]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
dealing with the rest of shrink_dentry_list() livelock
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
789680d1
NP
398/**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413void __d_drop(struct dentry *dentry)
414{
dea3667b 415 if (!d_unhashed(dentry)) {
b61625d2 416 struct hlist_bl_head *b;
7632e465
BF
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
dea3667b 431 dentry_rcuwalk_barrier(dentry);
789680d1
NP
432 }
433}
434EXPORT_SYMBOL(__d_drop);
435
436void d_drop(struct dentry *dentry)
437{
789680d1
NP
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
789680d1
NP
441}
442EXPORT_SYMBOL(d_drop);
443
e55fd011 444static void __dentry_kill(struct dentry *dentry)
77812a1e 445{
41edf278
AV
446 struct dentry *parent = NULL;
447 bool can_free = true;
41edf278 448 if (!IS_ROOT(dentry))
77812a1e 449 parent = dentry->d_parent;
31e6b01f 450
0d98439e
LT
451 /*
452 * The dentry is now unrecoverably dead to the world.
453 */
454 lockref_mark_dead(&dentry->d_lockref);
455
f0023bc6 456 /*
f0023bc6
SW
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
459 */
590fb51f 460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
461 dentry->d_op->d_prune(dentry);
462
01b60351
AV
463 if (dentry->d_flags & DCACHE_LRU_LIST) {
464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 d_lru_del(dentry);
01b60351 466 }
77812a1e
NP
467 /* if it was on the hash then remove it */
468 __d_drop(dentry);
03b3b889
AV
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform d_walk() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 BUG_ON((int)dentry->d_lockref.count > 0);
483 this_cpu_dec(nr_dentry);
484 if (dentry->d_op && dentry->d_op->d_release)
485 dentry->d_op->d_release(dentry);
486
41edf278
AV
487 spin_lock(&dentry->d_lock);
488 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 dentry->d_flags |= DCACHE_MAY_FREE;
490 can_free = false;
491 }
492 spin_unlock(&dentry->d_lock);
41edf278
AV
493 if (likely(can_free))
494 dentry_free(dentry);
e55fd011
AV
495}
496
497/*
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
502 */
503static struct dentry *
504dentry_kill(struct dentry *dentry, int unlock_on_failure)
505 __releases(dentry->d_lock)
506{
507 struct inode *inode = dentry->d_inode;
508 struct dentry *parent = NULL;
509
510 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
511 goto failed;
512
513 if (!IS_ROOT(dentry)) {
514 parent = dentry->d_parent;
515 if (unlikely(!spin_trylock(&parent->d_lock))) {
516 if (inode)
517 spin_unlock(&inode->i_lock);
518 goto failed;
519 }
520 }
521
522 __dentry_kill(dentry);
03b3b889 523 return parent;
e55fd011
AV
524
525failed:
526 if (unlock_on_failure) {
527 spin_unlock(&dentry->d_lock);
528 cpu_relax();
529 }
530 return dentry; /* try again with same dentry */
77812a1e
NP
531}
532
046b961b
AV
533static inline struct dentry *lock_parent(struct dentry *dentry)
534{
535 struct dentry *parent = dentry->d_parent;
536 if (IS_ROOT(dentry))
537 return NULL;
538 if (likely(spin_trylock(&parent->d_lock)))
539 return parent;
540 spin_unlock(&dentry->d_lock);
541 rcu_read_lock();
542again:
543 parent = ACCESS_ONCE(dentry->d_parent);
544 spin_lock(&parent->d_lock);
545 /*
546 * We can't blindly lock dentry until we are sure
547 * that we won't violate the locking order.
548 * Any changes of dentry->d_parent must have
549 * been done with parent->d_lock held, so
550 * spin_lock() above is enough of a barrier
551 * for checking if it's still our child.
552 */
553 if (unlikely(parent != dentry->d_parent)) {
554 spin_unlock(&parent->d_lock);
555 goto again;
556 }
557 rcu_read_unlock();
558 if (parent != dentry)
559 spin_lock(&dentry->d_lock);
560 else
561 parent = NULL;
562 return parent;
563}
564
1da177e4
LT
565/*
566 * This is dput
567 *
568 * This is complicated by the fact that we do not want to put
569 * dentries that are no longer on any hash chain on the unused
570 * list: we'd much rather just get rid of them immediately.
571 *
572 * However, that implies that we have to traverse the dentry
573 * tree upwards to the parents which might _also_ now be
574 * scheduled for deletion (it may have been only waiting for
575 * its last child to go away).
576 *
577 * This tail recursion is done by hand as we don't want to depend
578 * on the compiler to always get this right (gcc generally doesn't).
579 * Real recursion would eat up our stack space.
580 */
581
582/*
583 * dput - release a dentry
584 * @dentry: dentry to release
585 *
586 * Release a dentry. This will drop the usage count and if appropriate
587 * call the dentry unlink method as well as removing it from the queues and
588 * releasing its resources. If the parent dentries were scheduled for release
589 * they too may now get deleted.
1da177e4 590 */
1da177e4
LT
591void dput(struct dentry *dentry)
592{
8aab6a27 593 if (unlikely(!dentry))
1da177e4
LT
594 return;
595
596repeat:
98474236 597 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 598 return;
1da177e4 599
8aab6a27
LT
600 /* Unreachable? Get rid of it */
601 if (unlikely(d_unhashed(dentry)))
602 goto kill_it;
603
604 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 605 if (dentry->d_op->d_delete(dentry))
61f3dee4 606 goto kill_it;
1da177e4 607 }
265ac902 608
358eec18
LT
609 if (!(dentry->d_flags & DCACHE_REFERENCED))
610 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 611 dentry_lru_add(dentry);
265ac902 612
98474236 613 dentry->d_lockref.count--;
61f3dee4 614 spin_unlock(&dentry->d_lock);
1da177e4
LT
615 return;
616
d52b9086 617kill_it:
dd1f6b2e 618 dentry = dentry_kill(dentry, 1);
d52b9086
MS
619 if (dentry)
620 goto repeat;
1da177e4 621}
ec4f8605 622EXPORT_SYMBOL(dput);
1da177e4
LT
623
624/**
625 * d_invalidate - invalidate a dentry
626 * @dentry: dentry to invalidate
627 *
628 * Try to invalidate the dentry if it turns out to be
629 * possible. If there are other dentries that can be
630 * reached through this one we can't delete it and we
631 * return -EBUSY. On success we return 0.
632 *
633 * no dcache lock.
634 */
635
636int d_invalidate(struct dentry * dentry)
637{
638 /*
639 * If it's already been dropped, return OK.
640 */
da502956 641 spin_lock(&dentry->d_lock);
1da177e4 642 if (d_unhashed(dentry)) {
da502956 643 spin_unlock(&dentry->d_lock);
1da177e4
LT
644 return 0;
645 }
646 /*
647 * Check whether to do a partial shrink_dcache
648 * to get rid of unused child entries.
649 */
650 if (!list_empty(&dentry->d_subdirs)) {
da502956 651 spin_unlock(&dentry->d_lock);
1da177e4 652 shrink_dcache_parent(dentry);
da502956 653 spin_lock(&dentry->d_lock);
1da177e4
LT
654 }
655
656 /*
657 * Somebody else still using it?
658 *
659 * If it's a directory, we can't drop it
660 * for fear of somebody re-populating it
661 * with children (even though dropping it
662 * would make it unreachable from the root,
663 * we might still populate it if it was a
664 * working directory or similar).
50e69630
AV
665 * We also need to leave mountpoints alone,
666 * directory or not.
1da177e4 667 */
98474236 668 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 669 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 670 spin_unlock(&dentry->d_lock);
1da177e4
LT
671 return -EBUSY;
672 }
673 }
674
675 __d_drop(dentry);
676 spin_unlock(&dentry->d_lock);
1da177e4
LT
677 return 0;
678}
ec4f8605 679EXPORT_SYMBOL(d_invalidate);
1da177e4 680
b5c84bf6 681/* This must be called with d_lock held */
dc0474be 682static inline void __dget_dlock(struct dentry *dentry)
23044507 683{
98474236 684 dentry->d_lockref.count++;
23044507
NP
685}
686
dc0474be 687static inline void __dget(struct dentry *dentry)
1da177e4 688{
98474236 689 lockref_get(&dentry->d_lockref);
1da177e4
LT
690}
691
b7ab39f6
NP
692struct dentry *dget_parent(struct dentry *dentry)
693{
df3d0bbc 694 int gotref;
b7ab39f6
NP
695 struct dentry *ret;
696
df3d0bbc
WL
697 /*
698 * Do optimistic parent lookup without any
699 * locking.
700 */
701 rcu_read_lock();
702 ret = ACCESS_ONCE(dentry->d_parent);
703 gotref = lockref_get_not_zero(&ret->d_lockref);
704 rcu_read_unlock();
705 if (likely(gotref)) {
706 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
707 return ret;
708 dput(ret);
709 }
710
b7ab39f6 711repeat:
a734eb45
NP
712 /*
713 * Don't need rcu_dereference because we re-check it was correct under
714 * the lock.
715 */
716 rcu_read_lock();
b7ab39f6 717 ret = dentry->d_parent;
a734eb45
NP
718 spin_lock(&ret->d_lock);
719 if (unlikely(ret != dentry->d_parent)) {
720 spin_unlock(&ret->d_lock);
721 rcu_read_unlock();
b7ab39f6
NP
722 goto repeat;
723 }
a734eb45 724 rcu_read_unlock();
98474236
WL
725 BUG_ON(!ret->d_lockref.count);
726 ret->d_lockref.count++;
b7ab39f6 727 spin_unlock(&ret->d_lock);
b7ab39f6
NP
728 return ret;
729}
730EXPORT_SYMBOL(dget_parent);
731
1da177e4
LT
732/**
733 * d_find_alias - grab a hashed alias of inode
734 * @inode: inode in question
32ba9c3f
LT
735 * @want_discon: flag, used by d_splice_alias, to request
736 * that only a DISCONNECTED alias be returned.
1da177e4
LT
737 *
738 * If inode has a hashed alias, or is a directory and has any alias,
739 * acquire the reference to alias and return it. Otherwise return NULL.
740 * Notice that if inode is a directory there can be only one alias and
741 * it can be unhashed only if it has no children, or if it is the root
742 * of a filesystem.
743 *
21c0d8fd 744 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
745 * any other hashed alias over that one unless @want_discon is set,
746 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 747 */
32ba9c3f 748static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 749{
da502956 750 struct dentry *alias, *discon_alias;
1da177e4 751
da502956
NP
752again:
753 discon_alias = NULL;
b67bfe0d 754 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 755 spin_lock(&alias->d_lock);
1da177e4 756 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 757 if (IS_ROOT(alias) &&
da502956 758 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 759 discon_alias = alias;
32ba9c3f 760 } else if (!want_discon) {
dc0474be 761 __dget_dlock(alias);
da502956
NP
762 spin_unlock(&alias->d_lock);
763 return alias;
764 }
765 }
766 spin_unlock(&alias->d_lock);
767 }
768 if (discon_alias) {
769 alias = discon_alias;
770 spin_lock(&alias->d_lock);
771 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
772 if (IS_ROOT(alias) &&
773 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 774 __dget_dlock(alias);
da502956 775 spin_unlock(&alias->d_lock);
1da177e4
LT
776 return alias;
777 }
778 }
da502956
NP
779 spin_unlock(&alias->d_lock);
780 goto again;
1da177e4 781 }
da502956 782 return NULL;
1da177e4
LT
783}
784
da502956 785struct dentry *d_find_alias(struct inode *inode)
1da177e4 786{
214fda1f
DH
787 struct dentry *de = NULL;
788
b3d9b7a3 789 if (!hlist_empty(&inode->i_dentry)) {
873feea0 790 spin_lock(&inode->i_lock);
32ba9c3f 791 de = __d_find_alias(inode, 0);
873feea0 792 spin_unlock(&inode->i_lock);
214fda1f 793 }
1da177e4
LT
794 return de;
795}
ec4f8605 796EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
797
798/*
799 * Try to kill dentries associated with this inode.
800 * WARNING: you must own a reference to inode.
801 */
802void d_prune_aliases(struct inode *inode)
803{
0cdca3f9 804 struct dentry *dentry;
1da177e4 805restart:
873feea0 806 spin_lock(&inode->i_lock);
b67bfe0d 807 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 808 spin_lock(&dentry->d_lock);
98474236 809 if (!dentry->d_lockref.count) {
590fb51f
YZ
810 /*
811 * inform the fs via d_prune that this dentry
812 * is about to be unhashed and destroyed.
813 */
814 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
815 !d_unhashed(dentry))
816 dentry->d_op->d_prune(dentry);
817
dc0474be 818 __dget_dlock(dentry);
1da177e4
LT
819 __d_drop(dentry);
820 spin_unlock(&dentry->d_lock);
873feea0 821 spin_unlock(&inode->i_lock);
1da177e4
LT
822 dput(dentry);
823 goto restart;
824 }
825 spin_unlock(&dentry->d_lock);
826 }
873feea0 827 spin_unlock(&inode->i_lock);
1da177e4 828}
ec4f8605 829EXPORT_SYMBOL(d_prune_aliases);
1da177e4 830
3049cfe2 831static void shrink_dentry_list(struct list_head *list)
1da177e4 832{
5c47e6d0 833 struct dentry *dentry, *parent;
da3bbdd4 834
60942f2f 835 while (!list_empty(list)) {
ff2fde99 836 struct inode *inode;
60942f2f 837 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 838 spin_lock(&dentry->d_lock);
046b961b
AV
839 parent = lock_parent(dentry);
840
dd1f6b2e
DC
841 /*
842 * The dispose list is isolated and dentries are not accounted
843 * to the LRU here, so we can simply remove it from the list
844 * here regardless of whether it is referenced or not.
845 */
89dc77bc 846 d_shrink_del(dentry);
dd1f6b2e 847
1da177e4
LT
848 /*
849 * We found an inuse dentry which was not removed from
dd1f6b2e 850 * the LRU because of laziness during lookup. Do not free it.
1da177e4 851 */
41edf278 852 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 853 spin_unlock(&dentry->d_lock);
046b961b
AV
854 if (parent)
855 spin_unlock(&parent->d_lock);
1da177e4
LT
856 continue;
857 }
77812a1e 858
64fd72e0
AV
859
860 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
861 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
862 spin_unlock(&dentry->d_lock);
046b961b
AV
863 if (parent)
864 spin_unlock(&parent->d_lock);
64fd72e0
AV
865 if (can_free)
866 dentry_free(dentry);
867 continue;
868 }
869
ff2fde99
AV
870 inode = dentry->d_inode;
871 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 872 d_shrink_add(dentry, list);
dd1f6b2e 873 spin_unlock(&dentry->d_lock);
046b961b
AV
874 if (parent)
875 spin_unlock(&parent->d_lock);
5c47e6d0 876 continue;
dd1f6b2e 877 }
ff2fde99 878
ff2fde99 879 __dentry_kill(dentry);
046b961b 880
5c47e6d0
AV
881 /*
882 * We need to prune ancestors too. This is necessary to prevent
883 * quadratic behavior of shrink_dcache_parent(), but is also
884 * expected to be beneficial in reducing dentry cache
885 * fragmentation.
886 */
887 dentry = parent;
b2b80195
AV
888 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
889 parent = lock_parent(dentry);
890 if (dentry->d_lockref.count != 1) {
891 dentry->d_lockref.count--;
892 spin_unlock(&dentry->d_lock);
893 if (parent)
894 spin_unlock(&parent->d_lock);
895 break;
896 }
897 inode = dentry->d_inode; /* can't be NULL */
898 if (unlikely(!spin_trylock(&inode->i_lock))) {
899 spin_unlock(&dentry->d_lock);
900 if (parent)
901 spin_unlock(&parent->d_lock);
902 cpu_relax();
903 continue;
904 }
905 __dentry_kill(dentry);
906 dentry = parent;
907 }
da3bbdd4 908 }
3049cfe2
CH
909}
910
f6041567
DC
911static enum lru_status
912dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
913{
914 struct list_head *freeable = arg;
915 struct dentry *dentry = container_of(item, struct dentry, d_lru);
916
917
918 /*
919 * we are inverting the lru lock/dentry->d_lock here,
920 * so use a trylock. If we fail to get the lock, just skip
921 * it
922 */
923 if (!spin_trylock(&dentry->d_lock))
924 return LRU_SKIP;
925
926 /*
927 * Referenced dentries are still in use. If they have active
928 * counts, just remove them from the LRU. Otherwise give them
929 * another pass through the LRU.
930 */
931 if (dentry->d_lockref.count) {
89dc77bc 932 d_lru_isolate(dentry);
f6041567
DC
933 spin_unlock(&dentry->d_lock);
934 return LRU_REMOVED;
935 }
936
937 if (dentry->d_flags & DCACHE_REFERENCED) {
938 dentry->d_flags &= ~DCACHE_REFERENCED;
939 spin_unlock(&dentry->d_lock);
940
941 /*
942 * The list move itself will be made by the common LRU code. At
943 * this point, we've dropped the dentry->d_lock but keep the
944 * lru lock. This is safe to do, since every list movement is
945 * protected by the lru lock even if both locks are held.
946 *
947 * This is guaranteed by the fact that all LRU management
948 * functions are intermediated by the LRU API calls like
949 * list_lru_add and list_lru_del. List movement in this file
950 * only ever occur through this functions or through callbacks
951 * like this one, that are called from the LRU API.
952 *
953 * The only exceptions to this are functions like
954 * shrink_dentry_list, and code that first checks for the
955 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
956 * operating only with stack provided lists after they are
957 * properly isolated from the main list. It is thus, always a
958 * local access.
959 */
960 return LRU_ROTATE;
961 }
962
89dc77bc 963 d_lru_shrink_move(dentry, freeable);
f6041567
DC
964 spin_unlock(&dentry->d_lock);
965
966 return LRU_REMOVED;
967}
968
3049cfe2 969/**
b48f03b3
DC
970 * prune_dcache_sb - shrink the dcache
971 * @sb: superblock
f6041567 972 * @nr_to_scan : number of entries to try to free
9b17c623 973 * @nid: which node to scan for freeable entities
b48f03b3 974 *
f6041567 975 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
976 * done when we need more memory an called from the superblock shrinker
977 * function.
3049cfe2 978 *
b48f03b3
DC
979 * This function may fail to free any resources if all the dentries are in
980 * use.
3049cfe2 981 */
9b17c623
DC
982long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
983 int nid)
3049cfe2 984{
f6041567
DC
985 LIST_HEAD(dispose);
986 long freed;
3049cfe2 987
9b17c623
DC
988 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
989 &dispose, &nr_to_scan);
f6041567 990 shrink_dentry_list(&dispose);
0a234c6d 991 return freed;
da3bbdd4 992}
23044507 993
4e717f5c
GC
994static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
995 spinlock_t *lru_lock, void *arg)
dd1f6b2e 996{
4e717f5c
GC
997 struct list_head *freeable = arg;
998 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 999
4e717f5c
GC
1000 /*
1001 * we are inverting the lru lock/dentry->d_lock here,
1002 * so use a trylock. If we fail to get the lock, just skip
1003 * it
1004 */
1005 if (!spin_trylock(&dentry->d_lock))
1006 return LRU_SKIP;
1007
89dc77bc 1008 d_lru_shrink_move(dentry, freeable);
4e717f5c 1009 spin_unlock(&dentry->d_lock);
ec33679d 1010
4e717f5c 1011 return LRU_REMOVED;
da3bbdd4
KM
1012}
1013
4e717f5c 1014
1da177e4
LT
1015/**
1016 * shrink_dcache_sb - shrink dcache for a superblock
1017 * @sb: superblock
1018 *
3049cfe2
CH
1019 * Shrink the dcache for the specified super block. This is used to free
1020 * the dcache before unmounting a file system.
1da177e4 1021 */
3049cfe2 1022void shrink_dcache_sb(struct super_block *sb)
1da177e4 1023{
4e717f5c
GC
1024 long freed;
1025
1026 do {
1027 LIST_HEAD(dispose);
1028
1029 freed = list_lru_walk(&sb->s_dentry_lru,
1030 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1031
4e717f5c
GC
1032 this_cpu_sub(nr_dentry_unused, freed);
1033 shrink_dentry_list(&dispose);
1034 } while (freed > 0);
1da177e4 1035}
ec4f8605 1036EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1037
db14fc3a
MS
1038/**
1039 * enum d_walk_ret - action to talke during tree walk
1040 * @D_WALK_CONTINUE: contrinue walk
1041 * @D_WALK_QUIT: quit walk
1042 * @D_WALK_NORETRY: quit when retry is needed
1043 * @D_WALK_SKIP: skip this dentry and its children
1044 */
1045enum d_walk_ret {
1046 D_WALK_CONTINUE,
1047 D_WALK_QUIT,
1048 D_WALK_NORETRY,
1049 D_WALK_SKIP,
1050};
c826cb7d 1051
1da177e4 1052/**
db14fc3a
MS
1053 * d_walk - walk the dentry tree
1054 * @parent: start of walk
1055 * @data: data passed to @enter() and @finish()
1056 * @enter: callback when first entering the dentry
1057 * @finish: callback when successfully finished the walk
1da177e4 1058 *
db14fc3a 1059 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1060 */
db14fc3a
MS
1061static void d_walk(struct dentry *parent, void *data,
1062 enum d_walk_ret (*enter)(void *, struct dentry *),
1063 void (*finish)(void *))
1da177e4 1064{
949854d0 1065 struct dentry *this_parent;
1da177e4 1066 struct list_head *next;
48f5ec21 1067 unsigned seq = 0;
db14fc3a
MS
1068 enum d_walk_ret ret;
1069 bool retry = true;
949854d0 1070
58db63d0 1071again:
48f5ec21 1072 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1073 this_parent = parent;
2fd6b7f5 1074 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1075
1076 ret = enter(data, this_parent);
1077 switch (ret) {
1078 case D_WALK_CONTINUE:
1079 break;
1080 case D_WALK_QUIT:
1081 case D_WALK_SKIP:
1082 goto out_unlock;
1083 case D_WALK_NORETRY:
1084 retry = false;
1085 break;
1086 }
1da177e4
LT
1087repeat:
1088 next = this_parent->d_subdirs.next;
1089resume:
1090 while (next != &this_parent->d_subdirs) {
1091 struct list_head *tmp = next;
5160ee6f 1092 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1093 next = tmp->next;
2fd6b7f5
NP
1094
1095 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1096
1097 ret = enter(data, dentry);
1098 switch (ret) {
1099 case D_WALK_CONTINUE:
1100 break;
1101 case D_WALK_QUIT:
2fd6b7f5 1102 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1103 goto out_unlock;
1104 case D_WALK_NORETRY:
1105 retry = false;
1106 break;
1107 case D_WALK_SKIP:
1108 spin_unlock(&dentry->d_lock);
1109 continue;
2fd6b7f5 1110 }
db14fc3a 1111
1da177e4 1112 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1113 spin_unlock(&this_parent->d_lock);
1114 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1115 this_parent = dentry;
2fd6b7f5 1116 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1117 goto repeat;
1118 }
2fd6b7f5 1119 spin_unlock(&dentry->d_lock);
1da177e4
LT
1120 }
1121 /*
1122 * All done at this level ... ascend and resume the search.
1123 */
1124 if (this_parent != parent) {
c826cb7d 1125 struct dentry *child = this_parent;
31dec132
AV
1126 this_parent = child->d_parent;
1127
1128 rcu_read_lock();
1129 spin_unlock(&child->d_lock);
1130 spin_lock(&this_parent->d_lock);
1131
1132 /*
1133 * might go back up the wrong parent if we have had a rename
1134 * or deletion
1135 */
1136 if (this_parent != child->d_parent ||
1137 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1138 need_seqretry(&rename_lock, seq)) {
1139 spin_unlock(&this_parent->d_lock);
1140 rcu_read_unlock();
949854d0 1141 goto rename_retry;
31dec132
AV
1142 }
1143 rcu_read_unlock();
949854d0 1144 next = child->d_u.d_child.next;
1da177e4
LT
1145 goto resume;
1146 }
48f5ec21 1147 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1148 spin_unlock(&this_parent->d_lock);
949854d0 1149 goto rename_retry;
db14fc3a
MS
1150 }
1151 if (finish)
1152 finish(data);
1153
1154out_unlock:
1155 spin_unlock(&this_parent->d_lock);
48f5ec21 1156 done_seqretry(&rename_lock, seq);
db14fc3a 1157 return;
58db63d0
NP
1158
1159rename_retry:
db14fc3a
MS
1160 if (!retry)
1161 return;
48f5ec21 1162 seq = 1;
58db63d0 1163 goto again;
1da177e4 1164}
db14fc3a
MS
1165
1166/*
1167 * Search for at least 1 mount point in the dentry's subdirs.
1168 * We descend to the next level whenever the d_subdirs
1169 * list is non-empty and continue searching.
1170 */
1171
db14fc3a
MS
1172static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1173{
1174 int *ret = data;
1175 if (d_mountpoint(dentry)) {
1176 *ret = 1;
1177 return D_WALK_QUIT;
1178 }
1179 return D_WALK_CONTINUE;
1180}
1181
69c88dc7
RD
1182/**
1183 * have_submounts - check for mounts over a dentry
1184 * @parent: dentry to check.
1185 *
1186 * Return true if the parent or its subdirectories contain
1187 * a mount point
1188 */
db14fc3a
MS
1189int have_submounts(struct dentry *parent)
1190{
1191 int ret = 0;
1192
1193 d_walk(parent, &ret, check_mount, NULL);
1194
1195 return ret;
1196}
ec4f8605 1197EXPORT_SYMBOL(have_submounts);
1da177e4 1198
eed81007
MS
1199/*
1200 * Called by mount code to set a mountpoint and check if the mountpoint is
1201 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1202 * subtree can become unreachable).
1203 *
1204 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1205 * this reason take rename_lock and d_lock on dentry and ancestors.
1206 */
1207int d_set_mounted(struct dentry *dentry)
1208{
1209 struct dentry *p;
1210 int ret = -ENOENT;
1211 write_seqlock(&rename_lock);
1212 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1213 /* Need exclusion wrt. check_submounts_and_drop() */
1214 spin_lock(&p->d_lock);
1215 if (unlikely(d_unhashed(p))) {
1216 spin_unlock(&p->d_lock);
1217 goto out;
1218 }
1219 spin_unlock(&p->d_lock);
1220 }
1221 spin_lock(&dentry->d_lock);
1222 if (!d_unlinked(dentry)) {
1223 dentry->d_flags |= DCACHE_MOUNTED;
1224 ret = 0;
1225 }
1226 spin_unlock(&dentry->d_lock);
1227out:
1228 write_sequnlock(&rename_lock);
1229 return ret;
1230}
1231
1da177e4 1232/*
fd517909 1233 * Search the dentry child list of the specified parent,
1da177e4
LT
1234 * and move any unused dentries to the end of the unused
1235 * list for prune_dcache(). We descend to the next level
1236 * whenever the d_subdirs list is non-empty and continue
1237 * searching.
1238 *
1239 * It returns zero iff there are no unused children,
1240 * otherwise it returns the number of children moved to
1241 * the end of the unused list. This may not be the total
1242 * number of unused children, because select_parent can
1243 * drop the lock and return early due to latency
1244 * constraints.
1245 */
1da177e4 1246
db14fc3a
MS
1247struct select_data {
1248 struct dentry *start;
1249 struct list_head dispose;
1250 int found;
1251};
23044507 1252
db14fc3a
MS
1253static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1254{
1255 struct select_data *data = _data;
1256 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1257
db14fc3a
MS
1258 if (data->start == dentry)
1259 goto out;
2fd6b7f5 1260
fe91522a 1261 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1262 data->found++;
fe91522a
AV
1263 } else {
1264 if (dentry->d_flags & DCACHE_LRU_LIST)
1265 d_lru_del(dentry);
1266 if (!dentry->d_lockref.count) {
1267 d_shrink_add(dentry, &data->dispose);
1268 data->found++;
1269 }
1da177e4 1270 }
db14fc3a
MS
1271 /*
1272 * We can return to the caller if we have found some (this
1273 * ensures forward progress). We'll be coming back to find
1274 * the rest.
1275 */
fe91522a
AV
1276 if (!list_empty(&data->dispose))
1277 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1278out:
db14fc3a 1279 return ret;
1da177e4
LT
1280}
1281
1282/**
1283 * shrink_dcache_parent - prune dcache
1284 * @parent: parent of entries to prune
1285 *
1286 * Prune the dcache to remove unused children of the parent dentry.
1287 */
db14fc3a 1288void shrink_dcache_parent(struct dentry *parent)
1da177e4 1289{
db14fc3a
MS
1290 for (;;) {
1291 struct select_data data;
1da177e4 1292
db14fc3a
MS
1293 INIT_LIST_HEAD(&data.dispose);
1294 data.start = parent;
1295 data.found = 0;
1296
1297 d_walk(parent, &data, select_collect, NULL);
1298 if (!data.found)
1299 break;
1300
1301 shrink_dentry_list(&data.dispose);
421348f1
GT
1302 cond_resched();
1303 }
1da177e4 1304}
ec4f8605 1305EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1306
9c8c10e2 1307static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1308{
9c8c10e2
AV
1309 /* it has busy descendents; complain about those instead */
1310 if (!list_empty(&dentry->d_subdirs))
1311 return D_WALK_CONTINUE;
42c32608 1312
9c8c10e2
AV
1313 /* root with refcount 1 is fine */
1314 if (dentry == _data && dentry->d_lockref.count == 1)
1315 return D_WALK_CONTINUE;
1316
1317 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1318 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1319 dentry,
1320 dentry->d_inode ?
1321 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1322 dentry,
42c32608
AV
1323 dentry->d_lockref.count,
1324 dentry->d_sb->s_type->name,
1325 dentry->d_sb->s_id);
9c8c10e2
AV
1326 WARN_ON(1);
1327 return D_WALK_CONTINUE;
1328}
1329
1330static void do_one_tree(struct dentry *dentry)
1331{
1332 shrink_dcache_parent(dentry);
1333 d_walk(dentry, dentry, umount_check, NULL);
1334 d_drop(dentry);
1335 dput(dentry);
42c32608
AV
1336}
1337
1338/*
1339 * destroy the dentries attached to a superblock on unmounting
1340 */
1341void shrink_dcache_for_umount(struct super_block *sb)
1342{
1343 struct dentry *dentry;
1344
9c8c10e2 1345 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1346
1347 dentry = sb->s_root;
1348 sb->s_root = NULL;
9c8c10e2 1349 do_one_tree(dentry);
42c32608
AV
1350
1351 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1352 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1353 do_one_tree(dentry);
42c32608
AV
1354 }
1355}
1356
848ac114
MS
1357static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1358{
1359 struct select_data *data = _data;
1360
1361 if (d_mountpoint(dentry)) {
1362 data->found = -EBUSY;
1363 return D_WALK_QUIT;
1364 }
1365
1366 return select_collect(_data, dentry);
1367}
1368
1369static void check_and_drop(void *_data)
1370{
1371 struct select_data *data = _data;
1372
1373 if (d_mountpoint(data->start))
1374 data->found = -EBUSY;
1375 if (!data->found)
1376 __d_drop(data->start);
1377}
1378
1379/**
1380 * check_submounts_and_drop - prune dcache, check for submounts and drop
1381 *
1382 * All done as a single atomic operation relative to has_unlinked_ancestor().
1383 * Returns 0 if successfully unhashed @parent. If there were submounts then
1384 * return -EBUSY.
1385 *
1386 * @dentry: dentry to prune and drop
1387 */
1388int check_submounts_and_drop(struct dentry *dentry)
1389{
1390 int ret = 0;
1391
1392 /* Negative dentries can be dropped without further checks */
1393 if (!dentry->d_inode) {
1394 d_drop(dentry);
1395 goto out;
1396 }
1397
1398 for (;;) {
1399 struct select_data data;
1400
1401 INIT_LIST_HEAD(&data.dispose);
1402 data.start = dentry;
1403 data.found = 0;
1404
1405 d_walk(dentry, &data, check_and_collect, check_and_drop);
1406 ret = data.found;
1407
1408 if (!list_empty(&data.dispose))
1409 shrink_dentry_list(&data.dispose);
1410
1411 if (ret <= 0)
1412 break;
1413
1414 cond_resched();
1415 }
1416
1417out:
1418 return ret;
1419}
1420EXPORT_SYMBOL(check_submounts_and_drop);
1421
1da177e4 1422/**
a4464dbc
AV
1423 * __d_alloc - allocate a dcache entry
1424 * @sb: filesystem it will belong to
1da177e4
LT
1425 * @name: qstr of the name
1426 *
1427 * Allocates a dentry. It returns %NULL if there is insufficient memory
1428 * available. On a success the dentry is returned. The name passed in is
1429 * copied and the copy passed in may be reused after this call.
1430 */
1431
a4464dbc 1432struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1433{
1434 struct dentry *dentry;
1435 char *dname;
1436
e12ba74d 1437 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1438 if (!dentry)
1439 return NULL;
1440
6326c71f
LT
1441 /*
1442 * We guarantee that the inline name is always NUL-terminated.
1443 * This way the memcpy() done by the name switching in rename
1444 * will still always have a NUL at the end, even if we might
1445 * be overwriting an internal NUL character
1446 */
1447 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1448 if (name->len > DNAME_INLINE_LEN-1) {
1449 dname = kmalloc(name->len + 1, GFP_KERNEL);
1450 if (!dname) {
1451 kmem_cache_free(dentry_cache, dentry);
1452 return NULL;
1453 }
1454 } else {
1455 dname = dentry->d_iname;
1456 }
1da177e4
LT
1457
1458 dentry->d_name.len = name->len;
1459 dentry->d_name.hash = name->hash;
1460 memcpy(dname, name->name, name->len);
1461 dname[name->len] = 0;
1462
6326c71f
LT
1463 /* Make sure we always see the terminating NUL character */
1464 smp_wmb();
1465 dentry->d_name.name = dname;
1466
98474236 1467 dentry->d_lockref.count = 1;
dea3667b 1468 dentry->d_flags = 0;
1da177e4 1469 spin_lock_init(&dentry->d_lock);
31e6b01f 1470 seqcount_init(&dentry->d_seq);
1da177e4 1471 dentry->d_inode = NULL;
a4464dbc
AV
1472 dentry->d_parent = dentry;
1473 dentry->d_sb = sb;
1da177e4
LT
1474 dentry->d_op = NULL;
1475 dentry->d_fsdata = NULL;
ceb5bdc2 1476 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1477 INIT_LIST_HEAD(&dentry->d_lru);
1478 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1479 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1480 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1481 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1482
3e880fb5 1483 this_cpu_inc(nr_dentry);
312d3ca8 1484
1da177e4
LT
1485 return dentry;
1486}
a4464dbc
AV
1487
1488/**
1489 * d_alloc - allocate a dcache entry
1490 * @parent: parent of entry to allocate
1491 * @name: qstr of the name
1492 *
1493 * Allocates a dentry. It returns %NULL if there is insufficient memory
1494 * available. On a success the dentry is returned. The name passed in is
1495 * copied and the copy passed in may be reused after this call.
1496 */
1497struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1498{
1499 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1500 if (!dentry)
1501 return NULL;
1502
1503 spin_lock(&parent->d_lock);
1504 /*
1505 * don't need child lock because it is not subject
1506 * to concurrency here
1507 */
1508 __dget_dlock(parent);
1509 dentry->d_parent = parent;
1510 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1511 spin_unlock(&parent->d_lock);
1512
1513 return dentry;
1514}
ec4f8605 1515EXPORT_SYMBOL(d_alloc);
1da177e4 1516
e1a24bb0
BF
1517/**
1518 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1519 * @sb: the superblock
1520 * @name: qstr of the name
1521 *
1522 * For a filesystem that just pins its dentries in memory and never
1523 * performs lookups at all, return an unhashed IS_ROOT dentry.
1524 */
4b936885
NP
1525struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1526{
e1a24bb0 1527 return __d_alloc(sb, name);
4b936885
NP
1528}
1529EXPORT_SYMBOL(d_alloc_pseudo);
1530
1da177e4
LT
1531struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1532{
1533 struct qstr q;
1534
1535 q.name = name;
1536 q.len = strlen(name);
1537 q.hash = full_name_hash(q.name, q.len);
1538 return d_alloc(parent, &q);
1539}
ef26ca97 1540EXPORT_SYMBOL(d_alloc_name);
1da177e4 1541
fb045adb
NP
1542void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1543{
6f7f7caa
LT
1544 WARN_ON_ONCE(dentry->d_op);
1545 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1546 DCACHE_OP_COMPARE |
1547 DCACHE_OP_REVALIDATE |
ecf3d1f1 1548 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1549 DCACHE_OP_DELETE ));
1550 dentry->d_op = op;
1551 if (!op)
1552 return;
1553 if (op->d_hash)
1554 dentry->d_flags |= DCACHE_OP_HASH;
1555 if (op->d_compare)
1556 dentry->d_flags |= DCACHE_OP_COMPARE;
1557 if (op->d_revalidate)
1558 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1559 if (op->d_weak_revalidate)
1560 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1561 if (op->d_delete)
1562 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1563 if (op->d_prune)
1564 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1565
1566}
1567EXPORT_SYMBOL(d_set_d_op);
1568
b18825a7
DH
1569static unsigned d_flags_for_inode(struct inode *inode)
1570{
1571 unsigned add_flags = DCACHE_FILE_TYPE;
1572
1573 if (!inode)
1574 return DCACHE_MISS_TYPE;
1575
1576 if (S_ISDIR(inode->i_mode)) {
1577 add_flags = DCACHE_DIRECTORY_TYPE;
1578 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1579 if (unlikely(!inode->i_op->lookup))
1580 add_flags = DCACHE_AUTODIR_TYPE;
1581 else
1582 inode->i_opflags |= IOP_LOOKUP;
1583 }
1584 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1585 if (unlikely(inode->i_op->follow_link))
1586 add_flags = DCACHE_SYMLINK_TYPE;
1587 else
1588 inode->i_opflags |= IOP_NOFOLLOW;
1589 }
1590
1591 if (unlikely(IS_AUTOMOUNT(inode)))
1592 add_flags |= DCACHE_NEED_AUTOMOUNT;
1593 return add_flags;
1594}
1595
360da900
OH
1596static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1597{
b18825a7
DH
1598 unsigned add_flags = d_flags_for_inode(inode);
1599
b23fb0a6 1600 spin_lock(&dentry->d_lock);
22213318 1601 __d_set_type(dentry, add_flags);
b18825a7 1602 if (inode)
b3d9b7a3 1603 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1604 dentry->d_inode = inode;
31e6b01f 1605 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1606 spin_unlock(&dentry->d_lock);
360da900
OH
1607 fsnotify_d_instantiate(dentry, inode);
1608}
1609
1da177e4
LT
1610/**
1611 * d_instantiate - fill in inode information for a dentry
1612 * @entry: dentry to complete
1613 * @inode: inode to attach to this dentry
1614 *
1615 * Fill in inode information in the entry.
1616 *
1617 * This turns negative dentries into productive full members
1618 * of society.
1619 *
1620 * NOTE! This assumes that the inode count has been incremented
1621 * (or otherwise set) by the caller to indicate that it is now
1622 * in use by the dcache.
1623 */
1624
1625void d_instantiate(struct dentry *entry, struct inode * inode)
1626{
b3d9b7a3 1627 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1628 if (inode)
1629 spin_lock(&inode->i_lock);
360da900 1630 __d_instantiate(entry, inode);
873feea0
NP
1631 if (inode)
1632 spin_unlock(&inode->i_lock);
1da177e4
LT
1633 security_d_instantiate(entry, inode);
1634}
ec4f8605 1635EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1636
1637/**
1638 * d_instantiate_unique - instantiate a non-aliased dentry
1639 * @entry: dentry to instantiate
1640 * @inode: inode to attach to this dentry
1641 *
1642 * Fill in inode information in the entry. On success, it returns NULL.
1643 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1644 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1645 *
1646 * Note that in order to avoid conflicts with rename() etc, the caller
1647 * had better be holding the parent directory semaphore.
e866cfa9
OD
1648 *
1649 * This also assumes that the inode count has been incremented
1650 * (or otherwise set) by the caller to indicate that it is now
1651 * in use by the dcache.
1da177e4 1652 */
770bfad8
DH
1653static struct dentry *__d_instantiate_unique(struct dentry *entry,
1654 struct inode *inode)
1da177e4
LT
1655{
1656 struct dentry *alias;
1657 int len = entry->d_name.len;
1658 const char *name = entry->d_name.name;
1659 unsigned int hash = entry->d_name.hash;
1660
770bfad8 1661 if (!inode) {
360da900 1662 __d_instantiate(entry, NULL);
770bfad8
DH
1663 return NULL;
1664 }
1665
b67bfe0d 1666 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1667 /*
1668 * Don't need alias->d_lock here, because aliases with
1669 * d_parent == entry->d_parent are not subject to name or
1670 * parent changes, because the parent inode i_mutex is held.
1671 */
12f8ad4b 1672 if (alias->d_name.hash != hash)
1da177e4
LT
1673 continue;
1674 if (alias->d_parent != entry->d_parent)
1675 continue;
ee983e89
LT
1676 if (alias->d_name.len != len)
1677 continue;
12f8ad4b 1678 if (dentry_cmp(alias, name, len))
1da177e4 1679 continue;
dc0474be 1680 __dget(alias);
1da177e4
LT
1681 return alias;
1682 }
770bfad8 1683
360da900 1684 __d_instantiate(entry, inode);
1da177e4
LT
1685 return NULL;
1686}
770bfad8
DH
1687
1688struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1689{
1690 struct dentry *result;
1691
b3d9b7a3 1692 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1693
873feea0
NP
1694 if (inode)
1695 spin_lock(&inode->i_lock);
770bfad8 1696 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1697 if (inode)
1698 spin_unlock(&inode->i_lock);
770bfad8
DH
1699
1700 if (!result) {
1701 security_d_instantiate(entry, inode);
1702 return NULL;
1703 }
1704
1705 BUG_ON(!d_unhashed(result));
1706 iput(inode);
1707 return result;
1708}
1709
1da177e4
LT
1710EXPORT_SYMBOL(d_instantiate_unique);
1711
b70a80e7
MS
1712/**
1713 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1714 * @entry: dentry to complete
1715 * @inode: inode to attach to this dentry
1716 *
1717 * Fill in inode information in the entry. If a directory alias is found, then
1718 * return an error (and drop inode). Together with d_materialise_unique() this
1719 * guarantees that a directory inode may never have more than one alias.
1720 */
1721int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1722{
1723 BUG_ON(!hlist_unhashed(&entry->d_alias));
1724
1725 spin_lock(&inode->i_lock);
1726 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1727 spin_unlock(&inode->i_lock);
1728 iput(inode);
1729 return -EBUSY;
1730 }
1731 __d_instantiate(entry, inode);
1732 spin_unlock(&inode->i_lock);
1733 security_d_instantiate(entry, inode);
1734
1735 return 0;
1736}
1737EXPORT_SYMBOL(d_instantiate_no_diralias);
1738
adc0e91a
AV
1739struct dentry *d_make_root(struct inode *root_inode)
1740{
1741 struct dentry *res = NULL;
1742
1743 if (root_inode) {
26fe5750 1744 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1745
1746 res = __d_alloc(root_inode->i_sb, &name);
1747 if (res)
1748 d_instantiate(res, root_inode);
1749 else
1750 iput(root_inode);
1751 }
1752 return res;
1753}
1754EXPORT_SYMBOL(d_make_root);
1755
d891eedb
BF
1756static struct dentry * __d_find_any_alias(struct inode *inode)
1757{
1758 struct dentry *alias;
1759
b3d9b7a3 1760 if (hlist_empty(&inode->i_dentry))
d891eedb 1761 return NULL;
b3d9b7a3 1762 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1763 __dget(alias);
1764 return alias;
1765}
1766
46f72b34
SW
1767/**
1768 * d_find_any_alias - find any alias for a given inode
1769 * @inode: inode to find an alias for
1770 *
1771 * If any aliases exist for the given inode, take and return a
1772 * reference for one of them. If no aliases exist, return %NULL.
1773 */
1774struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1775{
1776 struct dentry *de;
1777
1778 spin_lock(&inode->i_lock);
1779 de = __d_find_any_alias(inode);
1780 spin_unlock(&inode->i_lock);
1781 return de;
1782}
46f72b34 1783EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1784
4ea3ada2
CH
1785/**
1786 * d_obtain_alias - find or allocate a dentry for a given inode
1787 * @inode: inode to allocate the dentry for
1788 *
1789 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1790 * similar open by handle operations. The returned dentry may be anonymous,
1791 * or may have a full name (if the inode was already in the cache).
1792 *
1793 * When called on a directory inode, we must ensure that the inode only ever
1794 * has one dentry. If a dentry is found, that is returned instead of
1795 * allocating a new one.
1796 *
1797 * On successful return, the reference to the inode has been transferred
44003728
CH
1798 * to the dentry. In case of an error the reference on the inode is released.
1799 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1800 * be passed in and will be the error will be propagate to the return value,
1801 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1802 */
1803struct dentry *d_obtain_alias(struct inode *inode)
1804{
b911a6bd 1805 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1806 struct dentry *tmp;
1807 struct dentry *res;
b18825a7 1808 unsigned add_flags;
4ea3ada2
CH
1809
1810 if (!inode)
44003728 1811 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1812 if (IS_ERR(inode))
1813 return ERR_CAST(inode);
1814
d891eedb 1815 res = d_find_any_alias(inode);
9308a612
CH
1816 if (res)
1817 goto out_iput;
1818
a4464dbc 1819 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1820 if (!tmp) {
1821 res = ERR_PTR(-ENOMEM);
1822 goto out_iput;
4ea3ada2 1823 }
b5c84bf6 1824
873feea0 1825 spin_lock(&inode->i_lock);
d891eedb 1826 res = __d_find_any_alias(inode);
9308a612 1827 if (res) {
873feea0 1828 spin_unlock(&inode->i_lock);
9308a612
CH
1829 dput(tmp);
1830 goto out_iput;
1831 }
1832
1833 /* attach a disconnected dentry */
b18825a7
DH
1834 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1835
9308a612 1836 spin_lock(&tmp->d_lock);
9308a612 1837 tmp->d_inode = inode;
b18825a7 1838 tmp->d_flags |= add_flags;
b3d9b7a3 1839 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1840 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1841 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1842 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1843 spin_unlock(&tmp->d_lock);
873feea0 1844 spin_unlock(&inode->i_lock);
24ff6663 1845 security_d_instantiate(tmp, inode);
9308a612 1846
9308a612
CH
1847 return tmp;
1848
1849 out_iput:
24ff6663
JB
1850 if (res && !IS_ERR(res))
1851 security_d_instantiate(res, inode);
9308a612
CH
1852 iput(inode);
1853 return res;
4ea3ada2 1854}
adc48720 1855EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1856
1857/**
1858 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1859 * @inode: the inode which may have a disconnected dentry
1860 * @dentry: a negative dentry which we want to point to the inode.
1861 *
1862 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1863 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1864 * and return it, else simply d_add the inode to the dentry and return NULL.
1865 *
1866 * This is needed in the lookup routine of any filesystem that is exportable
1867 * (via knfsd) so that we can build dcache paths to directories effectively.
1868 *
1869 * If a dentry was found and moved, then it is returned. Otherwise NULL
1870 * is returned. This matches the expected return value of ->lookup.
1871 *
6d4ade98
SW
1872 * Cluster filesystems may call this function with a negative, hashed dentry.
1873 * In that case, we know that the inode will be a regular file, and also this
1874 * will only occur during atomic_open. So we need to check for the dentry
1875 * being already hashed only in the final case.
1da177e4
LT
1876 */
1877struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1878{
1879 struct dentry *new = NULL;
1880
a9049376
AV
1881 if (IS_ERR(inode))
1882 return ERR_CAST(inode);
1883
21c0d8fd 1884 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1885 spin_lock(&inode->i_lock);
32ba9c3f 1886 new = __d_find_alias(inode, 1);
1da177e4 1887 if (new) {
32ba9c3f 1888 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1889 spin_unlock(&inode->i_lock);
1da177e4 1890 security_d_instantiate(new, inode);
1da177e4
LT
1891 d_move(new, dentry);
1892 iput(inode);
1893 } else {
873feea0 1894 /* already taking inode->i_lock, so d_add() by hand */
360da900 1895 __d_instantiate(dentry, inode);
873feea0 1896 spin_unlock(&inode->i_lock);
1da177e4
LT
1897 security_d_instantiate(dentry, inode);
1898 d_rehash(dentry);
1899 }
6d4ade98
SW
1900 } else {
1901 d_instantiate(dentry, inode);
1902 if (d_unhashed(dentry))
1903 d_rehash(dentry);
1904 }
1da177e4
LT
1905 return new;
1906}
ec4f8605 1907EXPORT_SYMBOL(d_splice_alias);
1da177e4 1908
9403540c
BN
1909/**
1910 * d_add_ci - lookup or allocate new dentry with case-exact name
1911 * @inode: the inode case-insensitive lookup has found
1912 * @dentry: the negative dentry that was passed to the parent's lookup func
1913 * @name: the case-exact name to be associated with the returned dentry
1914 *
1915 * This is to avoid filling the dcache with case-insensitive names to the
1916 * same inode, only the actual correct case is stored in the dcache for
1917 * case-insensitive filesystems.
1918 *
1919 * For a case-insensitive lookup match and if the the case-exact dentry
1920 * already exists in in the dcache, use it and return it.
1921 *
1922 * If no entry exists with the exact case name, allocate new dentry with
1923 * the exact case, and return the spliced entry.
1924 */
e45b590b 1925struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1926 struct qstr *name)
1927{
9403540c
BN
1928 struct dentry *found;
1929 struct dentry *new;
1930
b6520c81
CH
1931 /*
1932 * First check if a dentry matching the name already exists,
1933 * if not go ahead and create it now.
1934 */
9403540c 1935 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1936 if (unlikely(IS_ERR(found)))
1937 goto err_out;
9403540c
BN
1938 if (!found) {
1939 new = d_alloc(dentry->d_parent, name);
1940 if (!new) {
4f522a24 1941 found = ERR_PTR(-ENOMEM);
9403540c
BN
1942 goto err_out;
1943 }
b6520c81 1944
9403540c
BN
1945 found = d_splice_alias(inode, new);
1946 if (found) {
1947 dput(new);
1948 return found;
1949 }
1950 return new;
1951 }
b6520c81
CH
1952
1953 /*
1954 * If a matching dentry exists, and it's not negative use it.
1955 *
1956 * Decrement the reference count to balance the iget() done
1957 * earlier on.
1958 */
9403540c
BN
1959 if (found->d_inode) {
1960 if (unlikely(found->d_inode != inode)) {
1961 /* This can't happen because bad inodes are unhashed. */
1962 BUG_ON(!is_bad_inode(inode));
1963 BUG_ON(!is_bad_inode(found->d_inode));
1964 }
9403540c
BN
1965 iput(inode);
1966 return found;
1967 }
b6520c81 1968
9403540c 1969 /*
9403540c 1970 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1971 * already has a dentry.
9403540c 1972 */
4513d899
AV
1973 new = d_splice_alias(inode, found);
1974 if (new) {
1975 dput(found);
1976 found = new;
9403540c 1977 }
4513d899 1978 return found;
9403540c
BN
1979
1980err_out:
1981 iput(inode);
4f522a24 1982 return found;
9403540c 1983}
ec4f8605 1984EXPORT_SYMBOL(d_add_ci);
1da177e4 1985
12f8ad4b
LT
1986/*
1987 * Do the slow-case of the dentry name compare.
1988 *
1989 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1990 * load the name and length information, so that the
12f8ad4b
LT
1991 * filesystem can rely on them, and can use the 'name' and
1992 * 'len' information without worrying about walking off the
1993 * end of memory etc.
1994 *
1995 * Thus the read_seqcount_retry() and the "duplicate" info
1996 * in arguments (the low-level filesystem should not look
1997 * at the dentry inode or name contents directly, since
1998 * rename can change them while we're in RCU mode).
1999 */
2000enum slow_d_compare {
2001 D_COMP_OK,
2002 D_COMP_NOMATCH,
2003 D_COMP_SEQRETRY,
2004};
2005
2006static noinline enum slow_d_compare slow_dentry_cmp(
2007 const struct dentry *parent,
12f8ad4b
LT
2008 struct dentry *dentry,
2009 unsigned int seq,
2010 const struct qstr *name)
2011{
2012 int tlen = dentry->d_name.len;
2013 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2014
2015 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2016 cpu_relax();
2017 return D_COMP_SEQRETRY;
2018 }
da53be12 2019 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2020 return D_COMP_NOMATCH;
2021 return D_COMP_OK;
2022}
2023
31e6b01f
NP
2024/**
2025 * __d_lookup_rcu - search for a dentry (racy, store-free)
2026 * @parent: parent dentry
2027 * @name: qstr of name we wish to find
1f1e6e52 2028 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2029 * Returns: dentry, or NULL
2030 *
2031 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2032 * resolution (store-free path walking) design described in
2033 * Documentation/filesystems/path-lookup.txt.
2034 *
2035 * This is not to be used outside core vfs.
2036 *
2037 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2038 * held, and rcu_read_lock held. The returned dentry must not be stored into
2039 * without taking d_lock and checking d_seq sequence count against @seq
2040 * returned here.
2041 *
15570086 2042 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2043 * function.
2044 *
2045 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2046 * the returned dentry, so long as its parent's seqlock is checked after the
2047 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2048 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2049 *
2050 * NOTE! The caller *has* to check the resulting dentry against the sequence
2051 * number we've returned before using any of the resulting dentry state!
31e6b01f 2052 */
8966be90
LT
2053struct dentry *__d_lookup_rcu(const struct dentry *parent,
2054 const struct qstr *name,
da53be12 2055 unsigned *seqp)
31e6b01f 2056{
26fe5750 2057 u64 hashlen = name->hash_len;
31e6b01f 2058 const unsigned char *str = name->name;
26fe5750 2059 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2060 struct hlist_bl_node *node;
31e6b01f
NP
2061 struct dentry *dentry;
2062
2063 /*
2064 * Note: There is significant duplication with __d_lookup_rcu which is
2065 * required to prevent single threaded performance regressions
2066 * especially on architectures where smp_rmb (in seqcounts) are costly.
2067 * Keep the two functions in sync.
2068 */
2069
2070 /*
2071 * The hash list is protected using RCU.
2072 *
2073 * Carefully use d_seq when comparing a candidate dentry, to avoid
2074 * races with d_move().
2075 *
2076 * It is possible that concurrent renames can mess up our list
2077 * walk here and result in missing our dentry, resulting in the
2078 * false-negative result. d_lookup() protects against concurrent
2079 * renames using rename_lock seqlock.
2080 *
b0a4bb83 2081 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2082 */
b07ad996 2083 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2084 unsigned seq;
31e6b01f 2085
31e6b01f 2086seqretry:
12f8ad4b
LT
2087 /*
2088 * The dentry sequence count protects us from concurrent
da53be12 2089 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2090 *
2091 * The caller must perform a seqcount check in order
da53be12 2092 * to do anything useful with the returned dentry.
12f8ad4b
LT
2093 *
2094 * NOTE! We do a "raw" seqcount_begin here. That means that
2095 * we don't wait for the sequence count to stabilize if it
2096 * is in the middle of a sequence change. If we do the slow
2097 * dentry compare, we will do seqretries until it is stable,
2098 * and if we end up with a successful lookup, we actually
2099 * want to exit RCU lookup anyway.
2100 */
2101 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2102 if (dentry->d_parent != parent)
2103 continue;
2e321806
LT
2104 if (d_unhashed(dentry))
2105 continue;
12f8ad4b 2106
830c0f0e 2107 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2108 if (dentry->d_name.hash != hashlen_hash(hashlen))
2109 continue;
da53be12
LT
2110 *seqp = seq;
2111 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2112 case D_COMP_OK:
2113 return dentry;
2114 case D_COMP_NOMATCH:
31e6b01f 2115 continue;
12f8ad4b
LT
2116 default:
2117 goto seqretry;
2118 }
31e6b01f 2119 }
12f8ad4b 2120
26fe5750 2121 if (dentry->d_name.hash_len != hashlen)
ee983e89 2122 continue;
da53be12 2123 *seqp = seq;
26fe5750 2124 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2125 return dentry;
31e6b01f
NP
2126 }
2127 return NULL;
2128}
2129
1da177e4
LT
2130/**
2131 * d_lookup - search for a dentry
2132 * @parent: parent dentry
2133 * @name: qstr of name we wish to find
b04f784e 2134 * Returns: dentry, or NULL
1da177e4 2135 *
b04f784e
NP
2136 * d_lookup searches the children of the parent dentry for the name in
2137 * question. If the dentry is found its reference count is incremented and the
2138 * dentry is returned. The caller must use dput to free the entry when it has
2139 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2140 */
da2d8455 2141struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2142{
31e6b01f 2143 struct dentry *dentry;
949854d0 2144 unsigned seq;
1da177e4
LT
2145
2146 do {
2147 seq = read_seqbegin(&rename_lock);
2148 dentry = __d_lookup(parent, name);
2149 if (dentry)
2150 break;
2151 } while (read_seqretry(&rename_lock, seq));
2152 return dentry;
2153}
ec4f8605 2154EXPORT_SYMBOL(d_lookup);
1da177e4 2155
31e6b01f 2156/**
b04f784e
NP
2157 * __d_lookup - search for a dentry (racy)
2158 * @parent: parent dentry
2159 * @name: qstr of name we wish to find
2160 * Returns: dentry, or NULL
2161 *
2162 * __d_lookup is like d_lookup, however it may (rarely) return a
2163 * false-negative result due to unrelated rename activity.
2164 *
2165 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2166 * however it must be used carefully, eg. with a following d_lookup in
2167 * the case of failure.
2168 *
2169 * __d_lookup callers must be commented.
2170 */
a713ca2a 2171struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2172{
2173 unsigned int len = name->len;
2174 unsigned int hash = name->hash;
2175 const unsigned char *str = name->name;
b07ad996 2176 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2177 struct hlist_bl_node *node;
31e6b01f 2178 struct dentry *found = NULL;
665a7583 2179 struct dentry *dentry;
1da177e4 2180
31e6b01f
NP
2181 /*
2182 * Note: There is significant duplication with __d_lookup_rcu which is
2183 * required to prevent single threaded performance regressions
2184 * especially on architectures where smp_rmb (in seqcounts) are costly.
2185 * Keep the two functions in sync.
2186 */
2187
b04f784e
NP
2188 /*
2189 * The hash list is protected using RCU.
2190 *
2191 * Take d_lock when comparing a candidate dentry, to avoid races
2192 * with d_move().
2193 *
2194 * It is possible that concurrent renames can mess up our list
2195 * walk here and result in missing our dentry, resulting in the
2196 * false-negative result. d_lookup() protects against concurrent
2197 * renames using rename_lock seqlock.
2198 *
b0a4bb83 2199 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2200 */
1da177e4
LT
2201 rcu_read_lock();
2202
b07ad996 2203 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2204
1da177e4
LT
2205 if (dentry->d_name.hash != hash)
2206 continue;
1da177e4
LT
2207
2208 spin_lock(&dentry->d_lock);
1da177e4
LT
2209 if (dentry->d_parent != parent)
2210 goto next;
d0185c08
LT
2211 if (d_unhashed(dentry))
2212 goto next;
2213
1da177e4
LT
2214 /*
2215 * It is safe to compare names since d_move() cannot
2216 * change the qstr (protected by d_lock).
2217 */
fb045adb 2218 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2219 int tlen = dentry->d_name.len;
2220 const char *tname = dentry->d_name.name;
da53be12 2221 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2222 goto next;
2223 } else {
ee983e89
LT
2224 if (dentry->d_name.len != len)
2225 goto next;
12f8ad4b 2226 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2227 goto next;
2228 }
2229
98474236 2230 dentry->d_lockref.count++;
d0185c08 2231 found = dentry;
1da177e4
LT
2232 spin_unlock(&dentry->d_lock);
2233 break;
2234next:
2235 spin_unlock(&dentry->d_lock);
2236 }
2237 rcu_read_unlock();
2238
2239 return found;
2240}
2241
3e7e241f
EB
2242/**
2243 * d_hash_and_lookup - hash the qstr then search for a dentry
2244 * @dir: Directory to search in
2245 * @name: qstr of name we wish to find
2246 *
4f522a24 2247 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2248 */
2249struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2250{
3e7e241f
EB
2251 /*
2252 * Check for a fs-specific hash function. Note that we must
2253 * calculate the standard hash first, as the d_op->d_hash()
2254 * routine may choose to leave the hash value unchanged.
2255 */
2256 name->hash = full_name_hash(name->name, name->len);
fb045adb 2257 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2258 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2259 if (unlikely(err < 0))
2260 return ERR_PTR(err);
3e7e241f 2261 }
4f522a24 2262 return d_lookup(dir, name);
3e7e241f 2263}
4f522a24 2264EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2265
1da177e4 2266/**
786a5e15 2267 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2268 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2269 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2270 *
2271 * An insecure source has sent us a dentry, here we verify it and dget() it.
2272 * This is used by ncpfs in its readdir implementation.
2273 * Zero is returned in the dentry is invalid.
786a5e15
NP
2274 *
2275 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2276 */
d3a23e16 2277int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2278{
786a5e15 2279 struct dentry *child;
d3a23e16 2280
2fd6b7f5 2281 spin_lock(&dparent->d_lock);
786a5e15
NP
2282 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2283 if (dentry == child) {
2fd6b7f5 2284 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2285 __dget_dlock(dentry);
2fd6b7f5
NP
2286 spin_unlock(&dentry->d_lock);
2287 spin_unlock(&dparent->d_lock);
1da177e4
LT
2288 return 1;
2289 }
2290 }
2fd6b7f5 2291 spin_unlock(&dparent->d_lock);
786a5e15 2292
1da177e4
LT
2293 return 0;
2294}
ec4f8605 2295EXPORT_SYMBOL(d_validate);
1da177e4
LT
2296
2297/*
2298 * When a file is deleted, we have two options:
2299 * - turn this dentry into a negative dentry
2300 * - unhash this dentry and free it.
2301 *
2302 * Usually, we want to just turn this into
2303 * a negative dentry, but if anybody else is
2304 * currently using the dentry or the inode
2305 * we can't do that and we fall back on removing
2306 * it from the hash queues and waiting for
2307 * it to be deleted later when it has no users
2308 */
2309
2310/**
2311 * d_delete - delete a dentry
2312 * @dentry: The dentry to delete
2313 *
2314 * Turn the dentry into a negative dentry if possible, otherwise
2315 * remove it from the hash queues so it can be deleted later
2316 */
2317
2318void d_delete(struct dentry * dentry)
2319{
873feea0 2320 struct inode *inode;
7a91bf7f 2321 int isdir = 0;
1da177e4
LT
2322 /*
2323 * Are we the only user?
2324 */
357f8e65 2325again:
1da177e4 2326 spin_lock(&dentry->d_lock);
873feea0
NP
2327 inode = dentry->d_inode;
2328 isdir = S_ISDIR(inode->i_mode);
98474236 2329 if (dentry->d_lockref.count == 1) {
1fe0c023 2330 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2331 spin_unlock(&dentry->d_lock);
2332 cpu_relax();
2333 goto again;
2334 }
13e3c5e5 2335 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2336 dentry_unlink_inode(dentry);
7a91bf7f 2337 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2338 return;
2339 }
2340
2341 if (!d_unhashed(dentry))
2342 __d_drop(dentry);
2343
2344 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2345
2346 fsnotify_nameremove(dentry, isdir);
1da177e4 2347}
ec4f8605 2348EXPORT_SYMBOL(d_delete);
1da177e4 2349
b07ad996 2350static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2351{
ceb5bdc2 2352 BUG_ON(!d_unhashed(entry));
1879fd6a 2353 hlist_bl_lock(b);
dea3667b 2354 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2355 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2356 hlist_bl_unlock(b);
1da177e4
LT
2357}
2358
770bfad8
DH
2359static void _d_rehash(struct dentry * entry)
2360{
2361 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2362}
2363
1da177e4
LT
2364/**
2365 * d_rehash - add an entry back to the hash
2366 * @entry: dentry to add to the hash
2367 *
2368 * Adds a dentry to the hash according to its name.
2369 */
2370
2371void d_rehash(struct dentry * entry)
2372{
1da177e4 2373 spin_lock(&entry->d_lock);
770bfad8 2374 _d_rehash(entry);
1da177e4 2375 spin_unlock(&entry->d_lock);
1da177e4 2376}
ec4f8605 2377EXPORT_SYMBOL(d_rehash);
1da177e4 2378
fb2d5b86
NP
2379/**
2380 * dentry_update_name_case - update case insensitive dentry with a new name
2381 * @dentry: dentry to be updated
2382 * @name: new name
2383 *
2384 * Update a case insensitive dentry with new case of name.
2385 *
2386 * dentry must have been returned by d_lookup with name @name. Old and new
2387 * name lengths must match (ie. no d_compare which allows mismatched name
2388 * lengths).
2389 *
2390 * Parent inode i_mutex must be held over d_lookup and into this call (to
2391 * keep renames and concurrent inserts, and readdir(2) away).
2392 */
2393void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2394{
7ebfa57f 2395 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2396 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2397
fb2d5b86 2398 spin_lock(&dentry->d_lock);
31e6b01f 2399 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2400 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2401 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2402 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2403}
2404EXPORT_SYMBOL(dentry_update_name_case);
2405
1da177e4
LT
2406static void switch_names(struct dentry *dentry, struct dentry *target)
2407{
2408 if (dname_external(target)) {
2409 if (dname_external(dentry)) {
2410 /*
2411 * Both external: swap the pointers
2412 */
9a8d5bb4 2413 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2414 } else {
2415 /*
2416 * dentry:internal, target:external. Steal target's
2417 * storage and make target internal.
2418 */
321bcf92
BF
2419 memcpy(target->d_iname, dentry->d_name.name,
2420 dentry->d_name.len + 1);
1da177e4
LT
2421 dentry->d_name.name = target->d_name.name;
2422 target->d_name.name = target->d_iname;
2423 }
2424 } else {
2425 if (dname_external(dentry)) {
2426 /*
2427 * dentry:external, target:internal. Give dentry's
2428 * storage to target and make dentry internal
2429 */
2430 memcpy(dentry->d_iname, target->d_name.name,
2431 target->d_name.len + 1);
2432 target->d_name.name = dentry->d_name.name;
2433 dentry->d_name.name = dentry->d_iname;
2434 } else {
2435 /*
da1ce067 2436 * Both are internal.
1da177e4 2437 */
da1ce067
MS
2438 unsigned int i;
2439 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2440 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2441 swap(((long *) &dentry->d_iname)[i],
2442 ((long *) &target->d_iname)[i]);
2443 }
1da177e4
LT
2444 }
2445 }
9a8d5bb4 2446 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2447}
2448
2fd6b7f5
NP
2449static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2450{
2451 /*
2452 * XXXX: do we really need to take target->d_lock?
2453 */
2454 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2455 spin_lock(&target->d_parent->d_lock);
2456 else {
2457 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2458 spin_lock(&dentry->d_parent->d_lock);
2459 spin_lock_nested(&target->d_parent->d_lock,
2460 DENTRY_D_LOCK_NESTED);
2461 } else {
2462 spin_lock(&target->d_parent->d_lock);
2463 spin_lock_nested(&dentry->d_parent->d_lock,
2464 DENTRY_D_LOCK_NESTED);
2465 }
2466 }
2467 if (target < dentry) {
2468 spin_lock_nested(&target->d_lock, 2);
2469 spin_lock_nested(&dentry->d_lock, 3);
2470 } else {
2471 spin_lock_nested(&dentry->d_lock, 2);
2472 spin_lock_nested(&target->d_lock, 3);
2473 }
2474}
2475
2476static void dentry_unlock_parents_for_move(struct dentry *dentry,
2477 struct dentry *target)
2478{
2479 if (target->d_parent != dentry->d_parent)
2480 spin_unlock(&dentry->d_parent->d_lock);
2481 if (target->d_parent != target)
2482 spin_unlock(&target->d_parent->d_lock);
2483}
2484
1da177e4 2485/*
2fd6b7f5
NP
2486 * When switching names, the actual string doesn't strictly have to
2487 * be preserved in the target - because we're dropping the target
2488 * anyway. As such, we can just do a simple memcpy() to copy over
2489 * the new name before we switch.
2490 *
2491 * Note that we have to be a lot more careful about getting the hash
2492 * switched - we have to switch the hash value properly even if it
2493 * then no longer matches the actual (corrupted) string of the target.
2494 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2495 */
9eaef27b 2496/*
18367501 2497 * __d_move - move a dentry
1da177e4
LT
2498 * @dentry: entry to move
2499 * @target: new dentry
da1ce067 2500 * @exchange: exchange the two dentries
1da177e4
LT
2501 *
2502 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2503 * dcache entries should not be moved in this way. Caller must hold
2504 * rename_lock, the i_mutex of the source and target directories,
2505 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2506 */
da1ce067
MS
2507static void __d_move(struct dentry *dentry, struct dentry *target,
2508 bool exchange)
1da177e4 2509{
1da177e4
LT
2510 if (!dentry->d_inode)
2511 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2512
2fd6b7f5
NP
2513 BUG_ON(d_ancestor(dentry, target));
2514 BUG_ON(d_ancestor(target, dentry));
2515
2fd6b7f5 2516 dentry_lock_for_move(dentry, target);
1da177e4 2517
31e6b01f 2518 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2519 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2520
ceb5bdc2
NP
2521 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2522
2523 /*
2524 * Move the dentry to the target hash queue. Don't bother checking
2525 * for the same hash queue because of how unlikely it is.
2526 */
2527 __d_drop(dentry);
789680d1 2528 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2529
da1ce067
MS
2530 /*
2531 * Unhash the target (d_delete() is not usable here). If exchanging
2532 * the two dentries, then rehash onto the other's hash queue.
2533 */
1da177e4 2534 __d_drop(target);
da1ce067
MS
2535 if (exchange) {
2536 __d_rehash(target,
2537 d_hash(dentry->d_parent, dentry->d_name.hash));
2538 }
1da177e4 2539
5160ee6f
ED
2540 list_del(&dentry->d_u.d_child);
2541 list_del(&target->d_u.d_child);
1da177e4
LT
2542
2543 /* Switch the names.. */
2544 switch_names(dentry, target);
9a8d5bb4 2545 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2546
2547 /* ... and switch the parents */
2548 if (IS_ROOT(dentry)) {
2549 dentry->d_parent = target->d_parent;
2550 target->d_parent = target;
5160ee6f 2551 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2552 } else {
9a8d5bb4 2553 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2554
2555 /* And add them back to the (new) parent lists */
5160ee6f 2556 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2557 }
2558
5160ee6f 2559 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2560
31e6b01f
NP
2561 write_seqcount_end(&target->d_seq);
2562 write_seqcount_end(&dentry->d_seq);
2563
2fd6b7f5 2564 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2565 if (exchange)
2566 fsnotify_d_move(target);
1da177e4 2567 spin_unlock(&target->d_lock);
c32ccd87 2568 fsnotify_d_move(dentry);
1da177e4 2569 spin_unlock(&dentry->d_lock);
18367501
AV
2570}
2571
2572/*
2573 * d_move - move a dentry
2574 * @dentry: entry to move
2575 * @target: new dentry
2576 *
2577 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2578 * dcache entries should not be moved in this way. See the locking
2579 * requirements for __d_move.
18367501
AV
2580 */
2581void d_move(struct dentry *dentry, struct dentry *target)
2582{
2583 write_seqlock(&rename_lock);
da1ce067 2584 __d_move(dentry, target, false);
1da177e4 2585 write_sequnlock(&rename_lock);
9eaef27b 2586}
ec4f8605 2587EXPORT_SYMBOL(d_move);
1da177e4 2588
da1ce067
MS
2589/*
2590 * d_exchange - exchange two dentries
2591 * @dentry1: first dentry
2592 * @dentry2: second dentry
2593 */
2594void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2595{
2596 write_seqlock(&rename_lock);
2597
2598 WARN_ON(!dentry1->d_inode);
2599 WARN_ON(!dentry2->d_inode);
2600 WARN_ON(IS_ROOT(dentry1));
2601 WARN_ON(IS_ROOT(dentry2));
2602
2603 __d_move(dentry1, dentry2, true);
2604
2605 write_sequnlock(&rename_lock);
2606}
2607
e2761a11
OH
2608/**
2609 * d_ancestor - search for an ancestor
2610 * @p1: ancestor dentry
2611 * @p2: child dentry
2612 *
2613 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2614 * an ancestor of p2, else NULL.
9eaef27b 2615 */
e2761a11 2616struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2617{
2618 struct dentry *p;
2619
871c0067 2620 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2621 if (p->d_parent == p1)
e2761a11 2622 return p;
9eaef27b 2623 }
e2761a11 2624 return NULL;
9eaef27b
TM
2625}
2626
2627/*
2628 * This helper attempts to cope with remotely renamed directories
2629 *
2630 * It assumes that the caller is already holding
18367501 2631 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2632 *
2633 * Note: If ever the locking in lock_rename() changes, then please
2634 * remember to update this too...
9eaef27b 2635 */
873feea0
NP
2636static struct dentry *__d_unalias(struct inode *inode,
2637 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2638{
2639 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2640 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2641
2642 /* If alias and dentry share a parent, then no extra locks required */
2643 if (alias->d_parent == dentry->d_parent)
2644 goto out_unalias;
2645
9eaef27b 2646 /* See lock_rename() */
9eaef27b
TM
2647 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2648 goto out_err;
2649 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2650 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2651 goto out_err;
2652 m2 = &alias->d_parent->d_inode->i_mutex;
2653out_unalias:
ee3efa91 2654 if (likely(!d_mountpoint(alias))) {
da1ce067 2655 __d_move(alias, dentry, false);
ee3efa91
AV
2656 ret = alias;
2657 }
9eaef27b 2658out_err:
873feea0 2659 spin_unlock(&inode->i_lock);
9eaef27b
TM
2660 if (m2)
2661 mutex_unlock(m2);
2662 if (m1)
2663 mutex_unlock(m1);
2664 return ret;
2665}
2666
770bfad8
DH
2667/*
2668 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2669 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2670 * returns with anon->d_lock held!
770bfad8
DH
2671 */
2672static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2673{
740da42e 2674 struct dentry *dparent;
770bfad8 2675
2fd6b7f5 2676 dentry_lock_for_move(anon, dentry);
770bfad8 2677
31e6b01f 2678 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2679 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2680
770bfad8 2681 dparent = dentry->d_parent;
770bfad8 2682
2fd6b7f5
NP
2683 switch_names(dentry, anon);
2684 swap(dentry->d_name.hash, anon->d_name.hash);
2685
740da42e
AV
2686 dentry->d_parent = dentry;
2687 list_del_init(&dentry->d_u.d_child);
2688 anon->d_parent = dparent;
9ed53b12 2689 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2690
31e6b01f
NP
2691 write_seqcount_end(&dentry->d_seq);
2692 write_seqcount_end(&anon->d_seq);
2693
2fd6b7f5
NP
2694 dentry_unlock_parents_for_move(anon, dentry);
2695 spin_unlock(&dentry->d_lock);
2696
2697 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2698}
2699
2700/**
2701 * d_materialise_unique - introduce an inode into the tree
2702 * @dentry: candidate dentry
2703 * @inode: inode to bind to the dentry, to which aliases may be attached
2704 *
2705 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2706 * root directory alias in its place if there is one. Caller must hold the
2707 * i_mutex of the parent directory.
770bfad8
DH
2708 */
2709struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2710{
9eaef27b 2711 struct dentry *actual;
770bfad8
DH
2712
2713 BUG_ON(!d_unhashed(dentry));
2714
770bfad8
DH
2715 if (!inode) {
2716 actual = dentry;
360da900 2717 __d_instantiate(dentry, NULL);
357f8e65
NP
2718 d_rehash(actual);
2719 goto out_nolock;
770bfad8
DH
2720 }
2721
873feea0 2722 spin_lock(&inode->i_lock);
357f8e65 2723
9eaef27b
TM
2724 if (S_ISDIR(inode->i_mode)) {
2725 struct dentry *alias;
2726
2727 /* Does an aliased dentry already exist? */
32ba9c3f 2728 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2729 if (alias) {
2730 actual = alias;
18367501
AV
2731 write_seqlock(&rename_lock);
2732
2733 if (d_ancestor(alias, dentry)) {
2734 /* Check for loops */
2735 actual = ERR_PTR(-ELOOP);
b18dafc8 2736 spin_unlock(&inode->i_lock);
18367501
AV
2737 } else if (IS_ROOT(alias)) {
2738 /* Is this an anonymous mountpoint that we
2739 * could splice into our tree? */
9eaef27b 2740 __d_materialise_dentry(dentry, alias);
18367501 2741 write_sequnlock(&rename_lock);
9eaef27b
TM
2742 __d_drop(alias);
2743 goto found;
18367501
AV
2744 } else {
2745 /* Nope, but we must(!) avoid directory
b18dafc8 2746 * aliasing. This drops inode->i_lock */
18367501 2747 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2748 }
18367501 2749 write_sequnlock(&rename_lock);
dd179946
DH
2750 if (IS_ERR(actual)) {
2751 if (PTR_ERR(actual) == -ELOOP)
2752 pr_warn_ratelimited(
2753 "VFS: Lookup of '%s' in %s %s"
2754 " would have caused loop\n",
2755 dentry->d_name.name,
2756 inode->i_sb->s_type->name,
2757 inode->i_sb->s_id);
9eaef27b 2758 dput(alias);
dd179946 2759 }
9eaef27b
TM
2760 goto out_nolock;
2761 }
770bfad8
DH
2762 }
2763
2764 /* Add a unique reference */
2765 actual = __d_instantiate_unique(dentry, inode);
2766 if (!actual)
2767 actual = dentry;
357f8e65
NP
2768 else
2769 BUG_ON(!d_unhashed(actual));
770bfad8 2770
770bfad8
DH
2771 spin_lock(&actual->d_lock);
2772found:
2773 _d_rehash(actual);
2774 spin_unlock(&actual->d_lock);
873feea0 2775 spin_unlock(&inode->i_lock);
9eaef27b 2776out_nolock:
770bfad8
DH
2777 if (actual == dentry) {
2778 security_d_instantiate(dentry, inode);
2779 return NULL;
2780 }
2781
2782 iput(inode);
2783 return actual;
770bfad8 2784}
ec4f8605 2785EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2786
cdd16d02 2787static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2788{
2789 *buflen -= namelen;
2790 if (*buflen < 0)
2791 return -ENAMETOOLONG;
2792 *buffer -= namelen;
2793 memcpy(*buffer, str, namelen);
2794 return 0;
2795}
2796
232d2d60
WL
2797/**
2798 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2799 * @buffer: buffer pointer
2800 * @buflen: allocated length of the buffer
2801 * @name: name string and length qstr structure
232d2d60
WL
2802 *
2803 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2804 * make sure that either the old or the new name pointer and length are
2805 * fetched. However, there may be mismatch between length and pointer.
2806 * The length cannot be trusted, we need to copy it byte-by-byte until
2807 * the length is reached or a null byte is found. It also prepends "/" at
2808 * the beginning of the name. The sequence number check at the caller will
2809 * retry it again when a d_move() does happen. So any garbage in the buffer
2810 * due to mismatched pointer and length will be discarded.
2811 */
cdd16d02
MS
2812static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2813{
232d2d60
WL
2814 const char *dname = ACCESS_ONCE(name->name);
2815 u32 dlen = ACCESS_ONCE(name->len);
2816 char *p;
2817
232d2d60 2818 *buflen -= dlen + 1;
e825196d
AV
2819 if (*buflen < 0)
2820 return -ENAMETOOLONG;
232d2d60
WL
2821 p = *buffer -= dlen + 1;
2822 *p++ = '/';
2823 while (dlen--) {
2824 char c = *dname++;
2825 if (!c)
2826 break;
2827 *p++ = c;
2828 }
2829 return 0;
cdd16d02
MS
2830}
2831
1da177e4 2832/**
208898c1 2833 * prepend_path - Prepend path string to a buffer
9d1bc601 2834 * @path: the dentry/vfsmount to report
02125a82 2835 * @root: root vfsmnt/dentry
f2eb6575
MS
2836 * @buffer: pointer to the end of the buffer
2837 * @buflen: pointer to buffer length
552ce544 2838 *
18129977
WL
2839 * The function will first try to write out the pathname without taking any
2840 * lock other than the RCU read lock to make sure that dentries won't go away.
2841 * It only checks the sequence number of the global rename_lock as any change
2842 * in the dentry's d_seq will be preceded by changes in the rename_lock
2843 * sequence number. If the sequence number had been changed, it will restart
2844 * the whole pathname back-tracing sequence again by taking the rename_lock.
2845 * In this case, there is no need to take the RCU read lock as the recursive
2846 * parent pointer references will keep the dentry chain alive as long as no
2847 * rename operation is performed.
1da177e4 2848 */
02125a82
AV
2849static int prepend_path(const struct path *path,
2850 const struct path *root,
f2eb6575 2851 char **buffer, int *buflen)
1da177e4 2852{
ede4cebc
AV
2853 struct dentry *dentry;
2854 struct vfsmount *vfsmnt;
2855 struct mount *mnt;
f2eb6575 2856 int error = 0;
48a066e7 2857 unsigned seq, m_seq = 0;
232d2d60
WL
2858 char *bptr;
2859 int blen;
6092d048 2860
48f5ec21 2861 rcu_read_lock();
48a066e7
AV
2862restart_mnt:
2863 read_seqbegin_or_lock(&mount_lock, &m_seq);
2864 seq = 0;
4ec6c2ae 2865 rcu_read_lock();
232d2d60
WL
2866restart:
2867 bptr = *buffer;
2868 blen = *buflen;
48a066e7 2869 error = 0;
ede4cebc
AV
2870 dentry = path->dentry;
2871 vfsmnt = path->mnt;
2872 mnt = real_mount(vfsmnt);
232d2d60 2873 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2874 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2875 struct dentry * parent;
2876
1da177e4 2877 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2878 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2879 /* Global root? */
48a066e7
AV
2880 if (mnt != parent) {
2881 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2882 mnt = parent;
232d2d60
WL
2883 vfsmnt = &mnt->mnt;
2884 continue;
2885 }
2886 /*
2887 * Filesystems needing to implement special "root names"
2888 * should do so with ->d_dname()
2889 */
2890 if (IS_ROOT(dentry) &&
2891 (dentry->d_name.len != 1 ||
2892 dentry->d_name.name[0] != '/')) {
2893 WARN(1, "Root dentry has weird name <%.*s>\n",
2894 (int) dentry->d_name.len,
2895 dentry->d_name.name);
2896 }
2897 if (!error)
2898 error = is_mounted(vfsmnt) ? 1 : 2;
2899 break;
1da177e4
LT
2900 }
2901 parent = dentry->d_parent;
2902 prefetch(parent);
232d2d60 2903 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2904 if (error)
2905 break;
2906
1da177e4
LT
2907 dentry = parent;
2908 }
48f5ec21
AV
2909 if (!(seq & 1))
2910 rcu_read_unlock();
2911 if (need_seqretry(&rename_lock, seq)) {
2912 seq = 1;
232d2d60 2913 goto restart;
48f5ec21
AV
2914 }
2915 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2916
2917 if (!(m_seq & 1))
2918 rcu_read_unlock();
48a066e7
AV
2919 if (need_seqretry(&mount_lock, m_seq)) {
2920 m_seq = 1;
2921 goto restart_mnt;
2922 }
2923 done_seqretry(&mount_lock, m_seq);
1da177e4 2924
232d2d60
WL
2925 if (error >= 0 && bptr == *buffer) {
2926 if (--blen < 0)
2927 error = -ENAMETOOLONG;
2928 else
2929 *--bptr = '/';
2930 }
2931 *buffer = bptr;
2932 *buflen = blen;
7ea600b5 2933 return error;
f2eb6575 2934}
be285c71 2935
f2eb6575
MS
2936/**
2937 * __d_path - return the path of a dentry
2938 * @path: the dentry/vfsmount to report
02125a82 2939 * @root: root vfsmnt/dentry
cd956a1c 2940 * @buf: buffer to return value in
f2eb6575
MS
2941 * @buflen: buffer length
2942 *
ffd1f4ed 2943 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2944 *
2945 * Returns a pointer into the buffer or an error code if the
2946 * path was too long.
2947 *
be148247 2948 * "buflen" should be positive.
f2eb6575 2949 *
02125a82 2950 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2951 */
02125a82
AV
2952char *__d_path(const struct path *path,
2953 const struct path *root,
f2eb6575
MS
2954 char *buf, int buflen)
2955{
2956 char *res = buf + buflen;
2957 int error;
2958
2959 prepend(&res, &buflen, "\0", 1);
f2eb6575 2960 error = prepend_path(path, root, &res, &buflen);
be148247 2961
02125a82
AV
2962 if (error < 0)
2963 return ERR_PTR(error);
2964 if (error > 0)
2965 return NULL;
2966 return res;
2967}
2968
2969char *d_absolute_path(const struct path *path,
2970 char *buf, int buflen)
2971{
2972 struct path root = {};
2973 char *res = buf + buflen;
2974 int error;
2975
2976 prepend(&res, &buflen, "\0", 1);
02125a82 2977 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2978
2979 if (error > 1)
2980 error = -EINVAL;
2981 if (error < 0)
f2eb6575 2982 return ERR_PTR(error);
f2eb6575 2983 return res;
1da177e4
LT
2984}
2985
ffd1f4ed
MS
2986/*
2987 * same as __d_path but appends "(deleted)" for unlinked files.
2988 */
02125a82
AV
2989static int path_with_deleted(const struct path *path,
2990 const struct path *root,
2991 char **buf, int *buflen)
ffd1f4ed
MS
2992{
2993 prepend(buf, buflen, "\0", 1);
2994 if (d_unlinked(path->dentry)) {
2995 int error = prepend(buf, buflen, " (deleted)", 10);
2996 if (error)
2997 return error;
2998 }
2999
3000 return prepend_path(path, root, buf, buflen);
3001}
3002
8df9d1a4
MS
3003static int prepend_unreachable(char **buffer, int *buflen)
3004{
3005 return prepend(buffer, buflen, "(unreachable)", 13);
3006}
3007
68f0d9d9
LT
3008static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3009{
3010 unsigned seq;
3011
3012 do {
3013 seq = read_seqcount_begin(&fs->seq);
3014 *root = fs->root;
3015 } while (read_seqcount_retry(&fs->seq, seq));
3016}
3017
a03a8a70
JB
3018/**
3019 * d_path - return the path of a dentry
cf28b486 3020 * @path: path to report
a03a8a70
JB
3021 * @buf: buffer to return value in
3022 * @buflen: buffer length
3023 *
3024 * Convert a dentry into an ASCII path name. If the entry has been deleted
3025 * the string " (deleted)" is appended. Note that this is ambiguous.
3026 *
52afeefb
AV
3027 * Returns a pointer into the buffer or an error code if the path was
3028 * too long. Note: Callers should use the returned pointer, not the passed
3029 * in buffer, to use the name! The implementation often starts at an offset
3030 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3031 *
31f3e0b3 3032 * "buflen" should be positive.
a03a8a70 3033 */
20d4fdc1 3034char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3035{
ffd1f4ed 3036 char *res = buf + buflen;
6ac08c39 3037 struct path root;
ffd1f4ed 3038 int error;
1da177e4 3039
c23fbb6b
ED
3040 /*
3041 * We have various synthetic filesystems that never get mounted. On
3042 * these filesystems dentries are never used for lookup purposes, and
3043 * thus don't need to be hashed. They also don't need a name until a
3044 * user wants to identify the object in /proc/pid/fd/. The little hack
3045 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3046 *
3047 * Some pseudo inodes are mountable. When they are mounted
3048 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3049 * and instead have d_path return the mounted path.
c23fbb6b 3050 */
f48cfddc
EB
3051 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3052 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3053 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3054
68f0d9d9
LT
3055 rcu_read_lock();
3056 get_fs_root_rcu(current->fs, &root);
02125a82 3057 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3058 rcu_read_unlock();
3059
02125a82 3060 if (error < 0)
ffd1f4ed 3061 res = ERR_PTR(error);
1da177e4
LT
3062 return res;
3063}
ec4f8605 3064EXPORT_SYMBOL(d_path);
1da177e4 3065
c23fbb6b
ED
3066/*
3067 * Helper function for dentry_operations.d_dname() members
3068 */
3069char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3070 const char *fmt, ...)
3071{
3072 va_list args;
3073 char temp[64];
3074 int sz;
3075
3076 va_start(args, fmt);
3077 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3078 va_end(args);
3079
3080 if (sz > sizeof(temp) || sz > buflen)
3081 return ERR_PTR(-ENAMETOOLONG);
3082
3083 buffer += buflen - sz;
3084 return memcpy(buffer, temp, sz);
3085}
3086
118b2302
AV
3087char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3088{
3089 char *end = buffer + buflen;
3090 /* these dentries are never renamed, so d_lock is not needed */
3091 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3092 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3093 prepend(&end, &buflen, "/", 1))
3094 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3095 return end;
118b2302 3096}
31bbe16f 3097EXPORT_SYMBOL(simple_dname);
118b2302 3098
6092d048
RP
3099/*
3100 * Write full pathname from the root of the filesystem into the buffer.
3101 */
f6500801 3102static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3103{
f6500801 3104 struct dentry *dentry;
232d2d60
WL
3105 char *end, *retval;
3106 int len, seq = 0;
3107 int error = 0;
6092d048 3108
f6500801
AV
3109 if (buflen < 2)
3110 goto Elong;
3111
48f5ec21 3112 rcu_read_lock();
232d2d60 3113restart:
f6500801 3114 dentry = d;
232d2d60
WL
3115 end = buf + buflen;
3116 len = buflen;
3117 prepend(&end, &len, "\0", 1);
6092d048
RP
3118 /* Get '/' right */
3119 retval = end-1;
3120 *retval = '/';
232d2d60 3121 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3122 while (!IS_ROOT(dentry)) {
3123 struct dentry *parent = dentry->d_parent;
6092d048 3124
6092d048 3125 prefetch(parent);
232d2d60
WL
3126 error = prepend_name(&end, &len, &dentry->d_name);
3127 if (error)
3128 break;
6092d048
RP
3129
3130 retval = end;
3131 dentry = parent;
3132 }
48f5ec21
AV
3133 if (!(seq & 1))
3134 rcu_read_unlock();
3135 if (need_seqretry(&rename_lock, seq)) {
3136 seq = 1;
232d2d60 3137 goto restart;
48f5ec21
AV
3138 }
3139 done_seqretry(&rename_lock, seq);
232d2d60
WL
3140 if (error)
3141 goto Elong;
c103135c
AV
3142 return retval;
3143Elong:
3144 return ERR_PTR(-ENAMETOOLONG);
3145}
ec2447c2
NP
3146
3147char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3148{
232d2d60 3149 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3150}
3151EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3152
3153char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3154{
3155 char *p = NULL;
3156 char *retval;
3157
c103135c
AV
3158 if (d_unlinked(dentry)) {
3159 p = buf + buflen;
3160 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3161 goto Elong;
3162 buflen++;
3163 }
3164 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3165 if (!IS_ERR(retval) && p)
3166 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3167 return retval;
3168Elong:
6092d048
RP
3169 return ERR_PTR(-ENAMETOOLONG);
3170}
3171
8b19e341
LT
3172static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3173 struct path *pwd)
5762482f 3174{
8b19e341
LT
3175 unsigned seq;
3176
3177 do {
3178 seq = read_seqcount_begin(&fs->seq);
3179 *root = fs->root;
3180 *pwd = fs->pwd;
3181 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3182}
3183
1da177e4
LT
3184/*
3185 * NOTE! The user-level library version returns a
3186 * character pointer. The kernel system call just
3187 * returns the length of the buffer filled (which
3188 * includes the ending '\0' character), or a negative
3189 * error value. So libc would do something like
3190 *
3191 * char *getcwd(char * buf, size_t size)
3192 * {
3193 * int retval;
3194 *
3195 * retval = sys_getcwd(buf, size);
3196 * if (retval >= 0)
3197 * return buf;
3198 * errno = -retval;
3199 * return NULL;
3200 * }
3201 */
3cdad428 3202SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3203{
552ce544 3204 int error;
6ac08c39 3205 struct path pwd, root;
3272c544 3206 char *page = __getname();
1da177e4
LT
3207
3208 if (!page)
3209 return -ENOMEM;
3210
8b19e341
LT
3211 rcu_read_lock();
3212 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3213
552ce544 3214 error = -ENOENT;
f3da392e 3215 if (!d_unlinked(pwd.dentry)) {
552ce544 3216 unsigned long len;
3272c544
LT
3217 char *cwd = page + PATH_MAX;
3218 int buflen = PATH_MAX;
1da177e4 3219
8df9d1a4 3220 prepend(&cwd, &buflen, "\0", 1);
02125a82 3221 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3222 rcu_read_unlock();
552ce544 3223
02125a82 3224 if (error < 0)
552ce544
LT
3225 goto out;
3226
8df9d1a4 3227 /* Unreachable from current root */
02125a82 3228 if (error > 0) {
8df9d1a4
MS
3229 error = prepend_unreachable(&cwd, &buflen);
3230 if (error)
3231 goto out;
3232 }
3233
552ce544 3234 error = -ERANGE;
3272c544 3235 len = PATH_MAX + page - cwd;
552ce544
LT
3236 if (len <= size) {
3237 error = len;
3238 if (copy_to_user(buf, cwd, len))
3239 error = -EFAULT;
3240 }
949854d0 3241 } else {
ff812d72 3242 rcu_read_unlock();
949854d0 3243 }
1da177e4
LT
3244
3245out:
3272c544 3246 __putname(page);
1da177e4
LT
3247 return error;
3248}
3249
3250/*
3251 * Test whether new_dentry is a subdirectory of old_dentry.
3252 *
3253 * Trivially implemented using the dcache structure
3254 */
3255
3256/**
3257 * is_subdir - is new dentry a subdirectory of old_dentry
3258 * @new_dentry: new dentry
3259 * @old_dentry: old dentry
3260 *
3261 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3262 * Returns 0 otherwise.
3263 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3264 */
3265
e2761a11 3266int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3267{
3268 int result;
949854d0 3269 unsigned seq;
1da177e4 3270
e2761a11
OH
3271 if (new_dentry == old_dentry)
3272 return 1;
3273
e2761a11 3274 do {
1da177e4 3275 /* for restarting inner loop in case of seq retry */
1da177e4 3276 seq = read_seqbegin(&rename_lock);
949854d0
NP
3277 /*
3278 * Need rcu_readlock to protect against the d_parent trashing
3279 * due to d_move
3280 */
3281 rcu_read_lock();
e2761a11 3282 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3283 result = 1;
e2761a11
OH
3284 else
3285 result = 0;
949854d0 3286 rcu_read_unlock();
1da177e4 3287 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3288
3289 return result;
3290}
3291
db14fc3a 3292static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3293{
db14fc3a
MS
3294 struct dentry *root = data;
3295 if (dentry != root) {
3296 if (d_unhashed(dentry) || !dentry->d_inode)
3297 return D_WALK_SKIP;
1da177e4 3298
01ddc4ed
MS
3299 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3300 dentry->d_flags |= DCACHE_GENOCIDE;
3301 dentry->d_lockref.count--;
3302 }
1da177e4 3303 }
db14fc3a
MS
3304 return D_WALK_CONTINUE;
3305}
58db63d0 3306
db14fc3a
MS
3307void d_genocide(struct dentry *parent)
3308{
3309 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3310}
3311
60545d0d 3312void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3313{
60545d0d
AV
3314 inode_dec_link_count(inode);
3315 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3316 !hlist_unhashed(&dentry->d_alias) ||
3317 !d_unlinked(dentry));
3318 spin_lock(&dentry->d_parent->d_lock);
3319 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3320 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3321 (unsigned long long)inode->i_ino);
3322 spin_unlock(&dentry->d_lock);
3323 spin_unlock(&dentry->d_parent->d_lock);
3324 d_instantiate(dentry, inode);
1da177e4 3325}
60545d0d 3326EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3327
3328static __initdata unsigned long dhash_entries;
3329static int __init set_dhash_entries(char *str)
3330{
3331 if (!str)
3332 return 0;
3333 dhash_entries = simple_strtoul(str, &str, 0);
3334 return 1;
3335}
3336__setup("dhash_entries=", set_dhash_entries);
3337
3338static void __init dcache_init_early(void)
3339{
074b8517 3340 unsigned int loop;
1da177e4
LT
3341
3342 /* If hashes are distributed across NUMA nodes, defer
3343 * hash allocation until vmalloc space is available.
3344 */
3345 if (hashdist)
3346 return;
3347
3348 dentry_hashtable =
3349 alloc_large_system_hash("Dentry cache",
b07ad996 3350 sizeof(struct hlist_bl_head),
1da177e4
LT
3351 dhash_entries,
3352 13,
3353 HASH_EARLY,
3354 &d_hash_shift,
3355 &d_hash_mask,
31fe62b9 3356 0,
1da177e4
LT
3357 0);
3358
074b8517 3359 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3360 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3361}
3362
74bf17cf 3363static void __init dcache_init(void)
1da177e4 3364{
074b8517 3365 unsigned int loop;
1da177e4
LT
3366
3367 /*
3368 * A constructor could be added for stable state like the lists,
3369 * but it is probably not worth it because of the cache nature
3370 * of the dcache.
3371 */
0a31bd5f
CL
3372 dentry_cache = KMEM_CACHE(dentry,
3373 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3374
3375 /* Hash may have been set up in dcache_init_early */
3376 if (!hashdist)
3377 return;
3378
3379 dentry_hashtable =
3380 alloc_large_system_hash("Dentry cache",
b07ad996 3381 sizeof(struct hlist_bl_head),
1da177e4
LT
3382 dhash_entries,
3383 13,
3384 0,
3385 &d_hash_shift,
3386 &d_hash_mask,
31fe62b9 3387 0,
1da177e4
LT
3388 0);
3389
074b8517 3390 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3391 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3392}
3393
3394/* SLAB cache for __getname() consumers */
e18b890b 3395struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3396EXPORT_SYMBOL(names_cachep);
1da177e4 3397
1da177e4
LT
3398EXPORT_SYMBOL(d_genocide);
3399
1da177e4
LT
3400void __init vfs_caches_init_early(void)
3401{
3402 dcache_init_early();
3403 inode_init_early();
3404}
3405
3406void __init vfs_caches_init(unsigned long mempages)
3407{
3408 unsigned long reserve;
3409
3410 /* Base hash sizes on available memory, with a reserve equal to
3411 150% of current kernel size */
3412
3413 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3414 mempages -= reserve;
3415
3416 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3417 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3418
74bf17cf
DC
3419 dcache_init();
3420 inode_init();
1da177e4 3421 files_init(mempages);
74bf17cf 3422 mnt_init();
1da177e4
LT
3423 bdev_cache_init();
3424 chrdev_init();
3425}