]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: fix elevator init check
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
bd166ef1 42#include "blk-mq-sched.h"
87760e5e 43#include "blk-wbt.h"
8324aa91 44
d07335e5 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 48EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 49EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 50
a73f730d
TH
51DEFINE_IDA(blk_queue_ida);
52
1da177e4
LT
53/*
54 * For the allocated request tables
55 */
d674d414 56struct kmem_cache *request_cachep;
1da177e4
LT
57
58/*
59 * For queue allocation
60 */
6728cb0e 61struct kmem_cache *blk_requestq_cachep;
1da177e4 62
1da177e4
LT
63/*
64 * Controlling structure to kblockd
65 */
ff856bad 66static struct workqueue_struct *kblockd_workqueue;
1da177e4 67
d40f75a0
TH
68static void blk_clear_congested(struct request_list *rl, int sync)
69{
d40f75a0
TH
70#ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72#else
482cf79c
TH
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
79#endif
80}
81
82static void blk_set_congested(struct request_list *rl, int sync)
83{
d40f75a0
TH
84#ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86#else
482cf79c
TH
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
90#endif
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
1da177e4
LT
115 */
116struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117{
165125e1 118 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 119
ff9ea323 120 return &q->backing_dev_info;
1da177e4 121}
1da177e4
LT
122EXPORT_SYMBOL(blk_get_backing_dev_info);
123
2a4aa30c 124void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 125{
1afb20f3
FT
126 memset(rq, 0, sizeof(*rq));
127
1da177e4 128 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 129 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 130 rq->cpu = -1;
63a71386 131 rq->q = q;
a2dec7b3 132 rq->__sector = (sector_t) -1;
2e662b65
JA
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 135 rq->cmd = rq->__cmd;
e2494e1b 136 rq->cmd_len = BLK_MAX_CDB;
63a71386 137 rq->tag = -1;
bd166ef1 138 rq->internal_tag = -1;
b243ddcb 139 rq->start_time = jiffies;
9195291e 140 set_start_time_ns(rq);
09e099d4 141 rq->part = NULL;
1da177e4 142}
2a4aa30c 143EXPORT_SYMBOL(blk_rq_init);
1da177e4 144
5bb23a68
N
145static void req_bio_endio(struct request *rq, struct bio *bio,
146 unsigned int nbytes, int error)
1da177e4 147{
78d8e58a 148 if (error)
4246a0b6 149 bio->bi_error = error;
797e7dbb 150
e8064021 151 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 152 bio_set_flag(bio, BIO_QUIET);
08bafc03 153
f79ea416 154 bio_advance(bio, nbytes);
7ba1ba12 155
143a87f4 156 /* don't actually finish bio if it's part of flush sequence */
e8064021 157 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 158 bio_endio(bio);
1da177e4 159}
1da177e4 160
1da177e4
LT
161void blk_dump_rq_flags(struct request *rq, char *msg)
162{
163 int bit;
164
5953316d 165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 167 (unsigned long long) rq->cmd_flags);
1da177e4 168
83096ebf
TH
169 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
170 (unsigned long long)blk_rq_pos(rq),
171 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
172 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
173 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 174
33659ebb 175 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 176 printk(KERN_INFO " cdb: ");
d34c87e4 177 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
178 printk("%02x ", rq->cmd[bit]);
179 printk("\n");
180 }
181}
1da177e4
LT
182EXPORT_SYMBOL(blk_dump_rq_flags);
183
3cca6dc1 184static void blk_delay_work(struct work_struct *work)
1da177e4 185{
3cca6dc1 186 struct request_queue *q;
1da177e4 187
3cca6dc1
JA
188 q = container_of(work, struct request_queue, delay_work.work);
189 spin_lock_irq(q->queue_lock);
24ecfbe2 190 __blk_run_queue(q);
3cca6dc1 191 spin_unlock_irq(q->queue_lock);
1da177e4 192}
1da177e4
LT
193
194/**
3cca6dc1
JA
195 * blk_delay_queue - restart queueing after defined interval
196 * @q: The &struct request_queue in question
197 * @msecs: Delay in msecs
1da177e4
LT
198 *
199 * Description:
3cca6dc1
JA
200 * Sometimes queueing needs to be postponed for a little while, to allow
201 * resources to come back. This function will make sure that queueing is
70460571 202 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
203 */
204void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 205{
70460571
BVA
206 if (likely(!blk_queue_dead(q)))
207 queue_delayed_work(kblockd_workqueue, &q->delay_work,
208 msecs_to_jiffies(msecs));
2ad8b1ef 209}
3cca6dc1 210EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 211
21491412
JA
212/**
213 * blk_start_queue_async - asynchronously restart a previously stopped queue
214 * @q: The &struct request_queue in question
215 *
216 * Description:
217 * blk_start_queue_async() will clear the stop flag on the queue, and
218 * ensure that the request_fn for the queue is run from an async
219 * context.
220 **/
221void blk_start_queue_async(struct request_queue *q)
222{
223 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
224 blk_run_queue_async(q);
225}
226EXPORT_SYMBOL(blk_start_queue_async);
227
1da177e4
LT
228/**
229 * blk_start_queue - restart a previously stopped queue
165125e1 230 * @q: The &struct request_queue in question
1da177e4
LT
231 *
232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 **/
165125e1 237void blk_start_queue(struct request_queue *q)
1da177e4 238{
a038e253
PBG
239 WARN_ON(!irqs_disabled());
240
75ad23bc 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 242 __blk_run_queue(q);
1da177e4 243}
1da177e4
LT
244EXPORT_SYMBOL(blk_start_queue);
245
246/**
247 * blk_stop_queue - stop a queue
165125e1 248 * @q: The &struct request_queue in question
1da177e4
LT
249 *
250 * Description:
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 **/
165125e1 260void blk_stop_queue(struct request_queue *q)
1da177e4 261{
136b5721 262 cancel_delayed_work(&q->delay_work);
75ad23bc 263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
264}
265EXPORT_SYMBOL(blk_stop_queue);
266
267/**
268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue
270 *
271 * Description:
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
59c51591 276 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function.
279 *
da527770 280 * This function does not cancel any asynchronous activity arising
da3dae54 281 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 282 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 283 *
1da177e4
LT
284 */
285void blk_sync_queue(struct request_queue *q)
286{
70ed28b9 287 del_timer_sync(&q->timeout);
f04c1fe7
ML
288
289 if (q->mq_ops) {
290 struct blk_mq_hw_ctx *hctx;
291 int i;
292
70f4db63 293 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 294 cancel_work_sync(&hctx->run_work);
70f4db63
CH
295 cancel_delayed_work_sync(&hctx->delay_work);
296 }
f04c1fe7
ML
297 } else {
298 cancel_delayed_work_sync(&q->delay_work);
299 }
1da177e4
LT
300}
301EXPORT_SYMBOL(blk_sync_queue);
302
c246e80d
BVA
303/**
304 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
305 * @q: The queue to run
306 *
307 * Description:
308 * Invoke request handling on a queue if there are any pending requests.
309 * May be used to restart request handling after a request has completed.
310 * This variant runs the queue whether or not the queue has been
311 * stopped. Must be called with the queue lock held and interrupts
312 * disabled. See also @blk_run_queue.
313 */
314inline void __blk_run_queue_uncond(struct request_queue *q)
315{
316 if (unlikely(blk_queue_dead(q)))
317 return;
318
24faf6f6
BVA
319 /*
320 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
321 * the queue lock internally. As a result multiple threads may be
322 * running such a request function concurrently. Keep track of the
323 * number of active request_fn invocations such that blk_drain_queue()
324 * can wait until all these request_fn calls have finished.
325 */
326 q->request_fn_active++;
c246e80d 327 q->request_fn(q);
24faf6f6 328 q->request_fn_active--;
c246e80d 329}
a7928c15 330EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 331
1da177e4 332/**
80a4b58e 333 * __blk_run_queue - run a single device queue
1da177e4 334 * @q: The queue to run
80a4b58e
JA
335 *
336 * Description:
337 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 338 * held and interrupts disabled.
1da177e4 339 */
24ecfbe2 340void __blk_run_queue(struct request_queue *q)
1da177e4 341{
a538cd03
TH
342 if (unlikely(blk_queue_stopped(q)))
343 return;
344
c246e80d 345 __blk_run_queue_uncond(q);
75ad23bc
NP
346}
347EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 348
24ecfbe2
CH
349/**
350 * blk_run_queue_async - run a single device queue in workqueue context
351 * @q: The queue to run
352 *
353 * Description:
354 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 355 * of us. The caller must hold the queue lock.
24ecfbe2
CH
356 */
357void blk_run_queue_async(struct request_queue *q)
358{
70460571 359 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 360 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 361}
c21e6beb 362EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 363
75ad23bc
NP
364/**
365 * blk_run_queue - run a single device queue
366 * @q: The queue to run
80a4b58e
JA
367 *
368 * Description:
369 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 370 * May be used to restart queueing when a request has completed.
75ad23bc
NP
371 */
372void blk_run_queue(struct request_queue *q)
373{
374 unsigned long flags;
375
376 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 377 __blk_run_queue(q);
1da177e4
LT
378 spin_unlock_irqrestore(q->queue_lock, flags);
379}
380EXPORT_SYMBOL(blk_run_queue);
381
165125e1 382void blk_put_queue(struct request_queue *q)
483f4afc
AV
383{
384 kobject_put(&q->kobj);
385}
d86e0e83 386EXPORT_SYMBOL(blk_put_queue);
483f4afc 387
e3c78ca5 388/**
807592a4 389 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 390 * @q: queue to drain
c9a929dd 391 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 392 *
c9a929dd
TH
393 * Drain requests from @q. If @drain_all is set, all requests are drained.
394 * If not, only ELVPRIV requests are drained. The caller is responsible
395 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 396 */
807592a4
BVA
397static void __blk_drain_queue(struct request_queue *q, bool drain_all)
398 __releases(q->queue_lock)
399 __acquires(q->queue_lock)
e3c78ca5 400{
458f27a9
AH
401 int i;
402
807592a4
BVA
403 lockdep_assert_held(q->queue_lock);
404
e3c78ca5 405 while (true) {
481a7d64 406 bool drain = false;
e3c78ca5 407
b855b04a
TH
408 /*
409 * The caller might be trying to drain @q before its
410 * elevator is initialized.
411 */
412 if (q->elevator)
413 elv_drain_elevator(q);
414
5efd6113 415 blkcg_drain_queue(q);
e3c78ca5 416
4eabc941
TH
417 /*
418 * This function might be called on a queue which failed
b855b04a
TH
419 * driver init after queue creation or is not yet fully
420 * active yet. Some drivers (e.g. fd and loop) get unhappy
421 * in such cases. Kick queue iff dispatch queue has
422 * something on it and @q has request_fn set.
4eabc941 423 */
b855b04a 424 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 425 __blk_run_queue(q);
c9a929dd 426
8a5ecdd4 427 drain |= q->nr_rqs_elvpriv;
24faf6f6 428 drain |= q->request_fn_active;
481a7d64
TH
429
430 /*
431 * Unfortunately, requests are queued at and tracked from
432 * multiple places and there's no single counter which can
433 * be drained. Check all the queues and counters.
434 */
435 if (drain_all) {
e97c293c 436 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
437 drain |= !list_empty(&q->queue_head);
438 for (i = 0; i < 2; i++) {
8a5ecdd4 439 drain |= q->nr_rqs[i];
481a7d64 440 drain |= q->in_flight[i];
7c94e1c1
ML
441 if (fq)
442 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
443 }
444 }
e3c78ca5 445
481a7d64 446 if (!drain)
e3c78ca5 447 break;
807592a4
BVA
448
449 spin_unlock_irq(q->queue_lock);
450
e3c78ca5 451 msleep(10);
807592a4
BVA
452
453 spin_lock_irq(q->queue_lock);
e3c78ca5 454 }
458f27a9
AH
455
456 /*
457 * With queue marked dead, any woken up waiter will fail the
458 * allocation path, so the wakeup chaining is lost and we're
459 * left with hung waiters. We need to wake up those waiters.
460 */
461 if (q->request_fn) {
a051661c
TH
462 struct request_list *rl;
463
a051661c
TH
464 blk_queue_for_each_rl(rl, q)
465 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
466 wake_up_all(&rl->wait[i]);
458f27a9 467 }
e3c78ca5
TH
468}
469
d732580b
TH
470/**
471 * blk_queue_bypass_start - enter queue bypass mode
472 * @q: queue of interest
473 *
474 * In bypass mode, only the dispatch FIFO queue of @q is used. This
475 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 476 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
477 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
478 * inside queue or RCU read lock.
d732580b
TH
479 */
480void blk_queue_bypass_start(struct request_queue *q)
481{
482 spin_lock_irq(q->queue_lock);
776687bc 483 q->bypass_depth++;
d732580b
TH
484 queue_flag_set(QUEUE_FLAG_BYPASS, q);
485 spin_unlock_irq(q->queue_lock);
486
776687bc
TH
487 /*
488 * Queues start drained. Skip actual draining till init is
489 * complete. This avoids lenghty delays during queue init which
490 * can happen many times during boot.
491 */
492 if (blk_queue_init_done(q)) {
807592a4
BVA
493 spin_lock_irq(q->queue_lock);
494 __blk_drain_queue(q, false);
495 spin_unlock_irq(q->queue_lock);
496
b82d4b19
TH
497 /* ensure blk_queue_bypass() is %true inside RCU read lock */
498 synchronize_rcu();
499 }
d732580b
TH
500}
501EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
502
503/**
504 * blk_queue_bypass_end - leave queue bypass mode
505 * @q: queue of interest
506 *
507 * Leave bypass mode and restore the normal queueing behavior.
508 */
509void blk_queue_bypass_end(struct request_queue *q)
510{
511 spin_lock_irq(q->queue_lock);
512 if (!--q->bypass_depth)
513 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
514 WARN_ON_ONCE(q->bypass_depth < 0);
515 spin_unlock_irq(q->queue_lock);
516}
517EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
518
aed3ea94
JA
519void blk_set_queue_dying(struct request_queue *q)
520{
1b856086
BVA
521 spin_lock_irq(q->queue_lock);
522 queue_flag_set(QUEUE_FLAG_DYING, q);
523 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
524
525 if (q->mq_ops)
526 blk_mq_wake_waiters(q);
527 else {
528 struct request_list *rl;
529
530 blk_queue_for_each_rl(rl, q) {
531 if (rl->rq_pool) {
532 wake_up(&rl->wait[BLK_RW_SYNC]);
533 wake_up(&rl->wait[BLK_RW_ASYNC]);
534 }
535 }
536 }
537}
538EXPORT_SYMBOL_GPL(blk_set_queue_dying);
539
c9a929dd
TH
540/**
541 * blk_cleanup_queue - shutdown a request queue
542 * @q: request queue to shutdown
543 *
c246e80d
BVA
544 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
545 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 546 */
6728cb0e 547void blk_cleanup_queue(struct request_queue *q)
483f4afc 548{
c9a929dd 549 spinlock_t *lock = q->queue_lock;
e3335de9 550
3f3299d5 551 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 552 mutex_lock(&q->sysfs_lock);
aed3ea94 553 blk_set_queue_dying(q);
c9a929dd 554 spin_lock_irq(lock);
6ecf23af 555
80fd9979 556 /*
3f3299d5 557 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
558 * that, unlike blk_queue_bypass_start(), we aren't performing
559 * synchronize_rcu() after entering bypass mode to avoid the delay
560 * as some drivers create and destroy a lot of queues while
561 * probing. This is still safe because blk_release_queue() will be
562 * called only after the queue refcnt drops to zero and nothing,
563 * RCU or not, would be traversing the queue by then.
564 */
6ecf23af
TH
565 q->bypass_depth++;
566 queue_flag_set(QUEUE_FLAG_BYPASS, q);
567
c9a929dd
TH
568 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
569 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 570 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
571 spin_unlock_irq(lock);
572 mutex_unlock(&q->sysfs_lock);
573
c246e80d
BVA
574 /*
575 * Drain all requests queued before DYING marking. Set DEAD flag to
576 * prevent that q->request_fn() gets invoked after draining finished.
577 */
3ef28e83
DW
578 blk_freeze_queue(q);
579 spin_lock_irq(lock);
580 if (!q->mq_ops)
43a5e4e2 581 __blk_drain_queue(q, true);
c246e80d 582 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 583 spin_unlock_irq(lock);
c9a929dd 584
5a48fc14
DW
585 /* for synchronous bio-based driver finish in-flight integrity i/o */
586 blk_flush_integrity();
587
c9a929dd
TH
588 /* @q won't process any more request, flush async actions */
589 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
590 blk_sync_queue(q);
591
45a9c9d9
BVA
592 if (q->mq_ops)
593 blk_mq_free_queue(q);
3ef28e83 594 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 595
5e5cfac0
AH
596 spin_lock_irq(lock);
597 if (q->queue_lock != &q->__queue_lock)
598 q->queue_lock = &q->__queue_lock;
599 spin_unlock_irq(lock);
600
b02176f3 601 bdi_unregister(&q->backing_dev_info);
6cd18e71 602
c9a929dd 603 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
604 blk_put_queue(q);
605}
1da177e4
LT
606EXPORT_SYMBOL(blk_cleanup_queue);
607
271508db
DR
608/* Allocate memory local to the request queue */
609static void *alloc_request_struct(gfp_t gfp_mask, void *data)
610{
611 int nid = (int)(long)data;
612 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
613}
614
615static void free_request_struct(void *element, void *unused)
616{
617 kmem_cache_free(request_cachep, element);
618}
619
5b788ce3
TH
620int blk_init_rl(struct request_list *rl, struct request_queue *q,
621 gfp_t gfp_mask)
1da177e4 622{
1abec4fd
MS
623 if (unlikely(rl->rq_pool))
624 return 0;
625
5b788ce3 626 rl->q = q;
1faa16d2
JA
627 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
628 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
629 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
630 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 631
271508db
DR
632 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
633 free_request_struct,
634 (void *)(long)q->node, gfp_mask,
635 q->node);
1da177e4
LT
636 if (!rl->rq_pool)
637 return -ENOMEM;
638
639 return 0;
640}
641
5b788ce3
TH
642void blk_exit_rl(struct request_list *rl)
643{
644 if (rl->rq_pool)
645 mempool_destroy(rl->rq_pool);
646}
647
165125e1 648struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 649{
c304a51b 650 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
651}
652EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 653
6f3b0e8b 654int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
655{
656 while (true) {
657 int ret;
658
659 if (percpu_ref_tryget_live(&q->q_usage_counter))
660 return 0;
661
6f3b0e8b 662 if (nowait)
3ef28e83
DW
663 return -EBUSY;
664
665 ret = wait_event_interruptible(q->mq_freeze_wq,
666 !atomic_read(&q->mq_freeze_depth) ||
667 blk_queue_dying(q));
668 if (blk_queue_dying(q))
669 return -ENODEV;
670 if (ret)
671 return ret;
672 }
673}
674
675void blk_queue_exit(struct request_queue *q)
676{
677 percpu_ref_put(&q->q_usage_counter);
678}
679
680static void blk_queue_usage_counter_release(struct percpu_ref *ref)
681{
682 struct request_queue *q =
683 container_of(ref, struct request_queue, q_usage_counter);
684
685 wake_up_all(&q->mq_freeze_wq);
686}
687
287922eb
CH
688static void blk_rq_timed_out_timer(unsigned long data)
689{
690 struct request_queue *q = (struct request_queue *)data;
691
692 kblockd_schedule_work(&q->timeout_work);
693}
694
165125e1 695struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 696{
165125e1 697 struct request_queue *q;
e0bf68dd 698 int err;
1946089a 699
8324aa91 700 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 701 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
702 if (!q)
703 return NULL;
704
00380a40 705 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 706 if (q->id < 0)
3d2936f4 707 goto fail_q;
a73f730d 708
54efd50b
KO
709 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
710 if (!q->bio_split)
711 goto fail_id;
712
0989a025 713 q->backing_dev_info.ra_pages =
09cbfeaf 714 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 715 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 716 q->backing_dev_info.name = "block";
5151412d 717 q->node = node_id;
0989a025 718
e0bf68dd 719 err = bdi_init(&q->backing_dev_info);
a73f730d 720 if (err)
54efd50b 721 goto fail_split;
e0bf68dd 722
31373d09
MG
723 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
724 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 725 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 726 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 727 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 728 INIT_LIST_HEAD(&q->icq_list);
4eef3049 729#ifdef CONFIG_BLK_CGROUP
e8989fae 730 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 731#endif
3cca6dc1 732 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 733
8324aa91 734 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 735
483f4afc 736 mutex_init(&q->sysfs_lock);
e7e72bf6 737 spin_lock_init(&q->__queue_lock);
483f4afc 738
c94a96ac
VG
739 /*
740 * By default initialize queue_lock to internal lock and driver can
741 * override it later if need be.
742 */
743 q->queue_lock = &q->__queue_lock;
744
b82d4b19
TH
745 /*
746 * A queue starts its life with bypass turned on to avoid
747 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
748 * init. The initial bypass will be finished when the queue is
749 * registered by blk_register_queue().
b82d4b19
TH
750 */
751 q->bypass_depth = 1;
752 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
753
320ae51f
JA
754 init_waitqueue_head(&q->mq_freeze_wq);
755
3ef28e83
DW
756 /*
757 * Init percpu_ref in atomic mode so that it's faster to shutdown.
758 * See blk_register_queue() for details.
759 */
760 if (percpu_ref_init(&q->q_usage_counter,
761 blk_queue_usage_counter_release,
762 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 763 goto fail_bdi;
f51b802c 764
3ef28e83
DW
765 if (blkcg_init_queue(q))
766 goto fail_ref;
767
1da177e4 768 return q;
a73f730d 769
3ef28e83
DW
770fail_ref:
771 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
772fail_bdi:
773 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
774fail_split:
775 bioset_free(q->bio_split);
a73f730d
TH
776fail_id:
777 ida_simple_remove(&blk_queue_ida, q->id);
778fail_q:
779 kmem_cache_free(blk_requestq_cachep, q);
780 return NULL;
1da177e4 781}
1946089a 782EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
783
784/**
785 * blk_init_queue - prepare a request queue for use with a block device
786 * @rfn: The function to be called to process requests that have been
787 * placed on the queue.
788 * @lock: Request queue spin lock
789 *
790 * Description:
791 * If a block device wishes to use the standard request handling procedures,
792 * which sorts requests and coalesces adjacent requests, then it must
793 * call blk_init_queue(). The function @rfn will be called when there
794 * are requests on the queue that need to be processed. If the device
795 * supports plugging, then @rfn may not be called immediately when requests
796 * are available on the queue, but may be called at some time later instead.
797 * Plugged queues are generally unplugged when a buffer belonging to one
798 * of the requests on the queue is needed, or due to memory pressure.
799 *
800 * @rfn is not required, or even expected, to remove all requests off the
801 * queue, but only as many as it can handle at a time. If it does leave
802 * requests on the queue, it is responsible for arranging that the requests
803 * get dealt with eventually.
804 *
805 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
806 * request queue; this lock will be taken also from interrupt context, so irq
807 * disabling is needed for it.
1da177e4 808 *
710027a4 809 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
810 * it didn't succeed.
811 *
812 * Note:
813 * blk_init_queue() must be paired with a blk_cleanup_queue() call
814 * when the block device is deactivated (such as at module unload).
815 **/
1946089a 816
165125e1 817struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 818{
c304a51b 819 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
820}
821EXPORT_SYMBOL(blk_init_queue);
822
165125e1 823struct request_queue *
1946089a
CL
824blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
825{
c86d1b8a 826 struct request_queue *uninit_q, *q;
1da177e4 827
c86d1b8a
MS
828 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
829 if (!uninit_q)
830 return NULL;
831
5151412d 832 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 833 if (!q)
7982e90c 834 blk_cleanup_queue(uninit_q);
18741986 835
7982e90c 836 return q;
01effb0d
MS
837}
838EXPORT_SYMBOL(blk_init_queue_node);
839
dece1635 840static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 841
01effb0d
MS
842struct request_queue *
843blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
844 spinlock_t *lock)
01effb0d 845{
1da177e4
LT
846 if (!q)
847 return NULL;
848
f70ced09 849 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 850 if (!q->fq)
7982e90c
MS
851 return NULL;
852
a051661c 853 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 854 goto fail;
1da177e4 855
287922eb 856 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 857 q->request_fn = rfn;
1da177e4 858 q->prep_rq_fn = NULL;
28018c24 859 q->unprep_rq_fn = NULL;
60ea8226 860 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
861
862 /* Override internal queue lock with supplied lock pointer */
863 if (lock)
864 q->queue_lock = lock;
1da177e4 865
f3b144aa
JA
866 /*
867 * This also sets hw/phys segments, boundary and size
868 */
c20e8de2 869 blk_queue_make_request(q, blk_queue_bio);
1da177e4 870
44ec9542
AS
871 q->sg_reserved_size = INT_MAX;
872
eb1c160b
TS
873 /* Protect q->elevator from elevator_change */
874 mutex_lock(&q->sysfs_lock);
875
b82d4b19 876 /* init elevator */
eb1c160b
TS
877 if (elevator_init(q, NULL)) {
878 mutex_unlock(&q->sysfs_lock);
708f04d2 879 goto fail;
eb1c160b
TS
880 }
881
882 mutex_unlock(&q->sysfs_lock);
883
b82d4b19 884 return q;
708f04d2
DJ
885
886fail:
ba483388 887 blk_free_flush_queue(q->fq);
87760e5e 888 wbt_exit(q);
708f04d2 889 return NULL;
1da177e4 890}
5151412d 891EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 892
09ac46c4 893bool blk_get_queue(struct request_queue *q)
1da177e4 894{
3f3299d5 895 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
896 __blk_get_queue(q);
897 return true;
1da177e4
LT
898 }
899
09ac46c4 900 return false;
1da177e4 901}
d86e0e83 902EXPORT_SYMBOL(blk_get_queue);
1da177e4 903
5b788ce3 904static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 905{
e8064021 906 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 907 elv_put_request(rl->q, rq);
f1f8cc94 908 if (rq->elv.icq)
11a3122f 909 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
910 }
911
5b788ce3 912 mempool_free(rq, rl->rq_pool);
1da177e4
LT
913}
914
1da177e4
LT
915/*
916 * ioc_batching returns true if the ioc is a valid batching request and
917 * should be given priority access to a request.
918 */
165125e1 919static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
920{
921 if (!ioc)
922 return 0;
923
924 /*
925 * Make sure the process is able to allocate at least 1 request
926 * even if the batch times out, otherwise we could theoretically
927 * lose wakeups.
928 */
929 return ioc->nr_batch_requests == q->nr_batching ||
930 (ioc->nr_batch_requests > 0
931 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
932}
933
934/*
935 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
936 * will cause the process to be a "batcher" on all queues in the system. This
937 * is the behaviour we want though - once it gets a wakeup it should be given
938 * a nice run.
939 */
165125e1 940static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
941{
942 if (!ioc || ioc_batching(q, ioc))
943 return;
944
945 ioc->nr_batch_requests = q->nr_batching;
946 ioc->last_waited = jiffies;
947}
948
5b788ce3 949static void __freed_request(struct request_list *rl, int sync)
1da177e4 950{
5b788ce3 951 struct request_queue *q = rl->q;
1da177e4 952
d40f75a0
TH
953 if (rl->count[sync] < queue_congestion_off_threshold(q))
954 blk_clear_congested(rl, sync);
1da177e4 955
1faa16d2
JA
956 if (rl->count[sync] + 1 <= q->nr_requests) {
957 if (waitqueue_active(&rl->wait[sync]))
958 wake_up(&rl->wait[sync]);
1da177e4 959
5b788ce3 960 blk_clear_rl_full(rl, sync);
1da177e4
LT
961 }
962}
963
964/*
965 * A request has just been released. Account for it, update the full and
966 * congestion status, wake up any waiters. Called under q->queue_lock.
967 */
e8064021
CH
968static void freed_request(struct request_list *rl, bool sync,
969 req_flags_t rq_flags)
1da177e4 970{
5b788ce3 971 struct request_queue *q = rl->q;
1da177e4 972
8a5ecdd4 973 q->nr_rqs[sync]--;
1faa16d2 974 rl->count[sync]--;
e8064021 975 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 976 q->nr_rqs_elvpriv--;
1da177e4 977
5b788ce3 978 __freed_request(rl, sync);
1da177e4 979
1faa16d2 980 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 981 __freed_request(rl, sync ^ 1);
1da177e4
LT
982}
983
e3a2b3f9
JA
984int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
985{
986 struct request_list *rl;
d40f75a0 987 int on_thresh, off_thresh;
e3a2b3f9
JA
988
989 spin_lock_irq(q->queue_lock);
990 q->nr_requests = nr;
991 blk_queue_congestion_threshold(q);
d40f75a0
TH
992 on_thresh = queue_congestion_on_threshold(q);
993 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 994
d40f75a0
TH
995 blk_queue_for_each_rl(rl, q) {
996 if (rl->count[BLK_RW_SYNC] >= on_thresh)
997 blk_set_congested(rl, BLK_RW_SYNC);
998 else if (rl->count[BLK_RW_SYNC] < off_thresh)
999 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1000
d40f75a0
TH
1001 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1002 blk_set_congested(rl, BLK_RW_ASYNC);
1003 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1004 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1005
e3a2b3f9
JA
1006 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1007 blk_set_rl_full(rl, BLK_RW_SYNC);
1008 } else {
1009 blk_clear_rl_full(rl, BLK_RW_SYNC);
1010 wake_up(&rl->wait[BLK_RW_SYNC]);
1011 }
1012
1013 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1014 blk_set_rl_full(rl, BLK_RW_ASYNC);
1015 } else {
1016 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1017 wake_up(&rl->wait[BLK_RW_ASYNC]);
1018 }
1019 }
1020
1021 spin_unlock_irq(q->queue_lock);
1022 return 0;
1023}
1024
da8303c6 1025/**
a06e05e6 1026 * __get_request - get a free request
5b788ce3 1027 * @rl: request list to allocate from
ef295ecf 1028 * @op: operation and flags
da8303c6
TH
1029 * @bio: bio to allocate request for (can be %NULL)
1030 * @gfp_mask: allocation mask
1031 *
1032 * Get a free request from @q. This function may fail under memory
1033 * pressure or if @q is dead.
1034 *
da3dae54 1035 * Must be called with @q->queue_lock held and,
a492f075
JL
1036 * Returns ERR_PTR on failure, with @q->queue_lock held.
1037 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1038 */
ef295ecf
CH
1039static struct request *__get_request(struct request_list *rl, unsigned int op,
1040 struct bio *bio, gfp_t gfp_mask)
1da177e4 1041{
5b788ce3 1042 struct request_queue *q = rl->q;
b679281a 1043 struct request *rq;
7f4b35d1
TH
1044 struct elevator_type *et = q->elevator->type;
1045 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1046 struct io_cq *icq = NULL;
ef295ecf 1047 const bool is_sync = op_is_sync(op);
75eb6c37 1048 int may_queue;
e8064021 1049 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1050
3f3299d5 1051 if (unlikely(blk_queue_dying(q)))
a492f075 1052 return ERR_PTR(-ENODEV);
da8303c6 1053
ef295ecf 1054 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1055 if (may_queue == ELV_MQUEUE_NO)
1056 goto rq_starved;
1057
1faa16d2
JA
1058 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1059 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1060 /*
1061 * The queue will fill after this allocation, so set
1062 * it as full, and mark this process as "batching".
1063 * This process will be allowed to complete a batch of
1064 * requests, others will be blocked.
1065 */
5b788ce3 1066 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1067 ioc_set_batching(q, ioc);
5b788ce3 1068 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1069 } else {
1070 if (may_queue != ELV_MQUEUE_MUST
1071 && !ioc_batching(q, ioc)) {
1072 /*
1073 * The queue is full and the allocating
1074 * process is not a "batcher", and not
1075 * exempted by the IO scheduler
1076 */
a492f075 1077 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1078 }
1079 }
1da177e4 1080 }
d40f75a0 1081 blk_set_congested(rl, is_sync);
1da177e4
LT
1082 }
1083
082cf69e
JA
1084 /*
1085 * Only allow batching queuers to allocate up to 50% over the defined
1086 * limit of requests, otherwise we could have thousands of requests
1087 * allocated with any setting of ->nr_requests
1088 */
1faa16d2 1089 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1090 return ERR_PTR(-ENOMEM);
fd782a4a 1091
8a5ecdd4 1092 q->nr_rqs[is_sync]++;
1faa16d2
JA
1093 rl->count[is_sync]++;
1094 rl->starved[is_sync] = 0;
cb98fc8b 1095
f1f8cc94
TH
1096 /*
1097 * Decide whether the new request will be managed by elevator. If
e8064021 1098 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1099 * prevent the current elevator from being destroyed until the new
1100 * request is freed. This guarantees icq's won't be destroyed and
1101 * makes creating new ones safe.
1102 *
e6f7f93d
CH
1103 * Flush requests do not use the elevator so skip initialization.
1104 * This allows a request to share the flush and elevator data.
1105 *
f1f8cc94
TH
1106 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1107 * it will be created after releasing queue_lock.
1108 */
e6f7f93d 1109 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1110 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1111 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1112 if (et->icq_cache && ioc)
1113 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1114 }
cb98fc8b 1115
f253b86b 1116 if (blk_queue_io_stat(q))
e8064021 1117 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1118 spin_unlock_irq(q->queue_lock);
1119
29e2b09a 1120 /* allocate and init request */
5b788ce3 1121 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1122 if (!rq)
b679281a 1123 goto fail_alloc;
1da177e4 1124
29e2b09a 1125 blk_rq_init(q, rq);
a051661c 1126 blk_rq_set_rl(rq, rl);
5dc8b362 1127 blk_rq_set_prio(rq, ioc);
ef295ecf 1128 rq->cmd_flags = op;
e8064021 1129 rq->rq_flags = rq_flags;
29e2b09a 1130
aaf7c680 1131 /* init elvpriv */
e8064021 1132 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1133 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1134 if (ioc)
1135 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1136 if (!icq)
1137 goto fail_elvpriv;
29e2b09a 1138 }
aaf7c680
TH
1139
1140 rq->elv.icq = icq;
1141 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1142 goto fail_elvpriv;
1143
1144 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1145 if (icq)
1146 get_io_context(icq->ioc);
1147 }
aaf7c680 1148out:
88ee5ef1
JA
1149 /*
1150 * ioc may be NULL here, and ioc_batching will be false. That's
1151 * OK, if the queue is under the request limit then requests need
1152 * not count toward the nr_batch_requests limit. There will always
1153 * be some limit enforced by BLK_BATCH_TIME.
1154 */
1da177e4
LT
1155 if (ioc_batching(q, ioc))
1156 ioc->nr_batch_requests--;
6728cb0e 1157
e6a40b09 1158 trace_block_getrq(q, bio, op);
1da177e4 1159 return rq;
b679281a 1160
aaf7c680
TH
1161fail_elvpriv:
1162 /*
1163 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1164 * and may fail indefinitely under memory pressure and thus
1165 * shouldn't stall IO. Treat this request as !elvpriv. This will
1166 * disturb iosched and blkcg but weird is bettern than dead.
1167 */
7b2b10e0
RE
1168 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1169 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680 1170
e8064021 1171 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1172 rq->elv.icq = NULL;
1173
1174 spin_lock_irq(q->queue_lock);
8a5ecdd4 1175 q->nr_rqs_elvpriv--;
aaf7c680
TH
1176 spin_unlock_irq(q->queue_lock);
1177 goto out;
1178
b679281a
TH
1179fail_alloc:
1180 /*
1181 * Allocation failed presumably due to memory. Undo anything we
1182 * might have messed up.
1183 *
1184 * Allocating task should really be put onto the front of the wait
1185 * queue, but this is pretty rare.
1186 */
1187 spin_lock_irq(q->queue_lock);
e8064021 1188 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1189
1190 /*
1191 * in the very unlikely event that allocation failed and no
1192 * requests for this direction was pending, mark us starved so that
1193 * freeing of a request in the other direction will notice
1194 * us. another possible fix would be to split the rq mempool into
1195 * READ and WRITE
1196 */
1197rq_starved:
1198 if (unlikely(rl->count[is_sync] == 0))
1199 rl->starved[is_sync] = 1;
a492f075 1200 return ERR_PTR(-ENOMEM);
1da177e4
LT
1201}
1202
da8303c6 1203/**
a06e05e6 1204 * get_request - get a free request
da8303c6 1205 * @q: request_queue to allocate request from
ef295ecf 1206 * @op: operation and flags
da8303c6 1207 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1208 * @gfp_mask: allocation mask
da8303c6 1209 *
d0164adc
MG
1210 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1211 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1212 *
da3dae54 1213 * Must be called with @q->queue_lock held and,
a492f075
JL
1214 * Returns ERR_PTR on failure, with @q->queue_lock held.
1215 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1216 */
ef295ecf
CH
1217static struct request *get_request(struct request_queue *q, unsigned int op,
1218 struct bio *bio, gfp_t gfp_mask)
1da177e4 1219{
ef295ecf 1220 const bool is_sync = op_is_sync(op);
a06e05e6 1221 DEFINE_WAIT(wait);
a051661c 1222 struct request_list *rl;
1da177e4 1223 struct request *rq;
a051661c
TH
1224
1225 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1226retry:
ef295ecf 1227 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1228 if (!IS_ERR(rq))
a06e05e6 1229 return rq;
1da177e4 1230
d0164adc 1231 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1232 blk_put_rl(rl);
a492f075 1233 return rq;
a051661c 1234 }
1da177e4 1235
a06e05e6
TH
1236 /* wait on @rl and retry */
1237 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1238 TASK_UNINTERRUPTIBLE);
1da177e4 1239
e6a40b09 1240 trace_block_sleeprq(q, bio, op);
1da177e4 1241
a06e05e6
TH
1242 spin_unlock_irq(q->queue_lock);
1243 io_schedule();
d6344532 1244
a06e05e6
TH
1245 /*
1246 * After sleeping, we become a "batching" process and will be able
1247 * to allocate at least one request, and up to a big batch of them
1248 * for a small period time. See ioc_batching, ioc_set_batching
1249 */
a06e05e6 1250 ioc_set_batching(q, current->io_context);
05caf8db 1251
a06e05e6
TH
1252 spin_lock_irq(q->queue_lock);
1253 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1254
a06e05e6 1255 goto retry;
1da177e4
LT
1256}
1257
320ae51f
JA
1258static struct request *blk_old_get_request(struct request_queue *q, int rw,
1259 gfp_t gfp_mask)
1da177e4
LT
1260{
1261 struct request *rq;
1262
7f4b35d1
TH
1263 /* create ioc upfront */
1264 create_io_context(gfp_mask, q->node);
1265
d6344532 1266 spin_lock_irq(q->queue_lock);
ef295ecf 1267 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1268 if (IS_ERR(rq)) {
da8303c6 1269 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1270 return rq;
1271 }
1da177e4 1272
0c4de0f3
CH
1273 /* q->queue_lock is unlocked at this point */
1274 rq->__data_len = 0;
1275 rq->__sector = (sector_t) -1;
1276 rq->bio = rq->biotail = NULL;
1da177e4
LT
1277 return rq;
1278}
320ae51f
JA
1279
1280struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1281{
1282 if (q->mq_ops)
6f3b0e8b
CH
1283 return blk_mq_alloc_request(q, rw,
1284 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1285 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1286 else
1287 return blk_old_get_request(q, rw, gfp_mask);
1288}
1da177e4
LT
1289EXPORT_SYMBOL(blk_get_request);
1290
f27b087b 1291/**
da3dae54 1292 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1293 * @rq: request to be initialized
1294 *
1295 */
1296void blk_rq_set_block_pc(struct request *rq)
1297{
1298 rq->cmd_type = REQ_TYPE_BLOCK_PC;
f27b087b 1299 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1300}
1301EXPORT_SYMBOL(blk_rq_set_block_pc);
1302
1da177e4
LT
1303/**
1304 * blk_requeue_request - put a request back on queue
1305 * @q: request queue where request should be inserted
1306 * @rq: request to be inserted
1307 *
1308 * Description:
1309 * Drivers often keep queueing requests until the hardware cannot accept
1310 * more, when that condition happens we need to put the request back
1311 * on the queue. Must be called with queue lock held.
1312 */
165125e1 1313void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1314{
242f9dcb
JA
1315 blk_delete_timer(rq);
1316 blk_clear_rq_complete(rq);
5f3ea37c 1317 trace_block_rq_requeue(q, rq);
87760e5e 1318 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1319
e8064021 1320 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1321 blk_queue_end_tag(q, rq);
1322
ba396a6c
JB
1323 BUG_ON(blk_queued_rq(rq));
1324
1da177e4
LT
1325 elv_requeue_request(q, rq);
1326}
1da177e4
LT
1327EXPORT_SYMBOL(blk_requeue_request);
1328
73c10101
JA
1329static void add_acct_request(struct request_queue *q, struct request *rq,
1330 int where)
1331{
320ae51f 1332 blk_account_io_start(rq, true);
7eaceacc 1333 __elv_add_request(q, rq, where);
73c10101
JA
1334}
1335
074a7aca
TH
1336static void part_round_stats_single(int cpu, struct hd_struct *part,
1337 unsigned long now)
1338{
7276d02e
JA
1339 int inflight;
1340
074a7aca
TH
1341 if (now == part->stamp)
1342 return;
1343
7276d02e
JA
1344 inflight = part_in_flight(part);
1345 if (inflight) {
074a7aca 1346 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1347 inflight * (now - part->stamp));
074a7aca
TH
1348 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1349 }
1350 part->stamp = now;
1351}
1352
1353/**
496aa8a9
RD
1354 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1355 * @cpu: cpu number for stats access
1356 * @part: target partition
1da177e4
LT
1357 *
1358 * The average IO queue length and utilisation statistics are maintained
1359 * by observing the current state of the queue length and the amount of
1360 * time it has been in this state for.
1361 *
1362 * Normally, that accounting is done on IO completion, but that can result
1363 * in more than a second's worth of IO being accounted for within any one
1364 * second, leading to >100% utilisation. To deal with that, we call this
1365 * function to do a round-off before returning the results when reading
1366 * /proc/diskstats. This accounts immediately for all queue usage up to
1367 * the current jiffies and restarts the counters again.
1368 */
c9959059 1369void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1370{
1371 unsigned long now = jiffies;
1372
074a7aca
TH
1373 if (part->partno)
1374 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1375 part_round_stats_single(cpu, part, now);
6f2576af 1376}
074a7aca 1377EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1378
47fafbc7 1379#ifdef CONFIG_PM
c8158819
LM
1380static void blk_pm_put_request(struct request *rq)
1381{
e8064021 1382 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1383 pm_runtime_mark_last_busy(rq->q->dev);
1384}
1385#else
1386static inline void blk_pm_put_request(struct request *rq) {}
1387#endif
1388
1da177e4
LT
1389/*
1390 * queue lock must be held
1391 */
165125e1 1392void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1393{
e8064021
CH
1394 req_flags_t rq_flags = req->rq_flags;
1395
1da177e4
LT
1396 if (unlikely(!q))
1397 return;
1da177e4 1398
6f5ba581
CH
1399 if (q->mq_ops) {
1400 blk_mq_free_request(req);
1401 return;
1402 }
1403
c8158819
LM
1404 blk_pm_put_request(req);
1405
8922e16c
TH
1406 elv_completed_request(q, req);
1407
1cd96c24
BH
1408 /* this is a bio leak */
1409 WARN_ON(req->bio != NULL);
1410
87760e5e
JA
1411 wbt_done(q->rq_wb, &req->issue_stat);
1412
1da177e4
LT
1413 /*
1414 * Request may not have originated from ll_rw_blk. if not,
1415 * it didn't come out of our reserved rq pools
1416 */
e8064021 1417 if (rq_flags & RQF_ALLOCED) {
a051661c 1418 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1419 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1420
1da177e4 1421 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1422 BUG_ON(ELV_ON_HASH(req));
1da177e4 1423
a051661c 1424 blk_free_request(rl, req);
e8064021 1425 freed_request(rl, sync, rq_flags);
a051661c 1426 blk_put_rl(rl);
1da177e4
LT
1427 }
1428}
6e39b69e
MC
1429EXPORT_SYMBOL_GPL(__blk_put_request);
1430
1da177e4
LT
1431void blk_put_request(struct request *req)
1432{
165125e1 1433 struct request_queue *q = req->q;
8922e16c 1434
320ae51f
JA
1435 if (q->mq_ops)
1436 blk_mq_free_request(req);
1437 else {
1438 unsigned long flags;
1439
1440 spin_lock_irqsave(q->queue_lock, flags);
1441 __blk_put_request(q, req);
1442 spin_unlock_irqrestore(q->queue_lock, flags);
1443 }
1da177e4 1444}
1da177e4
LT
1445EXPORT_SYMBOL(blk_put_request);
1446
320ae51f
JA
1447bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1448 struct bio *bio)
73c10101 1449{
1eff9d32 1450 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1451
73c10101
JA
1452 if (!ll_back_merge_fn(q, req, bio))
1453 return false;
1454
8c1cf6bb 1455 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1456
1457 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1458 blk_rq_set_mixed_merge(req);
1459
1460 req->biotail->bi_next = bio;
1461 req->biotail = bio;
4f024f37 1462 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1463 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1464
320ae51f 1465 blk_account_io_start(req, false);
73c10101
JA
1466 return true;
1467}
1468
320ae51f
JA
1469bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1470 struct bio *bio)
73c10101 1471{
1eff9d32 1472 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1473
73c10101
JA
1474 if (!ll_front_merge_fn(q, req, bio))
1475 return false;
1476
8c1cf6bb 1477 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1478
1479 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1480 blk_rq_set_mixed_merge(req);
1481
73c10101
JA
1482 bio->bi_next = req->bio;
1483 req->bio = bio;
1484
4f024f37
KO
1485 req->__sector = bio->bi_iter.bi_sector;
1486 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1487 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1488
320ae51f 1489 blk_account_io_start(req, false);
73c10101
JA
1490 return true;
1491}
1492
bd87b589 1493/**
320ae51f 1494 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1495 * @q: request_queue new bio is being queued at
1496 * @bio: new bio being queued
1497 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1498 * @same_queue_rq: pointer to &struct request that gets filled in when
1499 * another request associated with @q is found on the plug list
1500 * (optional, may be %NULL)
bd87b589
TH
1501 *
1502 * Determine whether @bio being queued on @q can be merged with a request
1503 * on %current's plugged list. Returns %true if merge was successful,
1504 * otherwise %false.
1505 *
07c2bd37
TH
1506 * Plugging coalesces IOs from the same issuer for the same purpose without
1507 * going through @q->queue_lock. As such it's more of an issuing mechanism
1508 * than scheduling, and the request, while may have elvpriv data, is not
1509 * added on the elevator at this point. In addition, we don't have
1510 * reliable access to the elevator outside queue lock. Only check basic
1511 * merging parameters without querying the elevator.
da41a589
RE
1512 *
1513 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1514 */
320ae51f 1515bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1516 unsigned int *request_count,
1517 struct request **same_queue_rq)
73c10101
JA
1518{
1519 struct blk_plug *plug;
1520 struct request *rq;
1521 bool ret = false;
92f399c7 1522 struct list_head *plug_list;
73c10101 1523
bd87b589 1524 plug = current->plug;
73c10101
JA
1525 if (!plug)
1526 goto out;
56ebdaf2 1527 *request_count = 0;
73c10101 1528
92f399c7
SL
1529 if (q->mq_ops)
1530 plug_list = &plug->mq_list;
1531 else
1532 plug_list = &plug->list;
1533
1534 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1535 int el_ret;
1536
5b3f341f 1537 if (rq->q == q) {
1b2e19f1 1538 (*request_count)++;
5b3f341f
SL
1539 /*
1540 * Only blk-mq multiple hardware queues case checks the
1541 * rq in the same queue, there should be only one such
1542 * rq in a queue
1543 **/
1544 if (same_queue_rq)
1545 *same_queue_rq = rq;
1546 }
56ebdaf2 1547
07c2bd37 1548 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1549 continue;
1550
050c8ea8 1551 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1552 if (el_ret == ELEVATOR_BACK_MERGE) {
1553 ret = bio_attempt_back_merge(q, rq, bio);
1554 if (ret)
1555 break;
1556 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1557 ret = bio_attempt_front_merge(q, rq, bio);
1558 if (ret)
1559 break;
1560 }
1561 }
1562out:
1563 return ret;
1564}
1565
0809e3ac
JM
1566unsigned int blk_plug_queued_count(struct request_queue *q)
1567{
1568 struct blk_plug *plug;
1569 struct request *rq;
1570 struct list_head *plug_list;
1571 unsigned int ret = 0;
1572
1573 plug = current->plug;
1574 if (!plug)
1575 goto out;
1576
1577 if (q->mq_ops)
1578 plug_list = &plug->mq_list;
1579 else
1580 plug_list = &plug->list;
1581
1582 list_for_each_entry(rq, plug_list, queuelist) {
1583 if (rq->q == q)
1584 ret++;
1585 }
1586out:
1587 return ret;
1588}
1589
86db1e29 1590void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1591{
4aff5e23 1592 req->cmd_type = REQ_TYPE_FS;
1eff9d32 1593 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1594 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1595
52d9e675 1596 req->errors = 0;
4f024f37 1597 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1598 if (ioprio_valid(bio_prio(bio)))
1599 req->ioprio = bio_prio(bio);
bc1c56fd 1600 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1601}
1602
dece1635 1603static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1604{
73c10101 1605 struct blk_plug *plug;
ef295ecf 1606 int el_ret, where = ELEVATOR_INSERT_SORT;
73c10101 1607 struct request *req;
56ebdaf2 1608 unsigned int request_count = 0;
87760e5e 1609 unsigned int wb_acct;
1da177e4 1610
1da177e4
LT
1611 /*
1612 * low level driver can indicate that it wants pages above a
1613 * certain limit bounced to low memory (ie for highmem, or even
1614 * ISA dma in theory)
1615 */
1616 blk_queue_bounce(q, &bio);
1617
23688bf4
JN
1618 blk_queue_split(q, &bio, q->bio_split);
1619
ffecfd1a 1620 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1621 bio->bi_error = -EIO;
1622 bio_endio(bio);
dece1635 1623 return BLK_QC_T_NONE;
ffecfd1a
DW
1624 }
1625
f73f44eb 1626 if (op_is_flush(bio->bi_opf)) {
73c10101 1627 spin_lock_irq(q->queue_lock);
ae1b1539 1628 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1629 goto get_rq;
1630 }
1631
73c10101
JA
1632 /*
1633 * Check if we can merge with the plugged list before grabbing
1634 * any locks.
1635 */
0809e3ac
JM
1636 if (!blk_queue_nomerges(q)) {
1637 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1638 return BLK_QC_T_NONE;
0809e3ac
JM
1639 } else
1640 request_count = blk_plug_queued_count(q);
1da177e4 1641
73c10101 1642 spin_lock_irq(q->queue_lock);
2056a782 1643
73c10101
JA
1644 el_ret = elv_merge(q, &req, bio);
1645 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1646 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1647 elv_bio_merged(q, req, bio);
73c10101
JA
1648 if (!attempt_back_merge(q, req))
1649 elv_merged_request(q, req, el_ret);
1650 goto out_unlock;
1651 }
1652 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1653 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1654 elv_bio_merged(q, req, bio);
73c10101
JA
1655 if (!attempt_front_merge(q, req))
1656 elv_merged_request(q, req, el_ret);
1657 goto out_unlock;
80a761fd 1658 }
1da177e4
LT
1659 }
1660
450991bc 1661get_rq:
87760e5e
JA
1662 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1663
1da177e4 1664 /*
450991bc 1665 * Grab a free request. This is might sleep but can not fail.
d6344532 1666 * Returns with the queue unlocked.
450991bc 1667 */
ef295ecf 1668 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1669 if (IS_ERR(req)) {
87760e5e 1670 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1671 bio->bi_error = PTR_ERR(req);
1672 bio_endio(bio);
da8303c6
TH
1673 goto out_unlock;
1674 }
d6344532 1675
87760e5e
JA
1676 wbt_track(&req->issue_stat, wb_acct);
1677
450991bc
NP
1678 /*
1679 * After dropping the lock and possibly sleeping here, our request
1680 * may now be mergeable after it had proven unmergeable (above).
1681 * We don't worry about that case for efficiency. It won't happen
1682 * often, and the elevators are able to handle it.
1da177e4 1683 */
52d9e675 1684 init_request_from_bio(req, bio);
1da177e4 1685
9562ad9a 1686 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1687 req->cpu = raw_smp_processor_id();
73c10101
JA
1688
1689 plug = current->plug;
721a9602 1690 if (plug) {
dc6d36c9
JA
1691 /*
1692 * If this is the first request added after a plug, fire
7aef2e78 1693 * of a plug trace.
0a6219a9
ML
1694 *
1695 * @request_count may become stale because of schedule
1696 * out, so check plug list again.
dc6d36c9 1697 */
0a6219a9 1698 if (!request_count || list_empty(&plug->list))
dc6d36c9 1699 trace_block_plug(q);
3540d5e8 1700 else {
50d24c34
SL
1701 struct request *last = list_entry_rq(plug->list.prev);
1702 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1703 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1704 blk_flush_plug_list(plug, false);
019ceb7d
SL
1705 trace_block_plug(q);
1706 }
73c10101 1707 }
73c10101 1708 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1709 blk_account_io_start(req, true);
73c10101
JA
1710 } else {
1711 spin_lock_irq(q->queue_lock);
1712 add_acct_request(q, req, where);
24ecfbe2 1713 __blk_run_queue(q);
73c10101
JA
1714out_unlock:
1715 spin_unlock_irq(q->queue_lock);
1716 }
dece1635
JA
1717
1718 return BLK_QC_T_NONE;
1da177e4
LT
1719}
1720
1721/*
1722 * If bio->bi_dev is a partition, remap the location
1723 */
1724static inline void blk_partition_remap(struct bio *bio)
1725{
1726 struct block_device *bdev = bio->bi_bdev;
1727
778889d8
ST
1728 /*
1729 * Zone reset does not include bi_size so bio_sectors() is always 0.
1730 * Include a test for the reset op code and perform the remap if needed.
1731 */
1732 if (bdev != bdev->bd_contains &&
1733 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1734 struct hd_struct *p = bdev->bd_part;
1735
4f024f37 1736 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1737 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1738
d07335e5
MS
1739 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1740 bdev->bd_dev,
4f024f37 1741 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1742 }
1743}
1744
1da177e4
LT
1745static void handle_bad_sector(struct bio *bio)
1746{
1747 char b[BDEVNAME_SIZE];
1748
1749 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1750 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1751 bdevname(bio->bi_bdev, b),
1eff9d32 1752 bio->bi_opf,
f73a1c7d 1753 (unsigned long long)bio_end_sector(bio),
77304d2a 1754 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1755}
1756
c17bb495
AM
1757#ifdef CONFIG_FAIL_MAKE_REQUEST
1758
1759static DECLARE_FAULT_ATTR(fail_make_request);
1760
1761static int __init setup_fail_make_request(char *str)
1762{
1763 return setup_fault_attr(&fail_make_request, str);
1764}
1765__setup("fail_make_request=", setup_fail_make_request);
1766
b2c9cd37 1767static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1768{
b2c9cd37 1769 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1770}
1771
1772static int __init fail_make_request_debugfs(void)
1773{
dd48c085
AM
1774 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1775 NULL, &fail_make_request);
1776
21f9fcd8 1777 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1778}
1779
1780late_initcall(fail_make_request_debugfs);
1781
1782#else /* CONFIG_FAIL_MAKE_REQUEST */
1783
b2c9cd37
AM
1784static inline bool should_fail_request(struct hd_struct *part,
1785 unsigned int bytes)
c17bb495 1786{
b2c9cd37 1787 return false;
c17bb495
AM
1788}
1789
1790#endif /* CONFIG_FAIL_MAKE_REQUEST */
1791
c07e2b41
JA
1792/*
1793 * Check whether this bio extends beyond the end of the device.
1794 */
1795static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1796{
1797 sector_t maxsector;
1798
1799 if (!nr_sectors)
1800 return 0;
1801
1802 /* Test device or partition size, when known. */
77304d2a 1803 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1804 if (maxsector) {
4f024f37 1805 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1806
1807 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1808 /*
1809 * This may well happen - the kernel calls bread()
1810 * without checking the size of the device, e.g., when
1811 * mounting a device.
1812 */
1813 handle_bad_sector(bio);
1814 return 1;
1815 }
1816 }
1817
1818 return 0;
1819}
1820
27a84d54
CH
1821static noinline_for_stack bool
1822generic_make_request_checks(struct bio *bio)
1da177e4 1823{
165125e1 1824 struct request_queue *q;
5a7bbad2 1825 int nr_sectors = bio_sectors(bio);
51fd77bd 1826 int err = -EIO;
5a7bbad2
CH
1827 char b[BDEVNAME_SIZE];
1828 struct hd_struct *part;
1da177e4
LT
1829
1830 might_sleep();
1da177e4 1831
c07e2b41
JA
1832 if (bio_check_eod(bio, nr_sectors))
1833 goto end_io;
1da177e4 1834
5a7bbad2
CH
1835 q = bdev_get_queue(bio->bi_bdev);
1836 if (unlikely(!q)) {
1837 printk(KERN_ERR
1838 "generic_make_request: Trying to access "
1839 "nonexistent block-device %s (%Lu)\n",
1840 bdevname(bio->bi_bdev, b),
4f024f37 1841 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1842 goto end_io;
1843 }
c17bb495 1844
5a7bbad2 1845 part = bio->bi_bdev->bd_part;
4f024f37 1846 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1847 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1848 bio->bi_iter.bi_size))
5a7bbad2 1849 goto end_io;
2056a782 1850
5a7bbad2
CH
1851 /*
1852 * If this device has partitions, remap block n
1853 * of partition p to block n+start(p) of the disk.
1854 */
1855 blk_partition_remap(bio);
2056a782 1856
5a7bbad2
CH
1857 if (bio_check_eod(bio, nr_sectors))
1858 goto end_io;
1e87901e 1859
5a7bbad2
CH
1860 /*
1861 * Filter flush bio's early so that make_request based
1862 * drivers without flush support don't have to worry
1863 * about them.
1864 */
f3a8ab7d 1865 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1866 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1867 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1868 if (!nr_sectors) {
1869 err = 0;
51fd77bd
JA
1870 goto end_io;
1871 }
5a7bbad2 1872 }
5ddfe969 1873
288dab8a
CH
1874 switch (bio_op(bio)) {
1875 case REQ_OP_DISCARD:
1876 if (!blk_queue_discard(q))
1877 goto not_supported;
1878 break;
1879 case REQ_OP_SECURE_ERASE:
1880 if (!blk_queue_secure_erase(q))
1881 goto not_supported;
1882 break;
1883 case REQ_OP_WRITE_SAME:
1884 if (!bdev_write_same(bio->bi_bdev))
1885 goto not_supported;
58886785 1886 break;
2d253440
ST
1887 case REQ_OP_ZONE_REPORT:
1888 case REQ_OP_ZONE_RESET:
1889 if (!bdev_is_zoned(bio->bi_bdev))
1890 goto not_supported;
288dab8a 1891 break;
a6f0788e
CK
1892 case REQ_OP_WRITE_ZEROES:
1893 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1894 goto not_supported;
1895 break;
288dab8a
CH
1896 default:
1897 break;
5a7bbad2 1898 }
01edede4 1899
7f4b35d1
TH
1900 /*
1901 * Various block parts want %current->io_context and lazy ioc
1902 * allocation ends up trading a lot of pain for a small amount of
1903 * memory. Just allocate it upfront. This may fail and block
1904 * layer knows how to live with it.
1905 */
1906 create_io_context(GFP_ATOMIC, q->node);
1907
ae118896
TH
1908 if (!blkcg_bio_issue_check(q, bio))
1909 return false;
27a84d54 1910
5a7bbad2 1911 trace_block_bio_queue(q, bio);
27a84d54 1912 return true;
a7384677 1913
288dab8a
CH
1914not_supported:
1915 err = -EOPNOTSUPP;
a7384677 1916end_io:
4246a0b6
CH
1917 bio->bi_error = err;
1918 bio_endio(bio);
27a84d54 1919 return false;
1da177e4
LT
1920}
1921
27a84d54
CH
1922/**
1923 * generic_make_request - hand a buffer to its device driver for I/O
1924 * @bio: The bio describing the location in memory and on the device.
1925 *
1926 * generic_make_request() is used to make I/O requests of block
1927 * devices. It is passed a &struct bio, which describes the I/O that needs
1928 * to be done.
1929 *
1930 * generic_make_request() does not return any status. The
1931 * success/failure status of the request, along with notification of
1932 * completion, is delivered asynchronously through the bio->bi_end_io
1933 * function described (one day) else where.
1934 *
1935 * The caller of generic_make_request must make sure that bi_io_vec
1936 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1937 * set to describe the device address, and the
1938 * bi_end_io and optionally bi_private are set to describe how
1939 * completion notification should be signaled.
1940 *
1941 * generic_make_request and the drivers it calls may use bi_next if this
1942 * bio happens to be merged with someone else, and may resubmit the bio to
1943 * a lower device by calling into generic_make_request recursively, which
1944 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1945 */
dece1635 1946blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1947{
bddd87c7 1948 struct bio_list bio_list_on_stack;
dece1635 1949 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1950
27a84d54 1951 if (!generic_make_request_checks(bio))
dece1635 1952 goto out;
27a84d54
CH
1953
1954 /*
1955 * We only want one ->make_request_fn to be active at a time, else
1956 * stack usage with stacked devices could be a problem. So use
1957 * current->bio_list to keep a list of requests submited by a
1958 * make_request_fn function. current->bio_list is also used as a
1959 * flag to say if generic_make_request is currently active in this
1960 * task or not. If it is NULL, then no make_request is active. If
1961 * it is non-NULL, then a make_request is active, and new requests
1962 * should be added at the tail
1963 */
bddd87c7 1964 if (current->bio_list) {
bddd87c7 1965 bio_list_add(current->bio_list, bio);
dece1635 1966 goto out;
d89d8796 1967 }
27a84d54 1968
d89d8796
NB
1969 /* following loop may be a bit non-obvious, and so deserves some
1970 * explanation.
1971 * Before entering the loop, bio->bi_next is NULL (as all callers
1972 * ensure that) so we have a list with a single bio.
1973 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1974 * we assign bio_list to a pointer to the bio_list_on_stack,
1975 * thus initialising the bio_list of new bios to be
27a84d54 1976 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1977 * through a recursive call to generic_make_request. If it
1978 * did, we find a non-NULL value in bio_list and re-enter the loop
1979 * from the top. In this case we really did just take the bio
bddd87c7 1980 * of the top of the list (no pretending) and so remove it from
27a84d54 1981 * bio_list, and call into ->make_request() again.
d89d8796
NB
1982 */
1983 BUG_ON(bio->bi_next);
bddd87c7
AM
1984 bio_list_init(&bio_list_on_stack);
1985 current->bio_list = &bio_list_on_stack;
d89d8796 1986 do {
27a84d54
CH
1987 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1988
6f3b0e8b 1989 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 1990 ret = q->make_request_fn(q, bio);
3ef28e83
DW
1991
1992 blk_queue_exit(q);
27a84d54 1993
3ef28e83
DW
1994 bio = bio_list_pop(current->bio_list);
1995 } else {
1996 struct bio *bio_next = bio_list_pop(current->bio_list);
1997
1998 bio_io_error(bio);
1999 bio = bio_next;
2000 }
d89d8796 2001 } while (bio);
bddd87c7 2002 current->bio_list = NULL; /* deactivate */
dece1635
JA
2003
2004out:
2005 return ret;
d89d8796 2006}
1da177e4
LT
2007EXPORT_SYMBOL(generic_make_request);
2008
2009/**
710027a4 2010 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2011 * @bio: The &struct bio which describes the I/O
2012 *
2013 * submit_bio() is very similar in purpose to generic_make_request(), and
2014 * uses that function to do most of the work. Both are fairly rough
710027a4 2015 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2016 *
2017 */
4e49ea4a 2018blk_qc_t submit_bio(struct bio *bio)
1da177e4 2019{
bf2de6f5
JA
2020 /*
2021 * If it's a regular read/write or a barrier with data attached,
2022 * go through the normal accounting stuff before submission.
2023 */
e2a60da7 2024 if (bio_has_data(bio)) {
4363ac7c
MP
2025 unsigned int count;
2026
95fe6c1a 2027 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2028 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2029 else
2030 count = bio_sectors(bio);
2031
a8ebb056 2032 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2033 count_vm_events(PGPGOUT, count);
2034 } else {
4f024f37 2035 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2036 count_vm_events(PGPGIN, count);
2037 }
2038
2039 if (unlikely(block_dump)) {
2040 char b[BDEVNAME_SIZE];
8dcbdc74 2041 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2042 current->comm, task_pid_nr(current),
a8ebb056 2043 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2044 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2045 bdevname(bio->bi_bdev, b),
2046 count);
bf2de6f5 2047 }
1da177e4
LT
2048 }
2049
dece1635 2050 return generic_make_request(bio);
1da177e4 2051}
1da177e4
LT
2052EXPORT_SYMBOL(submit_bio);
2053
82124d60 2054/**
bf4e6b4e
HR
2055 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2056 * for new the queue limits
82124d60
KU
2057 * @q: the queue
2058 * @rq: the request being checked
2059 *
2060 * Description:
2061 * @rq may have been made based on weaker limitations of upper-level queues
2062 * in request stacking drivers, and it may violate the limitation of @q.
2063 * Since the block layer and the underlying device driver trust @rq
2064 * after it is inserted to @q, it should be checked against @q before
2065 * the insertion using this generic function.
2066 *
82124d60 2067 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2068 * limits when retrying requests on other queues. Those requests need
2069 * to be checked against the new queue limits again during dispatch.
82124d60 2070 */
bf4e6b4e
HR
2071static int blk_cloned_rq_check_limits(struct request_queue *q,
2072 struct request *rq)
82124d60 2073{
8fe0d473 2074 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2075 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2076 return -EIO;
2077 }
2078
2079 /*
2080 * queue's settings related to segment counting like q->bounce_pfn
2081 * may differ from that of other stacking queues.
2082 * Recalculate it to check the request correctly on this queue's
2083 * limitation.
2084 */
2085 blk_recalc_rq_segments(rq);
8a78362c 2086 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2087 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2088 return -EIO;
2089 }
2090
2091 return 0;
2092}
82124d60
KU
2093
2094/**
2095 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2096 * @q: the queue to submit the request
2097 * @rq: the request being queued
2098 */
2099int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2100{
2101 unsigned long flags;
4853abaa 2102 int where = ELEVATOR_INSERT_BACK;
82124d60 2103
bf4e6b4e 2104 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2105 return -EIO;
2106
b2c9cd37
AM
2107 if (rq->rq_disk &&
2108 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2109 return -EIO;
82124d60 2110
7fb4898e
KB
2111 if (q->mq_ops) {
2112 if (blk_queue_io_stat(q))
2113 blk_account_io_start(rq, true);
bd6737f1 2114 blk_mq_sched_insert_request(rq, false, true, false, false);
7fb4898e
KB
2115 return 0;
2116 }
2117
82124d60 2118 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2119 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2120 spin_unlock_irqrestore(q->queue_lock, flags);
2121 return -ENODEV;
2122 }
82124d60
KU
2123
2124 /*
2125 * Submitting request must be dequeued before calling this function
2126 * because it will be linked to another request_queue
2127 */
2128 BUG_ON(blk_queued_rq(rq));
2129
f73f44eb 2130 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2131 where = ELEVATOR_INSERT_FLUSH;
2132
2133 add_acct_request(q, rq, where);
e67b77c7
JM
2134 if (where == ELEVATOR_INSERT_FLUSH)
2135 __blk_run_queue(q);
82124d60
KU
2136 spin_unlock_irqrestore(q->queue_lock, flags);
2137
2138 return 0;
2139}
2140EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2141
80a761fd
TH
2142/**
2143 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2144 * @rq: request to examine
2145 *
2146 * Description:
2147 * A request could be merge of IOs which require different failure
2148 * handling. This function determines the number of bytes which
2149 * can be failed from the beginning of the request without
2150 * crossing into area which need to be retried further.
2151 *
2152 * Return:
2153 * The number of bytes to fail.
2154 *
2155 * Context:
2156 * queue_lock must be held.
2157 */
2158unsigned int blk_rq_err_bytes(const struct request *rq)
2159{
2160 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2161 unsigned int bytes = 0;
2162 struct bio *bio;
2163
e8064021 2164 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2165 return blk_rq_bytes(rq);
2166
2167 /*
2168 * Currently the only 'mixing' which can happen is between
2169 * different fastfail types. We can safely fail portions
2170 * which have all the failfast bits that the first one has -
2171 * the ones which are at least as eager to fail as the first
2172 * one.
2173 */
2174 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2175 if ((bio->bi_opf & ff) != ff)
80a761fd 2176 break;
4f024f37 2177 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2178 }
2179
2180 /* this could lead to infinite loop */
2181 BUG_ON(blk_rq_bytes(rq) && !bytes);
2182 return bytes;
2183}
2184EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2185
320ae51f 2186void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2187{
c2553b58 2188 if (blk_do_io_stat(req)) {
bc58ba94
JA
2189 const int rw = rq_data_dir(req);
2190 struct hd_struct *part;
2191 int cpu;
2192
2193 cpu = part_stat_lock();
09e099d4 2194 part = req->part;
bc58ba94
JA
2195 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2196 part_stat_unlock();
2197 }
2198}
2199
320ae51f 2200void blk_account_io_done(struct request *req)
bc58ba94 2201{
bc58ba94 2202 /*
dd4c133f
TH
2203 * Account IO completion. flush_rq isn't accounted as a
2204 * normal IO on queueing nor completion. Accounting the
2205 * containing request is enough.
bc58ba94 2206 */
e8064021 2207 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2208 unsigned long duration = jiffies - req->start_time;
2209 const int rw = rq_data_dir(req);
2210 struct hd_struct *part;
2211 int cpu;
2212
2213 cpu = part_stat_lock();
09e099d4 2214 part = req->part;
bc58ba94
JA
2215
2216 part_stat_inc(cpu, part, ios[rw]);
2217 part_stat_add(cpu, part, ticks[rw], duration);
2218 part_round_stats(cpu, part);
316d315b 2219 part_dec_in_flight(part, rw);
bc58ba94 2220
6c23a968 2221 hd_struct_put(part);
bc58ba94
JA
2222 part_stat_unlock();
2223 }
2224}
2225
47fafbc7 2226#ifdef CONFIG_PM
c8158819
LM
2227/*
2228 * Don't process normal requests when queue is suspended
2229 * or in the process of suspending/resuming
2230 */
2231static struct request *blk_pm_peek_request(struct request_queue *q,
2232 struct request *rq)
2233{
2234 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2235 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2236 return NULL;
2237 else
2238 return rq;
2239}
2240#else
2241static inline struct request *blk_pm_peek_request(struct request_queue *q,
2242 struct request *rq)
2243{
2244 return rq;
2245}
2246#endif
2247
320ae51f
JA
2248void blk_account_io_start(struct request *rq, bool new_io)
2249{
2250 struct hd_struct *part;
2251 int rw = rq_data_dir(rq);
2252 int cpu;
2253
2254 if (!blk_do_io_stat(rq))
2255 return;
2256
2257 cpu = part_stat_lock();
2258
2259 if (!new_io) {
2260 part = rq->part;
2261 part_stat_inc(cpu, part, merges[rw]);
2262 } else {
2263 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2264 if (!hd_struct_try_get(part)) {
2265 /*
2266 * The partition is already being removed,
2267 * the request will be accounted on the disk only
2268 *
2269 * We take a reference on disk->part0 although that
2270 * partition will never be deleted, so we can treat
2271 * it as any other partition.
2272 */
2273 part = &rq->rq_disk->part0;
2274 hd_struct_get(part);
2275 }
2276 part_round_stats(cpu, part);
2277 part_inc_in_flight(part, rw);
2278 rq->part = part;
2279 }
2280
2281 part_stat_unlock();
2282}
2283
3bcddeac 2284/**
9934c8c0
TH
2285 * blk_peek_request - peek at the top of a request queue
2286 * @q: request queue to peek at
2287 *
2288 * Description:
2289 * Return the request at the top of @q. The returned request
2290 * should be started using blk_start_request() before LLD starts
2291 * processing it.
2292 *
2293 * Return:
2294 * Pointer to the request at the top of @q if available. Null
2295 * otherwise.
2296 *
2297 * Context:
2298 * queue_lock must be held.
2299 */
2300struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2301{
2302 struct request *rq;
2303 int ret;
2304
2305 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2306
2307 rq = blk_pm_peek_request(q, rq);
2308 if (!rq)
2309 break;
2310
e8064021 2311 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2312 /*
2313 * This is the first time the device driver
2314 * sees this request (possibly after
2315 * requeueing). Notify IO scheduler.
2316 */
e8064021 2317 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2318 elv_activate_rq(q, rq);
2319
2320 /*
2321 * just mark as started even if we don't start
2322 * it, a request that has been delayed should
2323 * not be passed by new incoming requests
2324 */
e8064021 2325 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2326 trace_block_rq_issue(q, rq);
2327 }
2328
2329 if (!q->boundary_rq || q->boundary_rq == rq) {
2330 q->end_sector = rq_end_sector(rq);
2331 q->boundary_rq = NULL;
2332 }
2333
e8064021 2334 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2335 break;
2336
2e46e8b2 2337 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2338 /*
2339 * make sure space for the drain appears we
2340 * know we can do this because max_hw_segments
2341 * has been adjusted to be one fewer than the
2342 * device can handle
2343 */
2344 rq->nr_phys_segments++;
2345 }
2346
2347 if (!q->prep_rq_fn)
2348 break;
2349
2350 ret = q->prep_rq_fn(q, rq);
2351 if (ret == BLKPREP_OK) {
2352 break;
2353 } else if (ret == BLKPREP_DEFER) {
2354 /*
2355 * the request may have been (partially) prepped.
2356 * we need to keep this request in the front to
e8064021 2357 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2358 * prevent other fs requests from passing this one.
2359 */
2e46e8b2 2360 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2361 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2362 /*
2363 * remove the space for the drain we added
2364 * so that we don't add it again
2365 */
2366 --rq->nr_phys_segments;
2367 }
2368
2369 rq = NULL;
2370 break;
0fb5b1fb
MP
2371 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2372 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2373
e8064021 2374 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2375 /*
2376 * Mark this request as started so we don't trigger
2377 * any debug logic in the end I/O path.
2378 */
2379 blk_start_request(rq);
0fb5b1fb 2380 __blk_end_request_all(rq, err);
158dbda0
TH
2381 } else {
2382 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2383 break;
2384 }
2385 }
2386
2387 return rq;
2388}
9934c8c0 2389EXPORT_SYMBOL(blk_peek_request);
158dbda0 2390
9934c8c0 2391void blk_dequeue_request(struct request *rq)
158dbda0 2392{
9934c8c0
TH
2393 struct request_queue *q = rq->q;
2394
158dbda0
TH
2395 BUG_ON(list_empty(&rq->queuelist));
2396 BUG_ON(ELV_ON_HASH(rq));
2397
2398 list_del_init(&rq->queuelist);
2399
2400 /*
2401 * the time frame between a request being removed from the lists
2402 * and to it is freed is accounted as io that is in progress at
2403 * the driver side.
2404 */
9195291e 2405 if (blk_account_rq(rq)) {
0a7ae2ff 2406 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2407 set_io_start_time_ns(rq);
2408 }
158dbda0
TH
2409}
2410
9934c8c0
TH
2411/**
2412 * blk_start_request - start request processing on the driver
2413 * @req: request to dequeue
2414 *
2415 * Description:
2416 * Dequeue @req and start timeout timer on it. This hands off the
2417 * request to the driver.
2418 *
2419 * Block internal functions which don't want to start timer should
2420 * call blk_dequeue_request().
2421 *
2422 * Context:
2423 * queue_lock must be held.
2424 */
2425void blk_start_request(struct request *req)
2426{
2427 blk_dequeue_request(req);
2428
cf43e6be
JA
2429 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2430 blk_stat_set_issue_time(&req->issue_stat);
2431 req->rq_flags |= RQF_STATS;
87760e5e 2432 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2433 }
2434
9934c8c0 2435 /*
5f49f631
TH
2436 * We are now handing the request to the hardware, initialize
2437 * resid_len to full count and add the timeout handler.
9934c8c0 2438 */
5f49f631 2439 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2440 if (unlikely(blk_bidi_rq(req)))
2441 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2442
4912aa6c 2443 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2444 blk_add_timer(req);
2445}
2446EXPORT_SYMBOL(blk_start_request);
2447
2448/**
2449 * blk_fetch_request - fetch a request from a request queue
2450 * @q: request queue to fetch a request from
2451 *
2452 * Description:
2453 * Return the request at the top of @q. The request is started on
2454 * return and LLD can start processing it immediately.
2455 *
2456 * Return:
2457 * Pointer to the request at the top of @q if available. Null
2458 * otherwise.
2459 *
2460 * Context:
2461 * queue_lock must be held.
2462 */
2463struct request *blk_fetch_request(struct request_queue *q)
2464{
2465 struct request *rq;
2466
2467 rq = blk_peek_request(q);
2468 if (rq)
2469 blk_start_request(rq);
2470 return rq;
2471}
2472EXPORT_SYMBOL(blk_fetch_request);
2473
3bcddeac 2474/**
2e60e022 2475 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2476 * @req: the request being processed
710027a4 2477 * @error: %0 for success, < %0 for error
8ebf9756 2478 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2479 *
2480 * Description:
8ebf9756
RD
2481 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2482 * the request structure even if @req doesn't have leftover.
2483 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2484 *
2485 * This special helper function is only for request stacking drivers
2486 * (e.g. request-based dm) so that they can handle partial completion.
2487 * Actual device drivers should use blk_end_request instead.
2488 *
2489 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2490 * %false return from this function.
3bcddeac
KU
2491 *
2492 * Return:
2e60e022
TH
2493 * %false - this request doesn't have any more data
2494 * %true - this request has more data
3bcddeac 2495 **/
2e60e022 2496bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2497{
f79ea416 2498 int total_bytes;
1da177e4 2499
4a0efdc9
HR
2500 trace_block_rq_complete(req->q, req, nr_bytes);
2501
2e60e022
TH
2502 if (!req->bio)
2503 return false;
2504
1da177e4 2505 /*
6f41469c
TH
2506 * For fs requests, rq is just carrier of independent bio's
2507 * and each partial completion should be handled separately.
2508 * Reset per-request error on each partial completion.
2509 *
2510 * TODO: tj: This is too subtle. It would be better to let
2511 * low level drivers do what they see fit.
1da177e4 2512 */
33659ebb 2513 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2514 req->errors = 0;
2515
33659ebb 2516 if (error && req->cmd_type == REQ_TYPE_FS &&
e8064021 2517 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2518 char *error_type;
2519
2520 switch (error) {
2521 case -ENOLINK:
2522 error_type = "recoverable transport";
2523 break;
2524 case -EREMOTEIO:
2525 error_type = "critical target";
2526 break;
2527 case -EBADE:
2528 error_type = "critical nexus";
2529 break;
d1ffc1f8
HR
2530 case -ETIMEDOUT:
2531 error_type = "timeout";
2532 break;
a9d6ceb8
HR
2533 case -ENOSPC:
2534 error_type = "critical space allocation";
2535 break;
7e782af5
HR
2536 case -ENODATA:
2537 error_type = "critical medium";
2538 break;
79775567
HR
2539 case -EIO:
2540 default:
2541 error_type = "I/O";
2542 break;
2543 }
ef3ecb66
RE
2544 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2545 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2546 req->rq_disk->disk_name : "?",
2547 (unsigned long long)blk_rq_pos(req));
2548
1da177e4
LT
2549 }
2550
bc58ba94 2551 blk_account_io_completion(req, nr_bytes);
d72d904a 2552
f79ea416
KO
2553 total_bytes = 0;
2554 while (req->bio) {
2555 struct bio *bio = req->bio;
4f024f37 2556 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2557
4f024f37 2558 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2559 req->bio = bio->bi_next;
1da177e4 2560
f79ea416 2561 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2562
f79ea416
KO
2563 total_bytes += bio_bytes;
2564 nr_bytes -= bio_bytes;
1da177e4 2565
f79ea416
KO
2566 if (!nr_bytes)
2567 break;
1da177e4
LT
2568 }
2569
2570 /*
2571 * completely done
2572 */
2e60e022
TH
2573 if (!req->bio) {
2574 /*
2575 * Reset counters so that the request stacking driver
2576 * can find how many bytes remain in the request
2577 * later.
2578 */
a2dec7b3 2579 req->__data_len = 0;
2e60e022
TH
2580 return false;
2581 }
1da177e4 2582
f9d03f96
CH
2583 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2584
a2dec7b3 2585 req->__data_len -= total_bytes;
2e46e8b2
TH
2586
2587 /* update sector only for requests with clear definition of sector */
e2a60da7 2588 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2589 req->__sector += total_bytes >> 9;
2e46e8b2 2590
80a761fd 2591 /* mixed attributes always follow the first bio */
e8064021 2592 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2593 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2594 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2595 }
2596
2e46e8b2
TH
2597 /*
2598 * If total number of sectors is less than the first segment
2599 * size, something has gone terribly wrong.
2600 */
2601 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2602 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2603 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2604 }
2605
2606 /* recalculate the number of segments */
1da177e4 2607 blk_recalc_rq_segments(req);
2e46e8b2 2608
2e60e022 2609 return true;
1da177e4 2610}
2e60e022 2611EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2612
2e60e022
TH
2613static bool blk_update_bidi_request(struct request *rq, int error,
2614 unsigned int nr_bytes,
2615 unsigned int bidi_bytes)
5efccd17 2616{
2e60e022
TH
2617 if (blk_update_request(rq, error, nr_bytes))
2618 return true;
5efccd17 2619
2e60e022
TH
2620 /* Bidi request must be completed as a whole */
2621 if (unlikely(blk_bidi_rq(rq)) &&
2622 blk_update_request(rq->next_rq, error, bidi_bytes))
2623 return true;
5efccd17 2624
e2e1a148
JA
2625 if (blk_queue_add_random(rq->q))
2626 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2627
2628 return false;
1da177e4
LT
2629}
2630
28018c24
JB
2631/**
2632 * blk_unprep_request - unprepare a request
2633 * @req: the request
2634 *
2635 * This function makes a request ready for complete resubmission (or
2636 * completion). It happens only after all error handling is complete,
2637 * so represents the appropriate moment to deallocate any resources
2638 * that were allocated to the request in the prep_rq_fn. The queue
2639 * lock is held when calling this.
2640 */
2641void blk_unprep_request(struct request *req)
2642{
2643 struct request_queue *q = req->q;
2644
e8064021 2645 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2646 if (q->unprep_rq_fn)
2647 q->unprep_rq_fn(q, req);
2648}
2649EXPORT_SYMBOL_GPL(blk_unprep_request);
2650
1da177e4
LT
2651/*
2652 * queue lock must be held
2653 */
12120077 2654void blk_finish_request(struct request *req, int error)
1da177e4 2655{
cf43e6be
JA
2656 struct request_queue *q = req->q;
2657
2658 if (req->rq_flags & RQF_STATS)
2659 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2660
e8064021 2661 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2662 blk_queue_end_tag(q, req);
b8286239 2663
ba396a6c 2664 BUG_ON(blk_queued_rq(req));
1da177e4 2665
33659ebb 2666 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2667 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2668
e78042e5
MA
2669 blk_delete_timer(req);
2670
e8064021 2671 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2672 blk_unprep_request(req);
2673
bc58ba94 2674 blk_account_io_done(req);
b8286239 2675
87760e5e
JA
2676 if (req->end_io) {
2677 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2678 req->end_io(req, error);
87760e5e 2679 } else {
b8286239
KU
2680 if (blk_bidi_rq(req))
2681 __blk_put_request(req->next_rq->q, req->next_rq);
2682
cf43e6be 2683 __blk_put_request(q, req);
b8286239 2684 }
1da177e4 2685}
12120077 2686EXPORT_SYMBOL(blk_finish_request);
1da177e4 2687
3b11313a 2688/**
2e60e022
TH
2689 * blk_end_bidi_request - Complete a bidi request
2690 * @rq: the request to complete
2691 * @error: %0 for success, < %0 for error
2692 * @nr_bytes: number of bytes to complete @rq
2693 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2694 *
2695 * Description:
e3a04fe3 2696 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2697 * Drivers that supports bidi can safely call this member for any
2698 * type of request, bidi or uni. In the later case @bidi_bytes is
2699 * just ignored.
336cdb40
KU
2700 *
2701 * Return:
2e60e022
TH
2702 * %false - we are done with this request
2703 * %true - still buffers pending for this request
a0cd1285 2704 **/
b1f74493 2705static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2706 unsigned int nr_bytes, unsigned int bidi_bytes)
2707{
336cdb40 2708 struct request_queue *q = rq->q;
2e60e022 2709 unsigned long flags;
32fab448 2710
2e60e022
TH
2711 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2712 return true;
32fab448 2713
336cdb40 2714 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2715 blk_finish_request(rq, error);
336cdb40
KU
2716 spin_unlock_irqrestore(q->queue_lock, flags);
2717
2e60e022 2718 return false;
32fab448
KU
2719}
2720
336cdb40 2721/**
2e60e022
TH
2722 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2723 * @rq: the request to complete
710027a4 2724 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2725 * @nr_bytes: number of bytes to complete @rq
2726 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2727 *
2728 * Description:
2e60e022
TH
2729 * Identical to blk_end_bidi_request() except that queue lock is
2730 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2731 *
2732 * Return:
2e60e022
TH
2733 * %false - we are done with this request
2734 * %true - still buffers pending for this request
336cdb40 2735 **/
4853abaa 2736bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2737 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2738{
2e60e022
TH
2739 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2740 return true;
336cdb40 2741
2e60e022 2742 blk_finish_request(rq, error);
336cdb40 2743
2e60e022 2744 return false;
336cdb40 2745}
e19a3ab0
KU
2746
2747/**
2748 * blk_end_request - Helper function for drivers to complete the request.
2749 * @rq: the request being processed
710027a4 2750 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2751 * @nr_bytes: number of bytes to complete
2752 *
2753 * Description:
2754 * Ends I/O on a number of bytes attached to @rq.
2755 * If @rq has leftover, sets it up for the next range of segments.
2756 *
2757 * Return:
b1f74493
FT
2758 * %false - we are done with this request
2759 * %true - still buffers pending for this request
e19a3ab0 2760 **/
b1f74493 2761bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2762{
b1f74493 2763 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2764}
56ad1740 2765EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2766
2767/**
b1f74493
FT
2768 * blk_end_request_all - Helper function for drives to finish the request.
2769 * @rq: the request to finish
8ebf9756 2770 * @error: %0 for success, < %0 for error
336cdb40
KU
2771 *
2772 * Description:
b1f74493
FT
2773 * Completely finish @rq.
2774 */
2775void blk_end_request_all(struct request *rq, int error)
336cdb40 2776{
b1f74493
FT
2777 bool pending;
2778 unsigned int bidi_bytes = 0;
336cdb40 2779
b1f74493
FT
2780 if (unlikely(blk_bidi_rq(rq)))
2781 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2782
b1f74493
FT
2783 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2784 BUG_ON(pending);
2785}
56ad1740 2786EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2787
b1f74493
FT
2788/**
2789 * blk_end_request_cur - Helper function to finish the current request chunk.
2790 * @rq: the request to finish the current chunk for
8ebf9756 2791 * @error: %0 for success, < %0 for error
b1f74493
FT
2792 *
2793 * Description:
2794 * Complete the current consecutively mapped chunk from @rq.
2795 *
2796 * Return:
2797 * %false - we are done with this request
2798 * %true - still buffers pending for this request
2799 */
2800bool blk_end_request_cur(struct request *rq, int error)
2801{
2802 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2803}
56ad1740 2804EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2805
80a761fd
TH
2806/**
2807 * blk_end_request_err - Finish a request till the next failure boundary.
2808 * @rq: the request to finish till the next failure boundary for
2809 * @error: must be negative errno
2810 *
2811 * Description:
2812 * Complete @rq till the next failure boundary.
2813 *
2814 * Return:
2815 * %false - we are done with this request
2816 * %true - still buffers pending for this request
2817 */
2818bool blk_end_request_err(struct request *rq, int error)
2819{
2820 WARN_ON(error >= 0);
2821 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2822}
2823EXPORT_SYMBOL_GPL(blk_end_request_err);
2824
e3a04fe3 2825/**
b1f74493
FT
2826 * __blk_end_request - Helper function for drivers to complete the request.
2827 * @rq: the request being processed
2828 * @error: %0 for success, < %0 for error
2829 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2830 *
2831 * Description:
b1f74493 2832 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2833 *
2834 * Return:
b1f74493
FT
2835 * %false - we are done with this request
2836 * %true - still buffers pending for this request
e3a04fe3 2837 **/
b1f74493 2838bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2839{
b1f74493 2840 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2841}
56ad1740 2842EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2843
32fab448 2844/**
b1f74493
FT
2845 * __blk_end_request_all - Helper function for drives to finish the request.
2846 * @rq: the request to finish
8ebf9756 2847 * @error: %0 for success, < %0 for error
32fab448
KU
2848 *
2849 * Description:
b1f74493 2850 * Completely finish @rq. Must be called with queue lock held.
32fab448 2851 */
b1f74493 2852void __blk_end_request_all(struct request *rq, int error)
32fab448 2853{
b1f74493
FT
2854 bool pending;
2855 unsigned int bidi_bytes = 0;
2856
2857 if (unlikely(blk_bidi_rq(rq)))
2858 bidi_bytes = blk_rq_bytes(rq->next_rq);
2859
2860 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2861 BUG_ON(pending);
32fab448 2862}
56ad1740 2863EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2864
e19a3ab0 2865/**
b1f74493
FT
2866 * __blk_end_request_cur - Helper function to finish the current request chunk.
2867 * @rq: the request to finish the current chunk for
8ebf9756 2868 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2869 *
2870 * Description:
b1f74493
FT
2871 * Complete the current consecutively mapped chunk from @rq. Must
2872 * be called with queue lock held.
e19a3ab0
KU
2873 *
2874 * Return:
b1f74493
FT
2875 * %false - we are done with this request
2876 * %true - still buffers pending for this request
2877 */
2878bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2879{
b1f74493 2880 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2881}
56ad1740 2882EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2883
80a761fd
TH
2884/**
2885 * __blk_end_request_err - Finish a request till the next failure boundary.
2886 * @rq: the request to finish till the next failure boundary for
2887 * @error: must be negative errno
2888 *
2889 * Description:
2890 * Complete @rq till the next failure boundary. Must be called
2891 * with queue lock held.
2892 *
2893 * Return:
2894 * %false - we are done with this request
2895 * %true - still buffers pending for this request
2896 */
2897bool __blk_end_request_err(struct request *rq, int error)
2898{
2899 WARN_ON(error >= 0);
2900 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2901}
2902EXPORT_SYMBOL_GPL(__blk_end_request_err);
2903
86db1e29
JA
2904void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2905 struct bio *bio)
1da177e4 2906{
b4f42e28 2907 if (bio_has_data(bio))
fb2dce86 2908 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2909
4f024f37 2910 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2911 rq->bio = rq->biotail = bio;
1da177e4 2912
66846572
N
2913 if (bio->bi_bdev)
2914 rq->rq_disk = bio->bi_bdev->bd_disk;
2915}
1da177e4 2916
2d4dc890
IL
2917#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2918/**
2919 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2920 * @rq: the request to be flushed
2921 *
2922 * Description:
2923 * Flush all pages in @rq.
2924 */
2925void rq_flush_dcache_pages(struct request *rq)
2926{
2927 struct req_iterator iter;
7988613b 2928 struct bio_vec bvec;
2d4dc890
IL
2929
2930 rq_for_each_segment(bvec, rq, iter)
7988613b 2931 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2932}
2933EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2934#endif
2935
ef9e3fac
KU
2936/**
2937 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2938 * @q : the queue of the device being checked
2939 *
2940 * Description:
2941 * Check if underlying low-level drivers of a device are busy.
2942 * If the drivers want to export their busy state, they must set own
2943 * exporting function using blk_queue_lld_busy() first.
2944 *
2945 * Basically, this function is used only by request stacking drivers
2946 * to stop dispatching requests to underlying devices when underlying
2947 * devices are busy. This behavior helps more I/O merging on the queue
2948 * of the request stacking driver and prevents I/O throughput regression
2949 * on burst I/O load.
2950 *
2951 * Return:
2952 * 0 - Not busy (The request stacking driver should dispatch request)
2953 * 1 - Busy (The request stacking driver should stop dispatching request)
2954 */
2955int blk_lld_busy(struct request_queue *q)
2956{
2957 if (q->lld_busy_fn)
2958 return q->lld_busy_fn(q);
2959
2960 return 0;
2961}
2962EXPORT_SYMBOL_GPL(blk_lld_busy);
2963
78d8e58a
MS
2964/**
2965 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2966 * @rq: the clone request to be cleaned up
2967 *
2968 * Description:
2969 * Free all bios in @rq for a cloned request.
2970 */
2971void blk_rq_unprep_clone(struct request *rq)
2972{
2973 struct bio *bio;
2974
2975 while ((bio = rq->bio) != NULL) {
2976 rq->bio = bio->bi_next;
2977
2978 bio_put(bio);
2979 }
2980}
2981EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2982
2983/*
2984 * Copy attributes of the original request to the clone request.
2985 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2986 */
2987static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
2988{
2989 dst->cpu = src->cpu;
ef295ecf 2990 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
b0fd271d
KU
2991 dst->cmd_type = src->cmd_type;
2992 dst->__sector = blk_rq_pos(src);
2993 dst->__data_len = blk_rq_bytes(src);
2994 dst->nr_phys_segments = src->nr_phys_segments;
2995 dst->ioprio = src->ioprio;
2996 dst->extra_len = src->extra_len;
78d8e58a
MS
2997}
2998
2999/**
3000 * blk_rq_prep_clone - Helper function to setup clone request
3001 * @rq: the request to be setup
3002 * @rq_src: original request to be cloned
3003 * @bs: bio_set that bios for clone are allocated from
3004 * @gfp_mask: memory allocation mask for bio
3005 * @bio_ctr: setup function to be called for each clone bio.
3006 * Returns %0 for success, non %0 for failure.
3007 * @data: private data to be passed to @bio_ctr
3008 *
3009 * Description:
3010 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3011 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3012 * are not copied, and copying such parts is the caller's responsibility.
3013 * Also, pages which the original bios are pointing to are not copied
3014 * and the cloned bios just point same pages.
3015 * So cloned bios must be completed before original bios, which means
3016 * the caller must complete @rq before @rq_src.
3017 */
3018int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3019 struct bio_set *bs, gfp_t gfp_mask,
3020 int (*bio_ctr)(struct bio *, struct bio *, void *),
3021 void *data)
3022{
3023 struct bio *bio, *bio_src;
3024
3025 if (!bs)
3026 bs = fs_bio_set;
3027
3028 __rq_for_each_bio(bio_src, rq_src) {
3029 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3030 if (!bio)
3031 goto free_and_out;
3032
3033 if (bio_ctr && bio_ctr(bio, bio_src, data))
3034 goto free_and_out;
3035
3036 if (rq->bio) {
3037 rq->biotail->bi_next = bio;
3038 rq->biotail = bio;
3039 } else
3040 rq->bio = rq->biotail = bio;
3041 }
3042
3043 __blk_rq_prep_clone(rq, rq_src);
3044
3045 return 0;
3046
3047free_and_out:
3048 if (bio)
3049 bio_put(bio);
3050 blk_rq_unprep_clone(rq);
3051
3052 return -ENOMEM;
b0fd271d
KU
3053}
3054EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3055
59c3d45e 3056int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3057{
3058 return queue_work(kblockd_workqueue, work);
3059}
1da177e4
LT
3060EXPORT_SYMBOL(kblockd_schedule_work);
3061
ee63cfa7
JA
3062int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3063{
3064 return queue_work_on(cpu, kblockd_workqueue, work);
3065}
3066EXPORT_SYMBOL(kblockd_schedule_work_on);
3067
59c3d45e
JA
3068int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3069 unsigned long delay)
e43473b7
VG
3070{
3071 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3072}
3073EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3074
8ab14595
JA
3075int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3076 unsigned long delay)
3077{
3078 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3079}
3080EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3081
75df7136
SJ
3082/**
3083 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3084 * @plug: The &struct blk_plug that needs to be initialized
3085 *
3086 * Description:
3087 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3088 * pending I/O should the task end up blocking between blk_start_plug() and
3089 * blk_finish_plug(). This is important from a performance perspective, but
3090 * also ensures that we don't deadlock. For instance, if the task is blocking
3091 * for a memory allocation, memory reclaim could end up wanting to free a
3092 * page belonging to that request that is currently residing in our private
3093 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3094 * this kind of deadlock.
3095 */
73c10101
JA
3096void blk_start_plug(struct blk_plug *plug)
3097{
3098 struct task_struct *tsk = current;
3099
dd6cf3e1
SL
3100 /*
3101 * If this is a nested plug, don't actually assign it.
3102 */
3103 if (tsk->plug)
3104 return;
3105
73c10101 3106 INIT_LIST_HEAD(&plug->list);
320ae51f 3107 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3108 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3109 /*
dd6cf3e1
SL
3110 * Store ordering should not be needed here, since a potential
3111 * preempt will imply a full memory barrier
73c10101 3112 */
dd6cf3e1 3113 tsk->plug = plug;
73c10101
JA
3114}
3115EXPORT_SYMBOL(blk_start_plug);
3116
3117static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3118{
3119 struct request *rqa = container_of(a, struct request, queuelist);
3120 struct request *rqb = container_of(b, struct request, queuelist);
3121
975927b9
JM
3122 return !(rqa->q < rqb->q ||
3123 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3124}
3125
49cac01e
JA
3126/*
3127 * If 'from_schedule' is true, then postpone the dispatch of requests
3128 * until a safe kblockd context. We due this to avoid accidental big
3129 * additional stack usage in driver dispatch, in places where the originally
3130 * plugger did not intend it.
3131 */
f6603783 3132static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3133 bool from_schedule)
99e22598 3134 __releases(q->queue_lock)
94b5eb28 3135{
49cac01e 3136 trace_block_unplug(q, depth, !from_schedule);
99e22598 3137
70460571 3138 if (from_schedule)
24ecfbe2 3139 blk_run_queue_async(q);
70460571 3140 else
24ecfbe2 3141 __blk_run_queue(q);
70460571 3142 spin_unlock(q->queue_lock);
94b5eb28
JA
3143}
3144
74018dc3 3145static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3146{
3147 LIST_HEAD(callbacks);
3148
2a7d5559
SL
3149 while (!list_empty(&plug->cb_list)) {
3150 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3151
2a7d5559
SL
3152 while (!list_empty(&callbacks)) {
3153 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3154 struct blk_plug_cb,
3155 list);
2a7d5559 3156 list_del(&cb->list);
74018dc3 3157 cb->callback(cb, from_schedule);
2a7d5559 3158 }
048c9374
N
3159 }
3160}
3161
9cbb1750
N
3162struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3163 int size)
3164{
3165 struct blk_plug *plug = current->plug;
3166 struct blk_plug_cb *cb;
3167
3168 if (!plug)
3169 return NULL;
3170
3171 list_for_each_entry(cb, &plug->cb_list, list)
3172 if (cb->callback == unplug && cb->data == data)
3173 return cb;
3174
3175 /* Not currently on the callback list */
3176 BUG_ON(size < sizeof(*cb));
3177 cb = kzalloc(size, GFP_ATOMIC);
3178 if (cb) {
3179 cb->data = data;
3180 cb->callback = unplug;
3181 list_add(&cb->list, &plug->cb_list);
3182 }
3183 return cb;
3184}
3185EXPORT_SYMBOL(blk_check_plugged);
3186
49cac01e 3187void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3188{
3189 struct request_queue *q;
3190 unsigned long flags;
3191 struct request *rq;
109b8129 3192 LIST_HEAD(list);
94b5eb28 3193 unsigned int depth;
73c10101 3194
74018dc3 3195 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3196
3197 if (!list_empty(&plug->mq_list))
3198 blk_mq_flush_plug_list(plug, from_schedule);
3199
73c10101
JA
3200 if (list_empty(&plug->list))
3201 return;
3202
109b8129
N
3203 list_splice_init(&plug->list, &list);
3204
422765c2 3205 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3206
3207 q = NULL;
94b5eb28 3208 depth = 0;
18811272
JA
3209
3210 /*
3211 * Save and disable interrupts here, to avoid doing it for every
3212 * queue lock we have to take.
3213 */
73c10101 3214 local_irq_save(flags);
109b8129
N
3215 while (!list_empty(&list)) {
3216 rq = list_entry_rq(list.next);
73c10101 3217 list_del_init(&rq->queuelist);
73c10101
JA
3218 BUG_ON(!rq->q);
3219 if (rq->q != q) {
99e22598
JA
3220 /*
3221 * This drops the queue lock
3222 */
3223 if (q)
49cac01e 3224 queue_unplugged(q, depth, from_schedule);
73c10101 3225 q = rq->q;
94b5eb28 3226 depth = 0;
73c10101
JA
3227 spin_lock(q->queue_lock);
3228 }
8ba61435
TH
3229
3230 /*
3231 * Short-circuit if @q is dead
3232 */
3f3299d5 3233 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3234 __blk_end_request_all(rq, -ENODEV);
3235 continue;
3236 }
3237
73c10101
JA
3238 /*
3239 * rq is already accounted, so use raw insert
3240 */
f73f44eb 3241 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3242 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3243 else
3244 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3245
3246 depth++;
73c10101
JA
3247 }
3248
99e22598
JA
3249 /*
3250 * This drops the queue lock
3251 */
3252 if (q)
49cac01e 3253 queue_unplugged(q, depth, from_schedule);
73c10101 3254
73c10101
JA
3255 local_irq_restore(flags);
3256}
73c10101
JA
3257
3258void blk_finish_plug(struct blk_plug *plug)
3259{
dd6cf3e1
SL
3260 if (plug != current->plug)
3261 return;
f6603783 3262 blk_flush_plug_list(plug, false);
73c10101 3263
dd6cf3e1 3264 current->plug = NULL;
73c10101 3265}
88b996cd 3266EXPORT_SYMBOL(blk_finish_plug);
73c10101 3267
47fafbc7 3268#ifdef CONFIG_PM
6c954667
LM
3269/**
3270 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3271 * @q: the queue of the device
3272 * @dev: the device the queue belongs to
3273 *
3274 * Description:
3275 * Initialize runtime-PM-related fields for @q and start auto suspend for
3276 * @dev. Drivers that want to take advantage of request-based runtime PM
3277 * should call this function after @dev has been initialized, and its
3278 * request queue @q has been allocated, and runtime PM for it can not happen
3279 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3280 * cases, driver should call this function before any I/O has taken place.
3281 *
3282 * This function takes care of setting up using auto suspend for the device,
3283 * the autosuspend delay is set to -1 to make runtime suspend impossible
3284 * until an updated value is either set by user or by driver. Drivers do
3285 * not need to touch other autosuspend settings.
3286 *
3287 * The block layer runtime PM is request based, so only works for drivers
3288 * that use request as their IO unit instead of those directly use bio's.
3289 */
3290void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3291{
3292 q->dev = dev;
3293 q->rpm_status = RPM_ACTIVE;
3294 pm_runtime_set_autosuspend_delay(q->dev, -1);
3295 pm_runtime_use_autosuspend(q->dev);
3296}
3297EXPORT_SYMBOL(blk_pm_runtime_init);
3298
3299/**
3300 * blk_pre_runtime_suspend - Pre runtime suspend check
3301 * @q: the queue of the device
3302 *
3303 * Description:
3304 * This function will check if runtime suspend is allowed for the device
3305 * by examining if there are any requests pending in the queue. If there
3306 * are requests pending, the device can not be runtime suspended; otherwise,
3307 * the queue's status will be updated to SUSPENDING and the driver can
3308 * proceed to suspend the device.
3309 *
3310 * For the not allowed case, we mark last busy for the device so that
3311 * runtime PM core will try to autosuspend it some time later.
3312 *
3313 * This function should be called near the start of the device's
3314 * runtime_suspend callback.
3315 *
3316 * Return:
3317 * 0 - OK to runtime suspend the device
3318 * -EBUSY - Device should not be runtime suspended
3319 */
3320int blk_pre_runtime_suspend(struct request_queue *q)
3321{
3322 int ret = 0;
3323
4fd41a85
KX
3324 if (!q->dev)
3325 return ret;
3326
6c954667
LM
3327 spin_lock_irq(q->queue_lock);
3328 if (q->nr_pending) {
3329 ret = -EBUSY;
3330 pm_runtime_mark_last_busy(q->dev);
3331 } else {
3332 q->rpm_status = RPM_SUSPENDING;
3333 }
3334 spin_unlock_irq(q->queue_lock);
3335 return ret;
3336}
3337EXPORT_SYMBOL(blk_pre_runtime_suspend);
3338
3339/**
3340 * blk_post_runtime_suspend - Post runtime suspend processing
3341 * @q: the queue of the device
3342 * @err: return value of the device's runtime_suspend function
3343 *
3344 * Description:
3345 * Update the queue's runtime status according to the return value of the
3346 * device's runtime suspend function and mark last busy for the device so
3347 * that PM core will try to auto suspend the device at a later time.
3348 *
3349 * This function should be called near the end of the device's
3350 * runtime_suspend callback.
3351 */
3352void blk_post_runtime_suspend(struct request_queue *q, int err)
3353{
4fd41a85
KX
3354 if (!q->dev)
3355 return;
3356
6c954667
LM
3357 spin_lock_irq(q->queue_lock);
3358 if (!err) {
3359 q->rpm_status = RPM_SUSPENDED;
3360 } else {
3361 q->rpm_status = RPM_ACTIVE;
3362 pm_runtime_mark_last_busy(q->dev);
3363 }
3364 spin_unlock_irq(q->queue_lock);
3365}
3366EXPORT_SYMBOL(blk_post_runtime_suspend);
3367
3368/**
3369 * blk_pre_runtime_resume - Pre runtime resume processing
3370 * @q: the queue of the device
3371 *
3372 * Description:
3373 * Update the queue's runtime status to RESUMING in preparation for the
3374 * runtime resume of the device.
3375 *
3376 * This function should be called near the start of the device's
3377 * runtime_resume callback.
3378 */
3379void blk_pre_runtime_resume(struct request_queue *q)
3380{
4fd41a85
KX
3381 if (!q->dev)
3382 return;
3383
6c954667
LM
3384 spin_lock_irq(q->queue_lock);
3385 q->rpm_status = RPM_RESUMING;
3386 spin_unlock_irq(q->queue_lock);
3387}
3388EXPORT_SYMBOL(blk_pre_runtime_resume);
3389
3390/**
3391 * blk_post_runtime_resume - Post runtime resume processing
3392 * @q: the queue of the device
3393 * @err: return value of the device's runtime_resume function
3394 *
3395 * Description:
3396 * Update the queue's runtime status according to the return value of the
3397 * device's runtime_resume function. If it is successfully resumed, process
3398 * the requests that are queued into the device's queue when it is resuming
3399 * and then mark last busy and initiate autosuspend for it.
3400 *
3401 * This function should be called near the end of the device's
3402 * runtime_resume callback.
3403 */
3404void blk_post_runtime_resume(struct request_queue *q, int err)
3405{
4fd41a85
KX
3406 if (!q->dev)
3407 return;
3408
6c954667
LM
3409 spin_lock_irq(q->queue_lock);
3410 if (!err) {
3411 q->rpm_status = RPM_ACTIVE;
3412 __blk_run_queue(q);
3413 pm_runtime_mark_last_busy(q->dev);
c60855cd 3414 pm_request_autosuspend(q->dev);
6c954667
LM
3415 } else {
3416 q->rpm_status = RPM_SUSPENDED;
3417 }
3418 spin_unlock_irq(q->queue_lock);
3419}
3420EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3421
3422/**
3423 * blk_set_runtime_active - Force runtime status of the queue to be active
3424 * @q: the queue of the device
3425 *
3426 * If the device is left runtime suspended during system suspend the resume
3427 * hook typically resumes the device and corrects runtime status
3428 * accordingly. However, that does not affect the queue runtime PM status
3429 * which is still "suspended". This prevents processing requests from the
3430 * queue.
3431 *
3432 * This function can be used in driver's resume hook to correct queue
3433 * runtime PM status and re-enable peeking requests from the queue. It
3434 * should be called before first request is added to the queue.
3435 */
3436void blk_set_runtime_active(struct request_queue *q)
3437{
3438 spin_lock_irq(q->queue_lock);
3439 q->rpm_status = RPM_ACTIVE;
3440 pm_runtime_mark_last_busy(q->dev);
3441 pm_request_autosuspend(q->dev);
3442 spin_unlock_irq(q->queue_lock);
3443}
3444EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3445#endif
3446
1da177e4
LT
3447int __init blk_dev_init(void)
3448{
ef295ecf
CH
3449 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3450 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3451 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3452 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3453 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3454
89b90be2
TH
3455 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3456 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3457 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3458 if (!kblockd_workqueue)
3459 panic("Failed to create kblockd\n");
3460
3461 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3462 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3463
c2789bd4 3464 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3465 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3466
d38ecf93 3467 return 0;
1da177e4 3468}