]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
null_blk: change type of completion_nsec to unsigned long
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba 30#include <linux/kernel.h>
a5768aa8 31#include <linux/list_sort.h>
b60503ba
MW
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
1d277a63 42#include <linux/pr.h>
5d0f6131 43#include <scsi/sg.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
797a796a 46
9d99a8dd 47#include <uapi/linux/nvme_ioctl.h>
f11bb3e2
CH
48#include "nvme.h"
49
b3fffdef 50#define NVME_MINORS (1U << MINORBITS)
9d43cf64 51#define NVME_Q_DEPTH 1024
d31af0a3 52#define NVME_AQ_DEPTH 256
b60503ba
MW
53#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 55#define ADMIN_TIMEOUT (admin_timeout * HZ)
2484f407 56#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
9d43cf64
KB
57
58static unsigned char admin_timeout = 60;
59module_param(admin_timeout, byte, 0644);
60MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 61
bd67608a
MW
62unsigned char nvme_io_timeout = 30;
63module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 64MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 65
2484f407
DM
66static unsigned char shutdown_timeout = 5;
67module_param(shutdown_timeout, byte, 0644);
68MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
69
b60503ba
MW
70static int nvme_major;
71module_param(nvme_major, int, 0);
72
b3fffdef
KB
73static int nvme_char_major;
74module_param(nvme_char_major, int, 0);
75
58ffacb5
MW
76static int use_threaded_interrupts;
77module_param(use_threaded_interrupts, int, 0);
78
8ffaadf7
JD
79static bool use_cmb_sqes = true;
80module_param(use_cmb_sqes, bool, 0644);
81MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
82
1fa6aead
MW
83static DEFINE_SPINLOCK(dev_list_lock);
84static LIST_HEAD(dev_list);
85static struct task_struct *nvme_thread;
9a6b9458 86static struct workqueue_struct *nvme_workq;
b9afca3e 87static wait_queue_head_t nvme_kthread_wait;
1fa6aead 88
b3fffdef
KB
89static struct class *nvme_class;
90
90667892 91static int __nvme_reset(struct nvme_dev *dev);
4cc06521 92static int nvme_reset(struct nvme_dev *dev);
a0fa9647 93static void nvme_process_cq(struct nvme_queue *nvmeq);
3cf519b5 94static void nvme_dead_ctrl(struct nvme_dev *dev);
d4b4ff8e 95
4d115420
KB
96struct async_cmd_info {
97 struct kthread_work work;
98 struct kthread_worker *worker;
a4aea562 99 struct request *req;
4d115420
KB
100 u32 result;
101 int status;
102 void *ctx;
103};
1fa6aead 104
b60503ba
MW
105/*
106 * An NVM Express queue. Each device has at least two (one for admin
107 * commands and one for I/O commands).
108 */
109struct nvme_queue {
110 struct device *q_dmadev;
091b6092 111 struct nvme_dev *dev;
3193f07b 112 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
113 spinlock_t q_lock;
114 struct nvme_command *sq_cmds;
8ffaadf7 115 struct nvme_command __iomem *sq_cmds_io;
b60503ba 116 volatile struct nvme_completion *cqes;
42483228 117 struct blk_mq_tags **tags;
b60503ba
MW
118 dma_addr_t sq_dma_addr;
119 dma_addr_t cq_dma_addr;
b60503ba
MW
120 u32 __iomem *q_db;
121 u16 q_depth;
6222d172 122 s16 cq_vector;
b60503ba
MW
123 u16 sq_head;
124 u16 sq_tail;
125 u16 cq_head;
c30341dc 126 u16 qid;
e9539f47
MW
127 u8 cq_phase;
128 u8 cqe_seen;
4d115420 129 struct async_cmd_info cmdinfo;
b60503ba
MW
130};
131
132/*
133 * Check we didin't inadvertently grow the command struct
134 */
135static inline void _nvme_check_size(void)
136{
137 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
138 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
139 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
140 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
141 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 142 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 143 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
144 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
145 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
146 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
147 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 148 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
149}
150
edd10d33 151typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
152 struct nvme_completion *);
153
e85248e5 154struct nvme_cmd_info {
c2f5b650
MW
155 nvme_completion_fn fn;
156 void *ctx;
c30341dc 157 int aborted;
a4aea562 158 struct nvme_queue *nvmeq;
ac3dd5bd 159 struct nvme_iod iod[0];
e85248e5
MW
160};
161
ac3dd5bd
JA
162/*
163 * Max size of iod being embedded in the request payload
164 */
165#define NVME_INT_PAGES 2
166#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
fda631ff 167#define NVME_INT_MASK 0x01
ac3dd5bd
JA
168
169/*
170 * Will slightly overestimate the number of pages needed. This is OK
171 * as it only leads to a small amount of wasted memory for the lifetime of
172 * the I/O.
173 */
174static int nvme_npages(unsigned size, struct nvme_dev *dev)
175{
176 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
177 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
178}
179
180static unsigned int nvme_cmd_size(struct nvme_dev *dev)
181{
182 unsigned int ret = sizeof(struct nvme_cmd_info);
183
184 ret += sizeof(struct nvme_iod);
185 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
186 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
187
188 return ret;
189}
190
a4aea562
MB
191static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
192 unsigned int hctx_idx)
e85248e5 193{
a4aea562
MB
194 struct nvme_dev *dev = data;
195 struct nvme_queue *nvmeq = dev->queues[0];
196
42483228
KB
197 WARN_ON(hctx_idx != 0);
198 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
199 WARN_ON(nvmeq->tags);
200
a4aea562 201 hctx->driver_data = nvmeq;
42483228 202 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 203 return 0;
e85248e5
MW
204}
205
4af0e21c
KB
206static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
207{
208 struct nvme_queue *nvmeq = hctx->driver_data;
209
210 nvmeq->tags = NULL;
211}
212
a4aea562
MB
213static int nvme_admin_init_request(void *data, struct request *req,
214 unsigned int hctx_idx, unsigned int rq_idx,
215 unsigned int numa_node)
22404274 216{
a4aea562
MB
217 struct nvme_dev *dev = data;
218 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
219 struct nvme_queue *nvmeq = dev->queues[0];
220
221 BUG_ON(!nvmeq);
222 cmd->nvmeq = nvmeq;
223 return 0;
22404274
KB
224}
225
a4aea562
MB
226static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
227 unsigned int hctx_idx)
b60503ba 228{
a4aea562 229 struct nvme_dev *dev = data;
42483228 230 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 231
42483228
KB
232 if (!nvmeq->tags)
233 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 234
42483228 235 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
236 hctx->driver_data = nvmeq;
237 return 0;
b60503ba
MW
238}
239
a4aea562
MB
240static int nvme_init_request(void *data, struct request *req,
241 unsigned int hctx_idx, unsigned int rq_idx,
242 unsigned int numa_node)
b60503ba 243{
a4aea562
MB
244 struct nvme_dev *dev = data;
245 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
246 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
247
248 BUG_ON(!nvmeq);
249 cmd->nvmeq = nvmeq;
250 return 0;
251}
252
253static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
254 nvme_completion_fn handler)
255{
256 cmd->fn = handler;
257 cmd->ctx = ctx;
258 cmd->aborted = 0;
c917dfe5 259 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
260}
261
ac3dd5bd
JA
262static void *iod_get_private(struct nvme_iod *iod)
263{
264 return (void *) (iod->private & ~0x1UL);
265}
266
267/*
268 * If bit 0 is set, the iod is embedded in the request payload.
269 */
270static bool iod_should_kfree(struct nvme_iod *iod)
271{
fda631ff 272 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
273}
274
c2f5b650
MW
275/* Special values must be less than 0x1000 */
276#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
277#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
278#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
279#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 280
edd10d33 281static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
282 struct nvme_completion *cqe)
283{
284 if (ctx == CMD_CTX_CANCELLED)
285 return;
c2f5b650 286 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 287 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
288 "completed id %d twice on queue %d\n",
289 cqe->command_id, le16_to_cpup(&cqe->sq_id));
290 return;
291 }
292 if (ctx == CMD_CTX_INVALID) {
edd10d33 293 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
294 "invalid id %d completed on queue %d\n",
295 cqe->command_id, le16_to_cpup(&cqe->sq_id));
296 return;
297 }
edd10d33 298 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
299}
300
a4aea562 301static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 302{
c2f5b650 303 void *ctx;
b60503ba 304
859361a2 305 if (fn)
a4aea562
MB
306 *fn = cmd->fn;
307 ctx = cmd->ctx;
308 cmd->fn = special_completion;
309 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 310 return ctx;
b60503ba
MW
311}
312
a4aea562
MB
313static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
314 struct nvme_completion *cqe)
3c0cf138 315{
a4aea562
MB
316 u32 result = le32_to_cpup(&cqe->result);
317 u16 status = le16_to_cpup(&cqe->status) >> 1;
318
319 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
320 ++nvmeq->dev->event_limit;
a5768aa8
KB
321 if (status != NVME_SC_SUCCESS)
322 return;
323
324 switch (result & 0xff07) {
325 case NVME_AER_NOTICE_NS_CHANGED:
326 dev_info(nvmeq->q_dmadev, "rescanning\n");
327 schedule_work(&nvmeq->dev->scan_work);
328 default:
329 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
330 }
b60503ba
MW
331}
332
a4aea562
MB
333static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
334 struct nvme_completion *cqe)
5a92e700 335{
a4aea562
MB
336 struct request *req = ctx;
337
338 u16 status = le16_to_cpup(&cqe->status) >> 1;
339 u32 result = le32_to_cpup(&cqe->result);
a51afb54 340
42483228 341 blk_mq_free_request(req);
a51afb54 342
a4aea562
MB
343 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
344 ++nvmeq->dev->abort_limit;
5a92e700
KB
345}
346
a4aea562
MB
347static void async_completion(struct nvme_queue *nvmeq, void *ctx,
348 struct nvme_completion *cqe)
b60503ba 349{
a4aea562
MB
350 struct async_cmd_info *cmdinfo = ctx;
351 cmdinfo->result = le32_to_cpup(&cqe->result);
352 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
353 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 354 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
355}
356
a4aea562
MB
357static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
358 unsigned int tag)
b60503ba 359{
42483228 360 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 361
a4aea562 362 return blk_mq_rq_to_pdu(req);
4f5099af
KB
363}
364
a4aea562
MB
365/*
366 * Called with local interrupts disabled and the q_lock held. May not sleep.
367 */
368static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
369 nvme_completion_fn *fn)
4f5099af 370{
a4aea562
MB
371 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
372 void *ctx;
373 if (tag >= nvmeq->q_depth) {
374 *fn = special_completion;
375 return CMD_CTX_INVALID;
376 }
377 if (fn)
378 *fn = cmd->fn;
379 ctx = cmd->ctx;
380 cmd->fn = special_completion;
381 cmd->ctx = CMD_CTX_COMPLETED;
382 return ctx;
b60503ba
MW
383}
384
385/**
714a7a22 386 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
387 * @nvmeq: The queue to use
388 * @cmd: The command to send
389 *
390 * Safe to use from interrupt context
391 */
e3f879bf
SB
392static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
393 struct nvme_command *cmd)
b60503ba 394{
a4aea562
MB
395 u16 tail = nvmeq->sq_tail;
396
8ffaadf7
JD
397 if (nvmeq->sq_cmds_io)
398 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
399 else
400 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
401
b60503ba
MW
402 if (++tail == nvmeq->q_depth)
403 tail = 0;
7547881d 404 writel(tail, nvmeq->q_db);
b60503ba 405 nvmeq->sq_tail = tail;
b60503ba
MW
406}
407
e3f879bf 408static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
409{
410 unsigned long flags;
a4aea562 411 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 412 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 413 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
414}
415
eca18b23 416static __le64 **iod_list(struct nvme_iod *iod)
e025344c 417{
eca18b23 418 return ((void *)iod) + iod->offset;
e025344c
SMM
419}
420
ac3dd5bd
JA
421static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
422 unsigned nseg, unsigned long private)
eca18b23 423{
ac3dd5bd
JA
424 iod->private = private;
425 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
426 iod->npages = -1;
427 iod->length = nbytes;
428 iod->nents = 0;
eca18b23 429}
b60503ba 430
eca18b23 431static struct nvme_iod *
ac3dd5bd
JA
432__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
433 unsigned long priv, gfp_t gfp)
b60503ba 434{
eca18b23 435 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 436 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
437 sizeof(struct scatterlist) * nseg, gfp);
438
ac3dd5bd
JA
439 if (iod)
440 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
441
442 return iod;
b60503ba
MW
443}
444
ac3dd5bd
JA
445static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
446 gfp_t gfp)
447{
448 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
449 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
450 struct nvme_iod *iod;
451
452 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
453 size <= NVME_INT_BYTES(dev)) {
454 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
455
456 iod = cmd->iod;
ac3dd5bd 457 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 458 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
459 return iod;
460 }
461
462 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
463 (unsigned long) rq, gfp);
464}
465
d29ec824 466static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 467{
1d090624 468 const int last_prp = dev->page_size / 8 - 1;
eca18b23
MW
469 int i;
470 __le64 **list = iod_list(iod);
471 dma_addr_t prp_dma = iod->first_dma;
472
473 if (iod->npages == 0)
474 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
475 for (i = 0; i < iod->npages; i++) {
476 __le64 *prp_list = list[i];
477 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
478 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
479 prp_dma = next_prp_dma;
480 }
ac3dd5bd
JA
481
482 if (iod_should_kfree(iod))
483 kfree(iod);
b60503ba
MW
484}
485
b4ff9c8d
KB
486static int nvme_error_status(u16 status)
487{
488 switch (status & 0x7ff) {
489 case NVME_SC_SUCCESS:
490 return 0;
491 case NVME_SC_CAP_EXCEEDED:
492 return -ENOSPC;
493 default:
494 return -EIO;
495 }
496}
497
52b68d7e 498#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
499static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
500{
501 if (be32_to_cpu(pi->ref_tag) == v)
502 pi->ref_tag = cpu_to_be32(p);
503}
504
505static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
506{
507 if (be32_to_cpu(pi->ref_tag) == p)
508 pi->ref_tag = cpu_to_be32(v);
509}
510
511/**
512 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
513 *
514 * The virtual start sector is the one that was originally submitted by the
515 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
516 * start sector may be different. Remap protection information to match the
517 * physical LBA on writes, and back to the original seed on reads.
518 *
519 * Type 0 and 3 do not have a ref tag, so no remapping required.
520 */
521static void nvme_dif_remap(struct request *req,
522 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
523{
524 struct nvme_ns *ns = req->rq_disk->private_data;
525 struct bio_integrity_payload *bip;
526 struct t10_pi_tuple *pi;
527 void *p, *pmap;
528 u32 i, nlb, ts, phys, virt;
529
530 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
531 return;
532
533 bip = bio_integrity(req->bio);
534 if (!bip)
535 return;
536
537 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
538
539 p = pmap;
540 virt = bip_get_seed(bip);
541 phys = nvme_block_nr(ns, blk_rq_pos(req));
542 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 543 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
544
545 for (i = 0; i < nlb; i++, virt++, phys++) {
546 pi = (struct t10_pi_tuple *)p;
547 dif_swap(phys, virt, pi);
548 p += ts;
549 }
550 kunmap_atomic(pmap);
551}
552
52b68d7e
KB
553static void nvme_init_integrity(struct nvme_ns *ns)
554{
555 struct blk_integrity integrity;
556
557 switch (ns->pi_type) {
558 case NVME_NS_DPS_PI_TYPE3:
0f8087ec 559 integrity.profile = &t10_pi_type3_crc;
52b68d7e
KB
560 break;
561 case NVME_NS_DPS_PI_TYPE1:
562 case NVME_NS_DPS_PI_TYPE2:
0f8087ec 563 integrity.profile = &t10_pi_type1_crc;
52b68d7e
KB
564 break;
565 default:
4125a09b 566 integrity.profile = NULL;
52b68d7e
KB
567 break;
568 }
569 integrity.tuple_size = ns->ms;
570 blk_integrity_register(ns->disk, &integrity);
571 blk_queue_max_integrity_segments(ns->queue, 1);
572}
573#else /* CONFIG_BLK_DEV_INTEGRITY */
574static void nvme_dif_remap(struct request *req,
575 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
576{
577}
578static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
579{
580}
581static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
582{
583}
584static void nvme_init_integrity(struct nvme_ns *ns)
585{
586}
587#endif
588
a4aea562 589static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
590 struct nvme_completion *cqe)
591{
eca18b23 592 struct nvme_iod *iod = ctx;
ac3dd5bd 593 struct request *req = iod_get_private(iod);
a4aea562 594 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
b60503ba 595 u16 status = le16_to_cpup(&cqe->status) >> 1;
0dfc70c3 596 bool requeue = false;
81c04b94 597 int error = 0;
b60503ba 598
edd10d33 599 if (unlikely(status)) {
a4aea562
MB
600 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
601 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
602 unsigned long flags;
603
0dfc70c3 604 requeue = true;
a4aea562 605 blk_mq_requeue_request(req);
c9d3bf88
KB
606 spin_lock_irqsave(req->q->queue_lock, flags);
607 if (!blk_queue_stopped(req->q))
608 blk_mq_kick_requeue_list(req->q);
609 spin_unlock_irqrestore(req->q->queue_lock, flags);
0dfc70c3 610 goto release_iod;
edd10d33 611 }
f4829a9b 612
d29ec824 613 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 614 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
81c04b94
CH
615 error = -EINTR;
616 else
617 error = status;
d29ec824 618 } else {
81c04b94 619 error = nvme_error_status(status);
d29ec824 620 }
f4829a9b
CH
621 }
622
a0a931d6
KB
623 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
624 u32 result = le32_to_cpup(&cqe->result);
625 req->special = (void *)(uintptr_t)result;
626 }
a4aea562
MB
627
628 if (cmd_rq->aborted)
e75ec752 629 dev_warn(nvmeq->dev->dev,
a4aea562 630 "completing aborted command with status:%04x\n",
81c04b94 631 error);
a4aea562 632
0dfc70c3 633release_iod:
e1e5e564 634 if (iod->nents) {
e75ec752 635 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
a4aea562 636 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
e1e5e564
KB
637 if (blk_integrity_rq(req)) {
638 if (!rq_data_dir(req))
639 nvme_dif_remap(req, nvme_dif_complete);
e75ec752 640 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
e1e5e564
KB
641 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
642 }
643 }
edd10d33 644 nvme_free_iod(nvmeq->dev, iod);
3291fa57 645
0dfc70c3
KB
646 if (likely(!requeue))
647 blk_mq_complete_request(req, error);
b60503ba
MW
648}
649
184d2944 650/* length is in bytes. gfp flags indicates whether we may sleep. */
d29ec824
CH
651static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
652 int total_len, gfp_t gfp)
ff22b54f 653{
99802a7a 654 struct dma_pool *pool;
eca18b23
MW
655 int length = total_len;
656 struct scatterlist *sg = iod->sg;
ff22b54f
MW
657 int dma_len = sg_dma_len(sg);
658 u64 dma_addr = sg_dma_address(sg);
f137e0f1
MI
659 u32 page_size = dev->page_size;
660 int offset = dma_addr & (page_size - 1);
e025344c 661 __le64 *prp_list;
eca18b23 662 __le64 **list = iod_list(iod);
e025344c 663 dma_addr_t prp_dma;
eca18b23 664 int nprps, i;
ff22b54f 665
1d090624 666 length -= (page_size - offset);
ff22b54f 667 if (length <= 0)
eca18b23 668 return total_len;
ff22b54f 669
1d090624 670 dma_len -= (page_size - offset);
ff22b54f 671 if (dma_len) {
1d090624 672 dma_addr += (page_size - offset);
ff22b54f
MW
673 } else {
674 sg = sg_next(sg);
675 dma_addr = sg_dma_address(sg);
676 dma_len = sg_dma_len(sg);
677 }
678
1d090624 679 if (length <= page_size) {
edd10d33 680 iod->first_dma = dma_addr;
eca18b23 681 return total_len;
e025344c
SMM
682 }
683
1d090624 684 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
685 if (nprps <= (256 / 8)) {
686 pool = dev->prp_small_pool;
eca18b23 687 iod->npages = 0;
99802a7a
MW
688 } else {
689 pool = dev->prp_page_pool;
eca18b23 690 iod->npages = 1;
99802a7a
MW
691 }
692
b77954cb
MW
693 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
694 if (!prp_list) {
edd10d33 695 iod->first_dma = dma_addr;
eca18b23 696 iod->npages = -1;
1d090624 697 return (total_len - length) + page_size;
b77954cb 698 }
eca18b23
MW
699 list[0] = prp_list;
700 iod->first_dma = prp_dma;
e025344c
SMM
701 i = 0;
702 for (;;) {
1d090624 703 if (i == page_size >> 3) {
e025344c 704 __le64 *old_prp_list = prp_list;
b77954cb 705 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
706 if (!prp_list)
707 return total_len - length;
708 list[iod->npages++] = prp_list;
7523d834
MW
709 prp_list[0] = old_prp_list[i - 1];
710 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
711 i = 1;
e025344c
SMM
712 }
713 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
714 dma_len -= page_size;
715 dma_addr += page_size;
716 length -= page_size;
e025344c
SMM
717 if (length <= 0)
718 break;
719 if (dma_len > 0)
720 continue;
721 BUG_ON(dma_len < 0);
722 sg = sg_next(sg);
723 dma_addr = sg_dma_address(sg);
724 dma_len = sg_dma_len(sg);
ff22b54f
MW
725 }
726
eca18b23 727 return total_len;
ff22b54f
MW
728}
729
d29ec824
CH
730static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
731 struct nvme_iod *iod)
732{
498c4394 733 struct nvme_command cmnd;
d29ec824 734
498c4394
JD
735 memcpy(&cmnd, req->cmd, sizeof(cmnd));
736 cmnd.rw.command_id = req->tag;
d29ec824 737 if (req->nr_phys_segments) {
498c4394
JD
738 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
d29ec824
CH
740 }
741
498c4394 742 __nvme_submit_cmd(nvmeq, &cmnd);
d29ec824
CH
743}
744
a4aea562
MB
745/*
746 * We reuse the small pool to allocate the 16-byte range here as it is not
747 * worth having a special pool for these or additional cases to handle freeing
748 * the iod.
749 */
750static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
751 struct request *req, struct nvme_iod *iod)
0e5e4f0e 752{
edd10d33
KB
753 struct nvme_dsm_range *range =
754 (struct nvme_dsm_range *)iod_list(iod)[0];
498c4394 755 struct nvme_command cmnd;
0e5e4f0e 756
0e5e4f0e 757 range->cattr = cpu_to_le32(0);
a4aea562
MB
758 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
759 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 760
498c4394
JD
761 memset(&cmnd, 0, sizeof(cmnd));
762 cmnd.dsm.opcode = nvme_cmd_dsm;
763 cmnd.dsm.command_id = req->tag;
764 cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
765 cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
766 cmnd.dsm.nr = 0;
767 cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
0e5e4f0e 768
498c4394 769 __nvme_submit_cmd(nvmeq, &cmnd);
0e5e4f0e
KB
770}
771
a4aea562 772static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
00df5cb4
MW
773 int cmdid)
774{
498c4394 775 struct nvme_command cmnd;
00df5cb4 776
498c4394
JD
777 memset(&cmnd, 0, sizeof(cmnd));
778 cmnd.common.opcode = nvme_cmd_flush;
779 cmnd.common.command_id = cmdid;
780 cmnd.common.nsid = cpu_to_le32(ns->ns_id);
00df5cb4 781
498c4394 782 __nvme_submit_cmd(nvmeq, &cmnd);
00df5cb4
MW
783}
784
a4aea562
MB
785static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
786 struct nvme_ns *ns)
b60503ba 787{
ac3dd5bd 788 struct request *req = iod_get_private(iod);
498c4394 789 struct nvme_command cmnd;
a4aea562
MB
790 u16 control = 0;
791 u32 dsmgmt = 0;
00df5cb4 792
a4aea562 793 if (req->cmd_flags & REQ_FUA)
b60503ba 794 control |= NVME_RW_FUA;
a4aea562 795 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
b60503ba
MW
796 control |= NVME_RW_LR;
797
a4aea562 798 if (req->cmd_flags & REQ_RAHEAD)
b60503ba
MW
799 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800
498c4394
JD
801 memset(&cmnd, 0, sizeof(cmnd));
802 cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
803 cmnd.rw.command_id = req->tag;
804 cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
805 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
806 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
807 cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
808 cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
b60503ba 809
e19b127f 810 if (ns->ms) {
e1e5e564
KB
811 switch (ns->pi_type) {
812 case NVME_NS_DPS_PI_TYPE3:
813 control |= NVME_RW_PRINFO_PRCHK_GUARD;
814 break;
815 case NVME_NS_DPS_PI_TYPE1:
816 case NVME_NS_DPS_PI_TYPE2:
817 control |= NVME_RW_PRINFO_PRCHK_GUARD |
818 NVME_RW_PRINFO_PRCHK_REF;
498c4394 819 cmnd.rw.reftag = cpu_to_le32(
e1e5e564
KB
820 nvme_block_nr(ns, blk_rq_pos(req)));
821 break;
822 }
e19b127f
AP
823 if (blk_integrity_rq(req))
824 cmnd.rw.metadata =
825 cpu_to_le64(sg_dma_address(iod->meta_sg));
826 else
827 control |= NVME_RW_PRINFO_PRACT;
828 }
e1e5e564 829
498c4394
JD
830 cmnd.rw.control = cpu_to_le16(control);
831 cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 832
498c4394 833 __nvme_submit_cmd(nvmeq, &cmnd);
b60503ba 834
1974b1ae 835 return 0;
edd10d33
KB
836}
837
d29ec824
CH
838/*
839 * NOTE: ns is NULL when called on the admin queue.
840 */
a4aea562
MB
841static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
842 const struct blk_mq_queue_data *bd)
edd10d33 843{
a4aea562
MB
844 struct nvme_ns *ns = hctx->queue->queuedata;
845 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 846 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
847 struct request *req = bd->rq;
848 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 849 struct nvme_iod *iod;
a4aea562 850 enum dma_data_direction dma_dir;
edd10d33 851
e1e5e564
KB
852 /*
853 * If formated with metadata, require the block layer provide a buffer
854 * unless this namespace is formated such that the metadata can be
855 * stripped/generated by the controller with PRACT=1.
856 */
d29ec824 857 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
858 if (!(ns->pi_type && ns->ms == 8) &&
859 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 860 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
861 return BLK_MQ_RQ_QUEUE_OK;
862 }
863 }
864
d29ec824 865 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 866 if (!iod)
fe54303e 867 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 868
a4aea562 869 if (req->cmd_flags & REQ_DISCARD) {
edd10d33
KB
870 void *range;
871 /*
872 * We reuse the small pool to allocate the 16-byte range here
873 * as it is not worth having a special pool for these or
874 * additional cases to handle freeing the iod.
875 */
d29ec824 876 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
edd10d33 877 &iod->first_dma);
a4aea562 878 if (!range)
fe54303e 879 goto retry_cmd;
edd10d33
KB
880 iod_list(iod)[0] = (__le64 *)range;
881 iod->npages = 0;
ac3dd5bd 882 } else if (req->nr_phys_segments) {
a4aea562
MB
883 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
884
ac3dd5bd 885 sg_init_table(iod->sg, req->nr_phys_segments);
a4aea562 886 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
fe54303e
JA
887 if (!iod->nents)
888 goto error_cmd;
a4aea562
MB
889
890 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
fe54303e 891 goto retry_cmd;
a4aea562 892
fe54303e 893 if (blk_rq_bytes(req) !=
d29ec824
CH
894 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
895 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
fe54303e
JA
896 goto retry_cmd;
897 }
e1e5e564 898 if (blk_integrity_rq(req)) {
bf508e91
CH
899 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1) {
900 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
901 dma_dir);
e1e5e564 902 goto error_cmd;
bf508e91 903 }
e1e5e564
KB
904
905 sg_init_table(iod->meta_sg, 1);
906 if (blk_rq_map_integrity_sg(
bf508e91
CH
907 req->q, req->bio, iod->meta_sg) != 1) {
908 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
909 dma_dir);
e1e5e564 910 goto error_cmd;
bf508e91 911 }
e1e5e564
KB
912
913 if (rq_data_dir(req))
914 nvme_dif_remap(req, nvme_dif_prep);
915
bf508e91
CH
916 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir)) {
917 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
918 dma_dir);
e1e5e564 919 goto error_cmd;
bf508e91 920 }
e1e5e564 921 }
edd10d33 922 }
1974b1ae 923
9af8785a 924 nvme_set_info(cmd, iod, req_completion);
a4aea562 925 spin_lock_irq(&nvmeq->q_lock);
d29ec824
CH
926 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
927 nvme_submit_priv(nvmeq, req, iod);
928 else if (req->cmd_flags & REQ_DISCARD)
a4aea562
MB
929 nvme_submit_discard(nvmeq, ns, req, iod);
930 else if (req->cmd_flags & REQ_FLUSH)
931 nvme_submit_flush(nvmeq, ns, req->tag);
932 else
933 nvme_submit_iod(nvmeq, iod, ns);
934
935 nvme_process_cq(nvmeq);
936 spin_unlock_irq(&nvmeq->q_lock);
937 return BLK_MQ_RQ_QUEUE_OK;
938
fe54303e 939 error_cmd:
d29ec824 940 nvme_free_iod(dev, iod);
fe54303e
JA
941 return BLK_MQ_RQ_QUEUE_ERROR;
942 retry_cmd:
d29ec824 943 nvme_free_iod(dev, iod);
fe54303e 944 return BLK_MQ_RQ_QUEUE_BUSY;
b60503ba
MW
945}
946
a0fa9647 947static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 948{
82123460 949 u16 head, phase;
b60503ba 950
b60503ba 951 head = nvmeq->cq_head;
82123460 952 phase = nvmeq->cq_phase;
b60503ba
MW
953
954 for (;;) {
c2f5b650
MW
955 void *ctx;
956 nvme_completion_fn fn;
b60503ba 957 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 958 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
959 break;
960 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
961 if (++head == nvmeq->q_depth) {
962 head = 0;
82123460 963 phase = !phase;
b60503ba 964 }
a0fa9647
JA
965 if (tag && *tag == cqe.command_id)
966 *tag = -1;
a4aea562 967 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 968 fn(nvmeq, ctx, &cqe);
b60503ba
MW
969 }
970
971 /* If the controller ignores the cq head doorbell and continuously
972 * writes to the queue, it is theoretically possible to wrap around
973 * the queue twice and mistakenly return IRQ_NONE. Linux only
974 * requires that 0.1% of your interrupts are handled, so this isn't
975 * a big problem.
976 */
82123460 977 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 978 return;
b60503ba 979
604e8c8d
KB
980 if (likely(nvmeq->cq_vector >= 0))
981 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 982 nvmeq->cq_head = head;
82123460 983 nvmeq->cq_phase = phase;
b60503ba 984
e9539f47 985 nvmeq->cqe_seen = 1;
a0fa9647
JA
986}
987
988static void nvme_process_cq(struct nvme_queue *nvmeq)
989{
990 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
991}
992
993static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
994{
995 irqreturn_t result;
996 struct nvme_queue *nvmeq = data;
997 spin_lock(&nvmeq->q_lock);
e9539f47
MW
998 nvme_process_cq(nvmeq);
999 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1000 nvmeq->cqe_seen = 0;
58ffacb5
MW
1001 spin_unlock(&nvmeq->q_lock);
1002 return result;
1003}
1004
1005static irqreturn_t nvme_irq_check(int irq, void *data)
1006{
1007 struct nvme_queue *nvmeq = data;
1008 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1009 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1010 return IRQ_NONE;
1011 return IRQ_WAKE_THREAD;
1012}
1013
a0fa9647
JA
1014static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1015{
1016 struct nvme_queue *nvmeq = hctx->driver_data;
1017
1018 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
1019 nvmeq->cq_phase) {
1020 spin_lock_irq(&nvmeq->q_lock);
1021 __nvme_process_cq(nvmeq, &tag);
1022 spin_unlock_irq(&nvmeq->q_lock);
1023
1024 if (tag == -1)
1025 return 1;
1026 }
1027
1028 return 0;
1029}
1030
b60503ba
MW
1031/*
1032 * Returns 0 on success. If the result is negative, it's a Linux error code;
1033 * if the result is positive, it's an NVM Express status code
1034 */
d29ec824
CH
1035int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1036 void *buffer, void __user *ubuffer, unsigned bufflen,
1037 u32 *result, unsigned timeout)
b60503ba 1038{
d29ec824
CH
1039 bool write = cmd->common.opcode & 1;
1040 struct bio *bio = NULL;
f705f837 1041 struct request *req;
d29ec824 1042 int ret;
b60503ba 1043
d29ec824 1044 req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
f705f837
CH
1045 if (IS_ERR(req))
1046 return PTR_ERR(req);
b60503ba 1047
d29ec824 1048 req->cmd_type = REQ_TYPE_DRV_PRIV;
e112af0d 1049 req->cmd_flags |= REQ_FAILFAST_DRIVER;
d29ec824
CH
1050 req->__data_len = 0;
1051 req->__sector = (sector_t) -1;
1052 req->bio = req->biotail = NULL;
b60503ba 1053
f4ff414a 1054 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
a4aea562 1055
d29ec824
CH
1056 req->cmd = (unsigned char *)cmd;
1057 req->cmd_len = sizeof(struct nvme_command);
a0a931d6 1058 req->special = (void *)0;
b60503ba 1059
d29ec824 1060 if (buffer && bufflen) {
71baba4b
MG
1061 ret = blk_rq_map_kern(q, req, buffer, bufflen,
1062 __GFP_DIRECT_RECLAIM);
d29ec824
CH
1063 if (ret)
1064 goto out;
1065 } else if (ubuffer && bufflen) {
71baba4b
MG
1066 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1067 __GFP_DIRECT_RECLAIM);
d29ec824
CH
1068 if (ret)
1069 goto out;
1070 bio = req->bio;
1071 }
3c0cf138 1072
d29ec824
CH
1073 blk_execute_rq(req->q, NULL, req, 0);
1074 if (bio)
1075 blk_rq_unmap_user(bio);
b60503ba 1076 if (result)
a0a931d6 1077 *result = (u32)(uintptr_t)req->special;
d29ec824
CH
1078 ret = req->errors;
1079 out:
f705f837 1080 blk_mq_free_request(req);
d29ec824 1081 return ret;
f705f837
CH
1082}
1083
d29ec824
CH
1084int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1085 void *buffer, unsigned bufflen)
f705f837 1086{
d29ec824 1087 return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
b60503ba
MW
1088}
1089
a4aea562
MB
1090static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1091{
1092 struct nvme_queue *nvmeq = dev->queues[0];
1093 struct nvme_command c;
1094 struct nvme_cmd_info *cmd_info;
1095 struct request *req;
1096
1efccc9d 1097 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
9f173b33
DC
1098 if (IS_ERR(req))
1099 return PTR_ERR(req);
a4aea562 1100
c917dfe5 1101 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 1102 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 1103 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
1104
1105 memset(&c, 0, sizeof(c));
1106 c.common.opcode = nvme_admin_async_event;
1107 c.common.command_id = req->tag;
1108
42483228 1109 blk_mq_free_request(req);
e3f879bf
SB
1110 __nvme_submit_cmd(nvmeq, &c);
1111 return 0;
a4aea562
MB
1112}
1113
1114static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1115 struct nvme_command *cmd,
1116 struct async_cmd_info *cmdinfo, unsigned timeout)
1117{
a4aea562
MB
1118 struct nvme_queue *nvmeq = dev->queues[0];
1119 struct request *req;
1120 struct nvme_cmd_info *cmd_rq;
4d115420 1121
a4aea562 1122 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
9f173b33
DC
1123 if (IS_ERR(req))
1124 return PTR_ERR(req);
a4aea562
MB
1125
1126 req->timeout = timeout;
1127 cmd_rq = blk_mq_rq_to_pdu(req);
1128 cmdinfo->req = req;
1129 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1130 cmdinfo->status = -EINTR;
a4aea562
MB
1131
1132 cmd->common.command_id = req->tag;
1133
e3f879bf
SB
1134 nvme_submit_cmd(nvmeq, cmd);
1135 return 0;
4d115420
KB
1136}
1137
b60503ba
MW
1138static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1139{
b60503ba
MW
1140 struct nvme_command c;
1141
1142 memset(&c, 0, sizeof(c));
1143 c.delete_queue.opcode = opcode;
1144 c.delete_queue.qid = cpu_to_le16(id);
1145
d29ec824 1146 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1147}
1148
1149static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1150 struct nvme_queue *nvmeq)
1151{
b60503ba
MW
1152 struct nvme_command c;
1153 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1154
d29ec824
CH
1155 /*
1156 * Note: we (ab)use the fact the the prp fields survive if no data
1157 * is attached to the request.
1158 */
b60503ba
MW
1159 memset(&c, 0, sizeof(c));
1160 c.create_cq.opcode = nvme_admin_create_cq;
1161 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1162 c.create_cq.cqid = cpu_to_le16(qid);
1163 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1164 c.create_cq.cq_flags = cpu_to_le16(flags);
1165 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1166
d29ec824 1167 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1168}
1169
1170static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1171 struct nvme_queue *nvmeq)
1172{
b60503ba
MW
1173 struct nvme_command c;
1174 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1175
d29ec824
CH
1176 /*
1177 * Note: we (ab)use the fact the the prp fields survive if no data
1178 * is attached to the request.
1179 */
b60503ba
MW
1180 memset(&c, 0, sizeof(c));
1181 c.create_sq.opcode = nvme_admin_create_sq;
1182 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1183 c.create_sq.sqid = cpu_to_le16(qid);
1184 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1185 c.create_sq.sq_flags = cpu_to_le16(flags);
1186 c.create_sq.cqid = cpu_to_le16(qid);
1187
d29ec824 1188 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1189}
1190
1191static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1192{
1193 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1194}
1195
1196static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1197{
1198 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1199}
1200
d29ec824 1201int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
bc5fc7e4 1202{
e44ac588 1203 struct nvme_command c = { };
d29ec824 1204 int error;
bc5fc7e4 1205
e44ac588
AM
1206 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1207 c.identify.opcode = nvme_admin_identify;
1208 c.identify.cns = cpu_to_le32(1);
1209
d29ec824
CH
1210 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1211 if (!*id)
1212 return -ENOMEM;
bc5fc7e4 1213
d29ec824
CH
1214 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1215 sizeof(struct nvme_id_ctrl));
1216 if (error)
1217 kfree(*id);
1218 return error;
1219}
1220
1221int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1222 struct nvme_id_ns **id)
1223{
e44ac588 1224 struct nvme_command c = { };
d29ec824 1225 int error;
bc5fc7e4 1226
e44ac588
AM
1227 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1228 c.identify.opcode = nvme_admin_identify,
1229 c.identify.nsid = cpu_to_le32(nsid),
1230
d29ec824
CH
1231 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1232 if (!*id)
1233 return -ENOMEM;
1234
1235 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1236 sizeof(struct nvme_id_ns));
1237 if (error)
1238 kfree(*id);
1239 return error;
bc5fc7e4
MW
1240}
1241
5d0f6131 1242int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 1243 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
1244{
1245 struct nvme_command c;
1246
1247 memset(&c, 0, sizeof(c));
1248 c.features.opcode = nvme_admin_get_features;
a42cecce 1249 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
1250 c.features.prp1 = cpu_to_le64(dma_addr);
1251 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 1252
d29ec824
CH
1253 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1254 result, 0);
df348139
MW
1255}
1256
5d0f6131
VV
1257int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1258 dma_addr_t dma_addr, u32 *result)
df348139
MW
1259{
1260 struct nvme_command c;
1261
1262 memset(&c, 0, sizeof(c));
1263 c.features.opcode = nvme_admin_set_features;
1264 c.features.prp1 = cpu_to_le64(dma_addr);
1265 c.features.fid = cpu_to_le32(fid);
1266 c.features.dword11 = cpu_to_le32(dword11);
1267
d29ec824
CH
1268 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1269 result, 0);
1270}
1271
1272int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1273{
e44ac588
AM
1274 struct nvme_command c = { };
1275 int error;
1276
1277 c.common.opcode = nvme_admin_get_log_page,
1278 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1279 c.common.cdw10[0] = cpu_to_le32(
d29ec824
CH
1280 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1281 NVME_LOG_SMART),
d29ec824
CH
1282
1283 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1284 if (!*log)
1285 return -ENOMEM;
1286
1287 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1288 sizeof(struct nvme_smart_log));
1289 if (error)
1290 kfree(*log);
1291 return error;
bc5fc7e4
MW
1292}
1293
c30341dc 1294/**
a4aea562 1295 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1296 *
1297 * Schedule controller reset if the command was already aborted once before and
1298 * still hasn't been returned to the driver, or if this is the admin queue.
1299 */
a4aea562 1300static void nvme_abort_req(struct request *req)
c30341dc 1301{
a4aea562
MB
1302 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1303 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1304 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1305 struct request *abort_req;
1306 struct nvme_cmd_info *abort_cmd;
1307 struct nvme_command cmd;
c30341dc 1308
a4aea562 1309 if (!nvmeq->qid || cmd_rq->aborted) {
90667892
CH
1310 spin_lock(&dev_list_lock);
1311 if (!__nvme_reset(dev)) {
1312 dev_warn(dev->dev,
1313 "I/O %d QID %d timeout, reset controller\n",
1314 req->tag, nvmeq->qid);
1315 }
1316 spin_unlock(&dev_list_lock);
c30341dc
KB
1317 return;
1318 }
1319
1320 if (!dev->abort_limit)
1321 return;
1322
a4aea562
MB
1323 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1324 false);
9f173b33 1325 if (IS_ERR(abort_req))
c30341dc
KB
1326 return;
1327
a4aea562
MB
1328 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1329 nvme_set_info(abort_cmd, abort_req, abort_completion);
1330
c30341dc
KB
1331 memset(&cmd, 0, sizeof(cmd));
1332 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1333 cmd.abort.cid = req->tag;
c30341dc 1334 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1335 cmd.abort.command_id = abort_req->tag;
c30341dc
KB
1336
1337 --dev->abort_limit;
a4aea562 1338 cmd_rq->aborted = 1;
c30341dc 1339
a4aea562 1340 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1341 nvmeq->qid);
e3f879bf 1342 nvme_submit_cmd(dev->queues[0], &cmd);
c30341dc
KB
1343}
1344
42483228 1345static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1346{
a4aea562
MB
1347 struct nvme_queue *nvmeq = data;
1348 void *ctx;
1349 nvme_completion_fn fn;
1350 struct nvme_cmd_info *cmd;
cef6a948
KB
1351 struct nvme_completion cqe;
1352
1353 if (!blk_mq_request_started(req))
1354 return;
a09115b2 1355
a4aea562 1356 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1357
a4aea562
MB
1358 if (cmd->ctx == CMD_CTX_CANCELLED)
1359 return;
1360
cef6a948
KB
1361 if (blk_queue_dying(req->q))
1362 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1363 else
1364 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1365
1366
a4aea562
MB
1367 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1368 req->tag, nvmeq->qid);
1369 ctx = cancel_cmd_info(cmd, &fn);
1370 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1371}
1372
a4aea562 1373static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1374{
a4aea562
MB
1375 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1376 struct nvme_queue *nvmeq = cmd->nvmeq;
1377
1378 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1379 nvmeq->qid);
7a509a6b 1380 spin_lock_irq(&nvmeq->q_lock);
07836e65 1381 nvme_abort_req(req);
7a509a6b 1382 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1383
07836e65
KB
1384 /*
1385 * The aborted req will be completed on receiving the abort req.
1386 * We enable the timer again. If hit twice, it'll cause a device reset,
1387 * as the device then is in a faulty state.
1388 */
1389 return BLK_EH_RESET_TIMER;
a4aea562 1390}
22404274 1391
a4aea562
MB
1392static void nvme_free_queue(struct nvme_queue *nvmeq)
1393{
9e866774
MW
1394 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1395 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1396 if (nvmeq->sq_cmds)
1397 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1398 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1399 kfree(nvmeq);
1400}
1401
a1a5ef99 1402static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1403{
1404 int i;
1405
a1a5ef99 1406 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1407 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1408 dev->queue_count--;
a4aea562 1409 dev->queues[i] = NULL;
f435c282 1410 nvme_free_queue(nvmeq);
121c7ad4 1411 }
22404274
KB
1412}
1413
4d115420
KB
1414/**
1415 * nvme_suspend_queue - put queue into suspended state
1416 * @nvmeq - queue to suspend
4d115420
KB
1417 */
1418static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1419{
2b25d981 1420 int vector;
b60503ba 1421
a09115b2 1422 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1423 if (nvmeq->cq_vector == -1) {
1424 spin_unlock_irq(&nvmeq->q_lock);
1425 return 1;
1426 }
1427 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1428 nvmeq->dev->online_queues--;
2b25d981 1429 nvmeq->cq_vector = -1;
a09115b2
MW
1430 spin_unlock_irq(&nvmeq->q_lock);
1431
6df3dbc8
KB
1432 if (!nvmeq->qid && nvmeq->dev->admin_q)
1433 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1434
aba2080f
MW
1435 irq_set_affinity_hint(vector, NULL);
1436 free_irq(vector, nvmeq);
b60503ba 1437
4d115420
KB
1438 return 0;
1439}
b60503ba 1440
4d115420
KB
1441static void nvme_clear_queue(struct nvme_queue *nvmeq)
1442{
22404274 1443 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1444 if (nvmeq->tags && *nvmeq->tags)
1445 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1446 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1447}
1448
4d115420
KB
1449static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1450{
a4aea562 1451 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1452
1453 if (!nvmeq)
1454 return;
1455 if (nvme_suspend_queue(nvmeq))
1456 return;
1457
0e53d180
KB
1458 /* Don't tell the adapter to delete the admin queue.
1459 * Don't tell a removed adapter to delete IO queues. */
1460 if (qid && readl(&dev->bar->csts) != -1) {
b60503ba
MW
1461 adapter_delete_sq(dev, qid);
1462 adapter_delete_cq(dev, qid);
1463 }
07836e65
KB
1464
1465 spin_lock_irq(&nvmeq->q_lock);
1466 nvme_process_cq(nvmeq);
1467 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1468}
1469
8ffaadf7
JD
1470static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1471 int entry_size)
1472{
1473 int q_depth = dev->q_depth;
1474 unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1475
1476 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99
JD
1477 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1478 mem_per_q = round_down(mem_per_q, dev->page_size);
1479 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1480
1481 /*
1482 * Ensure the reduced q_depth is above some threshold where it
1483 * would be better to map queues in system memory with the
1484 * original depth
1485 */
1486 if (q_depth < 64)
1487 return -ENOMEM;
1488 }
1489
1490 return q_depth;
1491}
1492
1493static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1494 int qid, int depth)
1495{
1496 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1497 unsigned offset = (qid - 1) *
1498 roundup(SQ_SIZE(depth), dev->page_size);
1499 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1500 nvmeq->sq_cmds_io = dev->cmb + offset;
1501 } else {
1502 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1503 &nvmeq->sq_dma_addr, GFP_KERNEL);
1504 if (!nvmeq->sq_cmds)
1505 return -ENOMEM;
1506 }
1507
1508 return 0;
1509}
1510
b60503ba 1511static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1512 int depth)
b60503ba 1513{
a4aea562 1514 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1515 if (!nvmeq)
1516 return NULL;
1517
e75ec752 1518 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1519 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1520 if (!nvmeq->cqes)
1521 goto free_nvmeq;
b60503ba 1522
8ffaadf7 1523 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1524 goto free_cqdma;
1525
e75ec752 1526 nvmeq->q_dmadev = dev->dev;
091b6092 1527 nvmeq->dev = dev;
3193f07b
MW
1528 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1529 dev->instance, qid);
b60503ba
MW
1530 spin_lock_init(&nvmeq->q_lock);
1531 nvmeq->cq_head = 0;
82123460 1532 nvmeq->cq_phase = 1;
b80d5ccc 1533 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1534 nvmeq->q_depth = depth;
c30341dc 1535 nvmeq->qid = qid;
758dd7fd 1536 nvmeq->cq_vector = -1;
a4aea562 1537 dev->queues[qid] = nvmeq;
b60503ba 1538
36a7e993
JD
1539 /* make sure queue descriptor is set before queue count, for kthread */
1540 mb();
1541 dev->queue_count++;
1542
b60503ba
MW
1543 return nvmeq;
1544
1545 free_cqdma:
e75ec752 1546 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1547 nvmeq->cq_dma_addr);
1548 free_nvmeq:
1549 kfree(nvmeq);
1550 return NULL;
1551}
1552
3001082c
MW
1553static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1554 const char *name)
1555{
58ffacb5
MW
1556 if (use_threaded_interrupts)
1557 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1558 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1559 name, nvmeq);
3001082c 1560 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1561 IRQF_SHARED, name, nvmeq);
3001082c
MW
1562}
1563
22404274 1564static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1565{
22404274 1566 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1567
7be50e93 1568 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1569 nvmeq->sq_tail = 0;
1570 nvmeq->cq_head = 0;
1571 nvmeq->cq_phase = 1;
b80d5ccc 1572 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1573 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1574 dev->online_queues++;
7be50e93 1575 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1576}
1577
1578static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1579{
1580 struct nvme_dev *dev = nvmeq->dev;
1581 int result;
3f85d50b 1582
2b25d981 1583 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1584 result = adapter_alloc_cq(dev, qid, nvmeq);
1585 if (result < 0)
22404274 1586 return result;
b60503ba
MW
1587
1588 result = adapter_alloc_sq(dev, qid, nvmeq);
1589 if (result < 0)
1590 goto release_cq;
1591
3193f07b 1592 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1593 if (result < 0)
1594 goto release_sq;
1595
22404274 1596 nvme_init_queue(nvmeq, qid);
22404274 1597 return result;
b60503ba
MW
1598
1599 release_sq:
1600 adapter_delete_sq(dev, qid);
1601 release_cq:
1602 adapter_delete_cq(dev, qid);
22404274 1603 return result;
b60503ba
MW
1604}
1605
ba47e386
MW
1606static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1607{
1608 unsigned long timeout;
1609 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1610
1611 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1612
1613 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1614 msleep(100);
1615 if (fatal_signal_pending(current))
1616 return -EINTR;
1617 if (time_after(jiffies, timeout)) {
e75ec752 1618 dev_err(dev->dev,
27e8166c
MW
1619 "Device not ready; aborting %s\n", enabled ?
1620 "initialisation" : "reset");
ba47e386
MW
1621 return -ENODEV;
1622 }
1623 }
1624
1625 return 0;
1626}
1627
1628/*
1629 * If the device has been passed off to us in an enabled state, just clear
1630 * the enabled bit. The spec says we should set the 'shutdown notification
1631 * bits', but doing so may cause the device to complete commands to the
1632 * admin queue ... and we don't know what memory that might be pointing at!
1633 */
1634static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1635{
01079522
DM
1636 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1637 dev->ctrl_config &= ~NVME_CC_ENABLE;
1638 writel(dev->ctrl_config, &dev->bar->cc);
44af146a 1639
ba47e386
MW
1640 return nvme_wait_ready(dev, cap, false);
1641}
1642
1643static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1644{
01079522
DM
1645 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1646 dev->ctrl_config |= NVME_CC_ENABLE;
1647 writel(dev->ctrl_config, &dev->bar->cc);
1648
ba47e386
MW
1649 return nvme_wait_ready(dev, cap, true);
1650}
1651
1894d8f1
KB
1652static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1653{
1654 unsigned long timeout;
1894d8f1 1655
01079522
DM
1656 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1657 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1658
1659 writel(dev->ctrl_config, &dev->bar->cc);
1894d8f1 1660
2484f407 1661 timeout = SHUTDOWN_TIMEOUT + jiffies;
1894d8f1
KB
1662 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1663 NVME_CSTS_SHST_CMPLT) {
1664 msleep(100);
1665 if (fatal_signal_pending(current))
1666 return -EINTR;
1667 if (time_after(jiffies, timeout)) {
e75ec752 1668 dev_err(dev->dev,
1894d8f1
KB
1669 "Device shutdown incomplete; abort shutdown\n");
1670 return -ENODEV;
1671 }
1672 }
1673
1674 return 0;
1675}
1676
a4aea562 1677static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1678 .queue_rq = nvme_queue_rq,
a4aea562
MB
1679 .map_queue = blk_mq_map_queue,
1680 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1681 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1682 .init_request = nvme_admin_init_request,
1683 .timeout = nvme_timeout,
1684};
1685
1686static struct blk_mq_ops nvme_mq_ops = {
1687 .queue_rq = nvme_queue_rq,
1688 .map_queue = blk_mq_map_queue,
1689 .init_hctx = nvme_init_hctx,
1690 .init_request = nvme_init_request,
1691 .timeout = nvme_timeout,
a0fa9647 1692 .poll = nvme_poll,
a4aea562
MB
1693};
1694
ea191d2f
KB
1695static void nvme_dev_remove_admin(struct nvme_dev *dev)
1696{
1697 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1698 blk_cleanup_queue(dev->admin_q);
1699 blk_mq_free_tag_set(&dev->admin_tagset);
1700 }
1701}
1702
a4aea562
MB
1703static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1704{
1705 if (!dev->admin_q) {
1706 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1707 dev->admin_tagset.nr_hw_queues = 1;
1708 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1709 dev->admin_tagset.reserved_tags = 1;
a4aea562 1710 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1711 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1712 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1713 dev->admin_tagset.driver_data = dev;
1714
1715 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1716 return -ENOMEM;
1717
1718 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
35b489d3 1719 if (IS_ERR(dev->admin_q)) {
a4aea562
MB
1720 blk_mq_free_tag_set(&dev->admin_tagset);
1721 return -ENOMEM;
1722 }
ea191d2f
KB
1723 if (!blk_get_queue(dev->admin_q)) {
1724 nvme_dev_remove_admin(dev);
4af0e21c 1725 dev->admin_q = NULL;
ea191d2f
KB
1726 return -ENODEV;
1727 }
0fb59cbc
KB
1728 } else
1729 blk_mq_unfreeze_queue(dev->admin_q);
a4aea562
MB
1730
1731 return 0;
1732}
1733
8d85fce7 1734static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1735{
ba47e386 1736 int result;
b60503ba 1737 u32 aqa;
a310acd7 1738 u64 cap = lo_hi_readq(&dev->bar->cap);
b60503ba 1739 struct nvme_queue *nvmeq;
c5c9f25b
NA
1740 /*
1741 * default to a 4K page size, with the intention to update this
1742 * path in the future to accomodate architectures with differing
1743 * kernel and IO page sizes.
1744 */
1745 unsigned page_shift = 12;
1d090624 1746 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1d090624
KB
1747
1748 if (page_shift < dev_page_min) {
e75ec752 1749 dev_err(dev->dev,
1d090624
KB
1750 "Minimum device page size (%u) too large for "
1751 "host (%u)\n", 1 << dev_page_min,
1752 1 << page_shift);
1753 return -ENODEV;
1754 }
b60503ba 1755
dfbac8c7
KB
1756 dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1757 NVME_CAP_NSSRC(cap) : 0;
1758
1759 if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1760 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1761
ba47e386
MW
1762 result = nvme_disable_ctrl(dev, cap);
1763 if (result < 0)
1764 return result;
b60503ba 1765
a4aea562 1766 nvmeq = dev->queues[0];
cd638946 1767 if (!nvmeq) {
2b25d981 1768 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1769 if (!nvmeq)
1770 return -ENOMEM;
cd638946 1771 }
b60503ba
MW
1772
1773 aqa = nvmeq->q_depth - 1;
1774 aqa |= aqa << 16;
1775
1d090624
KB
1776 dev->page_size = 1 << page_shift;
1777
01079522 1778 dev->ctrl_config = NVME_CC_CSS_NVM;
1d090624 1779 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
b60503ba 1780 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1781 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1782
1783 writel(aqa, &dev->bar->aqa);
a310acd7
SG
1784 lo_hi_writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1785 lo_hi_writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
b60503ba 1786
ba47e386 1787 result = nvme_enable_ctrl(dev, cap);
025c557a 1788 if (result)
a4aea562
MB
1789 goto free_nvmeq;
1790
2b25d981 1791 nvmeq->cq_vector = 0;
3193f07b 1792 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1793 if (result) {
1794 nvmeq->cq_vector = -1;
0fb59cbc 1795 goto free_nvmeq;
758dd7fd 1796 }
025c557a 1797
b60503ba 1798 return result;
a4aea562 1799
a4aea562
MB
1800 free_nvmeq:
1801 nvme_free_queues(dev, 0);
1802 return result;
b60503ba
MW
1803}
1804
a53295b6
MW
1805static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1806{
1807 struct nvme_dev *dev = ns->dev;
a53295b6
MW
1808 struct nvme_user_io io;
1809 struct nvme_command c;
d29ec824 1810 unsigned length, meta_len;
a67a9513 1811 int status, write;
a67a9513
KB
1812 dma_addr_t meta_dma = 0;
1813 void *meta = NULL;
fec558b5 1814 void __user *metadata;
a53295b6
MW
1815
1816 if (copy_from_user(&io, uio, sizeof(io)))
1817 return -EFAULT;
6c7d4945
MW
1818
1819 switch (io.opcode) {
1820 case nvme_cmd_write:
1821 case nvme_cmd_read:
6bbf1acd 1822 case nvme_cmd_compare:
6413214c 1823 break;
6c7d4945 1824 default:
6bbf1acd 1825 return -EINVAL;
6c7d4945
MW
1826 }
1827
d29ec824
CH
1828 length = (io.nblocks + 1) << ns->lba_shift;
1829 meta_len = (io.nblocks + 1) * ns->ms;
835da3f9 1830 metadata = (void __user *)(uintptr_t)io.metadata;
d29ec824 1831 write = io.opcode & 1;
a53295b6 1832
71feb364
KB
1833 if (ns->ext) {
1834 length += meta_len;
1835 meta_len = 0;
a67a9513
KB
1836 }
1837 if (meta_len) {
d29ec824
CH
1838 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1839 return -EINVAL;
1840
e75ec752 1841 meta = dma_alloc_coherent(dev->dev, meta_len,
a67a9513 1842 &meta_dma, GFP_KERNEL);
fec558b5 1843
a67a9513
KB
1844 if (!meta) {
1845 status = -ENOMEM;
1846 goto unmap;
1847 }
1848 if (write) {
fec558b5 1849 if (copy_from_user(meta, metadata, meta_len)) {
a67a9513
KB
1850 status = -EFAULT;
1851 goto unmap;
1852 }
1853 }
1854 }
1855
a53295b6
MW
1856 memset(&c, 0, sizeof(c));
1857 c.rw.opcode = io.opcode;
1858 c.rw.flags = io.flags;
6c7d4945 1859 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1860 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1861 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1862 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1863 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1864 c.rw.reftag = cpu_to_le32(io.reftag);
1865 c.rw.apptag = cpu_to_le16(io.apptag);
1866 c.rw.appmask = cpu_to_le16(io.appmask);
a67a9513 1867 c.rw.metadata = cpu_to_le64(meta_dma);
d29ec824
CH
1868
1869 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
835da3f9 1870 (void __user *)(uintptr_t)io.addr, length, NULL, 0);
f410c680 1871 unmap:
a67a9513
KB
1872 if (meta) {
1873 if (status == NVME_SC_SUCCESS && !write) {
fec558b5 1874 if (copy_to_user(metadata, meta, meta_len))
a67a9513
KB
1875 status = -EFAULT;
1876 }
e75ec752 1877 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
f410c680 1878 }
a53295b6
MW
1879 return status;
1880}
1881
a4aea562
MB
1882static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1883 struct nvme_passthru_cmd __user *ucmd)
6ee44cdc 1884{
7963e521 1885 struct nvme_passthru_cmd cmd;
6ee44cdc 1886 struct nvme_command c;
d29ec824
CH
1887 unsigned timeout = 0;
1888 int status;
6ee44cdc 1889
6bbf1acd
MW
1890 if (!capable(CAP_SYS_ADMIN))
1891 return -EACCES;
1892 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1893 return -EFAULT;
6ee44cdc
MW
1894
1895 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1896 c.common.opcode = cmd.opcode;
1897 c.common.flags = cmd.flags;
1898 c.common.nsid = cpu_to_le32(cmd.nsid);
1899 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1900 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1901 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1902 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1903 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1904 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1905 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1906 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1907
d29ec824
CH
1908 if (cmd.timeout_ms)
1909 timeout = msecs_to_jiffies(cmd.timeout_ms);
eca18b23 1910
f705f837 1911 status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
835da3f9 1912 NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
d29ec824
CH
1913 &cmd.result, timeout);
1914 if (status >= 0) {
1915 if (put_user(cmd.result, &ucmd->result))
1916 return -EFAULT;
6bbf1acd 1917 }
f4f117f6 1918
6ee44cdc
MW
1919 return status;
1920}
1921
81f03fed
JD
1922static int nvme_subsys_reset(struct nvme_dev *dev)
1923{
1924 if (!dev->subsystem)
1925 return -ENOTTY;
1926
1927 writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1928 return 0;
1929}
1930
b60503ba
MW
1931static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1932 unsigned long arg)
1933{
1934 struct nvme_ns *ns = bdev->bd_disk->private_data;
1935
1936 switch (cmd) {
6bbf1acd 1937 case NVME_IOCTL_ID:
c3bfe717 1938 force_successful_syscall_return();
6bbf1acd
MW
1939 return ns->ns_id;
1940 case NVME_IOCTL_ADMIN_CMD:
a4aea562 1941 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
7963e521 1942 case NVME_IOCTL_IO_CMD:
a4aea562 1943 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
a53295b6
MW
1944 case NVME_IOCTL_SUBMIT_IO:
1945 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1946 case SG_GET_VERSION_NUM:
1947 return nvme_sg_get_version_num((void __user *)arg);
1948 case SG_IO:
1949 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1950 default:
1951 return -ENOTTY;
1952 }
1953}
1954
320a3827
KB
1955#ifdef CONFIG_COMPAT
1956static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1957 unsigned int cmd, unsigned long arg)
1958{
320a3827
KB
1959 switch (cmd) {
1960 case SG_IO:
e179729a 1961 return -ENOIOCTLCMD;
320a3827
KB
1962 }
1963 return nvme_ioctl(bdev, mode, cmd, arg);
1964}
1965#else
1966#define nvme_compat_ioctl NULL
1967#endif
1968
5105aa55 1969static void nvme_free_dev(struct kref *kref);
188c3568
KB
1970static void nvme_free_ns(struct kref *kref)
1971{
1972 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1973
ca064085
MB
1974 if (ns->type == NVME_NS_LIGHTNVM)
1975 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
1976
188c3568
KB
1977 spin_lock(&dev_list_lock);
1978 ns->disk->private_data = NULL;
1979 spin_unlock(&dev_list_lock);
1980
5105aa55 1981 kref_put(&ns->dev->kref, nvme_free_dev);
188c3568
KB
1982 put_disk(ns->disk);
1983 kfree(ns);
1984}
1985
9ac27090
KB
1986static int nvme_open(struct block_device *bdev, fmode_t mode)
1987{
9e60352c
KB
1988 int ret = 0;
1989 struct nvme_ns *ns;
9ac27090 1990
9e60352c
KB
1991 spin_lock(&dev_list_lock);
1992 ns = bdev->bd_disk->private_data;
1993 if (!ns)
1994 ret = -ENXIO;
188c3568 1995 else if (!kref_get_unless_zero(&ns->kref))
9e60352c
KB
1996 ret = -ENXIO;
1997 spin_unlock(&dev_list_lock);
1998
1999 return ret;
9ac27090
KB
2000}
2001
9ac27090
KB
2002static void nvme_release(struct gendisk *disk, fmode_t mode)
2003{
2004 struct nvme_ns *ns = disk->private_data;
188c3568 2005 kref_put(&ns->kref, nvme_free_ns);
9ac27090
KB
2006}
2007
4cc09e2d
KB
2008static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
2009{
2010 /* some standard values */
2011 geo->heads = 1 << 6;
2012 geo->sectors = 1 << 5;
2013 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
2014 return 0;
2015}
2016
e1e5e564
KB
2017static void nvme_config_discard(struct nvme_ns *ns)
2018{
2019 u32 logical_block_size = queue_logical_block_size(ns->queue);
2020 ns->queue->limits.discard_zeroes_data = 0;
2021 ns->queue->limits.discard_alignment = logical_block_size;
2022 ns->queue->limits.discard_granularity = logical_block_size;
2bb4cd5c 2023 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
e1e5e564
KB
2024 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2025}
2026
1b9dbf7f
KB
2027static int nvme_revalidate_disk(struct gendisk *disk)
2028{
2029 struct nvme_ns *ns = disk->private_data;
2030 struct nvme_dev *dev = ns->dev;
2031 struct nvme_id_ns *id;
a67a9513
KB
2032 u8 lbaf, pi_type;
2033 u16 old_ms;
e1e5e564 2034 unsigned short bs;
1b9dbf7f 2035
d29ec824 2036 if (nvme_identify_ns(dev, ns->ns_id, &id)) {
a5768aa8
KB
2037 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2038 dev->instance, ns->ns_id);
2039 return -ENODEV;
1b9dbf7f 2040 }
a5768aa8
KB
2041 if (id->ncap == 0) {
2042 kfree(id);
2043 return -ENODEV;
e1e5e564 2044 }
1b9dbf7f 2045
ca064085
MB
2046 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
2047 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
2048 dev_warn(dev->dev,
2049 "%s: LightNVM init failure\n", __func__);
2050 kfree(id);
2051 return -ENODEV;
2052 }
2053 ns->type = NVME_NS_LIGHTNVM;
2054 }
2055
e1e5e564
KB
2056 old_ms = ns->ms;
2057 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1b9dbf7f 2058 ns->lba_shift = id->lbaf[lbaf].ds;
e1e5e564 2059 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
a67a9513 2060 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
e1e5e564
KB
2061
2062 /*
2063 * If identify namespace failed, use default 512 byte block size so
2064 * block layer can use before failing read/write for 0 capacity.
2065 */
2066 if (ns->lba_shift == 0)
2067 ns->lba_shift = 9;
2068 bs = 1 << ns->lba_shift;
2069
2070 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2071 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2072 id->dps & NVME_NS_DPS_PI_MASK : 0;
2073
4cfc766e 2074 blk_mq_freeze_queue(disk->queue);
52b68d7e
KB
2075 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2076 ns->ms != old_ms ||
e1e5e564 2077 bs != queue_logical_block_size(disk->queue) ||
a67a9513 2078 (ns->ms && ns->ext)))
e1e5e564
KB
2079 blk_integrity_unregister(disk);
2080
2081 ns->pi_type = pi_type;
2082 blk_queue_logical_block_size(ns->queue, bs);
2083
25520d55 2084 if (ns->ms && !ns->ext)
e1e5e564
KB
2085 nvme_init_integrity(ns);
2086
ca064085
MB
2087 if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
2088 !blk_get_integrity(disk)) ||
2089 ns->type == NVME_NS_LIGHTNVM)
e1e5e564
KB
2090 set_capacity(disk, 0);
2091 else
2092 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2093
2094 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2095 nvme_config_discard(ns);
4cfc766e 2096 blk_mq_unfreeze_queue(disk->queue);
1b9dbf7f 2097
d29ec824 2098 kfree(id);
1b9dbf7f
KB
2099 return 0;
2100}
2101
1d277a63
KB
2102static char nvme_pr_type(enum pr_type type)
2103{
2104 switch (type) {
2105 case PR_WRITE_EXCLUSIVE:
2106 return 1;
2107 case PR_EXCLUSIVE_ACCESS:
2108 return 2;
2109 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2110 return 3;
2111 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2112 return 4;
2113 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2114 return 5;
2115 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2116 return 6;
2117 default:
2118 return 0;
2119 }
2120};
2121
2122static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2123 u64 key, u64 sa_key, u8 op)
2124{
2125 struct nvme_ns *ns = bdev->bd_disk->private_data;
2126 struct nvme_command c;
2127 u8 data[16] = { 0, };
2128
2129 put_unaligned_le64(key, &data[0]);
2130 put_unaligned_le64(sa_key, &data[8]);
2131
2132 memset(&c, 0, sizeof(c));
2133 c.common.opcode = op;
a6dd1020
CH
2134 c.common.nsid = cpu_to_le32(ns->ns_id);
2135 c.common.cdw10[0] = cpu_to_le32(cdw10);
1d277a63
KB
2136
2137 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2138}
2139
2140static int nvme_pr_register(struct block_device *bdev, u64 old,
2141 u64 new, unsigned flags)
2142{
2143 u32 cdw10;
2144
2145 if (flags & ~PR_FL_IGNORE_KEY)
2146 return -EOPNOTSUPP;
2147
2148 cdw10 = old ? 2 : 0;
2149 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2150 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2151 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2152}
2153
2154static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2155 enum pr_type type, unsigned flags)
2156{
2157 u32 cdw10;
2158
2159 if (flags & ~PR_FL_IGNORE_KEY)
2160 return -EOPNOTSUPP;
2161
2162 cdw10 = nvme_pr_type(type) << 8;
2163 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2164 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2165}
2166
2167static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2168 enum pr_type type, bool abort)
2169{
2170 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
2171 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2172}
2173
2174static int nvme_pr_clear(struct block_device *bdev, u64 key)
2175{
73fcf4e2 2176 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1d277a63
KB
2177 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2178}
2179
2180static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2181{
2182 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
2183 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2184}
2185
2186static const struct pr_ops nvme_pr_ops = {
2187 .pr_register = nvme_pr_register,
2188 .pr_reserve = nvme_pr_reserve,
2189 .pr_release = nvme_pr_release,
2190 .pr_preempt = nvme_pr_preempt,
2191 .pr_clear = nvme_pr_clear,
2192};
2193
b60503ba
MW
2194static const struct block_device_operations nvme_fops = {
2195 .owner = THIS_MODULE,
2196 .ioctl = nvme_ioctl,
320a3827 2197 .compat_ioctl = nvme_compat_ioctl,
9ac27090
KB
2198 .open = nvme_open,
2199 .release = nvme_release,
4cc09e2d 2200 .getgeo = nvme_getgeo,
1b9dbf7f 2201 .revalidate_disk= nvme_revalidate_disk,
1d277a63 2202 .pr_ops = &nvme_pr_ops,
b60503ba
MW
2203};
2204
1fa6aead
MW
2205static int nvme_kthread(void *data)
2206{
d4b4ff8e 2207 struct nvme_dev *dev, *next;
1fa6aead
MW
2208
2209 while (!kthread_should_stop()) {
564a232c 2210 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 2211 spin_lock(&dev_list_lock);
d4b4ff8e 2212 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 2213 int i;
dfbac8c7
KB
2214 u32 csts = readl(&dev->bar->csts);
2215
2216 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2217 csts & NVME_CSTS_CFS) {
90667892
CH
2218 if (!__nvme_reset(dev)) {
2219 dev_warn(dev->dev,
2220 "Failed status: %x, reset controller\n",
2221 readl(&dev->bar->csts));
2222 }
d4b4ff8e
KB
2223 continue;
2224 }
1fa6aead 2225 for (i = 0; i < dev->queue_count; i++) {
a4aea562 2226 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
2227 if (!nvmeq)
2228 continue;
1fa6aead 2229 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 2230 nvme_process_cq(nvmeq);
6fccf938
KB
2231
2232 while ((i == 0) && (dev->event_limit > 0)) {
a4aea562 2233 if (nvme_submit_async_admin_req(dev))
6fccf938
KB
2234 break;
2235 dev->event_limit--;
2236 }
1fa6aead
MW
2237 spin_unlock_irq(&nvmeq->q_lock);
2238 }
2239 }
2240 spin_unlock(&dev_list_lock);
acb7aa0d 2241 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
2242 }
2243 return 0;
2244}
2245
e1e5e564 2246static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
b60503ba
MW
2247{
2248 struct nvme_ns *ns;
2249 struct gendisk *disk;
e75ec752 2250 int node = dev_to_node(dev->dev);
b60503ba 2251
a4aea562 2252 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
b60503ba 2253 if (!ns)
e1e5e564
KB
2254 return;
2255
a4aea562 2256 ns->queue = blk_mq_init_queue(&dev->tagset);
9f173b33 2257 if (IS_ERR(ns->queue))
b60503ba 2258 goto out_free_ns;
4eeb9215
MW
2259 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2260 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
b60503ba
MW
2261 ns->dev = dev;
2262 ns->queue->queuedata = ns;
2263
a4aea562 2264 disk = alloc_disk_node(0, node);
b60503ba
MW
2265 if (!disk)
2266 goto out_free_queue;
a4aea562 2267
188c3568 2268 kref_init(&ns->kref);
5aff9382 2269 ns->ns_id = nsid;
b60503ba 2270 ns->disk = disk;
e1e5e564
KB
2271 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2272 list_add_tail(&ns->list, &dev->namespaces);
2273
e9ef4636 2274 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
e824410f 2275 if (dev->max_hw_sectors) {
8fc23e03 2276 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
e824410f 2277 blk_queue_max_segments(ns->queue,
6824c5ef 2278 (dev->max_hw_sectors / (dev->page_size >> 9)) + 1);
e824410f 2279 }
a4aea562
MB
2280 if (dev->stripe_size)
2281 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
a7d2ce28
KB
2282 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2283 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
03100aad 2284 blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
b60503ba
MW
2285
2286 disk->major = nvme_major;
469071a3 2287 disk->first_minor = 0;
b60503ba
MW
2288 disk->fops = &nvme_fops;
2289 disk->private_data = ns;
2290 disk->queue = ns->queue;
b3fffdef 2291 disk->driverfs_dev = dev->device;
469071a3 2292 disk->flags = GENHD_FL_EXT_DEVT;
5aff9382 2293 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba 2294
e1e5e564
KB
2295 /*
2296 * Initialize capacity to 0 until we establish the namespace format and
2297 * setup integrity extentions if necessary. The revalidate_disk after
2298 * add_disk allows the driver to register with integrity if the format
2299 * requires it.
2300 */
2301 set_capacity(disk, 0);
a5768aa8
KB
2302 if (nvme_revalidate_disk(ns->disk))
2303 goto out_free_disk;
2304
5105aa55 2305 kref_get(&dev->kref);
ca064085
MB
2306 if (ns->type != NVME_NS_LIGHTNVM) {
2307 add_disk(ns->disk);
2308 if (ns->ms) {
2309 struct block_device *bd = bdget_disk(ns->disk, 0);
2310 if (!bd)
2311 return;
2312 if (blkdev_get(bd, FMODE_READ, NULL)) {
2313 bdput(bd);
2314 return;
2315 }
2316 blkdev_reread_part(bd);
2317 blkdev_put(bd, FMODE_READ);
7bee6074 2318 }
7bee6074 2319 }
e1e5e564 2320 return;
a5768aa8
KB
2321 out_free_disk:
2322 kfree(disk);
2323 list_del(&ns->list);
b60503ba
MW
2324 out_free_queue:
2325 blk_cleanup_queue(ns->queue);
2326 out_free_ns:
2327 kfree(ns);
b60503ba
MW
2328}
2329
2659e57b
CH
2330/*
2331 * Create I/O queues. Failing to create an I/O queue is not an issue,
2332 * we can continue with less than the desired amount of queues, and
2333 * even a controller without I/O queues an still be used to issue
2334 * admin commands. This might be useful to upgrade a buggy firmware
2335 * for example.
2336 */
42f61420
KB
2337static void nvme_create_io_queues(struct nvme_dev *dev)
2338{
a4aea562 2339 unsigned i;
42f61420 2340
a4aea562 2341 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 2342 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
2343 break;
2344
a4aea562 2345 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2659e57b
CH
2346 if (nvme_create_queue(dev->queues[i], i)) {
2347 nvme_free_queues(dev, i);
42f61420 2348 break;
2659e57b 2349 }
42f61420
KB
2350}
2351
b3b06812 2352static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
2353{
2354 int status;
2355 u32 result;
b3b06812 2356 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 2357
df348139 2358 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 2359 &result);
27e8166c
MW
2360 if (status < 0)
2361 return status;
2362 if (status > 0) {
e75ec752 2363 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
badc34d4 2364 return 0;
27e8166c 2365 }
b60503ba
MW
2366 return min(result & 0xffff, result >> 16) + 1;
2367}
2368
8ffaadf7
JD
2369static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2370{
2371 u64 szu, size, offset;
2372 u32 cmbloc;
2373 resource_size_t bar_size;
2374 struct pci_dev *pdev = to_pci_dev(dev->dev);
2375 void __iomem *cmb;
2376 dma_addr_t dma_addr;
2377
2378 if (!use_cmb_sqes)
2379 return NULL;
2380
2381 dev->cmbsz = readl(&dev->bar->cmbsz);
2382 if (!(NVME_CMB_SZ(dev->cmbsz)))
2383 return NULL;
2384
2385 cmbloc = readl(&dev->bar->cmbloc);
2386
2387 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2388 size = szu * NVME_CMB_SZ(dev->cmbsz);
2389 offset = szu * NVME_CMB_OFST(cmbloc);
2390 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2391
2392 if (offset > bar_size)
2393 return NULL;
2394
2395 /*
2396 * Controllers may support a CMB size larger than their BAR,
2397 * for example, due to being behind a bridge. Reduce the CMB to
2398 * the reported size of the BAR
2399 */
2400 if (size > bar_size - offset)
2401 size = bar_size - offset;
2402
2403 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2404 cmb = ioremap_wc(dma_addr, size);
2405 if (!cmb)
2406 return NULL;
2407
2408 dev->cmb_dma_addr = dma_addr;
2409 dev->cmb_size = size;
2410 return cmb;
2411}
2412
2413static inline void nvme_release_cmb(struct nvme_dev *dev)
2414{
2415 if (dev->cmb) {
2416 iounmap(dev->cmb);
2417 dev->cmb = NULL;
2418 }
2419}
2420
9d713c2b
KB
2421static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2422{
b80d5ccc 2423 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
2424}
2425
8d85fce7 2426static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2427{
a4aea562 2428 struct nvme_queue *adminq = dev->queues[0];
e75ec752 2429 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 2430 int result, i, vecs, nr_io_queues, size;
b60503ba 2431
42f61420 2432 nr_io_queues = num_possible_cpus();
b348b7d5 2433 result = set_queue_count(dev, nr_io_queues);
badc34d4 2434 if (result <= 0)
1b23484b 2435 return result;
b348b7d5
MW
2436 if (result < nr_io_queues)
2437 nr_io_queues = result;
b60503ba 2438
8ffaadf7
JD
2439 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2440 result = nvme_cmb_qdepth(dev, nr_io_queues,
2441 sizeof(struct nvme_command));
2442 if (result > 0)
2443 dev->q_depth = result;
2444 else
2445 nvme_release_cmb(dev);
2446 }
2447
9d713c2b
KB
2448 size = db_bar_size(dev, nr_io_queues);
2449 if (size > 8192) {
f1938f6e 2450 iounmap(dev->bar);
9d713c2b
KB
2451 do {
2452 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2453 if (dev->bar)
2454 break;
2455 if (!--nr_io_queues)
2456 return -ENOMEM;
2457 size = db_bar_size(dev, nr_io_queues);
2458 } while (1);
f1938f6e 2459 dev->dbs = ((void __iomem *)dev->bar) + 4096;
5a92e700 2460 adminq->q_db = dev->dbs;
f1938f6e
MW
2461 }
2462
9d713c2b 2463 /* Deregister the admin queue's interrupt */
3193f07b 2464 free_irq(dev->entry[0].vector, adminq);
9d713c2b 2465
e32efbfc
JA
2466 /*
2467 * If we enable msix early due to not intx, disable it again before
2468 * setting up the full range we need.
2469 */
2470 if (!pdev->irq)
2471 pci_disable_msix(pdev);
2472
be577fab 2473 for (i = 0; i < nr_io_queues; i++)
1b23484b 2474 dev->entry[i].entry = i;
be577fab
AG
2475 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2476 if (vecs < 0) {
2477 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2478 if (vecs < 0) {
2479 vecs = 1;
2480 } else {
2481 for (i = 0; i < vecs; i++)
2482 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
2483 }
2484 }
2485
063a8096
MW
2486 /*
2487 * Should investigate if there's a performance win from allocating
2488 * more queues than interrupt vectors; it might allow the submission
2489 * path to scale better, even if the receive path is limited by the
2490 * number of interrupts.
2491 */
2492 nr_io_queues = vecs;
42f61420 2493 dev->max_qid = nr_io_queues;
063a8096 2494
3193f07b 2495 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
2496 if (result) {
2497 adminq->cq_vector = -1;
22404274 2498 goto free_queues;
758dd7fd 2499 }
1b23484b 2500
cd638946 2501 /* Free previously allocated queues that are no longer usable */
42f61420 2502 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 2503 nvme_create_io_queues(dev);
9ecdc946 2504
22404274 2505 return 0;
b60503ba 2506
22404274 2507 free_queues:
a1a5ef99 2508 nvme_free_queues(dev, 1);
22404274 2509 return result;
b60503ba
MW
2510}
2511
a5768aa8
KB
2512static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2513{
2514 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2515 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2516
2517 return nsa->ns_id - nsb->ns_id;
2518}
2519
2520static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2521{
2522 struct nvme_ns *ns;
2523
2524 list_for_each_entry(ns, &dev->namespaces, list) {
2525 if (ns->ns_id == nsid)
2526 return ns;
2527 if (ns->ns_id > nsid)
2528 break;
2529 }
2530 return NULL;
2531}
2532
2533static inline bool nvme_io_incapable(struct nvme_dev *dev)
2534{
2535 return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2536 dev->online_queues < 2);
2537}
2538
2539static void nvme_ns_remove(struct nvme_ns *ns)
2540{
2541 bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2542
2543 if (kill)
2544 blk_set_queue_dying(ns->queue);
9609b994 2545 if (ns->disk->flags & GENHD_FL_UP)
a5768aa8 2546 del_gendisk(ns->disk);
a5768aa8
KB
2547 if (kill || !blk_queue_dying(ns->queue)) {
2548 blk_mq_abort_requeue_list(ns->queue);
2549 blk_cleanup_queue(ns->queue);
5105aa55
KB
2550 }
2551 list_del_init(&ns->list);
2552 kref_put(&ns->kref, nvme_free_ns);
a5768aa8
KB
2553}
2554
2555static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2556{
2557 struct nvme_ns *ns, *next;
2558 unsigned i;
2559
2560 for (i = 1; i <= nn; i++) {
2561 ns = nvme_find_ns(dev, i);
2562 if (ns) {
5105aa55 2563 if (revalidate_disk(ns->disk))
a5768aa8 2564 nvme_ns_remove(ns);
a5768aa8
KB
2565 } else
2566 nvme_alloc_ns(dev, i);
2567 }
2568 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
5105aa55 2569 if (ns->ns_id > nn)
a5768aa8 2570 nvme_ns_remove(ns);
a5768aa8
KB
2571 }
2572 list_sort(NULL, &dev->namespaces, ns_cmp);
2573}
2574
bda4e0fb
KB
2575static void nvme_set_irq_hints(struct nvme_dev *dev)
2576{
2577 struct nvme_queue *nvmeq;
2578 int i;
2579
2580 for (i = 0; i < dev->online_queues; i++) {
2581 nvmeq = dev->queues[i];
2582
2583 if (!nvmeq->tags || !(*nvmeq->tags))
2584 continue;
2585
2586 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2587 blk_mq_tags_cpumask(*nvmeq->tags));
2588 }
2589}
2590
a5768aa8
KB
2591static void nvme_dev_scan(struct work_struct *work)
2592{
2593 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2594 struct nvme_id_ctrl *ctrl;
2595
2596 if (!dev->tagset.tags)
2597 return;
2598 if (nvme_identify_ctrl(dev, &ctrl))
2599 return;
2600 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2601 kfree(ctrl);
bda4e0fb 2602 nvme_set_irq_hints(dev);
a5768aa8
KB
2603}
2604
422ef0c7
MW
2605/*
2606 * Return: error value if an error occurred setting up the queues or calling
2607 * Identify Device. 0 if these succeeded, even if adding some of the
2608 * namespaces failed. At the moment, these failures are silent. TBD which
2609 * failures should be reported.
2610 */
8d85fce7 2611static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2612{
e75ec752 2613 struct pci_dev *pdev = to_pci_dev(dev->dev);
c3bfe717 2614 int res;
51814232 2615 struct nvme_id_ctrl *ctrl;
a310acd7 2616 int shift = NVME_CAP_MPSMIN(lo_hi_readq(&dev->bar->cap)) + 12;
b60503ba 2617
d29ec824 2618 res = nvme_identify_ctrl(dev, &ctrl);
b60503ba 2619 if (res) {
e75ec752 2620 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
e1e5e564 2621 return -EIO;
b60503ba
MW
2622 }
2623
0e5e4f0e 2624 dev->oncs = le16_to_cpup(&ctrl->oncs);
c30341dc 2625 dev->abort_limit = ctrl->acl + 1;
a7d2ce28 2626 dev->vwc = ctrl->vwc;
51814232
MW
2627 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2628 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2629 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 2630 if (ctrl->mdts)
8fc23e03 2631 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
b12363d0
S
2632 else
2633 dev->max_hw_sectors = UINT_MAX;
68608c26 2634 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
a4aea562
MB
2635 (pdev->device == 0x0953) && ctrl->vs[3]) {
2636 unsigned int max_hw_sectors;
2637
159b67d7 2638 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
a4aea562
MB
2639 max_hw_sectors = dev->stripe_size >> (shift - 9);
2640 if (dev->max_hw_sectors) {
2641 dev->max_hw_sectors = min(max_hw_sectors,
2642 dev->max_hw_sectors);
2643 } else
2644 dev->max_hw_sectors = max_hw_sectors;
2645 }
d29ec824 2646 kfree(ctrl);
a4aea562 2647
ffe7704d
KB
2648 if (!dev->tagset.tags) {
2649 dev->tagset.ops = &nvme_mq_ops;
2650 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2651 dev->tagset.timeout = NVME_IO_TIMEOUT;
2652 dev->tagset.numa_node = dev_to_node(dev->dev);
2653 dev->tagset.queue_depth =
a4aea562 2654 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
2655 dev->tagset.cmd_size = nvme_cmd_size(dev);
2656 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2657 dev->tagset.driver_data = dev;
b60503ba 2658
ffe7704d
KB
2659 if (blk_mq_alloc_tag_set(&dev->tagset))
2660 return 0;
2661 }
a5768aa8 2662 schedule_work(&dev->scan_work);
e1e5e564 2663 return 0;
b60503ba
MW
2664}
2665
0877cb0d
KB
2666static int nvme_dev_map(struct nvme_dev *dev)
2667{
42f61420 2668 u64 cap;
0877cb0d 2669 int bars, result = -ENOMEM;
e75ec752 2670 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2671
2672 if (pci_enable_device_mem(pdev))
2673 return result;
2674
2675 dev->entry[0].vector = pdev->irq;
2676 pci_set_master(pdev);
2677 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
2678 if (!bars)
2679 goto disable_pci;
2680
0877cb0d
KB
2681 if (pci_request_selected_regions(pdev, bars, "nvme"))
2682 goto disable_pci;
2683
e75ec752
CH
2684 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2685 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2686 goto disable;
0877cb0d 2687
0877cb0d
KB
2688 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2689 if (!dev->bar)
2690 goto disable;
e32efbfc 2691
0e53d180
KB
2692 if (readl(&dev->bar->csts) == -1) {
2693 result = -ENODEV;
2694 goto unmap;
2695 }
e32efbfc
JA
2696
2697 /*
2698 * Some devices don't advertse INTx interrupts, pre-enable a single
2699 * MSIX vec for setup. We'll adjust this later.
2700 */
2701 if (!pdev->irq) {
2702 result = pci_enable_msix(pdev, dev->entry, 1);
2703 if (result < 0)
2704 goto unmap;
2705 }
2706
a310acd7 2707 cap = lo_hi_readq(&dev->bar->cap);
42f61420
KB
2708 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2709 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
0877cb0d 2710 dev->dbs = ((void __iomem *)dev->bar) + 4096;
8ffaadf7
JD
2711 if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2712 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
2713
2714 return 0;
2715
0e53d180
KB
2716 unmap:
2717 iounmap(dev->bar);
2718 dev->bar = NULL;
0877cb0d
KB
2719 disable:
2720 pci_release_regions(pdev);
2721 disable_pci:
2722 pci_disable_device(pdev);
2723 return result;
2724}
2725
2726static void nvme_dev_unmap(struct nvme_dev *dev)
2727{
e75ec752
CH
2728 struct pci_dev *pdev = to_pci_dev(dev->dev);
2729
2730 if (pdev->msi_enabled)
2731 pci_disable_msi(pdev);
2732 else if (pdev->msix_enabled)
2733 pci_disable_msix(pdev);
0877cb0d
KB
2734
2735 if (dev->bar) {
2736 iounmap(dev->bar);
2737 dev->bar = NULL;
e75ec752 2738 pci_release_regions(pdev);
0877cb0d
KB
2739 }
2740
e75ec752
CH
2741 if (pci_is_enabled(pdev))
2742 pci_disable_device(pdev);
0877cb0d
KB
2743}
2744
4d115420
KB
2745struct nvme_delq_ctx {
2746 struct task_struct *waiter;
2747 struct kthread_worker *worker;
2748 atomic_t refcount;
2749};
2750
2751static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2752{
2753 dq->waiter = current;
2754 mb();
2755
2756 for (;;) {
2757 set_current_state(TASK_KILLABLE);
2758 if (!atomic_read(&dq->refcount))
2759 break;
2760 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2761 fatal_signal_pending(current)) {
0fb59cbc
KB
2762 /*
2763 * Disable the controller first since we can't trust it
2764 * at this point, but leave the admin queue enabled
2765 * until all queue deletion requests are flushed.
2766 * FIXME: This may take a while if there are more h/w
2767 * queues than admin tags.
2768 */
4d115420 2769 set_current_state(TASK_RUNNING);
a310acd7 2770 nvme_disable_ctrl(dev, lo_hi_readq(&dev->bar->cap));
0fb59cbc 2771 nvme_clear_queue(dev->queues[0]);
4d115420 2772 flush_kthread_worker(dq->worker);
0fb59cbc 2773 nvme_disable_queue(dev, 0);
4d115420
KB
2774 return;
2775 }
2776 }
2777 set_current_state(TASK_RUNNING);
2778}
2779
2780static void nvme_put_dq(struct nvme_delq_ctx *dq)
2781{
2782 atomic_dec(&dq->refcount);
2783 if (dq->waiter)
2784 wake_up_process(dq->waiter);
2785}
2786
2787static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2788{
2789 atomic_inc(&dq->refcount);
2790 return dq;
2791}
2792
2793static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2794{
2795 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 2796 nvme_put_dq(dq);
604e8c8d
KB
2797
2798 spin_lock_irq(&nvmeq->q_lock);
2799 nvme_process_cq(nvmeq);
2800 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
2801}
2802
2803static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2804 kthread_work_func_t fn)
2805{
2806 struct nvme_command c;
2807
2808 memset(&c, 0, sizeof(c));
2809 c.delete_queue.opcode = opcode;
2810 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2811
2812 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
2813 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2814 ADMIN_TIMEOUT);
4d115420
KB
2815}
2816
2817static void nvme_del_cq_work_handler(struct kthread_work *work)
2818{
2819 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2820 cmdinfo.work);
2821 nvme_del_queue_end(nvmeq);
2822}
2823
2824static int nvme_delete_cq(struct nvme_queue *nvmeq)
2825{
2826 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2827 nvme_del_cq_work_handler);
2828}
2829
2830static void nvme_del_sq_work_handler(struct kthread_work *work)
2831{
2832 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2833 cmdinfo.work);
2834 int status = nvmeq->cmdinfo.status;
2835
2836 if (!status)
2837 status = nvme_delete_cq(nvmeq);
2838 if (status)
2839 nvme_del_queue_end(nvmeq);
2840}
2841
2842static int nvme_delete_sq(struct nvme_queue *nvmeq)
2843{
2844 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2845 nvme_del_sq_work_handler);
2846}
2847
2848static void nvme_del_queue_start(struct kthread_work *work)
2849{
2850 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2851 cmdinfo.work);
4d115420
KB
2852 if (nvme_delete_sq(nvmeq))
2853 nvme_del_queue_end(nvmeq);
2854}
2855
2856static void nvme_disable_io_queues(struct nvme_dev *dev)
2857{
2858 int i;
2859 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2860 struct nvme_delq_ctx dq;
2861 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2862 &worker, "nvme%d", dev->instance);
2863
2864 if (IS_ERR(kworker_task)) {
e75ec752 2865 dev_err(dev->dev,
4d115420
KB
2866 "Failed to create queue del task\n");
2867 for (i = dev->queue_count - 1; i > 0; i--)
2868 nvme_disable_queue(dev, i);
2869 return;
2870 }
2871
2872 dq.waiter = NULL;
2873 atomic_set(&dq.refcount, 0);
2874 dq.worker = &worker;
2875 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2876 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2877
2878 if (nvme_suspend_queue(nvmeq))
2879 continue;
2880 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2881 nvmeq->cmdinfo.worker = dq.worker;
2882 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2883 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2884 }
2885 nvme_wait_dq(&dq, dev);
2886 kthread_stop(kworker_task);
2887}
2888
b9afca3e
DM
2889/*
2890* Remove the node from the device list and check
2891* for whether or not we need to stop the nvme_thread.
2892*/
2893static void nvme_dev_list_remove(struct nvme_dev *dev)
2894{
2895 struct task_struct *tmp = NULL;
2896
2897 spin_lock(&dev_list_lock);
2898 list_del_init(&dev->node);
2899 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2900 tmp = nvme_thread;
2901 nvme_thread = NULL;
2902 }
2903 spin_unlock(&dev_list_lock);
2904
2905 if (tmp)
2906 kthread_stop(tmp);
2907}
2908
c9d3bf88
KB
2909static void nvme_freeze_queues(struct nvme_dev *dev)
2910{
2911 struct nvme_ns *ns;
2912
2913 list_for_each_entry(ns, &dev->namespaces, list) {
2914 blk_mq_freeze_queue_start(ns->queue);
2915
cddcd72b 2916 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2917 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2918 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2919
2920 blk_mq_cancel_requeue_work(ns->queue);
2921 blk_mq_stop_hw_queues(ns->queue);
2922 }
2923}
2924
2925static void nvme_unfreeze_queues(struct nvme_dev *dev)
2926{
2927 struct nvme_ns *ns;
2928
2929 list_for_each_entry(ns, &dev->namespaces, list) {
2930 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2931 blk_mq_unfreeze_queue(ns->queue);
2932 blk_mq_start_stopped_hw_queues(ns->queue, true);
2933 blk_mq_kick_requeue_list(ns->queue);
2934 }
2935}
2936
f0b50732 2937static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2938{
22404274 2939 int i;
7c1b2450 2940 u32 csts = -1;
22404274 2941
b9afca3e 2942 nvme_dev_list_remove(dev);
1fa6aead 2943
c9d3bf88
KB
2944 if (dev->bar) {
2945 nvme_freeze_queues(dev);
7c1b2450 2946 csts = readl(&dev->bar->csts);
c9d3bf88 2947 }
7c1b2450 2948 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2949 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2950 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2951 nvme_suspend_queue(nvmeq);
4d115420
KB
2952 }
2953 } else {
2954 nvme_disable_io_queues(dev);
1894d8f1 2955 nvme_shutdown_ctrl(dev);
4d115420
KB
2956 nvme_disable_queue(dev, 0);
2957 }
f0b50732 2958 nvme_dev_unmap(dev);
07836e65
KB
2959
2960 for (i = dev->queue_count - 1; i >= 0; i--)
2961 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2962}
2963
2964static void nvme_dev_remove(struct nvme_dev *dev)
2965{
5105aa55 2966 struct nvme_ns *ns, *next;
f0b50732 2967
5105aa55 2968 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
a5768aa8 2969 nvme_ns_remove(ns);
b60503ba
MW
2970}
2971
091b6092
MW
2972static int nvme_setup_prp_pools(struct nvme_dev *dev)
2973{
e75ec752 2974 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2975 PAGE_SIZE, PAGE_SIZE, 0);
2976 if (!dev->prp_page_pool)
2977 return -ENOMEM;
2978
99802a7a 2979 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2980 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2981 256, 256, 0);
2982 if (!dev->prp_small_pool) {
2983 dma_pool_destroy(dev->prp_page_pool);
2984 return -ENOMEM;
2985 }
091b6092
MW
2986 return 0;
2987}
2988
2989static void nvme_release_prp_pools(struct nvme_dev *dev)
2990{
2991 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2992 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2993}
2994
cd58ad7d
QSA
2995static DEFINE_IDA(nvme_instance_ida);
2996
2997static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2998{
cd58ad7d
QSA
2999 int instance, error;
3000
3001 do {
3002 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
3003 return -ENODEV;
3004
3005 spin_lock(&dev_list_lock);
3006 error = ida_get_new(&nvme_instance_ida, &instance);
3007 spin_unlock(&dev_list_lock);
3008 } while (error == -EAGAIN);
3009
3010 if (error)
3011 return -ENODEV;
3012
3013 dev->instance = instance;
3014 return 0;
b60503ba
MW
3015}
3016
3017static void nvme_release_instance(struct nvme_dev *dev)
3018{
cd58ad7d
QSA
3019 spin_lock(&dev_list_lock);
3020 ida_remove(&nvme_instance_ida, dev->instance);
3021 spin_unlock(&dev_list_lock);
b60503ba
MW
3022}
3023
5e82e952
KB
3024static void nvme_free_dev(struct kref *kref)
3025{
3026 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
9ac27090 3027
e75ec752 3028 put_device(dev->dev);
b3fffdef 3029 put_device(dev->device);
285dffc9 3030 nvme_release_instance(dev);
4af0e21c
KB
3031 if (dev->tagset.tags)
3032 blk_mq_free_tag_set(&dev->tagset);
3033 if (dev->admin_q)
3034 blk_put_queue(dev->admin_q);
5e82e952
KB
3035 kfree(dev->queues);
3036 kfree(dev->entry);
3037 kfree(dev);
3038}
3039
3040static int nvme_dev_open(struct inode *inode, struct file *f)
3041{
b3fffdef
KB
3042 struct nvme_dev *dev;
3043 int instance = iminor(inode);
3044 int ret = -ENODEV;
3045
3046 spin_lock(&dev_list_lock);
3047 list_for_each_entry(dev, &dev_list, node) {
3048 if (dev->instance == instance) {
2e1d8448
KB
3049 if (!dev->admin_q) {
3050 ret = -EWOULDBLOCK;
3051 break;
3052 }
b3fffdef
KB
3053 if (!kref_get_unless_zero(&dev->kref))
3054 break;
3055 f->private_data = dev;
3056 ret = 0;
3057 break;
3058 }
3059 }
3060 spin_unlock(&dev_list_lock);
3061
3062 return ret;
5e82e952
KB
3063}
3064
3065static int nvme_dev_release(struct inode *inode, struct file *f)
3066{
3067 struct nvme_dev *dev = f->private_data;
3068 kref_put(&dev->kref, nvme_free_dev);
3069 return 0;
3070}
3071
3072static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
3073{
3074 struct nvme_dev *dev = f->private_data;
a4aea562
MB
3075 struct nvme_ns *ns;
3076
5e82e952
KB
3077 switch (cmd) {
3078 case NVME_IOCTL_ADMIN_CMD:
a4aea562 3079 return nvme_user_cmd(dev, NULL, (void __user *)arg);
7963e521 3080 case NVME_IOCTL_IO_CMD:
a4aea562
MB
3081 if (list_empty(&dev->namespaces))
3082 return -ENOTTY;
3083 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
3084 return nvme_user_cmd(dev, ns, (void __user *)arg);
4cc06521
KB
3085 case NVME_IOCTL_RESET:
3086 dev_warn(dev->dev, "resetting controller\n");
3087 return nvme_reset(dev);
81f03fed
JD
3088 case NVME_IOCTL_SUBSYS_RESET:
3089 return nvme_subsys_reset(dev);
5e82e952
KB
3090 default:
3091 return -ENOTTY;
3092 }
3093}
3094
3095static const struct file_operations nvme_dev_fops = {
3096 .owner = THIS_MODULE,
3097 .open = nvme_dev_open,
3098 .release = nvme_dev_release,
3099 .unlocked_ioctl = nvme_dev_ioctl,
3100 .compat_ioctl = nvme_dev_ioctl,
3101};
3102
3cf519b5 3103static void nvme_probe_work(struct work_struct *work)
f0b50732 3104{
3cf519b5 3105 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
b9afca3e 3106 bool start_thread = false;
3cf519b5 3107 int result;
f0b50732
KB
3108
3109 result = nvme_dev_map(dev);
3110 if (result)
3cf519b5 3111 goto out;
f0b50732
KB
3112
3113 result = nvme_configure_admin_queue(dev);
3114 if (result)
3115 goto unmap;
3116
3117 spin_lock(&dev_list_lock);
b9afca3e
DM
3118 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
3119 start_thread = true;
3120 nvme_thread = NULL;
3121 }
f0b50732
KB
3122 list_add(&dev->node, &dev_list);
3123 spin_unlock(&dev_list_lock);
3124
b9afca3e
DM
3125 if (start_thread) {
3126 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 3127 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
3128 } else
3129 wait_event_killable(nvme_kthread_wait, nvme_thread);
3130
3131 if (IS_ERR_OR_NULL(nvme_thread)) {
3132 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3133 goto disable;
3134 }
a4aea562
MB
3135
3136 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
3137 result = nvme_alloc_admin_tags(dev);
3138 if (result)
3139 goto disable;
b9afca3e 3140
f0b50732 3141 result = nvme_setup_io_queues(dev);
badc34d4 3142 if (result)
0fb59cbc 3143 goto free_tags;
f0b50732 3144
1efccc9d 3145 dev->event_limit = 1;
3cf519b5 3146
2659e57b
CH
3147 /*
3148 * Keep the controller around but remove all namespaces if we don't have
3149 * any working I/O queue.
3150 */
3cf519b5
CH
3151 if (dev->online_queues < 2) {
3152 dev_warn(dev->dev, "IO queues not created\n");
3cf519b5
CH
3153 nvme_dev_remove(dev);
3154 } else {
3155 nvme_unfreeze_queues(dev);
3156 nvme_dev_add(dev);
3157 }
3158
3159 return;
f0b50732 3160
0fb59cbc
KB
3161 free_tags:
3162 nvme_dev_remove_admin(dev);
4af0e21c
KB
3163 blk_put_queue(dev->admin_q);
3164 dev->admin_q = NULL;
3165 dev->queues[0]->tags = NULL;
f0b50732 3166 disable:
a1a5ef99 3167 nvme_disable_queue(dev, 0);
b9afca3e 3168 nvme_dev_list_remove(dev);
f0b50732
KB
3169 unmap:
3170 nvme_dev_unmap(dev);
3cf519b5
CH
3171 out:
3172 if (!work_busy(&dev->reset_work))
3173 nvme_dead_ctrl(dev);
f0b50732
KB
3174}
3175
9a6b9458
KB
3176static int nvme_remove_dead_ctrl(void *arg)
3177{
3178 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 3179 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
3180
3181 if (pci_get_drvdata(pdev))
c81f4975 3182 pci_stop_and_remove_bus_device_locked(pdev);
9a6b9458
KB
3183 kref_put(&dev->kref, nvme_free_dev);
3184 return 0;
3185}
3186
de3eff2b
KB
3187static void nvme_dead_ctrl(struct nvme_dev *dev)
3188{
3189 dev_warn(dev->dev, "Device failed to resume\n");
3190 kref_get(&dev->kref);
3191 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3192 dev->instance))) {
3193 dev_err(dev->dev,
3194 "Failed to start controller remove task\n");
3195 kref_put(&dev->kref, nvme_free_dev);
3196 }
3197}
3198
77b50d9e 3199static void nvme_reset_work(struct work_struct *ws)
9a6b9458 3200{
77b50d9e 3201 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
ffe7704d
KB
3202 bool in_probe = work_busy(&dev->probe_work);
3203
9a6b9458 3204 nvme_dev_shutdown(dev);
ffe7704d
KB
3205
3206 /* Synchronize with device probe so that work will see failure status
3207 * and exit gracefully without trying to schedule another reset */
3208 flush_work(&dev->probe_work);
3209
3210 /* Fail this device if reset occured during probe to avoid
3211 * infinite initialization loops. */
3212 if (in_probe) {
de3eff2b 3213 nvme_dead_ctrl(dev);
ffe7704d 3214 return;
9a6b9458 3215 }
ffe7704d
KB
3216 /* Schedule device resume asynchronously so the reset work is available
3217 * to cleanup errors that may occur during reinitialization */
3218 schedule_work(&dev->probe_work);
9a6b9458
KB
3219}
3220
90667892 3221static int __nvme_reset(struct nvme_dev *dev)
9ca97374 3222{
90667892
CH
3223 if (work_pending(&dev->reset_work))
3224 return -EBUSY;
3225 list_del_init(&dev->node);
3226 queue_work(nvme_workq, &dev->reset_work);
3227 return 0;
9ca97374
TH
3228}
3229
4cc06521
KB
3230static int nvme_reset(struct nvme_dev *dev)
3231{
90667892 3232 int ret;
4cc06521
KB
3233
3234 if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3235 return -ENODEV;
3236
3237 spin_lock(&dev_list_lock);
90667892 3238 ret = __nvme_reset(dev);
4cc06521
KB
3239 spin_unlock(&dev_list_lock);
3240
3241 if (!ret) {
3242 flush_work(&dev->reset_work);
ffe7704d 3243 flush_work(&dev->probe_work);
4cc06521
KB
3244 return 0;
3245 }
3246
3247 return ret;
3248}
3249
3250static ssize_t nvme_sysfs_reset(struct device *dev,
3251 struct device_attribute *attr, const char *buf,
3252 size_t count)
3253{
3254 struct nvme_dev *ndev = dev_get_drvdata(dev);
3255 int ret;
3256
3257 ret = nvme_reset(ndev);
3258 if (ret < 0)
3259 return ret;
3260
3261 return count;
3262}
3263static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3264
8d85fce7 3265static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 3266{
a4aea562 3267 int node, result = -ENOMEM;
b60503ba
MW
3268 struct nvme_dev *dev;
3269
a4aea562
MB
3270 node = dev_to_node(&pdev->dev);
3271 if (node == NUMA_NO_NODE)
3272 set_dev_node(&pdev->dev, 0);
3273
3274 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
3275 if (!dev)
3276 return -ENOMEM;
a4aea562
MB
3277 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3278 GFP_KERNEL, node);
b60503ba
MW
3279 if (!dev->entry)
3280 goto free;
a4aea562
MB
3281 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3282 GFP_KERNEL, node);
b60503ba
MW
3283 if (!dev->queues)
3284 goto free;
3285
3286 INIT_LIST_HEAD(&dev->namespaces);
77b50d9e 3287 INIT_WORK(&dev->reset_work, nvme_reset_work);
e75ec752 3288 dev->dev = get_device(&pdev->dev);
9a6b9458 3289 pci_set_drvdata(pdev, dev);
cd58ad7d
QSA
3290 result = nvme_set_instance(dev);
3291 if (result)
a96d4f5c 3292 goto put_pci;
b60503ba 3293
091b6092
MW
3294 result = nvme_setup_prp_pools(dev);
3295 if (result)
0877cb0d 3296 goto release;
091b6092 3297
fb35e914 3298 kref_init(&dev->kref);
b3fffdef
KB
3299 dev->device = device_create(nvme_class, &pdev->dev,
3300 MKDEV(nvme_char_major, dev->instance),
3301 dev, "nvme%d", dev->instance);
3302 if (IS_ERR(dev->device)) {
3303 result = PTR_ERR(dev->device);
2e1d8448 3304 goto release_pools;
b3fffdef
KB
3305 }
3306 get_device(dev->device);
4cc06521
KB
3307 dev_set_drvdata(dev->device, dev);
3308
3309 result = device_create_file(dev->device, &dev_attr_reset_controller);
3310 if (result)
3311 goto put_dev;
740216fc 3312
e6e96d73 3313 INIT_LIST_HEAD(&dev->node);
a5768aa8 3314 INIT_WORK(&dev->scan_work, nvme_dev_scan);
3cf519b5 3315 INIT_WORK(&dev->probe_work, nvme_probe_work);
2e1d8448 3316 schedule_work(&dev->probe_work);
b60503ba
MW
3317 return 0;
3318
4cc06521
KB
3319 put_dev:
3320 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3321 put_device(dev->device);
0877cb0d 3322 release_pools:
091b6092 3323 nvme_release_prp_pools(dev);
0877cb0d
KB
3324 release:
3325 nvme_release_instance(dev);
a96d4f5c 3326 put_pci:
e75ec752 3327 put_device(dev->dev);
b60503ba
MW
3328 free:
3329 kfree(dev->queues);
3330 kfree(dev->entry);
3331 kfree(dev);
3332 return result;
3333}
3334
f0d54a54
KB
3335static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3336{
a6739479 3337 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 3338
a6739479
KB
3339 if (prepare)
3340 nvme_dev_shutdown(dev);
3341 else
0a7385ad 3342 schedule_work(&dev->probe_work);
f0d54a54
KB
3343}
3344
09ece142
KB
3345static void nvme_shutdown(struct pci_dev *pdev)
3346{
3347 struct nvme_dev *dev = pci_get_drvdata(pdev);
3348 nvme_dev_shutdown(dev);
3349}
3350
8d85fce7 3351static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3352{
3353 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
3354
3355 spin_lock(&dev_list_lock);
3356 list_del_init(&dev->node);
3357 spin_unlock(&dev_list_lock);
3358
3359 pci_set_drvdata(pdev, NULL);
2e1d8448 3360 flush_work(&dev->probe_work);
9a6b9458 3361 flush_work(&dev->reset_work);
a5768aa8 3362 flush_work(&dev->scan_work);
4cc06521 3363 device_remove_file(dev->device, &dev_attr_reset_controller);
c9d3bf88 3364 nvme_dev_remove(dev);
3399a3f7 3365 nvme_dev_shutdown(dev);
a4aea562 3366 nvme_dev_remove_admin(dev);
b3fffdef 3367 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
a1a5ef99 3368 nvme_free_queues(dev, 0);
8ffaadf7 3369 nvme_release_cmb(dev);
9a6b9458 3370 nvme_release_prp_pools(dev);
5e82e952 3371 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
3372}
3373
3374/* These functions are yet to be implemented */
3375#define nvme_error_detected NULL
3376#define nvme_dump_registers NULL
3377#define nvme_link_reset NULL
3378#define nvme_slot_reset NULL
3379#define nvme_error_resume NULL
cd638946 3380
671a6018 3381#ifdef CONFIG_PM_SLEEP
cd638946
KB
3382static int nvme_suspend(struct device *dev)
3383{
3384 struct pci_dev *pdev = to_pci_dev(dev);
3385 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3386
3387 nvme_dev_shutdown(ndev);
3388 return 0;
3389}
3390
3391static int nvme_resume(struct device *dev)
3392{
3393 struct pci_dev *pdev = to_pci_dev(dev);
3394 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3395
0a7385ad 3396 schedule_work(&ndev->probe_work);
9a6b9458 3397 return 0;
cd638946 3398}
671a6018 3399#endif
cd638946
KB
3400
3401static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 3402
1d352035 3403static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
3404 .error_detected = nvme_error_detected,
3405 .mmio_enabled = nvme_dump_registers,
3406 .link_reset = nvme_link_reset,
3407 .slot_reset = nvme_slot_reset,
3408 .resume = nvme_error_resume,
f0d54a54 3409 .reset_notify = nvme_reset_notify,
b60503ba
MW
3410};
3411
3412/* Move to pci_ids.h later */
3413#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3414
6eb0d698 3415static const struct pci_device_id nvme_id_table[] = {
b60503ba 3416 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 3417 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
3418 { 0, }
3419};
3420MODULE_DEVICE_TABLE(pci, nvme_id_table);
3421
3422static struct pci_driver nvme_driver = {
3423 .name = "nvme",
3424 .id_table = nvme_id_table,
3425 .probe = nvme_probe,
8d85fce7 3426 .remove = nvme_remove,
09ece142 3427 .shutdown = nvme_shutdown,
cd638946
KB
3428 .driver = {
3429 .pm = &nvme_dev_pm_ops,
3430 },
b60503ba
MW
3431 .err_handler = &nvme_err_handler,
3432};
3433
3434static int __init nvme_init(void)
3435{
0ac13140 3436 int result;
1fa6aead 3437
b9afca3e 3438 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 3439
9a6b9458
KB
3440 nvme_workq = create_singlethread_workqueue("nvme");
3441 if (!nvme_workq)
b9afca3e 3442 return -ENOMEM;
9a6b9458 3443
5c42ea16
KB
3444 result = register_blkdev(nvme_major, "nvme");
3445 if (result < 0)
9a6b9458 3446 goto kill_workq;
5c42ea16 3447 else if (result > 0)
0ac13140 3448 nvme_major = result;
b60503ba 3449
b3fffdef
KB
3450 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3451 &nvme_dev_fops);
3452 if (result < 0)
3453 goto unregister_blkdev;
3454 else if (result > 0)
3455 nvme_char_major = result;
3456
3457 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
3458 if (IS_ERR(nvme_class)) {
3459 result = PTR_ERR(nvme_class);
b3fffdef 3460 goto unregister_chrdev;
c727040b 3461 }
b3fffdef 3462
f3db22fe
KB
3463 result = pci_register_driver(&nvme_driver);
3464 if (result)
b3fffdef 3465 goto destroy_class;
1fa6aead 3466 return 0;
b60503ba 3467
b3fffdef
KB
3468 destroy_class:
3469 class_destroy(nvme_class);
3470 unregister_chrdev:
3471 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 3472 unregister_blkdev:
b60503ba 3473 unregister_blkdev(nvme_major, "nvme");
9a6b9458
KB
3474 kill_workq:
3475 destroy_workqueue(nvme_workq);
b60503ba
MW
3476 return result;
3477}
3478
3479static void __exit nvme_exit(void)
3480{
3481 pci_unregister_driver(&nvme_driver);
3482 unregister_blkdev(nvme_major, "nvme");
9a6b9458 3483 destroy_workqueue(nvme_workq);
b3fffdef
KB
3484 class_destroy(nvme_class);
3485 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 3486 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 3487 _nvme_check_size();
b60503ba
MW
3488}
3489
3490MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3491MODULE_LICENSE("GPL");
c78b4713 3492MODULE_VERSION("1.0");
b60503ba
MW
3493module_init(nvme_init);
3494module_exit(nvme_exit);