]> git.proxmox.com Git - qemu.git/blame - target-arm/helper.c
target-alpha: Update AlphaCPU to QOM realizefn
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31 1#include "cpu.h"
022c62cb 2#include "exec/gdbstub.h"
7b59220e 3#include "helper.h"
1de7afc9 4#include "qemu/host-utils.h"
9c17d615 5#include "sysemu/sysemu.h"
1de7afc9 6#include "qemu/bitops.h"
0b03bdfc 7
4a501606
PM
8#ifndef CONFIG_USER_ONLY
9static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
a8170e5e 11 hwaddr *phys_ptr, int *prot,
4a501606
PM
12 target_ulong *page_size);
13#endif
14
0ecb72a5 15static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
16{
17 int nregs;
18
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
24 }
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
32 }
33 }
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
38 }
39 return 0;
40}
41
0ecb72a5 42static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
43{
44 int nregs;
45
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
50 }
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
63 }
64 return 0;
65}
66
c983fe6c
PM
67static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
68{
69 env->cp15.c3 = value;
70 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
71 return 0;
72}
73
08de207b
PM
74static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
75{
76 if (env->cp15.c13_fcse != value) {
77 /* Unlike real hardware the qemu TLB uses virtual addresses,
78 * not modified virtual addresses, so this causes a TLB flush.
79 */
80 tlb_flush(env, 1);
81 env->cp15.c13_fcse = value;
82 }
83 return 0;
84}
85static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
86 uint64_t value)
87{
88 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
89 /* For VMSA (when not using the LPAE long descriptor page table
90 * format) this register includes the ASID, so do a TLB flush.
91 * For PMSA it is purely a process ID and no action is needed.
92 */
93 tlb_flush(env, 1);
94 }
95 env->cp15.c13_context = value;
96 return 0;
97}
98
d929823f
PM
99static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
100 uint64_t value)
101{
102 /* Invalidate all (TLBIALL) */
103 tlb_flush(env, 1);
104 return 0;
105}
106
107static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
108 uint64_t value)
109{
110 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
111 tlb_flush_page(env, value & TARGET_PAGE_MASK);
112 return 0;
113}
114
115static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
116 uint64_t value)
117{
118 /* Invalidate by ASID (TLBIASID) */
119 tlb_flush(env, value == 0);
120 return 0;
121}
122
123static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
124 uint64_t value)
125{
126 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
127 tlb_flush_page(env, value & TARGET_PAGE_MASK);
128 return 0;
129}
130
e9aa6c21
PM
131static const ARMCPRegInfo cp_reginfo[] = {
132 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
133 * version" bits will read as a reserved value, which should cause
134 * Linux to not try to use the debug hardware.
135 */
136 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
137 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
c983fe6c
PM
138 /* MMU Domain access control / MPU write buffer control */
139 { .name = "DACR", .cp = 15,
140 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
141 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
142 .resetvalue = 0, .writefn = dacr_write },
08de207b
PM
143 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
144 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
145 .resetvalue = 0, .writefn = fcse_write },
146 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
147 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
148 .resetvalue = 0, .writefn = contextidr_write },
4fdd17dd
PM
149 /* ??? This covers not just the impdef TLB lockdown registers but also
150 * some v7VMSA registers relating to TEX remap, so it is overly broad.
151 */
152 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
153 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
d929823f
PM
154 /* MMU TLB control. Note that the wildcarding means we cover not just
155 * the unified TLB ops but also the dside/iside/inner-shareable variants.
156 */
157 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
158 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
159 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
160 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
161 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
162 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
163 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
164 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
c4804214
PM
165 /* Cache maintenance ops; some of this space may be overridden later. */
166 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
167 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
168 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
169 REGINFO_SENTINEL
170};
171
7d57f408
PM
172static const ARMCPRegInfo not_v6_cp_reginfo[] = {
173 /* Not all pre-v6 cores implemented this WFI, so this is slightly
174 * over-broad.
175 */
176 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
177 .access = PL1_W, .type = ARM_CP_WFI },
178 REGINFO_SENTINEL
179};
180
181static const ARMCPRegInfo not_v7_cp_reginfo[] = {
182 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
183 * is UNPREDICTABLE; we choose to NOP as most implementations do).
184 */
185 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
186 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
187 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
188 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
189 * OMAPCP will override this space.
190 */
191 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
192 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
193 .resetvalue = 0 },
194 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
195 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
196 .resetvalue = 0 },
776d4e5c
PM
197 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
198 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7d57f408
PM
200 REGINFO_SENTINEL
201};
202
2771db27
PM
203static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
204{
205 if (env->cp15.c1_coproc != value) {
206 env->cp15.c1_coproc = value;
207 /* ??? Is this safe when called from within a TB? */
208 tb_flush(env);
209 }
210 return 0;
211}
212
7d57f408
PM
213static const ARMCPRegInfo v6_cp_reginfo[] = {
214 /* prefetch by MVA in v6, NOP in v7 */
215 { .name = "MVA_prefetch",
216 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
217 .access = PL1_W, .type = ARM_CP_NOP },
218 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
219 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 220 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 221 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 222 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 223 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31
PM
224 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
226 .resetvalue = 0, },
227 /* Watchpoint Fault Address Register : should actually only be present
228 * for 1136, 1176, 11MPCore.
229 */
230 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
231 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
2771db27
PM
232 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
233 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
234 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
235 REGINFO_SENTINEL
236};
237
200ac0ef
PM
238static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
239 uint64_t *value)
240{
241 /* Generic performance monitor register read function for where
242 * user access may be allowed by PMUSERENR.
243 */
244 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
245 return EXCP_UDEF;
246 }
247 *value = CPREG_FIELD32(env, ri);
248 return 0;
249}
250
251static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
252 uint64_t value)
253{
254 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
255 return EXCP_UDEF;
256 }
257 /* only the DP, X, D and E bits are writable */
258 env->cp15.c9_pmcr &= ~0x39;
259 env->cp15.c9_pmcr |= (value & 0x39);
260 return 0;
261}
262
263static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
264 uint64_t value)
265{
266 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
267 return EXCP_UDEF;
268 }
269 value &= (1 << 31);
270 env->cp15.c9_pmcnten |= value;
271 return 0;
272}
273
274static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
275 uint64_t value)
276{
277 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
278 return EXCP_UDEF;
279 }
280 value &= (1 << 31);
281 env->cp15.c9_pmcnten &= ~value;
282 return 0;
283}
284
285static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
286 uint64_t value)
287{
288 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
289 return EXCP_UDEF;
290 }
291 env->cp15.c9_pmovsr &= ~value;
292 return 0;
293}
294
295static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
297{
298 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
299 return EXCP_UDEF;
300 }
301 env->cp15.c9_pmxevtyper = value & 0xff;
302 return 0;
303}
304
305static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
306 uint64_t value)
307{
308 env->cp15.c9_pmuserenr = value & 1;
309 return 0;
310}
311
312static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
313 uint64_t value)
314{
315 /* We have no event counters so only the C bit can be changed */
316 value &= (1 << 31);
317 env->cp15.c9_pminten |= value;
318 return 0;
319}
320
321static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 uint64_t value)
323{
324 value &= (1 << 31);
325 env->cp15.c9_pminten &= ~value;
326 return 0;
327}
328
776d4e5c
PM
329static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
330 uint64_t *value)
331{
332 ARMCPU *cpu = arm_env_get_cpu(env);
333 *value = cpu->ccsidr[env->cp15.c0_cssel];
334 return 0;
335}
336
337static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
338 uint64_t value)
339{
340 env->cp15.c0_cssel = value & 0xf;
341 return 0;
342}
343
e9aa6c21
PM
344static const ARMCPRegInfo v7_cp_reginfo[] = {
345 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
346 * debug components
347 */
348 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
349 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
091fd17c 350 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
e9aa6c21 351 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7d57f408
PM
352 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
353 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
354 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
355 /* Performance monitors are implementation defined in v7,
356 * but with an ARM recommended set of registers, which we
357 * follow (although we don't actually implement any counters)
358 *
359 * Performance registers fall into three categories:
360 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
361 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
362 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
363 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
364 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
365 */
366 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
367 .access = PL0_RW, .resetvalue = 0,
368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
369 .readfn = pmreg_read, .writefn = pmcntenset_write },
370 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
371 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
372 .readfn = pmreg_read, .writefn = pmcntenclr_write },
373 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
374 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
375 .readfn = pmreg_read, .writefn = pmovsr_write },
376 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
377 * respect PMUSERENR.
378 */
379 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
380 .access = PL0_W, .type = ARM_CP_NOP },
381 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
382 * We choose to RAZ/WI. XXX should respect PMUSERENR.
383 */
384 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
385 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
386 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
387 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
388 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
389 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
390 .access = PL0_RW,
391 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
392 .readfn = pmreg_read, .writefn = pmxevtyper_write },
393 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
394 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
395 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
396 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R | PL1_RW,
398 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
399 .resetvalue = 0,
400 .writefn = pmuserenr_write },
401 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
402 .access = PL1_RW,
403 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
404 .resetvalue = 0,
405 .writefn = pmintenset_write },
406 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
407 .access = PL1_RW,
408 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
409 .resetvalue = 0,
410 .writefn = pmintenclr_write },
2771db27
PM
411 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
413 .resetvalue = 0, },
776d4e5c
PM
414 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
415 .access = PL1_R, .readfn = ccsidr_read },
416 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
418 .writefn = csselr_write, .resetvalue = 0 },
419 /* Auxiliary ID register: this actually has an IMPDEF value but for now
420 * just RAZ for all cores:
421 */
422 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
e9aa6c21
PM
424 REGINFO_SENTINEL
425};
426
c326b979
PM
427static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
428{
429 value &= 1;
430 env->teecr = value;
431 return 0;
432}
433
434static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
435 uint64_t *value)
436{
437 /* This is a helper function because the user access rights
438 * depend on the value of the TEECR.
439 */
440 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
441 return EXCP_UDEF;
442 }
443 *value = env->teehbr;
444 return 0;
445}
446
447static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 uint64_t value)
449{
450 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
451 return EXCP_UDEF;
452 }
453 env->teehbr = value;
454 return 0;
455}
456
457static const ARMCPRegInfo t2ee_cp_reginfo[] = {
458 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
459 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
460 .resetvalue = 0,
461 .writefn = teecr_write },
462 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
463 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
464 .resetvalue = 0,
465 .readfn = teehbr_read, .writefn = teehbr_write },
466 REGINFO_SENTINEL
467};
468
4d31c596
PM
469static const ARMCPRegInfo v6k_cp_reginfo[] = {
470 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
471 .access = PL0_RW,
472 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
473 .resetvalue = 0 },
474 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
475 .access = PL0_R|PL1_W,
476 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
477 .resetvalue = 0 },
478 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
479 .access = PL1_RW,
480 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
481 .resetvalue = 0 },
482 REGINFO_SENTINEL
483};
484
6cc7a3ae
PM
485static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
486 /* Dummy implementation: RAZ/WI the whole crn=14 space */
487 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
488 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
489 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
490 REGINFO_SENTINEL
491};
492
4a501606
PM
493static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
494{
891a2fe7
PM
495 if (arm_feature(env, ARM_FEATURE_LPAE)) {
496 env->cp15.c7_par = value;
497 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4a501606
PM
498 env->cp15.c7_par = value & 0xfffff6ff;
499 } else {
500 env->cp15.c7_par = value & 0xfffff1ff;
501 }
502 return 0;
503}
504
505#ifndef CONFIG_USER_ONLY
506/* get_phys_addr() isn't present for user-mode-only targets */
702a9357
PM
507
508/* Return true if extended addresses are enabled, ie this is an
509 * LPAE implementation and we are using the long-descriptor translation
510 * table format because the TTBCR EAE bit is set.
511 */
512static inline bool extended_addresses_enabled(CPUARMState *env)
513{
514 return arm_feature(env, ARM_FEATURE_LPAE)
515 && (env->cp15.c2_control & (1 << 31));
516}
517
4a501606
PM
518static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
519{
a8170e5e 520 hwaddr phys_addr;
4a501606
PM
521 target_ulong page_size;
522 int prot;
523 int ret, is_user = ri->opc2 & 2;
524 int access_type = ri->opc2 & 1;
525
526 if (ri->opc2 & 4) {
527 /* Other states are only available with TrustZone */
528 return EXCP_UDEF;
529 }
530 ret = get_phys_addr(env, value, access_type, is_user,
531 &phys_addr, &prot, &page_size);
702a9357
PM
532 if (extended_addresses_enabled(env)) {
533 /* ret is a DFSR/IFSR value for the long descriptor
534 * translation table format, but with WnR always clear.
535 * Convert it to a 64-bit PAR.
536 */
537 uint64_t par64 = (1 << 11); /* LPAE bit always set */
538 if (ret == 0) {
539 par64 |= phys_addr & ~0xfffULL;
540 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 541 } else {
702a9357
PM
542 par64 |= 1; /* F */
543 par64 |= (ret & 0x3f) << 1; /* FS */
544 /* Note that S2WLK and FSTAGE are always zero, because we don't
545 * implement virtualization and therefore there can't be a stage 2
546 * fault.
547 */
4a501606 548 }
702a9357
PM
549 env->cp15.c7_par = par64;
550 env->cp15.c7_par_hi = par64 >> 32;
4a501606 551 } else {
702a9357
PM
552 /* ret is a DFSR/IFSR value for the short descriptor
553 * translation table format (with WnR always clear).
554 * Convert it to a 32-bit PAR.
555 */
556 if (ret == 0) {
557 /* We do not set any attribute bits in the PAR */
558 if (page_size == (1 << 24)
559 && arm_feature(env, ARM_FEATURE_V7)) {
560 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
561 } else {
562 env->cp15.c7_par = phys_addr & 0xfffff000;
563 }
564 } else {
565 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
566 ((ret & (12 << 1)) >> 6) |
567 ((ret & 0xf) << 1) | 1;
568 }
569 env->cp15.c7_par_hi = 0;
4a501606
PM
570 }
571 return 0;
572}
573#endif
574
575static const ARMCPRegInfo vapa_cp_reginfo[] = {
576 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
577 .access = PL1_RW, .resetvalue = 0,
578 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
579 .writefn = par_write },
580#ifndef CONFIG_USER_ONLY
581 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
582 .access = PL1_W, .writefn = ats_write },
583#endif
584 REGINFO_SENTINEL
585};
586
18032bec
PM
587/* Return basic MPU access permission bits. */
588static uint32_t simple_mpu_ap_bits(uint32_t val)
589{
590 uint32_t ret;
591 uint32_t mask;
592 int i;
593 ret = 0;
594 mask = 3;
595 for (i = 0; i < 16; i += 2) {
596 ret |= (val >> i) & mask;
597 mask <<= 2;
598 }
599 return ret;
600}
601
602/* Pad basic MPU access permission bits to extended format. */
603static uint32_t extended_mpu_ap_bits(uint32_t val)
604{
605 uint32_t ret;
606 uint32_t mask;
607 int i;
608 ret = 0;
609 mask = 3;
610 for (i = 0; i < 16; i += 2) {
611 ret |= (val & mask) << i;
612 mask <<= 2;
613 }
614 return ret;
615}
616
617static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
619{
620 env->cp15.c5_data = extended_mpu_ap_bits(value);
621 return 0;
622}
623
624static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t *value)
626{
627 *value = simple_mpu_ap_bits(env->cp15.c5_data);
628 return 0;
629}
630
631static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
633{
634 env->cp15.c5_insn = extended_mpu_ap_bits(value);
635 return 0;
636}
637
638static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
639 uint64_t *value)
640{
641 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
642 return 0;
643}
644
06d76f31
PM
645static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
646 uint64_t *value)
647{
599d64f6 648 if (ri->crm >= 8) {
06d76f31
PM
649 return EXCP_UDEF;
650 }
651 *value = env->cp15.c6_region[ri->crm];
652 return 0;
653}
654
655static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
657{
599d64f6 658 if (ri->crm >= 8) {
06d76f31
PM
659 return EXCP_UDEF;
660 }
661 env->cp15.c6_region[ri->crm] = value;
662 return 0;
663}
664
18032bec
PM
665static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
666 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
667 .access = PL1_RW,
668 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
669 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
670 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
671 .access = PL1_RW,
672 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
673 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
674 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
675 .access = PL1_RW,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
677 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
678 .access = PL1_RW,
679 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
ecce5c3c
PM
680 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
681 .access = PL1_RW,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
683 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
684 .access = PL1_RW,
685 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31
PM
686 /* Protection region base and size registers */
687 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
688 .opc2 = CP_ANY, .access = PL1_RW,
689 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
18032bec
PM
690 REGINFO_SENTINEL
691};
692
ecce5c3c
PM
693static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
695{
e42c4db3
PM
696 if (arm_feature(env, ARM_FEATURE_LPAE)) {
697 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
698 /* With LPAE the TTBCR could result in a change of ASID
699 * via the TTBCR.A1 bit, so do a TLB flush.
700 */
701 tlb_flush(env, 1);
702 } else {
703 value &= 7;
704 }
705 /* Note that we always calculate c2_mask and c2_base_mask, but
706 * they are only used for short-descriptor tables (ie if EAE is 0);
707 * for long-descriptor tables the TTBCR fields are used differently
708 * and the c2_mask and c2_base_mask values are meaningless.
709 */
ecce5c3c
PM
710 env->cp15.c2_control = value;
711 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
712 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
713 return 0;
714}
715
716static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
717{
718 env->cp15.c2_base_mask = 0xffffc000u;
719 env->cp15.c2_control = 0;
720 env->cp15.c2_mask = 0;
721}
722
18032bec
PM
723static const ARMCPRegInfo vmsa_cp_reginfo[] = {
724 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
725 .access = PL1_RW,
726 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
727 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
728 .access = PL1_RW,
729 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
ecce5c3c
PM
730 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL1_RW,
732 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
733 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
734 .access = PL1_RW,
81a60ada 735 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
ecce5c3c
PM
736 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
737 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
738 .resetfn = vmsa_ttbcr_reset,
739 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
06d76f31
PM
740 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
741 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
742 .resetvalue = 0, },
18032bec
PM
743 REGINFO_SENTINEL
744};
745
1047b9d7
PM
746static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
747 uint64_t value)
748{
749 env->cp15.c15_ticonfig = value & 0xe7;
750 /* The OS_TYPE bit in this register changes the reported CPUID! */
751 env->cp15.c0_cpuid = (value & (1 << 5)) ?
752 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
753 return 0;
754}
755
756static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
758{
759 env->cp15.c15_threadid = value & 0xffff;
760 return 0;
761}
762
763static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t value)
765{
766 /* Wait-for-interrupt (deprecated) */
767 cpu_interrupt(env, CPU_INTERRUPT_HALT);
768 return 0;
769}
770
c4804214
PM
771static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
773{
774 /* On OMAP there are registers indicating the max/min index of dcache lines
775 * containing a dirty line; cache flush operations have to reset these.
776 */
777 env->cp15.c15_i_max = 0x000;
778 env->cp15.c15_i_min = 0xff0;
779 return 0;
780}
781
18032bec
PM
782static const ARMCPRegInfo omap_cp_reginfo[] = {
783 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
784 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
785 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1047b9d7
PM
786 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
787 .access = PL1_RW, .type = ARM_CP_NOP },
788 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
789 .access = PL1_RW,
790 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
791 .writefn = omap_ticonfig_write },
792 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
793 .access = PL1_RW,
794 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
795 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
796 .access = PL1_RW, .resetvalue = 0xff0,
797 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
798 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
799 .access = PL1_RW,
800 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
801 .writefn = omap_threadid_write },
802 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
803 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
804 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
805 /* TODO: Peripheral port remap register:
806 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
807 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
808 * when MMU is off.
809 */
c4804214
PM
810 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
811 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
812 .writefn = omap_cachemaint_write },
34f90529
PM
813 { .name = "C9", .cp = 15, .crn = 9,
814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
815 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
816 REGINFO_SENTINEL
817};
818
819static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 uint64_t value)
821{
822 value &= 0x3fff;
823 if (env->cp15.c15_cpar != value) {
824 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
825 tb_flush(env);
826 env->cp15.c15_cpar = value;
827 }
828 return 0;
829}
830
831static const ARMCPRegInfo xscale_cp_reginfo[] = {
832 { .name = "XSCALE_CPAR",
833 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
834 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
835 .writefn = xscale_cpar_write, },
2771db27
PM
836 { .name = "XSCALE_AUXCR",
837 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
838 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
839 .resetvalue = 0, },
1047b9d7
PM
840 REGINFO_SENTINEL
841};
842
843static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
844 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
845 * implementation of this implementation-defined space.
846 * Ideally this should eventually disappear in favour of actually
847 * implementing the correct behaviour for all cores.
848 */
849 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
850 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
851 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
18032bec
PM
852 REGINFO_SENTINEL
853};
854
c4804214
PM
855static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
856 /* Cache status: RAZ because we have no cache so it's always clean */
857 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
859 REGINFO_SENTINEL
860};
861
862static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
863 /* We never have a a block transfer operation in progress */
864 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
865 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
30b05bba
PM
866 /* The cache ops themselves: these all NOP for QEMU */
867 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
868 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
869 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
870 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
871 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
872 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
873 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
874 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
875 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
876 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
877 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
878 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
879 REGINFO_SENTINEL
880};
881
882static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
883 /* The cache test-and-clean instructions always return (1 << 30)
884 * to indicate that there are no dirty cache lines.
885 */
886 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
887 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
888 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
889 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
890 REGINFO_SENTINEL
891};
892
34f90529
PM
893static const ARMCPRegInfo strongarm_cp_reginfo[] = {
894 /* Ignore ReadBuffer accesses */
895 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
897 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
898 .resetvalue = 0 },
899 REGINFO_SENTINEL
900};
901
81bdde9d
PM
902static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t *value)
904{
55e5c285
AF
905 CPUState *cs = CPU(arm_env_get_cpu(env));
906 uint32_t mpidr = cs->cpu_index;
81bdde9d
PM
907 /* We don't support setting cluster ID ([8..11])
908 * so these bits always RAZ.
909 */
910 if (arm_feature(env, ARM_FEATURE_V7MP)) {
911 mpidr |= (1 << 31);
912 /* Cores which are uniprocessor (non-coherent)
913 * but still implement the MP extensions set
914 * bit 30. (For instance, A9UP.) However we do
915 * not currently model any of those cores.
916 */
917 }
918 *value = mpidr;
919 return 0;
920}
921
922static const ARMCPRegInfo mpidr_cp_reginfo[] = {
923 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
924 .access = PL1_R, .readfn = mpidr_read },
925 REGINFO_SENTINEL
926};
927
891a2fe7
PM
928static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
929{
930 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
931 return 0;
932}
933
934static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
935{
936 env->cp15.c7_par_hi = value >> 32;
937 env->cp15.c7_par = value;
938 return 0;
939}
940
941static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
942{
943 env->cp15.c7_par_hi = 0;
944 env->cp15.c7_par = 0;
945}
946
947static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
948 uint64_t *value)
949{
950 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
951 return 0;
952}
953
954static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
955 uint64_t value)
956{
957 env->cp15.c2_base0_hi = value >> 32;
958 env->cp15.c2_base0 = value;
959 /* Writes to the 64 bit format TTBRs may change the ASID */
960 tlb_flush(env, 1);
961 return 0;
962}
963
964static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
965{
966 env->cp15.c2_base0_hi = 0;
967 env->cp15.c2_base0 = 0;
968}
969
970static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
971 uint64_t *value)
972{
973 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
974 return 0;
975}
976
977static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
978 uint64_t value)
979{
980 env->cp15.c2_base1_hi = value >> 32;
981 env->cp15.c2_base1 = value;
982 return 0;
983}
984
985static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
986{
987 env->cp15.c2_base1_hi = 0;
988 env->cp15.c2_base1 = 0;
989}
990
7ac681cf 991static const ARMCPRegInfo lpae_cp_reginfo[] = {
b90372ad 992 /* NOP AMAIR0/1: the override is because these clash with the rather
7ac681cf
PM
993 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
994 */
995 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
996 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
997 .resetvalue = 0 },
998 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
999 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1000 .resetvalue = 0 },
f9fc619a
PM
1001 /* 64 bit access versions of the (dummy) debug registers */
1002 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1003 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1004 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1005 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
891a2fe7
PM
1006 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1007 .access = PL1_RW, .type = ARM_CP_64BIT,
1008 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1009 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1010 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1011 .writefn = ttbr064_write, .resetfn = ttbr064_reset },
1012 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1013 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1014 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
7ac681cf
PM
1015 REGINFO_SENTINEL
1016};
1017
2771db27
PM
1018static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1019{
1020 env->cp15.c1_sys = value;
1021 /* ??? Lots of these bits are not implemented. */
1022 /* This may enable/disable the MMU, so do a TLB flush. */
1023 tlb_flush(env, 1);
1024 return 0;
1025}
1026
2ceb98c0
PM
1027void register_cp_regs_for_features(ARMCPU *cpu)
1028{
1029 /* Register all the coprocessor registers based on feature bits */
1030 CPUARMState *env = &cpu->env;
1031 if (arm_feature(env, ARM_FEATURE_M)) {
1032 /* M profile has no coprocessor registers */
1033 return;
1034 }
1035
e9aa6c21 1036 define_arm_cp_regs(cpu, cp_reginfo);
7d57f408 1037 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
1038 /* The ID registers all have impdef reset values */
1039 ARMCPRegInfo v6_idregs[] = {
1040 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1041 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1042 .resetvalue = cpu->id_pfr0 },
1043 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1044 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1045 .resetvalue = cpu->id_pfr1 },
1046 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1047 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1048 .resetvalue = cpu->id_dfr0 },
1049 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1050 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1051 .resetvalue = cpu->id_afr0 },
1052 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1053 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1054 .resetvalue = cpu->id_mmfr0 },
1055 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1056 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1057 .resetvalue = cpu->id_mmfr1 },
1058 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1059 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1060 .resetvalue = cpu->id_mmfr2 },
1061 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1062 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1063 .resetvalue = cpu->id_mmfr3 },
1064 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1065 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1066 .resetvalue = cpu->id_isar0 },
1067 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1068 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1069 .resetvalue = cpu->id_isar1 },
1070 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1071 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1072 .resetvalue = cpu->id_isar2 },
1073 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1074 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1075 .resetvalue = cpu->id_isar3 },
1076 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1077 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1078 .resetvalue = cpu->id_isar4 },
1079 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1080 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1081 .resetvalue = cpu->id_isar5 },
1082 /* 6..7 are as yet unallocated and must RAZ */
1083 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1084 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1085 .resetvalue = 0 },
1086 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1087 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1088 .resetvalue = 0 },
1089 REGINFO_SENTINEL
1090 };
1091 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
1092 define_arm_cp_regs(cpu, v6_cp_reginfo);
1093 } else {
1094 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1095 }
4d31c596
PM
1096 if (arm_feature(env, ARM_FEATURE_V6K)) {
1097 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1098 }
e9aa6c21 1099 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef
PM
1100 /* v7 performance monitor control register: same implementor
1101 * field as main ID register, and we implement no event counters.
1102 */
1103 ARMCPRegInfo pmcr = {
1104 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1105 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1107 .readfn = pmreg_read, .writefn = pmcr_write
1108 };
776d4e5c
PM
1109 ARMCPRegInfo clidr = {
1110 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1111 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1112 };
200ac0ef 1113 define_one_arm_cp_reg(cpu, &pmcr);
776d4e5c 1114 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 1115 define_arm_cp_regs(cpu, v7_cp_reginfo);
7d57f408
PM
1116 } else {
1117 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 1118 }
18032bec
PM
1119 if (arm_feature(env, ARM_FEATURE_MPU)) {
1120 /* These are the MPU registers prior to PMSAv6. Any new
1121 * PMSA core later than the ARM946 will require that we
1122 * implement the PMSAv6 or PMSAv7 registers, which are
1123 * completely different.
1124 */
1125 assert(!arm_feature(env, ARM_FEATURE_V6));
1126 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1127 } else {
1128 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1129 }
c326b979
PM
1130 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1131 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1132 }
6cc7a3ae
PM
1133 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1134 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1135 }
4a501606
PM
1136 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1137 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1138 }
c4804214
PM
1139 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1140 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1141 }
1142 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1143 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1144 }
1145 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1146 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1147 }
18032bec
PM
1148 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1149 define_arm_cp_regs(cpu, omap_cp_reginfo);
1150 }
34f90529
PM
1151 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1152 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1153 }
1047b9d7
PM
1154 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1155 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1156 }
1157 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1158 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1159 }
81bdde9d
PM
1160 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1161 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1162 }
7ac681cf
PM
1163 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1164 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1165 }
7884849c
PM
1166 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1167 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1168 * be read-only (ie write causes UNDEF exception).
1169 */
1170 {
1171 ARMCPRegInfo id_cp_reginfo[] = {
1172 /* Note that the MIDR isn't a simple constant register because
1173 * of the TI925 behaviour where writes to another register can
1174 * cause the MIDR value to change.
1175 */
1176 { .name = "MIDR",
1177 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1178 .access = PL1_R, .resetvalue = cpu->midr,
1179 .writefn = arm_cp_write_ignore,
1180 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1181 { .name = "CTR",
1182 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1184 { .name = "TCMTR",
1185 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1187 { .name = "TLBTR",
1188 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1190 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1191 { .name = "DUMMY",
1192 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1193 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1194 { .name = "DUMMY",
1195 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1196 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1197 { .name = "DUMMY",
1198 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1200 { .name = "DUMMY",
1201 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1202 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1203 { .name = "DUMMY",
1204 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1205 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1206 REGINFO_SENTINEL
1207 };
1208 ARMCPRegInfo crn0_wi_reginfo = {
1209 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1210 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1211 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1212 };
1213 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1214 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1215 ARMCPRegInfo *r;
1216 /* Register the blanket "writes ignored" value first to cover the
1217 * whole space. Then define the specific ID registers, but update
1218 * their access field to allow write access, so that they ignore
1219 * writes rather than causing them to UNDEF.
1220 */
1221 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1222 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1223 r->access = PL1_RW;
1224 define_one_arm_cp_reg(cpu, r);
1225 }
1226 } else {
1227 /* Just register the standard ID registers (read-only, meaning
1228 * that writes will UNDEF).
1229 */
1230 define_arm_cp_regs(cpu, id_cp_reginfo);
1231 }
1232 }
1233
2771db27
PM
1234 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1235 ARMCPRegInfo auxcr = {
1236 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1237 .access = PL1_RW, .type = ARM_CP_CONST,
1238 .resetvalue = cpu->reset_auxcr
1239 };
1240 define_one_arm_cp_reg(cpu, &auxcr);
1241 }
1242
1243 /* Generic registers whose values depend on the implementation */
1244 {
1245 ARMCPRegInfo sctlr = {
1246 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1247 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1248 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1249 };
1250 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1251 /* Normally we would always end the TB on an SCTLR write, but Linux
1252 * arch/arm/mach-pxa/sleep.S expects two instructions following
1253 * an MMU enable to execute from cache. Imitate this behaviour.
1254 */
1255 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1256 }
1257 define_one_arm_cp_reg(cpu, &sctlr);
1258 }
2ceb98c0
PM
1259}
1260
778c3a06 1261ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 1262{
dec9c2d4 1263 ARMCPU *cpu;
40f137e1 1264 CPUARMState *env;
5900d6b2 1265 ObjectClass *oc;
b26eefb6 1266 static int inited = 0;
40f137e1 1267
5900d6b2
AF
1268 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1269 if (!oc) {
aaed909a 1270 return NULL;
777dc784 1271 }
5900d6b2 1272 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
dec9c2d4 1273 env = &cpu->env;
777dc784 1274 env->cpu_model_str = cpu_model;
581be094 1275 arm_cpu_realize(cpu);
777dc784 1276
f4fc247b 1277 if (tcg_enabled() && !inited) {
b26eefb6
PB
1278 inited = 1;
1279 arm_translate_init();
1280 }
1281
df90dadb 1282 cpu_reset(CPU(cpu));
56aebc89
PB
1283 if (arm_feature(env, ARM_FEATURE_NEON)) {
1284 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1285 51, "arm-neon.xml", 0);
1286 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1287 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1288 35, "arm-vfp3.xml", 0);
1289 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1290 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1291 19, "arm-vfp.xml", 0);
1292 }
0bf46a40 1293 qemu_init_vcpu(env);
778c3a06 1294 return cpu;
40f137e1
PB
1295}
1296
777dc784
PM
1297/* Sort alphabetically by type name, except for "any". */
1298static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 1299{
777dc784
PM
1300 ObjectClass *class_a = (ObjectClass *)a;
1301 ObjectClass *class_b = (ObjectClass *)b;
1302 const char *name_a, *name_b;
5adb4839 1303
777dc784
PM
1304 name_a = object_class_get_name(class_a);
1305 name_b = object_class_get_name(class_b);
51492fd1 1306 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 1307 return 1;
51492fd1 1308 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
1309 return -1;
1310 } else {
1311 return strcmp(name_a, name_b);
5adb4839
PB
1312 }
1313}
1314
777dc784 1315static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 1316{
777dc784 1317 ObjectClass *oc = data;
92a31361 1318 CPUListState *s = user_data;
51492fd1
AF
1319 const char *typename;
1320 char *name;
3371d272 1321
51492fd1
AF
1322 typename = object_class_get_name(oc);
1323 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 1324 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
1325 name);
1326 g_free(name);
777dc784
PM
1327}
1328
1329void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1330{
92a31361 1331 CPUListState s = {
777dc784
PM
1332 .file = f,
1333 .cpu_fprintf = cpu_fprintf,
1334 };
1335 GSList *list;
1336
1337 list = object_class_get_list(TYPE_ARM_CPU, false);
1338 list = g_slist_sort(list, arm_cpu_list_compare);
1339 (*cpu_fprintf)(f, "Available CPUs:\n");
1340 g_slist_foreach(list, arm_cpu_list_entry, &s);
1341 g_slist_free(list);
40f137e1
PB
1342}
1343
4b6a83fb
PM
1344void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1345 const ARMCPRegInfo *r, void *opaque)
1346{
1347 /* Define implementations of coprocessor registers.
1348 * We store these in a hashtable because typically
1349 * there are less than 150 registers in a space which
1350 * is 16*16*16*8*8 = 262144 in size.
1351 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1352 * If a register is defined twice then the second definition is
1353 * used, so this can be used to define some generic registers and
1354 * then override them with implementation specific variations.
1355 * At least one of the original and the second definition should
1356 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1357 * against accidental use.
1358 */
1359 int crm, opc1, opc2;
1360 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1361 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1362 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1363 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1364 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1365 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1366 /* 64 bit registers have only CRm and Opc1 fields */
1367 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1368 /* Check that the register definition has enough info to handle
1369 * reads and writes if they are permitted.
1370 */
1371 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1372 if (r->access & PL3_R) {
1373 assert(r->fieldoffset || r->readfn);
1374 }
1375 if (r->access & PL3_W) {
1376 assert(r->fieldoffset || r->writefn);
1377 }
1378 }
1379 /* Bad type field probably means missing sentinel at end of reg list */
1380 assert(cptype_valid(r->type));
1381 for (crm = crmmin; crm <= crmmax; crm++) {
1382 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1383 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1384 uint32_t *key = g_new(uint32_t, 1);
1385 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1386 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1387 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1388 r2->opaque = opaque;
1389 /* Make sure reginfo passed to helpers for wildcarded regs
1390 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1391 */
1392 r2->crm = crm;
1393 r2->opc1 = opc1;
1394 r2->opc2 = opc2;
1395 /* Overriding of an existing definition must be explicitly
1396 * requested.
1397 */
1398 if (!(r->type & ARM_CP_OVERRIDE)) {
1399 ARMCPRegInfo *oldreg;
1400 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1401 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1402 fprintf(stderr, "Register redefined: cp=%d %d bit "
1403 "crn=%d crm=%d opc1=%d opc2=%d, "
1404 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1405 r2->crn, r2->crm, r2->opc1, r2->opc2,
1406 oldreg->name, r2->name);
1407 assert(0);
1408 }
1409 }
1410 g_hash_table_insert(cpu->cp_regs, key, r2);
1411 }
1412 }
1413 }
1414}
1415
1416void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1417 const ARMCPRegInfo *regs, void *opaque)
1418{
1419 /* Define a whole list of registers */
1420 const ARMCPRegInfo *r;
1421 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1422 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1423 }
1424}
1425
1426const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1427{
1428 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1429}
1430
1431int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1432 uint64_t value)
1433{
1434 /* Helper coprocessor write function for write-ignore registers */
1435 return 0;
1436}
1437
1438int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1439{
1440 /* Helper coprocessor write function for read-as-zero registers */
1441 *value = 0;
1442 return 0;
1443}
1444
0ecb72a5 1445static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
1446{
1447 /* Return true if it is not valid for us to switch to
1448 * this CPU mode (ie all the UNPREDICTABLE cases in
1449 * the ARM ARM CPSRWriteByInstr pseudocode).
1450 */
1451 switch (mode) {
1452 case ARM_CPU_MODE_USR:
1453 case ARM_CPU_MODE_SYS:
1454 case ARM_CPU_MODE_SVC:
1455 case ARM_CPU_MODE_ABT:
1456 case ARM_CPU_MODE_UND:
1457 case ARM_CPU_MODE_IRQ:
1458 case ARM_CPU_MODE_FIQ:
1459 return 0;
1460 default:
1461 return 1;
1462 }
1463}
1464
2f4a40e5
AZ
1465uint32_t cpsr_read(CPUARMState *env)
1466{
1467 int ZF;
6fbe23d5
PB
1468 ZF = (env->ZF == 0);
1469 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
1470 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1471 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1472 | ((env->condexec_bits & 0xfc) << 8)
1473 | (env->GE << 16);
1474}
1475
1476void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1477{
2f4a40e5 1478 if (mask & CPSR_NZCV) {
6fbe23d5
PB
1479 env->ZF = (~val) & CPSR_Z;
1480 env->NF = val;
2f4a40e5
AZ
1481 env->CF = (val >> 29) & 1;
1482 env->VF = (val << 3) & 0x80000000;
1483 }
1484 if (mask & CPSR_Q)
1485 env->QF = ((val & CPSR_Q) != 0);
1486 if (mask & CPSR_T)
1487 env->thumb = ((val & CPSR_T) != 0);
1488 if (mask & CPSR_IT_0_1) {
1489 env->condexec_bits &= ~3;
1490 env->condexec_bits |= (val >> 25) & 3;
1491 }
1492 if (mask & CPSR_IT_2_7) {
1493 env->condexec_bits &= 3;
1494 env->condexec_bits |= (val >> 8) & 0xfc;
1495 }
1496 if (mask & CPSR_GE) {
1497 env->GE = (val >> 16) & 0xf;
1498 }
1499
1500 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
37064a8b
PM
1501 if (bad_mode_switch(env, val & CPSR_M)) {
1502 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1503 * We choose to ignore the attempt and leave the CPSR M field
1504 * untouched.
1505 */
1506 mask &= ~CPSR_M;
1507 } else {
1508 switch_mode(env, val & CPSR_M);
1509 }
2f4a40e5
AZ
1510 }
1511 mask &= ~CACHED_CPSR_BITS;
1512 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1513}
1514
b26eefb6
PB
1515/* Sign/zero extend */
1516uint32_t HELPER(sxtb16)(uint32_t x)
1517{
1518 uint32_t res;
1519 res = (uint16_t)(int8_t)x;
1520 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1521 return res;
1522}
1523
1524uint32_t HELPER(uxtb16)(uint32_t x)
1525{
1526 uint32_t res;
1527 res = (uint16_t)(uint8_t)x;
1528 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1529 return res;
1530}
1531
f51bbbfe
PB
1532uint32_t HELPER(clz)(uint32_t x)
1533{
7bbcb0af 1534 return clz32(x);
f51bbbfe
PB
1535}
1536
3670669c
PB
1537int32_t HELPER(sdiv)(int32_t num, int32_t den)
1538{
1539 if (den == 0)
1540 return 0;
686eeb93
AJ
1541 if (num == INT_MIN && den == -1)
1542 return INT_MIN;
3670669c
PB
1543 return num / den;
1544}
1545
1546uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1547{
1548 if (den == 0)
1549 return 0;
1550 return num / den;
1551}
1552
1553uint32_t HELPER(rbit)(uint32_t x)
1554{
1555 x = ((x & 0xff000000) >> 24)
1556 | ((x & 0x00ff0000) >> 8)
1557 | ((x & 0x0000ff00) << 8)
1558 | ((x & 0x000000ff) << 24);
1559 x = ((x & 0xf0f0f0f0) >> 4)
1560 | ((x & 0x0f0f0f0f) << 4);
1561 x = ((x & 0x88888888) >> 3)
1562 | ((x & 0x44444444) >> 1)
1563 | ((x & 0x22222222) << 1)
1564 | ((x & 0x11111111) << 3);
1565 return x;
1566}
1567
5fafdf24 1568#if defined(CONFIG_USER_ONLY)
b5ff1b31 1569
0ecb72a5 1570void do_interrupt (CPUARMState *env)
b5ff1b31
FB
1571{
1572 env->exception_index = -1;
1573}
1574
0ecb72a5 1575int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 1576 int mmu_idx)
b5ff1b31
FB
1577{
1578 if (rw == 2) {
1579 env->exception_index = EXCP_PREFETCH_ABORT;
1580 env->cp15.c6_insn = address;
1581 } else {
1582 env->exception_index = EXCP_DATA_ABORT;
1583 env->cp15.c6_data = address;
1584 }
1585 return 1;
1586}
1587
9ee6e8bb 1588/* These should probably raise undefined insn exceptions. */
0ecb72a5 1589void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
1590{
1591 cpu_abort(env, "v7m_mrs %d\n", reg);
1592}
1593
0ecb72a5 1594uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
1595{
1596 cpu_abort(env, "v7m_mrs %d\n", reg);
1597 return 0;
1598}
1599
0ecb72a5 1600void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
1601{
1602 if (mode != ARM_CPU_MODE_USR)
1603 cpu_abort(env, "Tried to switch out of user mode\n");
1604}
1605
0ecb72a5 1606void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
1607{
1608 cpu_abort(env, "banked r13 write\n");
1609}
1610
0ecb72a5 1611uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb
PB
1612{
1613 cpu_abort(env, "banked r13 read\n");
1614 return 0;
1615}
1616
b5ff1b31
FB
1617#else
1618
1619/* Map CPU modes onto saved register banks. */
0ecb72a5 1620static inline int bank_number(CPUARMState *env, int mode)
b5ff1b31
FB
1621{
1622 switch (mode) {
1623 case ARM_CPU_MODE_USR:
1624 case ARM_CPU_MODE_SYS:
1625 return 0;
1626 case ARM_CPU_MODE_SVC:
1627 return 1;
1628 case ARM_CPU_MODE_ABT:
1629 return 2;
1630 case ARM_CPU_MODE_UND:
1631 return 3;
1632 case ARM_CPU_MODE_IRQ:
1633 return 4;
1634 case ARM_CPU_MODE_FIQ:
1635 return 5;
1636 }
1b9e01c1 1637 cpu_abort(env, "Bad mode %x\n", mode);
b5ff1b31
FB
1638 return -1;
1639}
1640
0ecb72a5 1641void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
1642{
1643 int old_mode;
1644 int i;
1645
1646 old_mode = env->uncached_cpsr & CPSR_M;
1647 if (mode == old_mode)
1648 return;
1649
1650 if (old_mode == ARM_CPU_MODE_FIQ) {
1651 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 1652 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
1653 } else if (mode == ARM_CPU_MODE_FIQ) {
1654 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 1655 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
1656 }
1657
1b9e01c1 1658 i = bank_number(env, old_mode);
b5ff1b31
FB
1659 env->banked_r13[i] = env->regs[13];
1660 env->banked_r14[i] = env->regs[14];
1661 env->banked_spsr[i] = env->spsr;
1662
1b9e01c1 1663 i = bank_number(env, mode);
b5ff1b31
FB
1664 env->regs[13] = env->banked_r13[i];
1665 env->regs[14] = env->banked_r14[i];
1666 env->spsr = env->banked_spsr[i];
1667}
1668
9ee6e8bb
PB
1669static void v7m_push(CPUARMState *env, uint32_t val)
1670{
1671 env->regs[13] -= 4;
1672 stl_phys(env->regs[13], val);
1673}
1674
1675static uint32_t v7m_pop(CPUARMState *env)
1676{
1677 uint32_t val;
1678 val = ldl_phys(env->regs[13]);
1679 env->regs[13] += 4;
1680 return val;
1681}
1682
1683/* Switch to V7M main or process stack pointer. */
1684static void switch_v7m_sp(CPUARMState *env, int process)
1685{
1686 uint32_t tmp;
1687 if (env->v7m.current_sp != process) {
1688 tmp = env->v7m.other_sp;
1689 env->v7m.other_sp = env->regs[13];
1690 env->regs[13] = tmp;
1691 env->v7m.current_sp = process;
1692 }
1693}
1694
1695static void do_v7m_exception_exit(CPUARMState *env)
1696{
1697 uint32_t type;
1698 uint32_t xpsr;
1699
1700 type = env->regs[15];
1701 if (env->v7m.exception != 0)
983fe826 1702 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
1703
1704 /* Switch to the target stack. */
1705 switch_v7m_sp(env, (type & 4) != 0);
1706 /* Pop registers. */
1707 env->regs[0] = v7m_pop(env);
1708 env->regs[1] = v7m_pop(env);
1709 env->regs[2] = v7m_pop(env);
1710 env->regs[3] = v7m_pop(env);
1711 env->regs[12] = v7m_pop(env);
1712 env->regs[14] = v7m_pop(env);
1713 env->regs[15] = v7m_pop(env);
1714 xpsr = v7m_pop(env);
1715 xpsr_write(env, xpsr, 0xfffffdff);
1716 /* Undo stack alignment. */
1717 if (xpsr & 0x200)
1718 env->regs[13] |= 4;
1719 /* ??? The exception return type specifies Thread/Handler mode. However
1720 this is also implied by the xPSR value. Not sure what to do
1721 if there is a mismatch. */
1722 /* ??? Likewise for mismatches between the CONTROL register and the stack
1723 pointer. */
1724}
1725
2b3ea315 1726static void do_interrupt_v7m(CPUARMState *env)
9ee6e8bb
PB
1727{
1728 uint32_t xpsr = xpsr_read(env);
1729 uint32_t lr;
1730 uint32_t addr;
1731
1732 lr = 0xfffffff1;
1733 if (env->v7m.current_sp)
1734 lr |= 4;
1735 if (env->v7m.exception == 0)
1736 lr |= 8;
1737
1738 /* For exceptions we just mark as pending on the NVIC, and let that
1739 handle it. */
1740 /* TODO: Need to escalate if the current priority is higher than the
1741 one we're raising. */
1742 switch (env->exception_index) {
1743 case EXCP_UDEF:
983fe826 1744 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
1745 return;
1746 case EXCP_SWI:
314e2296 1747 /* The PC already points to the next instruction. */
983fe826 1748 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
1749 return;
1750 case EXCP_PREFETCH_ABORT:
1751 case EXCP_DATA_ABORT:
983fe826 1752 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
1753 return;
1754 case EXCP_BKPT:
2ad207d4
PB
1755 if (semihosting_enabled) {
1756 int nr;
d31dd73e 1757 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
1758 if (nr == 0xab) {
1759 env->regs[15] += 2;
1760 env->regs[0] = do_arm_semihosting(env);
1761 return;
1762 }
1763 }
983fe826 1764 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
1765 return;
1766 case EXCP_IRQ:
983fe826 1767 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
1768 break;
1769 case EXCP_EXCEPTION_EXIT:
1770 do_v7m_exception_exit(env);
1771 return;
1772 default:
1773 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1774 return; /* Never happens. Keep compiler happy. */
1775 }
1776
1777 /* Align stack pointer. */
1778 /* ??? Should only do this if Configuration Control Register
1779 STACKALIGN bit is set. */
1780 if (env->regs[13] & 4) {
ab19b0ec 1781 env->regs[13] -= 4;
9ee6e8bb
PB
1782 xpsr |= 0x200;
1783 }
6c95676b 1784 /* Switch to the handler mode. */
9ee6e8bb
PB
1785 v7m_push(env, xpsr);
1786 v7m_push(env, env->regs[15]);
1787 v7m_push(env, env->regs[14]);
1788 v7m_push(env, env->regs[12]);
1789 v7m_push(env, env->regs[3]);
1790 v7m_push(env, env->regs[2]);
1791 v7m_push(env, env->regs[1]);
1792 v7m_push(env, env->regs[0]);
1793 switch_v7m_sp(env, 0);
c98d174c
PM
1794 /* Clear IT bits */
1795 env->condexec_bits = 0;
9ee6e8bb
PB
1796 env->regs[14] = lr;
1797 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1798 env->regs[15] = addr & 0xfffffffe;
1799 env->thumb = addr & 1;
1800}
1801
b5ff1b31
FB
1802/* Handle a CPU exception. */
1803void do_interrupt(CPUARMState *env)
1804{
1805 uint32_t addr;
1806 uint32_t mask;
1807 int new_mode;
1808 uint32_t offset;
1809
9ee6e8bb
PB
1810 if (IS_M(env)) {
1811 do_interrupt_v7m(env);
1812 return;
1813 }
b5ff1b31
FB
1814 /* TODO: Vectored interrupt controller. */
1815 switch (env->exception_index) {
1816 case EXCP_UDEF:
1817 new_mode = ARM_CPU_MODE_UND;
1818 addr = 0x04;
1819 mask = CPSR_I;
1820 if (env->thumb)
1821 offset = 2;
1822 else
1823 offset = 4;
1824 break;
1825 case EXCP_SWI:
8e71621f
PB
1826 if (semihosting_enabled) {
1827 /* Check for semihosting interrupt. */
1828 if (env->thumb) {
d31dd73e
BS
1829 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
1830 & 0xff;
8e71621f 1831 } else {
d31dd73e 1832 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
d8fd2954 1833 & 0xffffff;
8e71621f
PB
1834 }
1835 /* Only intercept calls from privileged modes, to provide some
1836 semblance of security. */
1837 if (((mask == 0x123456 && !env->thumb)
1838 || (mask == 0xab && env->thumb))
1839 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1840 env->regs[0] = do_arm_semihosting(env);
1841 return;
1842 }
1843 }
b5ff1b31
FB
1844 new_mode = ARM_CPU_MODE_SVC;
1845 addr = 0x08;
1846 mask = CPSR_I;
601d70b9 1847 /* The PC already points to the next instruction. */
b5ff1b31
FB
1848 offset = 0;
1849 break;
06c949e6 1850 case EXCP_BKPT:
9ee6e8bb 1851 /* See if this is a semihosting syscall. */
2ad207d4 1852 if (env->thumb && semihosting_enabled) {
d31dd73e 1853 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
9ee6e8bb
PB
1854 if (mask == 0xab
1855 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1856 env->regs[15] += 2;
1857 env->regs[0] = do_arm_semihosting(env);
1858 return;
1859 }
1860 }
81c05daf 1861 env->cp15.c5_insn = 2;
9ee6e8bb
PB
1862 /* Fall through to prefetch abort. */
1863 case EXCP_PREFETCH_ABORT:
b5ff1b31
FB
1864 new_mode = ARM_CPU_MODE_ABT;
1865 addr = 0x0c;
1866 mask = CPSR_A | CPSR_I;
1867 offset = 4;
1868 break;
1869 case EXCP_DATA_ABORT:
1870 new_mode = ARM_CPU_MODE_ABT;
1871 addr = 0x10;
1872 mask = CPSR_A | CPSR_I;
1873 offset = 8;
1874 break;
1875 case EXCP_IRQ:
1876 new_mode = ARM_CPU_MODE_IRQ;
1877 addr = 0x18;
1878 /* Disable IRQ and imprecise data aborts. */
1879 mask = CPSR_A | CPSR_I;
1880 offset = 4;
1881 break;
1882 case EXCP_FIQ:
1883 new_mode = ARM_CPU_MODE_FIQ;
1884 addr = 0x1c;
1885 /* Disable FIQ, IRQ and imprecise data aborts. */
1886 mask = CPSR_A | CPSR_I | CPSR_F;
1887 offset = 4;
1888 break;
1889 default:
1890 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1891 return; /* Never happens. Keep compiler happy. */
1892 }
1893 /* High vectors. */
1894 if (env->cp15.c1_sys & (1 << 13)) {
1895 addr += 0xffff0000;
1896 }
1897 switch_mode (env, new_mode);
1898 env->spsr = cpsr_read(env);
9ee6e8bb
PB
1899 /* Clear IT bits. */
1900 env->condexec_bits = 0;
30a8cac1 1901 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 1902 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
b5ff1b31 1903 env->uncached_cpsr |= mask;
be5e7a76
DES
1904 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1905 * and we should just guard the thumb mode on V4 */
1906 if (arm_feature(env, ARM_FEATURE_V4T)) {
1907 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1908 }
b5ff1b31
FB
1909 env->regs[14] = env->regs[15] + offset;
1910 env->regs[15] = addr;
1911 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1912}
1913
1914/* Check section/page access permissions.
1915 Returns the page protection flags, or zero if the access is not
1916 permitted. */
0ecb72a5 1917static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
dd4ebc2e 1918 int access_type, int is_user)
b5ff1b31 1919{
9ee6e8bb
PB
1920 int prot_ro;
1921
dd4ebc2e 1922 if (domain_prot == 3) {
b5ff1b31 1923 return PAGE_READ | PAGE_WRITE;
dd4ebc2e 1924 }
b5ff1b31 1925
9ee6e8bb
PB
1926 if (access_type == 1)
1927 prot_ro = 0;
1928 else
1929 prot_ro = PAGE_READ;
1930
b5ff1b31
FB
1931 switch (ap) {
1932 case 0:
78600320 1933 if (access_type == 1)
b5ff1b31
FB
1934 return 0;
1935 switch ((env->cp15.c1_sys >> 8) & 3) {
1936 case 1:
1937 return is_user ? 0 : PAGE_READ;
1938 case 2:
1939 return PAGE_READ;
1940 default:
1941 return 0;
1942 }
1943 case 1:
1944 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1945 case 2:
1946 if (is_user)
9ee6e8bb 1947 return prot_ro;
b5ff1b31
FB
1948 else
1949 return PAGE_READ | PAGE_WRITE;
1950 case 3:
1951 return PAGE_READ | PAGE_WRITE;
d4934d18 1952 case 4: /* Reserved. */
9ee6e8bb
PB
1953 return 0;
1954 case 5:
1955 return is_user ? 0 : prot_ro;
1956 case 6:
1957 return prot_ro;
d4934d18 1958 case 7:
0ab06d83 1959 if (!arm_feature (env, ARM_FEATURE_V6K))
d4934d18
PB
1960 return 0;
1961 return prot_ro;
b5ff1b31
FB
1962 default:
1963 abort();
1964 }
1965}
1966
0ecb72a5 1967static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
b2fa1797
PB
1968{
1969 uint32_t table;
1970
1971 if (address & env->cp15.c2_mask)
1972 table = env->cp15.c2_base1 & 0xffffc000;
1973 else
1974 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1975
1976 table |= (address >> 18) & 0x3ffc;
1977 return table;
1978}
1979
0ecb72a5 1980static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
a8170e5e 1981 int is_user, hwaddr *phys_ptr,
77a71dd1 1982 int *prot, target_ulong *page_size)
b5ff1b31
FB
1983{
1984 int code;
1985 uint32_t table;
1986 uint32_t desc;
1987 int type;
1988 int ap;
1989 int domain;
dd4ebc2e 1990 int domain_prot;
a8170e5e 1991 hwaddr phys_addr;
b5ff1b31 1992
9ee6e8bb
PB
1993 /* Pagetable walk. */
1994 /* Lookup l1 descriptor. */
b2fa1797 1995 table = get_level1_table_address(env, address);
9ee6e8bb
PB
1996 desc = ldl_phys(table);
1997 type = (desc & 3);
dd4ebc2e
JCD
1998 domain = (desc >> 5) & 0x0f;
1999 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
9ee6e8bb 2000 if (type == 0) {
601d70b9 2001 /* Section translation fault. */
9ee6e8bb
PB
2002 code = 5;
2003 goto do_fault;
2004 }
dd4ebc2e 2005 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
2006 if (type == 2)
2007 code = 9; /* Section domain fault. */
2008 else
2009 code = 11; /* Page domain fault. */
2010 goto do_fault;
2011 }
2012 if (type == 2) {
2013 /* 1Mb section. */
2014 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2015 ap = (desc >> 10) & 3;
2016 code = 13;
d4c430a8 2017 *page_size = 1024 * 1024;
9ee6e8bb
PB
2018 } else {
2019 /* Lookup l2 entry. */
2020 if (type == 1) {
2021 /* Coarse pagetable. */
2022 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2023 } else {
2024 /* Fine pagetable. */
2025 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2026 }
2027 desc = ldl_phys(table);
2028 switch (desc & 3) {
2029 case 0: /* Page translation fault. */
2030 code = 7;
2031 goto do_fault;
2032 case 1: /* 64k page. */
2033 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2034 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 2035 *page_size = 0x10000;
ce819861 2036 break;
9ee6e8bb
PB
2037 case 2: /* 4k page. */
2038 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2039 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 2040 *page_size = 0x1000;
ce819861 2041 break;
9ee6e8bb
PB
2042 case 3: /* 1k page. */
2043 if (type == 1) {
2044 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2045 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2046 } else {
2047 /* Page translation fault. */
2048 code = 7;
2049 goto do_fault;
2050 }
2051 } else {
2052 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2053 }
2054 ap = (desc >> 4) & 3;
d4c430a8 2055 *page_size = 0x400;
ce819861
PB
2056 break;
2057 default:
9ee6e8bb
PB
2058 /* Never happens, but compiler isn't smart enough to tell. */
2059 abort();
ce819861 2060 }
9ee6e8bb
PB
2061 code = 15;
2062 }
dd4ebc2e 2063 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
9ee6e8bb
PB
2064 if (!*prot) {
2065 /* Access permission fault. */
2066 goto do_fault;
2067 }
3ad493fc 2068 *prot |= PAGE_EXEC;
9ee6e8bb
PB
2069 *phys_ptr = phys_addr;
2070 return 0;
2071do_fault:
2072 return code | (domain << 4);
2073}
2074
0ecb72a5 2075static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
a8170e5e 2076 int is_user, hwaddr *phys_ptr,
77a71dd1 2077 int *prot, target_ulong *page_size)
9ee6e8bb
PB
2078{
2079 int code;
2080 uint32_t table;
2081 uint32_t desc;
2082 uint32_t xn;
de9b05b8 2083 uint32_t pxn = 0;
9ee6e8bb
PB
2084 int type;
2085 int ap;
de9b05b8 2086 int domain = 0;
dd4ebc2e 2087 int domain_prot;
a8170e5e 2088 hwaddr phys_addr;
9ee6e8bb
PB
2089
2090 /* Pagetable walk. */
2091 /* Lookup l1 descriptor. */
b2fa1797 2092 table = get_level1_table_address(env, address);
9ee6e8bb
PB
2093 desc = ldl_phys(table);
2094 type = (desc & 3);
de9b05b8
PM
2095 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2096 /* Section translation fault, or attempt to use the encoding
2097 * which is Reserved on implementations without PXN.
2098 */
9ee6e8bb 2099 code = 5;
9ee6e8bb 2100 goto do_fault;
de9b05b8
PM
2101 }
2102 if ((type == 1) || !(desc & (1 << 18))) {
2103 /* Page or Section. */
dd4ebc2e 2104 domain = (desc >> 5) & 0x0f;
9ee6e8bb 2105 }
dd4ebc2e
JCD
2106 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2107 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 2108 if (type != 1) {
9ee6e8bb 2109 code = 9; /* Section domain fault. */
de9b05b8 2110 } else {
9ee6e8bb 2111 code = 11; /* Page domain fault. */
de9b05b8 2112 }
9ee6e8bb
PB
2113 goto do_fault;
2114 }
de9b05b8 2115 if (type != 1) {
9ee6e8bb
PB
2116 if (desc & (1 << 18)) {
2117 /* Supersection. */
2118 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
d4c430a8 2119 *page_size = 0x1000000;
b5ff1b31 2120 } else {
9ee6e8bb
PB
2121 /* Section. */
2122 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 2123 *page_size = 0x100000;
b5ff1b31 2124 }
9ee6e8bb
PB
2125 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2126 xn = desc & (1 << 4);
de9b05b8 2127 pxn = desc & 1;
9ee6e8bb
PB
2128 code = 13;
2129 } else {
de9b05b8
PM
2130 if (arm_feature(env, ARM_FEATURE_PXN)) {
2131 pxn = (desc >> 2) & 1;
2132 }
9ee6e8bb
PB
2133 /* Lookup l2 entry. */
2134 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2135 desc = ldl_phys(table);
2136 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2137 switch (desc & 3) {
2138 case 0: /* Page translation fault. */
2139 code = 7;
b5ff1b31 2140 goto do_fault;
9ee6e8bb
PB
2141 case 1: /* 64k page. */
2142 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2143 xn = desc & (1 << 15);
d4c430a8 2144 *page_size = 0x10000;
9ee6e8bb
PB
2145 break;
2146 case 2: case 3: /* 4k page. */
2147 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2148 xn = desc & 1;
d4c430a8 2149 *page_size = 0x1000;
9ee6e8bb
PB
2150 break;
2151 default:
2152 /* Never happens, but compiler isn't smart enough to tell. */
2153 abort();
b5ff1b31 2154 }
9ee6e8bb
PB
2155 code = 15;
2156 }
dd4ebc2e 2157 if (domain_prot == 3) {
c0034328
JR
2158 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2159 } else {
de9b05b8
PM
2160 if (pxn && !is_user) {
2161 xn = 1;
2162 }
c0034328
JR
2163 if (xn && access_type == 2)
2164 goto do_fault;
9ee6e8bb 2165
c0034328
JR
2166 /* The simplified model uses AP[0] as an access control bit. */
2167 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2168 /* Access flag fault. */
2169 code = (code == 15) ? 6 : 3;
2170 goto do_fault;
2171 }
dd4ebc2e 2172 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
c0034328
JR
2173 if (!*prot) {
2174 /* Access permission fault. */
2175 goto do_fault;
2176 }
2177 if (!xn) {
2178 *prot |= PAGE_EXEC;
2179 }
3ad493fc 2180 }
9ee6e8bb 2181 *phys_ptr = phys_addr;
b5ff1b31
FB
2182 return 0;
2183do_fault:
2184 return code | (domain << 4);
2185}
2186
3dde962f
PM
2187/* Fault type for long-descriptor MMU fault reporting; this corresponds
2188 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2189 */
2190typedef enum {
2191 translation_fault = 1,
2192 access_fault = 2,
2193 permission_fault = 3,
2194} MMUFaultType;
2195
2196static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2197 int access_type, int is_user,
a8170e5e 2198 hwaddr *phys_ptr, int *prot,
3dde962f
PM
2199 target_ulong *page_size_ptr)
2200{
2201 /* Read an LPAE long-descriptor translation table. */
2202 MMUFaultType fault_type = translation_fault;
2203 uint32_t level = 1;
2204 uint32_t epd;
2205 uint32_t tsz;
2206 uint64_t ttbr;
2207 int ttbr_select;
2208 int n;
a8170e5e 2209 hwaddr descaddr;
3dde962f
PM
2210 uint32_t tableattrs;
2211 target_ulong page_size;
2212 uint32_t attrs;
2213
2214 /* Determine whether this address is in the region controlled by
2215 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2216 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2217 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2218 */
2219 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2220 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2221 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2222 /* there is a ttbr0 region and we are in it (high bits all zero) */
2223 ttbr_select = 0;
2224 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2225 /* there is a ttbr1 region and we are in it (high bits all one) */
2226 ttbr_select = 1;
2227 } else if (!t0sz) {
2228 /* ttbr0 region is "everything not in the ttbr1 region" */
2229 ttbr_select = 0;
2230 } else if (!t1sz) {
2231 /* ttbr1 region is "everything not in the ttbr0 region" */
2232 ttbr_select = 1;
2233 } else {
2234 /* in the gap between the two regions, this is a Translation fault */
2235 fault_type = translation_fault;
2236 goto do_fault;
2237 }
2238
2239 /* Note that QEMU ignores shareability and cacheability attributes,
2240 * so we don't need to do anything with the SH, ORGN, IRGN fields
2241 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2242 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2243 * implement any ASID-like capability so we can ignore it (instead
2244 * we will always flush the TLB any time the ASID is changed).
2245 */
2246 if (ttbr_select == 0) {
2247 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2248 epd = extract32(env->cp15.c2_control, 7, 1);
2249 tsz = t0sz;
2250 } else {
2251 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2252 epd = extract32(env->cp15.c2_control, 23, 1);
2253 tsz = t1sz;
2254 }
2255
2256 if (epd) {
2257 /* Translation table walk disabled => Translation fault on TLB miss */
2258 goto do_fault;
2259 }
2260
2261 /* If the region is small enough we will skip straight to a 2nd level
2262 * lookup. This affects the number of bits of the address used in
2263 * combination with the TTBR to find the first descriptor. ('n' here
2264 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2265 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2266 */
2267 if (tsz > 1) {
2268 level = 2;
2269 n = 14 - tsz;
2270 } else {
2271 n = 5 - tsz;
2272 }
2273
2274 /* Clear the vaddr bits which aren't part of the within-region address,
2275 * so that we don't have to special case things when calculating the
2276 * first descriptor address.
2277 */
2278 address &= (0xffffffffU >> tsz);
2279
2280 /* Now we can extract the actual base address from the TTBR */
2281 descaddr = extract64(ttbr, 0, 40);
2282 descaddr &= ~((1ULL << n) - 1);
2283
2284 tableattrs = 0;
2285 for (;;) {
2286 uint64_t descriptor;
2287
2288 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2289 descriptor = ldq_phys(descaddr);
2290 if (!(descriptor & 1) ||
2291 (!(descriptor & 2) && (level == 3))) {
2292 /* Invalid, or the Reserved level 3 encoding */
2293 goto do_fault;
2294 }
2295 descaddr = descriptor & 0xfffffff000ULL;
2296
2297 if ((descriptor & 2) && (level < 3)) {
2298 /* Table entry. The top five bits are attributes which may
2299 * propagate down through lower levels of the table (and
2300 * which are all arranged so that 0 means "no effect", so
2301 * we can gather them up by ORing in the bits at each level).
2302 */
2303 tableattrs |= extract64(descriptor, 59, 5);
2304 level++;
2305 continue;
2306 }
2307 /* Block entry at level 1 or 2, or page entry at level 3.
2308 * These are basically the same thing, although the number
2309 * of bits we pull in from the vaddr varies.
2310 */
2311 page_size = (1 << (39 - (9 * level)));
2312 descaddr |= (address & (page_size - 1));
2313 /* Extract attributes from the descriptor and merge with table attrs */
2314 attrs = extract64(descriptor, 2, 10)
2315 | (extract64(descriptor, 52, 12) << 10);
2316 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2317 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2318 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2319 * means "force PL1 access only", which means forcing AP[1] to 0.
2320 */
2321 if (extract32(tableattrs, 2, 1)) {
2322 attrs &= ~(1 << 4);
2323 }
2324 /* Since we're always in the Non-secure state, NSTable is ignored. */
2325 break;
2326 }
2327 /* Here descaddr is the final physical address, and attributes
2328 * are all in attrs.
2329 */
2330 fault_type = access_fault;
2331 if ((attrs & (1 << 8)) == 0) {
2332 /* Access flag */
2333 goto do_fault;
2334 }
2335 fault_type = permission_fault;
2336 if (is_user && !(attrs & (1 << 4))) {
2337 /* Unprivileged access not enabled */
2338 goto do_fault;
2339 }
2340 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2341 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2342 /* XN or PXN */
2343 if (access_type == 2) {
2344 goto do_fault;
2345 }
2346 *prot &= ~PAGE_EXEC;
2347 }
2348 if (attrs & (1 << 5)) {
2349 /* Write access forbidden */
2350 if (access_type == 1) {
2351 goto do_fault;
2352 }
2353 *prot &= ~PAGE_WRITE;
2354 }
2355
2356 *phys_ptr = descaddr;
2357 *page_size_ptr = page_size;
2358 return 0;
2359
2360do_fault:
2361 /* Long-descriptor format IFSR/DFSR value */
2362 return (1 << 9) | (fault_type << 2) | level;
2363}
2364
77a71dd1
PM
2365static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2366 int access_type, int is_user,
a8170e5e 2367 hwaddr *phys_ptr, int *prot)
9ee6e8bb
PB
2368{
2369 int n;
2370 uint32_t mask;
2371 uint32_t base;
2372
2373 *phys_ptr = address;
2374 for (n = 7; n >= 0; n--) {
2375 base = env->cp15.c6_region[n];
2376 if ((base & 1) == 0)
2377 continue;
2378 mask = 1 << ((base >> 1) & 0x1f);
2379 /* Keep this shift separate from the above to avoid an
2380 (undefined) << 32. */
2381 mask = (mask << 1) - 1;
2382 if (((base ^ address) & ~mask) == 0)
2383 break;
2384 }
2385 if (n < 0)
2386 return 2;
2387
2388 if (access_type == 2) {
2389 mask = env->cp15.c5_insn;
2390 } else {
2391 mask = env->cp15.c5_data;
2392 }
2393 mask = (mask >> (n * 4)) & 0xf;
2394 switch (mask) {
2395 case 0:
2396 return 1;
2397 case 1:
2398 if (is_user)
2399 return 1;
2400 *prot = PAGE_READ | PAGE_WRITE;
2401 break;
2402 case 2:
2403 *prot = PAGE_READ;
2404 if (!is_user)
2405 *prot |= PAGE_WRITE;
2406 break;
2407 case 3:
2408 *prot = PAGE_READ | PAGE_WRITE;
2409 break;
2410 case 5:
2411 if (is_user)
2412 return 1;
2413 *prot = PAGE_READ;
2414 break;
2415 case 6:
2416 *prot = PAGE_READ;
2417 break;
2418 default:
2419 /* Bad permission. */
2420 return 1;
2421 }
3ad493fc 2422 *prot |= PAGE_EXEC;
9ee6e8bb
PB
2423 return 0;
2424}
2425
702a9357
PM
2426/* get_phys_addr - get the physical address for this virtual address
2427 *
2428 * Find the physical address corresponding to the given virtual address,
2429 * by doing a translation table walk on MMU based systems or using the
2430 * MPU state on MPU based systems.
2431 *
2432 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2433 * prot and page_size are not filled in, and the return value provides
2434 * information on why the translation aborted, in the format of a
2435 * DFSR/IFSR fault register, with the following caveats:
2436 * * we honour the short vs long DFSR format differences.
2437 * * the WnR bit is never set (the caller must do this).
2438 * * for MPU based systems we don't bother to return a full FSR format
2439 * value.
2440 *
2441 * @env: CPUARMState
2442 * @address: virtual address to get physical address for
2443 * @access_type: 0 for read, 1 for write, 2 for execute
2444 * @is_user: 0 for privileged access, 1 for user
2445 * @phys_ptr: set to the physical address corresponding to the virtual address
2446 * @prot: set to the permissions for the page containing phys_ptr
2447 * @page_size: set to the size of the page containing phys_ptr
2448 */
0ecb72a5 2449static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9ee6e8bb 2450 int access_type, int is_user,
a8170e5e 2451 hwaddr *phys_ptr, int *prot,
d4c430a8 2452 target_ulong *page_size)
9ee6e8bb
PB
2453{
2454 /* Fast Context Switch Extension. */
2455 if (address < 0x02000000)
2456 address += env->cp15.c13_fcse;
2457
2458 if ((env->cp15.c1_sys & 1) == 0) {
2459 /* MMU/MPU disabled. */
2460 *phys_ptr = address;
3ad493fc 2461 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 2462 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
2463 return 0;
2464 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
d4c430a8 2465 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
2466 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2467 prot);
3dde962f
PM
2468 } else if (extended_addresses_enabled(env)) {
2469 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2470 prot, page_size);
9ee6e8bb
PB
2471 } else if (env->cp15.c1_sys & (1 << 23)) {
2472 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
d4c430a8 2473 prot, page_size);
9ee6e8bb
PB
2474 } else {
2475 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
d4c430a8 2476 prot, page_size);
9ee6e8bb
PB
2477 }
2478}
2479
0ecb72a5 2480int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
97b348e7 2481 int access_type, int mmu_idx)
b5ff1b31 2482{
a8170e5e 2483 hwaddr phys_addr;
d4c430a8 2484 target_ulong page_size;
b5ff1b31 2485 int prot;
6ebbf390 2486 int ret, is_user;
b5ff1b31 2487
6ebbf390 2488 is_user = mmu_idx == MMU_USER_IDX;
d4c430a8
PB
2489 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2490 &page_size);
b5ff1b31
FB
2491 if (ret == 0) {
2492 /* Map a single [sub]page. */
a8170e5e 2493 phys_addr &= ~(hwaddr)0x3ff;
b5ff1b31 2494 address &= ~(uint32_t)0x3ff;
3ad493fc 2495 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
d4c430a8 2496 return 0;
b5ff1b31
FB
2497 }
2498
2499 if (access_type == 2) {
2500 env->cp15.c5_insn = ret;
2501 env->cp15.c6_insn = address;
2502 env->exception_index = EXCP_PREFETCH_ABORT;
2503 } else {
2504 env->cp15.c5_data = ret;
9ee6e8bb
PB
2505 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2506 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
2507 env->cp15.c6_data = address;
2508 env->exception_index = EXCP_DATA_ABORT;
2509 }
2510 return 1;
2511}
2512
a8170e5e 2513hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
b5ff1b31 2514{
a8170e5e 2515 hwaddr phys_addr;
d4c430a8 2516 target_ulong page_size;
b5ff1b31
FB
2517 int prot;
2518 int ret;
2519
d4c430a8 2520 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
b5ff1b31
FB
2521
2522 if (ret != 0)
2523 return -1;
2524
2525 return phys_addr;
2526}
2527
0ecb72a5 2528void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 2529{
39ea3d4e
PM
2530 if ((env->uncached_cpsr & CPSR_M) == mode) {
2531 env->regs[13] = val;
2532 } else {
1b9e01c1 2533 env->banked_r13[bank_number(env, mode)] = val;
39ea3d4e 2534 }
9ee6e8bb
PB
2535}
2536
0ecb72a5 2537uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 2538{
39ea3d4e
PM
2539 if ((env->uncached_cpsr & CPSR_M) == mode) {
2540 return env->regs[13];
2541 } else {
1b9e01c1 2542 return env->banked_r13[bank_number(env, mode)];
39ea3d4e 2543 }
9ee6e8bb
PB
2544}
2545
0ecb72a5 2546uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
2547{
2548 switch (reg) {
2549 case 0: /* APSR */
2550 return xpsr_read(env) & 0xf8000000;
2551 case 1: /* IAPSR */
2552 return xpsr_read(env) & 0xf80001ff;
2553 case 2: /* EAPSR */
2554 return xpsr_read(env) & 0xff00fc00;
2555 case 3: /* xPSR */
2556 return xpsr_read(env) & 0xff00fdff;
2557 case 5: /* IPSR */
2558 return xpsr_read(env) & 0x000001ff;
2559 case 6: /* EPSR */
2560 return xpsr_read(env) & 0x0700fc00;
2561 case 7: /* IEPSR */
2562 return xpsr_read(env) & 0x0700edff;
2563 case 8: /* MSP */
2564 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2565 case 9: /* PSP */
2566 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2567 case 16: /* PRIMASK */
2568 return (env->uncached_cpsr & CPSR_I) != 0;
82845826
SH
2569 case 17: /* BASEPRI */
2570 case 18: /* BASEPRI_MAX */
9ee6e8bb 2571 return env->v7m.basepri;
82845826
SH
2572 case 19: /* FAULTMASK */
2573 return (env->uncached_cpsr & CPSR_F) != 0;
9ee6e8bb
PB
2574 case 20: /* CONTROL */
2575 return env->v7m.control;
2576 default:
2577 /* ??? For debugging only. */
2578 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2579 return 0;
2580 }
2581}
2582
0ecb72a5 2583void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
2584{
2585 switch (reg) {
2586 case 0: /* APSR */
2587 xpsr_write(env, val, 0xf8000000);
2588 break;
2589 case 1: /* IAPSR */
2590 xpsr_write(env, val, 0xf8000000);
2591 break;
2592 case 2: /* EAPSR */
2593 xpsr_write(env, val, 0xfe00fc00);
2594 break;
2595 case 3: /* xPSR */
2596 xpsr_write(env, val, 0xfe00fc00);
2597 break;
2598 case 5: /* IPSR */
2599 /* IPSR bits are readonly. */
2600 break;
2601 case 6: /* EPSR */
2602 xpsr_write(env, val, 0x0600fc00);
2603 break;
2604 case 7: /* IEPSR */
2605 xpsr_write(env, val, 0x0600fc00);
2606 break;
2607 case 8: /* MSP */
2608 if (env->v7m.current_sp)
2609 env->v7m.other_sp = val;
2610 else
2611 env->regs[13] = val;
2612 break;
2613 case 9: /* PSP */
2614 if (env->v7m.current_sp)
2615 env->regs[13] = val;
2616 else
2617 env->v7m.other_sp = val;
2618 break;
2619 case 16: /* PRIMASK */
2620 if (val & 1)
2621 env->uncached_cpsr |= CPSR_I;
2622 else
2623 env->uncached_cpsr &= ~CPSR_I;
2624 break;
82845826 2625 case 17: /* BASEPRI */
9ee6e8bb
PB
2626 env->v7m.basepri = val & 0xff;
2627 break;
82845826 2628 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
2629 val &= 0xff;
2630 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2631 env->v7m.basepri = val;
2632 break;
82845826
SH
2633 case 19: /* FAULTMASK */
2634 if (val & 1)
2635 env->uncached_cpsr |= CPSR_F;
2636 else
2637 env->uncached_cpsr &= ~CPSR_F;
2638 break;
9ee6e8bb
PB
2639 case 20: /* CONTROL */
2640 env->v7m.control = val & 3;
2641 switch_v7m_sp(env, (val & 2) != 0);
2642 break;
2643 default:
2644 /* ??? For debugging only. */
2645 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2646 return;
2647 }
2648}
2649
b5ff1b31 2650#endif
6ddbc6e4
PB
2651
2652/* Note that signed overflow is undefined in C. The following routines are
2653 careful to use unsigned types where modulo arithmetic is required.
2654 Failure to do so _will_ break on newer gcc. */
2655
2656/* Signed saturating arithmetic. */
2657
1654b2d6 2658/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
2659static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2660{
2661 uint16_t res;
2662
2663 res = a + b;
2664 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2665 if (a & 0x8000)
2666 res = 0x8000;
2667 else
2668 res = 0x7fff;
2669 }
2670 return res;
2671}
2672
1654b2d6 2673/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
2674static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2675{
2676 uint8_t res;
2677
2678 res = a + b;
2679 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2680 if (a & 0x80)
2681 res = 0x80;
2682 else
2683 res = 0x7f;
2684 }
2685 return res;
2686}
2687
1654b2d6 2688/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
2689static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2690{
2691 uint16_t res;
2692
2693 res = a - b;
2694 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2695 if (a & 0x8000)
2696 res = 0x8000;
2697 else
2698 res = 0x7fff;
2699 }
2700 return res;
2701}
2702
1654b2d6 2703/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
2704static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2705{
2706 uint8_t res;
2707
2708 res = a - b;
2709 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2710 if (a & 0x80)
2711 res = 0x80;
2712 else
2713 res = 0x7f;
2714 }
2715 return res;
2716}
2717
2718#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2719#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2720#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2721#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2722#define PFX q
2723
2724#include "op_addsub.h"
2725
2726/* Unsigned saturating arithmetic. */
460a09c1 2727static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
2728{
2729 uint16_t res;
2730 res = a + b;
2731 if (res < a)
2732 res = 0xffff;
2733 return res;
2734}
2735
460a09c1 2736static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 2737{
4c4fd3f8 2738 if (a > b)
6ddbc6e4
PB
2739 return a - b;
2740 else
2741 return 0;
2742}
2743
2744static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2745{
2746 uint8_t res;
2747 res = a + b;
2748 if (res < a)
2749 res = 0xff;
2750 return res;
2751}
2752
2753static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2754{
4c4fd3f8 2755 if (a > b)
6ddbc6e4
PB
2756 return a - b;
2757 else
2758 return 0;
2759}
2760
2761#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2762#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2763#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2764#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2765#define PFX uq
2766
2767#include "op_addsub.h"
2768
2769/* Signed modulo arithmetic. */
2770#define SARITH16(a, b, n, op) do { \
2771 int32_t sum; \
db6e2e65 2772 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
2773 RESULT(sum, n, 16); \
2774 if (sum >= 0) \
2775 ge |= 3 << (n * 2); \
2776 } while(0)
2777
2778#define SARITH8(a, b, n, op) do { \
2779 int32_t sum; \
db6e2e65 2780 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
2781 RESULT(sum, n, 8); \
2782 if (sum >= 0) \
2783 ge |= 1 << n; \
2784 } while(0)
2785
2786
2787#define ADD16(a, b, n) SARITH16(a, b, n, +)
2788#define SUB16(a, b, n) SARITH16(a, b, n, -)
2789#define ADD8(a, b, n) SARITH8(a, b, n, +)
2790#define SUB8(a, b, n) SARITH8(a, b, n, -)
2791#define PFX s
2792#define ARITH_GE
2793
2794#include "op_addsub.h"
2795
2796/* Unsigned modulo arithmetic. */
2797#define ADD16(a, b, n) do { \
2798 uint32_t sum; \
2799 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2800 RESULT(sum, n, 16); \
a87aa10b 2801 if ((sum >> 16) == 1) \
6ddbc6e4
PB
2802 ge |= 3 << (n * 2); \
2803 } while(0)
2804
2805#define ADD8(a, b, n) do { \
2806 uint32_t sum; \
2807 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2808 RESULT(sum, n, 8); \
a87aa10b
AZ
2809 if ((sum >> 8) == 1) \
2810 ge |= 1 << n; \
6ddbc6e4
PB
2811 } while(0)
2812
2813#define SUB16(a, b, n) do { \
2814 uint32_t sum; \
2815 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2816 RESULT(sum, n, 16); \
2817 if ((sum >> 16) == 0) \
2818 ge |= 3 << (n * 2); \
2819 } while(0)
2820
2821#define SUB8(a, b, n) do { \
2822 uint32_t sum; \
2823 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2824 RESULT(sum, n, 8); \
2825 if ((sum >> 8) == 0) \
a87aa10b 2826 ge |= 1 << n; \
6ddbc6e4
PB
2827 } while(0)
2828
2829#define PFX u
2830#define ARITH_GE
2831
2832#include "op_addsub.h"
2833
2834/* Halved signed arithmetic. */
2835#define ADD16(a, b, n) \
2836 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2837#define SUB16(a, b, n) \
2838 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2839#define ADD8(a, b, n) \
2840 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2841#define SUB8(a, b, n) \
2842 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2843#define PFX sh
2844
2845#include "op_addsub.h"
2846
2847/* Halved unsigned arithmetic. */
2848#define ADD16(a, b, n) \
2849 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2850#define SUB16(a, b, n) \
2851 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2852#define ADD8(a, b, n) \
2853 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2854#define SUB8(a, b, n) \
2855 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2856#define PFX uh
2857
2858#include "op_addsub.h"
2859
2860static inline uint8_t do_usad(uint8_t a, uint8_t b)
2861{
2862 if (a > b)
2863 return a - b;
2864 else
2865 return b - a;
2866}
2867
2868/* Unsigned sum of absolute byte differences. */
2869uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2870{
2871 uint32_t sum;
2872 sum = do_usad(a, b);
2873 sum += do_usad(a >> 8, b >> 8);
2874 sum += do_usad(a >> 16, b >>16);
2875 sum += do_usad(a >> 24, b >> 24);
2876 return sum;
2877}
2878
2879/* For ARMv6 SEL instruction. */
2880uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2881{
2882 uint32_t mask;
2883
2884 mask = 0;
2885 if (flags & 1)
2886 mask |= 0xff;
2887 if (flags & 2)
2888 mask |= 0xff00;
2889 if (flags & 4)
2890 mask |= 0xff0000;
2891 if (flags & 8)
2892 mask |= 0xff000000;
2893 return (a & mask) | (b & ~mask);
2894}
2895
5e3f878a
PB
2896uint32_t HELPER(logicq_cc)(uint64_t val)
2897{
2898 return (val >> 32) | (val != 0);
2899}
4373f3ce 2900
b90372ad
PM
2901/* VFP support. We follow the convention used for VFP instructions:
2902 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
2903 "d" suffix. */
2904
2905/* Convert host exception flags to vfp form. */
2906static inline int vfp_exceptbits_from_host(int host_bits)
2907{
2908 int target_bits = 0;
2909
2910 if (host_bits & float_flag_invalid)
2911 target_bits |= 1;
2912 if (host_bits & float_flag_divbyzero)
2913 target_bits |= 2;
2914 if (host_bits & float_flag_overflow)
2915 target_bits |= 4;
36802b6b 2916 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
2917 target_bits |= 8;
2918 if (host_bits & float_flag_inexact)
2919 target_bits |= 0x10;
cecd8504
PM
2920 if (host_bits & float_flag_input_denormal)
2921 target_bits |= 0x80;
4373f3ce
PB
2922 return target_bits;
2923}
2924
0ecb72a5 2925uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
2926{
2927 int i;
2928 uint32_t fpscr;
2929
2930 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2931 | (env->vfp.vec_len << 16)
2932 | (env->vfp.vec_stride << 20);
2933 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 2934 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
2935 fpscr |= vfp_exceptbits_from_host(i);
2936 return fpscr;
2937}
2938
0ecb72a5 2939uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
2940{
2941 return HELPER(vfp_get_fpscr)(env);
2942}
2943
4373f3ce
PB
2944/* Convert vfp exception flags to target form. */
2945static inline int vfp_exceptbits_to_host(int target_bits)
2946{
2947 int host_bits = 0;
2948
2949 if (target_bits & 1)
2950 host_bits |= float_flag_invalid;
2951 if (target_bits & 2)
2952 host_bits |= float_flag_divbyzero;
2953 if (target_bits & 4)
2954 host_bits |= float_flag_overflow;
2955 if (target_bits & 8)
2956 host_bits |= float_flag_underflow;
2957 if (target_bits & 0x10)
2958 host_bits |= float_flag_inexact;
cecd8504
PM
2959 if (target_bits & 0x80)
2960 host_bits |= float_flag_input_denormal;
4373f3ce
PB
2961 return host_bits;
2962}
2963
0ecb72a5 2964void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
2965{
2966 int i;
2967 uint32_t changed;
2968
2969 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2970 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2971 env->vfp.vec_len = (val >> 16) & 7;
2972 env->vfp.vec_stride = (val >> 20) & 3;
2973
2974 changed ^= val;
2975 if (changed & (3 << 22)) {
2976 i = (val >> 22) & 3;
2977 switch (i) {
2978 case 0:
2979 i = float_round_nearest_even;
2980 break;
2981 case 1:
2982 i = float_round_up;
2983 break;
2984 case 2:
2985 i = float_round_down;
2986 break;
2987 case 3:
2988 i = float_round_to_zero;
2989 break;
2990 }
2991 set_float_rounding_mode(i, &env->vfp.fp_status);
2992 }
cecd8504 2993 if (changed & (1 << 24)) {
fe76d976 2994 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
2995 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2996 }
5c7908ed
PB
2997 if (changed & (1 << 25))
2998 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 2999
b12c390b 3000 i = vfp_exceptbits_to_host(val);
4373f3ce 3001 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 3002 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
3003}
3004
0ecb72a5 3005void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
3006{
3007 HELPER(vfp_set_fpscr)(env, val);
3008}
3009
4373f3ce
PB
3010#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3011
3012#define VFP_BINOP(name) \
ae1857ec 3013float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 3014{ \
ae1857ec
PM
3015 float_status *fpst = fpstp; \
3016 return float32_ ## name(a, b, fpst); \
4373f3ce 3017} \
ae1857ec 3018float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 3019{ \
ae1857ec
PM
3020 float_status *fpst = fpstp; \
3021 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
3022}
3023VFP_BINOP(add)
3024VFP_BINOP(sub)
3025VFP_BINOP(mul)
3026VFP_BINOP(div)
3027#undef VFP_BINOP
3028
3029float32 VFP_HELPER(neg, s)(float32 a)
3030{
3031 return float32_chs(a);
3032}
3033
3034float64 VFP_HELPER(neg, d)(float64 a)
3035{
66230e0d 3036 return float64_chs(a);
4373f3ce
PB
3037}
3038
3039float32 VFP_HELPER(abs, s)(float32 a)
3040{
3041 return float32_abs(a);
3042}
3043
3044float64 VFP_HELPER(abs, d)(float64 a)
3045{
66230e0d 3046 return float64_abs(a);
4373f3ce
PB
3047}
3048
0ecb72a5 3049float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
3050{
3051 return float32_sqrt(a, &env->vfp.fp_status);
3052}
3053
0ecb72a5 3054float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
3055{
3056 return float64_sqrt(a, &env->vfp.fp_status);
3057}
3058
3059/* XXX: check quiet/signaling case */
3060#define DO_VFP_cmp(p, type) \
0ecb72a5 3061void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
3062{ \
3063 uint32_t flags; \
3064 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3065 case 0: flags = 0x6; break; \
3066 case -1: flags = 0x8; break; \
3067 case 1: flags = 0x2; break; \
3068 default: case 2: flags = 0x3; break; \
3069 } \
3070 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3071 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3072} \
0ecb72a5 3073void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
3074{ \
3075 uint32_t flags; \
3076 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3077 case 0: flags = 0x6; break; \
3078 case -1: flags = 0x8; break; \
3079 case 1: flags = 0x2; break; \
3080 default: case 2: flags = 0x3; break; \
3081 } \
3082 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3083 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3084}
3085DO_VFP_cmp(s, float32)
3086DO_VFP_cmp(d, float64)
3087#undef DO_VFP_cmp
3088
5500b06c 3089/* Integer to float and float to integer conversions */
4373f3ce 3090
5500b06c
PM
3091#define CONV_ITOF(name, fsz, sign) \
3092 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3093{ \
3094 float_status *fpst = fpstp; \
85836979 3095 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
3096}
3097
5500b06c
PM
3098#define CONV_FTOI(name, fsz, sign, round) \
3099uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3100{ \
3101 float_status *fpst = fpstp; \
3102 if (float##fsz##_is_any_nan(x)) { \
3103 float_raise(float_flag_invalid, fpst); \
3104 return 0; \
3105 } \
3106 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
3107}
3108
5500b06c
PM
3109#define FLOAT_CONVS(name, p, fsz, sign) \
3110CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3111CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3112CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 3113
5500b06c
PM
3114FLOAT_CONVS(si, s, 32, )
3115FLOAT_CONVS(si, d, 64, )
3116FLOAT_CONVS(ui, s, 32, u)
3117FLOAT_CONVS(ui, d, 64, u)
4373f3ce 3118
5500b06c
PM
3119#undef CONV_ITOF
3120#undef CONV_FTOI
3121#undef FLOAT_CONVS
4373f3ce
PB
3122
3123/* floating point conversion */
0ecb72a5 3124float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 3125{
2d627737
PM
3126 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3127 /* ARM requires that S<->D conversion of any kind of NaN generates
3128 * a quiet NaN by forcing the most significant frac bit to 1.
3129 */
3130 return float64_maybe_silence_nan(r);
4373f3ce
PB
3131}
3132
0ecb72a5 3133float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 3134{
2d627737
PM
3135 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3136 /* ARM requires that S<->D conversion of any kind of NaN generates
3137 * a quiet NaN by forcing the most significant frac bit to 1.
3138 */
3139 return float32_maybe_silence_nan(r);
4373f3ce
PB
3140}
3141
3142/* VFP3 fixed point conversion. */
622465e1 3143#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
5500b06c
PM
3144float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3145 void *fpstp) \
4373f3ce 3146{ \
5500b06c 3147 float_status *fpst = fpstp; \
622465e1 3148 float##fsz tmp; \
5500b06c
PM
3149 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3150 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4373f3ce 3151} \
5500b06c
PM
3152uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3153 void *fpstp) \
4373f3ce 3154{ \
5500b06c 3155 float_status *fpst = fpstp; \
622465e1
PM
3156 float##fsz tmp; \
3157 if (float##fsz##_is_any_nan(x)) { \
5500b06c 3158 float_raise(float_flag_invalid, fpst); \
622465e1 3159 return 0; \
09d9487f 3160 } \
5500b06c
PM
3161 tmp = float##fsz##_scalbn(x, shift, fpst); \
3162 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
622465e1
PM
3163}
3164
3165VFP_CONV_FIX(sh, d, 64, int16, )
3166VFP_CONV_FIX(sl, d, 64, int32, )
3167VFP_CONV_FIX(uh, d, 64, uint16, u)
3168VFP_CONV_FIX(ul, d, 64, uint32, u)
3169VFP_CONV_FIX(sh, s, 32, int16, )
3170VFP_CONV_FIX(sl, s, 32, int32, )
3171VFP_CONV_FIX(uh, s, 32, uint16, u)
3172VFP_CONV_FIX(ul, s, 32, uint32, u)
4373f3ce
PB
3173#undef VFP_CONV_FIX
3174
60011498 3175/* Half precision conversions. */
0ecb72a5 3176static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 3177{
60011498 3178 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
3179 float32 r = float16_to_float32(make_float16(a), ieee, s);
3180 if (ieee) {
3181 return float32_maybe_silence_nan(r);
3182 }
3183 return r;
60011498
PB
3184}
3185
0ecb72a5 3186static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 3187{
60011498 3188 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
3189 float16 r = float32_to_float16(a, ieee, s);
3190 if (ieee) {
3191 r = float16_maybe_silence_nan(r);
3192 }
3193 return float16_val(r);
60011498
PB
3194}
3195
0ecb72a5 3196float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
3197{
3198 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3199}
3200
0ecb72a5 3201uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
3202{
3203 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3204}
3205
0ecb72a5 3206float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
3207{
3208 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3209}
3210
0ecb72a5 3211uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
3212{
3213 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3214}
3215
dda3ec49 3216#define float32_two make_float32(0x40000000)
6aae3df1
PM
3217#define float32_three make_float32(0x40400000)
3218#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 3219
0ecb72a5 3220float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 3221{
dda3ec49
PM
3222 float_status *s = &env->vfp.standard_fp_status;
3223 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3224 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
3225 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3226 float_raise(float_flag_input_denormal, s);
3227 }
dda3ec49
PM
3228 return float32_two;
3229 }
3230 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
3231}
3232
0ecb72a5 3233float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 3234{
71826966 3235 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
3236 float32 product;
3237 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3238 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
3239 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3240 float_raise(float_flag_input_denormal, s);
3241 }
6aae3df1 3242 return float32_one_point_five;
9ea62f57 3243 }
6aae3df1
PM
3244 product = float32_mul(a, b, s);
3245 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
3246}
3247
8f8e3aa4
PB
3248/* NEON helpers. */
3249
56bf4fe2
CL
3250/* Constants 256 and 512 are used in some helpers; we avoid relying on
3251 * int->float conversions at run-time. */
3252#define float64_256 make_float64(0x4070000000000000LL)
3253#define float64_512 make_float64(0x4080000000000000LL)
3254
fe0e4872
CL
3255/* The algorithm that must be used to calculate the estimate
3256 * is specified by the ARM ARM.
3257 */
0ecb72a5 3258static float64 recip_estimate(float64 a, CPUARMState *env)
fe0e4872 3259{
1146a817
PM
3260 /* These calculations mustn't set any fp exception flags,
3261 * so we use a local copy of the fp_status.
3262 */
3263 float_status dummy_status = env->vfp.standard_fp_status;
3264 float_status *s = &dummy_status;
fe0e4872
CL
3265 /* q = (int)(a * 512.0) */
3266 float64 q = float64_mul(float64_512, a, s);
3267 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3268
3269 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3270 q = int64_to_float64(q_int, s);
3271 q = float64_add(q, float64_half, s);
3272 q = float64_div(q, float64_512, s);
3273 q = float64_div(float64_one, q, s);
3274
3275 /* s = (int)(256.0 * r + 0.5) */
3276 q = float64_mul(q, float64_256, s);
3277 q = float64_add(q, float64_half, s);
3278 q_int = float64_to_int64_round_to_zero(q, s);
3279
3280 /* return (double)s / 256.0 */
3281 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3282}
3283
0ecb72a5 3284float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
4373f3ce 3285{
fe0e4872
CL
3286 float_status *s = &env->vfp.standard_fp_status;
3287 float64 f64;
3288 uint32_t val32 = float32_val(a);
3289
3290 int result_exp;
3291 int a_exp = (val32 & 0x7f800000) >> 23;
3292 int sign = val32 & 0x80000000;
3293
3294 if (float32_is_any_nan(a)) {
3295 if (float32_is_signaling_nan(a)) {
3296 float_raise(float_flag_invalid, s);
3297 }
3298 return float32_default_nan;
3299 } else if (float32_is_infinity(a)) {
3300 return float32_set_sign(float32_zero, float32_is_neg(a));
3301 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
3302 if (!float32_is_zero(a)) {
3303 float_raise(float_flag_input_denormal, s);
3304 }
fe0e4872
CL
3305 float_raise(float_flag_divbyzero, s);
3306 return float32_set_sign(float32_infinity, float32_is_neg(a));
3307 } else if (a_exp >= 253) {
3308 float_raise(float_flag_underflow, s);
3309 return float32_set_sign(float32_zero, float32_is_neg(a));
3310 }
3311
3312 f64 = make_float64((0x3feULL << 52)
3313 | ((int64_t)(val32 & 0x7fffff) << 29));
3314
3315 result_exp = 253 - a_exp;
3316
3317 f64 = recip_estimate(f64, env);
3318
3319 val32 = sign
3320 | ((result_exp & 0xff) << 23)
3321 | ((float64_val(f64) >> 29) & 0x7fffff);
3322 return make_float32(val32);
4373f3ce
PB
3323}
3324
e07be5d2
CL
3325/* The algorithm that must be used to calculate the estimate
3326 * is specified by the ARM ARM.
3327 */
0ecb72a5 3328static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
e07be5d2 3329{
1146a817
PM
3330 /* These calculations mustn't set any fp exception flags,
3331 * so we use a local copy of the fp_status.
3332 */
3333 float_status dummy_status = env->vfp.standard_fp_status;
3334 float_status *s = &dummy_status;
e07be5d2
CL
3335 float64 q;
3336 int64_t q_int;
3337
3338 if (float64_lt(a, float64_half, s)) {
3339 /* range 0.25 <= a < 0.5 */
3340
3341 /* a in units of 1/512 rounded down */
3342 /* q0 = (int)(a * 512.0); */
3343 q = float64_mul(float64_512, a, s);
3344 q_int = float64_to_int64_round_to_zero(q, s);
3345
3346 /* reciprocal root r */
3347 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3348 q = int64_to_float64(q_int, s);
3349 q = float64_add(q, float64_half, s);
3350 q = float64_div(q, float64_512, s);
3351 q = float64_sqrt(q, s);
3352 q = float64_div(float64_one, q, s);
3353 } else {
3354 /* range 0.5 <= a < 1.0 */
3355
3356 /* a in units of 1/256 rounded down */
3357 /* q1 = (int)(a * 256.0); */
3358 q = float64_mul(float64_256, a, s);
3359 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3360
3361 /* reciprocal root r */
3362 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3363 q = int64_to_float64(q_int, s);
3364 q = float64_add(q, float64_half, s);
3365 q = float64_div(q, float64_256, s);
3366 q = float64_sqrt(q, s);
3367 q = float64_div(float64_one, q, s);
3368 }
3369 /* r in units of 1/256 rounded to nearest */
3370 /* s = (int)(256.0 * r + 0.5); */
3371
3372 q = float64_mul(q, float64_256,s );
3373 q = float64_add(q, float64_half, s);
3374 q_int = float64_to_int64_round_to_zero(q, s);
3375
3376 /* return (double)s / 256.0;*/
3377 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3378}
3379
0ecb72a5 3380float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4373f3ce 3381{
e07be5d2
CL
3382 float_status *s = &env->vfp.standard_fp_status;
3383 int result_exp;
3384 float64 f64;
3385 uint32_t val;
3386 uint64_t val64;
3387
3388 val = float32_val(a);
3389
3390 if (float32_is_any_nan(a)) {
3391 if (float32_is_signaling_nan(a)) {
3392 float_raise(float_flag_invalid, s);
3393 }
3394 return float32_default_nan;
3395 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
3396 if (!float32_is_zero(a)) {
3397 float_raise(float_flag_input_denormal, s);
3398 }
e07be5d2
CL
3399 float_raise(float_flag_divbyzero, s);
3400 return float32_set_sign(float32_infinity, float32_is_neg(a));
3401 } else if (float32_is_neg(a)) {
3402 float_raise(float_flag_invalid, s);
3403 return float32_default_nan;
3404 } else if (float32_is_infinity(a)) {
3405 return float32_zero;
3406 }
3407
3408 /* Normalize to a double-precision value between 0.25 and 1.0,
3409 * preserving the parity of the exponent. */
3410 if ((val & 0x800000) == 0) {
3411 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3412 | (0x3feULL << 52)
3413 | ((uint64_t)(val & 0x7fffff) << 29));
3414 } else {
3415 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3416 | (0x3fdULL << 52)
3417 | ((uint64_t)(val & 0x7fffff) << 29));
3418 }
3419
3420 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3421
3422 f64 = recip_sqrt_estimate(f64, env);
3423
3424 val64 = float64_val(f64);
3425
26cc6abf 3426 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
3427 | ((val64 >> 29) & 0x7fffff);
3428 return make_float32(val);
4373f3ce
PB
3429}
3430
0ecb72a5 3431uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4373f3ce 3432{
fe0e4872
CL
3433 float64 f64;
3434
3435 if ((a & 0x80000000) == 0) {
3436 return 0xffffffff;
3437 }
3438
3439 f64 = make_float64((0x3feULL << 52)
3440 | ((int64_t)(a & 0x7fffffff) << 21));
3441
3442 f64 = recip_estimate (f64, env);
3443
3444 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
3445}
3446
0ecb72a5 3447uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4373f3ce 3448{
e07be5d2
CL
3449 float64 f64;
3450
3451 if ((a & 0xc0000000) == 0) {
3452 return 0xffffffff;
3453 }
3454
3455 if (a & 0x80000000) {
3456 f64 = make_float64((0x3feULL << 52)
3457 | ((uint64_t)(a & 0x7fffffff) << 21));
3458 } else { /* bits 31-30 == '01' */
3459 f64 = make_float64((0x3fdULL << 52)
3460 | ((uint64_t)(a & 0x3fffffff) << 22));
3461 }
3462
3463 f64 = recip_sqrt_estimate(f64, env);
3464
3465 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 3466}
fe1479c3 3467
da97f52c
PM
3468/* VFPv4 fused multiply-accumulate */
3469float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3470{
3471 float_status *fpst = fpstp;
3472 return float32_muladd(a, b, c, 0, fpst);
3473}
3474
3475float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3476{
3477 float_status *fpst = fpstp;
3478 return float64_muladd(a, b, c, 0, fpst);
3479}