]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: copy bio op to request op
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
d674d414 54struct kmem_cache *request_cachep;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
143a87f4 148 if (unlikely(rq->cmd_flags & REQ_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
78d8e58a 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
21491412
JA
209/**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218void blk_start_queue_async(struct request_queue *q)
219{
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222}
223EXPORT_SYMBOL(blk_start_queue_async);
224
1da177e4
LT
225/**
226 * blk_start_queue - restart a previously stopped queue
165125e1 227 * @q: The &struct request_queue in question
1da177e4
LT
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
165125e1 234void blk_start_queue(struct request_queue *q)
1da177e4 235{
a038e253
PBG
236 WARN_ON(!irqs_disabled());
237
75ad23bc 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 239 __blk_run_queue(q);
1da177e4 240}
1da177e4
LT
241EXPORT_SYMBOL(blk_start_queue);
242
243/**
244 * blk_stop_queue - stop a queue
165125e1 245 * @q: The &struct request_queue in question
1da177e4
LT
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
165125e1 257void blk_stop_queue(struct request_queue *q)
1da177e4 258{
136b5721 259 cancel_delayed_work(&q->delay_work);
75ad23bc 260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
261}
262EXPORT_SYMBOL(blk_stop_queue);
263
264/**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
59c51591 273 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
da527770 277 * This function does not cancel any asynchronous activity arising
da3dae54 278 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 279 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 280 *
1da177e4
LT
281 */
282void blk_sync_queue(struct request_queue *q)
283{
70ed28b9 284 del_timer_sync(&q->timeout);
f04c1fe7
ML
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
70f4db63
CH
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
f04c1fe7
ML
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
1da177e4
LT
297}
298EXPORT_SYMBOL(blk_sync_queue);
299
c246e80d
BVA
300/**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311inline void __blk_run_queue_uncond(struct request_queue *q)
312{
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
24faf6f6
BVA
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
c246e80d 324 q->request_fn(q);
24faf6f6 325 q->request_fn_active--;
c246e80d 326}
a7928c15 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 328
1da177e4 329/**
80a4b58e 330 * __blk_run_queue - run a single device queue
1da177e4 331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 335 * held and interrupts disabled.
1da177e4 336 */
24ecfbe2 337void __blk_run_queue(struct request_queue *q)
1da177e4 338{
a538cd03
TH
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
c246e80d 342 __blk_run_queue_uncond(q);
75ad23bc
NP
343}
344EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 345
24ecfbe2
CH
346/**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 352 * of us. The caller must hold the queue lock.
24ecfbe2
CH
353 */
354void blk_run_queue_async(struct request_queue *q)
355{
70460571 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 358}
c21e6beb 359EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 360
75ad23bc
NP
361/**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
80a4b58e
JA
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 367 * May be used to restart queueing when a request has completed.
75ad23bc
NP
368 */
369void blk_run_queue(struct request_queue *q)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 374 __blk_run_queue(q);
1da177e4
LT
375 spin_unlock_irqrestore(q->queue_lock, flags);
376}
377EXPORT_SYMBOL(blk_run_queue);
378
165125e1 379void blk_put_queue(struct request_queue *q)
483f4afc
AV
380{
381 kobject_put(&q->kobj);
382}
d86e0e83 383EXPORT_SYMBOL(blk_put_queue);
483f4afc 384
e3c78ca5 385/**
807592a4 386 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 387 * @q: queue to drain
c9a929dd 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 389 *
c9a929dd
TH
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 393 */
807592a4
BVA
394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
e3c78ca5 397{
458f27a9
AH
398 int i;
399
807592a4
BVA
400 lockdep_assert_held(q->queue_lock);
401
e3c78ca5 402 while (true) {
481a7d64 403 bool drain = false;
e3c78ca5 404
b855b04a
TH
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
5efd6113 412 blkcg_drain_queue(q);
e3c78ca5 413
4eabc941
TH
414 /*
415 * This function might be called on a queue which failed
b855b04a
TH
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
4eabc941 420 */
b855b04a 421 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 422 __blk_run_queue(q);
c9a929dd 423
8a5ecdd4 424 drain |= q->nr_rqs_elvpriv;
24faf6f6 425 drain |= q->request_fn_active;
481a7d64
TH
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
e97c293c 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
8a5ecdd4 436 drain |= q->nr_rqs[i];
481a7d64 437 drain |= q->in_flight[i];
7c94e1c1
ML
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
440 }
441 }
e3c78ca5 442
481a7d64 443 if (!drain)
e3c78ca5 444 break;
807592a4
BVA
445
446 spin_unlock_irq(q->queue_lock);
447
e3c78ca5 448 msleep(10);
807592a4
BVA
449
450 spin_lock_irq(q->queue_lock);
e3c78ca5 451 }
458f27a9
AH
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
a051661c
TH
459 struct request_list *rl;
460
a051661c
TH
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
458f27a9 464 }
e3c78ca5
TH
465}
466
d732580b
TH
467/**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 473 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
d732580b
TH
476 */
477void blk_queue_bypass_start(struct request_queue *q)
478{
479 spin_lock_irq(q->queue_lock);
776687bc 480 q->bypass_depth++;
d732580b
TH
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
776687bc
TH
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
807592a4
BVA
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
b82d4b19
TH
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
d732580b
TH
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500/**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506void blk_queue_bypass_end(struct request_queue *q)
507{
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513}
514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
aed3ea94
JA
516void blk_set_queue_dying(struct request_queue *q)
517{
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532}
533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
c9a929dd
TH
535/**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
c246e80d
BVA
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 541 */
6728cb0e 542void blk_cleanup_queue(struct request_queue *q)
483f4afc 543{
c9a929dd 544 spinlock_t *lock = q->queue_lock;
e3335de9 545
3f3299d5 546 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 547 mutex_lock(&q->sysfs_lock);
aed3ea94 548 blk_set_queue_dying(q);
c9a929dd 549 spin_lock_irq(lock);
6ecf23af 550
80fd9979 551 /*
3f3299d5 552 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
6ecf23af
TH
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
c9a929dd
TH
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 565 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
c246e80d
BVA
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
3ef28e83
DW
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
43a5e4e2 576 __blk_drain_queue(q, true);
c246e80d 577 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 578 spin_unlock_irq(lock);
c9a929dd 579
5a48fc14
DW
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
c9a929dd
TH
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
45a9c9d9
BVA
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
3ef28e83 589 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 590
5e5cfac0
AH
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
b02176f3 596 bdi_unregister(&q->backing_dev_info);
6cd18e71 597
c9a929dd 598 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
599 blk_put_queue(q);
600}
1da177e4
LT
601EXPORT_SYMBOL(blk_cleanup_queue);
602
271508db
DR
603/* Allocate memory local to the request queue */
604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605{
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608}
609
610static void free_request_struct(void *element, void *unused)
611{
612 kmem_cache_free(request_cachep, element);
613}
614
5b788ce3
TH
615int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
1da177e4 617{
1abec4fd
MS
618 if (unlikely(rl->rq_pool))
619 return 0;
620
5b788ce3 621 rl->q = q;
1faa16d2
JA
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 626
271508db
DR
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
1da177e4
LT
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635}
636
5b788ce3
TH
637void blk_exit_rl(struct request_list *rl)
638{
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641}
642
165125e1 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 644{
c304a51b 645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
646}
647EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 648
6f3b0e8b 649int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
650{
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
6f3b0e8b 657 if (nowait)
3ef28e83
DW
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668}
669
670void blk_queue_exit(struct request_queue *q)
671{
672 percpu_ref_put(&q->q_usage_counter);
673}
674
675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676{
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681}
682
287922eb
CH
683static void blk_rq_timed_out_timer(unsigned long data)
684{
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688}
689
165125e1 690struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 691{
165125e1 692 struct request_queue *q;
e0bf68dd 693 int err;
1946089a 694
8324aa91 695 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 696 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
697 if (!q)
698 return NULL;
699
00380a40 700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 701 if (q->id < 0)
3d2936f4 702 goto fail_q;
a73f730d 703
54efd50b
KO
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
0989a025 708 q->backing_dev_info.ra_pages =
09cbfeaf 709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 711 q->backing_dev_info.name = "block";
5151412d 712 q->node = node_id;
0989a025 713
e0bf68dd 714 err = bdi_init(&q->backing_dev_info);
a73f730d 715 if (err)
54efd50b 716 goto fail_split;
e0bf68dd 717
31373d09
MG
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 721 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 722 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 723 INIT_LIST_HEAD(&q->icq_list);
4eef3049 724#ifdef CONFIG_BLK_CGROUP
e8989fae 725 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 726#endif
3cca6dc1 727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 728
8324aa91 729 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 730
483f4afc 731 mutex_init(&q->sysfs_lock);
e7e72bf6 732 spin_lock_init(&q->__queue_lock);
483f4afc 733
c94a96ac
VG
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
b82d4b19
TH
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
b82d4b19
TH
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
320ae51f
JA
749 init_waitqueue_head(&q->mq_freeze_wq);
750
3ef28e83
DW
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 758 goto fail_bdi;
f51b802c 759
3ef28e83
DW
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
1da177e4 763 return q;
a73f730d 764
3ef28e83
DW
765fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
767fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
769fail_split:
770 bioset_free(q->bio_split);
a73f730d
TH
771fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
1da177e4 776}
1946089a 777EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
778
779/**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
1da177e4 803 *
710027a4 804 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
1946089a 811
165125e1 812struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 813{
c304a51b 814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
815}
816EXPORT_SYMBOL(blk_init_queue);
817
165125e1 818struct request_queue *
1946089a
CL
819blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820{
c86d1b8a 821 struct request_queue *uninit_q, *q;
1da177e4 822
c86d1b8a
MS
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
5151412d 827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 828 if (!q)
7982e90c 829 blk_cleanup_queue(uninit_q);
18741986 830
7982e90c 831 return q;
01effb0d
MS
832}
833EXPORT_SYMBOL(blk_init_queue_node);
834
dece1635 835static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 836
01effb0d
MS
837struct request_queue *
838blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
01effb0d 840{
1da177e4
LT
841 if (!q)
842 return NULL;
843
f70ced09 844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 845 if (!q->fq)
7982e90c
MS
846 return NULL;
847
a051661c 848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 849 goto fail;
1da177e4 850
287922eb 851 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 852 q->request_fn = rfn;
1da177e4 853 q->prep_rq_fn = NULL;
28018c24 854 q->unprep_rq_fn = NULL;
60ea8226 855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
1da177e4 860
f3b144aa
JA
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
c20e8de2 864 blk_queue_make_request(q, blk_queue_bio);
1da177e4 865
44ec9542
AS
866 q->sg_reserved_size = INT_MAX;
867
eb1c160b
TS
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
b82d4b19 871 /* init elevator */
eb1c160b
TS
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
708f04d2 874 goto fail;
eb1c160b
TS
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
b82d4b19 879 return q;
708f04d2
DJ
880
881fail:
ba483388 882 blk_free_flush_queue(q->fq);
708f04d2 883 return NULL;
1da177e4 884}
5151412d 885EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 886
09ac46c4 887bool blk_get_queue(struct request_queue *q)
1da177e4 888{
3f3299d5 889 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
890 __blk_get_queue(q);
891 return true;
1da177e4
LT
892 }
893
09ac46c4 894 return false;
1da177e4 895}
d86e0e83 896EXPORT_SYMBOL(blk_get_queue);
1da177e4 897
5b788ce3 898static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 899{
f1f8cc94 900 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 901 elv_put_request(rl->q, rq);
f1f8cc94 902 if (rq->elv.icq)
11a3122f 903 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
904 }
905
5b788ce3 906 mempool_free(rq, rl->rq_pool);
1da177e4
LT
907}
908
1da177e4
LT
909/*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
165125e1 913static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
914{
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926}
927
928/*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
165125e1 934static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
935{
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941}
942
5b788ce3 943static void __freed_request(struct request_list *rl, int sync)
1da177e4 944{
5b788ce3 945 struct request_queue *q = rl->q;
1da177e4 946
d40f75a0
TH
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
1da177e4 949
1faa16d2
JA
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
1da177e4 953
5b788ce3 954 blk_clear_rl_full(rl, sync);
1da177e4
LT
955 }
956}
957
958/*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
5b788ce3 962static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 963{
5b788ce3 964 struct request_queue *q = rl->q;
75eb6c37 965 int sync = rw_is_sync(flags);
1da177e4 966
8a5ecdd4 967 q->nr_rqs[sync]--;
1faa16d2 968 rl->count[sync]--;
75eb6c37 969 if (flags & REQ_ELVPRIV)
8a5ecdd4 970 q->nr_rqs_elvpriv--;
1da177e4 971
5b788ce3 972 __freed_request(rl, sync);
1da177e4 973
1faa16d2 974 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 975 __freed_request(rl, sync ^ 1);
1da177e4
LT
976}
977
e3a2b3f9
JA
978int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979{
980 struct request_list *rl;
d40f75a0 981 int on_thresh, off_thresh;
e3a2b3f9
JA
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
d40f75a0
TH
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 988
d40f75a0
TH
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 994
d40f75a0
TH
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 999
e3a2b3f9
JA
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017}
1018
9d5a4e94
MS
1019/*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023static bool blk_rq_should_init_elevator(struct bio *bio)
1024{
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
1032 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033 return false;
1034
1035 return true;
1036}
1037
852c788f
TH
1038/**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045static struct io_context *rq_ioc(struct bio *bio)
1046{
1047#ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050#endif
1051 return current->io_context;
1052}
1053
da8303c6 1054/**
a06e05e6 1055 * __get_request - get a free request
5b788ce3 1056 * @rl: request list to allocate from
da8303c6
TH
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q. This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
da3dae54 1064 * Must be called with @q->queue_lock held and,
a492f075
JL
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1067 */
5b788ce3 1068static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 1069 struct bio *bio, gfp_t gfp_mask)
1da177e4 1070{
5b788ce3 1071 struct request_queue *q = rl->q;
b679281a 1072 struct request *rq;
7f4b35d1
TH
1073 struct elevator_type *et = q->elevator->type;
1074 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1075 struct io_cq *icq = NULL;
1faa16d2 1076 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 1077 int may_queue;
88ee5ef1 1078
3f3299d5 1079 if (unlikely(blk_queue_dying(q)))
a492f075 1080 return ERR_PTR(-ENODEV);
da8303c6 1081
7749a8d4 1082 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
1083 if (may_queue == ELV_MQUEUE_NO)
1084 goto rq_starved;
1085
1faa16d2
JA
1086 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1088 /*
1089 * The queue will fill after this allocation, so set
1090 * it as full, and mark this process as "batching".
1091 * This process will be allowed to complete a batch of
1092 * requests, others will be blocked.
1093 */
5b788ce3 1094 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1095 ioc_set_batching(q, ioc);
5b788ce3 1096 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1097 } else {
1098 if (may_queue != ELV_MQUEUE_MUST
1099 && !ioc_batching(q, ioc)) {
1100 /*
1101 * The queue is full and the allocating
1102 * process is not a "batcher", and not
1103 * exempted by the IO scheduler
1104 */
a492f075 1105 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1106 }
1107 }
1da177e4 1108 }
d40f75a0 1109 blk_set_congested(rl, is_sync);
1da177e4
LT
1110 }
1111
082cf69e
JA
1112 /*
1113 * Only allow batching queuers to allocate up to 50% over the defined
1114 * limit of requests, otherwise we could have thousands of requests
1115 * allocated with any setting of ->nr_requests
1116 */
1faa16d2 1117 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1118 return ERR_PTR(-ENOMEM);
fd782a4a 1119
8a5ecdd4 1120 q->nr_rqs[is_sync]++;
1faa16d2
JA
1121 rl->count[is_sync]++;
1122 rl->starved[is_sync] = 0;
cb98fc8b 1123
f1f8cc94
TH
1124 /*
1125 * Decide whether the new request will be managed by elevator. If
1126 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1127 * prevent the current elevator from being destroyed until the new
1128 * request is freed. This guarantees icq's won't be destroyed and
1129 * makes creating new ones safe.
1130 *
1131 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1132 * it will be created after releasing queue_lock.
1133 */
d732580b 1134 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1135 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1136 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1137 if (et->icq_cache && ioc)
1138 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1139 }
cb98fc8b 1140
f253b86b
JA
1141 if (blk_queue_io_stat(q))
1142 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1143 spin_unlock_irq(q->queue_lock);
1144
29e2b09a 1145 /* allocate and init request */
5b788ce3 1146 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1147 if (!rq)
b679281a 1148 goto fail_alloc;
1da177e4 1149
29e2b09a 1150 blk_rq_init(q, rq);
a051661c 1151 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1152 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153
aaf7c680 1154 /* init elvpriv */
29e2b09a 1155 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1156 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1157 if (ioc)
1158 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1159 if (!icq)
1160 goto fail_elvpriv;
29e2b09a 1161 }
aaf7c680
TH
1162
1163 rq->elv.icq = icq;
1164 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165 goto fail_elvpriv;
1166
1167 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1168 if (icq)
1169 get_io_context(icq->ioc);
1170 }
aaf7c680 1171out:
88ee5ef1
JA
1172 /*
1173 * ioc may be NULL here, and ioc_batching will be false. That's
1174 * OK, if the queue is under the request limit then requests need
1175 * not count toward the nr_batch_requests limit. There will always
1176 * be some limit enforced by BLK_BATCH_TIME.
1177 */
1da177e4
LT
1178 if (ioc_batching(q, ioc))
1179 ioc->nr_batch_requests--;
6728cb0e 1180
1faa16d2 1181 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1182 return rq;
b679281a 1183
aaf7c680
TH
1184fail_elvpriv:
1185 /*
1186 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1187 * and may fail indefinitely under memory pressure and thus
1188 * shouldn't stall IO. Treat this request as !elvpriv. This will
1189 * disturb iosched and blkcg but weird is bettern than dead.
1190 */
7b2b10e0
RE
1191 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1193
1194 rq->cmd_flags &= ~REQ_ELVPRIV;
1195 rq->elv.icq = NULL;
1196
1197 spin_lock_irq(q->queue_lock);
8a5ecdd4 1198 q->nr_rqs_elvpriv--;
aaf7c680
TH
1199 spin_unlock_irq(q->queue_lock);
1200 goto out;
1201
b679281a
TH
1202fail_alloc:
1203 /*
1204 * Allocation failed presumably due to memory. Undo anything we
1205 * might have messed up.
1206 *
1207 * Allocating task should really be put onto the front of the wait
1208 * queue, but this is pretty rare.
1209 */
1210 spin_lock_irq(q->queue_lock);
5b788ce3 1211 freed_request(rl, rw_flags);
b679281a
TH
1212
1213 /*
1214 * in the very unlikely event that allocation failed and no
1215 * requests for this direction was pending, mark us starved so that
1216 * freeing of a request in the other direction will notice
1217 * us. another possible fix would be to split the rq mempool into
1218 * READ and WRITE
1219 */
1220rq_starved:
1221 if (unlikely(rl->count[is_sync] == 0))
1222 rl->starved[is_sync] = 1;
a492f075 1223 return ERR_PTR(-ENOMEM);
1da177e4
LT
1224}
1225
da8303c6 1226/**
a06e05e6 1227 * get_request - get a free request
da8303c6
TH
1228 * @q: request_queue to allocate request from
1229 * @rw_flags: RW and SYNC flags
1230 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1231 * @gfp_mask: allocation mask
da8303c6 1232 *
d0164adc
MG
1233 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1235 *
da3dae54 1236 * Must be called with @q->queue_lock held and,
a492f075
JL
1237 * Returns ERR_PTR on failure, with @q->queue_lock held.
1238 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1239 */
a06e05e6
TH
1240static struct request *get_request(struct request_queue *q, int rw_flags,
1241 struct bio *bio, gfp_t gfp_mask)
1da177e4 1242{
1faa16d2 1243 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1244 DEFINE_WAIT(wait);
a051661c 1245 struct request_list *rl;
1da177e4 1246 struct request *rq;
a051661c
TH
1247
1248 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1249retry:
a051661c 1250 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1251 if (!IS_ERR(rq))
a06e05e6 1252 return rq;
1da177e4 1253
d0164adc 1254 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1255 blk_put_rl(rl);
a492f075 1256 return rq;
a051661c 1257 }
1da177e4 1258
a06e05e6
TH
1259 /* wait on @rl and retry */
1260 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261 TASK_UNINTERRUPTIBLE);
1da177e4 1262
a06e05e6 1263 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1264
a06e05e6
TH
1265 spin_unlock_irq(q->queue_lock);
1266 io_schedule();
d6344532 1267
a06e05e6
TH
1268 /*
1269 * After sleeping, we become a "batching" process and will be able
1270 * to allocate at least one request, and up to a big batch of them
1271 * for a small period time. See ioc_batching, ioc_set_batching
1272 */
a06e05e6 1273 ioc_set_batching(q, current->io_context);
05caf8db 1274
a06e05e6
TH
1275 spin_lock_irq(q->queue_lock);
1276 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1277
a06e05e6 1278 goto retry;
1da177e4
LT
1279}
1280
320ae51f
JA
1281static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282 gfp_t gfp_mask)
1da177e4
LT
1283{
1284 struct request *rq;
1285
1286 BUG_ON(rw != READ && rw != WRITE);
1287
7f4b35d1
TH
1288 /* create ioc upfront */
1289 create_io_context(gfp_mask, q->node);
1290
d6344532 1291 spin_lock_irq(q->queue_lock);
a06e05e6 1292 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1293 if (IS_ERR(rq))
da8303c6 1294 spin_unlock_irq(q->queue_lock);
d6344532 1295 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1296
1297 return rq;
1298}
320ae51f
JA
1299
1300struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301{
1302 if (q->mq_ops)
6f3b0e8b
CH
1303 return blk_mq_alloc_request(q, rw,
1304 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1306 else
1307 return blk_old_get_request(q, rw, gfp_mask);
1308}
1da177e4
LT
1309EXPORT_SYMBOL(blk_get_request);
1310
dc72ef4a 1311/**
79eb63e9 1312 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1313 * @q: target request queue
79eb63e9
BH
1314 * @bio: The bio describing the memory mappings that will be submitted for IO.
1315 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1316 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1317 *
79eb63e9
BH
1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319 * type commands. Where the struct request needs to be farther initialized by
1320 * the caller. It is passed a &struct bio, which describes the memory info of
1321 * the I/O transfer.
dc72ef4a 1322 *
79eb63e9
BH
1323 * The caller of blk_make_request must make sure that bi_io_vec
1324 * are set to describe the memory buffers. That bio_data_dir() will return
1325 * the needed direction of the request. (And all bio's in the passed bio-chain
1326 * are properly set accordingly)
1327 *
1328 * If called under none-sleepable conditions, mapped bio buffers must not
1329 * need bouncing, by calling the appropriate masked or flagged allocator,
1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331 * BUG.
53674ac5
JA
1332 *
1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
d0164adc
MG
1334 * given to how you allocate bios. In particular, you cannot use
1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337 * thus resulting in a deadlock. Alternatively bios should be allocated using
1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
53674ac5
JA
1339 * If possible a big IO should be split into smaller parts when allocation
1340 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1341 */
79eb63e9
BH
1342struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343 gfp_t gfp_mask)
dc72ef4a 1344{
79eb63e9
BH
1345 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346
a492f075
JL
1347 if (IS_ERR(rq))
1348 return rq;
79eb63e9 1349
f27b087b
JA
1350 blk_rq_set_block_pc(rq);
1351
79eb63e9
BH
1352 for_each_bio(bio) {
1353 struct bio *bounce_bio = bio;
1354 int ret;
1355
1356 blk_queue_bounce(q, &bounce_bio);
1357 ret = blk_rq_append_bio(q, rq, bounce_bio);
1358 if (unlikely(ret)) {
1359 blk_put_request(rq);
1360 return ERR_PTR(ret);
1361 }
1362 }
1363
1364 return rq;
dc72ef4a 1365}
79eb63e9 1366EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1367
f27b087b 1368/**
da3dae54 1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1370 * @rq: request to be initialized
1371 *
1372 */
1373void blk_rq_set_block_pc(struct request *rq)
1374{
1375 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376 rq->__data_len = 0;
1377 rq->__sector = (sector_t) -1;
1378 rq->bio = rq->biotail = NULL;
1379 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1380}
1381EXPORT_SYMBOL(blk_rq_set_block_pc);
1382
1da177e4
LT
1383/**
1384 * blk_requeue_request - put a request back on queue
1385 * @q: request queue where request should be inserted
1386 * @rq: request to be inserted
1387 *
1388 * Description:
1389 * Drivers often keep queueing requests until the hardware cannot accept
1390 * more, when that condition happens we need to put the request back
1391 * on the queue. Must be called with queue lock held.
1392 */
165125e1 1393void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1394{
242f9dcb
JA
1395 blk_delete_timer(rq);
1396 blk_clear_rq_complete(rq);
5f3ea37c 1397 trace_block_rq_requeue(q, rq);
2056a782 1398
125c99bc 1399 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1400 blk_queue_end_tag(q, rq);
1401
ba396a6c
JB
1402 BUG_ON(blk_queued_rq(rq));
1403
1da177e4
LT
1404 elv_requeue_request(q, rq);
1405}
1da177e4
LT
1406EXPORT_SYMBOL(blk_requeue_request);
1407
73c10101
JA
1408static void add_acct_request(struct request_queue *q, struct request *rq,
1409 int where)
1410{
320ae51f 1411 blk_account_io_start(rq, true);
7eaceacc 1412 __elv_add_request(q, rq, where);
73c10101
JA
1413}
1414
074a7aca
TH
1415static void part_round_stats_single(int cpu, struct hd_struct *part,
1416 unsigned long now)
1417{
7276d02e
JA
1418 int inflight;
1419
074a7aca
TH
1420 if (now == part->stamp)
1421 return;
1422
7276d02e
JA
1423 inflight = part_in_flight(part);
1424 if (inflight) {
074a7aca 1425 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1426 inflight * (now - part->stamp));
074a7aca
TH
1427 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428 }
1429 part->stamp = now;
1430}
1431
1432/**
496aa8a9
RD
1433 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434 * @cpu: cpu number for stats access
1435 * @part: target partition
1da177e4
LT
1436 *
1437 * The average IO queue length and utilisation statistics are maintained
1438 * by observing the current state of the queue length and the amount of
1439 * time it has been in this state for.
1440 *
1441 * Normally, that accounting is done on IO completion, but that can result
1442 * in more than a second's worth of IO being accounted for within any one
1443 * second, leading to >100% utilisation. To deal with that, we call this
1444 * function to do a round-off before returning the results when reading
1445 * /proc/diskstats. This accounts immediately for all queue usage up to
1446 * the current jiffies and restarts the counters again.
1447 */
c9959059 1448void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1449{
1450 unsigned long now = jiffies;
1451
074a7aca
TH
1452 if (part->partno)
1453 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454 part_round_stats_single(cpu, part, now);
6f2576af 1455}
074a7aca 1456EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1457
47fafbc7 1458#ifdef CONFIG_PM
c8158819
LM
1459static void blk_pm_put_request(struct request *rq)
1460{
1461 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462 pm_runtime_mark_last_busy(rq->q->dev);
1463}
1464#else
1465static inline void blk_pm_put_request(struct request *rq) {}
1466#endif
1467
1da177e4
LT
1468/*
1469 * queue lock must be held
1470 */
165125e1 1471void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1472{
1da177e4
LT
1473 if (unlikely(!q))
1474 return;
1da177e4 1475
6f5ba581
CH
1476 if (q->mq_ops) {
1477 blk_mq_free_request(req);
1478 return;
1479 }
1480
c8158819
LM
1481 blk_pm_put_request(req);
1482
8922e16c
TH
1483 elv_completed_request(q, req);
1484
1cd96c24
BH
1485 /* this is a bio leak */
1486 WARN_ON(req->bio != NULL);
1487
1da177e4
LT
1488 /*
1489 * Request may not have originated from ll_rw_blk. if not,
1490 * it didn't come out of our reserved rq pools
1491 */
49171e5c 1492 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1493 unsigned int flags = req->cmd_flags;
a051661c 1494 struct request_list *rl = blk_rq_rl(req);
1da177e4 1495
1da177e4 1496 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1497 BUG_ON(ELV_ON_HASH(req));
1da177e4 1498
a051661c
TH
1499 blk_free_request(rl, req);
1500 freed_request(rl, flags);
1501 blk_put_rl(rl);
1da177e4
LT
1502 }
1503}
6e39b69e
MC
1504EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1da177e4
LT
1506void blk_put_request(struct request *req)
1507{
165125e1 1508 struct request_queue *q = req->q;
8922e16c 1509
320ae51f
JA
1510 if (q->mq_ops)
1511 blk_mq_free_request(req);
1512 else {
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(q->queue_lock, flags);
1516 __blk_put_request(q, req);
1517 spin_unlock_irqrestore(q->queue_lock, flags);
1518 }
1da177e4 1519}
1da177e4
LT
1520EXPORT_SYMBOL(blk_put_request);
1521
66ac0280
CH
1522/**
1523 * blk_add_request_payload - add a payload to a request
1524 * @rq: request to update
1525 * @page: page backing the payload
37e58237 1526 * @offset: offset in page
66ac0280
CH
1527 * @len: length of the payload.
1528 *
1529 * This allows to later add a payload to an already submitted request by
1530 * a block driver. The driver needs to take care of freeing the payload
1531 * itself.
1532 *
1533 * Note that this is a quite horrible hack and nothing but handling of
1534 * discard requests should ever use it.
1535 */
1536void blk_add_request_payload(struct request *rq, struct page *page,
37e58237 1537 int offset, unsigned int len)
66ac0280
CH
1538{
1539 struct bio *bio = rq->bio;
1540
1541 bio->bi_io_vec->bv_page = page;
37e58237 1542 bio->bi_io_vec->bv_offset = offset;
66ac0280
CH
1543 bio->bi_io_vec->bv_len = len;
1544
4f024f37 1545 bio->bi_iter.bi_size = len;
66ac0280
CH
1546 bio->bi_vcnt = 1;
1547 bio->bi_phys_segments = 1;
1548
1549 rq->__data_len = rq->resid_len = len;
1550 rq->nr_phys_segments = 1;
66ac0280
CH
1551}
1552EXPORT_SYMBOL_GPL(blk_add_request_payload);
1553
320ae51f
JA
1554bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1555 struct bio *bio)
73c10101
JA
1556{
1557 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1558
73c10101
JA
1559 if (!ll_back_merge_fn(q, req, bio))
1560 return false;
1561
8c1cf6bb 1562 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1563
1564 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1565 blk_rq_set_mixed_merge(req);
1566
1567 req->biotail->bi_next = bio;
1568 req->biotail = bio;
4f024f37 1569 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1570 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1571
320ae51f 1572 blk_account_io_start(req, false);
73c10101
JA
1573 return true;
1574}
1575
320ae51f
JA
1576bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1577 struct bio *bio)
73c10101
JA
1578{
1579 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1580
73c10101
JA
1581 if (!ll_front_merge_fn(q, req, bio))
1582 return false;
1583
8c1cf6bb 1584 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1585
1586 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1587 blk_rq_set_mixed_merge(req);
1588
73c10101
JA
1589 bio->bi_next = req->bio;
1590 req->bio = bio;
1591
4f024f37
KO
1592 req->__sector = bio->bi_iter.bi_sector;
1593 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1594 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1595
320ae51f 1596 blk_account_io_start(req, false);
73c10101
JA
1597 return true;
1598}
1599
bd87b589 1600/**
320ae51f 1601 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1602 * @q: request_queue new bio is being queued at
1603 * @bio: new bio being queued
1604 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1605 * @same_queue_rq: pointer to &struct request that gets filled in when
1606 * another request associated with @q is found on the plug list
1607 * (optional, may be %NULL)
bd87b589
TH
1608 *
1609 * Determine whether @bio being queued on @q can be merged with a request
1610 * on %current's plugged list. Returns %true if merge was successful,
1611 * otherwise %false.
1612 *
07c2bd37
TH
1613 * Plugging coalesces IOs from the same issuer for the same purpose without
1614 * going through @q->queue_lock. As such it's more of an issuing mechanism
1615 * than scheduling, and the request, while may have elvpriv data, is not
1616 * added on the elevator at this point. In addition, we don't have
1617 * reliable access to the elevator outside queue lock. Only check basic
1618 * merging parameters without querying the elevator.
da41a589
RE
1619 *
1620 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1621 */
320ae51f 1622bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1623 unsigned int *request_count,
1624 struct request **same_queue_rq)
73c10101
JA
1625{
1626 struct blk_plug *plug;
1627 struct request *rq;
1628 bool ret = false;
92f399c7 1629 struct list_head *plug_list;
73c10101 1630
bd87b589 1631 plug = current->plug;
73c10101
JA
1632 if (!plug)
1633 goto out;
56ebdaf2 1634 *request_count = 0;
73c10101 1635
92f399c7
SL
1636 if (q->mq_ops)
1637 plug_list = &plug->mq_list;
1638 else
1639 plug_list = &plug->list;
1640
1641 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1642 int el_ret;
1643
5b3f341f 1644 if (rq->q == q) {
1b2e19f1 1645 (*request_count)++;
5b3f341f
SL
1646 /*
1647 * Only blk-mq multiple hardware queues case checks the
1648 * rq in the same queue, there should be only one such
1649 * rq in a queue
1650 **/
1651 if (same_queue_rq)
1652 *same_queue_rq = rq;
1653 }
56ebdaf2 1654
07c2bd37 1655 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1656 continue;
1657
050c8ea8 1658 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1659 if (el_ret == ELEVATOR_BACK_MERGE) {
1660 ret = bio_attempt_back_merge(q, rq, bio);
1661 if (ret)
1662 break;
1663 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1664 ret = bio_attempt_front_merge(q, rq, bio);
1665 if (ret)
1666 break;
1667 }
1668 }
1669out:
1670 return ret;
1671}
1672
0809e3ac
JM
1673unsigned int blk_plug_queued_count(struct request_queue *q)
1674{
1675 struct blk_plug *plug;
1676 struct request *rq;
1677 struct list_head *plug_list;
1678 unsigned int ret = 0;
1679
1680 plug = current->plug;
1681 if (!plug)
1682 goto out;
1683
1684 if (q->mq_ops)
1685 plug_list = &plug->mq_list;
1686 else
1687 plug_list = &plug->list;
1688
1689 list_for_each_entry(rq, plug_list, queuelist) {
1690 if (rq->q == q)
1691 ret++;
1692 }
1693out:
1694 return ret;
1695}
1696
86db1e29 1697void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1698{
4aff5e23 1699 req->cmd_type = REQ_TYPE_FS;
52d9e675 1700
7b6d91da
CH
1701 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1702 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1703 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1704
52d9e675 1705 req->errors = 0;
4f024f37 1706 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1707 req->ioprio = bio_prio(bio);
bc1c56fd 1708 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1709}
1710
dece1635 1711static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1712{
5e00d1b5 1713 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1714 struct blk_plug *plug;
1715 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1716 struct request *req;
56ebdaf2 1717 unsigned int request_count = 0;
1da177e4 1718
1da177e4
LT
1719 /*
1720 * low level driver can indicate that it wants pages above a
1721 * certain limit bounced to low memory (ie for highmem, or even
1722 * ISA dma in theory)
1723 */
1724 blk_queue_bounce(q, &bio);
1725
23688bf4
JN
1726 blk_queue_split(q, &bio, q->bio_split);
1727
ffecfd1a 1728 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1729 bio->bi_error = -EIO;
1730 bio_endio(bio);
dece1635 1731 return BLK_QC_T_NONE;
ffecfd1a
DW
1732 }
1733
4fed947c 1734 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1735 spin_lock_irq(q->queue_lock);
ae1b1539 1736 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1737 goto get_rq;
1738 }
1739
73c10101
JA
1740 /*
1741 * Check if we can merge with the plugged list before grabbing
1742 * any locks.
1743 */
0809e3ac
JM
1744 if (!blk_queue_nomerges(q)) {
1745 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1746 return BLK_QC_T_NONE;
0809e3ac
JM
1747 } else
1748 request_count = blk_plug_queued_count(q);
1da177e4 1749
73c10101 1750 spin_lock_irq(q->queue_lock);
2056a782 1751
73c10101
JA
1752 el_ret = elv_merge(q, &req, bio);
1753 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1754 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1755 elv_bio_merged(q, req, bio);
73c10101
JA
1756 if (!attempt_back_merge(q, req))
1757 elv_merged_request(q, req, el_ret);
1758 goto out_unlock;
1759 }
1760 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1761 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1762 elv_bio_merged(q, req, bio);
73c10101
JA
1763 if (!attempt_front_merge(q, req))
1764 elv_merged_request(q, req, el_ret);
1765 goto out_unlock;
80a761fd 1766 }
1da177e4
LT
1767 }
1768
450991bc 1769get_rq:
7749a8d4
JA
1770 /*
1771 * This sync check and mask will be re-done in init_request_from_bio(),
1772 * but we need to set it earlier to expose the sync flag to the
1773 * rq allocator and io schedulers.
1774 */
1775 rw_flags = bio_data_dir(bio);
1776 if (sync)
7b6d91da 1777 rw_flags |= REQ_SYNC;
7749a8d4 1778
1da177e4 1779 /*
450991bc 1780 * Grab a free request. This is might sleep but can not fail.
d6344532 1781 * Returns with the queue unlocked.
450991bc 1782 */
a06e05e6 1783 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075 1784 if (IS_ERR(req)) {
4246a0b6
CH
1785 bio->bi_error = PTR_ERR(req);
1786 bio_endio(bio);
da8303c6
TH
1787 goto out_unlock;
1788 }
d6344532 1789
450991bc
NP
1790 /*
1791 * After dropping the lock and possibly sleeping here, our request
1792 * may now be mergeable after it had proven unmergeable (above).
1793 * We don't worry about that case for efficiency. It won't happen
1794 * often, and the elevators are able to handle it.
1da177e4 1795 */
52d9e675 1796 init_request_from_bio(req, bio);
1da177e4 1797
9562ad9a 1798 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1799 req->cpu = raw_smp_processor_id();
73c10101
JA
1800
1801 plug = current->plug;
721a9602 1802 if (plug) {
dc6d36c9
JA
1803 /*
1804 * If this is the first request added after a plug, fire
7aef2e78 1805 * of a plug trace.
dc6d36c9 1806 */
7aef2e78 1807 if (!request_count)
dc6d36c9 1808 trace_block_plug(q);
3540d5e8 1809 else {
019ceb7d 1810 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1811 blk_flush_plug_list(plug, false);
019ceb7d
SL
1812 trace_block_plug(q);
1813 }
73c10101 1814 }
73c10101 1815 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1816 blk_account_io_start(req, true);
73c10101
JA
1817 } else {
1818 spin_lock_irq(q->queue_lock);
1819 add_acct_request(q, req, where);
24ecfbe2 1820 __blk_run_queue(q);
73c10101
JA
1821out_unlock:
1822 spin_unlock_irq(q->queue_lock);
1823 }
dece1635
JA
1824
1825 return BLK_QC_T_NONE;
1da177e4
LT
1826}
1827
1828/*
1829 * If bio->bi_dev is a partition, remap the location
1830 */
1831static inline void blk_partition_remap(struct bio *bio)
1832{
1833 struct block_device *bdev = bio->bi_bdev;
1834
bf2de6f5 1835 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1836 struct hd_struct *p = bdev->bd_part;
1837
4f024f37 1838 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1839 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1840
d07335e5
MS
1841 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1842 bdev->bd_dev,
4f024f37 1843 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1844 }
1845}
1846
1da177e4
LT
1847static void handle_bad_sector(struct bio *bio)
1848{
1849 char b[BDEVNAME_SIZE];
1850
1851 printk(KERN_INFO "attempt to access beyond end of device\n");
1852 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1853 bdevname(bio->bi_bdev, b),
1854 bio->bi_rw,
f73a1c7d 1855 (unsigned long long)bio_end_sector(bio),
77304d2a 1856 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1857}
1858
c17bb495
AM
1859#ifdef CONFIG_FAIL_MAKE_REQUEST
1860
1861static DECLARE_FAULT_ATTR(fail_make_request);
1862
1863static int __init setup_fail_make_request(char *str)
1864{
1865 return setup_fault_attr(&fail_make_request, str);
1866}
1867__setup("fail_make_request=", setup_fail_make_request);
1868
b2c9cd37 1869static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1870{
b2c9cd37 1871 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1872}
1873
1874static int __init fail_make_request_debugfs(void)
1875{
dd48c085
AM
1876 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1877 NULL, &fail_make_request);
1878
21f9fcd8 1879 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1880}
1881
1882late_initcall(fail_make_request_debugfs);
1883
1884#else /* CONFIG_FAIL_MAKE_REQUEST */
1885
b2c9cd37
AM
1886static inline bool should_fail_request(struct hd_struct *part,
1887 unsigned int bytes)
c17bb495 1888{
b2c9cd37 1889 return false;
c17bb495
AM
1890}
1891
1892#endif /* CONFIG_FAIL_MAKE_REQUEST */
1893
c07e2b41
JA
1894/*
1895 * Check whether this bio extends beyond the end of the device.
1896 */
1897static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1898{
1899 sector_t maxsector;
1900
1901 if (!nr_sectors)
1902 return 0;
1903
1904 /* Test device or partition size, when known. */
77304d2a 1905 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1906 if (maxsector) {
4f024f37 1907 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1908
1909 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1910 /*
1911 * This may well happen - the kernel calls bread()
1912 * without checking the size of the device, e.g., when
1913 * mounting a device.
1914 */
1915 handle_bad_sector(bio);
1916 return 1;
1917 }
1918 }
1919
1920 return 0;
1921}
1922
27a84d54
CH
1923static noinline_for_stack bool
1924generic_make_request_checks(struct bio *bio)
1da177e4 1925{
165125e1 1926 struct request_queue *q;
5a7bbad2 1927 int nr_sectors = bio_sectors(bio);
51fd77bd 1928 int err = -EIO;
5a7bbad2
CH
1929 char b[BDEVNAME_SIZE];
1930 struct hd_struct *part;
1da177e4
LT
1931
1932 might_sleep();
1da177e4 1933
c07e2b41
JA
1934 if (bio_check_eod(bio, nr_sectors))
1935 goto end_io;
1da177e4 1936
5a7bbad2
CH
1937 q = bdev_get_queue(bio->bi_bdev);
1938 if (unlikely(!q)) {
1939 printk(KERN_ERR
1940 "generic_make_request: Trying to access "
1941 "nonexistent block-device %s (%Lu)\n",
1942 bdevname(bio->bi_bdev, b),
4f024f37 1943 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1944 goto end_io;
1945 }
c17bb495 1946
5a7bbad2 1947 part = bio->bi_bdev->bd_part;
4f024f37 1948 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1949 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1950 bio->bi_iter.bi_size))
5a7bbad2 1951 goto end_io;
2056a782 1952
5a7bbad2
CH
1953 /*
1954 * If this device has partitions, remap block n
1955 * of partition p to block n+start(p) of the disk.
1956 */
1957 blk_partition_remap(bio);
2056a782 1958
5a7bbad2
CH
1959 if (bio_check_eod(bio, nr_sectors))
1960 goto end_io;
1e87901e 1961
5a7bbad2
CH
1962 /*
1963 * Filter flush bio's early so that make_request based
1964 * drivers without flush support don't have to worry
1965 * about them.
1966 */
c888a8f9
JA
1967 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
1968 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
5a7bbad2
CH
1969 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1970 if (!nr_sectors) {
1971 err = 0;
51fd77bd
JA
1972 goto end_io;
1973 }
5a7bbad2 1974 }
5ddfe969 1975
95fe6c1a 1976 if ((bio_op(bio) == REQ_OP_DISCARD) &&
5a7bbad2 1977 (!blk_queue_discard(q) ||
e2a60da7 1978 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1979 err = -EOPNOTSUPP;
1980 goto end_io;
1981 }
01edede4 1982
95fe6c1a 1983 if (bio_op(bio) == REQ_OP_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1984 err = -EOPNOTSUPP;
1985 goto end_io;
1986 }
01edede4 1987
7f4b35d1
TH
1988 /*
1989 * Various block parts want %current->io_context and lazy ioc
1990 * allocation ends up trading a lot of pain for a small amount of
1991 * memory. Just allocate it upfront. This may fail and block
1992 * layer knows how to live with it.
1993 */
1994 create_io_context(GFP_ATOMIC, q->node);
1995
ae118896
TH
1996 if (!blkcg_bio_issue_check(q, bio))
1997 return false;
27a84d54 1998
5a7bbad2 1999 trace_block_bio_queue(q, bio);
27a84d54 2000 return true;
a7384677
TH
2001
2002end_io:
4246a0b6
CH
2003 bio->bi_error = err;
2004 bio_endio(bio);
27a84d54 2005 return false;
1da177e4
LT
2006}
2007
27a84d54
CH
2008/**
2009 * generic_make_request - hand a buffer to its device driver for I/O
2010 * @bio: The bio describing the location in memory and on the device.
2011 *
2012 * generic_make_request() is used to make I/O requests of block
2013 * devices. It is passed a &struct bio, which describes the I/O that needs
2014 * to be done.
2015 *
2016 * generic_make_request() does not return any status. The
2017 * success/failure status of the request, along with notification of
2018 * completion, is delivered asynchronously through the bio->bi_end_io
2019 * function described (one day) else where.
2020 *
2021 * The caller of generic_make_request must make sure that bi_io_vec
2022 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2023 * set to describe the device address, and the
2024 * bi_end_io and optionally bi_private are set to describe how
2025 * completion notification should be signaled.
2026 *
2027 * generic_make_request and the drivers it calls may use bi_next if this
2028 * bio happens to be merged with someone else, and may resubmit the bio to
2029 * a lower device by calling into generic_make_request recursively, which
2030 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2031 */
dece1635 2032blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2033{
bddd87c7 2034 struct bio_list bio_list_on_stack;
dece1635 2035 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2036
27a84d54 2037 if (!generic_make_request_checks(bio))
dece1635 2038 goto out;
27a84d54
CH
2039
2040 /*
2041 * We only want one ->make_request_fn to be active at a time, else
2042 * stack usage with stacked devices could be a problem. So use
2043 * current->bio_list to keep a list of requests submited by a
2044 * make_request_fn function. current->bio_list is also used as a
2045 * flag to say if generic_make_request is currently active in this
2046 * task or not. If it is NULL, then no make_request is active. If
2047 * it is non-NULL, then a make_request is active, and new requests
2048 * should be added at the tail
2049 */
bddd87c7 2050 if (current->bio_list) {
bddd87c7 2051 bio_list_add(current->bio_list, bio);
dece1635 2052 goto out;
d89d8796 2053 }
27a84d54 2054
d89d8796
NB
2055 /* following loop may be a bit non-obvious, and so deserves some
2056 * explanation.
2057 * Before entering the loop, bio->bi_next is NULL (as all callers
2058 * ensure that) so we have a list with a single bio.
2059 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2060 * we assign bio_list to a pointer to the bio_list_on_stack,
2061 * thus initialising the bio_list of new bios to be
27a84d54 2062 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2063 * through a recursive call to generic_make_request. If it
2064 * did, we find a non-NULL value in bio_list and re-enter the loop
2065 * from the top. In this case we really did just take the bio
bddd87c7 2066 * of the top of the list (no pretending) and so remove it from
27a84d54 2067 * bio_list, and call into ->make_request() again.
d89d8796
NB
2068 */
2069 BUG_ON(bio->bi_next);
bddd87c7
AM
2070 bio_list_init(&bio_list_on_stack);
2071 current->bio_list = &bio_list_on_stack;
d89d8796 2072 do {
27a84d54
CH
2073 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2074
6f3b0e8b 2075 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2076 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2077
2078 blk_queue_exit(q);
27a84d54 2079
3ef28e83
DW
2080 bio = bio_list_pop(current->bio_list);
2081 } else {
2082 struct bio *bio_next = bio_list_pop(current->bio_list);
2083
2084 bio_io_error(bio);
2085 bio = bio_next;
2086 }
d89d8796 2087 } while (bio);
bddd87c7 2088 current->bio_list = NULL; /* deactivate */
dece1635
JA
2089
2090out:
2091 return ret;
d89d8796 2092}
1da177e4
LT
2093EXPORT_SYMBOL(generic_make_request);
2094
2095/**
710027a4 2096 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2097 * @bio: The &struct bio which describes the I/O
2098 *
2099 * submit_bio() is very similar in purpose to generic_make_request(), and
2100 * uses that function to do most of the work. Both are fairly rough
710027a4 2101 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2102 *
2103 */
4e49ea4a 2104blk_qc_t submit_bio(struct bio *bio)
1da177e4 2105{
bf2de6f5
JA
2106 /*
2107 * If it's a regular read/write or a barrier with data attached,
2108 * go through the normal accounting stuff before submission.
2109 */
e2a60da7 2110 if (bio_has_data(bio)) {
4363ac7c
MP
2111 unsigned int count;
2112
95fe6c1a 2113 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2114 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2115 else
2116 count = bio_sectors(bio);
2117
a8ebb056 2118 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2119 count_vm_events(PGPGOUT, count);
2120 } else {
4f024f37 2121 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2122 count_vm_events(PGPGIN, count);
2123 }
2124
2125 if (unlikely(block_dump)) {
2126 char b[BDEVNAME_SIZE];
8dcbdc74 2127 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2128 current->comm, task_pid_nr(current),
a8ebb056 2129 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2130 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2131 bdevname(bio->bi_bdev, b),
2132 count);
bf2de6f5 2133 }
1da177e4
LT
2134 }
2135
dece1635 2136 return generic_make_request(bio);
1da177e4 2137}
1da177e4
LT
2138EXPORT_SYMBOL(submit_bio);
2139
82124d60 2140/**
bf4e6b4e
HR
2141 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2142 * for new the queue limits
82124d60
KU
2143 * @q: the queue
2144 * @rq: the request being checked
2145 *
2146 * Description:
2147 * @rq may have been made based on weaker limitations of upper-level queues
2148 * in request stacking drivers, and it may violate the limitation of @q.
2149 * Since the block layer and the underlying device driver trust @rq
2150 * after it is inserted to @q, it should be checked against @q before
2151 * the insertion using this generic function.
2152 *
82124d60 2153 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2154 * limits when retrying requests on other queues. Those requests need
2155 * to be checked against the new queue limits again during dispatch.
82124d60 2156 */
bf4e6b4e
HR
2157static int blk_cloned_rq_check_limits(struct request_queue *q,
2158 struct request *rq)
82124d60 2159{
f31dc1cd 2160 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2161 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2162 return -EIO;
2163 }
2164
2165 /*
2166 * queue's settings related to segment counting like q->bounce_pfn
2167 * may differ from that of other stacking queues.
2168 * Recalculate it to check the request correctly on this queue's
2169 * limitation.
2170 */
2171 blk_recalc_rq_segments(rq);
8a78362c 2172 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2173 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2174 return -EIO;
2175 }
2176
2177 return 0;
2178}
82124d60
KU
2179
2180/**
2181 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2182 * @q: the queue to submit the request
2183 * @rq: the request being queued
2184 */
2185int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2186{
2187 unsigned long flags;
4853abaa 2188 int where = ELEVATOR_INSERT_BACK;
82124d60 2189
bf4e6b4e 2190 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2191 return -EIO;
2192
b2c9cd37
AM
2193 if (rq->rq_disk &&
2194 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2195 return -EIO;
82124d60 2196
7fb4898e
KB
2197 if (q->mq_ops) {
2198 if (blk_queue_io_stat(q))
2199 blk_account_io_start(rq, true);
6acfe68b 2200 blk_mq_insert_request(rq, false, true, false);
7fb4898e
KB
2201 return 0;
2202 }
2203
82124d60 2204 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2205 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2206 spin_unlock_irqrestore(q->queue_lock, flags);
2207 return -ENODEV;
2208 }
82124d60
KU
2209
2210 /*
2211 * Submitting request must be dequeued before calling this function
2212 * because it will be linked to another request_queue
2213 */
2214 BUG_ON(blk_queued_rq(rq));
2215
4853abaa
JM
2216 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2217 where = ELEVATOR_INSERT_FLUSH;
2218
2219 add_acct_request(q, rq, where);
e67b77c7
JM
2220 if (where == ELEVATOR_INSERT_FLUSH)
2221 __blk_run_queue(q);
82124d60
KU
2222 spin_unlock_irqrestore(q->queue_lock, flags);
2223
2224 return 0;
2225}
2226EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2227
80a761fd
TH
2228/**
2229 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2230 * @rq: request to examine
2231 *
2232 * Description:
2233 * A request could be merge of IOs which require different failure
2234 * handling. This function determines the number of bytes which
2235 * can be failed from the beginning of the request without
2236 * crossing into area which need to be retried further.
2237 *
2238 * Return:
2239 * The number of bytes to fail.
2240 *
2241 * Context:
2242 * queue_lock must be held.
2243 */
2244unsigned int blk_rq_err_bytes(const struct request *rq)
2245{
2246 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2247 unsigned int bytes = 0;
2248 struct bio *bio;
2249
2250 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2251 return blk_rq_bytes(rq);
2252
2253 /*
2254 * Currently the only 'mixing' which can happen is between
2255 * different fastfail types. We can safely fail portions
2256 * which have all the failfast bits that the first one has -
2257 * the ones which are at least as eager to fail as the first
2258 * one.
2259 */
2260 for (bio = rq->bio; bio; bio = bio->bi_next) {
2261 if ((bio->bi_rw & ff) != ff)
2262 break;
4f024f37 2263 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2264 }
2265
2266 /* this could lead to infinite loop */
2267 BUG_ON(blk_rq_bytes(rq) && !bytes);
2268 return bytes;
2269}
2270EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2271
320ae51f 2272void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2273{
c2553b58 2274 if (blk_do_io_stat(req)) {
bc58ba94
JA
2275 const int rw = rq_data_dir(req);
2276 struct hd_struct *part;
2277 int cpu;
2278
2279 cpu = part_stat_lock();
09e099d4 2280 part = req->part;
bc58ba94
JA
2281 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2282 part_stat_unlock();
2283 }
2284}
2285
320ae51f 2286void blk_account_io_done(struct request *req)
bc58ba94 2287{
bc58ba94 2288 /*
dd4c133f
TH
2289 * Account IO completion. flush_rq isn't accounted as a
2290 * normal IO on queueing nor completion. Accounting the
2291 * containing request is enough.
bc58ba94 2292 */
414b4ff5 2293 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2294 unsigned long duration = jiffies - req->start_time;
2295 const int rw = rq_data_dir(req);
2296 struct hd_struct *part;
2297 int cpu;
2298
2299 cpu = part_stat_lock();
09e099d4 2300 part = req->part;
bc58ba94
JA
2301
2302 part_stat_inc(cpu, part, ios[rw]);
2303 part_stat_add(cpu, part, ticks[rw], duration);
2304 part_round_stats(cpu, part);
316d315b 2305 part_dec_in_flight(part, rw);
bc58ba94 2306
6c23a968 2307 hd_struct_put(part);
bc58ba94
JA
2308 part_stat_unlock();
2309 }
2310}
2311
47fafbc7 2312#ifdef CONFIG_PM
c8158819
LM
2313/*
2314 * Don't process normal requests when queue is suspended
2315 * or in the process of suspending/resuming
2316 */
2317static struct request *blk_pm_peek_request(struct request_queue *q,
2318 struct request *rq)
2319{
2320 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2321 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2322 return NULL;
2323 else
2324 return rq;
2325}
2326#else
2327static inline struct request *blk_pm_peek_request(struct request_queue *q,
2328 struct request *rq)
2329{
2330 return rq;
2331}
2332#endif
2333
320ae51f
JA
2334void blk_account_io_start(struct request *rq, bool new_io)
2335{
2336 struct hd_struct *part;
2337 int rw = rq_data_dir(rq);
2338 int cpu;
2339
2340 if (!blk_do_io_stat(rq))
2341 return;
2342
2343 cpu = part_stat_lock();
2344
2345 if (!new_io) {
2346 part = rq->part;
2347 part_stat_inc(cpu, part, merges[rw]);
2348 } else {
2349 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2350 if (!hd_struct_try_get(part)) {
2351 /*
2352 * The partition is already being removed,
2353 * the request will be accounted on the disk only
2354 *
2355 * We take a reference on disk->part0 although that
2356 * partition will never be deleted, so we can treat
2357 * it as any other partition.
2358 */
2359 part = &rq->rq_disk->part0;
2360 hd_struct_get(part);
2361 }
2362 part_round_stats(cpu, part);
2363 part_inc_in_flight(part, rw);
2364 rq->part = part;
2365 }
2366
2367 part_stat_unlock();
2368}
2369
3bcddeac 2370/**
9934c8c0
TH
2371 * blk_peek_request - peek at the top of a request queue
2372 * @q: request queue to peek at
2373 *
2374 * Description:
2375 * Return the request at the top of @q. The returned request
2376 * should be started using blk_start_request() before LLD starts
2377 * processing it.
2378 *
2379 * Return:
2380 * Pointer to the request at the top of @q if available. Null
2381 * otherwise.
2382 *
2383 * Context:
2384 * queue_lock must be held.
2385 */
2386struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2387{
2388 struct request *rq;
2389 int ret;
2390
2391 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2392
2393 rq = blk_pm_peek_request(q, rq);
2394 if (!rq)
2395 break;
2396
158dbda0
TH
2397 if (!(rq->cmd_flags & REQ_STARTED)) {
2398 /*
2399 * This is the first time the device driver
2400 * sees this request (possibly after
2401 * requeueing). Notify IO scheduler.
2402 */
33659ebb 2403 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2404 elv_activate_rq(q, rq);
2405
2406 /*
2407 * just mark as started even if we don't start
2408 * it, a request that has been delayed should
2409 * not be passed by new incoming requests
2410 */
2411 rq->cmd_flags |= REQ_STARTED;
2412 trace_block_rq_issue(q, rq);
2413 }
2414
2415 if (!q->boundary_rq || q->boundary_rq == rq) {
2416 q->end_sector = rq_end_sector(rq);
2417 q->boundary_rq = NULL;
2418 }
2419
2420 if (rq->cmd_flags & REQ_DONTPREP)
2421 break;
2422
2e46e8b2 2423 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2424 /*
2425 * make sure space for the drain appears we
2426 * know we can do this because max_hw_segments
2427 * has been adjusted to be one fewer than the
2428 * device can handle
2429 */
2430 rq->nr_phys_segments++;
2431 }
2432
2433 if (!q->prep_rq_fn)
2434 break;
2435
2436 ret = q->prep_rq_fn(q, rq);
2437 if (ret == BLKPREP_OK) {
2438 break;
2439 } else if (ret == BLKPREP_DEFER) {
2440 /*
2441 * the request may have been (partially) prepped.
2442 * we need to keep this request in the front to
2443 * avoid resource deadlock. REQ_STARTED will
2444 * prevent other fs requests from passing this one.
2445 */
2e46e8b2 2446 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2447 !(rq->cmd_flags & REQ_DONTPREP)) {
2448 /*
2449 * remove the space for the drain we added
2450 * so that we don't add it again
2451 */
2452 --rq->nr_phys_segments;
2453 }
2454
2455 rq = NULL;
2456 break;
0fb5b1fb
MP
2457 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2458 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2459
158dbda0 2460 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2461 /*
2462 * Mark this request as started so we don't trigger
2463 * any debug logic in the end I/O path.
2464 */
2465 blk_start_request(rq);
0fb5b1fb 2466 __blk_end_request_all(rq, err);
158dbda0
TH
2467 } else {
2468 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2469 break;
2470 }
2471 }
2472
2473 return rq;
2474}
9934c8c0 2475EXPORT_SYMBOL(blk_peek_request);
158dbda0 2476
9934c8c0 2477void blk_dequeue_request(struct request *rq)
158dbda0 2478{
9934c8c0
TH
2479 struct request_queue *q = rq->q;
2480
158dbda0
TH
2481 BUG_ON(list_empty(&rq->queuelist));
2482 BUG_ON(ELV_ON_HASH(rq));
2483
2484 list_del_init(&rq->queuelist);
2485
2486 /*
2487 * the time frame between a request being removed from the lists
2488 * and to it is freed is accounted as io that is in progress at
2489 * the driver side.
2490 */
9195291e 2491 if (blk_account_rq(rq)) {
0a7ae2ff 2492 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2493 set_io_start_time_ns(rq);
2494 }
158dbda0
TH
2495}
2496
9934c8c0
TH
2497/**
2498 * blk_start_request - start request processing on the driver
2499 * @req: request to dequeue
2500 *
2501 * Description:
2502 * Dequeue @req and start timeout timer on it. This hands off the
2503 * request to the driver.
2504 *
2505 * Block internal functions which don't want to start timer should
2506 * call blk_dequeue_request().
2507 *
2508 * Context:
2509 * queue_lock must be held.
2510 */
2511void blk_start_request(struct request *req)
2512{
2513 blk_dequeue_request(req);
2514
2515 /*
5f49f631
TH
2516 * We are now handing the request to the hardware, initialize
2517 * resid_len to full count and add the timeout handler.
9934c8c0 2518 */
5f49f631 2519 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2520 if (unlikely(blk_bidi_rq(req)))
2521 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2522
4912aa6c 2523 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2524 blk_add_timer(req);
2525}
2526EXPORT_SYMBOL(blk_start_request);
2527
2528/**
2529 * blk_fetch_request - fetch a request from a request queue
2530 * @q: request queue to fetch a request from
2531 *
2532 * Description:
2533 * Return the request at the top of @q. The request is started on
2534 * return and LLD can start processing it immediately.
2535 *
2536 * Return:
2537 * Pointer to the request at the top of @q if available. Null
2538 * otherwise.
2539 *
2540 * Context:
2541 * queue_lock must be held.
2542 */
2543struct request *blk_fetch_request(struct request_queue *q)
2544{
2545 struct request *rq;
2546
2547 rq = blk_peek_request(q);
2548 if (rq)
2549 blk_start_request(rq);
2550 return rq;
2551}
2552EXPORT_SYMBOL(blk_fetch_request);
2553
3bcddeac 2554/**
2e60e022 2555 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2556 * @req: the request being processed
710027a4 2557 * @error: %0 for success, < %0 for error
8ebf9756 2558 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2559 *
2560 * Description:
8ebf9756
RD
2561 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2562 * the request structure even if @req doesn't have leftover.
2563 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2564 *
2565 * This special helper function is only for request stacking drivers
2566 * (e.g. request-based dm) so that they can handle partial completion.
2567 * Actual device drivers should use blk_end_request instead.
2568 *
2569 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2570 * %false return from this function.
3bcddeac
KU
2571 *
2572 * Return:
2e60e022
TH
2573 * %false - this request doesn't have any more data
2574 * %true - this request has more data
3bcddeac 2575 **/
2e60e022 2576bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2577{
f79ea416 2578 int total_bytes;
1da177e4 2579
4a0efdc9
HR
2580 trace_block_rq_complete(req->q, req, nr_bytes);
2581
2e60e022
TH
2582 if (!req->bio)
2583 return false;
2584
1da177e4 2585 /*
6f41469c
TH
2586 * For fs requests, rq is just carrier of independent bio's
2587 * and each partial completion should be handled separately.
2588 * Reset per-request error on each partial completion.
2589 *
2590 * TODO: tj: This is too subtle. It would be better to let
2591 * low level drivers do what they see fit.
1da177e4 2592 */
33659ebb 2593 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2594 req->errors = 0;
2595
33659ebb
CH
2596 if (error && req->cmd_type == REQ_TYPE_FS &&
2597 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2598 char *error_type;
2599
2600 switch (error) {
2601 case -ENOLINK:
2602 error_type = "recoverable transport";
2603 break;
2604 case -EREMOTEIO:
2605 error_type = "critical target";
2606 break;
2607 case -EBADE:
2608 error_type = "critical nexus";
2609 break;
d1ffc1f8
HR
2610 case -ETIMEDOUT:
2611 error_type = "timeout";
2612 break;
a9d6ceb8
HR
2613 case -ENOSPC:
2614 error_type = "critical space allocation";
2615 break;
7e782af5
HR
2616 case -ENODATA:
2617 error_type = "critical medium";
2618 break;
79775567
HR
2619 case -EIO:
2620 default:
2621 error_type = "I/O";
2622 break;
2623 }
ef3ecb66
RE
2624 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2625 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2626 req->rq_disk->disk_name : "?",
2627 (unsigned long long)blk_rq_pos(req));
2628
1da177e4
LT
2629 }
2630
bc58ba94 2631 blk_account_io_completion(req, nr_bytes);
d72d904a 2632
f79ea416
KO
2633 total_bytes = 0;
2634 while (req->bio) {
2635 struct bio *bio = req->bio;
4f024f37 2636 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2637
4f024f37 2638 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2639 req->bio = bio->bi_next;
1da177e4 2640
f79ea416 2641 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2642
f79ea416
KO
2643 total_bytes += bio_bytes;
2644 nr_bytes -= bio_bytes;
1da177e4 2645
f79ea416
KO
2646 if (!nr_bytes)
2647 break;
1da177e4
LT
2648 }
2649
2650 /*
2651 * completely done
2652 */
2e60e022
TH
2653 if (!req->bio) {
2654 /*
2655 * Reset counters so that the request stacking driver
2656 * can find how many bytes remain in the request
2657 * later.
2658 */
a2dec7b3 2659 req->__data_len = 0;
2e60e022
TH
2660 return false;
2661 }
1da177e4 2662
a2dec7b3 2663 req->__data_len -= total_bytes;
2e46e8b2
TH
2664
2665 /* update sector only for requests with clear definition of sector */
e2a60da7 2666 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2667 req->__sector += total_bytes >> 9;
2e46e8b2 2668
80a761fd
TH
2669 /* mixed attributes always follow the first bio */
2670 if (req->cmd_flags & REQ_MIXED_MERGE) {
2671 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2672 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2673 }
2674
2e46e8b2
TH
2675 /*
2676 * If total number of sectors is less than the first segment
2677 * size, something has gone terribly wrong.
2678 */
2679 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2680 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2681 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2682 }
2683
2684 /* recalculate the number of segments */
1da177e4 2685 blk_recalc_rq_segments(req);
2e46e8b2 2686
2e60e022 2687 return true;
1da177e4 2688}
2e60e022 2689EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2690
2e60e022
TH
2691static bool blk_update_bidi_request(struct request *rq, int error,
2692 unsigned int nr_bytes,
2693 unsigned int bidi_bytes)
5efccd17 2694{
2e60e022
TH
2695 if (blk_update_request(rq, error, nr_bytes))
2696 return true;
5efccd17 2697
2e60e022
TH
2698 /* Bidi request must be completed as a whole */
2699 if (unlikely(blk_bidi_rq(rq)) &&
2700 blk_update_request(rq->next_rq, error, bidi_bytes))
2701 return true;
5efccd17 2702
e2e1a148
JA
2703 if (blk_queue_add_random(rq->q))
2704 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2705
2706 return false;
1da177e4
LT
2707}
2708
28018c24
JB
2709/**
2710 * blk_unprep_request - unprepare a request
2711 * @req: the request
2712 *
2713 * This function makes a request ready for complete resubmission (or
2714 * completion). It happens only after all error handling is complete,
2715 * so represents the appropriate moment to deallocate any resources
2716 * that were allocated to the request in the prep_rq_fn. The queue
2717 * lock is held when calling this.
2718 */
2719void blk_unprep_request(struct request *req)
2720{
2721 struct request_queue *q = req->q;
2722
2723 req->cmd_flags &= ~REQ_DONTPREP;
2724 if (q->unprep_rq_fn)
2725 q->unprep_rq_fn(q, req);
2726}
2727EXPORT_SYMBOL_GPL(blk_unprep_request);
2728
1da177e4
LT
2729/*
2730 * queue lock must be held
2731 */
12120077 2732void blk_finish_request(struct request *req, int error)
1da177e4 2733{
125c99bc 2734 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2735 blk_queue_end_tag(req->q, req);
2736
ba396a6c 2737 BUG_ON(blk_queued_rq(req));
1da177e4 2738
33659ebb 2739 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2740 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2741
e78042e5
MA
2742 blk_delete_timer(req);
2743
28018c24
JB
2744 if (req->cmd_flags & REQ_DONTPREP)
2745 blk_unprep_request(req);
2746
bc58ba94 2747 blk_account_io_done(req);
b8286239 2748
1da177e4 2749 if (req->end_io)
8ffdc655 2750 req->end_io(req, error);
b8286239
KU
2751 else {
2752 if (blk_bidi_rq(req))
2753 __blk_put_request(req->next_rq->q, req->next_rq);
2754
1da177e4 2755 __blk_put_request(req->q, req);
b8286239 2756 }
1da177e4 2757}
12120077 2758EXPORT_SYMBOL(blk_finish_request);
1da177e4 2759
3b11313a 2760/**
2e60e022
TH
2761 * blk_end_bidi_request - Complete a bidi request
2762 * @rq: the request to complete
2763 * @error: %0 for success, < %0 for error
2764 * @nr_bytes: number of bytes to complete @rq
2765 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2766 *
2767 * Description:
e3a04fe3 2768 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2769 * Drivers that supports bidi can safely call this member for any
2770 * type of request, bidi or uni. In the later case @bidi_bytes is
2771 * just ignored.
336cdb40
KU
2772 *
2773 * Return:
2e60e022
TH
2774 * %false - we are done with this request
2775 * %true - still buffers pending for this request
a0cd1285 2776 **/
b1f74493 2777static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2778 unsigned int nr_bytes, unsigned int bidi_bytes)
2779{
336cdb40 2780 struct request_queue *q = rq->q;
2e60e022 2781 unsigned long flags;
32fab448 2782
2e60e022
TH
2783 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2784 return true;
32fab448 2785
336cdb40 2786 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2787 blk_finish_request(rq, error);
336cdb40
KU
2788 spin_unlock_irqrestore(q->queue_lock, flags);
2789
2e60e022 2790 return false;
32fab448
KU
2791}
2792
336cdb40 2793/**
2e60e022
TH
2794 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2795 * @rq: the request to complete
710027a4 2796 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2797 * @nr_bytes: number of bytes to complete @rq
2798 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2799 *
2800 * Description:
2e60e022
TH
2801 * Identical to blk_end_bidi_request() except that queue lock is
2802 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2803 *
2804 * Return:
2e60e022
TH
2805 * %false - we are done with this request
2806 * %true - still buffers pending for this request
336cdb40 2807 **/
4853abaa 2808bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2809 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2810{
2e60e022
TH
2811 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2812 return true;
336cdb40 2813
2e60e022 2814 blk_finish_request(rq, error);
336cdb40 2815
2e60e022 2816 return false;
336cdb40 2817}
e19a3ab0
KU
2818
2819/**
2820 * blk_end_request - Helper function for drivers to complete the request.
2821 * @rq: the request being processed
710027a4 2822 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2823 * @nr_bytes: number of bytes to complete
2824 *
2825 * Description:
2826 * Ends I/O on a number of bytes attached to @rq.
2827 * If @rq has leftover, sets it up for the next range of segments.
2828 *
2829 * Return:
b1f74493
FT
2830 * %false - we are done with this request
2831 * %true - still buffers pending for this request
e19a3ab0 2832 **/
b1f74493 2833bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2834{
b1f74493 2835 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2836}
56ad1740 2837EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2838
2839/**
b1f74493
FT
2840 * blk_end_request_all - Helper function for drives to finish the request.
2841 * @rq: the request to finish
8ebf9756 2842 * @error: %0 for success, < %0 for error
336cdb40
KU
2843 *
2844 * Description:
b1f74493
FT
2845 * Completely finish @rq.
2846 */
2847void blk_end_request_all(struct request *rq, int error)
336cdb40 2848{
b1f74493
FT
2849 bool pending;
2850 unsigned int bidi_bytes = 0;
336cdb40 2851
b1f74493
FT
2852 if (unlikely(blk_bidi_rq(rq)))
2853 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2854
b1f74493
FT
2855 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2856 BUG_ON(pending);
2857}
56ad1740 2858EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2859
b1f74493
FT
2860/**
2861 * blk_end_request_cur - Helper function to finish the current request chunk.
2862 * @rq: the request to finish the current chunk for
8ebf9756 2863 * @error: %0 for success, < %0 for error
b1f74493
FT
2864 *
2865 * Description:
2866 * Complete the current consecutively mapped chunk from @rq.
2867 *
2868 * Return:
2869 * %false - we are done with this request
2870 * %true - still buffers pending for this request
2871 */
2872bool blk_end_request_cur(struct request *rq, int error)
2873{
2874 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2875}
56ad1740 2876EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2877
80a761fd
TH
2878/**
2879 * blk_end_request_err - Finish a request till the next failure boundary.
2880 * @rq: the request to finish till the next failure boundary for
2881 * @error: must be negative errno
2882 *
2883 * Description:
2884 * Complete @rq till the next failure boundary.
2885 *
2886 * Return:
2887 * %false - we are done with this request
2888 * %true - still buffers pending for this request
2889 */
2890bool blk_end_request_err(struct request *rq, int error)
2891{
2892 WARN_ON(error >= 0);
2893 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2894}
2895EXPORT_SYMBOL_GPL(blk_end_request_err);
2896
e3a04fe3 2897/**
b1f74493
FT
2898 * __blk_end_request - Helper function for drivers to complete the request.
2899 * @rq: the request being processed
2900 * @error: %0 for success, < %0 for error
2901 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2902 *
2903 * Description:
b1f74493 2904 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2905 *
2906 * Return:
b1f74493
FT
2907 * %false - we are done with this request
2908 * %true - still buffers pending for this request
e3a04fe3 2909 **/
b1f74493 2910bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2911{
b1f74493 2912 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2913}
56ad1740 2914EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2915
32fab448 2916/**
b1f74493
FT
2917 * __blk_end_request_all - Helper function for drives to finish the request.
2918 * @rq: the request to finish
8ebf9756 2919 * @error: %0 for success, < %0 for error
32fab448
KU
2920 *
2921 * Description:
b1f74493 2922 * Completely finish @rq. Must be called with queue lock held.
32fab448 2923 */
b1f74493 2924void __blk_end_request_all(struct request *rq, int error)
32fab448 2925{
b1f74493
FT
2926 bool pending;
2927 unsigned int bidi_bytes = 0;
2928
2929 if (unlikely(blk_bidi_rq(rq)))
2930 bidi_bytes = blk_rq_bytes(rq->next_rq);
2931
2932 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2933 BUG_ON(pending);
32fab448 2934}
56ad1740 2935EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2936
e19a3ab0 2937/**
b1f74493
FT
2938 * __blk_end_request_cur - Helper function to finish the current request chunk.
2939 * @rq: the request to finish the current chunk for
8ebf9756 2940 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2941 *
2942 * Description:
b1f74493
FT
2943 * Complete the current consecutively mapped chunk from @rq. Must
2944 * be called with queue lock held.
e19a3ab0
KU
2945 *
2946 * Return:
b1f74493
FT
2947 * %false - we are done with this request
2948 * %true - still buffers pending for this request
2949 */
2950bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2951{
b1f74493 2952 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2953}
56ad1740 2954EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2955
80a761fd
TH
2956/**
2957 * __blk_end_request_err - Finish a request till the next failure boundary.
2958 * @rq: the request to finish till the next failure boundary for
2959 * @error: must be negative errno
2960 *
2961 * Description:
2962 * Complete @rq till the next failure boundary. Must be called
2963 * with queue lock held.
2964 *
2965 * Return:
2966 * %false - we are done with this request
2967 * %true - still buffers pending for this request
2968 */
2969bool __blk_end_request_err(struct request *rq, int error)
2970{
2971 WARN_ON(error >= 0);
2972 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2973}
2974EXPORT_SYMBOL_GPL(__blk_end_request_err);
2975
86db1e29
JA
2976void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2977 struct bio *bio)
1da177e4 2978{
4993b77d 2979 req_set_op(rq, bio_op(bio));
1da177e4 2980
b4f42e28 2981 if (bio_has_data(bio))
fb2dce86 2982 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2983
4f024f37 2984 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2985 rq->bio = rq->biotail = bio;
1da177e4 2986
66846572
N
2987 if (bio->bi_bdev)
2988 rq->rq_disk = bio->bi_bdev->bd_disk;
2989}
1da177e4 2990
2d4dc890
IL
2991#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2992/**
2993 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2994 * @rq: the request to be flushed
2995 *
2996 * Description:
2997 * Flush all pages in @rq.
2998 */
2999void rq_flush_dcache_pages(struct request *rq)
3000{
3001 struct req_iterator iter;
7988613b 3002 struct bio_vec bvec;
2d4dc890
IL
3003
3004 rq_for_each_segment(bvec, rq, iter)
7988613b 3005 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3006}
3007EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3008#endif
3009
ef9e3fac
KU
3010/**
3011 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3012 * @q : the queue of the device being checked
3013 *
3014 * Description:
3015 * Check if underlying low-level drivers of a device are busy.
3016 * If the drivers want to export their busy state, they must set own
3017 * exporting function using blk_queue_lld_busy() first.
3018 *
3019 * Basically, this function is used only by request stacking drivers
3020 * to stop dispatching requests to underlying devices when underlying
3021 * devices are busy. This behavior helps more I/O merging on the queue
3022 * of the request stacking driver and prevents I/O throughput regression
3023 * on burst I/O load.
3024 *
3025 * Return:
3026 * 0 - Not busy (The request stacking driver should dispatch request)
3027 * 1 - Busy (The request stacking driver should stop dispatching request)
3028 */
3029int blk_lld_busy(struct request_queue *q)
3030{
3031 if (q->lld_busy_fn)
3032 return q->lld_busy_fn(q);
3033
3034 return 0;
3035}
3036EXPORT_SYMBOL_GPL(blk_lld_busy);
3037
78d8e58a
MS
3038/**
3039 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3040 * @rq: the clone request to be cleaned up
3041 *
3042 * Description:
3043 * Free all bios in @rq for a cloned request.
3044 */
3045void blk_rq_unprep_clone(struct request *rq)
3046{
3047 struct bio *bio;
3048
3049 while ((bio = rq->bio) != NULL) {
3050 rq->bio = bio->bi_next;
3051
3052 bio_put(bio);
3053 }
3054}
3055EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3056
3057/*
3058 * Copy attributes of the original request to the clone request.
3059 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3060 */
3061static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3062{
3063 dst->cpu = src->cpu;
4993b77d
MC
3064 req_set_op_attrs(dst, req_op(src),
3065 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
b0fd271d
KU
3066 dst->cmd_type = src->cmd_type;
3067 dst->__sector = blk_rq_pos(src);
3068 dst->__data_len = blk_rq_bytes(src);
3069 dst->nr_phys_segments = src->nr_phys_segments;
3070 dst->ioprio = src->ioprio;
3071 dst->extra_len = src->extra_len;
78d8e58a
MS
3072}
3073
3074/**
3075 * blk_rq_prep_clone - Helper function to setup clone request
3076 * @rq: the request to be setup
3077 * @rq_src: original request to be cloned
3078 * @bs: bio_set that bios for clone are allocated from
3079 * @gfp_mask: memory allocation mask for bio
3080 * @bio_ctr: setup function to be called for each clone bio.
3081 * Returns %0 for success, non %0 for failure.
3082 * @data: private data to be passed to @bio_ctr
3083 *
3084 * Description:
3085 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3086 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3087 * are not copied, and copying such parts is the caller's responsibility.
3088 * Also, pages which the original bios are pointing to are not copied
3089 * and the cloned bios just point same pages.
3090 * So cloned bios must be completed before original bios, which means
3091 * the caller must complete @rq before @rq_src.
3092 */
3093int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3094 struct bio_set *bs, gfp_t gfp_mask,
3095 int (*bio_ctr)(struct bio *, struct bio *, void *),
3096 void *data)
3097{
3098 struct bio *bio, *bio_src;
3099
3100 if (!bs)
3101 bs = fs_bio_set;
3102
3103 __rq_for_each_bio(bio_src, rq_src) {
3104 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3105 if (!bio)
3106 goto free_and_out;
3107
3108 if (bio_ctr && bio_ctr(bio, bio_src, data))
3109 goto free_and_out;
3110
3111 if (rq->bio) {
3112 rq->biotail->bi_next = bio;
3113 rq->biotail = bio;
3114 } else
3115 rq->bio = rq->biotail = bio;
3116 }
3117
3118 __blk_rq_prep_clone(rq, rq_src);
3119
3120 return 0;
3121
3122free_and_out:
3123 if (bio)
3124 bio_put(bio);
3125 blk_rq_unprep_clone(rq);
3126
3127 return -ENOMEM;
b0fd271d
KU
3128}
3129EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3130
59c3d45e 3131int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3132{
3133 return queue_work(kblockd_workqueue, work);
3134}
1da177e4
LT
3135EXPORT_SYMBOL(kblockd_schedule_work);
3136
59c3d45e
JA
3137int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3138 unsigned long delay)
e43473b7
VG
3139{
3140 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3141}
3142EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3143
8ab14595
JA
3144int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3145 unsigned long delay)
3146{
3147 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3148}
3149EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3150
75df7136
SJ
3151/**
3152 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3153 * @plug: The &struct blk_plug that needs to be initialized
3154 *
3155 * Description:
3156 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3157 * pending I/O should the task end up blocking between blk_start_plug() and
3158 * blk_finish_plug(). This is important from a performance perspective, but
3159 * also ensures that we don't deadlock. For instance, if the task is blocking
3160 * for a memory allocation, memory reclaim could end up wanting to free a
3161 * page belonging to that request that is currently residing in our private
3162 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3163 * this kind of deadlock.
3164 */
73c10101
JA
3165void blk_start_plug(struct blk_plug *plug)
3166{
3167 struct task_struct *tsk = current;
3168
dd6cf3e1
SL
3169 /*
3170 * If this is a nested plug, don't actually assign it.
3171 */
3172 if (tsk->plug)
3173 return;
3174
73c10101 3175 INIT_LIST_HEAD(&plug->list);
320ae51f 3176 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3177 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3178 /*
dd6cf3e1
SL
3179 * Store ordering should not be needed here, since a potential
3180 * preempt will imply a full memory barrier
73c10101 3181 */
dd6cf3e1 3182 tsk->plug = plug;
73c10101
JA
3183}
3184EXPORT_SYMBOL(blk_start_plug);
3185
3186static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3187{
3188 struct request *rqa = container_of(a, struct request, queuelist);
3189 struct request *rqb = container_of(b, struct request, queuelist);
3190
975927b9
JM
3191 return !(rqa->q < rqb->q ||
3192 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3193}
3194
49cac01e
JA
3195/*
3196 * If 'from_schedule' is true, then postpone the dispatch of requests
3197 * until a safe kblockd context. We due this to avoid accidental big
3198 * additional stack usage in driver dispatch, in places where the originally
3199 * plugger did not intend it.
3200 */
f6603783 3201static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3202 bool from_schedule)
99e22598 3203 __releases(q->queue_lock)
94b5eb28 3204{
49cac01e 3205 trace_block_unplug(q, depth, !from_schedule);
99e22598 3206
70460571 3207 if (from_schedule)
24ecfbe2 3208 blk_run_queue_async(q);
70460571 3209 else
24ecfbe2 3210 __blk_run_queue(q);
70460571 3211 spin_unlock(q->queue_lock);
94b5eb28
JA
3212}
3213
74018dc3 3214static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3215{
3216 LIST_HEAD(callbacks);
3217
2a7d5559
SL
3218 while (!list_empty(&plug->cb_list)) {
3219 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3220
2a7d5559
SL
3221 while (!list_empty(&callbacks)) {
3222 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3223 struct blk_plug_cb,
3224 list);
2a7d5559 3225 list_del(&cb->list);
74018dc3 3226 cb->callback(cb, from_schedule);
2a7d5559 3227 }
048c9374
N
3228 }
3229}
3230
9cbb1750
N
3231struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3232 int size)
3233{
3234 struct blk_plug *plug = current->plug;
3235 struct blk_plug_cb *cb;
3236
3237 if (!plug)
3238 return NULL;
3239
3240 list_for_each_entry(cb, &plug->cb_list, list)
3241 if (cb->callback == unplug && cb->data == data)
3242 return cb;
3243
3244 /* Not currently on the callback list */
3245 BUG_ON(size < sizeof(*cb));
3246 cb = kzalloc(size, GFP_ATOMIC);
3247 if (cb) {
3248 cb->data = data;
3249 cb->callback = unplug;
3250 list_add(&cb->list, &plug->cb_list);
3251 }
3252 return cb;
3253}
3254EXPORT_SYMBOL(blk_check_plugged);
3255
49cac01e 3256void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3257{
3258 struct request_queue *q;
3259 unsigned long flags;
3260 struct request *rq;
109b8129 3261 LIST_HEAD(list);
94b5eb28 3262 unsigned int depth;
73c10101 3263
74018dc3 3264 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3265
3266 if (!list_empty(&plug->mq_list))
3267 blk_mq_flush_plug_list(plug, from_schedule);
3268
73c10101
JA
3269 if (list_empty(&plug->list))
3270 return;
3271
109b8129
N
3272 list_splice_init(&plug->list, &list);
3273
422765c2 3274 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3275
3276 q = NULL;
94b5eb28 3277 depth = 0;
18811272
JA
3278
3279 /*
3280 * Save and disable interrupts here, to avoid doing it for every
3281 * queue lock we have to take.
3282 */
73c10101 3283 local_irq_save(flags);
109b8129
N
3284 while (!list_empty(&list)) {
3285 rq = list_entry_rq(list.next);
73c10101 3286 list_del_init(&rq->queuelist);
73c10101
JA
3287 BUG_ON(!rq->q);
3288 if (rq->q != q) {
99e22598
JA
3289 /*
3290 * This drops the queue lock
3291 */
3292 if (q)
49cac01e 3293 queue_unplugged(q, depth, from_schedule);
73c10101 3294 q = rq->q;
94b5eb28 3295 depth = 0;
73c10101
JA
3296 spin_lock(q->queue_lock);
3297 }
8ba61435
TH
3298
3299 /*
3300 * Short-circuit if @q is dead
3301 */
3f3299d5 3302 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3303 __blk_end_request_all(rq, -ENODEV);
3304 continue;
3305 }
3306
73c10101
JA
3307 /*
3308 * rq is already accounted, so use raw insert
3309 */
401a18e9
JA
3310 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3311 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3312 else
3313 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3314
3315 depth++;
73c10101
JA
3316 }
3317
99e22598
JA
3318 /*
3319 * This drops the queue lock
3320 */
3321 if (q)
49cac01e 3322 queue_unplugged(q, depth, from_schedule);
73c10101 3323
73c10101
JA
3324 local_irq_restore(flags);
3325}
73c10101
JA
3326
3327void blk_finish_plug(struct blk_plug *plug)
3328{
dd6cf3e1
SL
3329 if (plug != current->plug)
3330 return;
f6603783 3331 blk_flush_plug_list(plug, false);
73c10101 3332
dd6cf3e1 3333 current->plug = NULL;
73c10101 3334}
88b996cd 3335EXPORT_SYMBOL(blk_finish_plug);
73c10101 3336
05229bee
JA
3337bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3338{
3339 struct blk_plug *plug;
3340 long state;
3341
3342 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3343 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3344 return false;
3345
3346 plug = current->plug;
3347 if (plug)
3348 blk_flush_plug_list(plug, false);
3349
3350 state = current->state;
3351 while (!need_resched()) {
3352 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3353 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3354 int ret;
3355
3356 hctx->poll_invoked++;
3357
3358 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3359 if (ret > 0) {
3360 hctx->poll_success++;
3361 set_current_state(TASK_RUNNING);
3362 return true;
3363 }
3364
3365 if (signal_pending_state(state, current))
3366 set_current_state(TASK_RUNNING);
3367
3368 if (current->state == TASK_RUNNING)
3369 return true;
3370 if (ret < 0)
3371 break;
3372 cpu_relax();
3373 }
3374
3375 return false;
3376}
3377
47fafbc7 3378#ifdef CONFIG_PM
6c954667
LM
3379/**
3380 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3381 * @q: the queue of the device
3382 * @dev: the device the queue belongs to
3383 *
3384 * Description:
3385 * Initialize runtime-PM-related fields for @q and start auto suspend for
3386 * @dev. Drivers that want to take advantage of request-based runtime PM
3387 * should call this function after @dev has been initialized, and its
3388 * request queue @q has been allocated, and runtime PM for it can not happen
3389 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3390 * cases, driver should call this function before any I/O has taken place.
3391 *
3392 * This function takes care of setting up using auto suspend for the device,
3393 * the autosuspend delay is set to -1 to make runtime suspend impossible
3394 * until an updated value is either set by user or by driver. Drivers do
3395 * not need to touch other autosuspend settings.
3396 *
3397 * The block layer runtime PM is request based, so only works for drivers
3398 * that use request as their IO unit instead of those directly use bio's.
3399 */
3400void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3401{
3402 q->dev = dev;
3403 q->rpm_status = RPM_ACTIVE;
3404 pm_runtime_set_autosuspend_delay(q->dev, -1);
3405 pm_runtime_use_autosuspend(q->dev);
3406}
3407EXPORT_SYMBOL(blk_pm_runtime_init);
3408
3409/**
3410 * blk_pre_runtime_suspend - Pre runtime suspend check
3411 * @q: the queue of the device
3412 *
3413 * Description:
3414 * This function will check if runtime suspend is allowed for the device
3415 * by examining if there are any requests pending in the queue. If there
3416 * are requests pending, the device can not be runtime suspended; otherwise,
3417 * the queue's status will be updated to SUSPENDING and the driver can
3418 * proceed to suspend the device.
3419 *
3420 * For the not allowed case, we mark last busy for the device so that
3421 * runtime PM core will try to autosuspend it some time later.
3422 *
3423 * This function should be called near the start of the device's
3424 * runtime_suspend callback.
3425 *
3426 * Return:
3427 * 0 - OK to runtime suspend the device
3428 * -EBUSY - Device should not be runtime suspended
3429 */
3430int blk_pre_runtime_suspend(struct request_queue *q)
3431{
3432 int ret = 0;
3433
4fd41a85
KX
3434 if (!q->dev)
3435 return ret;
3436
6c954667
LM
3437 spin_lock_irq(q->queue_lock);
3438 if (q->nr_pending) {
3439 ret = -EBUSY;
3440 pm_runtime_mark_last_busy(q->dev);
3441 } else {
3442 q->rpm_status = RPM_SUSPENDING;
3443 }
3444 spin_unlock_irq(q->queue_lock);
3445 return ret;
3446}
3447EXPORT_SYMBOL(blk_pre_runtime_suspend);
3448
3449/**
3450 * blk_post_runtime_suspend - Post runtime suspend processing
3451 * @q: the queue of the device
3452 * @err: return value of the device's runtime_suspend function
3453 *
3454 * Description:
3455 * Update the queue's runtime status according to the return value of the
3456 * device's runtime suspend function and mark last busy for the device so
3457 * that PM core will try to auto suspend the device at a later time.
3458 *
3459 * This function should be called near the end of the device's
3460 * runtime_suspend callback.
3461 */
3462void blk_post_runtime_suspend(struct request_queue *q, int err)
3463{
4fd41a85
KX
3464 if (!q->dev)
3465 return;
3466
6c954667
LM
3467 spin_lock_irq(q->queue_lock);
3468 if (!err) {
3469 q->rpm_status = RPM_SUSPENDED;
3470 } else {
3471 q->rpm_status = RPM_ACTIVE;
3472 pm_runtime_mark_last_busy(q->dev);
3473 }
3474 spin_unlock_irq(q->queue_lock);
3475}
3476EXPORT_SYMBOL(blk_post_runtime_suspend);
3477
3478/**
3479 * blk_pre_runtime_resume - Pre runtime resume processing
3480 * @q: the queue of the device
3481 *
3482 * Description:
3483 * Update the queue's runtime status to RESUMING in preparation for the
3484 * runtime resume of the device.
3485 *
3486 * This function should be called near the start of the device's
3487 * runtime_resume callback.
3488 */
3489void blk_pre_runtime_resume(struct request_queue *q)
3490{
4fd41a85
KX
3491 if (!q->dev)
3492 return;
3493
6c954667
LM
3494 spin_lock_irq(q->queue_lock);
3495 q->rpm_status = RPM_RESUMING;
3496 spin_unlock_irq(q->queue_lock);
3497}
3498EXPORT_SYMBOL(blk_pre_runtime_resume);
3499
3500/**
3501 * blk_post_runtime_resume - Post runtime resume processing
3502 * @q: the queue of the device
3503 * @err: return value of the device's runtime_resume function
3504 *
3505 * Description:
3506 * Update the queue's runtime status according to the return value of the
3507 * device's runtime_resume function. If it is successfully resumed, process
3508 * the requests that are queued into the device's queue when it is resuming
3509 * and then mark last busy and initiate autosuspend for it.
3510 *
3511 * This function should be called near the end of the device's
3512 * runtime_resume callback.
3513 */
3514void blk_post_runtime_resume(struct request_queue *q, int err)
3515{
4fd41a85
KX
3516 if (!q->dev)
3517 return;
3518
6c954667
LM
3519 spin_lock_irq(q->queue_lock);
3520 if (!err) {
3521 q->rpm_status = RPM_ACTIVE;
3522 __blk_run_queue(q);
3523 pm_runtime_mark_last_busy(q->dev);
c60855cd 3524 pm_request_autosuspend(q->dev);
6c954667
LM
3525 } else {
3526 q->rpm_status = RPM_SUSPENDED;
3527 }
3528 spin_unlock_irq(q->queue_lock);
3529}
3530EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3531
3532/**
3533 * blk_set_runtime_active - Force runtime status of the queue to be active
3534 * @q: the queue of the device
3535 *
3536 * If the device is left runtime suspended during system suspend the resume
3537 * hook typically resumes the device and corrects runtime status
3538 * accordingly. However, that does not affect the queue runtime PM status
3539 * which is still "suspended". This prevents processing requests from the
3540 * queue.
3541 *
3542 * This function can be used in driver's resume hook to correct queue
3543 * runtime PM status and re-enable peeking requests from the queue. It
3544 * should be called before first request is added to the queue.
3545 */
3546void blk_set_runtime_active(struct request_queue *q)
3547{
3548 spin_lock_irq(q->queue_lock);
3549 q->rpm_status = RPM_ACTIVE;
3550 pm_runtime_mark_last_busy(q->dev);
3551 pm_request_autosuspend(q->dev);
3552 spin_unlock_irq(q->queue_lock);
3553}
3554EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3555#endif
3556
1da177e4
LT
3557int __init blk_dev_init(void)
3558{
9eb55b03 3559 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
0762b23d 3560 FIELD_SIZEOF(struct request, cmd_flags));
9eb55b03 3561
89b90be2
TH
3562 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3563 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3564 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3565 if (!kblockd_workqueue)
3566 panic("Failed to create kblockd\n");
3567
3568 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3569 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3570
c2789bd4 3571 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3572 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3573
d38ecf93 3574 return 0;
1da177e4 3575}