]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
blkg_rwstat: separate op from flags
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
d674d414 54struct kmem_cache *request_cachep;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
143a87f4 148 if (unlikely(rq->cmd_flags & REQ_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
78d8e58a 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
21491412
JA
209/**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218void blk_start_queue_async(struct request_queue *q)
219{
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222}
223EXPORT_SYMBOL(blk_start_queue_async);
224
1da177e4
LT
225/**
226 * blk_start_queue - restart a previously stopped queue
165125e1 227 * @q: The &struct request_queue in question
1da177e4
LT
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
165125e1 234void blk_start_queue(struct request_queue *q)
1da177e4 235{
a038e253
PBG
236 WARN_ON(!irqs_disabled());
237
75ad23bc 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 239 __blk_run_queue(q);
1da177e4 240}
1da177e4
LT
241EXPORT_SYMBOL(blk_start_queue);
242
243/**
244 * blk_stop_queue - stop a queue
165125e1 245 * @q: The &struct request_queue in question
1da177e4
LT
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
165125e1 257void blk_stop_queue(struct request_queue *q)
1da177e4 258{
136b5721 259 cancel_delayed_work(&q->delay_work);
75ad23bc 260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
261}
262EXPORT_SYMBOL(blk_stop_queue);
263
264/**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
59c51591 273 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
da527770 277 * This function does not cancel any asynchronous activity arising
da3dae54 278 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 279 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 280 *
1da177e4
LT
281 */
282void blk_sync_queue(struct request_queue *q)
283{
70ed28b9 284 del_timer_sync(&q->timeout);
f04c1fe7
ML
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
70f4db63
CH
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
f04c1fe7
ML
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
1da177e4
LT
297}
298EXPORT_SYMBOL(blk_sync_queue);
299
c246e80d
BVA
300/**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311inline void __blk_run_queue_uncond(struct request_queue *q)
312{
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
24faf6f6
BVA
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
c246e80d 324 q->request_fn(q);
24faf6f6 325 q->request_fn_active--;
c246e80d 326}
a7928c15 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 328
1da177e4 329/**
80a4b58e 330 * __blk_run_queue - run a single device queue
1da177e4 331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 335 * held and interrupts disabled.
1da177e4 336 */
24ecfbe2 337void __blk_run_queue(struct request_queue *q)
1da177e4 338{
a538cd03
TH
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
c246e80d 342 __blk_run_queue_uncond(q);
75ad23bc
NP
343}
344EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 345
24ecfbe2
CH
346/**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 352 * of us. The caller must hold the queue lock.
24ecfbe2
CH
353 */
354void blk_run_queue_async(struct request_queue *q)
355{
70460571 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 358}
c21e6beb 359EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 360
75ad23bc
NP
361/**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
80a4b58e
JA
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 367 * May be used to restart queueing when a request has completed.
75ad23bc
NP
368 */
369void blk_run_queue(struct request_queue *q)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 374 __blk_run_queue(q);
1da177e4
LT
375 spin_unlock_irqrestore(q->queue_lock, flags);
376}
377EXPORT_SYMBOL(blk_run_queue);
378
165125e1 379void blk_put_queue(struct request_queue *q)
483f4afc
AV
380{
381 kobject_put(&q->kobj);
382}
d86e0e83 383EXPORT_SYMBOL(blk_put_queue);
483f4afc 384
e3c78ca5 385/**
807592a4 386 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 387 * @q: queue to drain
c9a929dd 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 389 *
c9a929dd
TH
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 393 */
807592a4
BVA
394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
e3c78ca5 397{
458f27a9
AH
398 int i;
399
807592a4
BVA
400 lockdep_assert_held(q->queue_lock);
401
e3c78ca5 402 while (true) {
481a7d64 403 bool drain = false;
e3c78ca5 404
b855b04a
TH
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
5efd6113 412 blkcg_drain_queue(q);
e3c78ca5 413
4eabc941
TH
414 /*
415 * This function might be called on a queue which failed
b855b04a
TH
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
4eabc941 420 */
b855b04a 421 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 422 __blk_run_queue(q);
c9a929dd 423
8a5ecdd4 424 drain |= q->nr_rqs_elvpriv;
24faf6f6 425 drain |= q->request_fn_active;
481a7d64
TH
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
e97c293c 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
8a5ecdd4 436 drain |= q->nr_rqs[i];
481a7d64 437 drain |= q->in_flight[i];
7c94e1c1
ML
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
440 }
441 }
e3c78ca5 442
481a7d64 443 if (!drain)
e3c78ca5 444 break;
807592a4
BVA
445
446 spin_unlock_irq(q->queue_lock);
447
e3c78ca5 448 msleep(10);
807592a4
BVA
449
450 spin_lock_irq(q->queue_lock);
e3c78ca5 451 }
458f27a9
AH
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
a051661c
TH
459 struct request_list *rl;
460
a051661c
TH
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
458f27a9 464 }
e3c78ca5
TH
465}
466
d732580b
TH
467/**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 473 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
d732580b
TH
476 */
477void blk_queue_bypass_start(struct request_queue *q)
478{
479 spin_lock_irq(q->queue_lock);
776687bc 480 q->bypass_depth++;
d732580b
TH
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
776687bc
TH
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
807592a4
BVA
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
b82d4b19
TH
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
d732580b
TH
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500/**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506void blk_queue_bypass_end(struct request_queue *q)
507{
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513}
514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
aed3ea94
JA
516void blk_set_queue_dying(struct request_queue *q)
517{
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532}
533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
c9a929dd
TH
535/**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
c246e80d
BVA
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 541 */
6728cb0e 542void blk_cleanup_queue(struct request_queue *q)
483f4afc 543{
c9a929dd 544 spinlock_t *lock = q->queue_lock;
e3335de9 545
3f3299d5 546 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 547 mutex_lock(&q->sysfs_lock);
aed3ea94 548 blk_set_queue_dying(q);
c9a929dd 549 spin_lock_irq(lock);
6ecf23af 550
80fd9979 551 /*
3f3299d5 552 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
6ecf23af
TH
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
c9a929dd
TH
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 565 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
c246e80d
BVA
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
3ef28e83
DW
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
43a5e4e2 576 __blk_drain_queue(q, true);
c246e80d 577 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 578 spin_unlock_irq(lock);
c9a929dd 579
5a48fc14
DW
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
c9a929dd
TH
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
45a9c9d9
BVA
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
3ef28e83 589 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 590
5e5cfac0
AH
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
b02176f3 596 bdi_unregister(&q->backing_dev_info);
6cd18e71 597
c9a929dd 598 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
599 blk_put_queue(q);
600}
1da177e4
LT
601EXPORT_SYMBOL(blk_cleanup_queue);
602
271508db
DR
603/* Allocate memory local to the request queue */
604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605{
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608}
609
610static void free_request_struct(void *element, void *unused)
611{
612 kmem_cache_free(request_cachep, element);
613}
614
5b788ce3
TH
615int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
1da177e4 617{
1abec4fd
MS
618 if (unlikely(rl->rq_pool))
619 return 0;
620
5b788ce3 621 rl->q = q;
1faa16d2
JA
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 626
271508db
DR
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
1da177e4
LT
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635}
636
5b788ce3
TH
637void blk_exit_rl(struct request_list *rl)
638{
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641}
642
165125e1 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 644{
c304a51b 645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
646}
647EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 648
6f3b0e8b 649int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
650{
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
6f3b0e8b 657 if (nowait)
3ef28e83
DW
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668}
669
670void blk_queue_exit(struct request_queue *q)
671{
672 percpu_ref_put(&q->q_usage_counter);
673}
674
675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676{
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681}
682
287922eb
CH
683static void blk_rq_timed_out_timer(unsigned long data)
684{
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688}
689
165125e1 690struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 691{
165125e1 692 struct request_queue *q;
e0bf68dd 693 int err;
1946089a 694
8324aa91 695 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 696 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
697 if (!q)
698 return NULL;
699
00380a40 700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 701 if (q->id < 0)
3d2936f4 702 goto fail_q;
a73f730d 703
54efd50b
KO
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
0989a025 708 q->backing_dev_info.ra_pages =
09cbfeaf 709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 711 q->backing_dev_info.name = "block";
5151412d 712 q->node = node_id;
0989a025 713
e0bf68dd 714 err = bdi_init(&q->backing_dev_info);
a73f730d 715 if (err)
54efd50b 716 goto fail_split;
e0bf68dd 717
31373d09
MG
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 721 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 722 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 723 INIT_LIST_HEAD(&q->icq_list);
4eef3049 724#ifdef CONFIG_BLK_CGROUP
e8989fae 725 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 726#endif
3cca6dc1 727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 728
8324aa91 729 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 730
483f4afc 731 mutex_init(&q->sysfs_lock);
e7e72bf6 732 spin_lock_init(&q->__queue_lock);
483f4afc 733
c94a96ac
VG
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
b82d4b19
TH
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
b82d4b19
TH
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
320ae51f
JA
749 init_waitqueue_head(&q->mq_freeze_wq);
750
3ef28e83
DW
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 758 goto fail_bdi;
f51b802c 759
3ef28e83
DW
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
1da177e4 763 return q;
a73f730d 764
3ef28e83
DW
765fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
767fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
769fail_split:
770 bioset_free(q->bio_split);
a73f730d
TH
771fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
1da177e4 776}
1946089a 777EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
778
779/**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
1da177e4 803 *
710027a4 804 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
1946089a 811
165125e1 812struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 813{
c304a51b 814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
815}
816EXPORT_SYMBOL(blk_init_queue);
817
165125e1 818struct request_queue *
1946089a
CL
819blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820{
c86d1b8a 821 struct request_queue *uninit_q, *q;
1da177e4 822
c86d1b8a
MS
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
5151412d 827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 828 if (!q)
7982e90c 829 blk_cleanup_queue(uninit_q);
18741986 830
7982e90c 831 return q;
01effb0d
MS
832}
833EXPORT_SYMBOL(blk_init_queue_node);
834
dece1635 835static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 836
01effb0d
MS
837struct request_queue *
838blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
01effb0d 840{
1da177e4
LT
841 if (!q)
842 return NULL;
843
f70ced09 844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 845 if (!q->fq)
7982e90c
MS
846 return NULL;
847
a051661c 848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 849 goto fail;
1da177e4 850
287922eb 851 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 852 q->request_fn = rfn;
1da177e4 853 q->prep_rq_fn = NULL;
28018c24 854 q->unprep_rq_fn = NULL;
60ea8226 855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
1da177e4 860
f3b144aa
JA
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
c20e8de2 864 blk_queue_make_request(q, blk_queue_bio);
1da177e4 865
44ec9542
AS
866 q->sg_reserved_size = INT_MAX;
867
eb1c160b
TS
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
b82d4b19 871 /* init elevator */
eb1c160b
TS
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
708f04d2 874 goto fail;
eb1c160b
TS
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
b82d4b19 879 return q;
708f04d2
DJ
880
881fail:
ba483388 882 blk_free_flush_queue(q->fq);
708f04d2 883 return NULL;
1da177e4 884}
5151412d 885EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 886
09ac46c4 887bool blk_get_queue(struct request_queue *q)
1da177e4 888{
3f3299d5 889 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
890 __blk_get_queue(q);
891 return true;
1da177e4
LT
892 }
893
09ac46c4 894 return false;
1da177e4 895}
d86e0e83 896EXPORT_SYMBOL(blk_get_queue);
1da177e4 897
5b788ce3 898static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 899{
f1f8cc94 900 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 901 elv_put_request(rl->q, rq);
f1f8cc94 902 if (rq->elv.icq)
11a3122f 903 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
904 }
905
5b788ce3 906 mempool_free(rq, rl->rq_pool);
1da177e4
LT
907}
908
1da177e4
LT
909/*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
165125e1 913static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
914{
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926}
927
928/*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
165125e1 934static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
935{
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941}
942
5b788ce3 943static void __freed_request(struct request_list *rl, int sync)
1da177e4 944{
5b788ce3 945 struct request_queue *q = rl->q;
1da177e4 946
d40f75a0
TH
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
1da177e4 949
1faa16d2
JA
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
1da177e4 953
5b788ce3 954 blk_clear_rl_full(rl, sync);
1da177e4
LT
955 }
956}
957
958/*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
e6a40b09 962static void freed_request(struct request_list *rl, int op, unsigned int flags)
1da177e4 963{
5b788ce3 964 struct request_queue *q = rl->q;
e6a40b09 965 int sync = rw_is_sync(op | flags);
1da177e4 966
8a5ecdd4 967 q->nr_rqs[sync]--;
1faa16d2 968 rl->count[sync]--;
75eb6c37 969 if (flags & REQ_ELVPRIV)
8a5ecdd4 970 q->nr_rqs_elvpriv--;
1da177e4 971
5b788ce3 972 __freed_request(rl, sync);
1da177e4 973
1faa16d2 974 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 975 __freed_request(rl, sync ^ 1);
1da177e4
LT
976}
977
e3a2b3f9
JA
978int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979{
980 struct request_list *rl;
d40f75a0 981 int on_thresh, off_thresh;
e3a2b3f9
JA
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
d40f75a0
TH
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 988
d40f75a0
TH
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 994
d40f75a0
TH
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 999
e3a2b3f9
JA
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017}
1018
9d5a4e94
MS
1019/*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023static bool blk_rq_should_init_elevator(struct bio *bio)
1024{
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
1032 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033 return false;
1034
1035 return true;
1036}
1037
852c788f
TH
1038/**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045static struct io_context *rq_ioc(struct bio *bio)
1046{
1047#ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050#endif
1051 return current->io_context;
1052}
1053
da8303c6 1054/**
a06e05e6 1055 * __get_request - get a free request
5b788ce3 1056 * @rl: request list to allocate from
e6a40b09
MC
1057 * @op: REQ_OP_READ/REQ_OP_WRITE
1058 * @op_flags: rq_flag_bits
da8303c6
TH
1059 * @bio: bio to allocate request for (can be %NULL)
1060 * @gfp_mask: allocation mask
1061 *
1062 * Get a free request from @q. This function may fail under memory
1063 * pressure or if @q is dead.
1064 *
da3dae54 1065 * Must be called with @q->queue_lock held and,
a492f075
JL
1066 * Returns ERR_PTR on failure, with @q->queue_lock held.
1067 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1068 */
e6a40b09
MC
1069static struct request *__get_request(struct request_list *rl, int op,
1070 int op_flags, struct bio *bio,
1071 gfp_t gfp_mask)
1da177e4 1072{
5b788ce3 1073 struct request_queue *q = rl->q;
b679281a 1074 struct request *rq;
7f4b35d1
TH
1075 struct elevator_type *et = q->elevator->type;
1076 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1077 struct io_cq *icq = NULL;
e6a40b09 1078 const bool is_sync = rw_is_sync(op | op_flags) != 0;
75eb6c37 1079 int may_queue;
88ee5ef1 1080
3f3299d5 1081 if (unlikely(blk_queue_dying(q)))
a492f075 1082 return ERR_PTR(-ENODEV);
da8303c6 1083
ba568ea0 1084 may_queue = elv_may_queue(q, op, op_flags);
88ee5ef1
JA
1085 if (may_queue == ELV_MQUEUE_NO)
1086 goto rq_starved;
1087
1faa16d2
JA
1088 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1089 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1090 /*
1091 * The queue will fill after this allocation, so set
1092 * it as full, and mark this process as "batching".
1093 * This process will be allowed to complete a batch of
1094 * requests, others will be blocked.
1095 */
5b788ce3 1096 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1097 ioc_set_batching(q, ioc);
5b788ce3 1098 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1099 } else {
1100 if (may_queue != ELV_MQUEUE_MUST
1101 && !ioc_batching(q, ioc)) {
1102 /*
1103 * The queue is full and the allocating
1104 * process is not a "batcher", and not
1105 * exempted by the IO scheduler
1106 */
a492f075 1107 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1108 }
1109 }
1da177e4 1110 }
d40f75a0 1111 blk_set_congested(rl, is_sync);
1da177e4
LT
1112 }
1113
082cf69e
JA
1114 /*
1115 * Only allow batching queuers to allocate up to 50% over the defined
1116 * limit of requests, otherwise we could have thousands of requests
1117 * allocated with any setting of ->nr_requests
1118 */
1faa16d2 1119 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1120 return ERR_PTR(-ENOMEM);
fd782a4a 1121
8a5ecdd4 1122 q->nr_rqs[is_sync]++;
1faa16d2
JA
1123 rl->count[is_sync]++;
1124 rl->starved[is_sync] = 0;
cb98fc8b 1125
f1f8cc94
TH
1126 /*
1127 * Decide whether the new request will be managed by elevator. If
e6a40b09 1128 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1129 * prevent the current elevator from being destroyed until the new
1130 * request is freed. This guarantees icq's won't be destroyed and
1131 * makes creating new ones safe.
1132 *
1133 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1134 * it will be created after releasing queue_lock.
1135 */
d732580b 1136 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
e6a40b09 1137 op_flags |= REQ_ELVPRIV;
8a5ecdd4 1138 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1139 if (et->icq_cache && ioc)
1140 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1141 }
cb98fc8b 1142
f253b86b 1143 if (blk_queue_io_stat(q))
e6a40b09 1144 op_flags |= REQ_IO_STAT;
1da177e4
LT
1145 spin_unlock_irq(q->queue_lock);
1146
29e2b09a 1147 /* allocate and init request */
5b788ce3 1148 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1149 if (!rq)
b679281a 1150 goto fail_alloc;
1da177e4 1151
29e2b09a 1152 blk_rq_init(q, rq);
a051661c 1153 blk_rq_set_rl(rq, rl);
e6a40b09 1154 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
29e2b09a 1155
aaf7c680 1156 /* init elvpriv */
e6a40b09 1157 if (op_flags & REQ_ELVPRIV) {
aaf7c680 1158 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1159 if (ioc)
1160 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1161 if (!icq)
1162 goto fail_elvpriv;
29e2b09a 1163 }
aaf7c680
TH
1164
1165 rq->elv.icq = icq;
1166 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1167 goto fail_elvpriv;
1168
1169 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1170 if (icq)
1171 get_io_context(icq->ioc);
1172 }
aaf7c680 1173out:
88ee5ef1
JA
1174 /*
1175 * ioc may be NULL here, and ioc_batching will be false. That's
1176 * OK, if the queue is under the request limit then requests need
1177 * not count toward the nr_batch_requests limit. There will always
1178 * be some limit enforced by BLK_BATCH_TIME.
1179 */
1da177e4
LT
1180 if (ioc_batching(q, ioc))
1181 ioc->nr_batch_requests--;
6728cb0e 1182
e6a40b09 1183 trace_block_getrq(q, bio, op);
1da177e4 1184 return rq;
b679281a 1185
aaf7c680
TH
1186fail_elvpriv:
1187 /*
1188 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1189 * and may fail indefinitely under memory pressure and thus
1190 * shouldn't stall IO. Treat this request as !elvpriv. This will
1191 * disturb iosched and blkcg but weird is bettern than dead.
1192 */
7b2b10e0
RE
1193 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1194 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1195
1196 rq->cmd_flags &= ~REQ_ELVPRIV;
1197 rq->elv.icq = NULL;
1198
1199 spin_lock_irq(q->queue_lock);
8a5ecdd4 1200 q->nr_rqs_elvpriv--;
aaf7c680
TH
1201 spin_unlock_irq(q->queue_lock);
1202 goto out;
1203
b679281a
TH
1204fail_alloc:
1205 /*
1206 * Allocation failed presumably due to memory. Undo anything we
1207 * might have messed up.
1208 *
1209 * Allocating task should really be put onto the front of the wait
1210 * queue, but this is pretty rare.
1211 */
1212 spin_lock_irq(q->queue_lock);
e6a40b09 1213 freed_request(rl, op, op_flags);
b679281a
TH
1214
1215 /*
1216 * in the very unlikely event that allocation failed and no
1217 * requests for this direction was pending, mark us starved so that
1218 * freeing of a request in the other direction will notice
1219 * us. another possible fix would be to split the rq mempool into
1220 * READ and WRITE
1221 */
1222rq_starved:
1223 if (unlikely(rl->count[is_sync] == 0))
1224 rl->starved[is_sync] = 1;
a492f075 1225 return ERR_PTR(-ENOMEM);
1da177e4
LT
1226}
1227
da8303c6 1228/**
a06e05e6 1229 * get_request - get a free request
da8303c6 1230 * @q: request_queue to allocate request from
e6a40b09
MC
1231 * @op: REQ_OP_READ/REQ_OP_WRITE
1232 * @op_flags: rq_flag_bits
da8303c6 1233 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1234 * @gfp_mask: allocation mask
da8303c6 1235 *
d0164adc
MG
1236 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1237 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1238 *
da3dae54 1239 * Must be called with @q->queue_lock held and,
a492f075
JL
1240 * Returns ERR_PTR on failure, with @q->queue_lock held.
1241 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1242 */
e6a40b09
MC
1243static struct request *get_request(struct request_queue *q, int op,
1244 int op_flags, struct bio *bio,
1245 gfp_t gfp_mask)
1da177e4 1246{
e6a40b09 1247 const bool is_sync = rw_is_sync(op | op_flags) != 0;
a06e05e6 1248 DEFINE_WAIT(wait);
a051661c 1249 struct request_list *rl;
1da177e4 1250 struct request *rq;
a051661c
TH
1251
1252 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1253retry:
e6a40b09 1254 rq = __get_request(rl, op, op_flags, bio, gfp_mask);
a492f075 1255 if (!IS_ERR(rq))
a06e05e6 1256 return rq;
1da177e4 1257
d0164adc 1258 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1259 blk_put_rl(rl);
a492f075 1260 return rq;
a051661c 1261 }
1da177e4 1262
a06e05e6
TH
1263 /* wait on @rl and retry */
1264 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1265 TASK_UNINTERRUPTIBLE);
1da177e4 1266
e6a40b09 1267 trace_block_sleeprq(q, bio, op);
1da177e4 1268
a06e05e6
TH
1269 spin_unlock_irq(q->queue_lock);
1270 io_schedule();
d6344532 1271
a06e05e6
TH
1272 /*
1273 * After sleeping, we become a "batching" process and will be able
1274 * to allocate at least one request, and up to a big batch of them
1275 * for a small period time. See ioc_batching, ioc_set_batching
1276 */
a06e05e6 1277 ioc_set_batching(q, current->io_context);
05caf8db 1278
a06e05e6
TH
1279 spin_lock_irq(q->queue_lock);
1280 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1281
a06e05e6 1282 goto retry;
1da177e4
LT
1283}
1284
320ae51f
JA
1285static struct request *blk_old_get_request(struct request_queue *q, int rw,
1286 gfp_t gfp_mask)
1da177e4
LT
1287{
1288 struct request *rq;
1289
1290 BUG_ON(rw != READ && rw != WRITE);
1291
7f4b35d1
TH
1292 /* create ioc upfront */
1293 create_io_context(gfp_mask, q->node);
1294
d6344532 1295 spin_lock_irq(q->queue_lock);
e6a40b09 1296 rq = get_request(q, rw, 0, NULL, gfp_mask);
a492f075 1297 if (IS_ERR(rq))
da8303c6 1298 spin_unlock_irq(q->queue_lock);
d6344532 1299 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1300
1301 return rq;
1302}
320ae51f
JA
1303
1304struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1305{
1306 if (q->mq_ops)
6f3b0e8b
CH
1307 return blk_mq_alloc_request(q, rw,
1308 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1309 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1310 else
1311 return blk_old_get_request(q, rw, gfp_mask);
1312}
1da177e4
LT
1313EXPORT_SYMBOL(blk_get_request);
1314
dc72ef4a 1315/**
79eb63e9 1316 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1317 * @q: target request queue
79eb63e9
BH
1318 * @bio: The bio describing the memory mappings that will be submitted for IO.
1319 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1320 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1321 *
79eb63e9
BH
1322 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1323 * type commands. Where the struct request needs to be farther initialized by
1324 * the caller. It is passed a &struct bio, which describes the memory info of
1325 * the I/O transfer.
dc72ef4a 1326 *
79eb63e9
BH
1327 * The caller of blk_make_request must make sure that bi_io_vec
1328 * are set to describe the memory buffers. That bio_data_dir() will return
1329 * the needed direction of the request. (And all bio's in the passed bio-chain
1330 * are properly set accordingly)
1331 *
1332 * If called under none-sleepable conditions, mapped bio buffers must not
1333 * need bouncing, by calling the appropriate masked or flagged allocator,
1334 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1335 * BUG.
53674ac5
JA
1336 *
1337 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
d0164adc
MG
1338 * given to how you allocate bios. In particular, you cannot use
1339 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1340 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1341 * thus resulting in a deadlock. Alternatively bios should be allocated using
1342 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
53674ac5
JA
1343 * If possible a big IO should be split into smaller parts when allocation
1344 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1345 */
79eb63e9
BH
1346struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1347 gfp_t gfp_mask)
dc72ef4a 1348{
79eb63e9
BH
1349 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1350
a492f075
JL
1351 if (IS_ERR(rq))
1352 return rq;
79eb63e9 1353
f27b087b
JA
1354 blk_rq_set_block_pc(rq);
1355
79eb63e9
BH
1356 for_each_bio(bio) {
1357 struct bio *bounce_bio = bio;
1358 int ret;
1359
1360 blk_queue_bounce(q, &bounce_bio);
1361 ret = blk_rq_append_bio(q, rq, bounce_bio);
1362 if (unlikely(ret)) {
1363 blk_put_request(rq);
1364 return ERR_PTR(ret);
1365 }
1366 }
1367
1368 return rq;
dc72ef4a 1369}
79eb63e9 1370EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1371
f27b087b 1372/**
da3dae54 1373 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1374 * @rq: request to be initialized
1375 *
1376 */
1377void blk_rq_set_block_pc(struct request *rq)
1378{
1379 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1380 rq->__data_len = 0;
1381 rq->__sector = (sector_t) -1;
1382 rq->bio = rq->biotail = NULL;
1383 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1384}
1385EXPORT_SYMBOL(blk_rq_set_block_pc);
1386
1da177e4
LT
1387/**
1388 * blk_requeue_request - put a request back on queue
1389 * @q: request queue where request should be inserted
1390 * @rq: request to be inserted
1391 *
1392 * Description:
1393 * Drivers often keep queueing requests until the hardware cannot accept
1394 * more, when that condition happens we need to put the request back
1395 * on the queue. Must be called with queue lock held.
1396 */
165125e1 1397void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1398{
242f9dcb
JA
1399 blk_delete_timer(rq);
1400 blk_clear_rq_complete(rq);
5f3ea37c 1401 trace_block_rq_requeue(q, rq);
2056a782 1402
125c99bc 1403 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1404 blk_queue_end_tag(q, rq);
1405
ba396a6c
JB
1406 BUG_ON(blk_queued_rq(rq));
1407
1da177e4
LT
1408 elv_requeue_request(q, rq);
1409}
1da177e4
LT
1410EXPORT_SYMBOL(blk_requeue_request);
1411
73c10101
JA
1412static void add_acct_request(struct request_queue *q, struct request *rq,
1413 int where)
1414{
320ae51f 1415 blk_account_io_start(rq, true);
7eaceacc 1416 __elv_add_request(q, rq, where);
73c10101
JA
1417}
1418
074a7aca
TH
1419static void part_round_stats_single(int cpu, struct hd_struct *part,
1420 unsigned long now)
1421{
7276d02e
JA
1422 int inflight;
1423
074a7aca
TH
1424 if (now == part->stamp)
1425 return;
1426
7276d02e
JA
1427 inflight = part_in_flight(part);
1428 if (inflight) {
074a7aca 1429 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1430 inflight * (now - part->stamp));
074a7aca
TH
1431 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1432 }
1433 part->stamp = now;
1434}
1435
1436/**
496aa8a9
RD
1437 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1438 * @cpu: cpu number for stats access
1439 * @part: target partition
1da177e4
LT
1440 *
1441 * The average IO queue length and utilisation statistics are maintained
1442 * by observing the current state of the queue length and the amount of
1443 * time it has been in this state for.
1444 *
1445 * Normally, that accounting is done on IO completion, but that can result
1446 * in more than a second's worth of IO being accounted for within any one
1447 * second, leading to >100% utilisation. To deal with that, we call this
1448 * function to do a round-off before returning the results when reading
1449 * /proc/diskstats. This accounts immediately for all queue usage up to
1450 * the current jiffies and restarts the counters again.
1451 */
c9959059 1452void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1453{
1454 unsigned long now = jiffies;
1455
074a7aca
TH
1456 if (part->partno)
1457 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1458 part_round_stats_single(cpu, part, now);
6f2576af 1459}
074a7aca 1460EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1461
47fafbc7 1462#ifdef CONFIG_PM
c8158819
LM
1463static void blk_pm_put_request(struct request *rq)
1464{
1465 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1466 pm_runtime_mark_last_busy(rq->q->dev);
1467}
1468#else
1469static inline void blk_pm_put_request(struct request *rq) {}
1470#endif
1471
1da177e4
LT
1472/*
1473 * queue lock must be held
1474 */
165125e1 1475void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1476{
1da177e4
LT
1477 if (unlikely(!q))
1478 return;
1da177e4 1479
6f5ba581
CH
1480 if (q->mq_ops) {
1481 blk_mq_free_request(req);
1482 return;
1483 }
1484
c8158819
LM
1485 blk_pm_put_request(req);
1486
8922e16c
TH
1487 elv_completed_request(q, req);
1488
1cd96c24
BH
1489 /* this is a bio leak */
1490 WARN_ON(req->bio != NULL);
1491
1da177e4
LT
1492 /*
1493 * Request may not have originated from ll_rw_blk. if not,
1494 * it didn't come out of our reserved rq pools
1495 */
49171e5c 1496 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1497 unsigned int flags = req->cmd_flags;
e6a40b09 1498 int op = req_op(req);
a051661c 1499 struct request_list *rl = blk_rq_rl(req);
1da177e4 1500
1da177e4 1501 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1502 BUG_ON(ELV_ON_HASH(req));
1da177e4 1503
a051661c 1504 blk_free_request(rl, req);
e6a40b09 1505 freed_request(rl, op, flags);
a051661c 1506 blk_put_rl(rl);
1da177e4
LT
1507 }
1508}
6e39b69e
MC
1509EXPORT_SYMBOL_GPL(__blk_put_request);
1510
1da177e4
LT
1511void blk_put_request(struct request *req)
1512{
165125e1 1513 struct request_queue *q = req->q;
8922e16c 1514
320ae51f
JA
1515 if (q->mq_ops)
1516 blk_mq_free_request(req);
1517 else {
1518 unsigned long flags;
1519
1520 spin_lock_irqsave(q->queue_lock, flags);
1521 __blk_put_request(q, req);
1522 spin_unlock_irqrestore(q->queue_lock, flags);
1523 }
1da177e4 1524}
1da177e4
LT
1525EXPORT_SYMBOL(blk_put_request);
1526
66ac0280
CH
1527/**
1528 * blk_add_request_payload - add a payload to a request
1529 * @rq: request to update
1530 * @page: page backing the payload
37e58237 1531 * @offset: offset in page
66ac0280
CH
1532 * @len: length of the payload.
1533 *
1534 * This allows to later add a payload to an already submitted request by
1535 * a block driver. The driver needs to take care of freeing the payload
1536 * itself.
1537 *
1538 * Note that this is a quite horrible hack and nothing but handling of
1539 * discard requests should ever use it.
1540 */
1541void blk_add_request_payload(struct request *rq, struct page *page,
37e58237 1542 int offset, unsigned int len)
66ac0280
CH
1543{
1544 struct bio *bio = rq->bio;
1545
1546 bio->bi_io_vec->bv_page = page;
37e58237 1547 bio->bi_io_vec->bv_offset = offset;
66ac0280
CH
1548 bio->bi_io_vec->bv_len = len;
1549
4f024f37 1550 bio->bi_iter.bi_size = len;
66ac0280
CH
1551 bio->bi_vcnt = 1;
1552 bio->bi_phys_segments = 1;
1553
1554 rq->__data_len = rq->resid_len = len;
1555 rq->nr_phys_segments = 1;
66ac0280
CH
1556}
1557EXPORT_SYMBOL_GPL(blk_add_request_payload);
1558
320ae51f
JA
1559bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1560 struct bio *bio)
73c10101
JA
1561{
1562 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1563
73c10101
JA
1564 if (!ll_back_merge_fn(q, req, bio))
1565 return false;
1566
8c1cf6bb 1567 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1568
1569 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1570 blk_rq_set_mixed_merge(req);
1571
1572 req->biotail->bi_next = bio;
1573 req->biotail = bio;
4f024f37 1574 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1575 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1576
320ae51f 1577 blk_account_io_start(req, false);
73c10101
JA
1578 return true;
1579}
1580
320ae51f
JA
1581bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1582 struct bio *bio)
73c10101
JA
1583{
1584 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1585
73c10101
JA
1586 if (!ll_front_merge_fn(q, req, bio))
1587 return false;
1588
8c1cf6bb 1589 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1590
1591 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1592 blk_rq_set_mixed_merge(req);
1593
73c10101
JA
1594 bio->bi_next = req->bio;
1595 req->bio = bio;
1596
4f024f37
KO
1597 req->__sector = bio->bi_iter.bi_sector;
1598 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1599 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1600
320ae51f 1601 blk_account_io_start(req, false);
73c10101
JA
1602 return true;
1603}
1604
bd87b589 1605/**
320ae51f 1606 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1607 * @q: request_queue new bio is being queued at
1608 * @bio: new bio being queued
1609 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1610 * @same_queue_rq: pointer to &struct request that gets filled in when
1611 * another request associated with @q is found on the plug list
1612 * (optional, may be %NULL)
bd87b589
TH
1613 *
1614 * Determine whether @bio being queued on @q can be merged with a request
1615 * on %current's plugged list. Returns %true if merge was successful,
1616 * otherwise %false.
1617 *
07c2bd37
TH
1618 * Plugging coalesces IOs from the same issuer for the same purpose without
1619 * going through @q->queue_lock. As such it's more of an issuing mechanism
1620 * than scheduling, and the request, while may have elvpriv data, is not
1621 * added on the elevator at this point. In addition, we don't have
1622 * reliable access to the elevator outside queue lock. Only check basic
1623 * merging parameters without querying the elevator.
da41a589
RE
1624 *
1625 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1626 */
320ae51f 1627bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1628 unsigned int *request_count,
1629 struct request **same_queue_rq)
73c10101
JA
1630{
1631 struct blk_plug *plug;
1632 struct request *rq;
1633 bool ret = false;
92f399c7 1634 struct list_head *plug_list;
73c10101 1635
bd87b589 1636 plug = current->plug;
73c10101
JA
1637 if (!plug)
1638 goto out;
56ebdaf2 1639 *request_count = 0;
73c10101 1640
92f399c7
SL
1641 if (q->mq_ops)
1642 plug_list = &plug->mq_list;
1643 else
1644 plug_list = &plug->list;
1645
1646 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1647 int el_ret;
1648
5b3f341f 1649 if (rq->q == q) {
1b2e19f1 1650 (*request_count)++;
5b3f341f
SL
1651 /*
1652 * Only blk-mq multiple hardware queues case checks the
1653 * rq in the same queue, there should be only one such
1654 * rq in a queue
1655 **/
1656 if (same_queue_rq)
1657 *same_queue_rq = rq;
1658 }
56ebdaf2 1659
07c2bd37 1660 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1661 continue;
1662
050c8ea8 1663 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1664 if (el_ret == ELEVATOR_BACK_MERGE) {
1665 ret = bio_attempt_back_merge(q, rq, bio);
1666 if (ret)
1667 break;
1668 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1669 ret = bio_attempt_front_merge(q, rq, bio);
1670 if (ret)
1671 break;
1672 }
1673 }
1674out:
1675 return ret;
1676}
1677
0809e3ac
JM
1678unsigned int blk_plug_queued_count(struct request_queue *q)
1679{
1680 struct blk_plug *plug;
1681 struct request *rq;
1682 struct list_head *plug_list;
1683 unsigned int ret = 0;
1684
1685 plug = current->plug;
1686 if (!plug)
1687 goto out;
1688
1689 if (q->mq_ops)
1690 plug_list = &plug->mq_list;
1691 else
1692 plug_list = &plug->list;
1693
1694 list_for_each_entry(rq, plug_list, queuelist) {
1695 if (rq->q == q)
1696 ret++;
1697 }
1698out:
1699 return ret;
1700}
1701
86db1e29 1702void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1703{
4aff5e23 1704 req->cmd_type = REQ_TYPE_FS;
52d9e675 1705
7b6d91da
CH
1706 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1707 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1708 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1709
52d9e675 1710 req->errors = 0;
4f024f37 1711 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1712 req->ioprio = bio_prio(bio);
bc1c56fd 1713 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1714}
1715
dece1635 1716static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1717{
5e00d1b5 1718 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101 1719 struct blk_plug *plug;
e6a40b09 1720 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
73c10101 1721 struct request *req;
56ebdaf2 1722 unsigned int request_count = 0;
1da177e4 1723
1da177e4
LT
1724 /*
1725 * low level driver can indicate that it wants pages above a
1726 * certain limit bounced to low memory (ie for highmem, or even
1727 * ISA dma in theory)
1728 */
1729 blk_queue_bounce(q, &bio);
1730
23688bf4
JN
1731 blk_queue_split(q, &bio, q->bio_split);
1732
ffecfd1a 1733 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1734 bio->bi_error = -EIO;
1735 bio_endio(bio);
dece1635 1736 return BLK_QC_T_NONE;
ffecfd1a
DW
1737 }
1738
4fed947c 1739 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1740 spin_lock_irq(q->queue_lock);
ae1b1539 1741 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1742 goto get_rq;
1743 }
1744
73c10101
JA
1745 /*
1746 * Check if we can merge with the plugged list before grabbing
1747 * any locks.
1748 */
0809e3ac
JM
1749 if (!blk_queue_nomerges(q)) {
1750 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1751 return BLK_QC_T_NONE;
0809e3ac
JM
1752 } else
1753 request_count = blk_plug_queued_count(q);
1da177e4 1754
73c10101 1755 spin_lock_irq(q->queue_lock);
2056a782 1756
73c10101
JA
1757 el_ret = elv_merge(q, &req, bio);
1758 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1759 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1760 elv_bio_merged(q, req, bio);
73c10101
JA
1761 if (!attempt_back_merge(q, req))
1762 elv_merged_request(q, req, el_ret);
1763 goto out_unlock;
1764 }
1765 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1766 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1767 elv_bio_merged(q, req, bio);
73c10101
JA
1768 if (!attempt_front_merge(q, req))
1769 elv_merged_request(q, req, el_ret);
1770 goto out_unlock;
80a761fd 1771 }
1da177e4
LT
1772 }
1773
450991bc 1774get_rq:
7749a8d4
JA
1775 /*
1776 * This sync check and mask will be re-done in init_request_from_bio(),
1777 * but we need to set it earlier to expose the sync flag to the
1778 * rq allocator and io schedulers.
1779 */
7749a8d4 1780 if (sync)
7b6d91da 1781 rw_flags |= REQ_SYNC;
7749a8d4 1782
1da177e4 1783 /*
450991bc 1784 * Grab a free request. This is might sleep but can not fail.
d6344532 1785 * Returns with the queue unlocked.
450991bc 1786 */
e6a40b09 1787 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
a492f075 1788 if (IS_ERR(req)) {
4246a0b6
CH
1789 bio->bi_error = PTR_ERR(req);
1790 bio_endio(bio);
da8303c6
TH
1791 goto out_unlock;
1792 }
d6344532 1793
450991bc
NP
1794 /*
1795 * After dropping the lock and possibly sleeping here, our request
1796 * may now be mergeable after it had proven unmergeable (above).
1797 * We don't worry about that case for efficiency. It won't happen
1798 * often, and the elevators are able to handle it.
1da177e4 1799 */
52d9e675 1800 init_request_from_bio(req, bio);
1da177e4 1801
9562ad9a 1802 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1803 req->cpu = raw_smp_processor_id();
73c10101
JA
1804
1805 plug = current->plug;
721a9602 1806 if (plug) {
dc6d36c9
JA
1807 /*
1808 * If this is the first request added after a plug, fire
7aef2e78 1809 * of a plug trace.
dc6d36c9 1810 */
7aef2e78 1811 if (!request_count)
dc6d36c9 1812 trace_block_plug(q);
3540d5e8 1813 else {
019ceb7d 1814 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1815 blk_flush_plug_list(plug, false);
019ceb7d
SL
1816 trace_block_plug(q);
1817 }
73c10101 1818 }
73c10101 1819 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1820 blk_account_io_start(req, true);
73c10101
JA
1821 } else {
1822 spin_lock_irq(q->queue_lock);
1823 add_acct_request(q, req, where);
24ecfbe2 1824 __blk_run_queue(q);
73c10101
JA
1825out_unlock:
1826 spin_unlock_irq(q->queue_lock);
1827 }
dece1635
JA
1828
1829 return BLK_QC_T_NONE;
1da177e4
LT
1830}
1831
1832/*
1833 * If bio->bi_dev is a partition, remap the location
1834 */
1835static inline void blk_partition_remap(struct bio *bio)
1836{
1837 struct block_device *bdev = bio->bi_bdev;
1838
bf2de6f5 1839 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1840 struct hd_struct *p = bdev->bd_part;
1841
4f024f37 1842 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1843 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1844
d07335e5
MS
1845 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1846 bdev->bd_dev,
4f024f37 1847 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1848 }
1849}
1850
1da177e4
LT
1851static void handle_bad_sector(struct bio *bio)
1852{
1853 char b[BDEVNAME_SIZE];
1854
1855 printk(KERN_INFO "attempt to access beyond end of device\n");
1856 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1857 bdevname(bio->bi_bdev, b),
1858 bio->bi_rw,
f73a1c7d 1859 (unsigned long long)bio_end_sector(bio),
77304d2a 1860 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1861}
1862
c17bb495
AM
1863#ifdef CONFIG_FAIL_MAKE_REQUEST
1864
1865static DECLARE_FAULT_ATTR(fail_make_request);
1866
1867static int __init setup_fail_make_request(char *str)
1868{
1869 return setup_fault_attr(&fail_make_request, str);
1870}
1871__setup("fail_make_request=", setup_fail_make_request);
1872
b2c9cd37 1873static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1874{
b2c9cd37 1875 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1876}
1877
1878static int __init fail_make_request_debugfs(void)
1879{
dd48c085
AM
1880 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1881 NULL, &fail_make_request);
1882
21f9fcd8 1883 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1884}
1885
1886late_initcall(fail_make_request_debugfs);
1887
1888#else /* CONFIG_FAIL_MAKE_REQUEST */
1889
b2c9cd37
AM
1890static inline bool should_fail_request(struct hd_struct *part,
1891 unsigned int bytes)
c17bb495 1892{
b2c9cd37 1893 return false;
c17bb495
AM
1894}
1895
1896#endif /* CONFIG_FAIL_MAKE_REQUEST */
1897
c07e2b41
JA
1898/*
1899 * Check whether this bio extends beyond the end of the device.
1900 */
1901static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1902{
1903 sector_t maxsector;
1904
1905 if (!nr_sectors)
1906 return 0;
1907
1908 /* Test device or partition size, when known. */
77304d2a 1909 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1910 if (maxsector) {
4f024f37 1911 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1912
1913 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1914 /*
1915 * This may well happen - the kernel calls bread()
1916 * without checking the size of the device, e.g., when
1917 * mounting a device.
1918 */
1919 handle_bad_sector(bio);
1920 return 1;
1921 }
1922 }
1923
1924 return 0;
1925}
1926
27a84d54
CH
1927static noinline_for_stack bool
1928generic_make_request_checks(struct bio *bio)
1da177e4 1929{
165125e1 1930 struct request_queue *q;
5a7bbad2 1931 int nr_sectors = bio_sectors(bio);
51fd77bd 1932 int err = -EIO;
5a7bbad2
CH
1933 char b[BDEVNAME_SIZE];
1934 struct hd_struct *part;
1da177e4
LT
1935
1936 might_sleep();
1da177e4 1937
c07e2b41
JA
1938 if (bio_check_eod(bio, nr_sectors))
1939 goto end_io;
1da177e4 1940
5a7bbad2
CH
1941 q = bdev_get_queue(bio->bi_bdev);
1942 if (unlikely(!q)) {
1943 printk(KERN_ERR
1944 "generic_make_request: Trying to access "
1945 "nonexistent block-device %s (%Lu)\n",
1946 bdevname(bio->bi_bdev, b),
4f024f37 1947 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1948 goto end_io;
1949 }
c17bb495 1950
5a7bbad2 1951 part = bio->bi_bdev->bd_part;
4f024f37 1952 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1953 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1954 bio->bi_iter.bi_size))
5a7bbad2 1955 goto end_io;
2056a782 1956
5a7bbad2
CH
1957 /*
1958 * If this device has partitions, remap block n
1959 * of partition p to block n+start(p) of the disk.
1960 */
1961 blk_partition_remap(bio);
2056a782 1962
5a7bbad2
CH
1963 if (bio_check_eod(bio, nr_sectors))
1964 goto end_io;
1e87901e 1965
5a7bbad2
CH
1966 /*
1967 * Filter flush bio's early so that make_request based
1968 * drivers without flush support don't have to worry
1969 * about them.
1970 */
c888a8f9
JA
1971 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
1972 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
5a7bbad2
CH
1973 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1974 if (!nr_sectors) {
1975 err = 0;
51fd77bd
JA
1976 goto end_io;
1977 }
5a7bbad2 1978 }
5ddfe969 1979
95fe6c1a 1980 if ((bio_op(bio) == REQ_OP_DISCARD) &&
5a7bbad2 1981 (!blk_queue_discard(q) ||
e2a60da7 1982 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1983 err = -EOPNOTSUPP;
1984 goto end_io;
1985 }
01edede4 1986
95fe6c1a 1987 if (bio_op(bio) == REQ_OP_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1988 err = -EOPNOTSUPP;
1989 goto end_io;
1990 }
01edede4 1991
7f4b35d1
TH
1992 /*
1993 * Various block parts want %current->io_context and lazy ioc
1994 * allocation ends up trading a lot of pain for a small amount of
1995 * memory. Just allocate it upfront. This may fail and block
1996 * layer knows how to live with it.
1997 */
1998 create_io_context(GFP_ATOMIC, q->node);
1999
ae118896
TH
2000 if (!blkcg_bio_issue_check(q, bio))
2001 return false;
27a84d54 2002
5a7bbad2 2003 trace_block_bio_queue(q, bio);
27a84d54 2004 return true;
a7384677
TH
2005
2006end_io:
4246a0b6
CH
2007 bio->bi_error = err;
2008 bio_endio(bio);
27a84d54 2009 return false;
1da177e4
LT
2010}
2011
27a84d54
CH
2012/**
2013 * generic_make_request - hand a buffer to its device driver for I/O
2014 * @bio: The bio describing the location in memory and on the device.
2015 *
2016 * generic_make_request() is used to make I/O requests of block
2017 * devices. It is passed a &struct bio, which describes the I/O that needs
2018 * to be done.
2019 *
2020 * generic_make_request() does not return any status. The
2021 * success/failure status of the request, along with notification of
2022 * completion, is delivered asynchronously through the bio->bi_end_io
2023 * function described (one day) else where.
2024 *
2025 * The caller of generic_make_request must make sure that bi_io_vec
2026 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2027 * set to describe the device address, and the
2028 * bi_end_io and optionally bi_private are set to describe how
2029 * completion notification should be signaled.
2030 *
2031 * generic_make_request and the drivers it calls may use bi_next if this
2032 * bio happens to be merged with someone else, and may resubmit the bio to
2033 * a lower device by calling into generic_make_request recursively, which
2034 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2035 */
dece1635 2036blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2037{
bddd87c7 2038 struct bio_list bio_list_on_stack;
dece1635 2039 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2040
27a84d54 2041 if (!generic_make_request_checks(bio))
dece1635 2042 goto out;
27a84d54
CH
2043
2044 /*
2045 * We only want one ->make_request_fn to be active at a time, else
2046 * stack usage with stacked devices could be a problem. So use
2047 * current->bio_list to keep a list of requests submited by a
2048 * make_request_fn function. current->bio_list is also used as a
2049 * flag to say if generic_make_request is currently active in this
2050 * task or not. If it is NULL, then no make_request is active. If
2051 * it is non-NULL, then a make_request is active, and new requests
2052 * should be added at the tail
2053 */
bddd87c7 2054 if (current->bio_list) {
bddd87c7 2055 bio_list_add(current->bio_list, bio);
dece1635 2056 goto out;
d89d8796 2057 }
27a84d54 2058
d89d8796
NB
2059 /* following loop may be a bit non-obvious, and so deserves some
2060 * explanation.
2061 * Before entering the loop, bio->bi_next is NULL (as all callers
2062 * ensure that) so we have a list with a single bio.
2063 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2064 * we assign bio_list to a pointer to the bio_list_on_stack,
2065 * thus initialising the bio_list of new bios to be
27a84d54 2066 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2067 * through a recursive call to generic_make_request. If it
2068 * did, we find a non-NULL value in bio_list and re-enter the loop
2069 * from the top. In this case we really did just take the bio
bddd87c7 2070 * of the top of the list (no pretending) and so remove it from
27a84d54 2071 * bio_list, and call into ->make_request() again.
d89d8796
NB
2072 */
2073 BUG_ON(bio->bi_next);
bddd87c7
AM
2074 bio_list_init(&bio_list_on_stack);
2075 current->bio_list = &bio_list_on_stack;
d89d8796 2076 do {
27a84d54
CH
2077 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2078
6f3b0e8b 2079 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2080 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2081
2082 blk_queue_exit(q);
27a84d54 2083
3ef28e83
DW
2084 bio = bio_list_pop(current->bio_list);
2085 } else {
2086 struct bio *bio_next = bio_list_pop(current->bio_list);
2087
2088 bio_io_error(bio);
2089 bio = bio_next;
2090 }
d89d8796 2091 } while (bio);
bddd87c7 2092 current->bio_list = NULL; /* deactivate */
dece1635
JA
2093
2094out:
2095 return ret;
d89d8796 2096}
1da177e4
LT
2097EXPORT_SYMBOL(generic_make_request);
2098
2099/**
710027a4 2100 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2101 * @bio: The &struct bio which describes the I/O
2102 *
2103 * submit_bio() is very similar in purpose to generic_make_request(), and
2104 * uses that function to do most of the work. Both are fairly rough
710027a4 2105 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2106 *
2107 */
4e49ea4a 2108blk_qc_t submit_bio(struct bio *bio)
1da177e4 2109{
bf2de6f5
JA
2110 /*
2111 * If it's a regular read/write or a barrier with data attached,
2112 * go through the normal accounting stuff before submission.
2113 */
e2a60da7 2114 if (bio_has_data(bio)) {
4363ac7c
MP
2115 unsigned int count;
2116
95fe6c1a 2117 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2118 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2119 else
2120 count = bio_sectors(bio);
2121
a8ebb056 2122 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2123 count_vm_events(PGPGOUT, count);
2124 } else {
4f024f37 2125 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2126 count_vm_events(PGPGIN, count);
2127 }
2128
2129 if (unlikely(block_dump)) {
2130 char b[BDEVNAME_SIZE];
8dcbdc74 2131 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2132 current->comm, task_pid_nr(current),
a8ebb056 2133 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2134 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2135 bdevname(bio->bi_bdev, b),
2136 count);
bf2de6f5 2137 }
1da177e4
LT
2138 }
2139
dece1635 2140 return generic_make_request(bio);
1da177e4 2141}
1da177e4
LT
2142EXPORT_SYMBOL(submit_bio);
2143
82124d60 2144/**
bf4e6b4e
HR
2145 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2146 * for new the queue limits
82124d60
KU
2147 * @q: the queue
2148 * @rq: the request being checked
2149 *
2150 * Description:
2151 * @rq may have been made based on weaker limitations of upper-level queues
2152 * in request stacking drivers, and it may violate the limitation of @q.
2153 * Since the block layer and the underlying device driver trust @rq
2154 * after it is inserted to @q, it should be checked against @q before
2155 * the insertion using this generic function.
2156 *
82124d60 2157 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2158 * limits when retrying requests on other queues. Those requests need
2159 * to be checked against the new queue limits again during dispatch.
82124d60 2160 */
bf4e6b4e
HR
2161static int blk_cloned_rq_check_limits(struct request_queue *q,
2162 struct request *rq)
82124d60 2163{
f31dc1cd 2164 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2165 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2166 return -EIO;
2167 }
2168
2169 /*
2170 * queue's settings related to segment counting like q->bounce_pfn
2171 * may differ from that of other stacking queues.
2172 * Recalculate it to check the request correctly on this queue's
2173 * limitation.
2174 */
2175 blk_recalc_rq_segments(rq);
8a78362c 2176 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2177 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2178 return -EIO;
2179 }
2180
2181 return 0;
2182}
82124d60
KU
2183
2184/**
2185 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2186 * @q: the queue to submit the request
2187 * @rq: the request being queued
2188 */
2189int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2190{
2191 unsigned long flags;
4853abaa 2192 int where = ELEVATOR_INSERT_BACK;
82124d60 2193
bf4e6b4e 2194 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2195 return -EIO;
2196
b2c9cd37
AM
2197 if (rq->rq_disk &&
2198 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2199 return -EIO;
82124d60 2200
7fb4898e
KB
2201 if (q->mq_ops) {
2202 if (blk_queue_io_stat(q))
2203 blk_account_io_start(rq, true);
6acfe68b 2204 blk_mq_insert_request(rq, false, true, false);
7fb4898e
KB
2205 return 0;
2206 }
2207
82124d60 2208 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2209 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2210 spin_unlock_irqrestore(q->queue_lock, flags);
2211 return -ENODEV;
2212 }
82124d60
KU
2213
2214 /*
2215 * Submitting request must be dequeued before calling this function
2216 * because it will be linked to another request_queue
2217 */
2218 BUG_ON(blk_queued_rq(rq));
2219
4853abaa
JM
2220 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2221 where = ELEVATOR_INSERT_FLUSH;
2222
2223 add_acct_request(q, rq, where);
e67b77c7
JM
2224 if (where == ELEVATOR_INSERT_FLUSH)
2225 __blk_run_queue(q);
82124d60
KU
2226 spin_unlock_irqrestore(q->queue_lock, flags);
2227
2228 return 0;
2229}
2230EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2231
80a761fd
TH
2232/**
2233 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2234 * @rq: request to examine
2235 *
2236 * Description:
2237 * A request could be merge of IOs which require different failure
2238 * handling. This function determines the number of bytes which
2239 * can be failed from the beginning of the request without
2240 * crossing into area which need to be retried further.
2241 *
2242 * Return:
2243 * The number of bytes to fail.
2244 *
2245 * Context:
2246 * queue_lock must be held.
2247 */
2248unsigned int blk_rq_err_bytes(const struct request *rq)
2249{
2250 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2251 unsigned int bytes = 0;
2252 struct bio *bio;
2253
2254 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2255 return blk_rq_bytes(rq);
2256
2257 /*
2258 * Currently the only 'mixing' which can happen is between
2259 * different fastfail types. We can safely fail portions
2260 * which have all the failfast bits that the first one has -
2261 * the ones which are at least as eager to fail as the first
2262 * one.
2263 */
2264 for (bio = rq->bio; bio; bio = bio->bi_next) {
2265 if ((bio->bi_rw & ff) != ff)
2266 break;
4f024f37 2267 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2268 }
2269
2270 /* this could lead to infinite loop */
2271 BUG_ON(blk_rq_bytes(rq) && !bytes);
2272 return bytes;
2273}
2274EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2275
320ae51f 2276void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2277{
c2553b58 2278 if (blk_do_io_stat(req)) {
bc58ba94
JA
2279 const int rw = rq_data_dir(req);
2280 struct hd_struct *part;
2281 int cpu;
2282
2283 cpu = part_stat_lock();
09e099d4 2284 part = req->part;
bc58ba94
JA
2285 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2286 part_stat_unlock();
2287 }
2288}
2289
320ae51f 2290void blk_account_io_done(struct request *req)
bc58ba94 2291{
bc58ba94 2292 /*
dd4c133f
TH
2293 * Account IO completion. flush_rq isn't accounted as a
2294 * normal IO on queueing nor completion. Accounting the
2295 * containing request is enough.
bc58ba94 2296 */
414b4ff5 2297 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2298 unsigned long duration = jiffies - req->start_time;
2299 const int rw = rq_data_dir(req);
2300 struct hd_struct *part;
2301 int cpu;
2302
2303 cpu = part_stat_lock();
09e099d4 2304 part = req->part;
bc58ba94
JA
2305
2306 part_stat_inc(cpu, part, ios[rw]);
2307 part_stat_add(cpu, part, ticks[rw], duration);
2308 part_round_stats(cpu, part);
316d315b 2309 part_dec_in_flight(part, rw);
bc58ba94 2310
6c23a968 2311 hd_struct_put(part);
bc58ba94
JA
2312 part_stat_unlock();
2313 }
2314}
2315
47fafbc7 2316#ifdef CONFIG_PM
c8158819
LM
2317/*
2318 * Don't process normal requests when queue is suspended
2319 * or in the process of suspending/resuming
2320 */
2321static struct request *blk_pm_peek_request(struct request_queue *q,
2322 struct request *rq)
2323{
2324 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2325 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2326 return NULL;
2327 else
2328 return rq;
2329}
2330#else
2331static inline struct request *blk_pm_peek_request(struct request_queue *q,
2332 struct request *rq)
2333{
2334 return rq;
2335}
2336#endif
2337
320ae51f
JA
2338void blk_account_io_start(struct request *rq, bool new_io)
2339{
2340 struct hd_struct *part;
2341 int rw = rq_data_dir(rq);
2342 int cpu;
2343
2344 if (!blk_do_io_stat(rq))
2345 return;
2346
2347 cpu = part_stat_lock();
2348
2349 if (!new_io) {
2350 part = rq->part;
2351 part_stat_inc(cpu, part, merges[rw]);
2352 } else {
2353 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2354 if (!hd_struct_try_get(part)) {
2355 /*
2356 * The partition is already being removed,
2357 * the request will be accounted on the disk only
2358 *
2359 * We take a reference on disk->part0 although that
2360 * partition will never be deleted, so we can treat
2361 * it as any other partition.
2362 */
2363 part = &rq->rq_disk->part0;
2364 hd_struct_get(part);
2365 }
2366 part_round_stats(cpu, part);
2367 part_inc_in_flight(part, rw);
2368 rq->part = part;
2369 }
2370
2371 part_stat_unlock();
2372}
2373
3bcddeac 2374/**
9934c8c0
TH
2375 * blk_peek_request - peek at the top of a request queue
2376 * @q: request queue to peek at
2377 *
2378 * Description:
2379 * Return the request at the top of @q. The returned request
2380 * should be started using blk_start_request() before LLD starts
2381 * processing it.
2382 *
2383 * Return:
2384 * Pointer to the request at the top of @q if available. Null
2385 * otherwise.
2386 *
2387 * Context:
2388 * queue_lock must be held.
2389 */
2390struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2391{
2392 struct request *rq;
2393 int ret;
2394
2395 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2396
2397 rq = blk_pm_peek_request(q, rq);
2398 if (!rq)
2399 break;
2400
158dbda0
TH
2401 if (!(rq->cmd_flags & REQ_STARTED)) {
2402 /*
2403 * This is the first time the device driver
2404 * sees this request (possibly after
2405 * requeueing). Notify IO scheduler.
2406 */
33659ebb 2407 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2408 elv_activate_rq(q, rq);
2409
2410 /*
2411 * just mark as started even if we don't start
2412 * it, a request that has been delayed should
2413 * not be passed by new incoming requests
2414 */
2415 rq->cmd_flags |= REQ_STARTED;
2416 trace_block_rq_issue(q, rq);
2417 }
2418
2419 if (!q->boundary_rq || q->boundary_rq == rq) {
2420 q->end_sector = rq_end_sector(rq);
2421 q->boundary_rq = NULL;
2422 }
2423
2424 if (rq->cmd_flags & REQ_DONTPREP)
2425 break;
2426
2e46e8b2 2427 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2428 /*
2429 * make sure space for the drain appears we
2430 * know we can do this because max_hw_segments
2431 * has been adjusted to be one fewer than the
2432 * device can handle
2433 */
2434 rq->nr_phys_segments++;
2435 }
2436
2437 if (!q->prep_rq_fn)
2438 break;
2439
2440 ret = q->prep_rq_fn(q, rq);
2441 if (ret == BLKPREP_OK) {
2442 break;
2443 } else if (ret == BLKPREP_DEFER) {
2444 /*
2445 * the request may have been (partially) prepped.
2446 * we need to keep this request in the front to
2447 * avoid resource deadlock. REQ_STARTED will
2448 * prevent other fs requests from passing this one.
2449 */
2e46e8b2 2450 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2451 !(rq->cmd_flags & REQ_DONTPREP)) {
2452 /*
2453 * remove the space for the drain we added
2454 * so that we don't add it again
2455 */
2456 --rq->nr_phys_segments;
2457 }
2458
2459 rq = NULL;
2460 break;
0fb5b1fb
MP
2461 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2462 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2463
158dbda0 2464 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2465 /*
2466 * Mark this request as started so we don't trigger
2467 * any debug logic in the end I/O path.
2468 */
2469 blk_start_request(rq);
0fb5b1fb 2470 __blk_end_request_all(rq, err);
158dbda0
TH
2471 } else {
2472 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2473 break;
2474 }
2475 }
2476
2477 return rq;
2478}
9934c8c0 2479EXPORT_SYMBOL(blk_peek_request);
158dbda0 2480
9934c8c0 2481void blk_dequeue_request(struct request *rq)
158dbda0 2482{
9934c8c0
TH
2483 struct request_queue *q = rq->q;
2484
158dbda0
TH
2485 BUG_ON(list_empty(&rq->queuelist));
2486 BUG_ON(ELV_ON_HASH(rq));
2487
2488 list_del_init(&rq->queuelist);
2489
2490 /*
2491 * the time frame between a request being removed from the lists
2492 * and to it is freed is accounted as io that is in progress at
2493 * the driver side.
2494 */
9195291e 2495 if (blk_account_rq(rq)) {
0a7ae2ff 2496 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2497 set_io_start_time_ns(rq);
2498 }
158dbda0
TH
2499}
2500
9934c8c0
TH
2501/**
2502 * blk_start_request - start request processing on the driver
2503 * @req: request to dequeue
2504 *
2505 * Description:
2506 * Dequeue @req and start timeout timer on it. This hands off the
2507 * request to the driver.
2508 *
2509 * Block internal functions which don't want to start timer should
2510 * call blk_dequeue_request().
2511 *
2512 * Context:
2513 * queue_lock must be held.
2514 */
2515void blk_start_request(struct request *req)
2516{
2517 blk_dequeue_request(req);
2518
2519 /*
5f49f631
TH
2520 * We are now handing the request to the hardware, initialize
2521 * resid_len to full count and add the timeout handler.
9934c8c0 2522 */
5f49f631 2523 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2524 if (unlikely(blk_bidi_rq(req)))
2525 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2526
4912aa6c 2527 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2528 blk_add_timer(req);
2529}
2530EXPORT_SYMBOL(blk_start_request);
2531
2532/**
2533 * blk_fetch_request - fetch a request from a request queue
2534 * @q: request queue to fetch a request from
2535 *
2536 * Description:
2537 * Return the request at the top of @q. The request is started on
2538 * return and LLD can start processing it immediately.
2539 *
2540 * Return:
2541 * Pointer to the request at the top of @q if available. Null
2542 * otherwise.
2543 *
2544 * Context:
2545 * queue_lock must be held.
2546 */
2547struct request *blk_fetch_request(struct request_queue *q)
2548{
2549 struct request *rq;
2550
2551 rq = blk_peek_request(q);
2552 if (rq)
2553 blk_start_request(rq);
2554 return rq;
2555}
2556EXPORT_SYMBOL(blk_fetch_request);
2557
3bcddeac 2558/**
2e60e022 2559 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2560 * @req: the request being processed
710027a4 2561 * @error: %0 for success, < %0 for error
8ebf9756 2562 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2563 *
2564 * Description:
8ebf9756
RD
2565 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2566 * the request structure even if @req doesn't have leftover.
2567 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2568 *
2569 * This special helper function is only for request stacking drivers
2570 * (e.g. request-based dm) so that they can handle partial completion.
2571 * Actual device drivers should use blk_end_request instead.
2572 *
2573 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2574 * %false return from this function.
3bcddeac
KU
2575 *
2576 * Return:
2e60e022
TH
2577 * %false - this request doesn't have any more data
2578 * %true - this request has more data
3bcddeac 2579 **/
2e60e022 2580bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2581{
f79ea416 2582 int total_bytes;
1da177e4 2583
4a0efdc9
HR
2584 trace_block_rq_complete(req->q, req, nr_bytes);
2585
2e60e022
TH
2586 if (!req->bio)
2587 return false;
2588
1da177e4 2589 /*
6f41469c
TH
2590 * For fs requests, rq is just carrier of independent bio's
2591 * and each partial completion should be handled separately.
2592 * Reset per-request error on each partial completion.
2593 *
2594 * TODO: tj: This is too subtle. It would be better to let
2595 * low level drivers do what they see fit.
1da177e4 2596 */
33659ebb 2597 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2598 req->errors = 0;
2599
33659ebb
CH
2600 if (error && req->cmd_type == REQ_TYPE_FS &&
2601 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2602 char *error_type;
2603
2604 switch (error) {
2605 case -ENOLINK:
2606 error_type = "recoverable transport";
2607 break;
2608 case -EREMOTEIO:
2609 error_type = "critical target";
2610 break;
2611 case -EBADE:
2612 error_type = "critical nexus";
2613 break;
d1ffc1f8
HR
2614 case -ETIMEDOUT:
2615 error_type = "timeout";
2616 break;
a9d6ceb8
HR
2617 case -ENOSPC:
2618 error_type = "critical space allocation";
2619 break;
7e782af5
HR
2620 case -ENODATA:
2621 error_type = "critical medium";
2622 break;
79775567
HR
2623 case -EIO:
2624 default:
2625 error_type = "I/O";
2626 break;
2627 }
ef3ecb66
RE
2628 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2629 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2630 req->rq_disk->disk_name : "?",
2631 (unsigned long long)blk_rq_pos(req));
2632
1da177e4
LT
2633 }
2634
bc58ba94 2635 blk_account_io_completion(req, nr_bytes);
d72d904a 2636
f79ea416
KO
2637 total_bytes = 0;
2638 while (req->bio) {
2639 struct bio *bio = req->bio;
4f024f37 2640 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2641
4f024f37 2642 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2643 req->bio = bio->bi_next;
1da177e4 2644
f79ea416 2645 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2646
f79ea416
KO
2647 total_bytes += bio_bytes;
2648 nr_bytes -= bio_bytes;
1da177e4 2649
f79ea416
KO
2650 if (!nr_bytes)
2651 break;
1da177e4
LT
2652 }
2653
2654 /*
2655 * completely done
2656 */
2e60e022
TH
2657 if (!req->bio) {
2658 /*
2659 * Reset counters so that the request stacking driver
2660 * can find how many bytes remain in the request
2661 * later.
2662 */
a2dec7b3 2663 req->__data_len = 0;
2e60e022
TH
2664 return false;
2665 }
1da177e4 2666
a2dec7b3 2667 req->__data_len -= total_bytes;
2e46e8b2
TH
2668
2669 /* update sector only for requests with clear definition of sector */
e2a60da7 2670 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2671 req->__sector += total_bytes >> 9;
2e46e8b2 2672
80a761fd
TH
2673 /* mixed attributes always follow the first bio */
2674 if (req->cmd_flags & REQ_MIXED_MERGE) {
2675 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2676 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2677 }
2678
2e46e8b2
TH
2679 /*
2680 * If total number of sectors is less than the first segment
2681 * size, something has gone terribly wrong.
2682 */
2683 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2684 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2685 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2686 }
2687
2688 /* recalculate the number of segments */
1da177e4 2689 blk_recalc_rq_segments(req);
2e46e8b2 2690
2e60e022 2691 return true;
1da177e4 2692}
2e60e022 2693EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2694
2e60e022
TH
2695static bool blk_update_bidi_request(struct request *rq, int error,
2696 unsigned int nr_bytes,
2697 unsigned int bidi_bytes)
5efccd17 2698{
2e60e022
TH
2699 if (blk_update_request(rq, error, nr_bytes))
2700 return true;
5efccd17 2701
2e60e022
TH
2702 /* Bidi request must be completed as a whole */
2703 if (unlikely(blk_bidi_rq(rq)) &&
2704 blk_update_request(rq->next_rq, error, bidi_bytes))
2705 return true;
5efccd17 2706
e2e1a148
JA
2707 if (blk_queue_add_random(rq->q))
2708 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2709
2710 return false;
1da177e4
LT
2711}
2712
28018c24
JB
2713/**
2714 * blk_unprep_request - unprepare a request
2715 * @req: the request
2716 *
2717 * This function makes a request ready for complete resubmission (or
2718 * completion). It happens only after all error handling is complete,
2719 * so represents the appropriate moment to deallocate any resources
2720 * that were allocated to the request in the prep_rq_fn. The queue
2721 * lock is held when calling this.
2722 */
2723void blk_unprep_request(struct request *req)
2724{
2725 struct request_queue *q = req->q;
2726
2727 req->cmd_flags &= ~REQ_DONTPREP;
2728 if (q->unprep_rq_fn)
2729 q->unprep_rq_fn(q, req);
2730}
2731EXPORT_SYMBOL_GPL(blk_unprep_request);
2732
1da177e4
LT
2733/*
2734 * queue lock must be held
2735 */
12120077 2736void blk_finish_request(struct request *req, int error)
1da177e4 2737{
125c99bc 2738 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2739 blk_queue_end_tag(req->q, req);
2740
ba396a6c 2741 BUG_ON(blk_queued_rq(req));
1da177e4 2742
33659ebb 2743 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2744 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2745
e78042e5
MA
2746 blk_delete_timer(req);
2747
28018c24
JB
2748 if (req->cmd_flags & REQ_DONTPREP)
2749 blk_unprep_request(req);
2750
bc58ba94 2751 blk_account_io_done(req);
b8286239 2752
1da177e4 2753 if (req->end_io)
8ffdc655 2754 req->end_io(req, error);
b8286239
KU
2755 else {
2756 if (blk_bidi_rq(req))
2757 __blk_put_request(req->next_rq->q, req->next_rq);
2758
1da177e4 2759 __blk_put_request(req->q, req);
b8286239 2760 }
1da177e4 2761}
12120077 2762EXPORT_SYMBOL(blk_finish_request);
1da177e4 2763
3b11313a 2764/**
2e60e022
TH
2765 * blk_end_bidi_request - Complete a bidi request
2766 * @rq: the request to complete
2767 * @error: %0 for success, < %0 for error
2768 * @nr_bytes: number of bytes to complete @rq
2769 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2770 *
2771 * Description:
e3a04fe3 2772 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2773 * Drivers that supports bidi can safely call this member for any
2774 * type of request, bidi or uni. In the later case @bidi_bytes is
2775 * just ignored.
336cdb40
KU
2776 *
2777 * Return:
2e60e022
TH
2778 * %false - we are done with this request
2779 * %true - still buffers pending for this request
a0cd1285 2780 **/
b1f74493 2781static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2782 unsigned int nr_bytes, unsigned int bidi_bytes)
2783{
336cdb40 2784 struct request_queue *q = rq->q;
2e60e022 2785 unsigned long flags;
32fab448 2786
2e60e022
TH
2787 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2788 return true;
32fab448 2789
336cdb40 2790 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2791 blk_finish_request(rq, error);
336cdb40
KU
2792 spin_unlock_irqrestore(q->queue_lock, flags);
2793
2e60e022 2794 return false;
32fab448
KU
2795}
2796
336cdb40 2797/**
2e60e022
TH
2798 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2799 * @rq: the request to complete
710027a4 2800 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2801 * @nr_bytes: number of bytes to complete @rq
2802 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2803 *
2804 * Description:
2e60e022
TH
2805 * Identical to blk_end_bidi_request() except that queue lock is
2806 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2807 *
2808 * Return:
2e60e022
TH
2809 * %false - we are done with this request
2810 * %true - still buffers pending for this request
336cdb40 2811 **/
4853abaa 2812bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2813 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2814{
2e60e022
TH
2815 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2816 return true;
336cdb40 2817
2e60e022 2818 blk_finish_request(rq, error);
336cdb40 2819
2e60e022 2820 return false;
336cdb40 2821}
e19a3ab0
KU
2822
2823/**
2824 * blk_end_request - Helper function for drivers to complete the request.
2825 * @rq: the request being processed
710027a4 2826 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2827 * @nr_bytes: number of bytes to complete
2828 *
2829 * Description:
2830 * Ends I/O on a number of bytes attached to @rq.
2831 * If @rq has leftover, sets it up for the next range of segments.
2832 *
2833 * Return:
b1f74493
FT
2834 * %false - we are done with this request
2835 * %true - still buffers pending for this request
e19a3ab0 2836 **/
b1f74493 2837bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2838{
b1f74493 2839 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2840}
56ad1740 2841EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2842
2843/**
b1f74493
FT
2844 * blk_end_request_all - Helper function for drives to finish the request.
2845 * @rq: the request to finish
8ebf9756 2846 * @error: %0 for success, < %0 for error
336cdb40
KU
2847 *
2848 * Description:
b1f74493
FT
2849 * Completely finish @rq.
2850 */
2851void blk_end_request_all(struct request *rq, int error)
336cdb40 2852{
b1f74493
FT
2853 bool pending;
2854 unsigned int bidi_bytes = 0;
336cdb40 2855
b1f74493
FT
2856 if (unlikely(blk_bidi_rq(rq)))
2857 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2858
b1f74493
FT
2859 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2860 BUG_ON(pending);
2861}
56ad1740 2862EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2863
b1f74493
FT
2864/**
2865 * blk_end_request_cur - Helper function to finish the current request chunk.
2866 * @rq: the request to finish the current chunk for
8ebf9756 2867 * @error: %0 for success, < %0 for error
b1f74493
FT
2868 *
2869 * Description:
2870 * Complete the current consecutively mapped chunk from @rq.
2871 *
2872 * Return:
2873 * %false - we are done with this request
2874 * %true - still buffers pending for this request
2875 */
2876bool blk_end_request_cur(struct request *rq, int error)
2877{
2878 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2879}
56ad1740 2880EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2881
80a761fd
TH
2882/**
2883 * blk_end_request_err - Finish a request till the next failure boundary.
2884 * @rq: the request to finish till the next failure boundary for
2885 * @error: must be negative errno
2886 *
2887 * Description:
2888 * Complete @rq till the next failure boundary.
2889 *
2890 * Return:
2891 * %false - we are done with this request
2892 * %true - still buffers pending for this request
2893 */
2894bool blk_end_request_err(struct request *rq, int error)
2895{
2896 WARN_ON(error >= 0);
2897 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2898}
2899EXPORT_SYMBOL_GPL(blk_end_request_err);
2900
e3a04fe3 2901/**
b1f74493
FT
2902 * __blk_end_request - Helper function for drivers to complete the request.
2903 * @rq: the request being processed
2904 * @error: %0 for success, < %0 for error
2905 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2906 *
2907 * Description:
b1f74493 2908 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2909 *
2910 * Return:
b1f74493
FT
2911 * %false - we are done with this request
2912 * %true - still buffers pending for this request
e3a04fe3 2913 **/
b1f74493 2914bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2915{
b1f74493 2916 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2917}
56ad1740 2918EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2919
32fab448 2920/**
b1f74493
FT
2921 * __blk_end_request_all - Helper function for drives to finish the request.
2922 * @rq: the request to finish
8ebf9756 2923 * @error: %0 for success, < %0 for error
32fab448
KU
2924 *
2925 * Description:
b1f74493 2926 * Completely finish @rq. Must be called with queue lock held.
32fab448 2927 */
b1f74493 2928void __blk_end_request_all(struct request *rq, int error)
32fab448 2929{
b1f74493
FT
2930 bool pending;
2931 unsigned int bidi_bytes = 0;
2932
2933 if (unlikely(blk_bidi_rq(rq)))
2934 bidi_bytes = blk_rq_bytes(rq->next_rq);
2935
2936 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2937 BUG_ON(pending);
32fab448 2938}
56ad1740 2939EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2940
e19a3ab0 2941/**
b1f74493
FT
2942 * __blk_end_request_cur - Helper function to finish the current request chunk.
2943 * @rq: the request to finish the current chunk for
8ebf9756 2944 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2945 *
2946 * Description:
b1f74493
FT
2947 * Complete the current consecutively mapped chunk from @rq. Must
2948 * be called with queue lock held.
e19a3ab0
KU
2949 *
2950 * Return:
b1f74493
FT
2951 * %false - we are done with this request
2952 * %true - still buffers pending for this request
2953 */
2954bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2955{
b1f74493 2956 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2957}
56ad1740 2958EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2959
80a761fd
TH
2960/**
2961 * __blk_end_request_err - Finish a request till the next failure boundary.
2962 * @rq: the request to finish till the next failure boundary for
2963 * @error: must be negative errno
2964 *
2965 * Description:
2966 * Complete @rq till the next failure boundary. Must be called
2967 * with queue lock held.
2968 *
2969 * Return:
2970 * %false - we are done with this request
2971 * %true - still buffers pending for this request
2972 */
2973bool __blk_end_request_err(struct request *rq, int error)
2974{
2975 WARN_ON(error >= 0);
2976 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2977}
2978EXPORT_SYMBOL_GPL(__blk_end_request_err);
2979
86db1e29
JA
2980void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2981 struct bio *bio)
1da177e4 2982{
4993b77d 2983 req_set_op(rq, bio_op(bio));
1da177e4 2984
b4f42e28 2985 if (bio_has_data(bio))
fb2dce86 2986 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2987
4f024f37 2988 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2989 rq->bio = rq->biotail = bio;
1da177e4 2990
66846572
N
2991 if (bio->bi_bdev)
2992 rq->rq_disk = bio->bi_bdev->bd_disk;
2993}
1da177e4 2994
2d4dc890
IL
2995#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2996/**
2997 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2998 * @rq: the request to be flushed
2999 *
3000 * Description:
3001 * Flush all pages in @rq.
3002 */
3003void rq_flush_dcache_pages(struct request *rq)
3004{
3005 struct req_iterator iter;
7988613b 3006 struct bio_vec bvec;
2d4dc890
IL
3007
3008 rq_for_each_segment(bvec, rq, iter)
7988613b 3009 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3010}
3011EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3012#endif
3013
ef9e3fac
KU
3014/**
3015 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3016 * @q : the queue of the device being checked
3017 *
3018 * Description:
3019 * Check if underlying low-level drivers of a device are busy.
3020 * If the drivers want to export their busy state, they must set own
3021 * exporting function using blk_queue_lld_busy() first.
3022 *
3023 * Basically, this function is used only by request stacking drivers
3024 * to stop dispatching requests to underlying devices when underlying
3025 * devices are busy. This behavior helps more I/O merging on the queue
3026 * of the request stacking driver and prevents I/O throughput regression
3027 * on burst I/O load.
3028 *
3029 * Return:
3030 * 0 - Not busy (The request stacking driver should dispatch request)
3031 * 1 - Busy (The request stacking driver should stop dispatching request)
3032 */
3033int blk_lld_busy(struct request_queue *q)
3034{
3035 if (q->lld_busy_fn)
3036 return q->lld_busy_fn(q);
3037
3038 return 0;
3039}
3040EXPORT_SYMBOL_GPL(blk_lld_busy);
3041
78d8e58a
MS
3042/**
3043 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3044 * @rq: the clone request to be cleaned up
3045 *
3046 * Description:
3047 * Free all bios in @rq for a cloned request.
3048 */
3049void blk_rq_unprep_clone(struct request *rq)
3050{
3051 struct bio *bio;
3052
3053 while ((bio = rq->bio) != NULL) {
3054 rq->bio = bio->bi_next;
3055
3056 bio_put(bio);
3057 }
3058}
3059EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3060
3061/*
3062 * Copy attributes of the original request to the clone request.
3063 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3064 */
3065static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3066{
3067 dst->cpu = src->cpu;
4993b77d
MC
3068 req_set_op_attrs(dst, req_op(src),
3069 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
b0fd271d
KU
3070 dst->cmd_type = src->cmd_type;
3071 dst->__sector = blk_rq_pos(src);
3072 dst->__data_len = blk_rq_bytes(src);
3073 dst->nr_phys_segments = src->nr_phys_segments;
3074 dst->ioprio = src->ioprio;
3075 dst->extra_len = src->extra_len;
78d8e58a
MS
3076}
3077
3078/**
3079 * blk_rq_prep_clone - Helper function to setup clone request
3080 * @rq: the request to be setup
3081 * @rq_src: original request to be cloned
3082 * @bs: bio_set that bios for clone are allocated from
3083 * @gfp_mask: memory allocation mask for bio
3084 * @bio_ctr: setup function to be called for each clone bio.
3085 * Returns %0 for success, non %0 for failure.
3086 * @data: private data to be passed to @bio_ctr
3087 *
3088 * Description:
3089 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3090 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3091 * are not copied, and copying such parts is the caller's responsibility.
3092 * Also, pages which the original bios are pointing to are not copied
3093 * and the cloned bios just point same pages.
3094 * So cloned bios must be completed before original bios, which means
3095 * the caller must complete @rq before @rq_src.
3096 */
3097int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3098 struct bio_set *bs, gfp_t gfp_mask,
3099 int (*bio_ctr)(struct bio *, struct bio *, void *),
3100 void *data)
3101{
3102 struct bio *bio, *bio_src;
3103
3104 if (!bs)
3105 bs = fs_bio_set;
3106
3107 __rq_for_each_bio(bio_src, rq_src) {
3108 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3109 if (!bio)
3110 goto free_and_out;
3111
3112 if (bio_ctr && bio_ctr(bio, bio_src, data))
3113 goto free_and_out;
3114
3115 if (rq->bio) {
3116 rq->biotail->bi_next = bio;
3117 rq->biotail = bio;
3118 } else
3119 rq->bio = rq->biotail = bio;
3120 }
3121
3122 __blk_rq_prep_clone(rq, rq_src);
3123
3124 return 0;
3125
3126free_and_out:
3127 if (bio)
3128 bio_put(bio);
3129 blk_rq_unprep_clone(rq);
3130
3131 return -ENOMEM;
b0fd271d
KU
3132}
3133EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3134
59c3d45e 3135int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3136{
3137 return queue_work(kblockd_workqueue, work);
3138}
1da177e4
LT
3139EXPORT_SYMBOL(kblockd_schedule_work);
3140
59c3d45e
JA
3141int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3142 unsigned long delay)
e43473b7
VG
3143{
3144 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3145}
3146EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3147
8ab14595
JA
3148int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3149 unsigned long delay)
3150{
3151 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3152}
3153EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3154
75df7136
SJ
3155/**
3156 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3157 * @plug: The &struct blk_plug that needs to be initialized
3158 *
3159 * Description:
3160 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3161 * pending I/O should the task end up blocking between blk_start_plug() and
3162 * blk_finish_plug(). This is important from a performance perspective, but
3163 * also ensures that we don't deadlock. For instance, if the task is blocking
3164 * for a memory allocation, memory reclaim could end up wanting to free a
3165 * page belonging to that request that is currently residing in our private
3166 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3167 * this kind of deadlock.
3168 */
73c10101
JA
3169void blk_start_plug(struct blk_plug *plug)
3170{
3171 struct task_struct *tsk = current;
3172
dd6cf3e1
SL
3173 /*
3174 * If this is a nested plug, don't actually assign it.
3175 */
3176 if (tsk->plug)
3177 return;
3178
73c10101 3179 INIT_LIST_HEAD(&plug->list);
320ae51f 3180 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3181 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3182 /*
dd6cf3e1
SL
3183 * Store ordering should not be needed here, since a potential
3184 * preempt will imply a full memory barrier
73c10101 3185 */
dd6cf3e1 3186 tsk->plug = plug;
73c10101
JA
3187}
3188EXPORT_SYMBOL(blk_start_plug);
3189
3190static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3191{
3192 struct request *rqa = container_of(a, struct request, queuelist);
3193 struct request *rqb = container_of(b, struct request, queuelist);
3194
975927b9
JM
3195 return !(rqa->q < rqb->q ||
3196 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3197}
3198
49cac01e
JA
3199/*
3200 * If 'from_schedule' is true, then postpone the dispatch of requests
3201 * until a safe kblockd context. We due this to avoid accidental big
3202 * additional stack usage in driver dispatch, in places where the originally
3203 * plugger did not intend it.
3204 */
f6603783 3205static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3206 bool from_schedule)
99e22598 3207 __releases(q->queue_lock)
94b5eb28 3208{
49cac01e 3209 trace_block_unplug(q, depth, !from_schedule);
99e22598 3210
70460571 3211 if (from_schedule)
24ecfbe2 3212 blk_run_queue_async(q);
70460571 3213 else
24ecfbe2 3214 __blk_run_queue(q);
70460571 3215 spin_unlock(q->queue_lock);
94b5eb28
JA
3216}
3217
74018dc3 3218static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3219{
3220 LIST_HEAD(callbacks);
3221
2a7d5559
SL
3222 while (!list_empty(&plug->cb_list)) {
3223 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3224
2a7d5559
SL
3225 while (!list_empty(&callbacks)) {
3226 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3227 struct blk_plug_cb,
3228 list);
2a7d5559 3229 list_del(&cb->list);
74018dc3 3230 cb->callback(cb, from_schedule);
2a7d5559 3231 }
048c9374
N
3232 }
3233}
3234
9cbb1750
N
3235struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3236 int size)
3237{
3238 struct blk_plug *plug = current->plug;
3239 struct blk_plug_cb *cb;
3240
3241 if (!plug)
3242 return NULL;
3243
3244 list_for_each_entry(cb, &plug->cb_list, list)
3245 if (cb->callback == unplug && cb->data == data)
3246 return cb;
3247
3248 /* Not currently on the callback list */
3249 BUG_ON(size < sizeof(*cb));
3250 cb = kzalloc(size, GFP_ATOMIC);
3251 if (cb) {
3252 cb->data = data;
3253 cb->callback = unplug;
3254 list_add(&cb->list, &plug->cb_list);
3255 }
3256 return cb;
3257}
3258EXPORT_SYMBOL(blk_check_plugged);
3259
49cac01e 3260void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3261{
3262 struct request_queue *q;
3263 unsigned long flags;
3264 struct request *rq;
109b8129 3265 LIST_HEAD(list);
94b5eb28 3266 unsigned int depth;
73c10101 3267
74018dc3 3268 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3269
3270 if (!list_empty(&plug->mq_list))
3271 blk_mq_flush_plug_list(plug, from_schedule);
3272
73c10101
JA
3273 if (list_empty(&plug->list))
3274 return;
3275
109b8129
N
3276 list_splice_init(&plug->list, &list);
3277
422765c2 3278 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3279
3280 q = NULL;
94b5eb28 3281 depth = 0;
18811272
JA
3282
3283 /*
3284 * Save and disable interrupts here, to avoid doing it for every
3285 * queue lock we have to take.
3286 */
73c10101 3287 local_irq_save(flags);
109b8129
N
3288 while (!list_empty(&list)) {
3289 rq = list_entry_rq(list.next);
73c10101 3290 list_del_init(&rq->queuelist);
73c10101
JA
3291 BUG_ON(!rq->q);
3292 if (rq->q != q) {
99e22598
JA
3293 /*
3294 * This drops the queue lock
3295 */
3296 if (q)
49cac01e 3297 queue_unplugged(q, depth, from_schedule);
73c10101 3298 q = rq->q;
94b5eb28 3299 depth = 0;
73c10101
JA
3300 spin_lock(q->queue_lock);
3301 }
8ba61435
TH
3302
3303 /*
3304 * Short-circuit if @q is dead
3305 */
3f3299d5 3306 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3307 __blk_end_request_all(rq, -ENODEV);
3308 continue;
3309 }
3310
73c10101
JA
3311 /*
3312 * rq is already accounted, so use raw insert
3313 */
401a18e9
JA
3314 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3315 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3316 else
3317 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3318
3319 depth++;
73c10101
JA
3320 }
3321
99e22598
JA
3322 /*
3323 * This drops the queue lock
3324 */
3325 if (q)
49cac01e 3326 queue_unplugged(q, depth, from_schedule);
73c10101 3327
73c10101
JA
3328 local_irq_restore(flags);
3329}
73c10101
JA
3330
3331void blk_finish_plug(struct blk_plug *plug)
3332{
dd6cf3e1
SL
3333 if (plug != current->plug)
3334 return;
f6603783 3335 blk_flush_plug_list(plug, false);
73c10101 3336
dd6cf3e1 3337 current->plug = NULL;
73c10101 3338}
88b996cd 3339EXPORT_SYMBOL(blk_finish_plug);
73c10101 3340
05229bee
JA
3341bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3342{
3343 struct blk_plug *plug;
3344 long state;
3345
3346 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3347 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3348 return false;
3349
3350 plug = current->plug;
3351 if (plug)
3352 blk_flush_plug_list(plug, false);
3353
3354 state = current->state;
3355 while (!need_resched()) {
3356 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3357 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3358 int ret;
3359
3360 hctx->poll_invoked++;
3361
3362 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3363 if (ret > 0) {
3364 hctx->poll_success++;
3365 set_current_state(TASK_RUNNING);
3366 return true;
3367 }
3368
3369 if (signal_pending_state(state, current))
3370 set_current_state(TASK_RUNNING);
3371
3372 if (current->state == TASK_RUNNING)
3373 return true;
3374 if (ret < 0)
3375 break;
3376 cpu_relax();
3377 }
3378
3379 return false;
3380}
3381
47fafbc7 3382#ifdef CONFIG_PM
6c954667
LM
3383/**
3384 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3385 * @q: the queue of the device
3386 * @dev: the device the queue belongs to
3387 *
3388 * Description:
3389 * Initialize runtime-PM-related fields for @q and start auto suspend for
3390 * @dev. Drivers that want to take advantage of request-based runtime PM
3391 * should call this function after @dev has been initialized, and its
3392 * request queue @q has been allocated, and runtime PM for it can not happen
3393 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3394 * cases, driver should call this function before any I/O has taken place.
3395 *
3396 * This function takes care of setting up using auto suspend for the device,
3397 * the autosuspend delay is set to -1 to make runtime suspend impossible
3398 * until an updated value is either set by user or by driver. Drivers do
3399 * not need to touch other autosuspend settings.
3400 *
3401 * The block layer runtime PM is request based, so only works for drivers
3402 * that use request as their IO unit instead of those directly use bio's.
3403 */
3404void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3405{
3406 q->dev = dev;
3407 q->rpm_status = RPM_ACTIVE;
3408 pm_runtime_set_autosuspend_delay(q->dev, -1);
3409 pm_runtime_use_autosuspend(q->dev);
3410}
3411EXPORT_SYMBOL(blk_pm_runtime_init);
3412
3413/**
3414 * blk_pre_runtime_suspend - Pre runtime suspend check
3415 * @q: the queue of the device
3416 *
3417 * Description:
3418 * This function will check if runtime suspend is allowed for the device
3419 * by examining if there are any requests pending in the queue. If there
3420 * are requests pending, the device can not be runtime suspended; otherwise,
3421 * the queue's status will be updated to SUSPENDING and the driver can
3422 * proceed to suspend the device.
3423 *
3424 * For the not allowed case, we mark last busy for the device so that
3425 * runtime PM core will try to autosuspend it some time later.
3426 *
3427 * This function should be called near the start of the device's
3428 * runtime_suspend callback.
3429 *
3430 * Return:
3431 * 0 - OK to runtime suspend the device
3432 * -EBUSY - Device should not be runtime suspended
3433 */
3434int blk_pre_runtime_suspend(struct request_queue *q)
3435{
3436 int ret = 0;
3437
4fd41a85
KX
3438 if (!q->dev)
3439 return ret;
3440
6c954667
LM
3441 spin_lock_irq(q->queue_lock);
3442 if (q->nr_pending) {
3443 ret = -EBUSY;
3444 pm_runtime_mark_last_busy(q->dev);
3445 } else {
3446 q->rpm_status = RPM_SUSPENDING;
3447 }
3448 spin_unlock_irq(q->queue_lock);
3449 return ret;
3450}
3451EXPORT_SYMBOL(blk_pre_runtime_suspend);
3452
3453/**
3454 * blk_post_runtime_suspend - Post runtime suspend processing
3455 * @q: the queue of the device
3456 * @err: return value of the device's runtime_suspend function
3457 *
3458 * Description:
3459 * Update the queue's runtime status according to the return value of the
3460 * device's runtime suspend function and mark last busy for the device so
3461 * that PM core will try to auto suspend the device at a later time.
3462 *
3463 * This function should be called near the end of the device's
3464 * runtime_suspend callback.
3465 */
3466void blk_post_runtime_suspend(struct request_queue *q, int err)
3467{
4fd41a85
KX
3468 if (!q->dev)
3469 return;
3470
6c954667
LM
3471 spin_lock_irq(q->queue_lock);
3472 if (!err) {
3473 q->rpm_status = RPM_SUSPENDED;
3474 } else {
3475 q->rpm_status = RPM_ACTIVE;
3476 pm_runtime_mark_last_busy(q->dev);
3477 }
3478 spin_unlock_irq(q->queue_lock);
3479}
3480EXPORT_SYMBOL(blk_post_runtime_suspend);
3481
3482/**
3483 * blk_pre_runtime_resume - Pre runtime resume processing
3484 * @q: the queue of the device
3485 *
3486 * Description:
3487 * Update the queue's runtime status to RESUMING in preparation for the
3488 * runtime resume of the device.
3489 *
3490 * This function should be called near the start of the device's
3491 * runtime_resume callback.
3492 */
3493void blk_pre_runtime_resume(struct request_queue *q)
3494{
4fd41a85
KX
3495 if (!q->dev)
3496 return;
3497
6c954667
LM
3498 spin_lock_irq(q->queue_lock);
3499 q->rpm_status = RPM_RESUMING;
3500 spin_unlock_irq(q->queue_lock);
3501}
3502EXPORT_SYMBOL(blk_pre_runtime_resume);
3503
3504/**
3505 * blk_post_runtime_resume - Post runtime resume processing
3506 * @q: the queue of the device
3507 * @err: return value of the device's runtime_resume function
3508 *
3509 * Description:
3510 * Update the queue's runtime status according to the return value of the
3511 * device's runtime_resume function. If it is successfully resumed, process
3512 * the requests that are queued into the device's queue when it is resuming
3513 * and then mark last busy and initiate autosuspend for it.
3514 *
3515 * This function should be called near the end of the device's
3516 * runtime_resume callback.
3517 */
3518void blk_post_runtime_resume(struct request_queue *q, int err)
3519{
4fd41a85
KX
3520 if (!q->dev)
3521 return;
3522
6c954667
LM
3523 spin_lock_irq(q->queue_lock);
3524 if (!err) {
3525 q->rpm_status = RPM_ACTIVE;
3526 __blk_run_queue(q);
3527 pm_runtime_mark_last_busy(q->dev);
c60855cd 3528 pm_request_autosuspend(q->dev);
6c954667
LM
3529 } else {
3530 q->rpm_status = RPM_SUSPENDED;
3531 }
3532 spin_unlock_irq(q->queue_lock);
3533}
3534EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3535
3536/**
3537 * blk_set_runtime_active - Force runtime status of the queue to be active
3538 * @q: the queue of the device
3539 *
3540 * If the device is left runtime suspended during system suspend the resume
3541 * hook typically resumes the device and corrects runtime status
3542 * accordingly. However, that does not affect the queue runtime PM status
3543 * which is still "suspended". This prevents processing requests from the
3544 * queue.
3545 *
3546 * This function can be used in driver's resume hook to correct queue
3547 * runtime PM status and re-enable peeking requests from the queue. It
3548 * should be called before first request is added to the queue.
3549 */
3550void blk_set_runtime_active(struct request_queue *q)
3551{
3552 spin_lock_irq(q->queue_lock);
3553 q->rpm_status = RPM_ACTIVE;
3554 pm_runtime_mark_last_busy(q->dev);
3555 pm_request_autosuspend(q->dev);
3556 spin_unlock_irq(q->queue_lock);
3557}
3558EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3559#endif
3560
1da177e4
LT
3561int __init blk_dev_init(void)
3562{
9eb55b03 3563 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
0762b23d 3564 FIELD_SIZEOF(struct request, cmd_flags));
9eb55b03 3565
89b90be2
TH
3566 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3567 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3568 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3569 if (!kblockd_workqueue)
3570 panic("Failed to create kblockd\n");
3571
3572 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3573 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3574
c2789bd4 3575 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3576 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3577
d38ecf93 3578 return 0;
1da177e4 3579}