]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
can: slcan: Add missing linux/sched.h include.
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
1da177e4 64#include <linux/mm.h>
5a0e3ad6 65#include <linux/slab.h>
1da177e4
LT
66#include <linux/module.h>
67#include <linux/sysctl.h>
a0bffffc 68#include <linux/kernel.h>
5ffc02a1 69#include <net/dst.h>
1da177e4
LT
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
1a2449a8 74#include <net/netdma.h>
1da177e4 75
ab32ea5d
BH
76int sysctl_tcp_timestamps __read_mostly = 1;
77int sysctl_tcp_window_scaling __read_mostly = 1;
78int sysctl_tcp_sack __read_mostly = 1;
79int sysctl_tcp_fack __read_mostly = 1;
80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 81EXPORT_SYMBOL(sysctl_tcp_reordering);
255cac91 82int sysctl_tcp_ecn __read_mostly = 2;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_ecn);
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 2;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
ab32ea5d
BH
89int sysctl_tcp_stdurg __read_mostly;
90int sysctl_tcp_rfc1337 __read_mostly;
91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 92int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 93int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 94int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 95
7e380175
AP
96int sysctl_tcp_thin_dupack __read_mostly;
97
ab32ea5d
BH
98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99int sysctl_tcp_abc __read_mostly;
1da177e4 100
1da177e4
LT
101#define FLAG_DATA 0x01 /* Incoming frame contained data. */
102#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106#define FLAG_DATA_SACKED 0x20 /* New SACK. */
107#define FLAG_ECE 0x40 /* ECE in this ACK */
108#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 110#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 113#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 120#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e905a9ed 125/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 126 * real world.
e905a9ed 127 */
056834d9 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 129{
463c84b9 130 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 132 unsigned int len;
1da177e4 133
e905a9ed 134 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
056834d9 139 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
9c70220b 148 len += skb->data - skb_transport_header(skb);
bee7ca9e 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
463c84b9
ACM
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
1da177e4 163 if (len == lss) {
463c84b9 164 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
165 return;
166 }
167 }
1ef9696c
AK
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
171 }
172}
173
463c84b9 174static void tcp_incr_quickack(struct sock *sk)
1da177e4 175{
463c84b9
ACM
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 178
056834d9
IJ
179 if (quickacks == 0)
180 quickacks = 2;
463c84b9
ACM
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
183}
184
1b9f4092 185static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 186{
463c84b9
ACM
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
463c84b9 197static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 198{
463c84b9
ACM
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
201}
202
bdf1ee5d
IJ
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
056834d9 205 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210{
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221{
056834d9 222 if (tp->ecn_flags & TCP_ECN_OK) {
bdf1ee5d
IJ
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
230 }
231}
232
233static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234{
056834d9 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
236 tp->ecn_flags &= ~TCP_ECN_OK;
237}
238
239static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240{
056834d9 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
242 tp->ecn_flags &= ~TCP_ECN_OK;
243}
244
245static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246{
056834d9 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
bdf1ee5d
IJ
248 return 1;
249 return 0;
250}
251
1da177e4
LT
252/* Buffer size and advertised window tuning.
253 *
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255 */
256
257static void tcp_fixup_sndbuf(struct sock *sk)
258{
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
261
8d987e5c
ED
262 if (sk->sk_sndbuf < 3 * sndmem) {
263 sk->sk_sndbuf = 3 * sndmem;
264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 sk->sk_sndbuf = sysctl_tcp_wmem[2];
266 }
1da177e4
LT
267}
268
269/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270 *
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
280 *
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
288 *
289 * The scheme does not work when sender sends good segments opening
caa20d9a 290 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
291 * in common situations. Otherwise, we have to rely on queue collapsing.
292 */
293
294/* Slow part of check#2. */
9e412ba7 295static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 296{
9e412ba7 297 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 298 /* Optimize this! */
dfd4f0ae
ED
299 int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
301
302 while (tp->rcv_ssthresh <= window) {
303 if (truesize <= skb->len)
463c84b9 304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
305
306 truesize >>= 1;
307 window >>= 1;
308 }
309 return 0;
310}
311
056834d9 312static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
1da177e4 313{
9e412ba7
IJ
314 struct tcp_sock *tp = tcp_sk(sk);
315
1da177e4
LT
316 /* Check #1 */
317 if (tp->rcv_ssthresh < tp->window_clamp &&
318 (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 !tcp_memory_pressure) {
320 int incr;
321
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
324 */
325 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 326 incr = 2 * tp->advmss;
1da177e4 327 else
9e412ba7 328 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
329
330 if (incr) {
056834d9
IJ
331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 tp->window_clamp);
463c84b9 333 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
334 }
335 }
336}
337
338/* 3. Tuning rcvbuf, when connection enters established state. */
339
340static void tcp_fixup_rcvbuf(struct sock *sk)
341{
342 struct tcp_sock *tp = tcp_sk(sk);
343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344
345 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 346 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
347 * (was 3; 4 is minimum to allow fast retransmit to work.)
348 */
349 while (tcp_win_from_space(rcvmem) < tp->advmss)
350 rcvmem += 128;
351 if (sk->sk_rcvbuf < 4 * rcvmem)
352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353}
354
caa20d9a 355/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
356 * established state.
357 */
358static void tcp_init_buffer_space(struct sock *sk)
359{
360 struct tcp_sock *tp = tcp_sk(sk);
361 int maxwin;
362
363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 tcp_fixup_rcvbuf(sk);
365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 tcp_fixup_sndbuf(sk);
367
368 tp->rcvq_space.space = tp->rcv_wnd;
369
370 maxwin = tcp_full_space(sk);
371
372 if (tp->window_clamp >= maxwin) {
373 tp->window_clamp = maxwin;
374
375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 tp->window_clamp = max(maxwin -
377 (maxwin >> sysctl_tcp_app_win),
378 4 * tp->advmss);
379 }
380
381 /* Force reservation of one segment. */
382 if (sysctl_tcp_app_win &&
383 tp->window_clamp > 2 * tp->advmss &&
384 tp->window_clamp + tp->advmss > maxwin)
385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386
387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 tp->snd_cwnd_stamp = tcp_time_stamp;
389}
390
1da177e4 391/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 392static void tcp_clamp_window(struct sock *sk)
1da177e4 393{
9e412ba7 394 struct tcp_sock *tp = tcp_sk(sk);
6687e988 395 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 396
6687e988 397 icsk->icsk_ack.quick = 0;
1da177e4 398
326f36e9
JH
399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 !tcp_memory_pressure &&
8d987e5c 402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
326f36e9
JH
403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 sysctl_tcp_rmem[2]);
1da177e4 405 }
326f36e9 406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
408}
409
40efc6fa
SH
410/* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416 */
417void tcp_initialize_rcv_mss(struct sock *sk)
418{
419 struct tcp_sock *tp = tcp_sk(sk);
420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421
056834d9 422 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 423 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
424 hint = max(hint, TCP_MIN_MSS);
425
426 inet_csk(sk)->icsk_ack.rcv_mss = hint;
427}
4bc2f18b 428EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 429
1da177e4
LT
430/* Receiver "autotuning" code.
431 *
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
435 *
436 * More detail on this code can be found at
631dd1a8 437 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
438 * though this reference is out of date. A new paper
439 * is pending.
440 */
441static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442{
443 u32 new_sample = tp->rcv_rtt_est.rtt;
444 long m = sample;
445
446 if (m == 0)
447 m = 1;
448
449 if (new_sample != 0) {
450 /* If we sample in larger samples in the non-timestamp
451 * case, we could grossly overestimate the RTT especially
452 * with chatty applications or bulk transfer apps which
453 * are stalled on filesystem I/O.
454 *
455 * Also, since we are only going for a minimum in the
31f34269 456 * non-timestamp case, we do not smooth things out
caa20d9a 457 * else with timestamps disabled convergence takes too
1da177e4
LT
458 * long.
459 */
460 if (!win_dep) {
461 m -= (new_sample >> 3);
462 new_sample += m;
463 } else if (m < new_sample)
464 new_sample = m << 3;
465 } else {
caa20d9a 466 /* No previous measure. */
1da177e4
LT
467 new_sample = m << 3;
468 }
469
470 if (tp->rcv_rtt_est.rtt != new_sample)
471 tp->rcv_rtt_est.rtt = new_sample;
472}
473
474static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475{
476 if (tp->rcv_rtt_est.time == 0)
477 goto new_measure;
478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 return;
056834d9 480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
1da177e4
LT
481
482new_measure:
483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 tp->rcv_rtt_est.time = tcp_time_stamp;
485}
486
056834d9
IJ
487static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 const struct sk_buff *skb)
1da177e4 489{
463c84b9 490 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
491 if (tp->rx_opt.rcv_tsecr &&
492 (TCP_SKB_CB(skb)->end_seq -
463c84b9 493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495}
496
497/*
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
500 */
501void tcp_rcv_space_adjust(struct sock *sk)
502{
503 struct tcp_sock *tp = tcp_sk(sk);
504 int time;
505 int space;
e905a9ed 506
1da177e4
LT
507 if (tp->rcvq_space.time == 0)
508 goto new_measure;
e905a9ed 509
1da177e4 510 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 512 return;
e905a9ed 513
1da177e4
LT
514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515
516 space = max(tp->rcvq_space.space, space);
517
518 if (tp->rcvq_space.space != space) {
519 int rcvmem;
520
521 tp->rcvq_space.space = space;
522
6fcf9412
JH
523 if (sysctl_tcp_moderate_rcvbuf &&
524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
525 int new_clamp = space;
526
527 /* Receive space grows, normalize in order to
528 * take into account packet headers and sk_buff
529 * structure overhead.
530 */
531 space /= tp->advmss;
532 if (!space)
533 space = 1;
534 rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 16 + sizeof(struct sk_buff));
536 while (tcp_win_from_space(rcvmem) < tp->advmss)
537 rcvmem += 128;
538 space *= rcvmem;
539 space = min(space, sysctl_tcp_rmem[2]);
540 if (space > sk->sk_rcvbuf) {
541 sk->sk_rcvbuf = space;
542
543 /* Make the window clamp follow along. */
544 tp->window_clamp = new_clamp;
545 }
546 }
547 }
e905a9ed 548
1da177e4
LT
549new_measure:
550 tp->rcvq_space.seq = tp->copied_seq;
551 tp->rcvq_space.time = tcp_time_stamp;
552}
553
554/* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval. When a
556 * connection starts up, we want to ack as quickly as possible. The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission. The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time. For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
562 * queue. -DaveM
563 */
9e412ba7 564static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 565{
9e412ba7 566 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 567 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
568 u32 now;
569
463c84b9 570 inet_csk_schedule_ack(sk);
1da177e4 571
463c84b9 572 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
573
574 tcp_rcv_rtt_measure(tp);
e905a9ed 575
1da177e4
LT
576 now = tcp_time_stamp;
577
463c84b9 578 if (!icsk->icsk_ack.ato) {
1da177e4
LT
579 /* The _first_ data packet received, initialize
580 * delayed ACK engine.
581 */
463c84b9
ACM
582 tcp_incr_quickack(sk);
583 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 584 } else {
463c84b9 585 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 586
056834d9 587 if (m <= TCP_ATO_MIN / 2) {
1da177e4 588 /* The fastest case is the first. */
463c84b9
ACM
589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 } else if (m < icsk->icsk_ack.ato) {
591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 icsk->icsk_ack.ato = icsk->icsk_rto;
594 } else if (m > icsk->icsk_rto) {
caa20d9a 595 /* Too long gap. Apparently sender failed to
1da177e4
LT
596 * restart window, so that we send ACKs quickly.
597 */
463c84b9 598 tcp_incr_quickack(sk);
3ab224be 599 sk_mem_reclaim(sk);
1da177e4
LT
600 }
601 }
463c84b9 602 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
603
604 TCP_ECN_check_ce(tp, skb);
605
606 if (skb->len >= 128)
9e412ba7 607 tcp_grow_window(sk, skb);
1da177e4
LT
608}
609
1da177e4
LT
610/* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
618 */
2d2abbab 619static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 620{
6687e988 621 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
622 long m = mrtt; /* RTT */
623
1da177e4
LT
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
e905a9ed 627 * This is designed to be as fast as possible
1da177e4
LT
628 * m stands for "measurement".
629 *
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
632 *
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
31f34269 635 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
639 */
2de979bd 640 if (m == 0)
1da177e4
LT
641 m = 1;
642 if (tp->srtt != 0) {
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 if (m < 0) {
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
655 */
656 if (m > 0)
657 m >>= 3;
658 } else {
659 m -= (tp->mdev >> 2); /* similar update on mdev */
660 }
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
666 }
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
056834d9 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 670 tp->rtt_seq = tp->snd_nxt;
05bb1fad 671 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
672 }
673 } else {
674 /* no previous measure. */
056834d9
IJ
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
678 tp->rtt_seq = tp->snd_nxt;
679 }
1da177e4
LT
680}
681
682/* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
684 */
463c84b9 685static inline void tcp_set_rto(struct sock *sk)
1da177e4 686{
463c84b9 687 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
688 /* Old crap is replaced with new one. 8)
689 *
690 * More seriously:
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 696 * ACKs in some circumstances.
1da177e4 697 */
f1ecd5d9 698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
699
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
caa20d9a 703 * with correct one. It is exactly, which we pretend to do.
1da177e4 704 */
1da177e4 705
ee6aac59
IJ
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
708 */
f1ecd5d9 709 tcp_bound_rto(sk);
1da177e4
LT
710}
711
712/* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715 */
716void tcp_update_metrics(struct sock *sk)
717{
718 struct tcp_sock *tp = tcp_sk(sk);
719 struct dst_entry *dst = __sk_dst_get(sk);
720
721 if (sysctl_tcp_nometrics_save)
722 return;
723
724 dst_confirm(dst);
725
056834d9 726 if (dst && (dst->flags & DST_HOST)) {
6687e988 727 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 728 int m;
c1e20f7c 729 unsigned long rtt;
1da177e4 730
6687e988 731 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
734 * Reset our results.
735 */
736 if (!(dst_metric_locked(dst, RTAX_RTT)))
056834d9 737 dst->metrics[RTAX_RTT - 1] = 0;
1da177e4
LT
738 return;
739 }
740
c1e20f7c
SH
741 rtt = dst_metric_rtt(dst, RTAX_RTT);
742 m = rtt - tp->srtt;
1da177e4
LT
743
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
747 */
748 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 if (m <= 0)
c1e20f7c 750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
1da177e4 751 else
c1e20f7c 752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
1da177e4
LT
753 }
754
755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
c1e20f7c 756 unsigned long var;
1da177e4
LT
757 if (m < 0)
758 m = -m;
759
760 /* Scale deviation to rttvar fixed point */
761 m >>= 1;
762 if (m < tp->mdev)
763 m = tp->mdev;
764
c1e20f7c
SH
765 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 if (m >= var)
767 var = m;
1da177e4 768 else
c1e20f7c
SH
769 var -= (var - m) >> 2;
770
771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
1da177e4
LT
772 }
773
0b6a05c1 774 if (tcp_in_initial_slowstart(tp)) {
1da177e4
LT
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
056834d9 782 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
1da177e4 783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 784 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 dst->metrics[RTAX_SSTHRESH-1] =
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789 if (!dst_metric_locked(dst, RTAX_CWND))
5ffc02a1 790 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
1da177e4
LT
791 } else {
792 /* Else slow start did not finish, cwnd is non-sense,
793 ssthresh may be also invalid.
794 */
795 if (!dst_metric_locked(dst, RTAX_CWND))
5ffc02a1
SS
796 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797 if (dst_metric(dst, RTAX_SSTHRESH) &&
1da177e4 798 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
5ffc02a1 799 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
1da177e4
LT
800 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801 }
802
803 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
5ffc02a1 804 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
1da177e4
LT
805 tp->reordering != sysctl_tcp_reordering)
806 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807 }
808 }
809}
810
1da177e4
LT
811__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
812{
813 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
814
22b71c8f
GR
815 if (!cwnd)
816 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
1da177e4
LT
817 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
818}
819
40efc6fa 820/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 821void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
822{
823 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 824 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
825
826 tp->prior_ssthresh = 0;
827 tp->bytes_acked = 0;
e01f9d77 828 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 829 tp->undo_marker = 0;
3cfe3baa
IJ
830 if (set_ssthresh)
831 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
832 tp->snd_cwnd = min(tp->snd_cwnd,
833 tcp_packets_in_flight(tp) + 1U);
834 tp->snd_cwnd_cnt = 0;
835 tp->high_seq = tp->snd_nxt;
836 tp->snd_cwnd_stamp = tcp_time_stamp;
837 TCP_ECN_queue_cwr(tp);
838
839 tcp_set_ca_state(sk, TCP_CA_CWR);
840 }
841}
842
e60402d0
IJ
843/*
844 * Packet counting of FACK is based on in-order assumptions, therefore TCP
845 * disables it when reordering is detected
846 */
847static void tcp_disable_fack(struct tcp_sock *tp)
848{
85cc391c
IJ
849 /* RFC3517 uses different metric in lost marker => reset on change */
850 if (tcp_is_fack(tp))
851 tp->lost_skb_hint = NULL;
e60402d0
IJ
852 tp->rx_opt.sack_ok &= ~2;
853}
854
564262c1 855/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
856static void tcp_dsack_seen(struct tcp_sock *tp)
857{
858 tp->rx_opt.sack_ok |= 4;
859}
860
1da177e4
LT
861/* Initialize metrics on socket. */
862
863static void tcp_init_metrics(struct sock *sk)
864{
865 struct tcp_sock *tp = tcp_sk(sk);
866 struct dst_entry *dst = __sk_dst_get(sk);
867
868 if (dst == NULL)
869 goto reset;
870
871 dst_confirm(dst);
872
873 if (dst_metric_locked(dst, RTAX_CWND))
874 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
875 if (dst_metric(dst, RTAX_SSTHRESH)) {
876 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
877 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
878 tp->snd_ssthresh = tp->snd_cwnd_clamp;
879 }
880 if (dst_metric(dst, RTAX_REORDERING) &&
881 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 882 tcp_disable_fack(tp);
1da177e4
LT
883 tp->reordering = dst_metric(dst, RTAX_REORDERING);
884 }
885
886 if (dst_metric(dst, RTAX_RTT) == 0)
887 goto reset;
888
c1e20f7c 889 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
1da177e4
LT
890 goto reset;
891
892 /* Initial rtt is determined from SYN,SYN-ACK.
893 * The segment is small and rtt may appear much
894 * less than real one. Use per-dst memory
895 * to make it more realistic.
896 *
897 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 898 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
899 * packets force peer to delay ACKs and calculation is correct too.
900 * The algorithm is adaptive and, provided we follow specs, it
901 * NEVER underestimate RTT. BUT! If peer tries to make some clever
902 * tricks sort of "quick acks" for time long enough to decrease RTT
903 * to low value, and then abruptly stops to do it and starts to delay
904 * ACKs, wait for troubles.
905 */
c1e20f7c
SH
906 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
907 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
1da177e4
LT
908 tp->rtt_seq = tp->snd_nxt;
909 }
c1e20f7c
SH
910 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
911 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
488faa2a 912 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4 913 }
463c84b9 914 tcp_set_rto(sk);
463c84b9 915 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4 916 goto reset;
86bcebaf
IJ
917
918cwnd:
1da177e4
LT
919 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
920 tp->snd_cwnd_stamp = tcp_time_stamp;
921 return;
922
923reset:
924 /* Play conservative. If timestamps are not
925 * supported, TCP will fail to recalculate correct
926 * rtt, if initial rto is too small. FORGET ALL AND RESET!
927 */
928 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
929 tp->srtt = 0;
930 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 931 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4 932 }
86bcebaf 933 goto cwnd;
1da177e4
LT
934}
935
6687e988
ACM
936static void tcp_update_reordering(struct sock *sk, const int metric,
937 const int ts)
1da177e4 938{
6687e988 939 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 940 if (metric > tp->reordering) {
40b215e5
PE
941 int mib_idx;
942
1da177e4
LT
943 tp->reordering = min(TCP_MAX_REORDERING, metric);
944
945 /* This exciting event is worth to be remembered. 8) */
946 if (ts)
40b215e5 947 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 948 else if (tcp_is_reno(tp))
40b215e5 949 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 950 else if (tcp_is_fack(tp))
40b215e5 951 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 952 else
40b215e5
PE
953 mib_idx = LINUX_MIB_TCPSACKREORDER;
954
de0744af 955 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4
LT
956#if FASTRETRANS_DEBUG > 1
957 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 958 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
959 tp->reordering,
960 tp->fackets_out,
961 tp->sacked_out,
962 tp->undo_marker ? tp->undo_retrans : 0);
963#endif
e60402d0 964 tcp_disable_fack(tp);
1da177e4
LT
965 }
966}
967
006f582c 968/* This must be called before lost_out is incremented */
c8c213f2
IJ
969static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
970{
006f582c 971 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
972 before(TCP_SKB_CB(skb)->seq,
973 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
974 tp->retransmit_skb_hint = skb;
975
976 if (!tp->lost_out ||
977 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
978 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
979}
980
41ea36e3
IJ
981static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
982{
983 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
984 tcp_verify_retransmit_hint(tp, skb);
985
986 tp->lost_out += tcp_skb_pcount(skb);
987 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
988 }
989}
990
e1aa680f
IJ
991static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
992 struct sk_buff *skb)
006f582c
IJ
993{
994 tcp_verify_retransmit_hint(tp, skb);
995
996 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
997 tp->lost_out += tcp_skb_pcount(skb);
998 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
999 }
1000}
1001
1da177e4
LT
1002/* This procedure tags the retransmission queue when SACKs arrive.
1003 *
1004 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1005 * Packets in queue with these bits set are counted in variables
1006 * sacked_out, retrans_out and lost_out, correspondingly.
1007 *
1008 * Valid combinations are:
1009 * Tag InFlight Description
1010 * 0 1 - orig segment is in flight.
1011 * S 0 - nothing flies, orig reached receiver.
1012 * L 0 - nothing flies, orig lost by net.
1013 * R 2 - both orig and retransmit are in flight.
1014 * L|R 1 - orig is lost, retransmit is in flight.
1015 * S|R 1 - orig reached receiver, retrans is still in flight.
1016 * (L|S|R is logically valid, it could occur when L|R is sacked,
1017 * but it is equivalent to plain S and code short-curcuits it to S.
1018 * L|S is logically invalid, it would mean -1 packet in flight 8))
1019 *
1020 * These 6 states form finite state machine, controlled by the following events:
1021 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1022 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1023 * 3. Loss detection event of one of three flavors:
1024 * A. Scoreboard estimator decided the packet is lost.
1025 * A'. Reno "three dupacks" marks head of queue lost.
1026 * A''. Its FACK modfication, head until snd.fack is lost.
1027 * B. SACK arrives sacking data transmitted after never retransmitted
1028 * hole was sent out.
1029 * C. SACK arrives sacking SND.NXT at the moment, when the
1030 * segment was retransmitted.
1031 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1032 *
1033 * It is pleasant to note, that state diagram turns out to be commutative,
1034 * so that we are allowed not to be bothered by order of our actions,
1035 * when multiple events arrive simultaneously. (see the function below).
1036 *
1037 * Reordering detection.
1038 * --------------------
1039 * Reordering metric is maximal distance, which a packet can be displaced
1040 * in packet stream. With SACKs we can estimate it:
1041 *
1042 * 1. SACK fills old hole and the corresponding segment was not
1043 * ever retransmitted -> reordering. Alas, we cannot use it
1044 * when segment was retransmitted.
1045 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1046 * for retransmitted and already SACKed segment -> reordering..
1047 * Both of these heuristics are not used in Loss state, when we cannot
1048 * account for retransmits accurately.
5b3c9882
IJ
1049 *
1050 * SACK block validation.
1051 * ----------------------
1052 *
1053 * SACK block range validation checks that the received SACK block fits to
1054 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1055 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1056 * it means that the receiver is rather inconsistent with itself reporting
1057 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1058 * perfectly valid, however, in light of RFC2018 which explicitly states
1059 * that "SACK block MUST reflect the newest segment. Even if the newest
1060 * segment is going to be discarded ...", not that it looks very clever
1061 * in case of head skb. Due to potentional receiver driven attacks, we
1062 * choose to avoid immediate execution of a walk in write queue due to
1063 * reneging and defer head skb's loss recovery to standard loss recovery
1064 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1065 *
1066 * Implements also blockage to start_seq wrap-around. Problem lies in the
1067 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1068 * there's no guarantee that it will be before snd_nxt (n). The problem
1069 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1070 * wrap (s_w):
1071 *
1072 * <- outs wnd -> <- wrapzone ->
1073 * u e n u_w e_w s n_w
1074 * | | | | | | |
1075 * |<------------+------+----- TCP seqno space --------------+---------->|
1076 * ...-- <2^31 ->| |<--------...
1077 * ...---- >2^31 ------>| |<--------...
1078 *
1079 * Current code wouldn't be vulnerable but it's better still to discard such
1080 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1081 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1082 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1083 * equal to the ideal case (infinite seqno space without wrap caused issues).
1084 *
1085 * With D-SACK the lower bound is extended to cover sequence space below
1086 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1087 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1088 * for the normal SACK blocks, explained above). But there all simplicity
1089 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1090 * fully below undo_marker they do not affect behavior in anyway and can
1091 * therefore be safely ignored. In rare cases (which are more or less
1092 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1093 * fragmentation and packet reordering past skb's retransmission. To consider
1094 * them correctly, the acceptable range must be extended even more though
1095 * the exact amount is rather hard to quantify. However, tp->max_window can
1096 * be used as an exaggerated estimate.
1da177e4 1097 */
5b3c9882
IJ
1098static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1099 u32 start_seq, u32 end_seq)
1100{
1101 /* Too far in future, or reversed (interpretation is ambiguous) */
1102 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1103 return 0;
1104
1105 /* Nasty start_seq wrap-around check (see comments above) */
1106 if (!before(start_seq, tp->snd_nxt))
1107 return 0;
1108
564262c1 1109 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1110 * start_seq == snd_una is non-sensical (see comments above)
1111 */
1112 if (after(start_seq, tp->snd_una))
1113 return 1;
1114
1115 if (!is_dsack || !tp->undo_marker)
1116 return 0;
1117
1118 /* ...Then it's D-SACK, and must reside below snd_una completely */
1119 if (!after(end_seq, tp->snd_una))
1120 return 0;
1121
1122 if (!before(start_seq, tp->undo_marker))
1123 return 1;
1124
1125 /* Too old */
1126 if (!after(end_seq, tp->undo_marker))
1127 return 0;
1128
1129 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1130 * start_seq < undo_marker and end_seq >= undo_marker.
1131 */
1132 return !before(start_seq, end_seq - tp->max_window);
1133}
1134
1c1e87ed
IJ
1135/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1136 * Event "C". Later note: FACK people cheated me again 8), we have to account
1137 * for reordering! Ugly, but should help.
f785a8e2
IJ
1138 *
1139 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1140 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1141 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1142 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1143 */
407ef1de 1144static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1145{
9f58f3b7 1146 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1147 struct tcp_sock *tp = tcp_sk(sk);
1148 struct sk_buff *skb;
f785a8e2 1149 int cnt = 0;
df2e014b 1150 u32 new_low_seq = tp->snd_nxt;
6859d494 1151 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1152
1153 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1154 !after(received_upto, tp->lost_retrans_low) ||
1155 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1156 return;
1c1e87ed
IJ
1157
1158 tcp_for_write_queue(skb, sk) {
1159 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1160
1161 if (skb == tcp_send_head(sk))
1162 break;
f785a8e2 1163 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1164 break;
1165 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1166 continue;
1167
f785a8e2
IJ
1168 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1169 continue;
1170
d0af4160
IJ
1171 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1172 * constraint here (see above) but figuring out that at
1173 * least tp->reordering SACK blocks reside between ack_seq
1174 * and received_upto is not easy task to do cheaply with
1175 * the available datastructures.
1176 *
1177 * Whether FACK should check here for tp->reordering segs
1178 * in-between one could argue for either way (it would be
1179 * rather simple to implement as we could count fack_count
1180 * during the walk and do tp->fackets_out - fack_count).
1181 */
1182 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1183 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1184 tp->retrans_out -= tcp_skb_pcount(skb);
1185
006f582c 1186 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1187 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1188 } else {
df2e014b 1189 if (before(ack_seq, new_low_seq))
b08d6cb2 1190 new_low_seq = ack_seq;
f785a8e2 1191 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1192 }
1193 }
b08d6cb2
IJ
1194
1195 if (tp->retrans_out)
1196 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1197}
5b3c9882 1198
1ed83465 1199static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
d06e021d
DM
1200 struct tcp_sack_block_wire *sp, int num_sacks,
1201 u32 prior_snd_una)
1202{
1ed83465 1203 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1204 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1205 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
d06e021d
DM
1206 int dup_sack = 0;
1207
1208 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1209 dup_sack = 1;
e60402d0 1210 tcp_dsack_seen(tp);
de0744af 1211 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1212 } else if (num_sacks > 1) {
d3e2ce3b
HH
1213 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1214 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1215
1216 if (!after(end_seq_0, end_seq_1) &&
1217 !before(start_seq_0, start_seq_1)) {
1218 dup_sack = 1;
e60402d0 1219 tcp_dsack_seen(tp);
de0744af
PE
1220 NET_INC_STATS_BH(sock_net(sk),
1221 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1222 }
1223 }
1224
1225 /* D-SACK for already forgotten data... Do dumb counting. */
1226 if (dup_sack &&
1227 !after(end_seq_0, prior_snd_una) &&
1228 after(end_seq_0, tp->undo_marker))
1229 tp->undo_retrans--;
1230
1231 return dup_sack;
1232}
1233
a1197f5a
IJ
1234struct tcp_sacktag_state {
1235 int reord;
1236 int fack_count;
1237 int flag;
1238};
1239
d1935942
IJ
1240/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241 * the incoming SACK may not exactly match but we can find smaller MSS
1242 * aligned portion of it that matches. Therefore we might need to fragment
1243 * which may fail and creates some hassle (caller must handle error case
1244 * returns).
832d11c5
IJ
1245 *
1246 * FIXME: this could be merged to shift decision code
d1935942 1247 */
0f79efdc
AB
1248static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1249 u32 start_seq, u32 end_seq)
d1935942
IJ
1250{
1251 int in_sack, err;
1252 unsigned int pkt_len;
adb92db8 1253 unsigned int mss;
d1935942
IJ
1254
1255 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1256 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1257
1258 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1259 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1260 mss = tcp_skb_mss(skb);
d1935942
IJ
1261 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1262
adb92db8 1263 if (!in_sack) {
d1935942 1264 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1265 if (pkt_len < mss)
1266 pkt_len = mss;
1267 } else {
d1935942 1268 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1269 if (pkt_len < mss)
1270 return -EINVAL;
1271 }
1272
1273 /* Round if necessary so that SACKs cover only full MSSes
1274 * and/or the remaining small portion (if present)
1275 */
1276 if (pkt_len > mss) {
1277 unsigned int new_len = (pkt_len / mss) * mss;
1278 if (!in_sack && new_len < pkt_len) {
1279 new_len += mss;
1280 if (new_len > skb->len)
1281 return 0;
1282 }
1283 pkt_len = new_len;
1284 }
1285 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1286 if (err < 0)
1287 return err;
1288 }
1289
1290 return in_sack;
1291}
1292
a1197f5a
IJ
1293static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1294 struct tcp_sacktag_state *state,
1295 int dup_sack, int pcount)
9e10c47c 1296{
6859d494 1297 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c 1298 u8 sacked = TCP_SKB_CB(skb)->sacked;
a1197f5a 1299 int fack_count = state->fack_count;
9e10c47c
IJ
1300
1301 /* Account D-SACK for retransmitted packet. */
1302 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1303 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304 tp->undo_retrans--;
ede9f3b1 1305 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1306 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1307 }
1308
1309 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
a1197f5a 1311 return sacked;
9e10c47c
IJ
1312
1313 if (!(sacked & TCPCB_SACKED_ACKED)) {
1314 if (sacked & TCPCB_SACKED_RETRANS) {
1315 /* If the segment is not tagged as lost,
1316 * we do not clear RETRANS, believing
1317 * that retransmission is still in flight.
1318 */
1319 if (sacked & TCPCB_LOST) {
a1197f5a 1320 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1321 tp->lost_out -= pcount;
1322 tp->retrans_out -= pcount;
9e10c47c
IJ
1323 }
1324 } else {
1325 if (!(sacked & TCPCB_RETRANS)) {
1326 /* New sack for not retransmitted frame,
1327 * which was in hole. It is reordering.
1328 */
1329 if (before(TCP_SKB_CB(skb)->seq,
1330 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1331 state->reord = min(fack_count,
1332 state->reord);
9e10c47c
IJ
1333
1334 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1335 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
a1197f5a 1336 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1337 }
1338
1339 if (sacked & TCPCB_LOST) {
a1197f5a 1340 sacked &= ~TCPCB_LOST;
f58b22fd 1341 tp->lost_out -= pcount;
9e10c47c
IJ
1342 }
1343 }
1344
a1197f5a
IJ
1345 sacked |= TCPCB_SACKED_ACKED;
1346 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1347 tp->sacked_out += pcount;
9e10c47c 1348
f58b22fd 1349 fack_count += pcount;
9e10c47c
IJ
1350
1351 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1352 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1353 before(TCP_SKB_CB(skb)->seq,
1354 TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1355 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1356
1357 if (fack_count > tp->fackets_out)
1358 tp->fackets_out = fack_count;
9e10c47c
IJ
1359 }
1360
1361 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1362 * frames and clear it. undo_retrans is decreased above, L|R frames
1363 * are accounted above as well.
1364 */
a1197f5a
IJ
1365 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1366 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1367 tp->retrans_out -= pcount;
9e10c47c
IJ
1368 }
1369
a1197f5a 1370 return sacked;
9e10c47c
IJ
1371}
1372
50133161 1373static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
a1197f5a 1374 struct tcp_sacktag_state *state,
9ec06ff5
IJ
1375 unsigned int pcount, int shifted, int mss,
1376 int dup_sack)
832d11c5
IJ
1377{
1378 struct tcp_sock *tp = tcp_sk(sk);
50133161 1379 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
832d11c5
IJ
1380
1381 BUG_ON(!pcount);
1382
92ee76b6
IJ
1383 /* Tweak before seqno plays */
1384 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1385 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1386 tp->lost_cnt_hint += pcount;
1387
832d11c5
IJ
1388 TCP_SKB_CB(prev)->end_seq += shifted;
1389 TCP_SKB_CB(skb)->seq += shifted;
1390
1391 skb_shinfo(prev)->gso_segs += pcount;
1392 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1393 skb_shinfo(skb)->gso_segs -= pcount;
1394
1395 /* When we're adding to gso_segs == 1, gso_size will be zero,
1396 * in theory this shouldn't be necessary but as long as DSACK
1397 * code can come after this skb later on it's better to keep
1398 * setting gso_size to something.
1399 */
1400 if (!skb_shinfo(prev)->gso_size) {
1401 skb_shinfo(prev)->gso_size = mss;
1402 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1403 }
1404
1405 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1406 if (skb_shinfo(skb)->gso_segs <= 1) {
1407 skb_shinfo(skb)->gso_size = 0;
1408 skb_shinfo(skb)->gso_type = 0;
1409 }
1410
a1197f5a 1411 /* We discard results */
9ec06ff5 1412 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
832d11c5
IJ
1413
1414 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1415 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1416
832d11c5
IJ
1417 if (skb->len > 0) {
1418 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1419 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
832d11c5
IJ
1420 return 0;
1421 }
1422
1423 /* Whole SKB was eaten :-) */
1424
92ee76b6
IJ
1425 if (skb == tp->retransmit_skb_hint)
1426 tp->retransmit_skb_hint = prev;
1427 if (skb == tp->scoreboard_skb_hint)
1428 tp->scoreboard_skb_hint = prev;
1429 if (skb == tp->lost_skb_hint) {
1430 tp->lost_skb_hint = prev;
1431 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1432 }
1433
832d11c5
IJ
1434 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1435 if (skb == tcp_highest_sack(sk))
1436 tcp_advance_highest_sack(sk, skb);
1437
1438 tcp_unlink_write_queue(skb, sk);
1439 sk_wmem_free_skb(sk, skb);
1440
111cc8b9
IJ
1441 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1442
832d11c5
IJ
1443 return 1;
1444}
1445
1446/* I wish gso_size would have a bit more sane initialization than
1447 * something-or-zero which complicates things
1448 */
775ffabf 1449static int tcp_skb_seglen(struct sk_buff *skb)
832d11c5 1450{
775ffabf 1451 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1452}
1453
1454/* Shifting pages past head area doesn't work */
1455static int skb_can_shift(struct sk_buff *skb)
1456{
1457 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1458}
1459
1460/* Try collapsing SACK blocks spanning across multiple skbs to a single
1461 * skb.
1462 */
1463static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1464 struct tcp_sacktag_state *state,
832d11c5 1465 u32 start_seq, u32 end_seq,
a1197f5a 1466 int dup_sack)
832d11c5
IJ
1467{
1468 struct tcp_sock *tp = tcp_sk(sk);
1469 struct sk_buff *prev;
1470 int mss;
1471 int pcount = 0;
1472 int len;
1473 int in_sack;
1474
1475 if (!sk_can_gso(sk))
1476 goto fallback;
1477
1478 /* Normally R but no L won't result in plain S */
1479 if (!dup_sack &&
9969ca5f 1480 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1481 goto fallback;
1482 if (!skb_can_shift(skb))
1483 goto fallback;
1484 /* This frame is about to be dropped (was ACKed). */
1485 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1486 goto fallback;
1487
1488 /* Can only happen with delayed DSACK + discard craziness */
1489 if (unlikely(skb == tcp_write_queue_head(sk)))
1490 goto fallback;
1491 prev = tcp_write_queue_prev(sk, skb);
1492
1493 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1494 goto fallback;
1495
1496 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1497 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1498
1499 if (in_sack) {
1500 len = skb->len;
1501 pcount = tcp_skb_pcount(skb);
775ffabf 1502 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1503
1504 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1505 * drop this restriction as unnecessary
1506 */
775ffabf 1507 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1508 goto fallback;
1509 } else {
1510 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1511 goto noop;
1512 /* CHECKME: This is non-MSS split case only?, this will
1513 * cause skipped skbs due to advancing loop btw, original
1514 * has that feature too
1515 */
1516 if (tcp_skb_pcount(skb) <= 1)
1517 goto noop;
1518
1519 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1520 if (!in_sack) {
1521 /* TODO: head merge to next could be attempted here
1522 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1523 * though it might not be worth of the additional hassle
1524 *
1525 * ...we can probably just fallback to what was done
1526 * previously. We could try merging non-SACKed ones
1527 * as well but it probably isn't going to buy off
1528 * because later SACKs might again split them, and
1529 * it would make skb timestamp tracking considerably
1530 * harder problem.
1531 */
1532 goto fallback;
1533 }
1534
1535 len = end_seq - TCP_SKB_CB(skb)->seq;
1536 BUG_ON(len < 0);
1537 BUG_ON(len > skb->len);
1538
1539 /* MSS boundaries should be honoured or else pcount will
1540 * severely break even though it makes things bit trickier.
1541 * Optimize common case to avoid most of the divides
1542 */
1543 mss = tcp_skb_mss(skb);
1544
1545 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1546 * drop this restriction as unnecessary
1547 */
775ffabf 1548 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1549 goto fallback;
1550
1551 if (len == mss) {
1552 pcount = 1;
1553 } else if (len < mss) {
1554 goto noop;
1555 } else {
1556 pcount = len / mss;
1557 len = pcount * mss;
1558 }
1559 }
1560
1561 if (!skb_shift(prev, skb, len))
1562 goto fallback;
9ec06ff5 1563 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1564 goto out;
1565
1566 /* Hole filled allows collapsing with the next as well, this is very
1567 * useful when hole on every nth skb pattern happens
1568 */
1569 if (prev == tcp_write_queue_tail(sk))
1570 goto out;
1571 skb = tcp_write_queue_next(sk, prev);
1572
f0bc52f3
IJ
1573 if (!skb_can_shift(skb) ||
1574 (skb == tcp_send_head(sk)) ||
1575 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1576 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1577 goto out;
1578
1579 len = skb->len;
1580 if (skb_shift(prev, skb, len)) {
1581 pcount += tcp_skb_pcount(skb);
9ec06ff5 1582 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1583 }
1584
1585out:
a1197f5a 1586 state->fack_count += pcount;
832d11c5
IJ
1587 return prev;
1588
1589noop:
1590 return skb;
1591
1592fallback:
111cc8b9 1593 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1594 return NULL;
1595}
1596
68f8353b
IJ
1597static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1598 struct tcp_sack_block *next_dup,
a1197f5a 1599 struct tcp_sacktag_state *state,
68f8353b 1600 u32 start_seq, u32 end_seq,
a1197f5a 1601 int dup_sack_in)
68f8353b 1602{
832d11c5
IJ
1603 struct tcp_sock *tp = tcp_sk(sk);
1604 struct sk_buff *tmp;
1605
68f8353b
IJ
1606 tcp_for_write_queue_from(skb, sk) {
1607 int in_sack = 0;
1608 int dup_sack = dup_sack_in;
1609
1610 if (skb == tcp_send_head(sk))
1611 break;
1612
1613 /* queue is in-order => we can short-circuit the walk early */
1614 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1615 break;
1616
1617 if ((next_dup != NULL) &&
1618 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1619 in_sack = tcp_match_skb_to_sack(sk, skb,
1620 next_dup->start_seq,
1621 next_dup->end_seq);
1622 if (in_sack > 0)
1623 dup_sack = 1;
1624 }
1625
832d11c5
IJ
1626 /* skb reference here is a bit tricky to get right, since
1627 * shifting can eat and free both this skb and the next,
1628 * so not even _safe variant of the loop is enough.
1629 */
1630 if (in_sack <= 0) {
a1197f5a
IJ
1631 tmp = tcp_shift_skb_data(sk, skb, state,
1632 start_seq, end_seq, dup_sack);
832d11c5
IJ
1633 if (tmp != NULL) {
1634 if (tmp != skb) {
1635 skb = tmp;
1636 continue;
1637 }
1638
1639 in_sack = 0;
1640 } else {
1641 in_sack = tcp_match_skb_to_sack(sk, skb,
1642 start_seq,
1643 end_seq);
1644 }
1645 }
1646
68f8353b
IJ
1647 if (unlikely(in_sack < 0))
1648 break;
1649
832d11c5 1650 if (in_sack) {
a1197f5a
IJ
1651 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1652 state,
1653 dup_sack,
1654 tcp_skb_pcount(skb));
68f8353b 1655
832d11c5
IJ
1656 if (!before(TCP_SKB_CB(skb)->seq,
1657 tcp_highest_sack_seq(tp)))
1658 tcp_advance_highest_sack(sk, skb);
1659 }
1660
a1197f5a 1661 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1662 }
1663 return skb;
1664}
1665
1666/* Avoid all extra work that is being done by sacktag while walking in
1667 * a normal way
1668 */
1669static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1670 struct tcp_sacktag_state *state,
1671 u32 skip_to_seq)
68f8353b
IJ
1672{
1673 tcp_for_write_queue_from(skb, sk) {
1674 if (skb == tcp_send_head(sk))
1675 break;
1676
e8bae275 1677 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1678 break;
d152a7d8 1679
a1197f5a 1680 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1681 }
1682 return skb;
1683}
1684
1685static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1686 struct sock *sk,
1687 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1688 struct tcp_sacktag_state *state,
1689 u32 skip_to_seq)
68f8353b
IJ
1690{
1691 if (next_dup == NULL)
1692 return skb;
1693
1694 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1695 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1696 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1697 next_dup->start_seq, next_dup->end_seq,
1698 1);
68f8353b
IJ
1699 }
1700
1701 return skb;
1702}
1703
1704static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1705{
1706 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1707}
1708
1da177e4 1709static int
056834d9
IJ
1710tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1711 u32 prior_snd_una)
1da177e4 1712{
6687e988 1713 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1714 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1715 unsigned char *ptr = (skb_transport_header(ack_skb) +
1716 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1717 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1718 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1719 struct tcp_sack_block *cache;
a1197f5a 1720 struct tcp_sacktag_state state;
68f8353b 1721 struct sk_buff *skb;
4389dded 1722 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1723 int used_sacks;
7769f406 1724 int found_dup_sack = 0;
68f8353b 1725 int i, j;
fda03fbb 1726 int first_sack_index;
1da177e4 1727
a1197f5a
IJ
1728 state.flag = 0;
1729 state.reord = tp->packets_out;
1730
d738cd8f 1731 if (!tp->sacked_out) {
de83c058
IJ
1732 if (WARN_ON(tp->fackets_out))
1733 tp->fackets_out = 0;
6859d494 1734 tcp_highest_sack_reset(sk);
d738cd8f 1735 }
1da177e4 1736
1ed83465 1737 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1738 num_sacks, prior_snd_una);
1739 if (found_dup_sack)
a1197f5a 1740 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1741
1742 /* Eliminate too old ACKs, but take into
1743 * account more or less fresh ones, they can
1744 * contain valid SACK info.
1745 */
1746 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1747 return 0;
1748