]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: cfq_cpd_alloc() should use @gfp
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
d674d414 54struct kmem_cache *request_cachep;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
e8064021 148 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
e8064021 154 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
21491412
JA
209/**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218void blk_start_queue_async(struct request_queue *q)
219{
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222}
223EXPORT_SYMBOL(blk_start_queue_async);
224
1da177e4
LT
225/**
226 * blk_start_queue - restart a previously stopped queue
165125e1 227 * @q: The &struct request_queue in question
1da177e4
LT
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
165125e1 234void blk_start_queue(struct request_queue *q)
1da177e4 235{
a038e253
PBG
236 WARN_ON(!irqs_disabled());
237
75ad23bc 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 239 __blk_run_queue(q);
1da177e4 240}
1da177e4
LT
241EXPORT_SYMBOL(blk_start_queue);
242
243/**
244 * blk_stop_queue - stop a queue
165125e1 245 * @q: The &struct request_queue in question
1da177e4
LT
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
165125e1 257void blk_stop_queue(struct request_queue *q)
1da177e4 258{
136b5721 259 cancel_delayed_work(&q->delay_work);
75ad23bc 260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
261}
262EXPORT_SYMBOL(blk_stop_queue);
263
264/**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
59c51591 273 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
da527770 277 * This function does not cancel any asynchronous activity arising
da3dae54 278 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 279 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 280 *
1da177e4
LT
281 */
282void blk_sync_queue(struct request_queue *q)
283{
70ed28b9 284 del_timer_sync(&q->timeout);
f04c1fe7
ML
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
70f4db63 290 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 291 cancel_work_sync(&hctx->run_work);
70f4db63
CH
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
f04c1fe7
ML
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
1da177e4
LT
297}
298EXPORT_SYMBOL(blk_sync_queue);
299
c246e80d
BVA
300/**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311inline void __blk_run_queue_uncond(struct request_queue *q)
312{
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
24faf6f6
BVA
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
c246e80d 324 q->request_fn(q);
24faf6f6 325 q->request_fn_active--;
c246e80d 326}
a7928c15 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 328
1da177e4 329/**
80a4b58e 330 * __blk_run_queue - run a single device queue
1da177e4 331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 335 * held and interrupts disabled.
1da177e4 336 */
24ecfbe2 337void __blk_run_queue(struct request_queue *q)
1da177e4 338{
a538cd03
TH
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
c246e80d 342 __blk_run_queue_uncond(q);
75ad23bc
NP
343}
344EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 345
24ecfbe2
CH
346/**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 352 * of us. The caller must hold the queue lock.
24ecfbe2
CH
353 */
354void blk_run_queue_async(struct request_queue *q)
355{
70460571 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 358}
c21e6beb 359EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 360
75ad23bc
NP
361/**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
80a4b58e
JA
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 367 * May be used to restart queueing when a request has completed.
75ad23bc
NP
368 */
369void blk_run_queue(struct request_queue *q)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 374 __blk_run_queue(q);
1da177e4
LT
375 spin_unlock_irqrestore(q->queue_lock, flags);
376}
377EXPORT_SYMBOL(blk_run_queue);
378
165125e1 379void blk_put_queue(struct request_queue *q)
483f4afc
AV
380{
381 kobject_put(&q->kobj);
382}
d86e0e83 383EXPORT_SYMBOL(blk_put_queue);
483f4afc 384
e3c78ca5 385/**
807592a4 386 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 387 * @q: queue to drain
c9a929dd 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 389 *
c9a929dd
TH
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 393 */
807592a4
BVA
394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
e3c78ca5 397{
458f27a9
AH
398 int i;
399
807592a4
BVA
400 lockdep_assert_held(q->queue_lock);
401
e3c78ca5 402 while (true) {
481a7d64 403 bool drain = false;
e3c78ca5 404
b855b04a
TH
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
5efd6113 412 blkcg_drain_queue(q);
e3c78ca5 413
4eabc941
TH
414 /*
415 * This function might be called on a queue which failed
b855b04a
TH
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
4eabc941 420 */
b855b04a 421 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 422 __blk_run_queue(q);
c9a929dd 423
8a5ecdd4 424 drain |= q->nr_rqs_elvpriv;
24faf6f6 425 drain |= q->request_fn_active;
481a7d64
TH
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
e97c293c 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
8a5ecdd4 436 drain |= q->nr_rqs[i];
481a7d64 437 drain |= q->in_flight[i];
7c94e1c1
ML
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
440 }
441 }
e3c78ca5 442
481a7d64 443 if (!drain)
e3c78ca5 444 break;
807592a4
BVA
445
446 spin_unlock_irq(q->queue_lock);
447
e3c78ca5 448 msleep(10);
807592a4
BVA
449
450 spin_lock_irq(q->queue_lock);
e3c78ca5 451 }
458f27a9
AH
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
a051661c
TH
459 struct request_list *rl;
460
a051661c
TH
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
458f27a9 464 }
e3c78ca5
TH
465}
466
d732580b
TH
467/**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 473 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
d732580b
TH
476 */
477void blk_queue_bypass_start(struct request_queue *q)
478{
479 spin_lock_irq(q->queue_lock);
776687bc 480 q->bypass_depth++;
d732580b
TH
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
776687bc
TH
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
807592a4
BVA
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
b82d4b19
TH
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
d732580b
TH
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500/**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506void blk_queue_bypass_end(struct request_queue *q)
507{
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513}
514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
aed3ea94
JA
516void blk_set_queue_dying(struct request_queue *q)
517{
1b856086
BVA
518 spin_lock_irq(q->queue_lock);
519 queue_flag_set(QUEUE_FLAG_DYING, q);
520 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
521
522 if (q->mq_ops)
523 blk_mq_wake_waiters(q);
524 else {
525 struct request_list *rl;
526
527 blk_queue_for_each_rl(rl, q) {
528 if (rl->rq_pool) {
529 wake_up(&rl->wait[BLK_RW_SYNC]);
530 wake_up(&rl->wait[BLK_RW_ASYNC]);
531 }
532 }
533 }
534}
535EXPORT_SYMBOL_GPL(blk_set_queue_dying);
536
c9a929dd
TH
537/**
538 * blk_cleanup_queue - shutdown a request queue
539 * @q: request queue to shutdown
540 *
c246e80d
BVA
541 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
542 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 543 */
6728cb0e 544void blk_cleanup_queue(struct request_queue *q)
483f4afc 545{
c9a929dd 546 spinlock_t *lock = q->queue_lock;
e3335de9 547
3f3299d5 548 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 549 mutex_lock(&q->sysfs_lock);
aed3ea94 550 blk_set_queue_dying(q);
c9a929dd 551 spin_lock_irq(lock);
6ecf23af 552
80fd9979 553 /*
3f3299d5 554 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
555 * that, unlike blk_queue_bypass_start(), we aren't performing
556 * synchronize_rcu() after entering bypass mode to avoid the delay
557 * as some drivers create and destroy a lot of queues while
558 * probing. This is still safe because blk_release_queue() will be
559 * called only after the queue refcnt drops to zero and nothing,
560 * RCU or not, would be traversing the queue by then.
561 */
6ecf23af
TH
562 q->bypass_depth++;
563 queue_flag_set(QUEUE_FLAG_BYPASS, q);
564
c9a929dd
TH
565 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
566 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 567 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
568 spin_unlock_irq(lock);
569 mutex_unlock(&q->sysfs_lock);
570
c246e80d
BVA
571 /*
572 * Drain all requests queued before DYING marking. Set DEAD flag to
573 * prevent that q->request_fn() gets invoked after draining finished.
574 */
3ef28e83
DW
575 blk_freeze_queue(q);
576 spin_lock_irq(lock);
577 if (!q->mq_ops)
43a5e4e2 578 __blk_drain_queue(q, true);
c246e80d 579 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 580 spin_unlock_irq(lock);
c9a929dd 581
5a48fc14
DW
582 /* for synchronous bio-based driver finish in-flight integrity i/o */
583 blk_flush_integrity();
584
c9a929dd
TH
585 /* @q won't process any more request, flush async actions */
586 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
587 blk_sync_queue(q);
588
45a9c9d9
BVA
589 if (q->mq_ops)
590 blk_mq_free_queue(q);
3ef28e83 591 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 592
5e5cfac0
AH
593 spin_lock_irq(lock);
594 if (q->queue_lock != &q->__queue_lock)
595 q->queue_lock = &q->__queue_lock;
596 spin_unlock_irq(lock);
597
b02176f3 598 bdi_unregister(&q->backing_dev_info);
6cd18e71 599
c9a929dd 600 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
601 blk_put_queue(q);
602}
1da177e4
LT
603EXPORT_SYMBOL(blk_cleanup_queue);
604
271508db
DR
605/* Allocate memory local to the request queue */
606static void *alloc_request_struct(gfp_t gfp_mask, void *data)
607{
608 int nid = (int)(long)data;
609 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
610}
611
612static void free_request_struct(void *element, void *unused)
613{
614 kmem_cache_free(request_cachep, element);
615}
616
5b788ce3
TH
617int blk_init_rl(struct request_list *rl, struct request_queue *q,
618 gfp_t gfp_mask)
1da177e4 619{
1abec4fd
MS
620 if (unlikely(rl->rq_pool))
621 return 0;
622
5b788ce3 623 rl->q = q;
1faa16d2
JA
624 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
625 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
626 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
627 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 628
271508db
DR
629 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
630 free_request_struct,
631 (void *)(long)q->node, gfp_mask,
632 q->node);
1da177e4
LT
633 if (!rl->rq_pool)
634 return -ENOMEM;
635
636 return 0;
637}
638
5b788ce3
TH
639void blk_exit_rl(struct request_list *rl)
640{
641 if (rl->rq_pool)
642 mempool_destroy(rl->rq_pool);
643}
644
165125e1 645struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 646{
c304a51b 647 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
648}
649EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 650
6f3b0e8b 651int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
652{
653 while (true) {
654 int ret;
655
656 if (percpu_ref_tryget_live(&q->q_usage_counter))
657 return 0;
658
6f3b0e8b 659 if (nowait)
3ef28e83
DW
660 return -EBUSY;
661
662 ret = wait_event_interruptible(q->mq_freeze_wq,
663 !atomic_read(&q->mq_freeze_depth) ||
664 blk_queue_dying(q));
665 if (blk_queue_dying(q))
666 return -ENODEV;
667 if (ret)
668 return ret;
669 }
670}
671
672void blk_queue_exit(struct request_queue *q)
673{
674 percpu_ref_put(&q->q_usage_counter);
675}
676
677static void blk_queue_usage_counter_release(struct percpu_ref *ref)
678{
679 struct request_queue *q =
680 container_of(ref, struct request_queue, q_usage_counter);
681
682 wake_up_all(&q->mq_freeze_wq);
683}
684
287922eb
CH
685static void blk_rq_timed_out_timer(unsigned long data)
686{
687 struct request_queue *q = (struct request_queue *)data;
688
689 kblockd_schedule_work(&q->timeout_work);
690}
691
165125e1 692struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 693{
165125e1 694 struct request_queue *q;
e0bf68dd 695 int err;
1946089a 696
8324aa91 697 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 698 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
699 if (!q)
700 return NULL;
701
00380a40 702 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 703 if (q->id < 0)
3d2936f4 704 goto fail_q;
a73f730d 705
54efd50b
KO
706 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
707 if (!q->bio_split)
708 goto fail_id;
709
0989a025 710 q->backing_dev_info.ra_pages =
09cbfeaf 711 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 712 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 713 q->backing_dev_info.name = "block";
5151412d 714 q->node = node_id;
0989a025 715
e0bf68dd 716 err = bdi_init(&q->backing_dev_info);
a73f730d 717 if (err)
54efd50b 718 goto fail_split;
e0bf68dd 719
31373d09
MG
720 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
721 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 722 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 723 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 724 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 725 INIT_LIST_HEAD(&q->icq_list);
4eef3049 726#ifdef CONFIG_BLK_CGROUP
e8989fae 727 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 728#endif
3cca6dc1 729 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 730
8324aa91 731 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 732
483f4afc 733 mutex_init(&q->sysfs_lock);
e7e72bf6 734 spin_lock_init(&q->__queue_lock);
483f4afc 735
c94a96ac
VG
736 /*
737 * By default initialize queue_lock to internal lock and driver can
738 * override it later if need be.
739 */
740 q->queue_lock = &q->__queue_lock;
741
b82d4b19
TH
742 /*
743 * A queue starts its life with bypass turned on to avoid
744 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
745 * init. The initial bypass will be finished when the queue is
746 * registered by blk_register_queue().
b82d4b19
TH
747 */
748 q->bypass_depth = 1;
749 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
750
320ae51f
JA
751 init_waitqueue_head(&q->mq_freeze_wq);
752
3ef28e83
DW
753 /*
754 * Init percpu_ref in atomic mode so that it's faster to shutdown.
755 * See blk_register_queue() for details.
756 */
757 if (percpu_ref_init(&q->q_usage_counter,
758 blk_queue_usage_counter_release,
759 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 760 goto fail_bdi;
f51b802c 761
3ef28e83
DW
762 if (blkcg_init_queue(q))
763 goto fail_ref;
764
1da177e4 765 return q;
a73f730d 766
3ef28e83
DW
767fail_ref:
768 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
769fail_bdi:
770 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
771fail_split:
772 bioset_free(q->bio_split);
a73f730d
TH
773fail_id:
774 ida_simple_remove(&blk_queue_ida, q->id);
775fail_q:
776 kmem_cache_free(blk_requestq_cachep, q);
777 return NULL;
1da177e4 778}
1946089a 779EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
780
781/**
782 * blk_init_queue - prepare a request queue for use with a block device
783 * @rfn: The function to be called to process requests that have been
784 * placed on the queue.
785 * @lock: Request queue spin lock
786 *
787 * Description:
788 * If a block device wishes to use the standard request handling procedures,
789 * which sorts requests and coalesces adjacent requests, then it must
790 * call blk_init_queue(). The function @rfn will be called when there
791 * are requests on the queue that need to be processed. If the device
792 * supports plugging, then @rfn may not be called immediately when requests
793 * are available on the queue, but may be called at some time later instead.
794 * Plugged queues are generally unplugged when a buffer belonging to one
795 * of the requests on the queue is needed, or due to memory pressure.
796 *
797 * @rfn is not required, or even expected, to remove all requests off the
798 * queue, but only as many as it can handle at a time. If it does leave
799 * requests on the queue, it is responsible for arranging that the requests
800 * get dealt with eventually.
801 *
802 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
803 * request queue; this lock will be taken also from interrupt context, so irq
804 * disabling is needed for it.
1da177e4 805 *
710027a4 806 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
807 * it didn't succeed.
808 *
809 * Note:
810 * blk_init_queue() must be paired with a blk_cleanup_queue() call
811 * when the block device is deactivated (such as at module unload).
812 **/
1946089a 813
165125e1 814struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 815{
c304a51b 816 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
817}
818EXPORT_SYMBOL(blk_init_queue);
819
165125e1 820struct request_queue *
1946089a
CL
821blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
822{
c86d1b8a 823 struct request_queue *uninit_q, *q;
1da177e4 824
c86d1b8a
MS
825 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
826 if (!uninit_q)
827 return NULL;
828
5151412d 829 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 830 if (!q)
7982e90c 831 blk_cleanup_queue(uninit_q);
18741986 832
7982e90c 833 return q;
01effb0d
MS
834}
835EXPORT_SYMBOL(blk_init_queue_node);
836
dece1635 837static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 838
01effb0d
MS
839struct request_queue *
840blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
841 spinlock_t *lock)
01effb0d 842{
1da177e4
LT
843 if (!q)
844 return NULL;
845
f70ced09 846 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 847 if (!q->fq)
7982e90c
MS
848 return NULL;
849
a051661c 850 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 851 goto fail;
1da177e4 852
287922eb 853 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 854 q->request_fn = rfn;
1da177e4 855 q->prep_rq_fn = NULL;
28018c24 856 q->unprep_rq_fn = NULL;
60ea8226 857 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
858
859 /* Override internal queue lock with supplied lock pointer */
860 if (lock)
861 q->queue_lock = lock;
1da177e4 862
f3b144aa
JA
863 /*
864 * This also sets hw/phys segments, boundary and size
865 */
c20e8de2 866 blk_queue_make_request(q, blk_queue_bio);
1da177e4 867
44ec9542
AS
868 q->sg_reserved_size = INT_MAX;
869
eb1c160b
TS
870 /* Protect q->elevator from elevator_change */
871 mutex_lock(&q->sysfs_lock);
872
b82d4b19 873 /* init elevator */
eb1c160b
TS
874 if (elevator_init(q, NULL)) {
875 mutex_unlock(&q->sysfs_lock);
708f04d2 876 goto fail;
eb1c160b
TS
877 }
878
879 mutex_unlock(&q->sysfs_lock);
880
b82d4b19 881 return q;
708f04d2
DJ
882
883fail:
ba483388 884 blk_free_flush_queue(q->fq);
708f04d2 885 return NULL;
1da177e4 886}
5151412d 887EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 888
09ac46c4 889bool blk_get_queue(struct request_queue *q)
1da177e4 890{
3f3299d5 891 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
892 __blk_get_queue(q);
893 return true;
1da177e4
LT
894 }
895
09ac46c4 896 return false;
1da177e4 897}
d86e0e83 898EXPORT_SYMBOL(blk_get_queue);
1da177e4 899
5b788ce3 900static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 901{
e8064021 902 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 903 elv_put_request(rl->q, rq);
f1f8cc94 904 if (rq->elv.icq)
11a3122f 905 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
906 }
907
5b788ce3 908 mempool_free(rq, rl->rq_pool);
1da177e4
LT
909}
910
1da177e4
LT
911/*
912 * ioc_batching returns true if the ioc is a valid batching request and
913 * should be given priority access to a request.
914 */
165125e1 915static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
916{
917 if (!ioc)
918 return 0;
919
920 /*
921 * Make sure the process is able to allocate at least 1 request
922 * even if the batch times out, otherwise we could theoretically
923 * lose wakeups.
924 */
925 return ioc->nr_batch_requests == q->nr_batching ||
926 (ioc->nr_batch_requests > 0
927 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
928}
929
930/*
931 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
932 * will cause the process to be a "batcher" on all queues in the system. This
933 * is the behaviour we want though - once it gets a wakeup it should be given
934 * a nice run.
935 */
165125e1 936static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
937{
938 if (!ioc || ioc_batching(q, ioc))
939 return;
940
941 ioc->nr_batch_requests = q->nr_batching;
942 ioc->last_waited = jiffies;
943}
944
5b788ce3 945static void __freed_request(struct request_list *rl, int sync)
1da177e4 946{
5b788ce3 947 struct request_queue *q = rl->q;
1da177e4 948
d40f75a0
TH
949 if (rl->count[sync] < queue_congestion_off_threshold(q))
950 blk_clear_congested(rl, sync);
1da177e4 951
1faa16d2
JA
952 if (rl->count[sync] + 1 <= q->nr_requests) {
953 if (waitqueue_active(&rl->wait[sync]))
954 wake_up(&rl->wait[sync]);
1da177e4 955
5b788ce3 956 blk_clear_rl_full(rl, sync);
1da177e4
LT
957 }
958}
959
960/*
961 * A request has just been released. Account for it, update the full and
962 * congestion status, wake up any waiters. Called under q->queue_lock.
963 */
e8064021
CH
964static void freed_request(struct request_list *rl, bool sync,
965 req_flags_t rq_flags)
1da177e4 966{
5b788ce3 967 struct request_queue *q = rl->q;
1da177e4 968
8a5ecdd4 969 q->nr_rqs[sync]--;
1faa16d2 970 rl->count[sync]--;
e8064021 971 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 972 q->nr_rqs_elvpriv--;
1da177e4 973
5b788ce3 974 __freed_request(rl, sync);
1da177e4 975
1faa16d2 976 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 977 __freed_request(rl, sync ^ 1);
1da177e4
LT
978}
979
e3a2b3f9
JA
980int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
981{
982 struct request_list *rl;
d40f75a0 983 int on_thresh, off_thresh;
e3a2b3f9
JA
984
985 spin_lock_irq(q->queue_lock);
986 q->nr_requests = nr;
987 blk_queue_congestion_threshold(q);
d40f75a0
TH
988 on_thresh = queue_congestion_on_threshold(q);
989 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 990
d40f75a0
TH
991 blk_queue_for_each_rl(rl, q) {
992 if (rl->count[BLK_RW_SYNC] >= on_thresh)
993 blk_set_congested(rl, BLK_RW_SYNC);
994 else if (rl->count[BLK_RW_SYNC] < off_thresh)
995 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 996
d40f75a0
TH
997 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
998 blk_set_congested(rl, BLK_RW_ASYNC);
999 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1000 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1001
e3a2b3f9
JA
1002 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1003 blk_set_rl_full(rl, BLK_RW_SYNC);
1004 } else {
1005 blk_clear_rl_full(rl, BLK_RW_SYNC);
1006 wake_up(&rl->wait[BLK_RW_SYNC]);
1007 }
1008
1009 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1010 blk_set_rl_full(rl, BLK_RW_ASYNC);
1011 } else {
1012 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1013 wake_up(&rl->wait[BLK_RW_ASYNC]);
1014 }
1015 }
1016
1017 spin_unlock_irq(q->queue_lock);
1018 return 0;
1019}
1020
9d5a4e94
MS
1021/*
1022 * Determine if elevator data should be initialized when allocating the
1023 * request associated with @bio.
1024 */
1025static bool blk_rq_should_init_elevator(struct bio *bio)
1026{
1027 if (!bio)
1028 return true;
1029
1030 /*
1031 * Flush requests do not use the elevator so skip initialization.
1032 * This allows a request to share the flush and elevator data.
1033 */
1eff9d32 1034 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
9d5a4e94
MS
1035 return false;
1036
1037 return true;
1038}
1039
852c788f
TH
1040/**
1041 * rq_ioc - determine io_context for request allocation
1042 * @bio: request being allocated is for this bio (can be %NULL)
1043 *
1044 * Determine io_context to use for request allocation for @bio. May return
1045 * %NULL if %current->io_context doesn't exist.
1046 */
1047static struct io_context *rq_ioc(struct bio *bio)
1048{
1049#ifdef CONFIG_BLK_CGROUP
1050 if (bio && bio->bi_ioc)
1051 return bio->bi_ioc;
1052#endif
1053 return current->io_context;
1054}
1055
da8303c6 1056/**
a06e05e6 1057 * __get_request - get a free request
5b788ce3 1058 * @rl: request list to allocate from
ef295ecf 1059 * @op: operation and flags
da8303c6
TH
1060 * @bio: bio to allocate request for (can be %NULL)
1061 * @gfp_mask: allocation mask
1062 *
1063 * Get a free request from @q. This function may fail under memory
1064 * pressure or if @q is dead.
1065 *
da3dae54 1066 * Must be called with @q->queue_lock held and,
a492f075
JL
1067 * Returns ERR_PTR on failure, with @q->queue_lock held.
1068 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1069 */
ef295ecf
CH
1070static struct request *__get_request(struct request_list *rl, unsigned int op,
1071 struct bio *bio, gfp_t gfp_mask)
1da177e4 1072{
5b788ce3 1073 struct request_queue *q = rl->q;
b679281a 1074 struct request *rq;
7f4b35d1
TH
1075 struct elevator_type *et = q->elevator->type;
1076 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1077 struct io_cq *icq = NULL;
ef295ecf 1078 const bool is_sync = op_is_sync(op);
75eb6c37 1079 int may_queue;
e8064021 1080 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1081
3f3299d5 1082 if (unlikely(blk_queue_dying(q)))
a492f075 1083 return ERR_PTR(-ENODEV);
da8303c6 1084
ef295ecf 1085 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1086 if (may_queue == ELV_MQUEUE_NO)
1087 goto rq_starved;
1088
1faa16d2
JA
1089 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1090 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1091 /*
1092 * The queue will fill after this allocation, so set
1093 * it as full, and mark this process as "batching".
1094 * This process will be allowed to complete a batch of
1095 * requests, others will be blocked.
1096 */
5b788ce3 1097 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1098 ioc_set_batching(q, ioc);
5b788ce3 1099 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1100 } else {
1101 if (may_queue != ELV_MQUEUE_MUST
1102 && !ioc_batching(q, ioc)) {
1103 /*
1104 * The queue is full and the allocating
1105 * process is not a "batcher", and not
1106 * exempted by the IO scheduler
1107 */
a492f075 1108 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1109 }
1110 }
1da177e4 1111 }
d40f75a0 1112 blk_set_congested(rl, is_sync);
1da177e4
LT
1113 }
1114
082cf69e
JA
1115 /*
1116 * Only allow batching queuers to allocate up to 50% over the defined
1117 * limit of requests, otherwise we could have thousands of requests
1118 * allocated with any setting of ->nr_requests
1119 */
1faa16d2 1120 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1121 return ERR_PTR(-ENOMEM);
fd782a4a 1122
8a5ecdd4 1123 q->nr_rqs[is_sync]++;
1faa16d2
JA
1124 rl->count[is_sync]++;
1125 rl->starved[is_sync] = 0;
cb98fc8b 1126
f1f8cc94
TH
1127 /*
1128 * Decide whether the new request will be managed by elevator. If
e8064021 1129 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1130 * prevent the current elevator from being destroyed until the new
1131 * request is freed. This guarantees icq's won't be destroyed and
1132 * makes creating new ones safe.
1133 *
1134 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1135 * it will be created after releasing queue_lock.
1136 */
d732580b 1137 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
e8064021 1138 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1139 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1140 if (et->icq_cache && ioc)
1141 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1142 }
cb98fc8b 1143
f253b86b 1144 if (blk_queue_io_stat(q))
e8064021 1145 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1146 spin_unlock_irq(q->queue_lock);
1147
29e2b09a 1148 /* allocate and init request */
5b788ce3 1149 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1150 if (!rq)
b679281a 1151 goto fail_alloc;
1da177e4 1152
29e2b09a 1153 blk_rq_init(q, rq);
a051661c 1154 blk_rq_set_rl(rq, rl);
ef295ecf 1155 rq->cmd_flags = op;
e8064021 1156 rq->rq_flags = rq_flags;
29e2b09a 1157
aaf7c680 1158 /* init elvpriv */
e8064021 1159 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1160 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1161 if (ioc)
1162 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1163 if (!icq)
1164 goto fail_elvpriv;
29e2b09a 1165 }
aaf7c680
TH
1166
1167 rq->elv.icq = icq;
1168 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1169 goto fail_elvpriv;
1170
1171 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1172 if (icq)
1173 get_io_context(icq->ioc);
1174 }
aaf7c680 1175out:
88ee5ef1
JA
1176 /*
1177 * ioc may be NULL here, and ioc_batching will be false. That's
1178 * OK, if the queue is under the request limit then requests need
1179 * not count toward the nr_batch_requests limit. There will always
1180 * be some limit enforced by BLK_BATCH_TIME.
1181 */
1da177e4
LT
1182 if (ioc_batching(q, ioc))
1183 ioc->nr_batch_requests--;
6728cb0e 1184
e6a40b09 1185 trace_block_getrq(q, bio, op);
1da177e4 1186 return rq;
b679281a 1187
aaf7c680
TH
1188fail_elvpriv:
1189 /*
1190 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1191 * and may fail indefinitely under memory pressure and thus
1192 * shouldn't stall IO. Treat this request as !elvpriv. This will
1193 * disturb iosched and blkcg but weird is bettern than dead.
1194 */
7b2b10e0
RE
1195 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1196 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680 1197
e8064021 1198 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1199 rq->elv.icq = NULL;
1200
1201 spin_lock_irq(q->queue_lock);
8a5ecdd4 1202 q->nr_rqs_elvpriv--;
aaf7c680
TH
1203 spin_unlock_irq(q->queue_lock);
1204 goto out;
1205
b679281a
TH
1206fail_alloc:
1207 /*
1208 * Allocation failed presumably due to memory. Undo anything we
1209 * might have messed up.
1210 *
1211 * Allocating task should really be put onto the front of the wait
1212 * queue, but this is pretty rare.
1213 */
1214 spin_lock_irq(q->queue_lock);
e8064021 1215 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1216
1217 /*
1218 * in the very unlikely event that allocation failed and no
1219 * requests for this direction was pending, mark us starved so that
1220 * freeing of a request in the other direction will notice
1221 * us. another possible fix would be to split the rq mempool into
1222 * READ and WRITE
1223 */
1224rq_starved:
1225 if (unlikely(rl->count[is_sync] == 0))
1226 rl->starved[is_sync] = 1;
a492f075 1227 return ERR_PTR(-ENOMEM);
1da177e4
LT
1228}
1229
da8303c6 1230/**
a06e05e6 1231 * get_request - get a free request
da8303c6 1232 * @q: request_queue to allocate request from
ef295ecf 1233 * @op: operation and flags
da8303c6 1234 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1235 * @gfp_mask: allocation mask
da8303c6 1236 *
d0164adc
MG
1237 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1238 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1239 *
da3dae54 1240 * Must be called with @q->queue_lock held and,
a492f075
JL
1241 * Returns ERR_PTR on failure, with @q->queue_lock held.
1242 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1243 */
ef295ecf
CH
1244static struct request *get_request(struct request_queue *q, unsigned int op,
1245 struct bio *bio, gfp_t gfp_mask)
1da177e4 1246{
ef295ecf 1247 const bool is_sync = op_is_sync(op);
a06e05e6 1248 DEFINE_WAIT(wait);
a051661c 1249 struct request_list *rl;
1da177e4 1250 struct request *rq;
a051661c
TH
1251
1252 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1253retry:
ef295ecf 1254 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1255 if (!IS_ERR(rq))
a06e05e6 1256 return rq;
1da177e4 1257
d0164adc 1258 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1259 blk_put_rl(rl);
a492f075 1260 return rq;
a051661c 1261 }
1da177e4 1262
a06e05e6
TH
1263 /* wait on @rl and retry */
1264 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1265 TASK_UNINTERRUPTIBLE);
1da177e4 1266
e6a40b09 1267 trace_block_sleeprq(q, bio, op);
1da177e4 1268
a06e05e6
TH
1269 spin_unlock_irq(q->queue_lock);
1270 io_schedule();
d6344532 1271
a06e05e6
TH
1272 /*
1273 * After sleeping, we become a "batching" process and will be able
1274 * to allocate at least one request, and up to a big batch of them
1275 * for a small period time. See ioc_batching, ioc_set_batching
1276 */
a06e05e6 1277 ioc_set_batching(q, current->io_context);
05caf8db 1278
a06e05e6
TH
1279 spin_lock_irq(q->queue_lock);
1280 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1281
a06e05e6 1282 goto retry;
1da177e4
LT
1283}
1284
320ae51f
JA
1285static struct request *blk_old_get_request(struct request_queue *q, int rw,
1286 gfp_t gfp_mask)
1da177e4
LT
1287{
1288 struct request *rq;
1289
1290 BUG_ON(rw != READ && rw != WRITE);
1291
7f4b35d1
TH
1292 /* create ioc upfront */
1293 create_io_context(gfp_mask, q->node);
1294
d6344532 1295 spin_lock_irq(q->queue_lock);
ef295ecf 1296 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1297 if (IS_ERR(rq)) {
da8303c6 1298 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1299 return rq;
1300 }
1da177e4 1301
0c4de0f3
CH
1302 /* q->queue_lock is unlocked at this point */
1303 rq->__data_len = 0;
1304 rq->__sector = (sector_t) -1;
1305 rq->bio = rq->biotail = NULL;
1da177e4
LT
1306 return rq;
1307}
320ae51f
JA
1308
1309struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1310{
1311 if (q->mq_ops)
6f3b0e8b
CH
1312 return blk_mq_alloc_request(q, rw,
1313 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1314 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1315 else
1316 return blk_old_get_request(q, rw, gfp_mask);
1317}
1da177e4
LT
1318EXPORT_SYMBOL(blk_get_request);
1319
f27b087b 1320/**
da3dae54 1321 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1322 * @rq: request to be initialized
1323 *
1324 */
1325void blk_rq_set_block_pc(struct request *rq)
1326{
1327 rq->cmd_type = REQ_TYPE_BLOCK_PC;
f27b087b 1328 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1329}
1330EXPORT_SYMBOL(blk_rq_set_block_pc);
1331
1da177e4
LT
1332/**
1333 * blk_requeue_request - put a request back on queue
1334 * @q: request queue where request should be inserted
1335 * @rq: request to be inserted
1336 *
1337 * Description:
1338 * Drivers often keep queueing requests until the hardware cannot accept
1339 * more, when that condition happens we need to put the request back
1340 * on the queue. Must be called with queue lock held.
1341 */
165125e1 1342void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1343{
242f9dcb
JA
1344 blk_delete_timer(rq);
1345 blk_clear_rq_complete(rq);
5f3ea37c 1346 trace_block_rq_requeue(q, rq);
2056a782 1347
e8064021 1348 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1349 blk_queue_end_tag(q, rq);
1350
ba396a6c
JB
1351 BUG_ON(blk_queued_rq(rq));
1352
1da177e4
LT
1353 elv_requeue_request(q, rq);
1354}
1da177e4
LT
1355EXPORT_SYMBOL(blk_requeue_request);
1356
73c10101
JA
1357static void add_acct_request(struct request_queue *q, struct request *rq,
1358 int where)
1359{
320ae51f 1360 blk_account_io_start(rq, true);
7eaceacc 1361 __elv_add_request(q, rq, where);
73c10101
JA
1362}
1363
074a7aca
TH
1364static void part_round_stats_single(int cpu, struct hd_struct *part,
1365 unsigned long now)
1366{
7276d02e
JA
1367 int inflight;
1368
074a7aca
TH
1369 if (now == part->stamp)
1370 return;
1371
7276d02e
JA
1372 inflight = part_in_flight(part);
1373 if (inflight) {
074a7aca 1374 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1375 inflight * (now - part->stamp));
074a7aca
TH
1376 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1377 }
1378 part->stamp = now;
1379}
1380
1381/**
496aa8a9
RD
1382 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1383 * @cpu: cpu number for stats access
1384 * @part: target partition
1da177e4
LT
1385 *
1386 * The average IO queue length and utilisation statistics are maintained
1387 * by observing the current state of the queue length and the amount of
1388 * time it has been in this state for.
1389 *
1390 * Normally, that accounting is done on IO completion, but that can result
1391 * in more than a second's worth of IO being accounted for within any one
1392 * second, leading to >100% utilisation. To deal with that, we call this
1393 * function to do a round-off before returning the results when reading
1394 * /proc/diskstats. This accounts immediately for all queue usage up to
1395 * the current jiffies and restarts the counters again.
1396 */
c9959059 1397void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1398{
1399 unsigned long now = jiffies;
1400
074a7aca
TH
1401 if (part->partno)
1402 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1403 part_round_stats_single(cpu, part, now);
6f2576af 1404}
074a7aca 1405EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1406
47fafbc7 1407#ifdef CONFIG_PM
c8158819
LM
1408static void blk_pm_put_request(struct request *rq)
1409{
e8064021 1410 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1411 pm_runtime_mark_last_busy(rq->q->dev);
1412}
1413#else
1414static inline void blk_pm_put_request(struct request *rq) {}
1415#endif
1416
1da177e4
LT
1417/*
1418 * queue lock must be held
1419 */
165125e1 1420void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1421{
e8064021
CH
1422 req_flags_t rq_flags = req->rq_flags;
1423
1da177e4
LT
1424 if (unlikely(!q))
1425 return;
1da177e4 1426
6f5ba581
CH
1427 if (q->mq_ops) {
1428 blk_mq_free_request(req);
1429 return;
1430 }
1431
c8158819
LM
1432 blk_pm_put_request(req);
1433
8922e16c
TH
1434 elv_completed_request(q, req);
1435
1cd96c24
BH
1436 /* this is a bio leak */
1437 WARN_ON(req->bio != NULL);
1438
1da177e4
LT
1439 /*
1440 * Request may not have originated from ll_rw_blk. if not,
1441 * it didn't come out of our reserved rq pools
1442 */
e8064021 1443 if (rq_flags & RQF_ALLOCED) {
a051661c 1444 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1445 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1446
1da177e4 1447 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1448 BUG_ON(ELV_ON_HASH(req));
1da177e4 1449
a051661c 1450 blk_free_request(rl, req);
e8064021 1451 freed_request(rl, sync, rq_flags);
a051661c 1452 blk_put_rl(rl);
1da177e4
LT
1453 }
1454}
6e39b69e
MC
1455EXPORT_SYMBOL_GPL(__blk_put_request);
1456
1da177e4
LT
1457void blk_put_request(struct request *req)
1458{
165125e1 1459 struct request_queue *q = req->q;
8922e16c 1460
320ae51f
JA
1461 if (q->mq_ops)
1462 blk_mq_free_request(req);
1463 else {
1464 unsigned long flags;
1465
1466 spin_lock_irqsave(q->queue_lock, flags);
1467 __blk_put_request(q, req);
1468 spin_unlock_irqrestore(q->queue_lock, flags);
1469 }
1da177e4 1470}
1da177e4
LT
1471EXPORT_SYMBOL(blk_put_request);
1472
66ac0280
CH
1473/**
1474 * blk_add_request_payload - add a payload to a request
1475 * @rq: request to update
1476 * @page: page backing the payload
37e58237 1477 * @offset: offset in page
66ac0280
CH
1478 * @len: length of the payload.
1479 *
1480 * This allows to later add a payload to an already submitted request by
1481 * a block driver. The driver needs to take care of freeing the payload
1482 * itself.
1483 *
1484 * Note that this is a quite horrible hack and nothing but handling of
1485 * discard requests should ever use it.
1486 */
1487void blk_add_request_payload(struct request *rq, struct page *page,
37e58237 1488 int offset, unsigned int len)
66ac0280
CH
1489{
1490 struct bio *bio = rq->bio;
1491
1492 bio->bi_io_vec->bv_page = page;
37e58237 1493 bio->bi_io_vec->bv_offset = offset;
66ac0280
CH
1494 bio->bi_io_vec->bv_len = len;
1495
4f024f37 1496 bio->bi_iter.bi_size = len;
66ac0280
CH
1497 bio->bi_vcnt = 1;
1498 bio->bi_phys_segments = 1;
1499
1500 rq->__data_len = rq->resid_len = len;
1501 rq->nr_phys_segments = 1;
66ac0280
CH
1502}
1503EXPORT_SYMBOL_GPL(blk_add_request_payload);
1504
320ae51f
JA
1505bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1506 struct bio *bio)
73c10101 1507{
1eff9d32 1508 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1509
73c10101
JA
1510 if (!ll_back_merge_fn(q, req, bio))
1511 return false;
1512
8c1cf6bb 1513 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1514
1515 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1516 blk_rq_set_mixed_merge(req);
1517
1518 req->biotail->bi_next = bio;
1519 req->biotail = bio;
4f024f37 1520 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1521 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1522
320ae51f 1523 blk_account_io_start(req, false);
73c10101
JA
1524 return true;
1525}
1526
320ae51f
JA
1527bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1528 struct bio *bio)
73c10101 1529{
1eff9d32 1530 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1531
73c10101
JA
1532 if (!ll_front_merge_fn(q, req, bio))
1533 return false;
1534
8c1cf6bb 1535 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1536
1537 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1538 blk_rq_set_mixed_merge(req);
1539
73c10101
JA
1540 bio->bi_next = req->bio;
1541 req->bio = bio;
1542
4f024f37
KO
1543 req->__sector = bio->bi_iter.bi_sector;
1544 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1545 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1546
320ae51f 1547 blk_account_io_start(req, false);
73c10101
JA
1548 return true;
1549}
1550
bd87b589 1551/**
320ae51f 1552 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1553 * @q: request_queue new bio is being queued at
1554 * @bio: new bio being queued
1555 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1556 * @same_queue_rq: pointer to &struct request that gets filled in when
1557 * another request associated with @q is found on the plug list
1558 * (optional, may be %NULL)
bd87b589
TH
1559 *
1560 * Determine whether @bio being queued on @q can be merged with a request
1561 * on %current's plugged list. Returns %true if merge was successful,
1562 * otherwise %false.
1563 *
07c2bd37
TH
1564 * Plugging coalesces IOs from the same issuer for the same purpose without
1565 * going through @q->queue_lock. As such it's more of an issuing mechanism
1566 * than scheduling, and the request, while may have elvpriv data, is not
1567 * added on the elevator at this point. In addition, we don't have
1568 * reliable access to the elevator outside queue lock. Only check basic
1569 * merging parameters without querying the elevator.
da41a589
RE
1570 *
1571 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1572 */
320ae51f 1573bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1574 unsigned int *request_count,
1575 struct request **same_queue_rq)
73c10101
JA
1576{
1577 struct blk_plug *plug;
1578 struct request *rq;
1579 bool ret = false;
92f399c7 1580 struct list_head *plug_list;
73c10101 1581
bd87b589 1582 plug = current->plug;
73c10101
JA
1583 if (!plug)
1584 goto out;
56ebdaf2 1585 *request_count = 0;
73c10101 1586
92f399c7
SL
1587 if (q->mq_ops)
1588 plug_list = &plug->mq_list;
1589 else
1590 plug_list = &plug->list;
1591
1592 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1593 int el_ret;
1594
5b3f341f 1595 if (rq->q == q) {
1b2e19f1 1596 (*request_count)++;
5b3f341f
SL
1597 /*
1598 * Only blk-mq multiple hardware queues case checks the
1599 * rq in the same queue, there should be only one such
1600 * rq in a queue
1601 **/
1602 if (same_queue_rq)
1603 *same_queue_rq = rq;
1604 }
56ebdaf2 1605
07c2bd37 1606 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1607 continue;
1608
050c8ea8 1609 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1610 if (el_ret == ELEVATOR_BACK_MERGE) {
1611 ret = bio_attempt_back_merge(q, rq, bio);
1612 if (ret)
1613 break;
1614 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1615 ret = bio_attempt_front_merge(q, rq, bio);
1616 if (ret)
1617 break;
1618 }
1619 }
1620out:
1621 return ret;
1622}
1623
0809e3ac
JM
1624unsigned int blk_plug_queued_count(struct request_queue *q)
1625{
1626 struct blk_plug *plug;
1627 struct request *rq;
1628 struct list_head *plug_list;
1629 unsigned int ret = 0;
1630
1631 plug = current->plug;
1632 if (!plug)
1633 goto out;
1634
1635 if (q->mq_ops)
1636 plug_list = &plug->mq_list;
1637 else
1638 plug_list = &plug->list;
1639
1640 list_for_each_entry(rq, plug_list, queuelist) {
1641 if (rq->q == q)
1642 ret++;
1643 }
1644out:
1645 return ret;
1646}
1647
86db1e29 1648void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1649{
4aff5e23 1650 req->cmd_type = REQ_TYPE_FS;
1eff9d32 1651 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1652 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1653
52d9e675 1654 req->errors = 0;
4f024f37 1655 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1656 req->ioprio = bio_prio(bio);
bc1c56fd 1657 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1658}
1659
dece1635 1660static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1661{
73c10101 1662 struct blk_plug *plug;
ef295ecf 1663 int el_ret, where = ELEVATOR_INSERT_SORT;
73c10101 1664 struct request *req;
56ebdaf2 1665 unsigned int request_count = 0;
1da177e4 1666
1da177e4
LT
1667 /*
1668 * low level driver can indicate that it wants pages above a
1669 * certain limit bounced to low memory (ie for highmem, or even
1670 * ISA dma in theory)
1671 */
1672 blk_queue_bounce(q, &bio);
1673
23688bf4
JN
1674 blk_queue_split(q, &bio, q->bio_split);
1675
ffecfd1a 1676 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1677 bio->bi_error = -EIO;
1678 bio_endio(bio);
dece1635 1679 return BLK_QC_T_NONE;
ffecfd1a
DW
1680 }
1681
1eff9d32 1682 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
73c10101 1683 spin_lock_irq(q->queue_lock);
ae1b1539 1684 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1685 goto get_rq;
1686 }
1687
73c10101
JA
1688 /*
1689 * Check if we can merge with the plugged list before grabbing
1690 * any locks.
1691 */
0809e3ac
JM
1692 if (!blk_queue_nomerges(q)) {
1693 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1694 return BLK_QC_T_NONE;
0809e3ac
JM
1695 } else
1696 request_count = blk_plug_queued_count(q);
1da177e4 1697
73c10101 1698 spin_lock_irq(q->queue_lock);
2056a782 1699
73c10101
JA
1700 el_ret = elv_merge(q, &req, bio);
1701 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1702 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1703 elv_bio_merged(q, req, bio);
73c10101
JA
1704 if (!attempt_back_merge(q, req))
1705 elv_merged_request(q, req, el_ret);
1706 goto out_unlock;
1707 }
1708 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1709 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1710 elv_bio_merged(q, req, bio);
73c10101
JA
1711 if (!attempt_front_merge(q, req))
1712 elv_merged_request(q, req, el_ret);
1713 goto out_unlock;
80a761fd 1714 }
1da177e4
LT
1715 }
1716
450991bc 1717get_rq:
1da177e4 1718 /*
450991bc 1719 * Grab a free request. This is might sleep but can not fail.
d6344532 1720 * Returns with the queue unlocked.
450991bc 1721 */
ef295ecf 1722 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1723 if (IS_ERR(req)) {
4246a0b6
CH
1724 bio->bi_error = PTR_ERR(req);
1725 bio_endio(bio);
da8303c6
TH
1726 goto out_unlock;
1727 }
d6344532 1728
450991bc
NP
1729 /*
1730 * After dropping the lock and possibly sleeping here, our request
1731 * may now be mergeable after it had proven unmergeable (above).
1732 * We don't worry about that case for efficiency. It won't happen
1733 * often, and the elevators are able to handle it.
1da177e4 1734 */
52d9e675 1735 init_request_from_bio(req, bio);
1da177e4 1736
9562ad9a 1737 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1738 req->cpu = raw_smp_processor_id();
73c10101
JA
1739
1740 plug = current->plug;
721a9602 1741 if (plug) {
dc6d36c9
JA
1742 /*
1743 * If this is the first request added after a plug, fire
7aef2e78 1744 * of a plug trace.
dc6d36c9 1745 */
7aef2e78 1746 if (!request_count)
dc6d36c9 1747 trace_block_plug(q);
3540d5e8 1748 else {
50d24c34
SL
1749 struct request *last = list_entry_rq(plug->list.prev);
1750 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1751 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1752 blk_flush_plug_list(plug, false);
019ceb7d
SL
1753 trace_block_plug(q);
1754 }
73c10101 1755 }
73c10101 1756 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1757 blk_account_io_start(req, true);
73c10101
JA
1758 } else {
1759 spin_lock_irq(q->queue_lock);
1760 add_acct_request(q, req, where);
24ecfbe2 1761 __blk_run_queue(q);
73c10101
JA
1762out_unlock:
1763 spin_unlock_irq(q->queue_lock);
1764 }
dece1635
JA
1765
1766 return BLK_QC_T_NONE;
1da177e4
LT
1767}
1768
1769/*
1770 * If bio->bi_dev is a partition, remap the location
1771 */
1772static inline void blk_partition_remap(struct bio *bio)
1773{
1774 struct block_device *bdev = bio->bi_bdev;
1775
bf2de6f5 1776 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1777 struct hd_struct *p = bdev->bd_part;
1778
4f024f37 1779 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1780 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1781
d07335e5
MS
1782 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1783 bdev->bd_dev,
4f024f37 1784 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1785 }
1786}
1787
1da177e4
LT
1788static void handle_bad_sector(struct bio *bio)
1789{
1790 char b[BDEVNAME_SIZE];
1791
1792 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1793 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1794 bdevname(bio->bi_bdev, b),
1eff9d32 1795 bio->bi_opf,
f73a1c7d 1796 (unsigned long long)bio_end_sector(bio),
77304d2a 1797 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1798}
1799
c17bb495
AM
1800#ifdef CONFIG_FAIL_MAKE_REQUEST
1801
1802static DECLARE_FAULT_ATTR(fail_make_request);
1803
1804static int __init setup_fail_make_request(char *str)
1805{
1806 return setup_fault_attr(&fail_make_request, str);
1807}
1808__setup("fail_make_request=", setup_fail_make_request);
1809
b2c9cd37 1810static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1811{
b2c9cd37 1812 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1813}
1814
1815static int __init fail_make_request_debugfs(void)
1816{
dd48c085
AM
1817 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1818 NULL, &fail_make_request);
1819
21f9fcd8 1820 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1821}
1822
1823late_initcall(fail_make_request_debugfs);
1824
1825#else /* CONFIG_FAIL_MAKE_REQUEST */
1826
b2c9cd37
AM
1827static inline bool should_fail_request(struct hd_struct *part,
1828 unsigned int bytes)
c17bb495 1829{
b2c9cd37 1830 return false;
c17bb495
AM
1831}
1832
1833#endif /* CONFIG_FAIL_MAKE_REQUEST */
1834
c07e2b41
JA
1835/*
1836 * Check whether this bio extends beyond the end of the device.
1837 */
1838static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1839{
1840 sector_t maxsector;
1841
1842 if (!nr_sectors)
1843 return 0;
1844
1845 /* Test device or partition size, when known. */
77304d2a 1846 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1847 if (maxsector) {
4f024f37 1848 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1849
1850 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1851 /*
1852 * This may well happen - the kernel calls bread()
1853 * without checking the size of the device, e.g., when
1854 * mounting a device.
1855 */
1856 handle_bad_sector(bio);
1857 return 1;
1858 }
1859 }
1860
1861 return 0;
1862}
1863
27a84d54
CH
1864static noinline_for_stack bool
1865generic_make_request_checks(struct bio *bio)
1da177e4 1866{
165125e1 1867 struct request_queue *q;
5a7bbad2 1868 int nr_sectors = bio_sectors(bio);
51fd77bd 1869 int err = -EIO;
5a7bbad2
CH
1870 char b[BDEVNAME_SIZE];
1871 struct hd_struct *part;
1da177e4
LT
1872
1873 might_sleep();
1da177e4 1874
c07e2b41
JA
1875 if (bio_check_eod(bio, nr_sectors))
1876 goto end_io;
1da177e4 1877
5a7bbad2
CH
1878 q = bdev_get_queue(bio->bi_bdev);
1879 if (unlikely(!q)) {
1880 printk(KERN_ERR
1881 "generic_make_request: Trying to access "
1882 "nonexistent block-device %s (%Lu)\n",
1883 bdevname(bio->bi_bdev, b),
4f024f37 1884 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1885 goto end_io;
1886 }
c17bb495 1887
5a7bbad2 1888 part = bio->bi_bdev->bd_part;
4f024f37 1889 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1890 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1891 bio->bi_iter.bi_size))
5a7bbad2 1892 goto end_io;
2056a782 1893
5a7bbad2
CH
1894 /*
1895 * If this device has partitions, remap block n
1896 * of partition p to block n+start(p) of the disk.
1897 */
1898 blk_partition_remap(bio);
2056a782 1899
5a7bbad2
CH
1900 if (bio_check_eod(bio, nr_sectors))
1901 goto end_io;
1e87901e 1902
5a7bbad2
CH
1903 /*
1904 * Filter flush bio's early so that make_request based
1905 * drivers without flush support don't have to worry
1906 * about them.
1907 */
1eff9d32 1908 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
c888a8f9 1909 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1910 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1911 if (!nr_sectors) {
1912 err = 0;
51fd77bd
JA
1913 goto end_io;
1914 }
5a7bbad2 1915 }
5ddfe969 1916
288dab8a
CH
1917 switch (bio_op(bio)) {
1918 case REQ_OP_DISCARD:
1919 if (!blk_queue_discard(q))
1920 goto not_supported;
1921 break;
1922 case REQ_OP_SECURE_ERASE:
1923 if (!blk_queue_secure_erase(q))
1924 goto not_supported;
1925 break;
1926 case REQ_OP_WRITE_SAME:
1927 if (!bdev_write_same(bio->bi_bdev))
1928 goto not_supported;
2d253440
ST
1929 case REQ_OP_ZONE_REPORT:
1930 case REQ_OP_ZONE_RESET:
1931 if (!bdev_is_zoned(bio->bi_bdev))
1932 goto not_supported;
288dab8a
CH
1933 break;
1934 default:
1935 break;
5a7bbad2 1936 }
01edede4 1937
7f4b35d1
TH
1938 /*
1939 * Various block parts want %current->io_context and lazy ioc
1940 * allocation ends up trading a lot of pain for a small amount of
1941 * memory. Just allocate it upfront. This may fail and block
1942 * layer knows how to live with it.
1943 */
1944 create_io_context(GFP_ATOMIC, q->node);
1945
ae118896
TH
1946 if (!blkcg_bio_issue_check(q, bio))
1947 return false;
27a84d54 1948
5a7bbad2 1949 trace_block_bio_queue(q, bio);
27a84d54 1950 return true;
a7384677 1951
288dab8a
CH
1952not_supported:
1953 err = -EOPNOTSUPP;
a7384677 1954end_io:
4246a0b6
CH
1955 bio->bi_error = err;
1956 bio_endio(bio);
27a84d54 1957 return false;
1da177e4
LT
1958}
1959
27a84d54
CH
1960/**
1961 * generic_make_request - hand a buffer to its device driver for I/O
1962 * @bio: The bio describing the location in memory and on the device.
1963 *
1964 * generic_make_request() is used to make I/O requests of block
1965 * devices. It is passed a &struct bio, which describes the I/O that needs
1966 * to be done.
1967 *
1968 * generic_make_request() does not return any status. The
1969 * success/failure status of the request, along with notification of
1970 * completion, is delivered asynchronously through the bio->bi_end_io
1971 * function described (one day) else where.
1972 *
1973 * The caller of generic_make_request must make sure that bi_io_vec
1974 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1975 * set to describe the device address, and the
1976 * bi_end_io and optionally bi_private are set to describe how
1977 * completion notification should be signaled.
1978 *
1979 * generic_make_request and the drivers it calls may use bi_next if this
1980 * bio happens to be merged with someone else, and may resubmit the bio to
1981 * a lower device by calling into generic_make_request recursively, which
1982 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1983 */
dece1635 1984blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1985{
bddd87c7 1986 struct bio_list bio_list_on_stack;
dece1635 1987 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1988
27a84d54 1989 if (!generic_make_request_checks(bio))
dece1635 1990 goto out;
27a84d54
CH
1991
1992 /*
1993 * We only want one ->make_request_fn to be active at a time, else
1994 * stack usage with stacked devices could be a problem. So use
1995 * current->bio_list to keep a list of requests submited by a
1996 * make_request_fn function. current->bio_list is also used as a
1997 * flag to say if generic_make_request is currently active in this
1998 * task or not. If it is NULL, then no make_request is active. If
1999 * it is non-NULL, then a make_request is active, and new requests
2000 * should be added at the tail
2001 */
bddd87c7 2002 if (current->bio_list) {
bddd87c7 2003 bio_list_add(current->bio_list, bio);
dece1635 2004 goto out;
d89d8796 2005 }
27a84d54 2006
d89d8796
NB
2007 /* following loop may be a bit non-obvious, and so deserves some
2008 * explanation.
2009 * Before entering the loop, bio->bi_next is NULL (as all callers
2010 * ensure that) so we have a list with a single bio.
2011 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2012 * we assign bio_list to a pointer to the bio_list_on_stack,
2013 * thus initialising the bio_list of new bios to be
27a84d54 2014 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2015 * through a recursive call to generic_make_request. If it
2016 * did, we find a non-NULL value in bio_list and re-enter the loop
2017 * from the top. In this case we really did just take the bio
bddd87c7 2018 * of the top of the list (no pretending) and so remove it from
27a84d54 2019 * bio_list, and call into ->make_request() again.
d89d8796
NB
2020 */
2021 BUG_ON(bio->bi_next);
bddd87c7
AM
2022 bio_list_init(&bio_list_on_stack);
2023 current->bio_list = &bio_list_on_stack;
d89d8796 2024 do {
27a84d54
CH
2025 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2026
6f3b0e8b 2027 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2028 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2029
2030 blk_queue_exit(q);
27a84d54 2031
3ef28e83
DW
2032 bio = bio_list_pop(current->bio_list);
2033 } else {
2034 struct bio *bio_next = bio_list_pop(current->bio_list);
2035
2036 bio_io_error(bio);
2037 bio = bio_next;
2038 }
d89d8796 2039 } while (bio);
bddd87c7 2040 current->bio_list = NULL; /* deactivate */
dece1635
JA
2041
2042out:
2043 return ret;
d89d8796 2044}
1da177e4
LT
2045EXPORT_SYMBOL(generic_make_request);
2046
2047/**
710027a4 2048 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2049 * @bio: The &struct bio which describes the I/O
2050 *
2051 * submit_bio() is very similar in purpose to generic_make_request(), and
2052 * uses that function to do most of the work. Both are fairly rough
710027a4 2053 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2054 *
2055 */
4e49ea4a 2056blk_qc_t submit_bio(struct bio *bio)
1da177e4 2057{
bf2de6f5
JA
2058 /*
2059 * If it's a regular read/write or a barrier with data attached,
2060 * go through the normal accounting stuff before submission.
2061 */
e2a60da7 2062 if (bio_has_data(bio)) {
4363ac7c
MP
2063 unsigned int count;
2064
95fe6c1a 2065 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2066 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2067 else
2068 count = bio_sectors(bio);
2069
a8ebb056 2070 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2071 count_vm_events(PGPGOUT, count);
2072 } else {
4f024f37 2073 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2074 count_vm_events(PGPGIN, count);
2075 }
2076
2077 if (unlikely(block_dump)) {
2078 char b[BDEVNAME_SIZE];
8dcbdc74 2079 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2080 current->comm, task_pid_nr(current),
a8ebb056 2081 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2082 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2083 bdevname(bio->bi_bdev, b),
2084 count);
bf2de6f5 2085 }
1da177e4
LT
2086 }
2087
dece1635 2088 return generic_make_request(bio);
1da177e4 2089}
1da177e4
LT
2090EXPORT_SYMBOL(submit_bio);
2091
82124d60 2092/**
bf4e6b4e
HR
2093 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2094 * for new the queue limits
82124d60
KU
2095 * @q: the queue
2096 * @rq: the request being checked
2097 *
2098 * Description:
2099 * @rq may have been made based on weaker limitations of upper-level queues
2100 * in request stacking drivers, and it may violate the limitation of @q.
2101 * Since the block layer and the underlying device driver trust @rq
2102 * after it is inserted to @q, it should be checked against @q before
2103 * the insertion using this generic function.
2104 *
82124d60 2105 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2106 * limits when retrying requests on other queues. Those requests need
2107 * to be checked against the new queue limits again during dispatch.
82124d60 2108 */
bf4e6b4e
HR
2109static int blk_cloned_rq_check_limits(struct request_queue *q,
2110 struct request *rq)
82124d60 2111{
8fe0d473 2112 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2113 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2114 return -EIO;
2115 }
2116
2117 /*
2118 * queue's settings related to segment counting like q->bounce_pfn
2119 * may differ from that of other stacking queues.
2120 * Recalculate it to check the request correctly on this queue's
2121 * limitation.
2122 */
2123 blk_recalc_rq_segments(rq);
8a78362c 2124 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2125 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2126 return -EIO;
2127 }
2128
2129 return 0;
2130}
82124d60
KU
2131
2132/**
2133 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2134 * @q: the queue to submit the request
2135 * @rq: the request being queued
2136 */
2137int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2138{
2139 unsigned long flags;
4853abaa 2140 int where = ELEVATOR_INSERT_BACK;
82124d60 2141
bf4e6b4e 2142 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2143 return -EIO;
2144
b2c9cd37
AM
2145 if (rq->rq_disk &&
2146 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2147 return -EIO;
82124d60 2148
7fb4898e
KB
2149 if (q->mq_ops) {
2150 if (blk_queue_io_stat(q))
2151 blk_account_io_start(rq, true);
6acfe68b 2152 blk_mq_insert_request(rq, false, true, false);
7fb4898e
KB
2153 return 0;
2154 }
2155
82124d60 2156 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2157 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2158 spin_unlock_irqrestore(q->queue_lock, flags);
2159 return -ENODEV;
2160 }
82124d60
KU
2161
2162 /*
2163 * Submitting request must be dequeued before calling this function
2164 * because it will be linked to another request_queue
2165 */
2166 BUG_ON(blk_queued_rq(rq));
2167
28a8f0d3 2168 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
4853abaa
JM
2169 where = ELEVATOR_INSERT_FLUSH;
2170
2171 add_acct_request(q, rq, where);
e67b77c7
JM
2172 if (where == ELEVATOR_INSERT_FLUSH)
2173 __blk_run_queue(q);
82124d60
KU
2174 spin_unlock_irqrestore(q->queue_lock, flags);
2175
2176 return 0;
2177}
2178EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2179
80a761fd
TH
2180/**
2181 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2182 * @rq: request to examine
2183 *
2184 * Description:
2185 * A request could be merge of IOs which require different failure
2186 * handling. This function determines the number of bytes which
2187 * can be failed from the beginning of the request without
2188 * crossing into area which need to be retried further.
2189 *
2190 * Return:
2191 * The number of bytes to fail.
2192 *
2193 * Context:
2194 * queue_lock must be held.
2195 */
2196unsigned int blk_rq_err_bytes(const struct request *rq)
2197{
2198 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2199 unsigned int bytes = 0;
2200 struct bio *bio;
2201
e8064021 2202 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2203 return blk_rq_bytes(rq);
2204
2205 /*
2206 * Currently the only 'mixing' which can happen is between
2207 * different fastfail types. We can safely fail portions
2208 * which have all the failfast bits that the first one has -
2209 * the ones which are at least as eager to fail as the first
2210 * one.
2211 */
2212 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2213 if ((bio->bi_opf & ff) != ff)
80a761fd 2214 break;
4f024f37 2215 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2216 }
2217
2218 /* this could lead to infinite loop */
2219 BUG_ON(blk_rq_bytes(rq) && !bytes);
2220 return bytes;
2221}
2222EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2223
320ae51f 2224void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2225{
c2553b58 2226 if (blk_do_io_stat(req)) {
bc58ba94
JA
2227 const int rw = rq_data_dir(req);
2228 struct hd_struct *part;
2229 int cpu;
2230
2231 cpu = part_stat_lock();
09e099d4 2232 part = req->part;
bc58ba94
JA
2233 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2234 part_stat_unlock();
2235 }
2236}
2237
320ae51f 2238void blk_account_io_done(struct request *req)
bc58ba94 2239{
bc58ba94 2240 /*
dd4c133f
TH
2241 * Account IO completion. flush_rq isn't accounted as a
2242 * normal IO on queueing nor completion. Accounting the
2243 * containing request is enough.
bc58ba94 2244 */
e8064021 2245 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2246 unsigned long duration = jiffies - req->start_time;
2247 const int rw = rq_data_dir(req);
2248 struct hd_struct *part;
2249 int cpu;
2250
2251 cpu = part_stat_lock();
09e099d4 2252 part = req->part;
bc58ba94
JA
2253
2254 part_stat_inc(cpu, part, ios[rw]);
2255 part_stat_add(cpu, part, ticks[rw], duration);
2256 part_round_stats(cpu, part);
316d315b 2257 part_dec_in_flight(part, rw);
bc58ba94 2258
6c23a968 2259 hd_struct_put(part);
bc58ba94
JA
2260 part_stat_unlock();
2261 }
2262}
2263
47fafbc7 2264#ifdef CONFIG_PM
c8158819
LM
2265/*
2266 * Don't process normal requests when queue is suspended
2267 * or in the process of suspending/resuming
2268 */
2269static struct request *blk_pm_peek_request(struct request_queue *q,
2270 struct request *rq)
2271{
2272 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2273 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2274 return NULL;
2275 else
2276 return rq;
2277}
2278#else
2279static inline struct request *blk_pm_peek_request(struct request_queue *q,
2280 struct request *rq)
2281{
2282 return rq;
2283}
2284#endif
2285
320ae51f
JA
2286void blk_account_io_start(struct request *rq, bool new_io)
2287{
2288 struct hd_struct *part;
2289 int rw = rq_data_dir(rq);
2290 int cpu;
2291
2292 if (!blk_do_io_stat(rq))
2293 return;
2294
2295 cpu = part_stat_lock();
2296
2297 if (!new_io) {
2298 part = rq->part;
2299 part_stat_inc(cpu, part, merges[rw]);
2300 } else {
2301 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2302 if (!hd_struct_try_get(part)) {
2303 /*
2304 * The partition is already being removed,
2305 * the request will be accounted on the disk only
2306 *
2307 * We take a reference on disk->part0 although that
2308 * partition will never be deleted, so we can treat
2309 * it as any other partition.
2310 */
2311 part = &rq->rq_disk->part0;
2312 hd_struct_get(part);
2313 }
2314 part_round_stats(cpu, part);
2315 part_inc_in_flight(part, rw);
2316 rq->part = part;
2317 }
2318
2319 part_stat_unlock();
2320}
2321
3bcddeac 2322/**
9934c8c0
TH
2323 * blk_peek_request - peek at the top of a request queue
2324 * @q: request queue to peek at
2325 *
2326 * Description:
2327 * Return the request at the top of @q. The returned request
2328 * should be started using blk_start_request() before LLD starts
2329 * processing it.
2330 *
2331 * Return:
2332 * Pointer to the request at the top of @q if available. Null
2333 * otherwise.
2334 *
2335 * Context:
2336 * queue_lock must be held.
2337 */
2338struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2339{
2340 struct request *rq;
2341 int ret;
2342
2343 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2344
2345 rq = blk_pm_peek_request(q, rq);
2346 if (!rq)
2347 break;
2348
e8064021 2349 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2350 /*
2351 * This is the first time the device driver
2352 * sees this request (possibly after
2353 * requeueing). Notify IO scheduler.
2354 */
e8064021 2355 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2356 elv_activate_rq(q, rq);
2357
2358 /*
2359 * just mark as started even if we don't start
2360 * it, a request that has been delayed should
2361 * not be passed by new incoming requests
2362 */
e8064021 2363 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2364 trace_block_rq_issue(q, rq);
2365 }
2366
2367 if (!q->boundary_rq || q->boundary_rq == rq) {
2368 q->end_sector = rq_end_sector(rq);
2369 q->boundary_rq = NULL;
2370 }
2371
e8064021 2372 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2373 break;
2374
2e46e8b2 2375 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2376 /*
2377 * make sure space for the drain appears we
2378 * know we can do this because max_hw_segments
2379 * has been adjusted to be one fewer than the
2380 * device can handle
2381 */
2382 rq->nr_phys_segments++;
2383 }
2384
2385 if (!q->prep_rq_fn)
2386 break;
2387
2388 ret = q->prep_rq_fn(q, rq);
2389 if (ret == BLKPREP_OK) {
2390 break;
2391 } else if (ret == BLKPREP_DEFER) {
2392 /*
2393 * the request may have been (partially) prepped.
2394 * we need to keep this request in the front to
e8064021 2395 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2396 * prevent other fs requests from passing this one.
2397 */
2e46e8b2 2398 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2399 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2400 /*
2401 * remove the space for the drain we added
2402 * so that we don't add it again
2403 */
2404 --rq->nr_phys_segments;
2405 }
2406
2407 rq = NULL;
2408 break;
0fb5b1fb
MP
2409 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2410 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2411
e8064021 2412 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2413 /*
2414 * Mark this request as started so we don't trigger
2415 * any debug logic in the end I/O path.
2416 */
2417 blk_start_request(rq);
0fb5b1fb 2418 __blk_end_request_all(rq, err);
158dbda0
TH
2419 } else {
2420 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2421 break;
2422 }
2423 }
2424
2425 return rq;
2426}
9934c8c0 2427EXPORT_SYMBOL(blk_peek_request);
158dbda0 2428
9934c8c0 2429void blk_dequeue_request(struct request *rq)
158dbda0 2430{
9934c8c0
TH
2431 struct request_queue *q = rq->q;
2432
158dbda0
TH
2433 BUG_ON(list_empty(&rq->queuelist));
2434 BUG_ON(ELV_ON_HASH(rq));
2435
2436 list_del_init(&rq->queuelist);
2437
2438 /*
2439 * the time frame between a request being removed from the lists
2440 * and to it is freed is accounted as io that is in progress at
2441 * the driver side.
2442 */
9195291e 2443 if (blk_account_rq(rq)) {
0a7ae2ff 2444 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2445 set_io_start_time_ns(rq);
2446 }
158dbda0
TH
2447}
2448
9934c8c0
TH
2449/**
2450 * blk_start_request - start request processing on the driver
2451 * @req: request to dequeue
2452 *
2453 * Description:
2454 * Dequeue @req and start timeout timer on it. This hands off the
2455 * request to the driver.
2456 *
2457 * Block internal functions which don't want to start timer should
2458 * call blk_dequeue_request().
2459 *
2460 * Context:
2461 * queue_lock must be held.
2462 */
2463void blk_start_request(struct request *req)
2464{
2465 blk_dequeue_request(req);
2466
2467 /*
5f49f631
TH
2468 * We are now handing the request to the hardware, initialize
2469 * resid_len to full count and add the timeout handler.
9934c8c0 2470 */
5f49f631 2471 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2472 if (unlikely(blk_bidi_rq(req)))
2473 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2474
4912aa6c 2475 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2476 blk_add_timer(req);
2477}
2478EXPORT_SYMBOL(blk_start_request);
2479
2480/**
2481 * blk_fetch_request - fetch a request from a request queue
2482 * @q: request queue to fetch a request from
2483 *
2484 * Description:
2485 * Return the request at the top of @q. The request is started on
2486 * return and LLD can start processing it immediately.
2487 *
2488 * Return:
2489 * Pointer to the request at the top of @q if available. Null
2490 * otherwise.
2491 *
2492 * Context:
2493 * queue_lock must be held.
2494 */
2495struct request *blk_fetch_request(struct request_queue *q)
2496{
2497 struct request *rq;
2498
2499 rq = blk_peek_request(q);
2500 if (rq)
2501 blk_start_request(rq);
2502 return rq;
2503}
2504EXPORT_SYMBOL(blk_fetch_request);
2505
3bcddeac 2506/**
2e60e022 2507 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2508 * @req: the request being processed
710027a4 2509 * @error: %0 for success, < %0 for error
8ebf9756 2510 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2511 *
2512 * Description:
8ebf9756
RD
2513 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2514 * the request structure even if @req doesn't have leftover.
2515 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2516 *
2517 * This special helper function is only for request stacking drivers
2518 * (e.g. request-based dm) so that they can handle partial completion.
2519 * Actual device drivers should use blk_end_request instead.
2520 *
2521 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2522 * %false return from this function.
3bcddeac
KU
2523 *
2524 * Return:
2e60e022
TH
2525 * %false - this request doesn't have any more data
2526 * %true - this request has more data
3bcddeac 2527 **/
2e60e022 2528bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2529{
f79ea416 2530 int total_bytes;
1da177e4 2531
4a0efdc9
HR
2532 trace_block_rq_complete(req->q, req, nr_bytes);
2533
2e60e022
TH
2534 if (!req->bio)
2535 return false;
2536
1da177e4 2537 /*
6f41469c
TH
2538 * For fs requests, rq is just carrier of independent bio's
2539 * and each partial completion should be handled separately.
2540 * Reset per-request error on each partial completion.
2541 *
2542 * TODO: tj: This is too subtle. It would be better to let
2543 * low level drivers do what they see fit.
1da177e4 2544 */
33659ebb 2545 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2546 req->errors = 0;
2547
33659ebb 2548 if (error && req->cmd_type == REQ_TYPE_FS &&
e8064021 2549 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2550 char *error_type;
2551
2552 switch (error) {
2553 case -ENOLINK:
2554 error_type = "recoverable transport";
2555 break;
2556 case -EREMOTEIO:
2557 error_type = "critical target";
2558 break;
2559 case -EBADE:
2560 error_type = "critical nexus";
2561 break;
d1ffc1f8
HR
2562 case -ETIMEDOUT:
2563 error_type = "timeout";
2564 break;
a9d6ceb8
HR
2565 case -ENOSPC:
2566 error_type = "critical space allocation";
2567 break;
7e782af5
HR
2568 case -ENODATA:
2569 error_type = "critical medium";
2570 break;
79775567
HR
2571 case -EIO:
2572 default:
2573 error_type = "I/O";
2574 break;
2575 }
ef3ecb66
RE
2576 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2577 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2578 req->rq_disk->disk_name : "?",
2579 (unsigned long long)blk_rq_pos(req));
2580
1da177e4
LT
2581 }
2582
bc58ba94 2583 blk_account_io_completion(req, nr_bytes);
d72d904a 2584
f79ea416
KO
2585 total_bytes = 0;
2586 while (req->bio) {
2587 struct bio *bio = req->bio;
4f024f37 2588 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2589
4f024f37 2590 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2591 req->bio = bio->bi_next;
1da177e4 2592
f79ea416 2593 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2594
f79ea416
KO
2595 total_bytes += bio_bytes;
2596 nr_bytes -= bio_bytes;
1da177e4 2597
f79ea416
KO
2598 if (!nr_bytes)
2599 break;
1da177e4
LT
2600 }
2601
2602 /*
2603 * completely done
2604 */
2e60e022
TH
2605 if (!req->bio) {
2606 /*
2607 * Reset counters so that the request stacking driver
2608 * can find how many bytes remain in the request
2609 * later.
2610 */
a2dec7b3 2611 req->__data_len = 0;
2e60e022
TH
2612 return false;
2613 }
1da177e4 2614
a2dec7b3 2615 req->__data_len -= total_bytes;
2e46e8b2
TH
2616
2617 /* update sector only for requests with clear definition of sector */
e2a60da7 2618 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2619 req->__sector += total_bytes >> 9;
2e46e8b2 2620
80a761fd 2621 /* mixed attributes always follow the first bio */
e8064021 2622 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2623 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2624 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2625 }
2626
2e46e8b2
TH
2627 /*
2628 * If total number of sectors is less than the first segment
2629 * size, something has gone terribly wrong.
2630 */
2631 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2632 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2633 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2634 }
2635
2636 /* recalculate the number of segments */
1da177e4 2637 blk_recalc_rq_segments(req);
2e46e8b2 2638
2e60e022 2639 return true;
1da177e4 2640}
2e60e022 2641EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2642
2e60e022
TH
2643static bool blk_update_bidi_request(struct request *rq, int error,
2644 unsigned int nr_bytes,
2645 unsigned int bidi_bytes)
5efccd17 2646{
2e60e022
TH
2647 if (blk_update_request(rq, error, nr_bytes))
2648 return true;
5efccd17 2649
2e60e022
TH
2650 /* Bidi request must be completed as a whole */
2651 if (unlikely(blk_bidi_rq(rq)) &&
2652 blk_update_request(rq->next_rq, error, bidi_bytes))
2653 return true;
5efccd17 2654
e2e1a148
JA
2655 if (blk_queue_add_random(rq->q))
2656 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2657
2658 return false;
1da177e4
LT
2659}
2660
28018c24
JB
2661/**
2662 * blk_unprep_request - unprepare a request
2663 * @req: the request
2664 *
2665 * This function makes a request ready for complete resubmission (or
2666 * completion). It happens only after all error handling is complete,
2667 * so represents the appropriate moment to deallocate any resources
2668 * that were allocated to the request in the prep_rq_fn. The queue
2669 * lock is held when calling this.
2670 */
2671void blk_unprep_request(struct request *req)
2672{
2673 struct request_queue *q = req->q;
2674
e8064021 2675 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2676 if (q->unprep_rq_fn)
2677 q->unprep_rq_fn(q, req);
2678}
2679EXPORT_SYMBOL_GPL(blk_unprep_request);
2680
1da177e4
LT
2681/*
2682 * queue lock must be held
2683 */
12120077 2684void blk_finish_request(struct request *req, int error)
1da177e4 2685{
e8064021 2686 if (req->rq_flags & RQF_QUEUED)
b8286239
KU
2687 blk_queue_end_tag(req->q, req);
2688
ba396a6c 2689 BUG_ON(blk_queued_rq(req));
1da177e4 2690
33659ebb 2691 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2692 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2693
e78042e5
MA
2694 blk_delete_timer(req);
2695
e8064021 2696 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2697 blk_unprep_request(req);
2698
bc58ba94 2699 blk_account_io_done(req);
b8286239 2700
1da177e4 2701 if (req->end_io)
8ffdc655 2702 req->end_io(req, error);
b8286239
KU
2703 else {
2704 if (blk_bidi_rq(req))
2705 __blk_put_request(req->next_rq->q, req->next_rq);
2706
1da177e4 2707 __blk_put_request(req->q, req);
b8286239 2708 }
1da177e4 2709}
12120077 2710EXPORT_SYMBOL(blk_finish_request);
1da177e4 2711
3b11313a 2712/**
2e60e022
TH
2713 * blk_end_bidi_request - Complete a bidi request
2714 * @rq: the request to complete
2715 * @error: %0 for success, < %0 for error
2716 * @nr_bytes: number of bytes to complete @rq
2717 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2718 *
2719 * Description:
e3a04fe3 2720 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2721 * Drivers that supports bidi can safely call this member for any
2722 * type of request, bidi or uni. In the later case @bidi_bytes is
2723 * just ignored.
336cdb40
KU
2724 *
2725 * Return:
2e60e022
TH
2726 * %false - we are done with this request
2727 * %true - still buffers pending for this request
a0cd1285 2728 **/
b1f74493 2729static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2730 unsigned int nr_bytes, unsigned int bidi_bytes)
2731{
336cdb40 2732 struct request_queue *q = rq->q;
2e60e022 2733 unsigned long flags;
32fab448 2734
2e60e022
TH
2735 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2736 return true;
32fab448 2737
336cdb40 2738 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2739 blk_finish_request(rq, error);
336cdb40
KU
2740 spin_unlock_irqrestore(q->queue_lock, flags);
2741
2e60e022 2742 return false;
32fab448
KU
2743}
2744
336cdb40 2745/**
2e60e022
TH
2746 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2747 * @rq: the request to complete
710027a4 2748 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2749 * @nr_bytes: number of bytes to complete @rq
2750 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2751 *
2752 * Description:
2e60e022
TH
2753 * Identical to blk_end_bidi_request() except that queue lock is
2754 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2755 *
2756 * Return:
2e60e022
TH
2757 * %false - we are done with this request
2758 * %true - still buffers pending for this request
336cdb40 2759 **/
4853abaa 2760bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2761 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2762{
2e60e022
TH
2763 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2764 return true;
336cdb40 2765
2e60e022 2766 blk_finish_request(rq, error);
336cdb40 2767
2e60e022 2768 return false;
336cdb40 2769}
e19a3ab0
KU
2770
2771/**
2772 * blk_end_request - Helper function for drivers to complete the request.
2773 * @rq: the request being processed
710027a4 2774 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2775 * @nr_bytes: number of bytes to complete
2776 *
2777 * Description:
2778 * Ends I/O on a number of bytes attached to @rq.
2779 * If @rq has leftover, sets it up for the next range of segments.
2780 *
2781 * Return:
b1f74493
FT
2782 * %false - we are done with this request
2783 * %true - still buffers pending for this request
e19a3ab0 2784 **/
b1f74493 2785bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2786{
b1f74493 2787 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2788}
56ad1740 2789EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2790
2791/**
b1f74493
FT
2792 * blk_end_request_all - Helper function for drives to finish the request.
2793 * @rq: the request to finish
8ebf9756 2794 * @error: %0 for success, < %0 for error
336cdb40
KU
2795 *
2796 * Description:
b1f74493
FT
2797 * Completely finish @rq.
2798 */
2799void blk_end_request_all(struct request *rq, int error)
336cdb40 2800{
b1f74493
FT
2801 bool pending;
2802 unsigned int bidi_bytes = 0;
336cdb40 2803
b1f74493
FT
2804 if (unlikely(blk_bidi_rq(rq)))
2805 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2806
b1f74493
FT
2807 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2808 BUG_ON(pending);
2809}
56ad1740 2810EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2811
b1f74493
FT
2812/**
2813 * blk_end_request_cur - Helper function to finish the current request chunk.
2814 * @rq: the request to finish the current chunk for
8ebf9756 2815 * @error: %0 for success, < %0 for error
b1f74493
FT
2816 *
2817 * Description:
2818 * Complete the current consecutively mapped chunk from @rq.
2819 *
2820 * Return:
2821 * %false - we are done with this request
2822 * %true - still buffers pending for this request
2823 */
2824bool blk_end_request_cur(struct request *rq, int error)
2825{
2826 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2827}
56ad1740 2828EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2829
80a761fd
TH
2830/**
2831 * blk_end_request_err - Finish a request till the next failure boundary.
2832 * @rq: the request to finish till the next failure boundary for
2833 * @error: must be negative errno
2834 *
2835 * Description:
2836 * Complete @rq till the next failure boundary.
2837 *
2838 * Return:
2839 * %false - we are done with this request
2840 * %true - still buffers pending for this request
2841 */
2842bool blk_end_request_err(struct request *rq, int error)
2843{
2844 WARN_ON(error >= 0);
2845 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2846}
2847EXPORT_SYMBOL_GPL(blk_end_request_err);
2848
e3a04fe3 2849/**
b1f74493
FT
2850 * __blk_end_request - Helper function for drivers to complete the request.
2851 * @rq: the request being processed
2852 * @error: %0 for success, < %0 for error
2853 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2854 *
2855 * Description:
b1f74493 2856 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2857 *
2858 * Return:
b1f74493
FT
2859 * %false - we are done with this request
2860 * %true - still buffers pending for this request
e3a04fe3 2861 **/
b1f74493 2862bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2863{
b1f74493 2864 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2865}
56ad1740 2866EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2867
32fab448 2868/**
b1f74493
FT
2869 * __blk_end_request_all - Helper function for drives to finish the request.
2870 * @rq: the request to finish
8ebf9756 2871 * @error: %0 for success, < %0 for error
32fab448
KU
2872 *
2873 * Description:
b1f74493 2874 * Completely finish @rq. Must be called with queue lock held.
32fab448 2875 */
b1f74493 2876void __blk_end_request_all(struct request *rq, int error)
32fab448 2877{
b1f74493
FT
2878 bool pending;
2879 unsigned int bidi_bytes = 0;
2880
2881 if (unlikely(blk_bidi_rq(rq)))
2882 bidi_bytes = blk_rq_bytes(rq->next_rq);
2883
2884 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2885 BUG_ON(pending);
32fab448 2886}
56ad1740 2887EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2888
e19a3ab0 2889/**
b1f74493
FT
2890 * __blk_end_request_cur - Helper function to finish the current request chunk.
2891 * @rq: the request to finish the current chunk for
8ebf9756 2892 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2893 *
2894 * Description:
b1f74493
FT
2895 * Complete the current consecutively mapped chunk from @rq. Must
2896 * be called with queue lock held.
e19a3ab0
KU
2897 *
2898 * Return:
b1f74493
FT
2899 * %false - we are done with this request
2900 * %true - still buffers pending for this request
2901 */
2902bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2903{
b1f74493 2904 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2905}
56ad1740 2906EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2907
80a761fd
TH
2908/**
2909 * __blk_end_request_err - Finish a request till the next failure boundary.
2910 * @rq: the request to finish till the next failure boundary for
2911 * @error: must be negative errno
2912 *
2913 * Description:
2914 * Complete @rq till the next failure boundary. Must be called
2915 * with queue lock held.
2916 *
2917 * Return:
2918 * %false - we are done with this request
2919 * %true - still buffers pending for this request
2920 */
2921bool __blk_end_request_err(struct request *rq, int error)
2922{
2923 WARN_ON(error >= 0);
2924 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2925}
2926EXPORT_SYMBOL_GPL(__blk_end_request_err);
2927
86db1e29
JA
2928void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2929 struct bio *bio)
1da177e4 2930{
b4f42e28 2931 if (bio_has_data(bio))
fb2dce86 2932 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2933
4f024f37 2934 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2935 rq->bio = rq->biotail = bio;
1da177e4 2936
66846572
N
2937 if (bio->bi_bdev)
2938 rq->rq_disk = bio->bi_bdev->bd_disk;
2939}
1da177e4 2940
2d4dc890
IL
2941#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2942/**
2943 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2944 * @rq: the request to be flushed
2945 *
2946 * Description:
2947 * Flush all pages in @rq.
2948 */
2949void rq_flush_dcache_pages(struct request *rq)
2950{
2951 struct req_iterator iter;
7988613b 2952 struct bio_vec bvec;
2d4dc890
IL
2953
2954 rq_for_each_segment(bvec, rq, iter)
7988613b 2955 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2956}
2957EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2958#endif
2959
ef9e3fac
KU
2960/**
2961 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2962 * @q : the queue of the device being checked
2963 *
2964 * Description:
2965 * Check if underlying low-level drivers of a device are busy.
2966 * If the drivers want to export their busy state, they must set own
2967 * exporting function using blk_queue_lld_busy() first.
2968 *
2969 * Basically, this function is used only by request stacking drivers
2970 * to stop dispatching requests to underlying devices when underlying
2971 * devices are busy. This behavior helps more I/O merging on the queue
2972 * of the request stacking driver and prevents I/O throughput regression
2973 * on burst I/O load.
2974 *
2975 * Return:
2976 * 0 - Not busy (The request stacking driver should dispatch request)
2977 * 1 - Busy (The request stacking driver should stop dispatching request)
2978 */
2979int blk_lld_busy(struct request_queue *q)
2980{
2981 if (q->lld_busy_fn)
2982 return q->lld_busy_fn(q);
2983
2984 return 0;
2985}
2986EXPORT_SYMBOL_GPL(blk_lld_busy);
2987
78d8e58a
MS
2988/**
2989 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2990 * @rq: the clone request to be cleaned up
2991 *
2992 * Description:
2993 * Free all bios in @rq for a cloned request.
2994 */
2995void blk_rq_unprep_clone(struct request *rq)
2996{
2997 struct bio *bio;
2998
2999 while ((bio = rq->bio) != NULL) {
3000 rq->bio = bio->bi_next;
3001
3002 bio_put(bio);
3003 }
3004}
3005EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3006
3007/*
3008 * Copy attributes of the original request to the clone request.
3009 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3010 */
3011static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3012{
3013 dst->cpu = src->cpu;
ef295ecf 3014 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
b0fd271d
KU
3015 dst->cmd_type = src->cmd_type;
3016 dst->__sector = blk_rq_pos(src);
3017 dst->__data_len = blk_rq_bytes(src);
3018 dst->nr_phys_segments = src->nr_phys_segments;
3019 dst->ioprio = src->ioprio;
3020 dst->extra_len = src->extra_len;
78d8e58a
MS
3021}
3022
3023/**
3024 * blk_rq_prep_clone - Helper function to setup clone request
3025 * @rq: the request to be setup
3026 * @rq_src: original request to be cloned
3027 * @bs: bio_set that bios for clone are allocated from
3028 * @gfp_mask: memory allocation mask for bio
3029 * @bio_ctr: setup function to be called for each clone bio.
3030 * Returns %0 for success, non %0 for failure.
3031 * @data: private data to be passed to @bio_ctr
3032 *
3033 * Description:
3034 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3035 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3036 * are not copied, and copying such parts is the caller's responsibility.
3037 * Also, pages which the original bios are pointing to are not copied
3038 * and the cloned bios just point same pages.
3039 * So cloned bios must be completed before original bios, which means
3040 * the caller must complete @rq before @rq_src.
3041 */
3042int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3043 struct bio_set *bs, gfp_t gfp_mask,
3044 int (*bio_ctr)(struct bio *, struct bio *, void *),
3045 void *data)
3046{
3047 struct bio *bio, *bio_src;
3048
3049 if (!bs)
3050 bs = fs_bio_set;
3051
3052 __rq_for_each_bio(bio_src, rq_src) {
3053 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3054 if (!bio)
3055 goto free_and_out;
3056
3057 if (bio_ctr && bio_ctr(bio, bio_src, data))
3058 goto free_and_out;
3059
3060 if (rq->bio) {
3061 rq->biotail->bi_next = bio;
3062 rq->biotail = bio;
3063 } else
3064 rq->bio = rq->biotail = bio;
3065 }
3066
3067 __blk_rq_prep_clone(rq, rq_src);
3068
3069 return 0;
3070
3071free_and_out:
3072 if (bio)
3073 bio_put(bio);
3074 blk_rq_unprep_clone(rq);
3075
3076 return -ENOMEM;
b0fd271d
KU
3077}
3078EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3079
59c3d45e 3080int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3081{
3082 return queue_work(kblockd_workqueue, work);
3083}
1da177e4
LT
3084EXPORT_SYMBOL(kblockd_schedule_work);
3085
ee63cfa7
JA
3086int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3087{
3088 return queue_work_on(cpu, kblockd_workqueue, work);
3089}
3090EXPORT_SYMBOL(kblockd_schedule_work_on);
3091
59c3d45e
JA
3092int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3093 unsigned long delay)
e43473b7
VG
3094{
3095 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3096}
3097EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3098
8ab14595
JA
3099int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3100 unsigned long delay)
3101{
3102 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3103}
3104EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3105
75df7136
SJ
3106/**
3107 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3108 * @plug: The &struct blk_plug that needs to be initialized
3109 *
3110 * Description:
3111 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3112 * pending I/O should the task end up blocking between blk_start_plug() and
3113 * blk_finish_plug(). This is important from a performance perspective, but
3114 * also ensures that we don't deadlock. For instance, if the task is blocking
3115 * for a memory allocation, memory reclaim could end up wanting to free a
3116 * page belonging to that request that is currently residing in our private
3117 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3118 * this kind of deadlock.
3119 */
73c10101
JA
3120void blk_start_plug(struct blk_plug *plug)
3121{
3122 struct task_struct *tsk = current;
3123
dd6cf3e1
SL
3124 /*
3125 * If this is a nested plug, don't actually assign it.
3126 */
3127 if (tsk->plug)
3128 return;
3129
73c10101 3130 INIT_LIST_HEAD(&plug->list);
320ae51f 3131 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3132 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3133 /*
dd6cf3e1
SL
3134 * Store ordering should not be needed here, since a potential
3135 * preempt will imply a full memory barrier
73c10101 3136 */
dd6cf3e1 3137 tsk->plug = plug;
73c10101
JA
3138}
3139EXPORT_SYMBOL(blk_start_plug);
3140
3141static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3142{
3143 struct request *rqa = container_of(a, struct request, queuelist);
3144 struct request *rqb = container_of(b, struct request, queuelist);
3145
975927b9
JM
3146 return !(rqa->q < rqb->q ||
3147 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3148}
3149
49cac01e
JA
3150/*
3151 * If 'from_schedule' is true, then postpone the dispatch of requests
3152 * until a safe kblockd context. We due this to avoid accidental big
3153 * additional stack usage in driver dispatch, in places where the originally
3154 * plugger did not intend it.
3155 */
f6603783 3156static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3157 bool from_schedule)
99e22598 3158 __releases(q->queue_lock)
94b5eb28 3159{
49cac01e 3160 trace_block_unplug(q, depth, !from_schedule);
99e22598 3161
70460571 3162 if (from_schedule)
24ecfbe2 3163 blk_run_queue_async(q);
70460571 3164 else
24ecfbe2 3165 __blk_run_queue(q);
70460571 3166 spin_unlock(q->queue_lock);
94b5eb28
JA
3167}
3168
74018dc3 3169static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3170{
3171 LIST_HEAD(callbacks);
3172
2a7d5559
SL
3173 while (!list_empty(&plug->cb_list)) {
3174 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3175
2a7d5559
SL
3176 while (!list_empty(&callbacks)) {
3177 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3178 struct blk_plug_cb,
3179 list);
2a7d5559 3180 list_del(&cb->list);
74018dc3 3181 cb->callback(cb, from_schedule);
2a7d5559 3182 }
048c9374
N
3183 }
3184}
3185
9cbb1750
N
3186struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3187 int size)
3188{
3189 struct blk_plug *plug = current->plug;
3190 struct blk_plug_cb *cb;
3191
3192 if (!plug)
3193 return NULL;
3194
3195 list_for_each_entry(cb, &plug->cb_list, list)
3196 if (cb->callback == unplug && cb->data == data)
3197 return cb;
3198
3199 /* Not currently on the callback list */
3200 BUG_ON(size < sizeof(*cb));
3201 cb = kzalloc(size, GFP_ATOMIC);
3202 if (cb) {
3203 cb->data = data;
3204 cb->callback = unplug;
3205 list_add(&cb->list, &plug->cb_list);
3206 }
3207 return cb;
3208}
3209EXPORT_SYMBOL(blk_check_plugged);
3210
49cac01e 3211void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3212{
3213 struct request_queue *q;
3214 unsigned long flags;
3215 struct request *rq;
109b8129 3216 LIST_HEAD(list);
94b5eb28 3217 unsigned int depth;
73c10101 3218
74018dc3 3219 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3220
3221 if (!list_empty(&plug->mq_list))
3222 blk_mq_flush_plug_list(plug, from_schedule);
3223
73c10101
JA
3224 if (list_empty(&plug->list))
3225 return;
3226
109b8129
N
3227 list_splice_init(&plug->list, &list);
3228
422765c2 3229 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3230
3231 q = NULL;
94b5eb28 3232 depth = 0;
18811272
JA
3233
3234 /*
3235 * Save and disable interrupts here, to avoid doing it for every
3236 * queue lock we have to take.
3237 */
73c10101 3238 local_irq_save(flags);
109b8129
N
3239 while (!list_empty(&list)) {
3240 rq = list_entry_rq(list.next);
73c10101 3241 list_del_init(&rq->queuelist);
73c10101
JA
3242 BUG_ON(!rq->q);
3243 if (rq->q != q) {
99e22598
JA
3244 /*
3245 * This drops the queue lock
3246 */
3247 if (q)
49cac01e 3248 queue_unplugged(q, depth, from_schedule);
73c10101 3249 q = rq->q;
94b5eb28 3250 depth = 0;
73c10101
JA
3251 spin_lock(q->queue_lock);
3252 }
8ba61435
TH
3253
3254 /*
3255 * Short-circuit if @q is dead
3256 */
3f3299d5 3257 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3258 __blk_end_request_all(rq, -ENODEV);
3259 continue;
3260 }
3261
73c10101
JA
3262 /*
3263 * rq is already accounted, so use raw insert
3264 */
28a8f0d3 3265 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
401a18e9
JA
3266 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3267 else
3268 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3269
3270 depth++;
73c10101
JA
3271 }
3272
99e22598
JA
3273 /*
3274 * This drops the queue lock
3275 */
3276 if (q)
49cac01e 3277 queue_unplugged(q, depth, from_schedule);
73c10101 3278
73c10101
JA
3279 local_irq_restore(flags);
3280}
73c10101
JA
3281
3282void blk_finish_plug(struct blk_plug *plug)
3283{
dd6cf3e1
SL
3284 if (plug != current->plug)
3285 return;
f6603783 3286 blk_flush_plug_list(plug, false);
73c10101 3287
dd6cf3e1 3288 current->plug = NULL;
73c10101 3289}
88b996cd 3290EXPORT_SYMBOL(blk_finish_plug);
73c10101 3291
05229bee
JA
3292bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3293{
3294 struct blk_plug *plug;
3295 long state;
6e219353
SB
3296 unsigned int queue_num;
3297 struct blk_mq_hw_ctx *hctx;
05229bee
JA
3298
3299 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3300 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3301 return false;
3302
6e219353
SB
3303 queue_num = blk_qc_t_to_queue_num(cookie);
3304 hctx = q->queue_hw_ctx[queue_num];
3305 hctx->poll_considered++;
3306
05229bee
JA
3307 plug = current->plug;
3308 if (plug)
3309 blk_flush_plug_list(plug, false);
3310
3311 state = current->state;
3312 while (!need_resched()) {
05229bee
JA
3313 int ret;
3314
3315 hctx->poll_invoked++;
3316
3317 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3318 if (ret > 0) {
3319 hctx->poll_success++;
3320 set_current_state(TASK_RUNNING);
3321 return true;
3322 }
3323
3324 if (signal_pending_state(state, current))
3325 set_current_state(TASK_RUNNING);
3326
3327 if (current->state == TASK_RUNNING)
3328 return true;
3329 if (ret < 0)
3330 break;
3331 cpu_relax();
3332 }
3333
3334 return false;
3335}
9645c1a2 3336EXPORT_SYMBOL_GPL(blk_poll);
05229bee 3337
47fafbc7 3338#ifdef CONFIG_PM
6c954667
LM
3339/**
3340 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3341 * @q: the queue of the device
3342 * @dev: the device the queue belongs to
3343 *
3344 * Description:
3345 * Initialize runtime-PM-related fields for @q and start auto suspend for
3346 * @dev. Drivers that want to take advantage of request-based runtime PM
3347 * should call this function after @dev has been initialized, and its
3348 * request queue @q has been allocated, and runtime PM for it can not happen
3349 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3350 * cases, driver should call this function before any I/O has taken place.
3351 *
3352 * This function takes care of setting up using auto suspend for the device,
3353 * the autosuspend delay is set to -1 to make runtime suspend impossible
3354 * until an updated value is either set by user or by driver. Drivers do
3355 * not need to touch other autosuspend settings.
3356 *
3357 * The block layer runtime PM is request based, so only works for drivers
3358 * that use request as their IO unit instead of those directly use bio's.
3359 */
3360void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3361{
3362 q->dev = dev;
3363 q->rpm_status = RPM_ACTIVE;
3364 pm_runtime_set_autosuspend_delay(q->dev, -1);
3365 pm_runtime_use_autosuspend(q->dev);
3366}
3367EXPORT_SYMBOL(blk_pm_runtime_init);
3368
3369/**
3370 * blk_pre_runtime_suspend - Pre runtime suspend check
3371 * @q: the queue of the device
3372 *
3373 * Description:
3374 * This function will check if runtime suspend is allowed for the device
3375 * by examining if there are any requests pending in the queue. If there
3376 * are requests pending, the device can not be runtime suspended; otherwise,
3377 * the queue's status will be updated to SUSPENDING and the driver can
3378 * proceed to suspend the device.
3379 *
3380 * For the not allowed case, we mark last busy for the device so that
3381 * runtime PM core will try to autosuspend it some time later.
3382 *
3383 * This function should be called near the start of the device's
3384 * runtime_suspend callback.
3385 *
3386 * Return:
3387 * 0 - OK to runtime suspend the device
3388 * -EBUSY - Device should not be runtime suspended
3389 */
3390int blk_pre_runtime_suspend(struct request_queue *q)
3391{
3392 int ret = 0;
3393
4fd41a85
KX
3394 if (!q->dev)
3395 return ret;
3396
6c954667
LM
3397 spin_lock_irq(q->queue_lock);
3398 if (q->nr_pending) {
3399 ret = -EBUSY;
3400 pm_runtime_mark_last_busy(q->dev);
3401 } else {
3402 q->rpm_status = RPM_SUSPENDING;
3403 }
3404 spin_unlock_irq(q->queue_lock);
3405 return ret;
3406}
3407EXPORT_SYMBOL(blk_pre_runtime_suspend);
3408
3409/**
3410 * blk_post_runtime_suspend - Post runtime suspend processing
3411 * @q: the queue of the device
3412 * @err: return value of the device's runtime_suspend function
3413 *
3414 * Description:
3415 * Update the queue's runtime status according to the return value of the
3416 * device's runtime suspend function and mark last busy for the device so
3417 * that PM core will try to auto suspend the device at a later time.
3418 *
3419 * This function should be called near the end of the device's
3420 * runtime_suspend callback.
3421 */
3422void blk_post_runtime_suspend(struct request_queue *q, int err)
3423{
4fd41a85
KX
3424 if (!q->dev)
3425 return;
3426
6c954667
LM
3427 spin_lock_irq(q->queue_lock);
3428 if (!err) {
3429 q->rpm_status = RPM_SUSPENDED;
3430 } else {
3431 q->rpm_status = RPM_ACTIVE;
3432 pm_runtime_mark_last_busy(q->dev);
3433 }
3434 spin_unlock_irq(q->queue_lock);
3435}
3436EXPORT_SYMBOL(blk_post_runtime_suspend);
3437
3438/**
3439 * blk_pre_runtime_resume - Pre runtime resume processing
3440 * @q: the queue of the device
3441 *
3442 * Description:
3443 * Update the queue's runtime status to RESUMING in preparation for the
3444 * runtime resume of the device.
3445 *
3446 * This function should be called near the start of the device's
3447 * runtime_resume callback.
3448 */
3449void blk_pre_runtime_resume(struct request_queue *q)
3450{
4fd41a85
KX
3451 if (!q->dev)
3452 return;
3453
6c954667
LM
3454 spin_lock_irq(q->queue_lock);
3455 q->rpm_status = RPM_RESUMING;
3456 spin_unlock_irq(q->queue_lock);
3457}
3458EXPORT_SYMBOL(blk_pre_runtime_resume);
3459
3460/**
3461 * blk_post_runtime_resume - Post runtime resume processing
3462 * @q: the queue of the device
3463 * @err: return value of the device's runtime_resume function
3464 *
3465 * Description:
3466 * Update the queue's runtime status according to the return value of the
3467 * device's runtime_resume function. If it is successfully resumed, process
3468 * the requests that are queued into the device's queue when it is resuming
3469 * and then mark last busy and initiate autosuspend for it.
3470 *
3471 * This function should be called near the end of the device's
3472 * runtime_resume callback.
3473 */
3474void blk_post_runtime_resume(struct request_queue *q, int err)
3475{
4fd41a85
KX
3476 if (!q->dev)
3477 return;
3478
6c954667
LM
3479 spin_lock_irq(q->queue_lock);
3480 if (!err) {
3481 q->rpm_status = RPM_ACTIVE;
3482 __blk_run_queue(q);
3483 pm_runtime_mark_last_busy(q->dev);
c60855cd 3484 pm_request_autosuspend(q->dev);
6c954667
LM
3485 } else {
3486 q->rpm_status = RPM_SUSPENDED;
3487 }
3488 spin_unlock_irq(q->queue_lock);
3489}
3490EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3491
3492/**
3493 * blk_set_runtime_active - Force runtime status of the queue to be active
3494 * @q: the queue of the device
3495 *
3496 * If the device is left runtime suspended during system suspend the resume
3497 * hook typically resumes the device and corrects runtime status
3498 * accordingly. However, that does not affect the queue runtime PM status
3499 * which is still "suspended". This prevents processing requests from the
3500 * queue.
3501 *
3502 * This function can be used in driver's resume hook to correct queue
3503 * runtime PM status and re-enable peeking requests from the queue. It
3504 * should be called before first request is added to the queue.
3505 */
3506void blk_set_runtime_active(struct request_queue *q)
3507{
3508 spin_lock_irq(q->queue_lock);
3509 q->rpm_status = RPM_ACTIVE;
3510 pm_runtime_mark_last_busy(q->dev);
3511 pm_request_autosuspend(q->dev);
3512 spin_unlock_irq(q->queue_lock);
3513}
3514EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3515#endif
3516
1da177e4
LT
3517int __init blk_dev_init(void)
3518{
ef295ecf
CH
3519 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3520 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3521 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3522 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3523 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3524
89b90be2
TH
3525 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3526 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3527 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3528 if (!kblockd_workqueue)
3529 panic("Failed to create kblockd\n");
3530
3531 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3532 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3533
c2789bd4 3534 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3535 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3536
d38ecf93 3537 return 0;
1da177e4 3538}