
f1f6e3b8 1416 PhysPageDesc p;
d720b93d 1417
c2f07f81
PB
1418 addr = cpu_get_phys_page_debug(env, pc);
1419 p = phys_page_find(addr >> TARGET_PAGE_BITS);
f1f6e3b8 1420 pd = p.phys_offset;
c2f07f81 1421 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1422 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1423}
c27004ec 1424#endif
94df27fd 1425#endif /* TARGET_HAS_ICE */
d720b93d 1426
c527ee8f
PB
1427#if defined(CONFIG_USER_ONLY)
1428void cpu_watchpoint_remove_all(CPUState *env, int mask)
1429
1430{
1431}
1432
1433int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1434 int flags, CPUWatchpoint **watchpoint)
1435{
1436 return -ENOSYS;
1437}
1438#else
6658ffb8 1439/* Add a watchpoint. */
a1d1bb31
AL
1440int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1441 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1442{
b4051334 1443 target_ulong len_mask = ~(len - 1);
c0ce998e 1444 CPUWatchpoint *wp;
6658ffb8 1445
b4051334
AL
1446 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1447 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1448 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1449 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1450 return -EINVAL;
1451 }
7267c094 1452 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1453
1454 wp->vaddr = addr;
b4051334 1455 wp->len_mask = len_mask;
a1d1bb31
AL
1456 wp->flags = flags;
1457
2dc9f411 1458 /* keep all GDB-injected watchpoints in front */
c0ce998e 1459 if (flags & BP_GDB)
72cf2d4f 1460 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1461 else
72cf2d4f 1462 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1463
6658ffb8 1464 tlb_flush_page(env, addr);
a1d1bb31
AL
1465
1466 if (watchpoint)
1467 *watchpoint = wp;
1468 return 0;
6658ffb8
PB
1469}
1470
a1d1bb31
AL
1471/* Remove a specific watchpoint. */
1472int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1473 int flags)
6658ffb8 1474{
b4051334 1475 target_ulong len_mask = ~(len - 1);
a1d1bb31 1476 CPUWatchpoint *wp;
6658ffb8 1477
72cf2d4f 1478 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1479 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1480 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1481 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1482 return 0;
1483 }
1484 }
a1d1bb31 1485 return -ENOENT;
6658ffb8
PB
1486}
1487
a1d1bb31
AL
1488/* Remove a specific watchpoint by reference. */
1489void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1490{
72cf2d4f 1491 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1492
a1d1bb31
AL
1493 tlb_flush_page(env, watchpoint->vaddr);
1494
7267c094 1495 g_free(watchpoint);
a1d1bb31
AL
1496}
1497
1498/* Remove all matching watchpoints. */
1499void cpu_watchpoint_remove_all(CPUState *env, int mask)
1500{
c0ce998e 1501 CPUWatchpoint *wp, *next;
a1d1bb31 1502
72cf2d4f 1503 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1504 if (wp->flags & mask)
1505 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1506 }
7d03f82f 1507}
c527ee8f 1508#endif
7d03f82f 1509
a1d1bb31
AL
1510/* Add a breakpoint. */
1511int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1512 CPUBreakpoint **breakpoint)
4c3a88a2 1513{
1fddef4b 1514#if defined(TARGET_HAS_ICE)
c0ce998e 1515 CPUBreakpoint *bp;
3b46e624 1516
7267c094 1517 bp = g_malloc(sizeof(*bp));
4c3a88a2 1518
a1d1bb31
AL
1519 bp->pc = pc;
1520 bp->flags = flags;
1521
2dc9f411 1522 /* keep all GDB-injected breakpoints in front */
c0ce998e 1523 if (flags & BP_GDB)
72cf2d4f 1524 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1525 else
72cf2d4f 1526 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1527
d720b93d 1528 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1529
1530 if (breakpoint)
1531 *breakpoint = bp;
4c3a88a2
FB
1532 return 0;
1533#else
a1d1bb31 1534 return -ENOSYS;
4c3a88a2
FB
1535#endif
1536}
1537
a1d1bb31
AL
1538/* Remove a specific breakpoint. */
1539int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1540{
7d03f82f 1541#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1542 CPUBreakpoint *bp;
1543
72cf2d4f 1544 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1545 if (bp->pc == pc && bp->flags == flags) {
1546 cpu_breakpoint_remove_by_ref(env, bp);
1547 return 0;
1548 }
7d03f82f 1549 }
a1d1bb31
AL
1550 return -ENOENT;
1551#else
1552 return -ENOSYS;
7d03f82f
EI
1553#endif
1554}
1555
a1d1bb31
AL
1556/* Remove a specific breakpoint by reference. */
1557void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1558{
1fddef4b 1559#if defined(TARGET_HAS_ICE)
72cf2d4f 1560 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1561
a1d1bb31
AL
1562 breakpoint_invalidate(env, breakpoint->pc);
1563
7267c094 1564 g_free(breakpoint);
a1d1bb31
AL
1565#endif
1566}
1567
1568/* Remove all matching breakpoints. */
1569void cpu_breakpoint_remove_all(CPUState *env, int mask)
1570{
1571#if defined(TARGET_HAS_ICE)
c0ce998e 1572 CPUBreakpoint *bp, *next;
a1d1bb31 1573
72cf2d4f 1574 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1575 if (bp->flags & mask)
1576 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1577 }
4c3a88a2
FB
1578#endif
1579}
1580
c33a346e
FB
1581/* enable or disable single step mode. EXCP_DEBUG is returned by the
1582 CPU loop after each instruction */
1583void cpu_single_step(CPUState *env, int enabled)
1584{
1fddef4b 1585#if defined(TARGET_HAS_ICE)
c33a346e
FB
1586 if (env->singlestep_enabled != enabled) {
1587 env->singlestep_enabled = enabled;
e22a25c9
AL
1588 if (kvm_enabled())
1589 kvm_update_guest_debug(env, 0);
1590 else {
ccbb4d44 1591 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1592 /* XXX: only flush what is necessary */
1593 tb_flush(env);
1594 }
c33a346e
FB
1595 }
1596#endif
1597}
1598
34865134
FB
1599/* enable or disable low levels log */
1600void cpu_set_log(int log_flags)
1601{
1602 loglevel = log_flags;
1603 if (loglevel && !logfile) {
11fcfab4 1604 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1605 if (!logfile) {
1606 perror(logfilename);
1607 _exit(1);
1608 }
9fa3e853
FB
1609#if !defined(CONFIG_SOFTMMU)
1610 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1611 {
b55266b5 1612 static char logfile_buf[4096];
9fa3e853
FB
1613 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1614 }
daf767b1
SW
1615#elif defined(_WIN32)
1616 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1617 setvbuf(logfile, NULL, _IONBF, 0);
1618#else
34865134 1619 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1620#endif
e735b91c
PB
1621 log_append = 1;
1622 }
1623 if (!loglevel && logfile) {
1624 fclose(logfile);
1625 logfile = NULL;
34865134
FB
1626 }
1627}
1628
1629void cpu_set_log_filename(const char *filename)
1630{
1631 logfilename = strdup(filename);
e735b91c
PB
1632 if (logfile) {
1633 fclose(logfile);
1634 logfile = NULL;
1635 }
1636 cpu_set_log(loglevel);
34865134 1637}
c33a346e 1638
3098dba0 1639static void cpu_unlink_tb(CPUState *env)
ea041c0e 1640{
3098dba0
AJ
1641 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1642 problem and hope the cpu will stop of its own accord. For userspace
1643 emulation this often isn't actually as bad as it sounds. Often
1644 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1645 TranslationBlock *tb;
c227f099 1646 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1647
cab1b4bd 1648 spin_lock(&interrupt_lock);
3098dba0
AJ
1649 tb = env->current_tb;
1650 /* if the cpu is currently executing code, we must unlink it and
1651 all the potentially executing TB */
f76cfe56 1652 if (tb) {
3098dba0
AJ
1653 env->current_tb = NULL;
1654 tb_reset_jump_recursive(tb);
be214e6c 1655 }
cab1b4bd 1656 spin_unlock(&interrupt_lock);
3098dba0
AJ
1657}
1658
97ffbd8d 1659#ifndef CONFIG_USER_ONLY
3098dba0 1660/* mask must never be zero, except for A20 change call */
ec6959d0 1661static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1662{
1663 int old_mask;
be214e6c 1664
2e70f6ef 1665 old_mask = env->interrupt_request;
68a79315 1666 env->interrupt_request |= mask;
3098dba0 1667
8edac960
AL
1668 /*
1669 * If called from iothread context, wake the target cpu in
1670 * case its halted.
1671 */
b7680cb6 1672 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1673 qemu_cpu_kick(env);
1674 return;
1675 }
8edac960 1676
2e70f6ef 1677 if (use_icount) {
266910c4 1678 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1679 if (!can_do_io(env)
be214e6c 1680 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1681 cpu_abort(env, "Raised interrupt while not in I/O function");
1682 }
2e70f6ef 1683 } else {
3098dba0 1684 cpu_unlink_tb(env);
ea041c0e
FB
1685 }
1686}
1687
ec6959d0
JK
1688CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1689
97ffbd8d
JK
1690#else /* CONFIG_USER_ONLY */
1691
1692void cpu_interrupt(CPUState *env, int mask)
1693{
1694 env->interrupt_request |= mask;
1695 cpu_unlink_tb(env);
1696}
1697#endif /* CONFIG_USER_ONLY */
1698
b54ad049
FB
1699void cpu_reset_interrupt(CPUState *env, int mask)
1700{
1701 env->interrupt_request &= ~mask;
1702}
1703
3098dba0
AJ
1704void cpu_exit(CPUState *env)
1705{
1706 env->exit_request = 1;
1707 cpu_unlink_tb(env);
1708}
1709
c7cd6a37 1710const CPULogItem cpu_log_items[] = {
5fafdf24 1711 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1712 "show generated host assembly code for each compiled TB" },
1713 { CPU_LOG_TB_IN_ASM, "in_asm",
1714 "show target assembly code for each compiled TB" },
5fafdf24 1715 { CPU_LOG_TB_OP, "op",
57fec1fe 1716 "show micro ops for each compiled TB" },
f193c797 1717 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1718 "show micro ops "
1719#ifdef TARGET_I386
1720 "before eflags optimization and "
f193c797 1721#endif
e01a1157 1722 "after liveness analysis" },
f193c797
FB
1723 { CPU_LOG_INT, "int",
1724 "show interrupts/exceptions in short format" },
1725 { CPU_LOG_EXEC, "exec",
1726 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1727 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1728 "show CPU state before block translation" },
f193c797
FB
1729#ifdef TARGET_I386
1730 { CPU_LOG_PCALL, "pcall",
1731 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1732 { CPU_LOG_RESET, "cpu_reset",
1733 "show CPU state before CPU resets" },
f193c797 1734#endif
8e3a9fd2 1735#ifdef DEBUG_IOPORT
fd872598
FB
1736 { CPU_LOG_IOPORT, "ioport",
1737 "show all i/o ports accesses" },
8e3a9fd2 1738#endif
f193c797
FB
1739 { 0, NULL, NULL },
1740};
1741
1742static int cmp1(const char *s1, int n, const char *s2)
1743{
1744 if (strlen(s2) != n)
1745 return 0;
1746 return memcmp(s1, s2, n) == 0;
1747}
3b46e624 1748
f193c797
FB
1749/* takes a comma separated list of log masks. Return 0 if error. */
1750int cpu_str_to_log_mask(const char *str)
1751{
c7cd6a37 1752 const CPULogItem *item;
f193c797
FB
1753 int mask;
1754 const char *p, *p1;
1755
1756 p = str;
1757 mask = 0;
1758 for(;;) {
1759 p1 = strchr(p, ',');
1760 if (!p1)
1761 p1 = p + strlen(p);
9742bf26
YT
1762 if(cmp1(p,p1-p,"all")) {
1763 for(item = cpu_log_items; item->mask != 0; item++) {
1764 mask |= item->mask;
1765 }
1766 } else {
1767 for(item = cpu_log_items; item->mask != 0; item++) {
1768 if (cmp1(p, p1 - p, item->name))
1769 goto found;
1770 }
1771 return 0;
f193c797 1772 }
f193c797
FB
1773 found:
1774 mask |= item->mask;
1775 if (*p1 != ',')
1776 break;
1777 p = p1 + 1;
1778 }
1779 return mask;
1780}
ea041c0e 1781
7501267e
FB
1782void cpu_abort(CPUState *env, const char *fmt, ...)
1783{
1784 va_list ap;
493ae1f0 1785 va_list ap2;
7501267e
FB
1786
1787 va_start(ap, fmt);
493ae1f0 1788 va_copy(ap2, ap);
7501267e
FB
1789 fprintf(stderr, "qemu: fatal: ");
1790 vfprintf(stderr, fmt, ap);
1791 fprintf(stderr, "\n");
1792#ifdef TARGET_I386
7fe48483
FB
1793 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1794#else
1795 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1796#endif
93fcfe39
AL
1797 if (qemu_log_enabled()) {
1798 qemu_log("qemu: fatal: ");
1799 qemu_log_vprintf(fmt, ap2);
1800 qemu_log("\n");
f9373291 1801#ifdef TARGET_I386
93fcfe39 1802 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1803#else
93fcfe39 1804 log_cpu_state(env, 0);
f9373291 1805#endif
31b1a7b4 1806 qemu_log_flush();
93fcfe39 1807 qemu_log_close();
924edcae 1808 }
493ae1f0 1809 va_end(ap2);
f9373291 1810 va_end(ap);
fd052bf6
RV
1811#if defined(CONFIG_USER_ONLY)
1812 {
1813 struct sigaction act;
1814 sigfillset(&act.sa_mask);
1815 act.sa_handler = SIG_DFL;
1816 sigaction(SIGABRT, &act, NULL);
1817 }
1818#endif
7501267e
FB
1819 abort();
1820}
1821
c5be9f08
TS
1822CPUState *cpu_copy(CPUState *env)
1823{
01ba9816 1824 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1825 CPUState *next_cpu = new_env->next_cpu;
1826 int cpu_index = new_env->cpu_index;
5a38f081
AL
1827#if defined(TARGET_HAS_ICE)
1828 CPUBreakpoint *bp;
1829 CPUWatchpoint *wp;
1830#endif
1831
c5be9f08 1832 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1833
1834 /* Preserve chaining and index. */
c5be9f08
TS
1835 new_env->next_cpu = next_cpu;
1836 new_env->cpu_index = cpu_index;
5a38f081
AL
1837
1838 /* Clone all break/watchpoints.
1839 Note: Once we support ptrace with hw-debug register access, make sure
1840 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1841 QTAILQ_INIT(&env->breakpoints);
1842 QTAILQ_INIT(&env->watchpoints);
5a38f081 1843#if defined(TARGET_HAS_ICE)
72cf2d4f 1844 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1845 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1846 }
72cf2d4f 1847 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1848 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1849 wp->flags, NULL);
1850 }
1851#endif
1852
c5be9f08
TS
1853 return new_env;
1854}
1855
0124311e
FB
1856#if !defined(CONFIG_USER_ONLY)
1857
5c751e99
EI
1858static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1859{
1860 unsigned int i;
1861
1862 /* Discard jump cache entries for any tb which might potentially
1863 overlap the flushed page. */
1864 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1865 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1866 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1867
1868 i = tb_jmp_cache_hash_page(addr);
1869 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1870 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1871}
1872
08738984
IK
1873static CPUTLBEntry s_cputlb_empty_entry = {
1874 .addr_read = -1,
1875 .addr_write = -1,
1876 .addr_code = -1,
1877 .addend = -1,
1878};
1879
ee8b7021
FB
1880/* NOTE: if flush_global is true, also flush global entries (not
1881 implemented yet) */
1882void tlb_flush(CPUState *env, int flush_global)
33417e70 1883{
33417e70 1884 int i;
0124311e 1885
9fa3e853
FB
1886#if defined(DEBUG_TLB)
1887 printf("tlb_flush:\n");
1888#endif
0124311e
FB
1889 /* must reset current TB so that interrupts cannot modify the
1890 links while we are modifying them */
1891 env->current_tb = NULL;
1892
33417e70 1893 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1894 int mmu_idx;
1895 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1896 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1897 }
33417e70 1898 }
9fa3e853 1899
8a40a180 1900 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1901
d4c430a8
PB
1902 env->tlb_flush_addr = -1;
1903 env->tlb_flush_mask = 0;
e3db7226 1904 tlb_flush_count++;
33417e70
FB
1905}
1906
274da6b2 1907static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1908{
5fafdf24 1909 if (addr == (tlb_entry->addr_read &
84b7b8e7 1910 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1911 addr == (tlb_entry->addr_write &
84b7b8e7 1912 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1913 addr == (tlb_entry->addr_code &
84b7b8e7 1914 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1915 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1916 }
61382a50
FB
1917}
1918
2e12669a 1919void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1920{
8a40a180 1921 int i;
cfde4bd9 1922 int mmu_idx;
0124311e 1923
9fa3e853 1924#if defined(DEBUG_TLB)
108c49b8 1925 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1926#endif
d4c430a8
PB
1927 /* Check if we need to flush due to large pages. */
1928 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1929#if defined(DEBUG_TLB)
1930 printf("tlb_flush_page: forced full flush ("
1931 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1932 env->tlb_flush_addr, env->tlb_flush_mask);
1933#endif
1934 tlb_flush(env, 1);
1935 return;
1936 }
0124311e
FB
1937 /* must reset current TB so that interrupts cannot modify the
1938 links while we are modifying them */
1939 env->current_tb = NULL;
61382a50
FB
1940
1941 addr &= TARGET_PAGE_MASK;
1942 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1943 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1944 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1945
5c751e99 1946 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1947}
1948
9fa3e853
FB
1949/* update the TLBs so that writes to code in the virtual page 'addr'
1950 can be detected */
c227f099 1951static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1952{
5fafdf24 1953 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1954 ram_addr + TARGET_PAGE_SIZE,
1955 CODE_DIRTY_FLAG);
9fa3e853
FB
1956}
1957
9fa3e853 1958/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1959 tested for self modifying code */
c227f099 1960static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1961 target_ulong vaddr)
9fa3e853 1962{
f7c11b53 1963 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
1964}
1965
5fafdf24 1966static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1967 unsigned long start, unsigned long length)
1968{
1969 unsigned long addr;
0e0df1e2 1970 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
84b7b8e7 1971 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1972 if ((addr - start) < length) {
0f459d16 1973 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1974 }
1975 }
1976}
1977
5579c7f3 1978/* Note: start and end must be within the same ram block. */
c227f099 1979void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1980 int dirty_flags)
1ccde1cb
FB
1981{
1982 CPUState *env;
4f2ac237 1983 unsigned long length, start1;
f7c11b53 1984 int i;
1ccde1cb
FB
1985
1986 start &= TARGET_PAGE_MASK;
1987 end = TARGET_PAGE_ALIGN(end);
1988
1989 length = end - start;
1990 if (length == 0)
1991 return;
f7c11b53 1992 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 1993
1ccde1cb
FB
1994 /* we modify the TLB cache so that the dirty bit will be set again
1995 when accessing the range */
b2e0a138 1996 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 1997 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 1998 address comparisons below. */
b2e0a138 1999 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2000 != (end - 1) - start) {
2001 abort();
2002 }
2003
6a00d601 2004 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2005 int mmu_idx;
2006 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2007 for(i = 0; i < CPU_TLB_SIZE; i++)
2008 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2009 start1, length);
2010 }
6a00d601 2011 }
1ccde1cb
FB
2012}
2013
74576198
AL
2014int cpu_physical_memory_set_dirty_tracking(int enable)
2015{
f6f3fbca 2016 int ret = 0;
74576198 2017 in_migration = enable;
f6f3fbca 2018 return ret;
74576198
AL
2019}
2020
3a7d929e
FB
2021static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2022{
c227f099 2023 ram_addr_t ram_addr;
5579c7f3 2024 void *p;
3a7d929e 2025
0e0df1e2 2026 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
5579c7f3
PB
2027 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2028 + tlb_entry->addend);
e890261f 2029 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2030 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2031 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2032 }
2033 }
2034}
2035
2036/* update the TLB according to the current state of the dirty bits */
2037void cpu_tlb_update_dirty(CPUState *env)
2038{
2039 int i;
cfde4bd9
IY
2040 int mmu_idx;
2041 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2042 for(i = 0; i < CPU_TLB_SIZE; i++)
2043 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2044 }
3a7d929e
FB
2045}
2046
0f459d16 2047static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2048{
0f459d16
PB
2049 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2050 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2051}
2052
0f459d16
PB
2053/* update the TLB corresponding to virtual page vaddr
2054 so that it is no longer dirty */
2055static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2056{
1ccde1cb 2057 int i;
cfde4bd9 2058 int mmu_idx;
1ccde1cb 2059
0f459d16 2060 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2061 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2062 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2063 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2064}
2065
d4c430a8
PB
2066/* Our TLB does not support large pages, so remember the area covered by
2067 large pages and trigger a full TLB flush if these are invalidated. */
2068static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2069 target_ulong size)
2070{
2071 target_ulong mask = ~(size - 1);
2072
2073 if (env->tlb_flush_addr == (target_ulong)-1) {
2074 env->tlb_flush_addr = vaddr & mask;
2075 env->tlb_flush_mask = mask;
2076 return;
2077 }
2078 /* Extend the existing region to include the new page.
2079 This is a compromise between unnecessary flushes and the cost
2080 of maintaining a full variable size TLB. */
2081 mask &= env->tlb_flush_mask;
2082 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2083 mask <<= 1;
2084 }
2085 env->tlb_flush_addr &= mask;
2086 env->tlb_flush_mask = mask;
2087}
2088
1d393fa2
AK
2089static bool is_ram_rom(ram_addr_t pd)
2090{
2091 pd &= ~TARGET_PAGE_MASK;
0e0df1e2 2092 return pd == io_mem_ram.ram_addr || pd == io_mem_rom.ram_addr;
1d393fa2
AK
2093}
2094
2095static bool is_ram_rom_romd(ram_addr_t pd)
2096{
2097 return is_ram_rom(pd) || (pd & IO_MEM_ROMD);
2098}
2099
d4c430a8
PB
2100/* Add a new TLB entry. At most one entry for a given virtual address
2101 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2102 supplied size is only used by tlb_flush_page. */
2103void tlb_set_page(CPUState *env, target_ulong vaddr,
2104 target_phys_addr_t paddr, int prot,
2105 int mmu_idx, target_ulong size)
9fa3e853 2106{
f1f6e3b8 2107 PhysPageDesc p;
4f2ac237 2108 unsigned long pd;
9fa3e853 2109 unsigned int index;
4f2ac237 2110 target_ulong address;
0f459d16 2111 target_ulong code_address;
355b1943 2112 unsigned long addend;
84b7b8e7 2113 CPUTLBEntry *te;
a1d1bb31 2114 CPUWatchpoint *wp;
c227f099 2115 target_phys_addr_t iotlb;
9fa3e853 2116
d4c430a8
PB
2117 assert(size >= TARGET_PAGE_SIZE);
2118 if (size != TARGET_PAGE_SIZE) {
2119 tlb_add_large_page(env, vaddr, size);
2120 }
92e873b9 2121 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
f1f6e3b8 2122 pd = p.phys_offset;
9fa3e853 2123#if defined(DEBUG_TLB)
7fd3f494
SW
2124 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2125 " prot=%x idx=%d pd=0x%08lx\n",
2126 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2127#endif
2128
0f459d16 2129 address = vaddr;
1d393fa2 2130 if (!is_ram_rom_romd(pd)) {
0f459d16
PB
2131 /* IO memory case (romd handled later) */
2132 address |= TLB_MMIO;
2133 }
5579c7f3 2134 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1d393fa2 2135 if (is_ram_rom(pd)) {
0f459d16
PB
2136 /* Normal RAM. */
2137 iotlb = pd & TARGET_PAGE_MASK;
0e0df1e2
AK
2138 if ((pd & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr)
2139 iotlb |= io_mem_notdirty.ram_addr;
0f459d16 2140 else
0e0df1e2 2141 iotlb |= io_mem_rom.ram_addr;
0f459d16 2142 } else {
ccbb4d44 2143 /* IO handlers are currently passed a physical address.
0f459d16
PB
2144 It would be nice to pass an offset from the base address
2145 of that region. This would avoid having to special case RAM,
2146 and avoid full address decoding in every device.
2147 We can't use the high bits of pd for this because
2148 IO_MEM_ROMD uses these as a ram address. */
8da3ff18 2149 iotlb = (pd & ~TARGET_PAGE_MASK);
f1f6e3b8 2150 iotlb += p.region_offset;
0f459d16
PB
2151 }
2152
2153 code_address = address;
2154 /* Make accesses to pages with watchpoints go via the
2155 watchpoint trap routines. */
72cf2d4f 2156 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2157 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2158 /* Avoid trapping reads of pages with a write breakpoint. */
2159 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2160 iotlb = io_mem_watch + paddr;
2161 address |= TLB_MMIO;
2162 break;
2163 }
6658ffb8 2164 }
0f459d16 2165 }
d79acba4 2166
0f459d16
PB
2167 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2168 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2169 te = &env->tlb_table[mmu_idx][index];
2170 te->addend = addend - vaddr;
2171 if (prot & PAGE_READ) {
2172 te->addr_read = address;
2173 } else {
2174 te->addr_read = -1;
2175 }
5c751e99 2176
0f459d16
PB
2177 if (prot & PAGE_EXEC) {
2178 te->addr_code = code_address;
2179 } else {
2180 te->addr_code = -1;
2181 }
2182 if (prot & PAGE_WRITE) {
0e0df1e2 2183 if ((pd & ~TARGET_PAGE_MASK) == io_mem_rom.ram_addr ||
0f459d16
PB
2184 (pd & IO_MEM_ROMD)) {
2185 /* Write access calls the I/O callback. */
2186 te->addr_write = address | TLB_MMIO;
0e0df1e2 2187 } else if ((pd & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr &&
0f459d16
PB
2188 !cpu_physical_memory_is_dirty(pd)) {
2189 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2190 } else {
0f459d16 2191 te->addr_write = address;
9fa3e853 2192 }
0f459d16
PB
2193 } else {
2194 te->addr_write = -1;
9fa3e853 2195 }
9fa3e853
FB
2196}
2197
0124311e
FB
2198#else
2199
ee8b7021 2200void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2201{
2202}
2203
2e12669a 2204void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2205{
2206}
2207
edf8e2af
MW
2208/*
2209 * Walks guest process memory "regions" one by one
2210 * and calls callback function 'fn' for each region.
2211 */
5cd2c5b6
RH
2212
2213struct walk_memory_regions_data
2214{
2215 walk_memory_regions_fn fn;
2216 void *priv;
2217 unsigned long start;
2218 int prot;
2219};
2220
2221static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2222 abi_ulong end, int new_prot)
5cd2c5b6
RH
2223{
2224 if (data->start != -1ul) {
2225 int rc = data->fn(data->priv, data->start, end, data->prot);
2226 if (rc != 0) {
2227 return rc;
2228 }
2229 }
2230
2231 data->start = (new_prot ? end : -1ul);
2232 data->prot = new_prot;
2233
2234 return 0;
2235}
2236
2237static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2238 abi_ulong base, int level, void **lp)
5cd2c5b6 2239{
b480d9b7 2240 abi_ulong pa;
5cd2c5b6
RH
2241 int i, rc;
2242
2243 if (*lp == NULL) {
2244 return walk_memory_regions_end(data, base, 0);
2245 }
2246
2247 if (level == 0) {
2248 PageDesc *pd = *lp;
7296abac 2249 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2250 int prot = pd[i].flags;
2251
2252 pa = base | (i << TARGET_PAGE_BITS);
2253 if (prot != data->prot) {
2254 rc = walk_memory_regions_end(data, pa, prot);
2255 if (rc != 0) {
2256 return rc;
9fa3e853 2257 }
9fa3e853 2258 }
5cd2c5b6
RH
2259 }
2260 } else {
2261 void **pp = *lp;
7296abac 2262 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2263 pa = base | ((abi_ulong)i <<
2264 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2265 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2266 if (rc != 0) {
2267 return rc;
2268 }
2269 }
2270 }
2271
2272 return 0;
2273}
2274
2275int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2276{
2277 struct walk_memory_regions_data data;
2278 unsigned long i;
2279
2280 data.fn = fn;
2281 data.priv = priv;
2282 data.start = -1ul;
2283 data.prot = 0;
2284
2285 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2286 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2287 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2288 if (rc != 0) {
2289 return rc;
9fa3e853 2290 }
33417e70 2291 }
5cd2c5b6
RH
2292
2293 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2294}
2295
b480d9b7
PB
2296static int dump_region(void *priv, abi_ulong start,
2297 abi_ulong end, unsigned long prot)
edf8e2af
MW
2298{
2299 FILE *f = (FILE *)priv;
2300
b480d9b7
PB
2301 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2302 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2303 start, end, end - start,
2304 ((prot & PAGE_READ) ? 'r' : '-'),
2305 ((prot & PAGE_WRITE) ? 'w' : '-'),
2306 ((prot & PAGE_EXEC) ? 'x' : '-'));
2307
2308 return (0);
2309}
2310
2311/* dump memory mappings */
2312void page_dump(FILE *f)
2313{
2314 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2315 "start", "end", "size", "prot");
2316 walk_memory_regions(f, dump_region);
33417e70
FB
2317}
2318
53a5960a 2319int page_get_flags(target_ulong address)
33417e70 2320{
9fa3e853
FB
2321 PageDesc *p;
2322
2323 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2324 if (!p)
9fa3e853
FB
2325 return 0;
2326 return p->flags;
2327}
2328
376a7909
RH
2329/* Modify the flags of a page and invalidate the code if necessary.
2330 The flag PAGE_WRITE_ORG is positioned automatically depending
2331 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2332void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2333{
376a7909
RH
2334 target_ulong addr, len;
2335
2336 /* This function should never be called with addresses outside the
2337 guest address space. If this assert fires, it probably indicates
2338 a missing call to h2g_valid. */
b480d9b7
PB
2339#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2340 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2341#endif
2342 assert(start < end);
9fa3e853
FB
2343
2344 start = start & TARGET_PAGE_MASK;
2345 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2346
2347 if (flags & PAGE_WRITE) {
9fa3e853 2348 flags |= PAGE_WRITE_ORG;
376a7909
RH
2349 }
2350
2351 for (addr = start, len = end - start;
2352 len != 0;
2353 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2354 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2355
2356 /* If the write protection bit is set, then we invalidate
2357 the code inside. */
5fafdf24 2358 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2359 (flags & PAGE_WRITE) &&
2360 p->first_tb) {
d720b93d 2361 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2362 }
2363 p->flags = flags;
2364 }
33417e70
FB
2365}
2366
3d97b40b
TS
2367int page_check_range(target_ulong start, target_ulong len, int flags)
2368{
2369 PageDesc *p;
2370 target_ulong end;
2371 target_ulong addr;
2372
376a7909
RH
2373 /* This function should never be called with addresses outside the
2374 guest address space. If this assert fires, it probably indicates
2375 a missing call to h2g_valid. */
338e9e6c
BS
2376#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2377 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2378#endif
2379
3e0650a9
RH
2380 if (len == 0) {
2381 return 0;
2382 }
376a7909
RH
2383 if (start + len - 1 < start) {
2384 /* We've wrapped around. */
55f280c9 2385 return -1;
376a7909 2386 }
55f280c9 2387
3d97b40b
TS
2388 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2389 start = start & TARGET_PAGE_MASK;
2390
376a7909
RH
2391 for (addr = start, len = end - start;
2392 len != 0;
2393 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2394 p = page_find(addr >> TARGET_PAGE_BITS);
2395 if( !p )
2396 return -1;
2397 if( !(p->flags & PAGE_VALID) )
2398 return -1;
2399
dae3270c 2400 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2401 return -1;
dae3270c
FB
2402 if (flags & PAGE_WRITE) {
2403 if (!(p->flags & PAGE_WRITE_ORG))
2404 return -1;
2405 /* unprotect the page if it was put read-only because it
2406 contains translated code */
2407 if (!(p->flags & PAGE_WRITE)) {
2408 if (!page_unprotect(addr, 0, NULL))
2409 return -1;
2410 }
2411 return 0;
2412 }
3d97b40b
TS
2413 }
2414 return 0;
2415}
2416
9fa3e853 2417/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2418 page. Return TRUE if the fault was successfully handled. */
53a5960a 2419int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2420{
45d679d6
AJ
2421 unsigned int prot;
2422 PageDesc *p;
53a5960a 2423 target_ulong host_start, host_end, addr;
9fa3e853 2424
c8a706fe
PB
2425 /* Technically this isn't safe inside a signal handler. However we
2426 know this only ever happens in a synchronous SEGV handler, so in
2427 practice it seems to be ok. */
2428 mmap_lock();
2429
45d679d6
AJ
2430 p = page_find(address >> TARGET_PAGE_BITS);
2431 if (!p) {
c8a706fe 2432 mmap_unlock();
9fa3e853 2433 return 0;
c8a706fe 2434 }
45d679d6 2435
9fa3e853
FB
2436 /* if the page was really writable, then we change its
2437 protection back to writable */
45d679d6
AJ
2438 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2439 host_start = address & qemu_host_page_mask;
2440 host_end = host_start + qemu_host_page_size;
2441
2442 prot = 0;
2443 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2444 p = page_find(addr >> TARGET_PAGE_BITS);
2445 p->flags |= PAGE_WRITE;
2446 prot |= p->flags;
2447
9fa3e853
FB
2448 /* and since the content will be modified, we must invalidate
2449 the corresponding translated code. */
45d679d6 2450 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2451#ifdef DEBUG_TB_CHECK
45d679d6 2452 tb_invalidate_check(addr);
9fa3e853 2453#endif
9fa3e853 2454 }
45d679d6
AJ
2455 mprotect((void *)g2h(host_start), qemu_host_page_size,
2456 prot & PAGE_BITS);
2457
2458 mmap_unlock();
2459 return 1;
9fa3e853 2460 }
c8a706fe 2461 mmap_unlock();
9fa3e853
FB
2462 return 0;
2463}
2464
6a00d601
FB
2465static inline void tlb_set_dirty(CPUState *env,
2466 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2467{
2468}
9fa3e853
FB
2469#endif /* defined(CONFIG_USER_ONLY) */
2470
e2eef170 2471#if !defined(CONFIG_USER_ONLY)
8da3ff18 2472
c04b2b78
PB
2473#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2474typedef struct subpage_t {
70c68e44 2475 MemoryRegion iomem;
c04b2b78 2476 target_phys_addr_t base;
f6405247
RH
2477 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2478 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2479} subpage_t;
2480
c227f099
AL
2481static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2482 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2483static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2484 ram_addr_t orig_memory,
2485 ram_addr_t region_offset);
db7b5426
BS
2486#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2487 need_subpage) \
2488 do { \
2489 if (addr > start_addr) \
2490 start_addr2 = 0; \
2491 else { \
2492 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2493 if (start_addr2 > 0) \
2494 need_subpage = 1; \
2495 } \
2496 \
49e9fba2 2497 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2498 end_addr2 = TARGET_PAGE_SIZE - 1; \
2499 else { \
2500 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2501 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2502 need_subpage = 1; \
2503 } \
2504 } while (0)
2505
8f2498f9
MT
2506/* register physical memory.
2507 For RAM, 'size' must be a multiple of the target page size.
2508 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2509 io memory page. The address used when calling the IO function is
2510 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2511 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2512 before calculating this offset. This should not be a problem unless
2513 the low bits of start_addr and region_offset differ. */
dd81124b
AK
2514void cpu_register_physical_memory_log(MemoryRegionSection *section,
2515 bool readable, bool readonly)
33417e70 2516{
dd81124b
AK
2517 target_phys_addr_t start_addr = section->offset_within_address_space;
2518 ram_addr_t size = section->size;
2519 ram_addr_t phys_offset = section->mr->ram_addr;
2520 ram_addr_t region_offset = section->offset_within_region;
c227f099 2521 target_phys_addr_t addr, end_addr;
92e873b9 2522 PhysPageDesc *p;
9d42037b 2523 CPUState *env;
c227f099 2524 ram_addr_t orig_size = size;
f6405247 2525 subpage_t *subpage;
33417e70 2526
dd81124b
AK
2527 if (memory_region_is_ram(section->mr)) {
2528 phys_offset += region_offset;
2529 region_offset = 0;
2530 }
2531
2532 if (!readable) {
2533 phys_offset &= ~TARGET_PAGE_MASK & ~IO_MEM_ROMD;
2534 }
2535
2536 if (readonly) {
2537 phys_offset |= io_mem_rom.ram_addr;
2538 }
2539
3b8e6a2d 2540 assert(size);
f6f3fbca 2541
0e0df1e2 2542 if (phys_offset == io_mem_unassigned.ram_addr) {
67c4d23c
PB
2543 region_offset = start_addr;
2544 }
8da3ff18 2545 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2546 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2547 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2548
2549 addr = start_addr;
2550 do {
f1f6e3b8 2551 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 0);
0e0df1e2 2552 if (p && p->phys_offset != io_mem_unassigned.ram_addr) {
c227f099
AL
2553 ram_addr_t orig_memory = p->phys_offset;
2554 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2555 int need_subpage = 0;
2556
2557 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2558 need_subpage);
f6405247 2559 if (need_subpage) {
db7b5426
BS
2560 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2561 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2562 &p->phys_offset, orig_memory,
2563 p->region_offset);
db7b5426
BS
2564 } else {
2565 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2566 >> IO_MEM_SHIFT];
2567 }
8da3ff18
PB
2568 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2569 region_offset);
2570 p->region_offset = 0;
db7b5426
BS
2571 } else {
2572 p->phys_offset = phys_offset;
2774c6d0 2573 p->region_offset = region_offset;
1d393fa2 2574 if (is_ram_rom_romd(phys_offset))
db7b5426
BS
2575 phys_offset += TARGET_PAGE_SIZE;
2576 }
2577 } else {
2578 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2579 p->phys_offset = phys_offset;
8da3ff18 2580 p->region_offset = region_offset;
1d393fa2 2581 if (is_ram_rom_romd(phys_offset)) {
db7b5426 2582 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2583 } else {
c227f099 2584 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2585 int need_subpage = 0;
2586
2587 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2588 end_addr2, need_subpage);
2589
f6405247 2590 if (need_subpage) {
db7b5426 2591 subpage = subpage_init((addr & TARGET_PAGE_MASK),
0e0df1e2
AK
2592 &p->phys_offset,
2593 io_mem_unassigned.ram_addr,
67c4d23c 2594 addr & TARGET_PAGE_MASK);
db7b5426 2595 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2596 phys_offset, region_offset);
2597 p->region_offset = 0;
db7b5426
BS
2598 }
2599 }
2600 }
8da3ff18 2601 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2602 addr += TARGET_PAGE_SIZE;
2603 } while (addr != end_addr);
3b46e624 2604
9d42037b
FB
2605 /* since each CPU stores ram addresses in its TLB cache, we must
2606 reset the modified entries */
2607 /* XXX: slow ! */
2608 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2609 tlb_flush(env, 1);
2610 }
33417e70
FB
2611}
2612
c227f099 2613void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2614{
2615 if (kvm_enabled())
2616 kvm_coalesce_mmio_region(addr, size);
2617}
2618
c227f099 2619void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2620{
2621 if (kvm_enabled())
2622 kvm_uncoalesce_mmio_region(addr, size);
2623}
2624
62a2744c
SY
2625void qemu_flush_coalesced_mmio_buffer(void)
2626{
2627 if (kvm_enabled())
2628 kvm_flush_coalesced_mmio_buffer();
2629}
2630
c902760f
MT
2631#if defined(__linux__) && !defined(TARGET_S390X)
2632
2633#include <sys/vfs.h>
2634
2635#define HUGETLBFS_MAGIC 0x958458f6
2636
2637static long gethugepagesize(const char *path)
2638{
2639 struct statfs fs;
2640 int ret;
2641
2642 do {
9742bf26 2643 ret = statfs(path, &fs);
c902760f
MT
2644 } while (ret != 0 && errno == EINTR);
2645
2646 if (ret != 0) {
9742bf26
YT
2647 perror(path);
2648 return 0;
c902760f
MT
2649 }
2650
2651 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2652 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2653
2654 return fs.f_bsize;
2655}
2656
04b16653
AW
2657static void *file_ram_alloc(RAMBlock *block,
2658 ram_addr_t memory,
2659 const char *path)
c902760f
MT
2660{
2661 char *filename;
2662 void *area;
2663 int fd;
2664#ifdef MAP_POPULATE
2665 int flags;
2666#endif
2667 unsigned long hpagesize;
2668
2669 hpagesize = gethugepagesize(path);
2670 if (!hpagesize) {
9742bf26 2671 return NULL;
c902760f
MT
2672 }
2673
2674 if (memory < hpagesize) {
2675 return NULL;
2676 }
2677
2678 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2679 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2680 return NULL;
2681 }
2682
2683 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2684 return NULL;
c902760f
MT
2685 }
2686
2687 fd = mkstemp(filename);
2688 if (fd < 0) {
9742bf26
YT
2689 perror("unable to create backing store for hugepages");
2690 free(filename);
2691 return NULL;
c902760f
MT
2692 }
2693 unlink(filename);
2694 free(filename);
2695
2696 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2697
2698 /*
2699 * ftruncate is not supported by hugetlbfs in older
2700 * hosts, so don't bother bailing out on errors.
2701 * If anything goes wrong with it under other filesystems,
2702 * mmap will fail.
2703 */
2704 if (ftruncate(fd, memory))
9742bf26 2705 perror("ftruncate");
c902760f
MT
2706
2707#ifdef MAP_POPULATE
2708 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2709 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2710 * to sidestep this quirk.
2711 */
2712 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2713 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2714#else
2715 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2716#endif
2717 if (area == MAP_FAILED) {
9742bf26
YT
2718 perror("file_ram_alloc: can't mmap RAM pages");
2719 close(fd);
2720 return (NULL);
c902760f 2721 }
04b16653 2722 block->fd = fd;
c902760f
MT
2723 return area;
2724}
2725#endif
2726
d17b5288 2727static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2728{
2729 RAMBlock *block, *next_block;
3e837b2c 2730 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2731
2732 if (QLIST_EMPTY(&ram_list.blocks))
2733 return 0;
2734
2735 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2736 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2737
2738 end = block->offset + block->length;
2739
2740 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2741 if (next_block->offset >= end) {
2742 next = MIN(next, next_block->offset);
2743 }
2744 }
2745 if (next - end >= size && next - end < mingap) {
3e837b2c 2746 offset = end;
04b16653
AW
2747 mingap = next - end;
2748 }
2749 }
3e837b2c
AW
2750
2751 if (offset == RAM_ADDR_MAX) {
2752 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2753 (uint64_t)size);
2754 abort();
2755 }
2756
04b16653
AW
2757 return offset;
2758}
2759
2760static ram_addr_t last_ram_offset(void)
d17b5288
AW
2761{
2762 RAMBlock *block;
2763 ram_addr_t last = 0;
2764
2765 QLIST_FOREACH(block, &ram_list.blocks, next)
2766 last = MAX(last, block->offset + block->length);
2767
2768 return last;
2769}
2770
c5705a77 2771void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
2772{
2773 RAMBlock *new_block, *block;
2774
c5705a77
AK
2775 new_block = NULL;
2776 QLIST_FOREACH(block, &ram_list.blocks, next) {
2777 if (block->offset == addr) {
2778 new_block = block;
2779 break;
2780 }
2781 }
2782 assert(new_block);
2783 assert(!new_block->idstr[0]);
84b89d78
CM
2784
2785 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2786 char *id = dev->parent_bus->info->get_dev_path(dev);
2787 if (id) {
2788 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2789 g_free(id);
84b89d78
CM
2790 }
2791 }
2792 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2793
2794 QLIST_FOREACH(block, &ram_list.blocks, next) {
c5705a77 2795 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2796 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2797 new_block->idstr);
2798 abort();
2799 }
2800 }
c5705a77
AK
2801}
2802
2803ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2804 MemoryRegion *mr)
2805{
2806 RAMBlock *new_block;
2807
2808 size = TARGET_PAGE_ALIGN(size);
2809 new_block = g_malloc0(sizeof(*new_block));
84b89d78 2810
7c637366 2811 new_block->mr = mr;
432d268c 2812 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2813 if (host) {
2814 new_block->host = host;
cd19cfa2 2815 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2816 } else {
2817 if (mem_path) {
c902760f 2818#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2819 new_block->host = file_ram_alloc(new_block, size, mem_path);
2820 if (!new_block->host) {
2821 new_block->host = qemu_vmalloc(size);
e78815a5 2822 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2823 }
c902760f 2824#else
6977dfe6
YT
2825 fprintf(stderr, "-mem-path option unsupported\n");
2826 exit(1);
c902760f 2827#endif
6977dfe6 2828 } else {
6b02494d 2829#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2830 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2831 an system defined value, which is at least 256GB. Larger systems
2832 have larger values. We put the guest between the end of data
2833 segment (system break) and this value. We use 32GB as a base to
2834 have enough room for the system break to grow. */
2835 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2836 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2837 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2838 if (new_block->host == MAP_FAILED) {
2839 fprintf(stderr, "Allocating RAM failed\n");
2840 abort();
2841 }
6b02494d 2842#else
868bb33f 2843 if (xen_enabled()) {
fce537d4 2844 xen_ram_alloc(new_block->offset, size, mr);
432d268c
JN
2845 } else {
2846 new_block->host = qemu_vmalloc(size);
2847 }
6b02494d 2848#endif
e78815a5 2849 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2850 }
c902760f 2851 }
94a6b54f
PB
2852 new_block->length = size;
2853
f471a17e 2854 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2855
7267c094 2856 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2857 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2858 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2859 0xff, size >> TARGET_PAGE_BITS);
2860
6f0437e8
JK
2861 if (kvm_enabled())
2862 kvm_setup_guest_memory(new_block->host, size);
2863
94a6b54f
PB
2864 return new_block->offset;
2865}
e9a1ab19 2866
c5705a77 2867ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 2868{
c5705a77 2869 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
2870}
2871
1f2e98b6
AW
2872void qemu_ram_free_from_ptr(ram_addr_t addr)
2873{
2874 RAMBlock *block;
2875
2876 QLIST_FOREACH(block, &ram_list.blocks, next) {
2877 if (addr == block->offset) {
2878 QLIST_REMOVE(block, next);
7267c094 2879 g_free(block);
1f2e98b6
AW
2880 return;
2881 }
2882 }
2883}
2884
c227f099 2885void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2886{
04b16653
AW
2887 RAMBlock *block;
2888
2889 QLIST_FOREACH(block, &ram_list.blocks, next) {
2890 if (addr == block->offset) {
2891 QLIST_REMOVE(block, next);
cd19cfa2
HY
2892 if (block->flags & RAM_PREALLOC_MASK) {
2893 ;
2894 } else if (mem_path) {
04b16653
AW
2895#if defined (__linux__) && !defined(TARGET_S390X)
2896 if (block->fd) {
2897 munmap(block->host, block->length);
2898 close(block->fd);
2899 } else {
2900 qemu_vfree(block->host);
2901 }
fd28aa13
JK
2902#else
2903 abort();
04b16653
AW
2904#endif
2905 } else {
2906#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2907 munmap(block->host, block->length);
2908#else
868bb33f 2909 if (xen_enabled()) {
e41d7c69 2910 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
2911 } else {
2912 qemu_vfree(block->host);
2913 }
04b16653
AW
2914#endif
2915 }
7267c094 2916 g_free(block);
04b16653
AW
2917 return;
2918 }
2919 }
2920
e9a1ab19
FB
2921}
2922
cd19cfa2
HY
2923#ifndef _WIN32
2924void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2925{
2926 RAMBlock *block;
2927 ram_addr_t offset;
2928 int flags;
2929 void *area, *vaddr;
2930
2931 QLIST_FOREACH(block, &ram_list.blocks, next) {
2932 offset = addr - block->offset;
2933 if (offset < block->length) {
2934 vaddr = block->host + offset;
2935 if (block->flags & RAM_PREALLOC_MASK) {
2936 ;
2937 } else {
2938 flags = MAP_FIXED;
2939 munmap(vaddr, length);
2940 if (mem_path) {
2941#if defined(__linux__) && !defined(TARGET_S390X)
2942 if (block->fd) {
2943#ifdef MAP_POPULATE
2944 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2945 MAP_PRIVATE;
2946#else
2947 flags |= MAP_PRIVATE;
2948#endif
2949 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2950 flags, block->fd, offset);
2951 } else {
2952 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2953 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2954 flags, -1, 0);
2955 }
fd28aa13
JK
2956#else
2957 abort();
cd19cfa2
HY
2958#endif
2959 } else {
2960#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2961 flags |= MAP_SHARED | MAP_ANONYMOUS;
2962 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2963 flags, -1, 0);
2964#else
2965 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2966 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2967 flags, -1, 0);
2968#endif
2969 }
2970 if (area != vaddr) {
f15fbc4b
AP
2971 fprintf(stderr, "Could not remap addr: "
2972 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2973 length, addr);
2974 exit(1);
2975 }
2976 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2977 }
2978 return;
2979 }
2980 }
2981}
2982#endif /* !_WIN32 */
2983
dc828ca1 2984/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2985 With the exception of the softmmu code in this file, this should
2986 only be used for local memory (e.g. video ram) that the device owns,
2987 and knows it isn't going to access beyond the end of the block.
2988
2989 It should not be used for general purpose DMA.
2990 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2991 */
c227f099 2992void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2993{
94a6b54f
PB
2994 RAMBlock *block;
2995
f471a17e
AW
2996 QLIST_FOREACH(block, &ram_list.blocks, next) {
2997 if (addr - block->offset < block->length) {
7d82af38
VP
2998 /* Move this entry to to start of the list. */
2999 if (block != QLIST_FIRST(&ram_list.blocks)) {
3000 QLIST_REMOVE(block, next);
3001 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3002 }
868bb33f 3003 if (xen_enabled()) {
432d268c
JN
3004 /* We need to check if the requested address is in the RAM
3005 * because we don't want to map the entire memory in QEMU.
712c2b41 3006 * In that case just map until the end of the page.
432d268c
JN
3007 */
3008 if (block->offset == 0) {
e41d7c69 3009 return xen_map_cache(addr, 0, 0);
432d268c 3010 } else if (block->host == NULL) {
e41d7c69
JK
3011 block->host =
3012 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3013 }
3014 }
f471a17e
AW
3015 return block->host + (addr - block->offset);
3016 }
94a6b54f 3017 }
f471a17e
AW
3018
3019 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3020 abort();
3021
3022 return NULL;
dc828ca1
PB
3023}
3024
b2e0a138
MT
3025/* Return a host pointer to ram allocated with qemu_ram_alloc.
3026 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3027 */
3028void *qemu_safe_ram_ptr(ram_addr_t addr)
3029{
3030 RAMBlock *block;
3031
3032 QLIST_FOREACH(block, &ram_list.blocks, next) {
3033 if (addr - block->offset < block->length) {
868bb33f 3034 if (xen_enabled()) {
432d268c
JN
3035 /* We need to check if the requested address is in the RAM
3036 * because we don't want to map the entire memory in QEMU.
712c2b41 3037 * In that case just map until the end of the page.
432d268c
JN
3038 */
3039 if (block->offset == 0) {
e41d7c69 3040 return xen_map_cache(addr, 0, 0);
432d268c 3041 } else if (block->host == NULL) {
e41d7c69
JK
3042 block->host =
3043 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3044 }
3045 }
b2e0a138
MT
3046 return block->host + (addr - block->offset);
3047 }
3048 }
3049
3050 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3051 abort();
3052
3053 return NULL;
3054}
3055
38bee5dc
SS
3056/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3057 * but takes a size argument */
8ab934f9 3058void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3059{
8ab934f9
SS
3060 if (*size == 0) {
3061 return NULL;
3062 }
868bb33f 3063 if (xen_enabled()) {
e41d7c69 3064 return xen_map_cache(addr, *size, 1);
868bb33f 3065 } else {
38bee5dc
SS
3066 RAMBlock *block;
3067
3068 QLIST_FOREACH(block, &ram_list.blocks, next) {
3069 if (addr - block->offset < block->length) {
3070 if (addr - block->offset + *size > block->length)
3071 *size = block->length - addr + block->offset;
3072 return block->host + (addr - block->offset);
3073 }
3074 }
3075
3076 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3077 abort();
38bee5dc
SS
3078 }
3079}
3080
050a0ddf
AP
3081void qemu_put_ram_ptr(void *addr)
3082{
3083 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3084}
3085
e890261f 3086int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3087{
94a6b54f
PB
3088 RAMBlock *block;
3089 uint8_t *host = ptr;
3090
868bb33f 3091 if (xen_enabled()) {
e41d7c69 3092 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3093 return 0;
3094 }
3095
f471a17e 3096 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3097 /* This case append when the block is not mapped. */
3098 if (block->host == NULL) {
3099 continue;
3100 }
f471a17e 3101 if (host - block->host < block->length) {
e890261f
MT
3102 *ram_addr = block->offset + (host - block->host);
3103 return 0;
f471a17e 3104 }
94a6b54f 3105 }
432d268c 3106
e890261f
MT
3107 return -1;
3108}
f471a17e 3109
e890261f
MT
3110/* Some of the softmmu routines need to translate from a host pointer
3111 (typically a TLB entry) back to a ram offset. */
3112ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3113{
3114 ram_addr_t ram_addr;
f471a17e 3115
e890261f
MT
3116 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3117 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3118 abort();
3119 }
3120 return ram_addr;
5579c7f3
PB
3121}
3122
0e0df1e2
AK
3123static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3124 unsigned size)
e18231a3
BS
3125{
3126#ifdef DEBUG_UNASSIGNED
3127 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3128#endif
5b450407 3129#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 3130 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
e18231a3
BS
3131#endif
3132 return 0;
3133}
3134
0e0df1e2
AK
3135static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3136 uint64_t val, unsigned size)
e18231a3
BS
3137{
3138#ifdef DEBUG_UNASSIGNED
0e0df1e2 3139 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
e18231a3 3140#endif
5b450407 3141#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 3142 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
67d3b957 3143#endif
33417e70
FB
3144}
3145
0e0df1e2
AK
3146static const MemoryRegionOps unassigned_mem_ops = {
3147 .read = unassigned_mem_read,
3148 .write = unassigned_mem_write,
3149 .endianness = DEVICE_NATIVE_ENDIAN,
3150};
e18231a3 3151
0e0df1e2
AK
3152static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3153 unsigned size)
e18231a3 3154{
0e0df1e2 3155 abort();
e18231a3
BS
3156}
3157
0e0df1e2
AK
3158static void error_mem_write(void *opaque, target_phys_addr_t addr,
3159 uint64_t value, unsigned size)
e18231a3 3160{
0e0df1e2 3161 abort();
33417e70
FB
3162}
3163
0e0df1e2
AK
3164static const MemoryRegionOps error_mem_ops = {
3165 .read = error_mem_read,
3166 .write = error_mem_write,
3167 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
3168};
3169
0e0df1e2
AK
3170static const MemoryRegionOps rom_mem_ops = {
3171 .read = error_mem_read,
3172 .write = unassigned_mem_write,
3173 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
3174};
3175
0e0df1e2
AK
3176static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3177 uint64_t val, unsigned size)
9fa3e853 3178{
3a7d929e 3179 int dirty_flags;
f7c11b53 3180 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3181 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3182#if !defined(CONFIG_USER_ONLY)
0e0df1e2 3183 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 3184 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3185#endif
3a7d929e 3186 }
0e0df1e2
AK
3187 switch (size) {
3188 case 1:
3189 stb_p(qemu_get_ram_ptr(ram_addr), val);
3190 break;
3191 case 2:
3192 stw_p(qemu_get_ram_ptr(ram_addr), val);
3193 break;
3194 case 4:
3195 stl_p(qemu_get_ram_ptr(ram_addr), val);
3196 break;
3197 default:
3198 abort();
3a7d929e 3199 }
f23db169 3200 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3201 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3202 /* we remove the notdirty callback only if the code has been
3203 flushed */
3204 if (dirty_flags == 0xff)
2e70f6ef 3205 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3206}
3207
0e0df1e2
AK
3208static const MemoryRegionOps notdirty_mem_ops = {
3209 .read = error_mem_read,
3210 .write = notdirty_mem_write,
3211 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
3212};
3213
0f459d16 3214/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3215static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3216{
3217 CPUState *env = cpu_single_env;
06d55cc1
AL
3218 target_ulong pc, cs_base;
3219 TranslationBlock *tb;
0f459d16 3220 target_ulong vaddr;
a1d1bb31 3221 CPUWatchpoint *wp;
06d55cc1 3222 int cpu_flags;
0f459d16 3223
06d55cc1
AL
3224 if (env->watchpoint_hit) {
3225 /* We re-entered the check after replacing the TB. Now raise
3226 * the debug interrupt so that is will trigger after the
3227 * current instruction. */
3228 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3229 return;
3230 }
2e70f6ef 3231 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3232 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3233 if ((vaddr == (wp->vaddr & len_mask) ||
3234 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3235 wp->flags |= BP_WATCHPOINT_HIT;
3236 if (!env->watchpoint_hit) {
3237 env->watchpoint_hit = wp;
3238 tb = tb_find_pc(env->mem_io_pc);
3239 if (!tb) {
3240 cpu_abort(env, "check_watchpoint: could not find TB for "
3241 "pc=%p", (void *)env->mem_io_pc);
3242 }
618ba8e6 3243 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3244 tb_phys_invalidate(tb, -1);
3245 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3246 env->exception_index = EXCP_DEBUG;
3247 } else {
3248 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3249 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3250 }
3251 cpu_resume_from_signal(env, NULL);
06d55cc1 3252 }
6e140f28
AL
3253 } else {
3254 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3255 }
3256 }
3257}
3258
6658ffb8
PB
3259/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3260 so these check for a hit then pass through to the normal out-of-line
3261 phys routines. */
c227f099 3262static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3263{
b4051334 3264 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3265 return ldub_phys(addr);
3266}
3267
c227f099 3268static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3269{
b4051334 3270 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3271 return lduw_phys(addr);
3272}
3273
c227f099 3274static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3275{
b4051334 3276 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3277 return ldl_phys(addr);
3278}
3279
c227f099 3280static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3281 uint32_t val)
3282{
b4051334 3283 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3284 stb_phys(addr, val);
3285}
3286
c227f099 3287static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3288 uint32_t val)
3289{
b4051334 3290 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3291 stw_phys(addr, val);
3292}
3293
c227f099 3294static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3295 uint32_t val)
3296{
b4051334 3297 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3298 stl_phys(addr, val);
3299}
3300
d60efc6b 3301static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3302 watch_mem_readb,
3303 watch_mem_readw,
3304 watch_mem_readl,
3305};
3306
d60efc6b 3307static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3308 watch_mem_writeb,
3309 watch_mem_writew,
3310 watch_mem_writel,
3311};
6658ffb8 3312
70c68e44
AK
3313static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3314 unsigned len)
db7b5426 3315{
70c68e44 3316 subpage_t *mmio = opaque;
f6405247 3317 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3318#if defined(DEBUG_SUBPAGE)
3319 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3320 mmio, len, addr, idx);
3321#endif
db7b5426 3322
f6405247
RH
3323 addr += mmio->region_offset[idx];
3324 idx = mmio->sub_io_index[idx];
70c68e44 3325 return io_mem_read(idx, addr, len);
db7b5426
BS
3326}
3327
70c68e44
AK
3328static void subpage_write(void *opaque, target_phys_addr_t addr,
3329 uint64_t value, unsigned len)
db7b5426 3330{
70c68e44 3331 subpage_t *mmio = opaque;
f6405247 3332 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3333#if defined(DEBUG_SUBPAGE)
70c68e44
AK
3334 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3335 " idx %d value %"PRIx64"\n",
f6405247 3336 __func__, mmio, len, addr, idx, value);
db7b5426 3337#endif
f6405247
RH
3338
3339 addr += mmio->region_offset[idx];
3340 idx = mmio->sub_io_index[idx];
70c68e44 3341 io_mem_write(idx, addr, value, len);
db7b5426
BS
3342}
3343
70c68e44
AK
3344static const MemoryRegionOps subpage_ops = {
3345 .read = subpage_read,
3346 .write = subpage_write,
3347 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3348};
3349
56384e8b
AF
3350static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
3351{
3352 ram_addr_t raddr = addr;
3353 void *ptr = qemu_get_ram_ptr(raddr);
3354 return ldub_p(ptr);
3355}
3356
3357static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
3358 uint32_t value)
3359{
3360 ram_addr_t raddr = addr;
3361 void *ptr = qemu_get_ram_ptr(raddr);
3362 stb_p(ptr, value);
3363}
3364
3365static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
3366{
3367 ram_addr_t raddr = addr;
3368 void *ptr = qemu_get_ram_ptr(raddr);
3369 return lduw_p(ptr);
3370}
3371
3372static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
3373 uint32_t value)
3374{
3375 ram_addr_t raddr = addr;
3376 void *ptr = qemu_get_ram_ptr(raddr);
3377 stw_p(ptr, value);
3378}
3379
3380static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
3381{
3382 ram_addr_t raddr = addr;
3383 void *ptr = qemu_get_ram_ptr(raddr);
3384 return ldl_p(ptr);
3385}
3386
3387static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
3388 uint32_t value)
3389{
3390 ram_addr_t raddr = addr;
3391 void *ptr = qemu_get_ram_ptr(raddr);
3392 stl_p(ptr, value);
3393}
3394
3395static CPUReadMemoryFunc * const subpage_ram_read[] = {
3396 &subpage_ram_readb,
3397 &subpage_ram_readw,
3398 &subpage_ram_readl,
3399};
3400
3401static CPUWriteMemoryFunc * const subpage_ram_write[] = {
3402 &subpage_ram_writeb,
3403 &subpage_ram_writew,
3404 &subpage_ram_writel,
3405};
3406
c227f099
AL
3407static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3408 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3409{
3410 int idx, eidx;
3411
3412 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3413 return -1;
3414 idx = SUBPAGE_IDX(start);
3415 eidx = SUBPAGE_IDX(end);
3416#if defined(DEBUG_SUBPAGE)
0bf9e31a 3417 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3418 mmio, start, end, idx, eidx, memory);
3419#endif
0e0df1e2 3420 if ((memory & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
56384e8b
AF
3421 memory = IO_MEM_SUBPAGE_RAM;
3422 }
f6405247 3423 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3424 for (; idx <= eidx; idx++) {
f6405247
RH
3425 mmio->sub_io_index[idx] = memory;
3426 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3427 }
3428
3429 return 0;
3430}
3431
f6405247
RH
3432static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3433 ram_addr_t orig_memory,
3434 ram_addr_t region_offset)
db7b5426 3435{
c227f099 3436 subpage_t *mmio;
db7b5426
BS
3437 int subpage_memory;
3438
7267c094 3439 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3440
3441 mmio->base = base;
70c68e44
AK
3442 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3443 "subpage", TARGET_PAGE_SIZE);
3444 subpage_memory = mmio->iomem.ram_addr;
db7b5426 3445#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3446 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3447 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3448#endif
1eec614b 3449 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3450 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3451
3452 return mmio;
3453}
3454
88715657
AL
3455static int get_free_io_mem_idx(void)
3456{
3457 int i;
3458
3459 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3460 if (!io_mem_used[i]) {
3461 io_mem_used[i] = 1;
3462 return i;
3463 }
c6703b47 3464 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3465 return -1;
3466}
3467
33417e70
FB
3468/* mem_read and mem_write are arrays of functions containing the
3469 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3470 2). Functions can be omitted with a NULL function pointer.
3ee89922 3471 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3472 modified. If it is zero, a new io zone is allocated. The return
3473 value can be used with cpu_register_physical_memory(). (-1) is
3474 returned if error. */
1eed09cb 3475static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3476 CPUReadMemoryFunc * const *mem_read,
3477 CPUWriteMemoryFunc * const *mem_write,
be675c97 3478 void *opaque)
33417e70 3479{
3cab721d
RH
3480 int i;
3481
33417e70 3482 if (io_index <= 0) {
88715657
AL
3483 io_index = get_free_io_mem_idx();
3484 if (io_index == -1)
3485 return io_index;
33417e70 3486 } else {
1eed09cb 3487 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3488 if (io_index >= IO_MEM_NB_ENTRIES)
3489 return -1;
3490 }
b5ff1b31 3491
3cab721d 3492 for (i = 0; i < 3; ++i) {
0e0df1e2
AK
3493 assert(mem_read[i]);
3494 _io_mem_read[io_index][i] = mem_read[i];
3cab721d
RH
3495 }
3496 for (i = 0; i < 3; ++i) {
0e0df1e2
AK
3497 assert(mem_write[i]);
3498 _io_mem_write[io_index][i] = mem_write[i];
3cab721d 3499 }
a4193c8a 3500 io_mem_opaque[io_index] = opaque;
f6405247
RH
3501
3502 return (io_index << IO_MEM_SHIFT);
33417e70 3503}
61382a50 3504
d60efc6b
BS
3505int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3506 CPUWriteMemoryFunc * const *mem_write,
be675c97 3507 void *opaque)
1eed09cb 3508{
be675c97 3509 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
1eed09cb
AK
3510}
3511
88715657
AL
3512void cpu_unregister_io_memory(int io_table_address)
3513{
3514 int i;
3515 int io_index = io_table_address >> IO_MEM_SHIFT;
3516
3517 for (i=0;i < 3; i++) {
0e0df1e2
AK
3518 _io_mem_read[io_index][i] = NULL;
3519 _io_mem_write[io_index][i] = NULL;
88715657
AL
3520 }
3521 io_mem_opaque[io_index] = NULL;
3522 io_mem_used[io_index] = 0;
3523}
3524
e9179ce1
AK
3525static void io_mem_init(void)
3526{
3527 int i;
3528
0e0df1e2
AK
3529 /* Must be first: */
3530 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3531 assert(io_mem_ram.ram_addr == 0);
3532 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3533 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3534 "unassigned", UINT64_MAX);
3535 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3536 "notdirty", UINT64_MAX);
56384e8b 3537 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
be675c97 3538 subpage_ram_write, NULL);
e9179ce1
AK
3539 for (i=0; i<5; i++)
3540 io_mem_used[i] = 1;
3541
3542 io_mem_watch = cpu_register_io_memory(watch_mem_read,
be675c97 3543 watch_mem_write, NULL);
e9179ce1
AK
3544}
3545
62152b8a
AK
3546static void memory_map_init(void)
3547{
7267c094 3548 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3549 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3550 set_system_memory_map(system_memory);
309cb471 3551
7267c094 3552 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3553 memory_region_init(system_io, "io", 65536);
3554 set_system_io_map(system_io);
62152b8a
AK
3555}
3556
3557MemoryRegion *get_system_memory(void)
3558{
3559 return system_memory;
3560}
3561
309cb471
AK
3562MemoryRegion *get_system_io(void)
3563{
3564 return system_io;
3565}
3566
e2eef170
PB
3567#endif /* !defined(CONFIG_USER_ONLY) */
3568
13eb76e0
FB
3569/* physical memory access (slow version, mainly for debug) */
3570#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3571int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3572 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3573{
3574 int l, flags;
3575 target_ulong page;
53a5960a 3576 void * p;
13eb76e0
FB
3577
3578 while (len > 0) {
3579 page = addr & TARGET_PAGE_MASK;
3580 l = (page + TARGET_PAGE_SIZE) - addr;
3581 if (l > len)
3582 l = len;
3583 flags = page_get_flags(page);
3584 if (!(flags & PAGE_VALID))
a68fe89c 3585 return -1;
13eb76e0
FB
3586 if (is_write) {
3587 if (!(flags & PAGE_WRITE))
a68fe89c 3588 return -1;
579a97f7 3589 /* XXX: this code should not depend on lock_user */
72fb7daa 3590 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3591 return -1;
72fb7daa
AJ
3592 memcpy(p, buf, l);
3593 unlock_user(p, addr, l);
13eb76e0
FB
3594 } else {
3595 if (!(flags & PAGE_READ))
a68fe89c 3596 return -1;
579a97f7 3597 /* XXX: this code should not depend on lock_user */
72fb7daa 3598 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3599 return -1;
72fb7daa 3600 memcpy(buf, p, l);
5b257578 3601 unlock_user(p, addr, 0);
13eb76e0
FB
3602 }
3603 len -= l;
3604 buf += l;
3605 addr += l;
3606 }
a68fe89c 3607 return 0;
13eb76e0 3608}
8df1cd07 3609
13eb76e0 3610#else
c227f099 3611void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3612 int len, int is_write)
3613{
3614 int l, io_index;
3615 uint8_t *ptr;
3616 uint32_t val;
c227f099 3617 target_phys_addr_t page;
8ca5692d 3618 ram_addr_t pd;
f1f6e3b8 3619 PhysPageDesc p;
3b46e624 3620
13eb76e0
FB
3621 while (len > 0) {
3622 page = addr & TARGET_PAGE_MASK;
3623 l = (page + TARGET_PAGE_SIZE) - addr;
3624 if (l > len)
3625 l = len;
92e873b9 3626 p = phys_page_find(page >> TARGET_PAGE_BITS);
f1f6e3b8 3627 pd = p.phys_offset;
3b46e624 3628
13eb76e0 3629 if (is_write) {
0e0df1e2 3630 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
f1f6e3b8 3631 target_phys_addr_t addr1;
13eb76e0 3632 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 3633 addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
6a00d601
FB
3634 /* XXX: could force cpu_single_env to NULL to avoid
3635 potential bugs */
6c2934db 3636 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3637 /* 32 bit write access */
c27004ec 3638 val = ldl_p(buf);
acbbec5d 3639 io_mem_write(io_index, addr1, val, 4);
13eb76e0 3640 l = 4;
6c2934db 3641 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3642 /* 16 bit write access */
c27004ec 3643 val = lduw_p(buf);
acbbec5d 3644 io_mem_write(io_index, addr1, val, 2);
13eb76e0
FB
3645 l = 2;
3646 } else {
1c213d19 3647 /* 8 bit write access */
c27004ec 3648 val = ldub_p(buf);
acbbec5d 3649 io_mem_write(io_index, addr1, val, 1);
13eb76e0
FB
3650 l = 1;
3651 }
3652 } else {
8ca5692d 3653 ram_addr_t addr1;
b448f2f3 3654 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3655 /* RAM case */
5579c7f3 3656 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3657 memcpy(ptr, buf, l);
3a7d929e
FB
3658 if (!cpu_physical_memory_is_dirty(addr1)) {
3659 /* invalidate code */
3660 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3661 /* set dirty bit */
f7c11b53
YT
3662 cpu_physical_memory_set_dirty_flags(
3663 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3664 }
050a0ddf 3665 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3666 }
3667 } else {
1d393fa2 3668 if (!is_ram_rom_romd(pd)) {
f1f6e3b8 3669 target_phys_addr_t addr1;
13eb76e0
FB
3670 /* I/O case */
3671 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 3672 addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
6c2934db 3673 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3674 /* 32 bit read access */
acbbec5d 3675 val = io_mem_read(io_index, addr1, 4);
c27004ec 3676 stl_p(buf, val);
13eb76e0 3677 l = 4;
6c2934db 3678 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3679 /* 16 bit read access */
acbbec5d 3680 val = io_mem_read(io_index, addr1, 2);
c27004ec 3681 stw_p(buf, val);
13eb76e0
FB
3682 l = 2;
3683 } else {
1c213d19 3684 /* 8 bit read access */
acbbec5d 3685 val = io_mem_read(io_index, addr1, 1);
c27004ec 3686 stb_p(buf, val);
13eb76e0
FB
3687 l = 1;
3688 }
3689 } else {
3690 /* RAM case */
050a0ddf
AP
3691 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3692 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3693 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3694 }
3695 }
3696 len -= l;
3697 buf += l;
3698 addr += l;
3699 }
3700}
8df1cd07 3701
d0ecd2aa 3702/* used for ROM loading : can write in RAM and ROM */
c227f099 3703void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3704 const uint8_t *buf, int len)
3705{
3706 int l;
3707 uint8_t *ptr;
c227f099 3708 target_phys_addr_t page;
d0ecd2aa 3709 unsigned long pd;
f1f6e3b8 3710 PhysPageDesc p;
3b46e624 3711
d0ecd2aa
FB
3712 while (len > 0) {
3713 page = addr & TARGET_PAGE_MASK;
3714 l = (page + TARGET_PAGE_SIZE) - addr;
3715 if (l > len)
3716 l = len;
3717 p = phys_page_find(page >> TARGET_PAGE_BITS);
f1f6e3b8 3718 pd = p.phys_offset;
3b46e624 3719
1d393fa2 3720 if (!is_ram_rom_romd(pd)) {
d0ecd2aa
FB
3721 /* do nothing */
3722 } else {
3723 unsigned long addr1;
3724 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3725 /* ROM/RAM case */
5579c7f3 3726 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3727 memcpy(ptr, buf, l);
050a0ddf 3728 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3729 }
3730 len -= l;
3731 buf += l;
3732 addr += l;
3733 }
3734}
3735
6d16c2f8
AL
3736typedef struct {
3737 void *buffer;
c227f099
AL
3738 target_phys_addr_t addr;
3739 target_phys_addr_t len;
6d16c2f8
AL
3740} BounceBuffer;
3741
3742static BounceBuffer bounce;
3743
ba223c29
AL
3744typedef struct MapClient {
3745 void *opaque;
3746 void (*callback)(void *opaque);
72cf2d4f 3747 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3748} MapClient;
3749
72cf2d4f
BS
3750static QLIST_HEAD(map_client_list, MapClient) map_client_list
3751 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3752
3753void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3754{
7267c094 3755 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
3756
3757 client->opaque = opaque;
3758 client->callback = callback;
72cf2d4f 3759 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3760 return client;
3761}
3762
3763void cpu_unregister_map_client(void *_client)
3764{
3765 MapClient *client = (MapClient *)_client;
3766
72cf2d4f 3767 QLIST_REMOVE(client, link);
7267c094 3768 g_free(client);
ba223c29
AL
3769}
3770
3771static void cpu_notify_map_clients(void)
3772{
3773 MapClient *client;
3774
72cf2d4f
BS
3775 while (!QLIST_EMPTY(&map_client_list)) {
3776 client = QLIST_FIRST(&map_client_list);
ba223c29 3777 client->callback(client->opaque);
34d5e948 3778 cpu_unregister_map_client(client);
ba223c29
AL
3779 }
3780}
3781
6d16c2f8
AL
3782/* Map a physical memory region into a host virtual address.
3783 * May map a subset of the requested range, given by and returned in *plen.
3784 * May return NULL if resources needed to perform the mapping are exhausted.
3785 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3786 * Use cpu_register_map_client() to know when retrying the map operation is
3787 * likely to succeed.
6d16c2f8 3788 */
c227f099
AL
3789void *cpu_physical_memory_map(target_phys_addr_t addr,
3790 target_phys_addr_t *plen,
6d16c2f8
AL
3791 int is_write)
3792{
c227f099 3793 target_phys_addr_t len = *plen;
38bee5dc 3794 target_phys_addr_t todo = 0;
6d16c2f8 3795 int l;
c227f099 3796 target_phys_addr_t page;
6d16c2f8 3797 unsigned long pd;
f1f6e3b8 3798 PhysPageDesc p;
f15fbc4b 3799 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
3800 ram_addr_t rlen;
3801 void *ret;
6d16c2f8
AL
3802
3803 while (len > 0) {
3804 page = addr & TARGET_PAGE_MASK;
3805 l = (page + TARGET_PAGE_SIZE) - addr;
3806 if (l > len)
3807 l = len;
3808 p = phys_page_find(page >> TARGET_PAGE_BITS);
f1f6e3b8 3809 pd = p.phys_offset;
6d16c2f8 3810
0e0df1e2 3811 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
38bee5dc 3812 if (todo || bounce.buffer) {
6d16c2f8
AL
3813 break;
3814 }
3815 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3816 bounce.addr = addr;
3817 bounce.len = l;
3818 if (!is_write) {
54f7b4a3 3819 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 3820 }
38bee5dc
SS
3821
3822 *plen = l;
3823 return bounce.buffer;
6d16c2f8 3824 }
8ab934f9
SS
3825 if (!todo) {
3826 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3827 }
6d16c2f8
AL
3828
3829 len -= l;
3830 addr += l;
38bee5dc 3831 todo += l;
6d16c2f8 3832 }
8ab934f9
SS
3833 rlen = todo;
3834 ret = qemu_ram_ptr_length(raddr, &rlen);
3835 *plen = rlen;
3836 return ret;
6d16c2f8
AL
3837}
3838
3839/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3840 * Will also mark the memory as dirty if is_write == 1. access_len gives
3841 * the amount of memory that was actually read or written by the caller.
3842 */
c227f099
AL
3843void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3844 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3845{
3846 if (buffer != bounce.buffer) {
3847 if (is_write) {
e890261f 3848 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3849 while (access_len) {
3850 unsigned l;
3851 l = TARGET_PAGE_SIZE;
3852 if (l > access_len)
3853 l = access_len;
3854 if (!cpu_physical_memory_is_dirty(addr1)) {
3855 /* invalidate code */
3856 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3857 /* set dirty bit */
f7c11b53
YT
3858 cpu_physical_memory_set_dirty_flags(
3859 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3860 }
3861 addr1 += l;
3862 access_len -= l;
3863 }
3864 }
868bb33f 3865 if (xen_enabled()) {
e41d7c69 3866 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3867 }
6d16c2f8
AL
3868 return;
3869 }
3870 if (is_write) {
3871 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3872 }
f8a83245 3873 qemu_vfree(bounce.buffer);
6d16c2f8 3874 bounce.buffer = NULL;
ba223c29 3875 cpu_notify_map_clients();
6d16c2f8 3876}
d0ecd2aa 3877
8df1cd07 3878/* warning: addr must be aligned */
1e78bcc1
AG
3879static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3880 enum device_endian endian)
8df1cd07
FB
3881{
3882 int io_index;
3883 uint8_t *ptr;
3884 uint32_t val;
3885 unsigned long pd;
f1f6e3b8 3886 PhysPageDesc p;
8df1cd07
FB
3887
3888 p = phys_page_find(addr >> TARGET_PAGE_BITS);
f1f6e3b8 3889 pd = p.phys_offset;
3b46e624 3890
1d393fa2 3891 if (!is_ram_rom_romd(pd)) {
8df1cd07
FB
3892 /* I/O case */
3893 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 3894 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
acbbec5d 3895 val = io_mem_read(io_index, addr, 4);
1e78bcc1
AG
3896#if defined(TARGET_WORDS_BIGENDIAN)
3897 if (endian == DEVICE_LITTLE_ENDIAN) {
3898 val = bswap32(val);
3899 }
3900#else
3901 if (endian == DEVICE_BIG_ENDIAN) {
3902 val = bswap32(val);
3903 }
3904#endif
8df1cd07
FB
3905 } else {
3906 /* RAM case */
5579c7f3 3907 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07 3908 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
3909 switch (endian) {
3910 case DEVICE_LITTLE_ENDIAN:
3911 val = ldl_le_p(ptr);
3912 break;
3913 case DEVICE_BIG_ENDIAN:
3914 val = ldl_be_p(ptr);
3915 break;
3916 default:
3917 val = ldl_p(ptr);
3918 break;
3919 }
8df1cd07
FB
3920 }
3921 return val;
3922}
3923
1e78bcc1
AG
3924uint32_t ldl_phys(target_phys_addr_t addr)
3925{
3926 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3927}
3928
3929uint32_t ldl_le_phys(target_phys_addr_t addr)
3930{
3931 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3932}
3933
3934uint32_t ldl_be_phys(target_phys_addr_t addr)
3935{
3936 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3937}
3938
84b7b8e7 3939/* warning: addr must be aligned */
1e78bcc1
AG
3940static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3941 enum device_endian endian)
84b7b8e7
FB
3942{
3943 int io_index;
3944 uint8_t *ptr;
3945 uint64_t val;
3946 unsigned long pd;
f1f6e3b8 3947 PhysPageDesc p;
84b7b8e7
FB
3948
3949 p = phys_page_find(addr >> TARGET_PAGE_BITS);
f1f6e3b8 3950 pd = p.phys_offset;
3b46e624 3951
1d393fa2 3952 if (!is_ram_rom_romd(pd)) {
84b7b8e7
FB
3953 /* I/O case */
3954 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 3955 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
1e78bcc1
AG
3956
3957 /* XXX This is broken when device endian != cpu endian.
3958 Fix and add "endian" variable check */
84b7b8e7 3959#ifdef TARGET_WORDS_BIGENDIAN
acbbec5d
AK
3960 val = io_mem_read(io_index, addr, 4) << 32;
3961 val |= io_mem_read(io_index, addr + 4, 4);
84b7b8e7 3962#else
acbbec5d
AK
3963 val = io_mem_read(io_index, addr, 4);
3964 val |= io_mem_read(io_index, addr + 4, 4) << 32;
84b7b8e7
FB
3965#endif
3966 } else {
3967 /* RAM case */
5579c7f3 3968 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7 3969 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
3970 switch (endian) {
3971 case DEVICE_LITTLE_ENDIAN:
3972 val = ldq_le_p(ptr);
3973 break;
3974 case DEVICE_BIG_ENDIAN:
3975 val = ldq_be_p(ptr);
3976 break;
3977 default:
3978 val = ldq_p(ptr);
3979 break;
3980 }
84b7b8e7
FB
3981 }
3982 return val;
3983}
3984
1e78bcc1
AG
3985uint64_t ldq_phys(target_phys_addr_t addr)
3986{
3987 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3988}
3989
3990uint64_t ldq_le_phys(target_phys_addr_t addr)
3991{
3992 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3993}
3994
3995uint64_t ldq_be_phys(target_phys_addr_t addr)
3996{
3997 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3998}
3999
aab33094 4000/* XXX: optimize */
c227f099 4001uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4002{
4003 uint8_t val;
4004 cpu_physical_memory_read(addr, &val, 1);
4005 return val;
4006}
4007
733f0b02 4008/* warning: addr must be aligned */
1e78bcc1
AG
4009static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4010 enum device_endian endian)
aab33094 4011{
733f0b02
MT
4012 int io_index;
4013 uint8_t *ptr;
4014 uint64_t val;
4015 unsigned long pd;
f1f6e3b8 4016 PhysPageDesc p;
733f0b02
MT
4017
4018 p = phys_page_find(addr >> TARGET_PAGE_BITS);
f1f6e3b8 4019 pd = p.phys_offset;
733f0b02 4020
1d393fa2 4021 if (!is_ram_rom_romd(pd)) {
733f0b02
MT
4022 /* I/O case */
4023 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 4024 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
acbbec5d 4025 val = io_mem_read(io_index, addr, 2);
1e78bcc1
AG
4026#if defined(TARGET_WORDS_BIGENDIAN)
4027 if (endian == DEVICE_LITTLE_ENDIAN) {
4028 val = bswap16(val);
4029 }
4030#else
4031 if (endian == DEVICE_BIG_ENDIAN) {
4032 val = bswap16(val);
4033 }
4034#endif
733f0b02
MT
4035 } else {
4036 /* RAM case */
4037 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4038 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4039 switch (endian) {
4040 case DEVICE_LITTLE_ENDIAN:
4041 val = lduw_le_p(ptr);
4042 break;
4043 case DEVICE_BIG_ENDIAN:
4044 val = lduw_be_p(ptr);
4045 break;
4046 default:
4047 val = lduw_p(ptr);
4048 break;
4049 }
733f0b02
MT
4050 }
4051 return val;
aab33094
FB
4052}
4053
1e78bcc1
AG
4054uint32_t lduw_phys(target_phys_addr_t addr)
4055{
4056 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4057}
4058
4059uint32_t lduw_le_phys(target_phys_addr_t addr)
4060{
4061 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4062}
4063
4064uint32_t lduw_be_phys(target_phys_addr_t addr)
4065{
4066 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4067}
4068
8df1cd07
FB
4069/* warning: addr must be aligned. The ram page is not masked as dirty
4070 and the code inside is not invalidated. It is useful if the dirty
4071 bits are used to track modified PTEs */
c227f099 4072void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4073{
4074 int io_index;
4075 uint8_t *ptr;
4076 unsigned long pd;
f1f6e3b8 4077 PhysPageDesc p;
8df1cd07
FB
4078
4079 p = phys_page_find(addr >> TARGET_PAGE_BITS);
f1f6e3b8 4080 pd = p.phys_offset;
3b46e624 4081
0e0df1e2 4082 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
8df1cd07 4083 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 4084 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
acbbec5d 4085 io_mem_write(io_index, addr, val, 4);
8df1cd07 4086 } else {
74576198 4087 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4088 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4089 stl_p(ptr, val);
74576198
AL
4090
4091 if (unlikely(in_migration)) {
4092 if (!cpu_physical_memory_is_dirty(addr1)) {
4093 /* invalidate code */
4094 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4095 /* set dirty bit */
f7c11b53
YT
4096 cpu_physical_memory_set_dirty_flags(
4097 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4098 }
4099 }
8df1cd07
FB
4100 }
4101}
4102
c227f099 4103void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4104{
4105 int io_index;
4106 uint8_t *ptr;
4107 unsigned long pd;
f1f6e3b8 4108 PhysPageDesc p;
bc98a7ef
JM
4109
4110 p = phys_page_find(addr >> TARGET_PAGE_BITS);
f1f6e3b8 4111 pd = p.phys_offset;
3b46e624 4112
0e0df1e2 4113 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
bc98a7ef 4114 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 4115 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
bc98a7ef 4116#ifdef TARGET_WORDS_BIGENDIAN
acbbec5d
AK
4117 io_mem_write(io_index, addr, val >> 32, 4);
4118 io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
bc98a7ef 4119#else
acbbec5d
AK
4120 io_mem_write(io_index, addr, (uint32_t)val, 4);
4121 io_mem_write(io_index, addr + 4, val >> 32, 4);
bc98a7ef
JM
4122#endif
4123 } else {
5579c7f3 4124 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4125 (addr & ~TARGET_PAGE_MASK);
4126 stq_p(ptr, val);
4127 }
4128}
4129
8df1cd07 4130/* warning: addr must be aligned */
1e78bcc1
AG
4131static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4132 enum device_endian endian)
8df1cd07
FB
4133{
4134 int io_index;
4135 uint8_t *ptr;
4136 unsigned long pd;
f1f6e3b8 4137 PhysPageDesc p;
8df1cd07
FB
4138
4139 p = phys_page_find(addr >> TARGET_PAGE_BITS);
f1f6e3b8 4140 pd = p.phys_offset;
3b46e624 4141
0e0df1e2 4142 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
8df1cd07 4143 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 4144 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
1e78bcc1
AG
4145#if defined(TARGET_WORDS_BIGENDIAN)
4146 if (endian == DEVICE_LITTLE_ENDIAN) {
4147 val = bswap32(val);
4148 }
4149#else
4150 if (endian == DEVICE_BIG_ENDIAN) {
4151 val = bswap32(val);
4152 }
4153#endif
acbbec5d 4154 io_mem_write(io_index, addr, val, 4);
8df1cd07
FB
4155 } else {
4156 unsigned long addr1;
4157 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4158 /* RAM case */
5579c7f3 4159 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4160 switch (endian) {
4161 case DEVICE_LITTLE_ENDIAN:
4162 stl_le_p(ptr, val);
4163 break;
4164 case DEVICE_BIG_ENDIAN:
4165 stl_be_p(ptr, val);
4166 break;
4167 default:
4168 stl_p(ptr, val);
4169 break;
4170 }
3a7d929e
FB
4171 if (!cpu_physical_memory_is_dirty(addr1)) {
4172 /* invalidate code */
4173 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4174 /* set dirty bit */
f7c11b53
YT
4175 cpu_physical_memory_set_dirty_flags(addr1,
4176 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4177 }
8df1cd07
FB
4178 }
4179}
4180
1e78bcc1
AG
4181void stl_phys(target_phys_addr_t addr, uint32_t val)
4182{
4183 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4184}
4185
4186void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4187{
4188 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4189}
4190
4191void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4192{
4193 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4194}
4195
aab33094 4196/* XXX: optimize */
c227f099 4197void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4198{
4199 uint8_t v = val;
4200 cpu_physical_memory_write(addr, &v, 1);
4201}
4202
733f0b02 4203/* warning: addr must be aligned */
1e78bcc1
AG
4204static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4205 enum device_endian endian)
aab33094 4206{
733f0b02
MT
4207 int io_index;
4208 uint8_t *ptr;
4209 unsigned long pd;
f1f6e3b8 4210 PhysPageDesc p;
733f0b02
MT
4211
4212 p = phys_page_find(addr >> TARGET_PAGE_BITS);
f1f6e3b8 4213 pd = p.phys_offset;
733f0b02 4214
0e0df1e2 4215 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
733f0b02 4216 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
f1f6e3b8 4217 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
1e78bcc1
AG
4218#if defined(TARGET_WORDS_BIGENDIAN)
4219 if (endian == DEVICE_LITTLE_ENDIAN) {
4220 val = bswap16(val);
4221 }
4222#else
4223 if (endian == DEVICE_BIG_ENDIAN) {
4224 val = bswap16(val);
4225 }
4226#endif
acbbec5d 4227 io_mem_write(io_index, addr, val, 2);
733f0b02
MT
4228 } else {
4229 unsigned long addr1;
4230 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4231 /* RAM case */
4232 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4233 switch (endian) {
4234 case DEVICE_LITTLE_ENDIAN:
4235 stw_le_p(ptr, val);
4236 break;
4237 case DEVICE_BIG_ENDIAN:
4238 stw_be_p(ptr, val);
4239 break;
4240 default:
4241 stw_p(ptr, val);
4242 break;
4243 }
733f0b02
MT
4244 if (!cpu_physical_memory_is_dirty(addr1)) {
4245 /* invalidate code */
4246 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4247 /* set dirty bit */
4248 cpu_physical_memory_set_dirty_flags(addr1,
4249 (0xff & ~CODE_DIRTY_FLAG));
4250 }
4251 }
aab33094
FB
4252}
4253
1e78bcc1
AG
4254void stw_phys(target_phys_addr_t addr, uint32_t val)
4255{
4256 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4257}
4258
4259void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4260{
4261 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4262}
4263
4264void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4265{
4266 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4267}
4268
aab33094 4269/* XXX: optimize */
c227f099 4270void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4271{
4272 val = tswap64(val);
71d2b725 4273 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4274}
4275
1e78bcc1
AG
4276void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4277{
4278 val = cpu_to_le64(val);
4279 cpu_physical_memory_write(addr, &val, 8);
4280}
4281
4282void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4283{
4284 val = cpu_to_be64(val);
4285 cpu_physical_memory_write(addr, &val, 8);
4286}
4287
5e2972fd 4288/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4289int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4290 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4291{
4292 int l;
c227f099 4293 target_phys_addr_t phys_addr;
9b3c35e0 4294 target_ulong page;
13eb76e0
FB
4295
4296 while (len > 0) {
4297 page = addr & TARGET_PAGE_MASK;
4298 phys_addr = cpu_get_phys_page_debug(env, page);
4299 /* if no physical page mapped, return an error */
4300 if (phys_addr == -1)
4301 return -1;
4302 l = (page + TARGET_PAGE_SIZE) - addr;
4303 if (l > len)
4304 l = len;
5e2972fd 4305 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4306 if (is_write)
4307 cpu_physical_memory_write_rom(phys_addr, buf, l);
4308 else
5e2972fd 4309 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4310 len -= l;
4311 buf += l;
4312 addr += l;
4313 }
4314 return 0;
4315}
a68fe89c 4316#endif
13eb76e0 4317
2e70f6ef
PB
4318/* in deterministic execution mode, instructions doing device I/Os
4319 must be at the end of the TB */
4320void cpu_io_recompile(CPUState *env, void *retaddr)
4321{
4322 TranslationBlock *tb;
4323 uint32_t n, cflags;
4324 target_ulong pc, cs_base;
4325 uint64_t flags;
4326
4327 tb = tb_find_pc((unsigned long)retaddr);
4328 if (!tb) {
4329 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4330 retaddr);
4331 }
4332 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4333 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4334 /* Calculate how many instructions had been executed before the fault
bf20dc07 4335 occurred. */
2e70f6ef
PB
4336 n = n - env->icount_decr.u16.low;
4337 /* Generate a new TB ending on the I/O insn. */
4338 n++;
4339 /* On MIPS and SH, delay slot instructions can only be restarted if
4340 they were already the first instruction in the TB. If this is not
bf20dc07 4341 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4342 branch. */
4343#if defined(TARGET_MIPS)
4344 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4345 env->active_tc.PC -= 4;
4346 env->icount_decr.u16.low++;
4347 env->hflags &= ~MIPS_HFLAG_BMASK;
4348 }
4349#elif defined(TARGET_SH4)
4350 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4351 && n > 1) {
4352 env->pc -= 2;
4353 env->icount_decr.u16.low++;
4354 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4355 }
4356#endif
4357 /* This should never happen. */
4358 if (n > CF_COUNT_MASK)
4359 cpu_abort(env, "TB too big during recompile");
4360
4361 cflags = n | CF_LAST_IO;
4362 pc = tb->pc;
4363 cs_base = tb->cs_base;
4364 flags = tb->flags;
4365 tb_phys_invalidate(tb, -1);
4366 /* FIXME: In theory this could raise an exception. In practice
4367 we have already translated the block once so it's probably ok. */
4368 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4369 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4370 the first in the TB) then we end up generating a whole new TB and
4371 repeating the fault, which is horribly inefficient.
4372 Better would be to execute just this insn uncached, or generate a
4373 second new TB. */
4374 cpu_resume_from_signal(env, NULL);
4375}
4376
b3755a91
PB
4377#if !defined(CONFIG_USER_ONLY)
4378
055403b2 4379void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4380{
4381 int i, target_code_size, max_target_code_size;
4382 int direct_jmp_count, direct_jmp2_count, cross_page;
4383 TranslationBlock *tb;
3b46e624 4384
e3db7226
FB
4385 target_code_size = 0;
4386 max_target_code_size = 0;
4387 cross_page = 0;
4388 direct_jmp_count = 0;
4389 direct_jmp2_count = 0;
4390 for(i = 0; i < nb_tbs; i++) {
4391 tb = &tbs[i];
4392 target_code_size += tb->size;
4393 if (tb->size > max_target_code_size)
4394 max_target_code_size = tb->size;
4395 if (tb->page_addr[1] != -1)
4396 cross_page++;
4397 if (tb->tb_next_offset[0] != 0xffff) {
4398 direct_jmp_count++;
4399 if (tb->tb_next_offset[1] != 0xffff) {
4400 direct_jmp2_count++;
4401 }
4402 }
4403 }
4404 /* XXX: avoid using doubles ? */
57fec1fe 4405 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4406 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4407 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4408 cpu_fprintf(f, "TB count %d/%d\n",
4409 nb_tbs, code_gen_max_blocks);
5fafdf24 4410 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4411 nb_tbs ? target_code_size / nb_tbs : 0,
4412 max_target_code_size);
055403b2 4413 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4414 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4415 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4416 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4417 cross_page,
e3db7226
FB
4418 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4419 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4420 direct_jmp_count,
e3db7226
FB
4421 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4422 direct_jmp2_count,
4423 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4424 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4425 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4426 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4427 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4428 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4429}
4430
d39e8222
AK
4431/* NOTE: this function can trigger an exception */
4432/* NOTE2: the returned address is not exactly the physical address: it
4433 is the offset relative to phys_ram_base */
4434tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
4435{
4436 int mmu_idx, page_index, pd;
4437 void *p;
4438
4439 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4440 mmu_idx = cpu_mmu_index(env1);
4441 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4442 (addr & TARGET_PAGE_MASK))) {
4443 ldub_code(addr);
4444 }
4445 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
0e0df1e2
AK
4446 if (pd != io_mem_ram.ram_addr && pd != io_mem_rom.ram_addr
4447 && !(pd & IO_MEM_ROMD)) {
d39e8222
AK
4448#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4449 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4450#else
4451 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4452#endif
4453 }
4454 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4455 return qemu_ram_addr_from_host_nofail(p);
4456}
4457
61382a50 4458#define MMUSUFFIX _cmmu
3917149d 4459#undef GETPC
61382a50
FB
4460#define GETPC() NULL
4461#define env cpu_single_env
b769d8fe 4462#define SOFTMMU_CODE_ACCESS
61382a50
FB
4463
4464#define SHIFT 0
4465#include "softmmu_template.h"
4466
4467#define SHIFT 1
4468#include "softmmu_template.h"
4469
4470#define SHIFT 2
4471#include "softmmu_template.h"
4472
4473#define SHIFT 3
4474#include "softmmu_template.h"
4475
4476#undef env
4477
4478#endif