]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
blk-mq: split tag ->rqs[] into two
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
87760e5e 42#include "blk-wbt.h"
8324aa91 43
d07335e5 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 48EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 49
a73f730d
TH
50DEFINE_IDA(blk_queue_ida);
51
1da177e4
LT
52/*
53 * For the allocated request tables
54 */
d674d414 55struct kmem_cache *request_cachep;
1da177e4
LT
56
57/*
58 * For queue allocation
59 */
6728cb0e 60struct kmem_cache *blk_requestq_cachep;
1da177e4 61
1da177e4
LT
62/*
63 * Controlling structure to kblockd
64 */
ff856bad 65static struct workqueue_struct *kblockd_workqueue;
1da177e4 66
d40f75a0
TH
67static void blk_clear_congested(struct request_list *rl, int sync)
68{
d40f75a0
TH
69#ifdef CONFIG_CGROUP_WRITEBACK
70 clear_wb_congested(rl->blkg->wb_congested, sync);
71#else
482cf79c
TH
72 /*
73 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
74 * flip its congestion state for events on other blkcgs.
75 */
76 if (rl == &rl->q->root_rl)
77 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
78#endif
79}
80
81static void blk_set_congested(struct request_list *rl, int sync)
82{
d40f75a0
TH
83#ifdef CONFIG_CGROUP_WRITEBACK
84 set_wb_congested(rl->blkg->wb_congested, sync);
85#else
482cf79c
TH
86 /* see blk_clear_congested() */
87 if (rl == &rl->q->root_rl)
88 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
89#endif
90}
91
8324aa91 92void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
93{
94 int nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
105}
106
1da177e4
LT
107/**
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
110 *
111 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
112 * backing_dev_info. This function can only be called if @bdev is opened
113 * and the return value is never NULL.
1da177e4
LT
114 */
115struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116{
165125e1 117 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 118
ff9ea323 119 return &q->backing_dev_info;
1da177e4 120}
1da177e4
LT
121EXPORT_SYMBOL(blk_get_backing_dev_info);
122
2a4aa30c 123void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 124{
1afb20f3
FT
125 memset(rq, 0, sizeof(*rq));
126
1da177e4 127 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 128 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 129 rq->cpu = -1;
63a71386 130 rq->q = q;
a2dec7b3 131 rq->__sector = (sector_t) -1;
2e662b65
JA
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 134 rq->cmd = rq->__cmd;
e2494e1b 135 rq->cmd_len = BLK_MAX_CDB;
63a71386 136 rq->tag = -1;
b243ddcb 137 rq->start_time = jiffies;
9195291e 138 set_start_time_ns(rq);
09e099d4 139 rq->part = NULL;
1da177e4 140}
2a4aa30c 141EXPORT_SYMBOL(blk_rq_init);
1da177e4 142
5bb23a68
N
143static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
1da177e4 145{
78d8e58a 146 if (error)
4246a0b6 147 bio->bi_error = error;
797e7dbb 148
e8064021 149 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 150 bio_set_flag(bio, BIO_QUIET);
08bafc03 151
f79ea416 152 bio_advance(bio, nbytes);
7ba1ba12 153
143a87f4 154 /* don't actually finish bio if it's part of flush sequence */
e8064021 155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 156 bio_endio(bio);
1da177e4 157}
1da177e4 158
1da177e4
LT
159void blk_dump_rq_flags(struct request *rq, char *msg)
160{
161 int bit;
162
5953316d 163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 165 (unsigned long long) rq->cmd_flags);
1da177e4 166
83096ebf
TH
167 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
168 (unsigned long long)blk_rq_pos(rq),
169 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
170 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
171 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 172
33659ebb 173 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 174 printk(KERN_INFO " cdb: ");
d34c87e4 175 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
176 printk("%02x ", rq->cmd[bit]);
177 printk("\n");
178 }
179}
1da177e4
LT
180EXPORT_SYMBOL(blk_dump_rq_flags);
181
3cca6dc1 182static void blk_delay_work(struct work_struct *work)
1da177e4 183{
3cca6dc1 184 struct request_queue *q;
1da177e4 185
3cca6dc1
JA
186 q = container_of(work, struct request_queue, delay_work.work);
187 spin_lock_irq(q->queue_lock);
24ecfbe2 188 __blk_run_queue(q);
3cca6dc1 189 spin_unlock_irq(q->queue_lock);
1da177e4 190}
1da177e4
LT
191
192/**
3cca6dc1
JA
193 * blk_delay_queue - restart queueing after defined interval
194 * @q: The &struct request_queue in question
195 * @msecs: Delay in msecs
1da177e4
LT
196 *
197 * Description:
3cca6dc1
JA
198 * Sometimes queueing needs to be postponed for a little while, to allow
199 * resources to come back. This function will make sure that queueing is
70460571 200 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
201 */
202void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 203{
70460571
BVA
204 if (likely(!blk_queue_dead(q)))
205 queue_delayed_work(kblockd_workqueue, &q->delay_work,
206 msecs_to_jiffies(msecs));
2ad8b1ef 207}
3cca6dc1 208EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 209
21491412
JA
210/**
211 * blk_start_queue_async - asynchronously restart a previously stopped queue
212 * @q: The &struct request_queue in question
213 *
214 * Description:
215 * blk_start_queue_async() will clear the stop flag on the queue, and
216 * ensure that the request_fn for the queue is run from an async
217 * context.
218 **/
219void blk_start_queue_async(struct request_queue *q)
220{
221 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
222 blk_run_queue_async(q);
223}
224EXPORT_SYMBOL(blk_start_queue_async);
225
1da177e4
LT
226/**
227 * blk_start_queue - restart a previously stopped queue
165125e1 228 * @q: The &struct request_queue in question
1da177e4
LT
229 *
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 **/
165125e1 235void blk_start_queue(struct request_queue *q)
1da177e4 236{
a038e253
PBG
237 WARN_ON(!irqs_disabled());
238
75ad23bc 239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 240 __blk_run_queue(q);
1da177e4 241}
1da177e4
LT
242EXPORT_SYMBOL(blk_start_queue);
243
244/**
245 * blk_stop_queue - stop a queue
165125e1 246 * @q: The &struct request_queue in question
1da177e4
LT
247 *
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 **/
165125e1 258void blk_stop_queue(struct request_queue *q)
1da177e4 259{
136b5721 260 cancel_delayed_work(&q->delay_work);
75ad23bc 261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
262}
263EXPORT_SYMBOL(blk_stop_queue);
264
265/**
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
268 *
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
59c51591 274 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
277 *
da527770 278 * This function does not cancel any asynchronous activity arising
da3dae54 279 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 280 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 281 *
1da177e4
LT
282 */
283void blk_sync_queue(struct request_queue *q)
284{
70ed28b9 285 del_timer_sync(&q->timeout);
f04c1fe7
ML
286
287 if (q->mq_ops) {
288 struct blk_mq_hw_ctx *hctx;
289 int i;
290
70f4db63 291 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 292 cancel_work_sync(&hctx->run_work);
70f4db63
CH
293 cancel_delayed_work_sync(&hctx->delay_work);
294 }
f04c1fe7
ML
295 } else {
296 cancel_delayed_work_sync(&q->delay_work);
297 }
1da177e4
LT
298}
299EXPORT_SYMBOL(blk_sync_queue);
300
c246e80d
BVA
301/**
302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303 * @q: The queue to run
304 *
305 * Description:
306 * Invoke request handling on a queue if there are any pending requests.
307 * May be used to restart request handling after a request has completed.
308 * This variant runs the queue whether or not the queue has been
309 * stopped. Must be called with the queue lock held and interrupts
310 * disabled. See also @blk_run_queue.
311 */
312inline void __blk_run_queue_uncond(struct request_queue *q)
313{
314 if (unlikely(blk_queue_dead(q)))
315 return;
316
24faf6f6
BVA
317 /*
318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 * the queue lock internally. As a result multiple threads may be
320 * running such a request function concurrently. Keep track of the
321 * number of active request_fn invocations such that blk_drain_queue()
322 * can wait until all these request_fn calls have finished.
323 */
324 q->request_fn_active++;
c246e80d 325 q->request_fn(q);
24faf6f6 326 q->request_fn_active--;
c246e80d 327}
a7928c15 328EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 329
1da177e4 330/**
80a4b58e 331 * __blk_run_queue - run a single device queue
1da177e4 332 * @q: The queue to run
80a4b58e
JA
333 *
334 * Description:
335 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 336 * held and interrupts disabled.
1da177e4 337 */
24ecfbe2 338void __blk_run_queue(struct request_queue *q)
1da177e4 339{
a538cd03
TH
340 if (unlikely(blk_queue_stopped(q)))
341 return;
342
c246e80d 343 __blk_run_queue_uncond(q);
75ad23bc
NP
344}
345EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 346
24ecfbe2
CH
347/**
348 * blk_run_queue_async - run a single device queue in workqueue context
349 * @q: The queue to run
350 *
351 * Description:
352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 353 * of us. The caller must hold the queue lock.
24ecfbe2
CH
354 */
355void blk_run_queue_async(struct request_queue *q)
356{
70460571 357 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 358 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 359}
c21e6beb 360EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 361
75ad23bc
NP
362/**
363 * blk_run_queue - run a single device queue
364 * @q: The queue to run
80a4b58e
JA
365 *
366 * Description:
367 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 368 * May be used to restart queueing when a request has completed.
75ad23bc
NP
369 */
370void blk_run_queue(struct request_queue *q)
371{
372 unsigned long flags;
373
374 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 375 __blk_run_queue(q);
1da177e4
LT
376 spin_unlock_irqrestore(q->queue_lock, flags);
377}
378EXPORT_SYMBOL(blk_run_queue);
379
165125e1 380void blk_put_queue(struct request_queue *q)
483f4afc
AV
381{
382 kobject_put(&q->kobj);
383}
d86e0e83 384EXPORT_SYMBOL(blk_put_queue);
483f4afc 385
e3c78ca5 386/**
807592a4 387 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 388 * @q: queue to drain
c9a929dd 389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 390 *
c9a929dd
TH
391 * Drain requests from @q. If @drain_all is set, all requests are drained.
392 * If not, only ELVPRIV requests are drained. The caller is responsible
393 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 394 */
807592a4
BVA
395static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 __releases(q->queue_lock)
397 __acquires(q->queue_lock)
e3c78ca5 398{
458f27a9
AH
399 int i;
400
807592a4
BVA
401 lockdep_assert_held(q->queue_lock);
402
e3c78ca5 403 while (true) {
481a7d64 404 bool drain = false;
e3c78ca5 405
b855b04a
TH
406 /*
407 * The caller might be trying to drain @q before its
408 * elevator is initialized.
409 */
410 if (q->elevator)
411 elv_drain_elevator(q);
412
5efd6113 413 blkcg_drain_queue(q);
e3c78ca5 414
4eabc941
TH
415 /*
416 * This function might be called on a queue which failed
b855b04a
TH
417 * driver init after queue creation or is not yet fully
418 * active yet. Some drivers (e.g. fd and loop) get unhappy
419 * in such cases. Kick queue iff dispatch queue has
420 * something on it and @q has request_fn set.
4eabc941 421 */
b855b04a 422 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 423 __blk_run_queue(q);
c9a929dd 424
8a5ecdd4 425 drain |= q->nr_rqs_elvpriv;
24faf6f6 426 drain |= q->request_fn_active;
481a7d64
TH
427
428 /*
429 * Unfortunately, requests are queued at and tracked from
430 * multiple places and there's no single counter which can
431 * be drained. Check all the queues and counters.
432 */
433 if (drain_all) {
e97c293c 434 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
435 drain |= !list_empty(&q->queue_head);
436 for (i = 0; i < 2; i++) {
8a5ecdd4 437 drain |= q->nr_rqs[i];
481a7d64 438 drain |= q->in_flight[i];
7c94e1c1
ML
439 if (fq)
440 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
441 }
442 }
e3c78ca5 443
481a7d64 444 if (!drain)
e3c78ca5 445 break;
807592a4
BVA
446
447 spin_unlock_irq(q->queue_lock);
448
e3c78ca5 449 msleep(10);
807592a4
BVA
450
451 spin_lock_irq(q->queue_lock);
e3c78ca5 452 }
458f27a9
AH
453
454 /*
455 * With queue marked dead, any woken up waiter will fail the
456 * allocation path, so the wakeup chaining is lost and we're
457 * left with hung waiters. We need to wake up those waiters.
458 */
459 if (q->request_fn) {
a051661c
TH
460 struct request_list *rl;
461
a051661c
TH
462 blk_queue_for_each_rl(rl, q)
463 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 wake_up_all(&rl->wait[i]);
458f27a9 465 }
e3c78ca5
TH
466}
467
d732580b
TH
468/**
469 * blk_queue_bypass_start - enter queue bypass mode
470 * @q: queue of interest
471 *
472 * In bypass mode, only the dispatch FIFO queue of @q is used. This
473 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 474 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476 * inside queue or RCU read lock.
d732580b
TH
477 */
478void blk_queue_bypass_start(struct request_queue *q)
479{
480 spin_lock_irq(q->queue_lock);
776687bc 481 q->bypass_depth++;
d732580b
TH
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 spin_unlock_irq(q->queue_lock);
484
776687bc
TH
485 /*
486 * Queues start drained. Skip actual draining till init is
487 * complete. This avoids lenghty delays during queue init which
488 * can happen many times during boot.
489 */
490 if (blk_queue_init_done(q)) {
807592a4
BVA
491 spin_lock_irq(q->queue_lock);
492 __blk_drain_queue(q, false);
493 spin_unlock_irq(q->queue_lock);
494
b82d4b19
TH
495 /* ensure blk_queue_bypass() is %true inside RCU read lock */
496 synchronize_rcu();
497 }
d732580b
TH
498}
499EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
500
501/**
502 * blk_queue_bypass_end - leave queue bypass mode
503 * @q: queue of interest
504 *
505 * Leave bypass mode and restore the normal queueing behavior.
506 */
507void blk_queue_bypass_end(struct request_queue *q)
508{
509 spin_lock_irq(q->queue_lock);
510 if (!--q->bypass_depth)
511 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 WARN_ON_ONCE(q->bypass_depth < 0);
513 spin_unlock_irq(q->queue_lock);
514}
515EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
516
aed3ea94
JA
517void blk_set_queue_dying(struct request_queue *q)
518{
1b856086
BVA
519 spin_lock_irq(q->queue_lock);
520 queue_flag_set(QUEUE_FLAG_DYING, q);
521 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
522
523 if (q->mq_ops)
524 blk_mq_wake_waiters(q);
525 else {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q) {
529 if (rl->rq_pool) {
530 wake_up(&rl->wait[BLK_RW_SYNC]);
531 wake_up(&rl->wait[BLK_RW_ASYNC]);
532 }
533 }
534 }
535}
536EXPORT_SYMBOL_GPL(blk_set_queue_dying);
537
c9a929dd
TH
538/**
539 * blk_cleanup_queue - shutdown a request queue
540 * @q: request queue to shutdown
541 *
c246e80d
BVA
542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 544 */
6728cb0e 545void blk_cleanup_queue(struct request_queue *q)
483f4afc 546{
c9a929dd 547 spinlock_t *lock = q->queue_lock;
e3335de9 548
3f3299d5 549 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 550 mutex_lock(&q->sysfs_lock);
aed3ea94 551 blk_set_queue_dying(q);
c9a929dd 552 spin_lock_irq(lock);
6ecf23af 553
80fd9979 554 /*
3f3299d5 555 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
556 * that, unlike blk_queue_bypass_start(), we aren't performing
557 * synchronize_rcu() after entering bypass mode to avoid the delay
558 * as some drivers create and destroy a lot of queues while
559 * probing. This is still safe because blk_release_queue() will be
560 * called only after the queue refcnt drops to zero and nothing,
561 * RCU or not, would be traversing the queue by then.
562 */
6ecf23af
TH
563 q->bypass_depth++;
564 queue_flag_set(QUEUE_FLAG_BYPASS, q);
565
c9a929dd
TH
566 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 568 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
569 spin_unlock_irq(lock);
570 mutex_unlock(&q->sysfs_lock);
571
c246e80d
BVA
572 /*
573 * Drain all requests queued before DYING marking. Set DEAD flag to
574 * prevent that q->request_fn() gets invoked after draining finished.
575 */
3ef28e83
DW
576 blk_freeze_queue(q);
577 spin_lock_irq(lock);
578 if (!q->mq_ops)
43a5e4e2 579 __blk_drain_queue(q, true);
c246e80d 580 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 581 spin_unlock_irq(lock);
c9a929dd 582
5a48fc14
DW
583 /* for synchronous bio-based driver finish in-flight integrity i/o */
584 blk_flush_integrity();
585
c9a929dd
TH
586 /* @q won't process any more request, flush async actions */
587 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
588 blk_sync_queue(q);
589
45a9c9d9
BVA
590 if (q->mq_ops)
591 blk_mq_free_queue(q);
3ef28e83 592 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 593
5e5cfac0
AH
594 spin_lock_irq(lock);
595 if (q->queue_lock != &q->__queue_lock)
596 q->queue_lock = &q->__queue_lock;
597 spin_unlock_irq(lock);
598
b02176f3 599 bdi_unregister(&q->backing_dev_info);
6cd18e71 600
c9a929dd 601 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
602 blk_put_queue(q);
603}
1da177e4
LT
604EXPORT_SYMBOL(blk_cleanup_queue);
605
271508db
DR
606/* Allocate memory local to the request queue */
607static void *alloc_request_struct(gfp_t gfp_mask, void *data)
608{
609 int nid = (int)(long)data;
610 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
611}
612
613static void free_request_struct(void *element, void *unused)
614{
615 kmem_cache_free(request_cachep, element);
616}
617
5b788ce3
TH
618int blk_init_rl(struct request_list *rl, struct request_queue *q,
619 gfp_t gfp_mask)
1da177e4 620{
1abec4fd
MS
621 if (unlikely(rl->rq_pool))
622 return 0;
623
5b788ce3 624 rl->q = q;
1faa16d2
JA
625 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
627 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 629
271508db
DR
630 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
631 free_request_struct,
632 (void *)(long)q->node, gfp_mask,
633 q->node);
1da177e4
LT
634 if (!rl->rq_pool)
635 return -ENOMEM;
636
637 return 0;
638}
639
5b788ce3
TH
640void blk_exit_rl(struct request_list *rl)
641{
642 if (rl->rq_pool)
643 mempool_destroy(rl->rq_pool);
644}
645
165125e1 646struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 647{
c304a51b 648 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
649}
650EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 651
6f3b0e8b 652int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
653{
654 while (true) {
655 int ret;
656
657 if (percpu_ref_tryget_live(&q->q_usage_counter))
658 return 0;
659
6f3b0e8b 660 if (nowait)
3ef28e83
DW
661 return -EBUSY;
662
663 ret = wait_event_interruptible(q->mq_freeze_wq,
664 !atomic_read(&q->mq_freeze_depth) ||
665 blk_queue_dying(q));
666 if (blk_queue_dying(q))
667 return -ENODEV;
668 if (ret)
669 return ret;
670 }
671}
672
673void blk_queue_exit(struct request_queue *q)
674{
675 percpu_ref_put(&q->q_usage_counter);
676}
677
678static void blk_queue_usage_counter_release(struct percpu_ref *ref)
679{
680 struct request_queue *q =
681 container_of(ref, struct request_queue, q_usage_counter);
682
683 wake_up_all(&q->mq_freeze_wq);
684}
685
287922eb
CH
686static void blk_rq_timed_out_timer(unsigned long data)
687{
688 struct request_queue *q = (struct request_queue *)data;
689
690 kblockd_schedule_work(&q->timeout_work);
691}
692
165125e1 693struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 694{
165125e1 695 struct request_queue *q;
e0bf68dd 696 int err;
1946089a 697
8324aa91 698 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 699 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
700 if (!q)
701 return NULL;
702
00380a40 703 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 704 if (q->id < 0)
3d2936f4 705 goto fail_q;
a73f730d 706
54efd50b
KO
707 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
708 if (!q->bio_split)
709 goto fail_id;
710
0989a025 711 q->backing_dev_info.ra_pages =
09cbfeaf 712 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 713 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 714 q->backing_dev_info.name = "block";
5151412d 715 q->node = node_id;
0989a025 716
e0bf68dd 717 err = bdi_init(&q->backing_dev_info);
a73f730d 718 if (err)
54efd50b 719 goto fail_split;
e0bf68dd 720
31373d09
MG
721 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 723 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 724 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 725 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 726 INIT_LIST_HEAD(&q->icq_list);
4eef3049 727#ifdef CONFIG_BLK_CGROUP
e8989fae 728 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 729#endif
3cca6dc1 730 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 731
8324aa91 732 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 733
483f4afc 734 mutex_init(&q->sysfs_lock);
e7e72bf6 735 spin_lock_init(&q->__queue_lock);
483f4afc 736
c94a96ac
VG
737 /*
738 * By default initialize queue_lock to internal lock and driver can
739 * override it later if need be.
740 */
741 q->queue_lock = &q->__queue_lock;
742
b82d4b19
TH
743 /*
744 * A queue starts its life with bypass turned on to avoid
745 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
746 * init. The initial bypass will be finished when the queue is
747 * registered by blk_register_queue().
b82d4b19
TH
748 */
749 q->bypass_depth = 1;
750 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
751
320ae51f
JA
752 init_waitqueue_head(&q->mq_freeze_wq);
753
3ef28e83
DW
754 /*
755 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 * See blk_register_queue() for details.
757 */
758 if (percpu_ref_init(&q->q_usage_counter,
759 blk_queue_usage_counter_release,
760 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 761 goto fail_bdi;
f51b802c 762
3ef28e83
DW
763 if (blkcg_init_queue(q))
764 goto fail_ref;
765
1da177e4 766 return q;
a73f730d 767
3ef28e83
DW
768fail_ref:
769 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
770fail_bdi:
771 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
772fail_split:
773 bioset_free(q->bio_split);
a73f730d
TH
774fail_id:
775 ida_simple_remove(&blk_queue_ida, q->id);
776fail_q:
777 kmem_cache_free(blk_requestq_cachep, q);
778 return NULL;
1da177e4 779}
1946089a 780EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
781
782/**
783 * blk_init_queue - prepare a request queue for use with a block device
784 * @rfn: The function to be called to process requests that have been
785 * placed on the queue.
786 * @lock: Request queue spin lock
787 *
788 * Description:
789 * If a block device wishes to use the standard request handling procedures,
790 * which sorts requests and coalesces adjacent requests, then it must
791 * call blk_init_queue(). The function @rfn will be called when there
792 * are requests on the queue that need to be processed. If the device
793 * supports plugging, then @rfn may not be called immediately when requests
794 * are available on the queue, but may be called at some time later instead.
795 * Plugged queues are generally unplugged when a buffer belonging to one
796 * of the requests on the queue is needed, or due to memory pressure.
797 *
798 * @rfn is not required, or even expected, to remove all requests off the
799 * queue, but only as many as it can handle at a time. If it does leave
800 * requests on the queue, it is responsible for arranging that the requests
801 * get dealt with eventually.
802 *
803 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
804 * request queue; this lock will be taken also from interrupt context, so irq
805 * disabling is needed for it.
1da177e4 806 *
710027a4 807 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
808 * it didn't succeed.
809 *
810 * Note:
811 * blk_init_queue() must be paired with a blk_cleanup_queue() call
812 * when the block device is deactivated (such as at module unload).
813 **/
1946089a 814
165125e1 815struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 816{
c304a51b 817 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
818}
819EXPORT_SYMBOL(blk_init_queue);
820
165125e1 821struct request_queue *
1946089a
CL
822blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
823{
c86d1b8a 824 struct request_queue *uninit_q, *q;
1da177e4 825
c86d1b8a
MS
826 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
827 if (!uninit_q)
828 return NULL;
829
5151412d 830 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 831 if (!q)
7982e90c 832 blk_cleanup_queue(uninit_q);
18741986 833
7982e90c 834 return q;
01effb0d
MS
835}
836EXPORT_SYMBOL(blk_init_queue_node);
837
dece1635 838static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 839
01effb0d
MS
840struct request_queue *
841blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
842 spinlock_t *lock)
01effb0d 843{
1da177e4
LT
844 if (!q)
845 return NULL;
846
f70ced09 847 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 848 if (!q->fq)
7982e90c
MS
849 return NULL;
850
a051661c 851 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 852 goto fail;
1da177e4 853
287922eb 854 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 855 q->request_fn = rfn;
1da177e4 856 q->prep_rq_fn = NULL;
28018c24 857 q->unprep_rq_fn = NULL;
60ea8226 858 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
859
860 /* Override internal queue lock with supplied lock pointer */
861 if (lock)
862 q->queue_lock = lock;
1da177e4 863
f3b144aa
JA
864 /*
865 * This also sets hw/phys segments, boundary and size
866 */
c20e8de2 867 blk_queue_make_request(q, blk_queue_bio);
1da177e4 868
44ec9542
AS
869 q->sg_reserved_size = INT_MAX;
870
eb1c160b
TS
871 /* Protect q->elevator from elevator_change */
872 mutex_lock(&q->sysfs_lock);
873
b82d4b19 874 /* init elevator */
eb1c160b
TS
875 if (elevator_init(q, NULL)) {
876 mutex_unlock(&q->sysfs_lock);
708f04d2 877 goto fail;
eb1c160b
TS
878 }
879
880 mutex_unlock(&q->sysfs_lock);
881
b82d4b19 882 return q;
708f04d2
DJ
883
884fail:
ba483388 885 blk_free_flush_queue(q->fq);
87760e5e 886 wbt_exit(q);
708f04d2 887 return NULL;
1da177e4 888}
5151412d 889EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 890
09ac46c4 891bool blk_get_queue(struct request_queue *q)
1da177e4 892{
3f3299d5 893 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
894 __blk_get_queue(q);
895 return true;
1da177e4
LT
896 }
897
09ac46c4 898 return false;
1da177e4 899}
d86e0e83 900EXPORT_SYMBOL(blk_get_queue);
1da177e4 901
5b788ce3 902static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 903{
e8064021 904 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 905 elv_put_request(rl->q, rq);
f1f8cc94 906 if (rq->elv.icq)
11a3122f 907 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
908 }
909
5b788ce3 910 mempool_free(rq, rl->rq_pool);
1da177e4
LT
911}
912
1da177e4
LT
913/*
914 * ioc_batching returns true if the ioc is a valid batching request and
915 * should be given priority access to a request.
916 */
165125e1 917static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
918{
919 if (!ioc)
920 return 0;
921
922 /*
923 * Make sure the process is able to allocate at least 1 request
924 * even if the batch times out, otherwise we could theoretically
925 * lose wakeups.
926 */
927 return ioc->nr_batch_requests == q->nr_batching ||
928 (ioc->nr_batch_requests > 0
929 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
930}
931
932/*
933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934 * will cause the process to be a "batcher" on all queues in the system. This
935 * is the behaviour we want though - once it gets a wakeup it should be given
936 * a nice run.
937 */
165125e1 938static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
939{
940 if (!ioc || ioc_batching(q, ioc))
941 return;
942
943 ioc->nr_batch_requests = q->nr_batching;
944 ioc->last_waited = jiffies;
945}
946
5b788ce3 947static void __freed_request(struct request_list *rl, int sync)
1da177e4 948{
5b788ce3 949 struct request_queue *q = rl->q;
1da177e4 950
d40f75a0
TH
951 if (rl->count[sync] < queue_congestion_off_threshold(q))
952 blk_clear_congested(rl, sync);
1da177e4 953
1faa16d2
JA
954 if (rl->count[sync] + 1 <= q->nr_requests) {
955 if (waitqueue_active(&rl->wait[sync]))
956 wake_up(&rl->wait[sync]);
1da177e4 957
5b788ce3 958 blk_clear_rl_full(rl, sync);
1da177e4
LT
959 }
960}
961
962/*
963 * A request has just been released. Account for it, update the full and
964 * congestion status, wake up any waiters. Called under q->queue_lock.
965 */
e8064021
CH
966static void freed_request(struct request_list *rl, bool sync,
967 req_flags_t rq_flags)
1da177e4 968{
5b788ce3 969 struct request_queue *q = rl->q;
1da177e4 970
8a5ecdd4 971 q->nr_rqs[sync]--;
1faa16d2 972 rl->count[sync]--;
e8064021 973 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 974 q->nr_rqs_elvpriv--;
1da177e4 975
5b788ce3 976 __freed_request(rl, sync);
1da177e4 977
1faa16d2 978 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 979 __freed_request(rl, sync ^ 1);
1da177e4
LT
980}
981
e3a2b3f9
JA
982int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
983{
984 struct request_list *rl;
d40f75a0 985 int on_thresh, off_thresh;
e3a2b3f9
JA
986
987 spin_lock_irq(q->queue_lock);
988 q->nr_requests = nr;
989 blk_queue_congestion_threshold(q);
d40f75a0
TH
990 on_thresh = queue_congestion_on_threshold(q);
991 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 992
d40f75a0
TH
993 blk_queue_for_each_rl(rl, q) {
994 if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 blk_set_congested(rl, BLK_RW_SYNC);
996 else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 998
d40f75a0
TH
999 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 blk_set_congested(rl, BLK_RW_ASYNC);
1001 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1003
e3a2b3f9
JA
1004 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 blk_set_rl_full(rl, BLK_RW_SYNC);
1006 } else {
1007 blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 wake_up(&rl->wait[BLK_RW_SYNC]);
1009 }
1010
1011 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 blk_set_rl_full(rl, BLK_RW_ASYNC);
1013 } else {
1014 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 wake_up(&rl->wait[BLK_RW_ASYNC]);
1016 }
1017 }
1018
1019 spin_unlock_irq(q->queue_lock);
1020 return 0;
1021}
1022
9d5a4e94
MS
1023/*
1024 * Determine if elevator data should be initialized when allocating the
1025 * request associated with @bio.
1026 */
1027static bool blk_rq_should_init_elevator(struct bio *bio)
1028{
1029 if (!bio)
1030 return true;
1031
1032 /*
1033 * Flush requests do not use the elevator so skip initialization.
1034 * This allows a request to share the flush and elevator data.
1035 */
1eff9d32 1036 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
9d5a4e94
MS
1037 return false;
1038
1039 return true;
1040}
1041
da8303c6 1042/**
a06e05e6 1043 * __get_request - get a free request
5b788ce3 1044 * @rl: request list to allocate from
ef295ecf 1045 * @op: operation and flags
da8303c6
TH
1046 * @bio: bio to allocate request for (can be %NULL)
1047 * @gfp_mask: allocation mask
1048 *
1049 * Get a free request from @q. This function may fail under memory
1050 * pressure or if @q is dead.
1051 *
da3dae54 1052 * Must be called with @q->queue_lock held and,
a492f075
JL
1053 * Returns ERR_PTR on failure, with @q->queue_lock held.
1054 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1055 */
ef295ecf
CH
1056static struct request *__get_request(struct request_list *rl, unsigned int op,
1057 struct bio *bio, gfp_t gfp_mask)
1da177e4 1058{
5b788ce3 1059 struct request_queue *q = rl->q;
b679281a 1060 struct request *rq;
7f4b35d1
TH
1061 struct elevator_type *et = q->elevator->type;
1062 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1063 struct io_cq *icq = NULL;
ef295ecf 1064 const bool is_sync = op_is_sync(op);
75eb6c37 1065 int may_queue;
e8064021 1066 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1067
3f3299d5 1068 if (unlikely(blk_queue_dying(q)))
a492f075 1069 return ERR_PTR(-ENODEV);
da8303c6 1070
ef295ecf 1071 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1072 if (may_queue == ELV_MQUEUE_NO)
1073 goto rq_starved;
1074
1faa16d2
JA
1075 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1076 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1077 /*
1078 * The queue will fill after this allocation, so set
1079 * it as full, and mark this process as "batching".
1080 * This process will be allowed to complete a batch of
1081 * requests, others will be blocked.
1082 */
5b788ce3 1083 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1084 ioc_set_batching(q, ioc);
5b788ce3 1085 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1086 } else {
1087 if (may_queue != ELV_MQUEUE_MUST
1088 && !ioc_batching(q, ioc)) {
1089 /*
1090 * The queue is full and the allocating
1091 * process is not a "batcher", and not
1092 * exempted by the IO scheduler
1093 */
a492f075 1094 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1095 }
1096 }
1da177e4 1097 }
d40f75a0 1098 blk_set_congested(rl, is_sync);
1da177e4
LT
1099 }
1100
082cf69e
JA
1101 /*
1102 * Only allow batching queuers to allocate up to 50% over the defined
1103 * limit of requests, otherwise we could have thousands of requests
1104 * allocated with any setting of ->nr_requests
1105 */
1faa16d2 1106 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1107 return ERR_PTR(-ENOMEM);
fd782a4a 1108
8a5ecdd4 1109 q->nr_rqs[is_sync]++;
1faa16d2
JA
1110 rl->count[is_sync]++;
1111 rl->starved[is_sync] = 0;
cb98fc8b 1112
f1f8cc94
TH
1113 /*
1114 * Decide whether the new request will be managed by elevator. If
e8064021 1115 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1116 * prevent the current elevator from being destroyed until the new
1117 * request is freed. This guarantees icq's won't be destroyed and
1118 * makes creating new ones safe.
1119 *
1120 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1121 * it will be created after releasing queue_lock.
1122 */
d732580b 1123 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
e8064021 1124 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1125 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1126 if (et->icq_cache && ioc)
1127 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1128 }
cb98fc8b 1129
f253b86b 1130 if (blk_queue_io_stat(q))
e8064021 1131 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1132 spin_unlock_irq(q->queue_lock);
1133
29e2b09a 1134 /* allocate and init request */
5b788ce3 1135 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1136 if (!rq)
b679281a 1137 goto fail_alloc;
1da177e4 1138
29e2b09a 1139 blk_rq_init(q, rq);
a051661c 1140 blk_rq_set_rl(rq, rl);
5dc8b362 1141 blk_rq_set_prio(rq, ioc);
ef295ecf 1142 rq->cmd_flags = op;
e8064021 1143 rq->rq_flags = rq_flags;
29e2b09a 1144
aaf7c680 1145 /* init elvpriv */
e8064021 1146 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1147 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1148 if (ioc)
1149 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1150 if (!icq)
1151 goto fail_elvpriv;
29e2b09a 1152 }
aaf7c680
TH
1153
1154 rq->elv.icq = icq;
1155 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1156 goto fail_elvpriv;
1157
1158 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1159 if (icq)
1160 get_io_context(icq->ioc);
1161 }
aaf7c680 1162out:
88ee5ef1
JA
1163 /*
1164 * ioc may be NULL here, and ioc_batching will be false. That's
1165 * OK, if the queue is under the request limit then requests need
1166 * not count toward the nr_batch_requests limit. There will always
1167 * be some limit enforced by BLK_BATCH_TIME.
1168 */
1da177e4
LT
1169 if (ioc_batching(q, ioc))
1170 ioc->nr_batch_requests--;
6728cb0e 1171
e6a40b09 1172 trace_block_getrq(q, bio, op);
1da177e4 1173 return rq;
b679281a 1174
aaf7c680
TH
1175fail_elvpriv:
1176 /*
1177 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1178 * and may fail indefinitely under memory pressure and thus
1179 * shouldn't stall IO. Treat this request as !elvpriv. This will
1180 * disturb iosched and blkcg but weird is bettern than dead.
1181 */
7b2b10e0
RE
1182 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1183 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680 1184
e8064021 1185 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1186 rq->elv.icq = NULL;
1187
1188 spin_lock_irq(q->queue_lock);
8a5ecdd4 1189 q->nr_rqs_elvpriv--;
aaf7c680
TH
1190 spin_unlock_irq(q->queue_lock);
1191 goto out;
1192
b679281a
TH
1193fail_alloc:
1194 /*
1195 * Allocation failed presumably due to memory. Undo anything we
1196 * might have messed up.
1197 *
1198 * Allocating task should really be put onto the front of the wait
1199 * queue, but this is pretty rare.
1200 */
1201 spin_lock_irq(q->queue_lock);
e8064021 1202 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1203
1204 /*
1205 * in the very unlikely event that allocation failed and no
1206 * requests for this direction was pending, mark us starved so that
1207 * freeing of a request in the other direction will notice
1208 * us. another possible fix would be to split the rq mempool into
1209 * READ and WRITE
1210 */
1211rq_starved:
1212 if (unlikely(rl->count[is_sync] == 0))
1213 rl->starved[is_sync] = 1;
a492f075 1214 return ERR_PTR(-ENOMEM);
1da177e4
LT
1215}
1216
da8303c6 1217/**
a06e05e6 1218 * get_request - get a free request
da8303c6 1219 * @q: request_queue to allocate request from
ef295ecf 1220 * @op: operation and flags
da8303c6 1221 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1222 * @gfp_mask: allocation mask
da8303c6 1223 *
d0164adc
MG
1224 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1225 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1226 *
da3dae54 1227 * Must be called with @q->queue_lock held and,
a492f075
JL
1228 * Returns ERR_PTR on failure, with @q->queue_lock held.
1229 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1230 */
ef295ecf
CH
1231static struct request *get_request(struct request_queue *q, unsigned int op,
1232 struct bio *bio, gfp_t gfp_mask)
1da177e4 1233{
ef295ecf 1234 const bool is_sync = op_is_sync(op);
a06e05e6 1235 DEFINE_WAIT(wait);
a051661c 1236 struct request_list *rl;
1da177e4 1237 struct request *rq;
a051661c
TH
1238
1239 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1240retry:
ef295ecf 1241 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1242 if (!IS_ERR(rq))
a06e05e6 1243 return rq;
1da177e4 1244
d0164adc 1245 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1246 blk_put_rl(rl);
a492f075 1247 return rq;
a051661c 1248 }
1da177e4 1249
a06e05e6
TH
1250 /* wait on @rl and retry */
1251 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1252 TASK_UNINTERRUPTIBLE);
1da177e4 1253
e6a40b09 1254 trace_block_sleeprq(q, bio, op);
1da177e4 1255
a06e05e6
TH
1256 spin_unlock_irq(q->queue_lock);
1257 io_schedule();
d6344532 1258
a06e05e6
TH
1259 /*
1260 * After sleeping, we become a "batching" process and will be able
1261 * to allocate at least one request, and up to a big batch of them
1262 * for a small period time. See ioc_batching, ioc_set_batching
1263 */
a06e05e6 1264 ioc_set_batching(q, current->io_context);
05caf8db 1265
a06e05e6
TH
1266 spin_lock_irq(q->queue_lock);
1267 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1268
a06e05e6 1269 goto retry;
1da177e4
LT
1270}
1271
320ae51f
JA
1272static struct request *blk_old_get_request(struct request_queue *q, int rw,
1273 gfp_t gfp_mask)
1da177e4
LT
1274{
1275 struct request *rq;
1276
1277 BUG_ON(rw != READ && rw != WRITE);
1278
7f4b35d1
TH
1279 /* create ioc upfront */
1280 create_io_context(gfp_mask, q->node);
1281
d6344532 1282 spin_lock_irq(q->queue_lock);
ef295ecf 1283 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1284 if (IS_ERR(rq)) {
da8303c6 1285 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1286 return rq;
1287 }
1da177e4 1288
0c4de0f3
CH
1289 /* q->queue_lock is unlocked at this point */
1290 rq->__data_len = 0;
1291 rq->__sector = (sector_t) -1;
1292 rq->bio = rq->biotail = NULL;
1da177e4
LT
1293 return rq;
1294}
320ae51f
JA
1295
1296struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1297{
1298 if (q->mq_ops)
6f3b0e8b
CH
1299 return blk_mq_alloc_request(q, rw,
1300 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1301 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1302 else
1303 return blk_old_get_request(q, rw, gfp_mask);
1304}
1da177e4
LT
1305EXPORT_SYMBOL(blk_get_request);
1306
f27b087b 1307/**
da3dae54 1308 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1309 * @rq: request to be initialized
1310 *
1311 */
1312void blk_rq_set_block_pc(struct request *rq)
1313{
1314 rq->cmd_type = REQ_TYPE_BLOCK_PC;
f27b087b 1315 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1316}
1317EXPORT_SYMBOL(blk_rq_set_block_pc);
1318
1da177e4
LT
1319/**
1320 * blk_requeue_request - put a request back on queue
1321 * @q: request queue where request should be inserted
1322 * @rq: request to be inserted
1323 *
1324 * Description:
1325 * Drivers often keep queueing requests until the hardware cannot accept
1326 * more, when that condition happens we need to put the request back
1327 * on the queue. Must be called with queue lock held.
1328 */
165125e1 1329void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1330{
242f9dcb
JA
1331 blk_delete_timer(rq);
1332 blk_clear_rq_complete(rq);
5f3ea37c 1333 trace_block_rq_requeue(q, rq);
87760e5e 1334 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1335
e8064021 1336 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1337 blk_queue_end_tag(q, rq);
1338
ba396a6c
JB
1339 BUG_ON(blk_queued_rq(rq));
1340
1da177e4
LT
1341 elv_requeue_request(q, rq);
1342}
1da177e4
LT
1343EXPORT_SYMBOL(blk_requeue_request);
1344
73c10101
JA
1345static void add_acct_request(struct request_queue *q, struct request *rq,
1346 int where)
1347{
320ae51f 1348 blk_account_io_start(rq, true);
7eaceacc 1349 __elv_add_request(q, rq, where);
73c10101
JA
1350}
1351
074a7aca
TH
1352static void part_round_stats_single(int cpu, struct hd_struct *part,
1353 unsigned long now)
1354{
7276d02e
JA
1355 int inflight;
1356
074a7aca
TH
1357 if (now == part->stamp)
1358 return;
1359
7276d02e
JA
1360 inflight = part_in_flight(part);
1361 if (inflight) {
074a7aca 1362 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1363 inflight * (now - part->stamp));
074a7aca
TH
1364 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1365 }
1366 part->stamp = now;
1367}
1368
1369/**
496aa8a9
RD
1370 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1371 * @cpu: cpu number for stats access
1372 * @part: target partition
1da177e4
LT
1373 *
1374 * The average IO queue length and utilisation statistics are maintained
1375 * by observing the current state of the queue length and the amount of
1376 * time it has been in this state for.
1377 *
1378 * Normally, that accounting is done on IO completion, but that can result
1379 * in more than a second's worth of IO being accounted for within any one
1380 * second, leading to >100% utilisation. To deal with that, we call this
1381 * function to do a round-off before returning the results when reading
1382 * /proc/diskstats. This accounts immediately for all queue usage up to
1383 * the current jiffies and restarts the counters again.
1384 */
c9959059 1385void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1386{
1387 unsigned long now = jiffies;
1388
074a7aca
TH
1389 if (part->partno)
1390 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1391 part_round_stats_single(cpu, part, now);
6f2576af 1392}
074a7aca 1393EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1394
47fafbc7 1395#ifdef CONFIG_PM
c8158819
LM
1396static void blk_pm_put_request(struct request *rq)
1397{
e8064021 1398 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1399 pm_runtime_mark_last_busy(rq->q->dev);
1400}
1401#else
1402static inline void blk_pm_put_request(struct request *rq) {}
1403#endif
1404
1da177e4
LT
1405/*
1406 * queue lock must be held
1407 */
165125e1 1408void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1409{
e8064021
CH
1410 req_flags_t rq_flags = req->rq_flags;
1411
1da177e4
LT
1412 if (unlikely(!q))
1413 return;
1da177e4 1414
6f5ba581
CH
1415 if (q->mq_ops) {
1416 blk_mq_free_request(req);
1417 return;
1418 }
1419
c8158819
LM
1420 blk_pm_put_request(req);
1421
8922e16c
TH
1422 elv_completed_request(q, req);
1423
1cd96c24
BH
1424 /* this is a bio leak */
1425 WARN_ON(req->bio != NULL);
1426
87760e5e
JA
1427 wbt_done(q->rq_wb, &req->issue_stat);
1428
1da177e4
LT
1429 /*
1430 * Request may not have originated from ll_rw_blk. if not,
1431 * it didn't come out of our reserved rq pools
1432 */
e8064021 1433 if (rq_flags & RQF_ALLOCED) {
a051661c 1434 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1435 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1436
1da177e4 1437 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1438 BUG_ON(ELV_ON_HASH(req));
1da177e4 1439
a051661c 1440 blk_free_request(rl, req);
e8064021 1441 freed_request(rl, sync, rq_flags);
a051661c 1442 blk_put_rl(rl);
1da177e4
LT
1443 }
1444}
6e39b69e
MC
1445EXPORT_SYMBOL_GPL(__blk_put_request);
1446
1da177e4
LT
1447void blk_put_request(struct request *req)
1448{
165125e1 1449 struct request_queue *q = req->q;
8922e16c 1450
320ae51f
JA
1451 if (q->mq_ops)
1452 blk_mq_free_request(req);
1453 else {
1454 unsigned long flags;
1455
1456 spin_lock_irqsave(q->queue_lock, flags);
1457 __blk_put_request(q, req);
1458 spin_unlock_irqrestore(q->queue_lock, flags);
1459 }
1da177e4 1460}
1da177e4
LT
1461EXPORT_SYMBOL(blk_put_request);
1462
320ae51f
JA
1463bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1464 struct bio *bio)
73c10101 1465{
1eff9d32 1466 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1467
73c10101
JA
1468 if (!ll_back_merge_fn(q, req, bio))
1469 return false;
1470
8c1cf6bb 1471 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1472
1473 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1474 blk_rq_set_mixed_merge(req);
1475
1476 req->biotail->bi_next = bio;
1477 req->biotail = bio;
4f024f37 1478 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1479 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1480
320ae51f 1481 blk_account_io_start(req, false);
73c10101
JA
1482 return true;
1483}
1484
320ae51f
JA
1485bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1486 struct bio *bio)
73c10101 1487{
1eff9d32 1488 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1489
73c10101
JA
1490 if (!ll_front_merge_fn(q, req, bio))
1491 return false;
1492
8c1cf6bb 1493 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1494
1495 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1496 blk_rq_set_mixed_merge(req);
1497
73c10101
JA
1498 bio->bi_next = req->bio;
1499 req->bio = bio;
1500
4f024f37
KO
1501 req->__sector = bio->bi_iter.bi_sector;
1502 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1503 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1504
320ae51f 1505 blk_account_io_start(req, false);
73c10101
JA
1506 return true;
1507}
1508
bd87b589 1509/**
320ae51f 1510 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1511 * @q: request_queue new bio is being queued at
1512 * @bio: new bio being queued
1513 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1514 * @same_queue_rq: pointer to &struct request that gets filled in when
1515 * another request associated with @q is found on the plug list
1516 * (optional, may be %NULL)
bd87b589
TH
1517 *
1518 * Determine whether @bio being queued on @q can be merged with a request
1519 * on %current's plugged list. Returns %true if merge was successful,
1520 * otherwise %false.
1521 *
07c2bd37
TH
1522 * Plugging coalesces IOs from the same issuer for the same purpose without
1523 * going through @q->queue_lock. As such it's more of an issuing mechanism
1524 * than scheduling, and the request, while may have elvpriv data, is not
1525 * added on the elevator at this point. In addition, we don't have
1526 * reliable access to the elevator outside queue lock. Only check basic
1527 * merging parameters without querying the elevator.
da41a589
RE
1528 *
1529 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1530 */
320ae51f 1531bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1532 unsigned int *request_count,
1533 struct request **same_queue_rq)
73c10101
JA
1534{
1535 struct blk_plug *plug;
1536 struct request *rq;
1537 bool ret = false;
92f399c7 1538 struct list_head *plug_list;
73c10101 1539
bd87b589 1540 plug = current->plug;
73c10101
JA
1541 if (!plug)
1542 goto out;
56ebdaf2 1543 *request_count = 0;
73c10101 1544
92f399c7
SL
1545 if (q->mq_ops)
1546 plug_list = &plug->mq_list;
1547 else
1548 plug_list = &plug->list;
1549
1550 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1551 int el_ret;
1552
5b3f341f 1553 if (rq->q == q) {
1b2e19f1 1554 (*request_count)++;
5b3f341f
SL
1555 /*
1556 * Only blk-mq multiple hardware queues case checks the
1557 * rq in the same queue, there should be only one such
1558 * rq in a queue
1559 **/
1560 if (same_queue_rq)
1561 *same_queue_rq = rq;
1562 }
56ebdaf2 1563
07c2bd37 1564 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1565 continue;
1566
050c8ea8 1567 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1568 if (el_ret == ELEVATOR_BACK_MERGE) {
1569 ret = bio_attempt_back_merge(q, rq, bio);
1570 if (ret)
1571 break;
1572 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1573 ret = bio_attempt_front_merge(q, rq, bio);
1574 if (ret)
1575 break;
1576 }
1577 }
1578out:
1579 return ret;
1580}
1581
0809e3ac
JM
1582unsigned int blk_plug_queued_count(struct request_queue *q)
1583{
1584 struct blk_plug *plug;
1585 struct request *rq;
1586 struct list_head *plug_list;
1587 unsigned int ret = 0;
1588
1589 plug = current->plug;
1590 if (!plug)
1591 goto out;
1592
1593 if (q->mq_ops)
1594 plug_list = &plug->mq_list;
1595 else
1596 plug_list = &plug->list;
1597
1598 list_for_each_entry(rq, plug_list, queuelist) {
1599 if (rq->q == q)
1600 ret++;
1601 }
1602out:
1603 return ret;
1604}
1605
86db1e29 1606void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1607{
4aff5e23 1608 req->cmd_type = REQ_TYPE_FS;
1eff9d32 1609 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1610 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1611
52d9e675 1612 req->errors = 0;
4f024f37 1613 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1614 if (ioprio_valid(bio_prio(bio)))
1615 req->ioprio = bio_prio(bio);
bc1c56fd 1616 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1617}
1618
dece1635 1619static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1620{
73c10101 1621 struct blk_plug *plug;
ef295ecf 1622 int el_ret, where = ELEVATOR_INSERT_SORT;
73c10101 1623 struct request *req;
56ebdaf2 1624 unsigned int request_count = 0;
87760e5e 1625 unsigned int wb_acct;
1da177e4 1626
1da177e4
LT
1627 /*
1628 * low level driver can indicate that it wants pages above a
1629 * certain limit bounced to low memory (ie for highmem, or even
1630 * ISA dma in theory)
1631 */
1632 blk_queue_bounce(q, &bio);
1633
23688bf4
JN
1634 blk_queue_split(q, &bio, q->bio_split);
1635
ffecfd1a 1636 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1637 bio->bi_error = -EIO;
1638 bio_endio(bio);
dece1635 1639 return BLK_QC_T_NONE;
ffecfd1a
DW
1640 }
1641
1eff9d32 1642 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
73c10101 1643 spin_lock_irq(q->queue_lock);
ae1b1539 1644 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1645 goto get_rq;
1646 }
1647
73c10101
JA
1648 /*
1649 * Check if we can merge with the plugged list before grabbing
1650 * any locks.
1651 */
0809e3ac
JM
1652 if (!blk_queue_nomerges(q)) {
1653 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1654 return BLK_QC_T_NONE;
0809e3ac
JM
1655 } else
1656 request_count = blk_plug_queued_count(q);
1da177e4 1657
73c10101 1658 spin_lock_irq(q->queue_lock);
2056a782 1659
73c10101
JA
1660 el_ret = elv_merge(q, &req, bio);
1661 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1662 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1663 elv_bio_merged(q, req, bio);
73c10101
JA
1664 if (!attempt_back_merge(q, req))
1665 elv_merged_request(q, req, el_ret);
1666 goto out_unlock;
1667 }
1668 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1669 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1670 elv_bio_merged(q, req, bio);
73c10101
JA
1671 if (!attempt_front_merge(q, req))
1672 elv_merged_request(q, req, el_ret);
1673 goto out_unlock;
80a761fd 1674 }
1da177e4
LT
1675 }
1676
450991bc 1677get_rq:
87760e5e
JA
1678 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1679
1da177e4 1680 /*
450991bc 1681 * Grab a free request. This is might sleep but can not fail.
d6344532 1682 * Returns with the queue unlocked.
450991bc 1683 */
ef295ecf 1684 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1685 if (IS_ERR(req)) {
87760e5e 1686 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1687 bio->bi_error = PTR_ERR(req);
1688 bio_endio(bio);
da8303c6
TH
1689 goto out_unlock;
1690 }
d6344532 1691
87760e5e
JA
1692 wbt_track(&req->issue_stat, wb_acct);
1693
450991bc
NP
1694 /*
1695 * After dropping the lock and possibly sleeping here, our request
1696 * may now be mergeable after it had proven unmergeable (above).
1697 * We don't worry about that case for efficiency. It won't happen
1698 * often, and the elevators are able to handle it.
1da177e4 1699 */
52d9e675 1700 init_request_from_bio(req, bio);
1da177e4 1701
9562ad9a 1702 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1703 req->cpu = raw_smp_processor_id();
73c10101
JA
1704
1705 plug = current->plug;
721a9602 1706 if (plug) {
dc6d36c9
JA
1707 /*
1708 * If this is the first request added after a plug, fire
7aef2e78 1709 * of a plug trace.
0a6219a9
ML
1710 *
1711 * @request_count may become stale because of schedule
1712 * out, so check plug list again.
dc6d36c9 1713 */
0a6219a9 1714 if (!request_count || list_empty(&plug->list))
dc6d36c9 1715 trace_block_plug(q);
3540d5e8 1716 else {
50d24c34
SL
1717 struct request *last = list_entry_rq(plug->list.prev);
1718 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1719 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1720 blk_flush_plug_list(plug, false);
019ceb7d
SL
1721 trace_block_plug(q);
1722 }
73c10101 1723 }
73c10101 1724 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1725 blk_account_io_start(req, true);
73c10101
JA
1726 } else {
1727 spin_lock_irq(q->queue_lock);
1728 add_acct_request(q, req, where);
24ecfbe2 1729 __blk_run_queue(q);
73c10101
JA
1730out_unlock:
1731 spin_unlock_irq(q->queue_lock);
1732 }
dece1635
JA
1733
1734 return BLK_QC_T_NONE;
1da177e4
LT
1735}
1736
1737/*
1738 * If bio->bi_dev is a partition, remap the location
1739 */
1740static inline void blk_partition_remap(struct bio *bio)
1741{
1742 struct block_device *bdev = bio->bi_bdev;
1743
778889d8
ST
1744 /*
1745 * Zone reset does not include bi_size so bio_sectors() is always 0.
1746 * Include a test for the reset op code and perform the remap if needed.
1747 */
1748 if (bdev != bdev->bd_contains &&
1749 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1750 struct hd_struct *p = bdev->bd_part;
1751
4f024f37 1752 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1753 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1754
d07335e5
MS
1755 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1756 bdev->bd_dev,
4f024f37 1757 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1758 }
1759}
1760
1da177e4
LT
1761static void handle_bad_sector(struct bio *bio)
1762{
1763 char b[BDEVNAME_SIZE];
1764
1765 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1766 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1767 bdevname(bio->bi_bdev, b),
1eff9d32 1768 bio->bi_opf,
f73a1c7d 1769 (unsigned long long)bio_end_sector(bio),
77304d2a 1770 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1771}
1772
c17bb495
AM
1773#ifdef CONFIG_FAIL_MAKE_REQUEST
1774
1775static DECLARE_FAULT_ATTR(fail_make_request);
1776
1777static int __init setup_fail_make_request(char *str)
1778{
1779 return setup_fault_attr(&fail_make_request, str);
1780}
1781__setup("fail_make_request=", setup_fail_make_request);
1782
b2c9cd37 1783static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1784{
b2c9cd37 1785 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1786}
1787
1788static int __init fail_make_request_debugfs(void)
1789{
dd48c085
AM
1790 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1791 NULL, &fail_make_request);
1792
21f9fcd8 1793 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1794}
1795
1796late_initcall(fail_make_request_debugfs);
1797
1798#else /* CONFIG_FAIL_MAKE_REQUEST */
1799
b2c9cd37
AM
1800static inline bool should_fail_request(struct hd_struct *part,
1801 unsigned int bytes)
c17bb495 1802{
b2c9cd37 1803 return false;
c17bb495
AM
1804}
1805
1806#endif /* CONFIG_FAIL_MAKE_REQUEST */
1807
c07e2b41
JA
1808/*
1809 * Check whether this bio extends beyond the end of the device.
1810 */
1811static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1812{
1813 sector_t maxsector;
1814
1815 if (!nr_sectors)
1816 return 0;
1817
1818 /* Test device or partition size, when known. */
77304d2a 1819 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1820 if (maxsector) {
4f024f37 1821 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1822
1823 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1824 /*
1825 * This may well happen - the kernel calls bread()
1826 * without checking the size of the device, e.g., when
1827 * mounting a device.
1828 */
1829 handle_bad_sector(bio);
1830 return 1;
1831 }
1832 }
1833
1834 return 0;
1835}
1836
27a84d54
CH
1837static noinline_for_stack bool
1838generic_make_request_checks(struct bio *bio)
1da177e4 1839{
165125e1 1840 struct request_queue *q;
5a7bbad2 1841 int nr_sectors = bio_sectors(bio);
51fd77bd 1842 int err = -EIO;
5a7bbad2
CH
1843 char b[BDEVNAME_SIZE];
1844 struct hd_struct *part;
1da177e4
LT
1845
1846 might_sleep();
1da177e4 1847
c07e2b41
JA
1848 if (bio_check_eod(bio, nr_sectors))
1849 goto end_io;
1da177e4 1850
5a7bbad2
CH
1851 q = bdev_get_queue(bio->bi_bdev);
1852 if (unlikely(!q)) {
1853 printk(KERN_ERR
1854 "generic_make_request: Trying to access "
1855 "nonexistent block-device %s (%Lu)\n",
1856 bdevname(bio->bi_bdev, b),
4f024f37 1857 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1858 goto end_io;
1859 }
c17bb495 1860
5a7bbad2 1861 part = bio->bi_bdev->bd_part;
4f024f37 1862 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1863 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1864 bio->bi_iter.bi_size))
5a7bbad2 1865 goto end_io;
2056a782 1866
5a7bbad2
CH
1867 /*
1868 * If this device has partitions, remap block n
1869 * of partition p to block n+start(p) of the disk.
1870 */
1871 blk_partition_remap(bio);
2056a782 1872
5a7bbad2
CH
1873 if (bio_check_eod(bio, nr_sectors))
1874 goto end_io;
1e87901e 1875
5a7bbad2
CH
1876 /*
1877 * Filter flush bio's early so that make_request based
1878 * drivers without flush support don't have to worry
1879 * about them.
1880 */
1eff9d32 1881 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
c888a8f9 1882 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1883 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1884 if (!nr_sectors) {
1885 err = 0;
51fd77bd
JA
1886 goto end_io;
1887 }
5a7bbad2 1888 }
5ddfe969 1889
288dab8a
CH
1890 switch (bio_op(bio)) {
1891 case REQ_OP_DISCARD:
1892 if (!blk_queue_discard(q))
1893 goto not_supported;
1894 break;
1895 case REQ_OP_SECURE_ERASE:
1896 if (!blk_queue_secure_erase(q))
1897 goto not_supported;
1898 break;
1899 case REQ_OP_WRITE_SAME:
1900 if (!bdev_write_same(bio->bi_bdev))
1901 goto not_supported;
58886785 1902 break;
2d253440
ST
1903 case REQ_OP_ZONE_REPORT:
1904 case REQ_OP_ZONE_RESET:
1905 if (!bdev_is_zoned(bio->bi_bdev))
1906 goto not_supported;
288dab8a 1907 break;
a6f0788e
CK
1908 case REQ_OP_WRITE_ZEROES:
1909 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1910 goto not_supported;
1911 break;
288dab8a
CH
1912 default:
1913 break;
5a7bbad2 1914 }
01edede4 1915
7f4b35d1
TH
1916 /*
1917 * Various block parts want %current->io_context and lazy ioc
1918 * allocation ends up trading a lot of pain for a small amount of
1919 * memory. Just allocate it upfront. This may fail and block
1920 * layer knows how to live with it.
1921 */
1922 create_io_context(GFP_ATOMIC, q->node);
1923
ae118896
TH
1924 if (!blkcg_bio_issue_check(q, bio))
1925 return false;
27a84d54 1926
5a7bbad2 1927 trace_block_bio_queue(q, bio);
27a84d54 1928 return true;
a7384677 1929
288dab8a
CH
1930not_supported:
1931 err = -EOPNOTSUPP;
a7384677 1932end_io:
4246a0b6
CH
1933 bio->bi_error = err;
1934 bio_endio(bio);
27a84d54 1935 return false;
1da177e4
LT
1936}
1937
27a84d54
CH
1938/**
1939 * generic_make_request - hand a buffer to its device driver for I/O
1940 * @bio: The bio describing the location in memory and on the device.
1941 *
1942 * generic_make_request() is used to make I/O requests of block
1943 * devices. It is passed a &struct bio, which describes the I/O that needs
1944 * to be done.
1945 *
1946 * generic_make_request() does not return any status. The
1947 * success/failure status of the request, along with notification of
1948 * completion, is delivered asynchronously through the bio->bi_end_io
1949 * function described (one day) else where.
1950 *
1951 * The caller of generic_make_request must make sure that bi_io_vec
1952 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1953 * set to describe the device address, and the
1954 * bi_end_io and optionally bi_private are set to describe how
1955 * completion notification should be signaled.
1956 *
1957 * generic_make_request and the drivers it calls may use bi_next if this
1958 * bio happens to be merged with someone else, and may resubmit the bio to
1959 * a lower device by calling into generic_make_request recursively, which
1960 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1961 */
dece1635 1962blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1963{
bddd87c7 1964 struct bio_list bio_list_on_stack;
dece1635 1965 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1966
27a84d54 1967 if (!generic_make_request_checks(bio))
dece1635 1968 goto out;
27a84d54
CH
1969
1970 /*
1971 * We only want one ->make_request_fn to be active at a time, else
1972 * stack usage with stacked devices could be a problem. So use
1973 * current->bio_list to keep a list of requests submited by a
1974 * make_request_fn function. current->bio_list is also used as a
1975 * flag to say if generic_make_request is currently active in this
1976 * task or not. If it is NULL, then no make_request is active. If
1977 * it is non-NULL, then a make_request is active, and new requests
1978 * should be added at the tail
1979 */
bddd87c7 1980 if (current->bio_list) {
bddd87c7 1981 bio_list_add(current->bio_list, bio);
dece1635 1982 goto out;
d89d8796 1983 }
27a84d54 1984
d89d8796
NB
1985 /* following loop may be a bit non-obvious, and so deserves some
1986 * explanation.
1987 * Before entering the loop, bio->bi_next is NULL (as all callers
1988 * ensure that) so we have a list with a single bio.
1989 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1990 * we assign bio_list to a pointer to the bio_list_on_stack,
1991 * thus initialising the bio_list of new bios to be
27a84d54 1992 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1993 * through a recursive call to generic_make_request. If it
1994 * did, we find a non-NULL value in bio_list and re-enter the loop
1995 * from the top. In this case we really did just take the bio
bddd87c7 1996 * of the top of the list (no pretending) and so remove it from
27a84d54 1997 * bio_list, and call into ->make_request() again.
d89d8796
NB
1998 */
1999 BUG_ON(bio->bi_next);
bddd87c7
AM
2000 bio_list_init(&bio_list_on_stack);
2001 current->bio_list = &bio_list_on_stack;
d89d8796 2002 do {
27a84d54
CH
2003 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2004
6f3b0e8b 2005 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2006 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2007
2008 blk_queue_exit(q);
27a84d54 2009
3ef28e83
DW
2010 bio = bio_list_pop(current->bio_list);
2011 } else {
2012 struct bio *bio_next = bio_list_pop(current->bio_list);
2013
2014 bio_io_error(bio);
2015 bio = bio_next;
2016 }
d89d8796 2017 } while (bio);
bddd87c7 2018 current->bio_list = NULL; /* deactivate */
dece1635
JA
2019
2020out:
2021 return ret;
d89d8796 2022}
1da177e4
LT
2023EXPORT_SYMBOL(generic_make_request);
2024
2025/**
710027a4 2026 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2027 * @bio: The &struct bio which describes the I/O
2028 *
2029 * submit_bio() is very similar in purpose to generic_make_request(), and
2030 * uses that function to do most of the work. Both are fairly rough
710027a4 2031 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2032 *
2033 */
4e49ea4a 2034blk_qc_t submit_bio(struct bio *bio)
1da177e4 2035{
bf2de6f5
JA
2036 /*
2037 * If it's a regular read/write or a barrier with data attached,
2038 * go through the normal accounting stuff before submission.
2039 */
e2a60da7 2040 if (bio_has_data(bio)) {
4363ac7c
MP
2041 unsigned int count;
2042
95fe6c1a 2043 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2044 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2045 else
2046 count = bio_sectors(bio);
2047
a8ebb056 2048 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2049 count_vm_events(PGPGOUT, count);
2050 } else {
4f024f37 2051 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2052 count_vm_events(PGPGIN, count);
2053 }
2054
2055 if (unlikely(block_dump)) {
2056 char b[BDEVNAME_SIZE];
8dcbdc74 2057 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2058 current->comm, task_pid_nr(current),
a8ebb056 2059 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2060 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2061 bdevname(bio->bi_bdev, b),
2062 count);
bf2de6f5 2063 }
1da177e4
LT
2064 }
2065
dece1635 2066 return generic_make_request(bio);
1da177e4 2067}
1da177e4
LT
2068EXPORT_SYMBOL(submit_bio);
2069
82124d60 2070/**
bf4e6b4e
HR
2071 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2072 * for new the queue limits
82124d60
KU
2073 * @q: the queue
2074 * @rq: the request being checked
2075 *
2076 * Description:
2077 * @rq may have been made based on weaker limitations of upper-level queues
2078 * in request stacking drivers, and it may violate the limitation of @q.
2079 * Since the block layer and the underlying device driver trust @rq
2080 * after it is inserted to @q, it should be checked against @q before
2081 * the insertion using this generic function.
2082 *
82124d60 2083 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2084 * limits when retrying requests on other queues. Those requests need
2085 * to be checked against the new queue limits again during dispatch.
82124d60 2086 */
bf4e6b4e
HR
2087static int blk_cloned_rq_check_limits(struct request_queue *q,
2088 struct request *rq)
82124d60 2089{
8fe0d473 2090 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2091 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2092 return -EIO;
2093 }
2094
2095 /*
2096 * queue's settings related to segment counting like q->bounce_pfn
2097 * may differ from that of other stacking queues.
2098 * Recalculate it to check the request correctly on this queue's
2099 * limitation.
2100 */
2101 blk_recalc_rq_segments(rq);
8a78362c 2102 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2103 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2104 return -EIO;
2105 }
2106
2107 return 0;
2108}
82124d60
KU
2109
2110/**
2111 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2112 * @q: the queue to submit the request
2113 * @rq: the request being queued
2114 */
2115int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2116{
2117 unsigned long flags;
4853abaa 2118 int where = ELEVATOR_INSERT_BACK;
82124d60 2119
bf4e6b4e 2120 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2121 return -EIO;
2122
b2c9cd37
AM
2123 if (rq->rq_disk &&
2124 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2125 return -EIO;
82124d60 2126
7fb4898e
KB
2127 if (q->mq_ops) {
2128 if (blk_queue_io_stat(q))
2129 blk_account_io_start(rq, true);
6acfe68b 2130 blk_mq_insert_request(rq, false, true, false);
7fb4898e
KB
2131 return 0;
2132 }
2133
82124d60 2134 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2135 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2136 spin_unlock_irqrestore(q->queue_lock, flags);
2137 return -ENODEV;
2138 }
82124d60
KU
2139
2140 /*
2141 * Submitting request must be dequeued before calling this function
2142 * because it will be linked to another request_queue
2143 */
2144 BUG_ON(blk_queued_rq(rq));
2145
28a8f0d3 2146 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
4853abaa
JM
2147 where = ELEVATOR_INSERT_FLUSH;
2148
2149 add_acct_request(q, rq, where);
e67b77c7
JM
2150 if (where == ELEVATOR_INSERT_FLUSH)
2151 __blk_run_queue(q);
82124d60
KU
2152 spin_unlock_irqrestore(q->queue_lock, flags);
2153
2154 return 0;
2155}
2156EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2157
80a761fd
TH
2158/**
2159 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2160 * @rq: request to examine
2161 *
2162 * Description:
2163 * A request could be merge of IOs which require different failure
2164 * handling. This function determines the number of bytes which
2165 * can be failed from the beginning of the request without
2166 * crossing into area which need to be retried further.
2167 *
2168 * Return:
2169 * The number of bytes to fail.
2170 *
2171 * Context:
2172 * queue_lock must be held.
2173 */
2174unsigned int blk_rq_err_bytes(const struct request *rq)
2175{
2176 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2177 unsigned int bytes = 0;
2178 struct bio *bio;
2179
e8064021 2180 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2181 return blk_rq_bytes(rq);
2182
2183 /*
2184 * Currently the only 'mixing' which can happen is between
2185 * different fastfail types. We can safely fail portions
2186 * which have all the failfast bits that the first one has -
2187 * the ones which are at least as eager to fail as the first
2188 * one.
2189 */
2190 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2191 if ((bio->bi_opf & ff) != ff)
80a761fd 2192 break;
4f024f37 2193 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2194 }
2195
2196 /* this could lead to infinite loop */
2197 BUG_ON(blk_rq_bytes(rq) && !bytes);
2198 return bytes;
2199}
2200EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2201
320ae51f 2202void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2203{
c2553b58 2204 if (blk_do_io_stat(req)) {
bc58ba94
JA
2205 const int rw = rq_data_dir(req);
2206 struct hd_struct *part;
2207 int cpu;
2208
2209 cpu = part_stat_lock();
09e099d4 2210 part = req->part;
bc58ba94
JA
2211 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2212 part_stat_unlock();
2213 }
2214}
2215
320ae51f 2216void blk_account_io_done(struct request *req)
bc58ba94 2217{
bc58ba94 2218 /*
dd4c133f
TH
2219 * Account IO completion. flush_rq isn't accounted as a
2220 * normal IO on queueing nor completion. Accounting the
2221 * containing request is enough.
bc58ba94 2222 */
e8064021 2223 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2224 unsigned long duration = jiffies - req->start_time;
2225 const int rw = rq_data_dir(req);
2226 struct hd_struct *part;
2227 int cpu;
2228
2229 cpu = part_stat_lock();
09e099d4 2230 part = req->part;
bc58ba94
JA
2231
2232 part_stat_inc(cpu, part, ios[rw]);
2233 part_stat_add(cpu, part, ticks[rw], duration);
2234 part_round_stats(cpu, part);
316d315b 2235 part_dec_in_flight(part, rw);
bc58ba94 2236
6c23a968 2237 hd_struct_put(part);
bc58ba94
JA
2238 part_stat_unlock();
2239 }
2240}
2241
47fafbc7 2242#ifdef CONFIG_PM
c8158819
LM
2243/*
2244 * Don't process normal requests when queue is suspended
2245 * or in the process of suspending/resuming
2246 */
2247static struct request *blk_pm_peek_request(struct request_queue *q,
2248 struct request *rq)
2249{
2250 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2251 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2252 return NULL;
2253 else
2254 return rq;
2255}
2256#else
2257static inline struct request *blk_pm_peek_request(struct request_queue *q,
2258 struct request *rq)
2259{
2260 return rq;
2261}
2262#endif
2263
320ae51f
JA
2264void blk_account_io_start(struct request *rq, bool new_io)
2265{
2266 struct hd_struct *part;
2267 int rw = rq_data_dir(rq);
2268 int cpu;
2269
2270 if (!blk_do_io_stat(rq))
2271 return;
2272
2273 cpu = part_stat_lock();
2274
2275 if (!new_io) {
2276 part = rq->part;
2277 part_stat_inc(cpu, part, merges[rw]);
2278 } else {
2279 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2280 if (!hd_struct_try_get(part)) {
2281 /*
2282 * The partition is already being removed,
2283 * the request will be accounted on the disk only
2284 *
2285 * We take a reference on disk->part0 although that
2286 * partition will never be deleted, so we can treat
2287 * it as any other partition.
2288 */
2289 part = &rq->rq_disk->part0;
2290 hd_struct_get(part);
2291 }
2292 part_round_stats(cpu, part);
2293 part_inc_in_flight(part, rw);
2294 rq->part = part;
2295 }
2296
2297 part_stat_unlock();
2298}
2299
3bcddeac 2300/**
9934c8c0
TH
2301 * blk_peek_request - peek at the top of a request queue
2302 * @q: request queue to peek at
2303 *
2304 * Description:
2305 * Return the request at the top of @q. The returned request
2306 * should be started using blk_start_request() before LLD starts
2307 * processing it.
2308 *
2309 * Return:
2310 * Pointer to the request at the top of @q if available. Null
2311 * otherwise.
2312 *
2313 * Context:
2314 * queue_lock must be held.
2315 */
2316struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2317{
2318 struct request *rq;
2319 int ret;
2320
2321 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2322
2323 rq = blk_pm_peek_request(q, rq);
2324 if (!rq)
2325 break;
2326
e8064021 2327 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2328 /*
2329 * This is the first time the device driver
2330 * sees this request (possibly after
2331 * requeueing). Notify IO scheduler.
2332 */
e8064021 2333 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2334 elv_activate_rq(q, rq);
2335
2336 /*
2337 * just mark as started even if we don't start
2338 * it, a request that has been delayed should
2339 * not be passed by new incoming requests
2340 */
e8064021 2341 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2342 trace_block_rq_issue(q, rq);
2343 }
2344
2345 if (!q->boundary_rq || q->boundary_rq == rq) {
2346 q->end_sector = rq_end_sector(rq);
2347 q->boundary_rq = NULL;
2348 }
2349
e8064021 2350 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2351 break;
2352
2e46e8b2 2353 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2354 /*
2355 * make sure space for the drain appears we
2356 * know we can do this because max_hw_segments
2357 * has been adjusted to be one fewer than the
2358 * device can handle
2359 */
2360 rq->nr_phys_segments++;
2361 }
2362
2363 if (!q->prep_rq_fn)
2364 break;
2365
2366 ret = q->prep_rq_fn(q, rq);
2367 if (ret == BLKPREP_OK) {
2368 break;
2369 } else if (ret == BLKPREP_DEFER) {
2370 /*
2371 * the request may have been (partially) prepped.
2372 * we need to keep this request in the front to
e8064021 2373 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2374 * prevent other fs requests from passing this one.
2375 */
2e46e8b2 2376 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2377 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2378 /*
2379 * remove the space for the drain we added
2380 * so that we don't add it again
2381 */
2382 --rq->nr_phys_segments;
2383 }
2384
2385 rq = NULL;
2386 break;
0fb5b1fb
MP
2387 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2388 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2389
e8064021 2390 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2391 /*
2392 * Mark this request as started so we don't trigger
2393 * any debug logic in the end I/O path.
2394 */
2395 blk_start_request(rq);
0fb5b1fb 2396 __blk_end_request_all(rq, err);
158dbda0
TH
2397 } else {
2398 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2399 break;
2400 }
2401 }
2402
2403 return rq;
2404}
9934c8c0 2405EXPORT_SYMBOL(blk_peek_request);
158dbda0 2406
9934c8c0 2407void blk_dequeue_request(struct request *rq)
158dbda0 2408{
9934c8c0
TH
2409 struct request_queue *q = rq->q;
2410
158dbda0
TH
2411 BUG_ON(list_empty(&rq->queuelist));
2412 BUG_ON(ELV_ON_HASH(rq));
2413
2414 list_del_init(&rq->queuelist);
2415
2416 /*
2417 * the time frame between a request being removed from the lists
2418 * and to it is freed is accounted as io that is in progress at
2419 * the driver side.
2420 */
9195291e 2421 if (blk_account_rq(rq)) {
0a7ae2ff 2422 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2423 set_io_start_time_ns(rq);
2424 }
158dbda0
TH
2425}
2426
9934c8c0
TH
2427/**
2428 * blk_start_request - start request processing on the driver
2429 * @req: request to dequeue
2430 *
2431 * Description:
2432 * Dequeue @req and start timeout timer on it. This hands off the
2433 * request to the driver.
2434 *
2435 * Block internal functions which don't want to start timer should
2436 * call blk_dequeue_request().
2437 *
2438 * Context:
2439 * queue_lock must be held.
2440 */
2441void blk_start_request(struct request *req)
2442{
2443 blk_dequeue_request(req);
2444
cf43e6be
JA
2445 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2446 blk_stat_set_issue_time(&req->issue_stat);
2447 req->rq_flags |= RQF_STATS;
87760e5e 2448 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2449 }
2450
9934c8c0 2451 /*
5f49f631
TH
2452 * We are now handing the request to the hardware, initialize
2453 * resid_len to full count and add the timeout handler.
9934c8c0 2454 */
5f49f631 2455 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2456 if (unlikely(blk_bidi_rq(req)))
2457 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2458
4912aa6c 2459 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2460 blk_add_timer(req);
2461}
2462EXPORT_SYMBOL(blk_start_request);
2463
2464/**
2465 * blk_fetch_request - fetch a request from a request queue
2466 * @q: request queue to fetch a request from
2467 *
2468 * Description:
2469 * Return the request at the top of @q. The request is started on
2470 * return and LLD can start processing it immediately.
2471 *
2472 * Return:
2473 * Pointer to the request at the top of @q if available. Null
2474 * otherwise.
2475 *
2476 * Context:
2477 * queue_lock must be held.
2478 */
2479struct request *blk_fetch_request(struct request_queue *q)
2480{
2481 struct request *rq;
2482
2483 rq = blk_peek_request(q);
2484 if (rq)
2485 blk_start_request(rq);
2486 return rq;
2487}
2488EXPORT_SYMBOL(blk_fetch_request);
2489
3bcddeac 2490/**
2e60e022 2491 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2492 * @req: the request being processed
710027a4 2493 * @error: %0 for success, < %0 for error
8ebf9756 2494 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2495 *
2496 * Description:
8ebf9756
RD
2497 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2498 * the request structure even if @req doesn't have leftover.
2499 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2500 *
2501 * This special helper function is only for request stacking drivers
2502 * (e.g. request-based dm) so that they can handle partial completion.
2503 * Actual device drivers should use blk_end_request instead.
2504 *
2505 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2506 * %false return from this function.
3bcddeac
KU
2507 *
2508 * Return:
2e60e022
TH
2509 * %false - this request doesn't have any more data
2510 * %true - this request has more data
3bcddeac 2511 **/
2e60e022 2512bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2513{
f79ea416 2514 int total_bytes;
1da177e4 2515
4a0efdc9
HR
2516 trace_block_rq_complete(req->q, req, nr_bytes);
2517
2e60e022
TH
2518 if (!req->bio)
2519 return false;
2520
1da177e4 2521 /*
6f41469c
TH
2522 * For fs requests, rq is just carrier of independent bio's
2523 * and each partial completion should be handled separately.
2524 * Reset per-request error on each partial completion.
2525 *
2526 * TODO: tj: This is too subtle. It would be better to let
2527 * low level drivers do what they see fit.
1da177e4 2528 */
33659ebb 2529 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2530 req->errors = 0;
2531
33659ebb 2532 if (error && req->cmd_type == REQ_TYPE_FS &&
e8064021 2533 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2534 char *error_type;
2535
2536 switch (error) {
2537 case -ENOLINK:
2538 error_type = "recoverable transport";
2539 break;
2540 case -EREMOTEIO:
2541 error_type = "critical target";
2542 break;
2543 case -EBADE:
2544 error_type = "critical nexus";
2545 break;
d1ffc1f8
HR
2546 case -ETIMEDOUT:
2547 error_type = "timeout";
2548 break;
a9d6ceb8
HR
2549 case -ENOSPC:
2550 error_type = "critical space allocation";
2551 break;
7e782af5
HR
2552 case -ENODATA:
2553 error_type = "critical medium";
2554 break;
79775567
HR
2555 case -EIO:
2556 default:
2557 error_type = "I/O";
2558 break;
2559 }
ef3ecb66
RE
2560 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2561 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2562 req->rq_disk->disk_name : "?",
2563 (unsigned long long)blk_rq_pos(req));
2564
1da177e4
LT
2565 }
2566
bc58ba94 2567 blk_account_io_completion(req, nr_bytes);
d72d904a 2568
f79ea416
KO
2569 total_bytes = 0;
2570 while (req->bio) {
2571 struct bio *bio = req->bio;
4f024f37 2572 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2573
4f024f37 2574 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2575 req->bio = bio->bi_next;
1da177e4 2576
f79ea416 2577 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2578
f79ea416
KO
2579 total_bytes += bio_bytes;
2580 nr_bytes -= bio_bytes;
1da177e4 2581
f79ea416
KO
2582 if (!nr_bytes)
2583 break;
1da177e4
LT
2584 }
2585
2586 /*
2587 * completely done
2588 */
2e60e022
TH
2589 if (!req->bio) {
2590 /*
2591 * Reset counters so that the request stacking driver
2592 * can find how many bytes remain in the request
2593 * later.
2594 */
a2dec7b3 2595 req->__data_len = 0;
2e60e022
TH
2596 return false;
2597 }
1da177e4 2598
f9d03f96
CH
2599 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2600
a2dec7b3 2601 req->__data_len -= total_bytes;
2e46e8b2
TH
2602
2603 /* update sector only for requests with clear definition of sector */
e2a60da7 2604 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2605 req->__sector += total_bytes >> 9;
2e46e8b2 2606
80a761fd 2607 /* mixed attributes always follow the first bio */
e8064021 2608 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2609 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2610 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2611 }
2612
2e46e8b2
TH
2613 /*
2614 * If total number of sectors is less than the first segment
2615 * size, something has gone terribly wrong.
2616 */
2617 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2618 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2619 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2620 }
2621
2622 /* recalculate the number of segments */
1da177e4 2623 blk_recalc_rq_segments(req);
2e46e8b2 2624
2e60e022 2625 return true;
1da177e4 2626}
2e60e022 2627EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2628
2e60e022
TH
2629static bool blk_update_bidi_request(struct request *rq, int error,
2630 unsigned int nr_bytes,
2631 unsigned int bidi_bytes)
5efccd17 2632{
2e60e022
TH
2633 if (blk_update_request(rq, error, nr_bytes))
2634 return true;
5efccd17 2635
2e60e022
TH
2636 /* Bidi request must be completed as a whole */
2637 if (unlikely(blk_bidi_rq(rq)) &&
2638 blk_update_request(rq->next_rq, error, bidi_bytes))
2639 return true;
5efccd17 2640
e2e1a148
JA
2641 if (blk_queue_add_random(rq->q))
2642 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2643
2644 return false;
1da177e4
LT
2645}
2646
28018c24
JB
2647/**
2648 * blk_unprep_request - unprepare a request
2649 * @req: the request
2650 *
2651 * This function makes a request ready for complete resubmission (or
2652 * completion). It happens only after all error handling is complete,
2653 * so represents the appropriate moment to deallocate any resources
2654 * that were allocated to the request in the prep_rq_fn. The queue
2655 * lock is held when calling this.
2656 */
2657void blk_unprep_request(struct request *req)
2658{
2659 struct request_queue *q = req->q;
2660
e8064021 2661 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2662 if (q->unprep_rq_fn)
2663 q->unprep_rq_fn(q, req);
2664}
2665EXPORT_SYMBOL_GPL(blk_unprep_request);
2666
1da177e4
LT
2667/*
2668 * queue lock must be held
2669 */
12120077 2670void blk_finish_request(struct request *req, int error)
1da177e4 2671{
cf43e6be
JA
2672 struct request_queue *q = req->q;
2673
2674 if (req->rq_flags & RQF_STATS)
2675 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2676
e8064021 2677 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2678 blk_queue_end_tag(q, req);
b8286239 2679
ba396a6c 2680 BUG_ON(blk_queued_rq(req));
1da177e4 2681
33659ebb 2682 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2683 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2684
e78042e5
MA
2685 blk_delete_timer(req);
2686
e8064021 2687 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2688 blk_unprep_request(req);
2689
bc58ba94 2690 blk_account_io_done(req);
b8286239 2691
87760e5e
JA
2692 if (req->end_io) {
2693 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2694 req->end_io(req, error);
87760e5e 2695 } else {
b8286239
KU
2696 if (blk_bidi_rq(req))
2697 __blk_put_request(req->next_rq->q, req->next_rq);
2698
cf43e6be 2699 __blk_put_request(q, req);
b8286239 2700 }
1da177e4 2701}
12120077 2702EXPORT_SYMBOL(blk_finish_request);
1da177e4 2703
3b11313a 2704/**
2e60e022
TH
2705 * blk_end_bidi_request - Complete a bidi request
2706 * @rq: the request to complete
2707 * @error: %0 for success, < %0 for error
2708 * @nr_bytes: number of bytes to complete @rq
2709 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2710 *
2711 * Description:
e3a04fe3 2712 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2713 * Drivers that supports bidi can safely call this member for any
2714 * type of request, bidi or uni. In the later case @bidi_bytes is
2715 * just ignored.
336cdb40
KU
2716 *
2717 * Return:
2e60e022
TH
2718 * %false - we are done with this request
2719 * %true - still buffers pending for this request
a0cd1285 2720 **/
b1f74493 2721static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2722 unsigned int nr_bytes, unsigned int bidi_bytes)
2723{
336cdb40 2724 struct request_queue *q = rq->q;
2e60e022 2725 unsigned long flags;
32fab448 2726
2e60e022
TH
2727 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2728 return true;
32fab448 2729
336cdb40 2730 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2731 blk_finish_request(rq, error);
336cdb40
KU
2732 spin_unlock_irqrestore(q->queue_lock, flags);
2733
2e60e022 2734 return false;
32fab448
KU
2735}
2736
336cdb40 2737/**
2e60e022
TH
2738 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2739 * @rq: the request to complete
710027a4 2740 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2741 * @nr_bytes: number of bytes to complete @rq
2742 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2743 *
2744 * Description:
2e60e022
TH
2745 * Identical to blk_end_bidi_request() except that queue lock is
2746 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2747 *
2748 * Return:
2e60e022
TH
2749 * %false - we are done with this request
2750 * %true - still buffers pending for this request
336cdb40 2751 **/
4853abaa 2752bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2753 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2754{
2e60e022
TH
2755 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2756 return true;
336cdb40 2757
2e60e022 2758 blk_finish_request(rq, error);
336cdb40 2759
2e60e022 2760 return false;
336cdb40 2761}
e19a3ab0
KU
2762
2763/**
2764 * blk_end_request - Helper function for drivers to complete the request.
2765 * @rq: the request being processed
710027a4 2766 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2767 * @nr_bytes: number of bytes to complete
2768 *
2769 * Description:
2770 * Ends I/O on a number of bytes attached to @rq.
2771 * If @rq has leftover, sets it up for the next range of segments.
2772 *
2773 * Return:
b1f74493
FT
2774 * %false - we are done with this request
2775 * %true - still buffers pending for this request
e19a3ab0 2776 **/
b1f74493 2777bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2778{
b1f74493 2779 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2780}
56ad1740 2781EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2782
2783/**
b1f74493
FT
2784 * blk_end_request_all - Helper function for drives to finish the request.
2785 * @rq: the request to finish
8ebf9756 2786 * @error: %0 for success, < %0 for error
336cdb40
KU
2787 *
2788 * Description:
b1f74493
FT
2789 * Completely finish @rq.
2790 */
2791void blk_end_request_all(struct request *rq, int error)
336cdb40 2792{
b1f74493
FT
2793 bool pending;
2794 unsigned int bidi_bytes = 0;
336cdb40 2795
b1f74493
FT
2796 if (unlikely(blk_bidi_rq(rq)))
2797 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2798
b1f74493
FT
2799 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2800 BUG_ON(pending);
2801}
56ad1740 2802EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2803
b1f74493
FT
2804/**
2805 * blk_end_request_cur - Helper function to finish the current request chunk.
2806 * @rq: the request to finish the current chunk for
8ebf9756 2807 * @error: %0 for success, < %0 for error
b1f74493
FT
2808 *
2809 * Description:
2810 * Complete the current consecutively mapped chunk from @rq.
2811 *
2812 * Return:
2813 * %false - we are done with this request
2814 * %true - still buffers pending for this request
2815 */
2816bool blk_end_request_cur(struct request *rq, int error)
2817{
2818 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2819}
56ad1740 2820EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2821
80a761fd
TH
2822/**
2823 * blk_end_request_err - Finish a request till the next failure boundary.
2824 * @rq: the request to finish till the next failure boundary for
2825 * @error: must be negative errno
2826 *
2827 * Description:
2828 * Complete @rq till the next failure boundary.
2829 *
2830 * Return:
2831 * %false - we are done with this request
2832 * %true - still buffers pending for this request
2833 */
2834bool blk_end_request_err(struct request *rq, int error)
2835{
2836 WARN_ON(error >= 0);
2837 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2838}
2839EXPORT_SYMBOL_GPL(blk_end_request_err);
2840
e3a04fe3 2841/**
b1f74493
FT
2842 * __blk_end_request - Helper function for drivers to complete the request.
2843 * @rq: the request being processed
2844 * @error: %0 for success, < %0 for error
2845 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2846 *
2847 * Description:
b1f74493 2848 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2849 *
2850 * Return:
b1f74493
FT
2851 * %false - we are done with this request
2852 * %true - still buffers pending for this request
e3a04fe3 2853 **/
b1f74493 2854bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2855{
b1f74493 2856 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2857}
56ad1740 2858EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2859
32fab448 2860/**
b1f74493
FT
2861 * __blk_end_request_all - Helper function for drives to finish the request.
2862 * @rq: the request to finish
8ebf9756 2863 * @error: %0 for success, < %0 for error
32fab448
KU
2864 *
2865 * Description:
b1f74493 2866 * Completely finish @rq. Must be called with queue lock held.
32fab448 2867 */
b1f74493 2868void __blk_end_request_all(struct request *rq, int error)
32fab448 2869{
b1f74493
FT
2870 bool pending;
2871 unsigned int bidi_bytes = 0;
2872
2873 if (unlikely(blk_bidi_rq(rq)))
2874 bidi_bytes = blk_rq_bytes(rq->next_rq);
2875
2876 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2877 BUG_ON(pending);
32fab448 2878}
56ad1740 2879EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2880
e19a3ab0 2881/**
b1f74493
FT
2882 * __blk_end_request_cur - Helper function to finish the current request chunk.
2883 * @rq: the request to finish the current chunk for
8ebf9756 2884 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2885 *
2886 * Description:
b1f74493
FT
2887 * Complete the current consecutively mapped chunk from @rq. Must
2888 * be called with queue lock held.
e19a3ab0
KU
2889 *
2890 * Return:
b1f74493
FT
2891 * %false - we are done with this request
2892 * %true - still buffers pending for this request
2893 */
2894bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2895{
b1f74493 2896 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2897}
56ad1740 2898EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2899
80a761fd
TH
2900/**
2901 * __blk_end_request_err - Finish a request till the next failure boundary.
2902 * @rq: the request to finish till the next failure boundary for
2903 * @error: must be negative errno
2904 *
2905 * Description:
2906 * Complete @rq till the next failure boundary. Must be called
2907 * with queue lock held.
2908 *
2909 * Return:
2910 * %false - we are done with this request
2911 * %true - still buffers pending for this request
2912 */
2913bool __blk_end_request_err(struct request *rq, int error)
2914{
2915 WARN_ON(error >= 0);
2916 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2917}
2918EXPORT_SYMBOL_GPL(__blk_end_request_err);
2919
86db1e29
JA
2920void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2921 struct bio *bio)
1da177e4 2922{
b4f42e28 2923 if (bio_has_data(bio))
fb2dce86 2924 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2925
4f024f37 2926 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2927 rq->bio = rq->biotail = bio;
1da177e4 2928
66846572
N
2929 if (bio->bi_bdev)
2930 rq->rq_disk = bio->bi_bdev->bd_disk;
2931}
1da177e4 2932
2d4dc890
IL
2933#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2934/**
2935 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2936 * @rq: the request to be flushed
2937 *
2938 * Description:
2939 * Flush all pages in @rq.
2940 */
2941void rq_flush_dcache_pages(struct request *rq)
2942{
2943 struct req_iterator iter;
7988613b 2944 struct bio_vec bvec;
2d4dc890
IL
2945
2946 rq_for_each_segment(bvec, rq, iter)
7988613b 2947 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2948}
2949EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2950#endif
2951
ef9e3fac
KU
2952/**
2953 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2954 * @q : the queue of the device being checked
2955 *
2956 * Description:
2957 * Check if underlying low-level drivers of a device are busy.
2958 * If the drivers want to export their busy state, they must set own
2959 * exporting function using blk_queue_lld_busy() first.
2960 *
2961 * Basically, this function is used only by request stacking drivers
2962 * to stop dispatching requests to underlying devices when underlying
2963 * devices are busy. This behavior helps more I/O merging on the queue
2964 * of the request stacking driver and prevents I/O throughput regression
2965 * on burst I/O load.
2966 *
2967 * Return:
2968 * 0 - Not busy (The request stacking driver should dispatch request)
2969 * 1 - Busy (The request stacking driver should stop dispatching request)
2970 */
2971int blk_lld_busy(struct request_queue *q)
2972{
2973 if (q->lld_busy_fn)
2974 return q->lld_busy_fn(q);
2975
2976 return 0;
2977}
2978EXPORT_SYMBOL_GPL(blk_lld_busy);
2979
78d8e58a
MS
2980/**
2981 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2982 * @rq: the clone request to be cleaned up
2983 *
2984 * Description:
2985 * Free all bios in @rq for a cloned request.
2986 */
2987void blk_rq_unprep_clone(struct request *rq)
2988{
2989 struct bio *bio;
2990
2991 while ((bio = rq->bio) != NULL) {
2992 rq->bio = bio->bi_next;
2993
2994 bio_put(bio);
2995 }
2996}
2997EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2998
2999/*
3000 * Copy attributes of the original request to the clone request.
3001 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3002 */
3003static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3004{
3005 dst->cpu = src->cpu;
ef295ecf 3006 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
b0fd271d
KU
3007 dst->cmd_type = src->cmd_type;
3008 dst->__sector = blk_rq_pos(src);
3009 dst->__data_len = blk_rq_bytes(src);
3010 dst->nr_phys_segments = src->nr_phys_segments;
3011 dst->ioprio = src->ioprio;
3012 dst->extra_len = src->extra_len;
78d8e58a
MS
3013}
3014
3015/**
3016 * blk_rq_prep_clone - Helper function to setup clone request
3017 * @rq: the request to be setup
3018 * @rq_src: original request to be cloned
3019 * @bs: bio_set that bios for clone are allocated from
3020 * @gfp_mask: memory allocation mask for bio
3021 * @bio_ctr: setup function to be called for each clone bio.
3022 * Returns %0 for success, non %0 for failure.
3023 * @data: private data to be passed to @bio_ctr
3024 *
3025 * Description:
3026 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3027 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3028 * are not copied, and copying such parts is the caller's responsibility.
3029 * Also, pages which the original bios are pointing to are not copied
3030 * and the cloned bios just point same pages.
3031 * So cloned bios must be completed before original bios, which means
3032 * the caller must complete @rq before @rq_src.
3033 */
3034int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3035 struct bio_set *bs, gfp_t gfp_mask,
3036 int (*bio_ctr)(struct bio *, struct bio *, void *),
3037 void *data)
3038{
3039 struct bio *bio, *bio_src;
3040
3041 if (!bs)
3042 bs = fs_bio_set;
3043
3044 __rq_for_each_bio(bio_src, rq_src) {
3045 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3046 if (!bio)
3047 goto free_and_out;
3048
3049 if (bio_ctr && bio_ctr(bio, bio_src, data))
3050 goto free_and_out;
3051
3052 if (rq->bio) {
3053 rq->biotail->bi_next = bio;
3054 rq->biotail = bio;
3055 } else
3056 rq->bio = rq->biotail = bio;
3057 }
3058
3059 __blk_rq_prep_clone(rq, rq_src);
3060
3061 return 0;
3062
3063free_and_out:
3064 if (bio)
3065 bio_put(bio);
3066 blk_rq_unprep_clone(rq);
3067
3068 return -ENOMEM;
b0fd271d
KU
3069}
3070EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3071
59c3d45e 3072int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3073{
3074 return queue_work(kblockd_workqueue, work);
3075}
1da177e4
LT
3076EXPORT_SYMBOL(kblockd_schedule_work);
3077
ee63cfa7
JA
3078int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3079{
3080 return queue_work_on(cpu, kblockd_workqueue, work);
3081}
3082EXPORT_SYMBOL(kblockd_schedule_work_on);
3083
59c3d45e
JA
3084int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3085 unsigned long delay)
e43473b7
VG
3086{
3087 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3088}
3089EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3090
8ab14595
JA
3091int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3092 unsigned long delay)
3093{
3094 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3095}
3096EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3097
75df7136
SJ
3098/**
3099 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3100 * @plug: The &struct blk_plug that needs to be initialized
3101 *
3102 * Description:
3103 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3104 * pending I/O should the task end up blocking between blk_start_plug() and
3105 * blk_finish_plug(). This is important from a performance perspective, but
3106 * also ensures that we don't deadlock. For instance, if the task is blocking
3107 * for a memory allocation, memory reclaim could end up wanting to free a
3108 * page belonging to that request that is currently residing in our private
3109 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3110 * this kind of deadlock.
3111 */
73c10101
JA
3112void blk_start_plug(struct blk_plug *plug)
3113{
3114 struct task_struct *tsk = current;
3115
dd6cf3e1
SL
3116 /*
3117 * If this is a nested plug, don't actually assign it.
3118 */
3119 if (tsk->plug)
3120 return;
3121
73c10101 3122 INIT_LIST_HEAD(&plug->list);
320ae51f 3123 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3124 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3125 /*
dd6cf3e1
SL
3126 * Store ordering should not be needed here, since a potential
3127 * preempt will imply a full memory barrier
73c10101 3128 */
dd6cf3e1 3129 tsk->plug = plug;
73c10101
JA
3130}
3131EXPORT_SYMBOL(blk_start_plug);
3132
3133static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3134{
3135 struct request *rqa = container_of(a, struct request, queuelist);
3136 struct request *rqb = container_of(b, struct request, queuelist);
3137
975927b9
JM
3138 return !(rqa->q < rqb->q ||
3139 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3140}
3141
49cac01e
JA
3142/*
3143 * If 'from_schedule' is true, then postpone the dispatch of requests
3144 * until a safe kblockd context. We due this to avoid accidental big
3145 * additional stack usage in driver dispatch, in places where the originally
3146 * plugger did not intend it.
3147 */
f6603783 3148static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3149 bool from_schedule)
99e22598 3150 __releases(q->queue_lock)
94b5eb28 3151{
49cac01e 3152 trace_block_unplug(q, depth, !from_schedule);
99e22598 3153
70460571 3154 if (from_schedule)
24ecfbe2 3155 blk_run_queue_async(q);
70460571 3156 else
24ecfbe2 3157 __blk_run_queue(q);
70460571 3158 spin_unlock(q->queue_lock);
94b5eb28
JA
3159}
3160
74018dc3 3161static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3162{
3163 LIST_HEAD(callbacks);
3164
2a7d5559
SL
3165 while (!list_empty(&plug->cb_list)) {
3166 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3167
2a7d5559
SL
3168 while (!list_empty(&callbacks)) {
3169 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3170 struct blk_plug_cb,
3171 list);
2a7d5559 3172 list_del(&cb->list);
74018dc3 3173 cb->callback(cb, from_schedule);
2a7d5559 3174 }
048c9374
N
3175 }
3176}
3177
9cbb1750
N
3178struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3179 int size)
3180{
3181 struct blk_plug *plug = current->plug;
3182 struct blk_plug_cb *cb;
3183
3184 if (!plug)
3185 return NULL;
3186
3187 list_for_each_entry(cb, &plug->cb_list, list)
3188 if (cb->callback == unplug && cb->data == data)
3189 return cb;
3190
3191 /* Not currently on the callback list */
3192 BUG_ON(size < sizeof(*cb));
3193 cb = kzalloc(size, GFP_ATOMIC);
3194 if (cb) {
3195 cb->data = data;
3196 cb->callback = unplug;
3197 list_add(&cb->list, &plug->cb_list);
3198 }
3199 return cb;
3200}
3201EXPORT_SYMBOL(blk_check_plugged);
3202
49cac01e 3203void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3204{
3205 struct request_queue *q;
3206 unsigned long flags;
3207 struct request *rq;
109b8129 3208 LIST_HEAD(list);
94b5eb28 3209 unsigned int depth;
73c10101 3210
74018dc3 3211 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3212
3213 if (!list_empty(&plug->mq_list))
3214 blk_mq_flush_plug_list(plug, from_schedule);
3215
73c10101
JA
3216 if (list_empty(&plug->list))
3217 return;
3218
109b8129
N
3219 list_splice_init(&plug->list, &list);
3220
422765c2 3221 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3222
3223 q = NULL;
94b5eb28 3224 depth = 0;
18811272
JA
3225
3226 /*
3227 * Save and disable interrupts here, to avoid doing it for every
3228 * queue lock we have to take.
3229 */
73c10101 3230 local_irq_save(flags);
109b8129
N
3231 while (!list_empty(&list)) {
3232 rq = list_entry_rq(list.next);
73c10101 3233 list_del_init(&rq->queuelist);
73c10101
JA
3234 BUG_ON(!rq->q);
3235 if (rq->q != q) {
99e22598
JA
3236 /*
3237 * This drops the queue lock
3238 */
3239 if (q)
49cac01e 3240 queue_unplugged(q, depth, from_schedule);
73c10101 3241 q = rq->q;
94b5eb28 3242 depth = 0;
73c10101
JA
3243 spin_lock(q->queue_lock);
3244 }
8ba61435
TH
3245
3246 /*
3247 * Short-circuit if @q is dead
3248 */
3f3299d5 3249 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3250 __blk_end_request_all(rq, -ENODEV);
3251 continue;
3252 }
3253
73c10101
JA
3254 /*
3255 * rq is already accounted, so use raw insert
3256 */
28a8f0d3 3257 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
401a18e9
JA
3258 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3259 else
3260 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3261
3262 depth++;
73c10101
JA
3263 }
3264
99e22598
JA
3265 /*
3266 * This drops the queue lock
3267 */
3268 if (q)
49cac01e 3269 queue_unplugged(q, depth, from_schedule);
73c10101 3270
73c10101
JA
3271 local_irq_restore(flags);
3272}
73c10101
JA
3273
3274void blk_finish_plug(struct blk_plug *plug)
3275{
dd6cf3e1
SL
3276 if (plug != current->plug)
3277 return;
f6603783 3278 blk_flush_plug_list(plug, false);
73c10101 3279
dd6cf3e1 3280 current->plug = NULL;
73c10101 3281}
88b996cd 3282EXPORT_SYMBOL(blk_finish_plug);
73c10101 3283
47fafbc7 3284#ifdef CONFIG_PM
6c954667
LM
3285/**
3286 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3287 * @q: the queue of the device
3288 * @dev: the device the queue belongs to
3289 *
3290 * Description:
3291 * Initialize runtime-PM-related fields for @q and start auto suspend for
3292 * @dev. Drivers that want to take advantage of request-based runtime PM
3293 * should call this function after @dev has been initialized, and its
3294 * request queue @q has been allocated, and runtime PM for it can not happen
3295 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3296 * cases, driver should call this function before any I/O has taken place.
3297 *
3298 * This function takes care of setting up using auto suspend for the device,
3299 * the autosuspend delay is set to -1 to make runtime suspend impossible
3300 * until an updated value is either set by user or by driver. Drivers do
3301 * not need to touch other autosuspend settings.
3302 *
3303 * The block layer runtime PM is request based, so only works for drivers
3304 * that use request as their IO unit instead of those directly use bio's.
3305 */
3306void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3307{
3308 q->dev = dev;
3309 q->rpm_status = RPM_ACTIVE;
3310 pm_runtime_set_autosuspend_delay(q->dev, -1);
3311 pm_runtime_use_autosuspend(q->dev);
3312}
3313EXPORT_SYMBOL(blk_pm_runtime_init);
3314
3315/**
3316 * blk_pre_runtime_suspend - Pre runtime suspend check
3317 * @q: the queue of the device
3318 *
3319 * Description:
3320 * This function will check if runtime suspend is allowed for the device
3321 * by examining if there are any requests pending in the queue. If there
3322 * are requests pending, the device can not be runtime suspended; otherwise,
3323 * the queue's status will be updated to SUSPENDING and the driver can
3324 * proceed to suspend the device.
3325 *
3326 * For the not allowed case, we mark last busy for the device so that
3327 * runtime PM core will try to autosuspend it some time later.
3328 *
3329 * This function should be called near the start of the device's
3330 * runtime_suspend callback.
3331 *
3332 * Return:
3333 * 0 - OK to runtime suspend the device
3334 * -EBUSY - Device should not be runtime suspended
3335 */
3336int blk_pre_runtime_suspend(struct request_queue *q)
3337{
3338 int ret = 0;
3339
4fd41a85
KX
3340 if (!q->dev)
3341 return ret;
3342
6c954667
LM
3343 spin_lock_irq(q->queue_lock);
3344 if (q->nr_pending) {
3345 ret = -EBUSY;
3346 pm_runtime_mark_last_busy(q->dev);
3347 } else {
3348 q->rpm_status = RPM_SUSPENDING;
3349 }
3350 spin_unlock_irq(q->queue_lock);
3351 return ret;
3352}
3353EXPORT_SYMBOL(blk_pre_runtime_suspend);
3354
3355/**
3356 * blk_post_runtime_suspend - Post runtime suspend processing
3357 * @q: the queue of the device
3358 * @err: return value of the device's runtime_suspend function
3359 *
3360 * Description:
3361 * Update the queue's runtime status according to the return value of the
3362 * device's runtime suspend function and mark last busy for the device so
3363 * that PM core will try to auto suspend the device at a later time.
3364 *
3365 * This function should be called near the end of the device's
3366 * runtime_suspend callback.
3367 */
3368void blk_post_runtime_suspend(struct request_queue *q, int err)
3369{
4fd41a85
KX
3370 if (!q->dev)
3371 return;
3372
6c954667
LM
3373 spin_lock_irq(q->queue_lock);
3374 if (!err) {
3375 q->rpm_status = RPM_SUSPENDED;
3376 } else {
3377 q->rpm_status = RPM_ACTIVE;
3378 pm_runtime_mark_last_busy(q->dev);
3379 }
3380 spin_unlock_irq(q->queue_lock);
3381}
3382EXPORT_SYMBOL(blk_post_runtime_suspend);
3383
3384/**
3385 * blk_pre_runtime_resume - Pre runtime resume processing
3386 * @q: the queue of the device
3387 *
3388 * Description:
3389 * Update the queue's runtime status to RESUMING in preparation for the
3390 * runtime resume of the device.
3391 *
3392 * This function should be called near the start of the device's
3393 * runtime_resume callback.
3394 */
3395void blk_pre_runtime_resume(struct request_queue *q)
3396{
4fd41a85
KX
3397 if (!q->dev)
3398 return;
3399
6c954667
LM
3400 spin_lock_irq(q->queue_lock);
3401 q->rpm_status = RPM_RESUMING;
3402 spin_unlock_irq(q->queue_lock);
3403}
3404EXPORT_SYMBOL(blk_pre_runtime_resume);
3405
3406/**
3407 * blk_post_runtime_resume - Post runtime resume processing
3408 * @q: the queue of the device
3409 * @err: return value of the device's runtime_resume function
3410 *
3411 * Description:
3412 * Update the queue's runtime status according to the return value of the
3413 * device's runtime_resume function. If it is successfully resumed, process
3414 * the requests that are queued into the device's queue when it is resuming
3415 * and then mark last busy and initiate autosuspend for it.
3416 *
3417 * This function should be called near the end of the device's
3418 * runtime_resume callback.
3419 */
3420void blk_post_runtime_resume(struct request_queue *q, int err)
3421{
4fd41a85
KX
3422 if (!q->dev)
3423 return;
3424
6c954667
LM
3425 spin_lock_irq(q->queue_lock);
3426 if (!err) {
3427 q->rpm_status = RPM_ACTIVE;
3428 __blk_run_queue(q);
3429 pm_runtime_mark_last_busy(q->dev);
c60855cd 3430 pm_request_autosuspend(q->dev);
6c954667
LM
3431 } else {
3432 q->rpm_status = RPM_SUSPENDED;
3433 }
3434 spin_unlock_irq(q->queue_lock);
3435}
3436EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3437
3438/**
3439 * blk_set_runtime_active - Force runtime status of the queue to be active
3440 * @q: the queue of the device
3441 *
3442 * If the device is left runtime suspended during system suspend the resume
3443 * hook typically resumes the device and corrects runtime status
3444 * accordingly. However, that does not affect the queue runtime PM status
3445 * which is still "suspended". This prevents processing requests from the
3446 * queue.
3447 *
3448 * This function can be used in driver's resume hook to correct queue
3449 * runtime PM status and re-enable peeking requests from the queue. It
3450 * should be called before first request is added to the queue.
3451 */
3452void blk_set_runtime_active(struct request_queue *q)
3453{
3454 spin_lock_irq(q->queue_lock);
3455 q->rpm_status = RPM_ACTIVE;
3456 pm_runtime_mark_last_busy(q->dev);
3457 pm_request_autosuspend(q->dev);
3458 spin_unlock_irq(q->queue_lock);
3459}
3460EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3461#endif
3462
1da177e4
LT
3463int __init blk_dev_init(void)
3464{
ef295ecf
CH
3465 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3466 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3467 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3468 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3469 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3470
89b90be2
TH
3471 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3472 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3473 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3474 if (!kblockd_workqueue)
3475 panic("Failed to create kblockd\n");
3476
3477 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3478 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3479
c2789bd4 3480 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3481 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3482
d38ecf93 3483 return 0;
1da177e4 3484}