]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
pch_can: Fix array miss-pointing issue
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
1da177e4 64#include <linux/mm.h>
5a0e3ad6 65#include <linux/slab.h>
1da177e4
LT
66#include <linux/module.h>
67#include <linux/sysctl.h>
a0bffffc 68#include <linux/kernel.h>
5ffc02a1 69#include <net/dst.h>
1da177e4
LT
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
1a2449a8 74#include <net/netdma.h>
1da177e4 75
ab32ea5d
BH
76int sysctl_tcp_timestamps __read_mostly = 1;
77int sysctl_tcp_window_scaling __read_mostly = 1;
78int sysctl_tcp_sack __read_mostly = 1;
79int sysctl_tcp_fack __read_mostly = 1;
80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 81EXPORT_SYMBOL(sysctl_tcp_reordering);
255cac91 82int sysctl_tcp_ecn __read_mostly = 2;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_ecn);
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 2;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
ab32ea5d
BH
89int sysctl_tcp_stdurg __read_mostly;
90int sysctl_tcp_rfc1337 __read_mostly;
91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 92int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 93int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 94int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 95
7e380175
AP
96int sysctl_tcp_thin_dupack __read_mostly;
97
ab32ea5d
BH
98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99int sysctl_tcp_abc __read_mostly;
1da177e4 100
1da177e4
LT
101#define FLAG_DATA 0x01 /* Incoming frame contained data. */
102#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106#define FLAG_DATA_SACKED 0x20 /* New SACK. */
107#define FLAG_ECE 0x40 /* ECE in this ACK */
108#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 110#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 113#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 120#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e905a9ed 125/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 126 * real world.
e905a9ed 127 */
056834d9 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 129{
463c84b9 130 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 132 unsigned int len;
1da177e4 133
e905a9ed 134 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
056834d9 139 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
9c70220b 148 len += skb->data - skb_transport_header(skb);
bee7ca9e 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
463c84b9
ACM
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
1da177e4 163 if (len == lss) {
463c84b9 164 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
165 return;
166 }
167 }
1ef9696c
AK
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
171 }
172}
173
463c84b9 174static void tcp_incr_quickack(struct sock *sk)
1da177e4 175{
463c84b9
ACM
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 178
056834d9
IJ
179 if (quickacks == 0)
180 quickacks = 2;
463c84b9
ACM
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
183}
184
1b9f4092 185static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 186{
463c84b9
ACM
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
463c84b9 197static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 198{
463c84b9
ACM
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
201}
202
bdf1ee5d
IJ
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
056834d9 205 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210{
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221{
056834d9 222 if (tp->ecn_flags & TCP_ECN_OK) {
bdf1ee5d
IJ
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
230 }
231}
232
233static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234{
056834d9 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
236 tp->ecn_flags &= ~TCP_ECN_OK;
237}
238
239static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240{
056834d9 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
242 tp->ecn_flags &= ~TCP_ECN_OK;
243}
244
245static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246{
056834d9 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
bdf1ee5d
IJ
248 return 1;
249 return 0;
250}
251
1da177e4
LT
252/* Buffer size and advertised window tuning.
253 *
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255 */
256
257static void tcp_fixup_sndbuf(struct sock *sk)
258{
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
261
8d987e5c
ED
262 if (sk->sk_sndbuf < 3 * sndmem) {
263 sk->sk_sndbuf = 3 * sndmem;
264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 sk->sk_sndbuf = sysctl_tcp_wmem[2];
266 }
1da177e4
LT
267}
268
269/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270 *
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
280 *
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
288 *
289 * The scheme does not work when sender sends good segments opening
caa20d9a 290 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
291 * in common situations. Otherwise, we have to rely on queue collapsing.
292 */
293
294/* Slow part of check#2. */
9e412ba7 295static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 296{
9e412ba7 297 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 298 /* Optimize this! */
dfd4f0ae
ED
299 int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
301
302 while (tp->rcv_ssthresh <= window) {
303 if (truesize <= skb->len)
463c84b9 304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
305
306 truesize >>= 1;
307 window >>= 1;
308 }
309 return 0;
310}
311
056834d9 312static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
1da177e4 313{
9e412ba7
IJ
314 struct tcp_sock *tp = tcp_sk(sk);
315
1da177e4
LT
316 /* Check #1 */
317 if (tp->rcv_ssthresh < tp->window_clamp &&
318 (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 !tcp_memory_pressure) {
320 int incr;
321
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
324 */
325 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 326 incr = 2 * tp->advmss;
1da177e4 327 else
9e412ba7 328 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
329
330 if (incr) {
056834d9
IJ
331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 tp->window_clamp);
463c84b9 333 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
334 }
335 }
336}
337
338/* 3. Tuning rcvbuf, when connection enters established state. */
339
340static void tcp_fixup_rcvbuf(struct sock *sk)
341{
342 struct tcp_sock *tp = tcp_sk(sk);
343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344
345 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 346 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
347 * (was 3; 4 is minimum to allow fast retransmit to work.)
348 */
349 while (tcp_win_from_space(rcvmem) < tp->advmss)
350 rcvmem += 128;
351 if (sk->sk_rcvbuf < 4 * rcvmem)
352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353}
354
caa20d9a 355/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
356 * established state.
357 */
358static void tcp_init_buffer_space(struct sock *sk)
359{
360 struct tcp_sock *tp = tcp_sk(sk);
361 int maxwin;
362
363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 tcp_fixup_rcvbuf(sk);
365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 tcp_fixup_sndbuf(sk);
367
368 tp->rcvq_space.space = tp->rcv_wnd;
369
370 maxwin = tcp_full_space(sk);
371
372 if (tp->window_clamp >= maxwin) {
373 tp->window_clamp = maxwin;
374
375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 tp->window_clamp = max(maxwin -
377 (maxwin >> sysctl_tcp_app_win),
378 4 * tp->advmss);
379 }
380
381 /* Force reservation of one segment. */
382 if (sysctl_tcp_app_win &&
383 tp->window_clamp > 2 * tp->advmss &&
384 tp->window_clamp + tp->advmss > maxwin)
385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386
387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 tp->snd_cwnd_stamp = tcp_time_stamp;
389}
390
1da177e4 391/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 392static void tcp_clamp_window(struct sock *sk)
1da177e4 393{
9e412ba7 394 struct tcp_sock *tp = tcp_sk(sk);
6687e988 395 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 396
6687e988 397 icsk->icsk_ack.quick = 0;
1da177e4 398
326f36e9
JH
399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 !tcp_memory_pressure &&
8d987e5c 402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
326f36e9
JH
403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 sysctl_tcp_rmem[2]);
1da177e4 405 }
326f36e9 406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
408}
409
40efc6fa
SH
410/* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416 */
417void tcp_initialize_rcv_mss(struct sock *sk)
418{
419 struct tcp_sock *tp = tcp_sk(sk);
420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421
056834d9 422 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 423 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
424 hint = max(hint, TCP_MIN_MSS);
425
426 inet_csk(sk)->icsk_ack.rcv_mss = hint;
427}
4bc2f18b 428EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 429
1da177e4
LT
430/* Receiver "autotuning" code.
431 *
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
435 *
436 * More detail on this code can be found at
631dd1a8 437 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
438 * though this reference is out of date. A new paper
439 * is pending.
440 */
441static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442{
443 u32 new_sample = tp->rcv_rtt_est.rtt;
444 long m = sample;
445
446 if (m == 0)
447 m = 1;
448
449 if (new_sample != 0) {
450 /* If we sample in larger samples in the non-timestamp
451 * case, we could grossly overestimate the RTT especially
452 * with chatty applications or bulk transfer apps which
453 * are stalled on filesystem I/O.
454 *
455 * Also, since we are only going for a minimum in the
31f34269 456 * non-timestamp case, we do not smooth things out
caa20d9a 457 * else with timestamps disabled convergence takes too
1da177e4
LT
458 * long.
459 */
460 if (!win_dep) {
461 m -= (new_sample >> 3);
462 new_sample += m;
463 } else if (m < new_sample)
464 new_sample = m << 3;
465 } else {
caa20d9a 466 /* No previous measure. */
1da177e4
LT
467 new_sample = m << 3;
468 }
469
470 if (tp->rcv_rtt_est.rtt != new_sample)
471 tp->rcv_rtt_est.rtt = new_sample;
472}
473
474static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475{
476 if (tp->rcv_rtt_est.time == 0)
477 goto new_measure;
478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 return;
056834d9 480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
1da177e4
LT
481
482new_measure:
483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 tp->rcv_rtt_est.time = tcp_time_stamp;
485}
486
056834d9
IJ
487static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 const struct sk_buff *skb)
1da177e4 489{
463c84b9 490 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
491 if (tp->rx_opt.rcv_tsecr &&
492 (TCP_SKB_CB(skb)->end_seq -
463c84b9 493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495}
496
497/*
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
500 */
501void tcp_rcv_space_adjust(struct sock *sk)
502{
503 struct tcp_sock *tp = tcp_sk(sk);
504 int time;
505 int space;
e905a9ed 506
1da177e4
LT
507 if (tp->rcvq_space.time == 0)
508 goto new_measure;
e905a9ed 509
1da177e4 510 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 512 return;
e905a9ed 513
1da177e4
LT
514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515
516 space = max(tp->rcvq_space.space, space);
517
518 if (tp->rcvq_space.space != space) {
519 int rcvmem;
520
521 tp->rcvq_space.space = space;
522
6fcf9412
JH
523 if (sysctl_tcp_moderate_rcvbuf &&
524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
525 int new_clamp = space;
526
527 /* Receive space grows, normalize in order to
528 * take into account packet headers and sk_buff
529 * structure overhead.
530 */
531 space /= tp->advmss;
532 if (!space)
533 space = 1;
534 rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 16 + sizeof(struct sk_buff));
536 while (tcp_win_from_space(rcvmem) < tp->advmss)
537 rcvmem += 128;
538 space *= rcvmem;
539 space = min(space, sysctl_tcp_rmem[2]);
540 if (space > sk->sk_rcvbuf) {
541 sk->sk_rcvbuf = space;
542
543 /* Make the window clamp follow along. */
544 tp->window_clamp = new_clamp;
545 }
546 }
547 }
e905a9ed 548
1da177e4
LT
549new_measure:
550 tp->rcvq_space.seq = tp->copied_seq;
551 tp->rcvq_space.time = tcp_time_stamp;
552}
553
554/* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval. When a
556 * connection starts up, we want to ack as quickly as possible. The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission. The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time. For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
562 * queue. -DaveM
563 */
9e412ba7 564static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 565{
9e412ba7 566 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 567 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
568 u32 now;
569
463c84b9 570 inet_csk_schedule_ack(sk);
1da177e4 571
463c84b9 572 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
573
574 tcp_rcv_rtt_measure(tp);
e905a9ed 575
1da177e4
LT
576 now = tcp_time_stamp;
577
463c84b9 578 if (!icsk->icsk_ack.ato) {
1da177e4
LT
579 /* The _first_ data packet received, initialize
580 * delayed ACK engine.
581 */
463c84b9
ACM
582 tcp_incr_quickack(sk);
583 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 584 } else {
463c84b9 585 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 586
056834d9 587 if (m <= TCP_ATO_MIN / 2) {
1da177e4 588 /* The fastest case is the first. */
463c84b9
ACM
589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 } else if (m < icsk->icsk_ack.ato) {
591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 icsk->icsk_ack.ato = icsk->icsk_rto;
594 } else if (m > icsk->icsk_rto) {
caa20d9a 595 /* Too long gap. Apparently sender failed to
1da177e4
LT
596 * restart window, so that we send ACKs quickly.
597 */
463c84b9 598 tcp_incr_quickack(sk);
3ab224be 599 sk_mem_reclaim(sk);
1da177e4
LT
600 }
601 }
463c84b9 602 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
603
604 TCP_ECN_check_ce(tp, skb);
605
606 if (skb->len >= 128)
9e412ba7 607 tcp_grow_window(sk, skb);
1da177e4
LT
608}
609
1da177e4
LT
610/* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
618 */
2d2abbab 619static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 620{
6687e988 621 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
622 long m = mrtt; /* RTT */
623
1da177e4
LT
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
e905a9ed 627 * This is designed to be as fast as possible
1da177e4
LT
628 * m stands for "measurement".
629 *
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
632 *
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
31f34269 635 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
639 */
2de979bd 640 if (m == 0)
1da177e4
LT
641 m = 1;
642 if (tp->srtt != 0) {
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 if (m < 0) {
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
655 */
656 if (m > 0)
657 m >>= 3;
658 } else {
659 m -= (tp->mdev >> 2); /* similar update on mdev */
660 }
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
666 }
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
056834d9 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 670 tp->rtt_seq = tp->snd_nxt;
05bb1fad 671 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
672 }
673 } else {
674 /* no previous measure. */
056834d9
IJ
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
678 tp->rtt_seq = tp->snd_nxt;
679 }
1da177e4
LT
680}
681
682/* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
684 */
463c84b9 685static inline void tcp_set_rto(struct sock *sk)
1da177e4 686{
463c84b9 687 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
688 /* Old crap is replaced with new one. 8)
689 *
690 * More seriously:
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 696 * ACKs in some circumstances.
1da177e4 697 */
f1ecd5d9 698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
699
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
caa20d9a 703 * with correct one. It is exactly, which we pretend to do.
1da177e4 704 */
1da177e4 705
ee6aac59
IJ
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
708 */
f1ecd5d9 709 tcp_bound_rto(sk);
1da177e4
LT
710}
711
712/* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715 */
716void tcp_update_metrics(struct sock *sk)
717{
718 struct tcp_sock *tp = tcp_sk(sk);
719 struct dst_entry *dst = __sk_dst_get(sk);
720
721 if (sysctl_tcp_nometrics_save)
722 return;
723
724 dst_confirm(dst);
725
056834d9 726 if (dst && (dst->flags & DST_HOST)) {
6687e988 727 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 728 int m;
c1e20f7c 729 unsigned long rtt;
1da177e4 730
6687e988 731 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
734 * Reset our results.
735 */
736 if (!(dst_metric_locked(dst, RTAX_RTT)))
defb3519 737 dst_metric_set(dst, RTAX_RTT, 0);
1da177e4
LT
738 return;
739 }
740
c1e20f7c
SH
741 rtt = dst_metric_rtt(dst, RTAX_RTT);
742 m = rtt - tp->srtt;
1da177e4
LT
743
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
747 */
748 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 if (m <= 0)
c1e20f7c 750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
1da177e4 751 else
c1e20f7c 752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
1da177e4
LT
753 }
754
755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
c1e20f7c 756 unsigned long var;
1da177e4
LT
757 if (m < 0)
758 m = -m;
759
760 /* Scale deviation to rttvar fixed point */
761 m >>= 1;
762 if (m < tp->mdev)
763 m = tp->mdev;
764
c1e20f7c
SH
765 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 if (m >= var)
767 var = m;
1da177e4 768 else
c1e20f7c
SH
769 var -= (var - m) >> 2;
770
771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
1da177e4
LT
772 }
773
0b6a05c1 774 if (tcp_in_initial_slowstart(tp)) {
1da177e4
LT
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
defb3519 779 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
1da177e4
LT
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
defb3519 782 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
1da177e4 783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 784 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
defb3519
DM
787 dst_metric_set(dst, RTAX_SSTHRESH,
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
1da177e4 789 if (!dst_metric_locked(dst, RTAX_CWND))
defb3519
DM
790 dst_metric_set(dst, RTAX_CWND,
791 (dst_metric(dst, RTAX_CWND) +
792 tp->snd_cwnd) >> 1);
1da177e4
LT
793 } else {
794 /* Else slow start did not finish, cwnd is non-sense,
795 ssthresh may be also invalid.
796 */
797 if (!dst_metric_locked(dst, RTAX_CWND))
defb3519
DM
798 dst_metric_set(dst, RTAX_CWND,
799 (dst_metric(dst, RTAX_CWND) +
800 tp->snd_ssthresh) >> 1);
5ffc02a1 801 if (dst_metric(dst, RTAX_SSTHRESH) &&
1da177e4 802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
5ffc02a1 803 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
defb3519 804 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
1da177e4
LT
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
5ffc02a1 808 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
1da177e4 809 tp->reordering != sysctl_tcp_reordering)
defb3519 810 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
1da177e4
LT
811 }
812 }
813}
814
1da177e4
LT
815__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816{
817 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818
22b71c8f
GR
819 if (!cwnd)
820 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
1da177e4
LT
821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822}
823
40efc6fa 824/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 825void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
826{
827 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 828 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
829
830 tp->prior_ssthresh = 0;
831 tp->bytes_acked = 0;
e01f9d77 832 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 833 tp->undo_marker = 0;
3cfe3baa
IJ
834 if (set_ssthresh)
835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
836 tp->snd_cwnd = min(tp->snd_cwnd,
837 tcp_packets_in_flight(tp) + 1U);
838 tp->snd_cwnd_cnt = 0;
839 tp->high_seq = tp->snd_nxt;
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 TCP_ECN_queue_cwr(tp);
842
843 tcp_set_ca_state(sk, TCP_CA_CWR);
844 }
845}
846
e60402d0
IJ
847/*
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
850 */
851static void tcp_disable_fack(struct tcp_sock *tp)
852{
85cc391c
IJ
853 /* RFC3517 uses different metric in lost marker => reset on change */
854 if (tcp_is_fack(tp))
855 tp->lost_skb_hint = NULL;
e60402d0
IJ
856 tp->rx_opt.sack_ok &= ~2;
857}
858
564262c1 859/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
860static void tcp_dsack_seen(struct tcp_sock *tp)
861{
862 tp->rx_opt.sack_ok |= 4;
863}
864
1da177e4
LT
865/* Initialize metrics on socket. */
866
867static void tcp_init_metrics(struct sock *sk)
868{
869 struct tcp_sock *tp = tcp_sk(sk);
870 struct dst_entry *dst = __sk_dst_get(sk);
871
872 if (dst == NULL)
873 goto reset;
874
875 dst_confirm(dst);
876
877 if (dst_metric_locked(dst, RTAX_CWND))
878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 if (dst_metric(dst, RTAX_SSTHRESH)) {
880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 }
884 if (dst_metric(dst, RTAX_REORDERING) &&
885 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 886 tcp_disable_fack(tp);
1da177e4
LT
887 tp->reordering = dst_metric(dst, RTAX_REORDERING);
888 }
889
890 if (dst_metric(dst, RTAX_RTT) == 0)
891 goto reset;
892
c1e20f7c 893 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
1da177e4
LT
894 goto reset;
895
896 /* Initial rtt is determined from SYN,SYN-ACK.
897 * The segment is small and rtt may appear much
898 * less than real one. Use per-dst memory
899 * to make it more realistic.
900 *
901 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 902 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
903 * packets force peer to delay ACKs and calculation is correct too.
904 * The algorithm is adaptive and, provided we follow specs, it
905 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 * tricks sort of "quick acks" for time long enough to decrease RTT
907 * to low value, and then abruptly stops to do it and starts to delay
908 * ACKs, wait for troubles.
909 */
c1e20f7c
SH
910 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
1da177e4
LT
912 tp->rtt_seq = tp->snd_nxt;
913 }
c1e20f7c
SH
914 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
488faa2a 916 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4 917 }
463c84b9 918 tcp_set_rto(sk);
463c84b9 919 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4 920 goto reset;
86bcebaf
IJ
921
922cwnd:
1da177e4
LT
923 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
924 tp->snd_cwnd_stamp = tcp_time_stamp;
925 return;
926
927reset:
928 /* Play conservative. If timestamps are not
929 * supported, TCP will fail to recalculate correct
930 * rtt, if initial rto is too small. FORGET ALL AND RESET!
931 */
932 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
933 tp->srtt = 0;
934 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 935 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4 936 }
86bcebaf 937 goto cwnd;
1da177e4
LT
938}
939
6687e988
ACM
940static void tcp_update_reordering(struct sock *sk, const int metric,
941 const int ts)
1da177e4 942{
6687e988 943 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 944 if (metric > tp->reordering) {
40b215e5
PE
945 int mib_idx;
946
1da177e4
LT
947 tp->reordering = min(TCP_MAX_REORDERING, metric);
948
949 /* This exciting event is worth to be remembered. 8) */
950 if (ts)
40b215e5 951 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 952 else if (tcp_is_reno(tp))
40b215e5 953 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 954 else if (tcp_is_fack(tp))
40b215e5 955 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 956 else
40b215e5
PE
957 mib_idx = LINUX_MIB_TCPSACKREORDER;
958
de0744af 959 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4
LT
960#if FASTRETRANS_DEBUG > 1
961 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 962 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
963 tp->reordering,
964 tp->fackets_out,
965 tp->sacked_out,
966 tp->undo_marker ? tp->undo_retrans : 0);
967#endif
e60402d0 968 tcp_disable_fack(tp);
1da177e4
LT
969 }
970}
971
006f582c 972/* This must be called before lost_out is incremented */
c8c213f2
IJ
973static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
974{
006f582c 975 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
976 before(TCP_SKB_CB(skb)->seq,
977 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
978 tp->retransmit_skb_hint = skb;
979
980 if (!tp->lost_out ||
981 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
982 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
983}
984
41ea36e3
IJ
985static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
986{
987 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
988 tcp_verify_retransmit_hint(tp, skb);
989
990 tp->lost_out += tcp_skb_pcount(skb);
991 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
992 }
993}
994
e1aa680f
IJ
995static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
996 struct sk_buff *skb)
006f582c
IJ
997{
998 tcp_verify_retransmit_hint(tp, skb);
999
1000 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1001 tp->lost_out += tcp_skb_pcount(skb);
1002 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1003 }
1004}
1005
1da177e4
LT
1006/* This procedure tags the retransmission queue when SACKs arrive.
1007 *
1008 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1009 * Packets in queue with these bits set are counted in variables
1010 * sacked_out, retrans_out and lost_out, correspondingly.
1011 *
1012 * Valid combinations are:
1013 * Tag InFlight Description
1014 * 0 1 - orig segment is in flight.
1015 * S 0 - nothing flies, orig reached receiver.
1016 * L 0 - nothing flies, orig lost by net.
1017 * R 2 - both orig and retransmit are in flight.
1018 * L|R 1 - orig is lost, retransmit is in flight.
1019 * S|R 1 - orig reached receiver, retrans is still in flight.
1020 * (L|S|R is logically valid, it could occur when L|R is sacked,
1021 * but it is equivalent to plain S and code short-curcuits it to S.
1022 * L|S is logically invalid, it would mean -1 packet in flight 8))
1023 *
1024 * These 6 states form finite state machine, controlled by the following events:
1025 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1026 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1027 * 3. Loss detection event of one of three flavors:
1028 * A. Scoreboard estimator decided the packet is lost.
1029 * A'. Reno "three dupacks" marks head of queue lost.
1030 * A''. Its FACK modfication, head until snd.fack is lost.
1031 * B. SACK arrives sacking data transmitted after never retransmitted
1032 * hole was sent out.
1033 * C. SACK arrives sacking SND.NXT at the moment, when the
1034 * segment was retransmitted.
1035 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036 *
1037 * It is pleasant to note, that state diagram turns out to be commutative,
1038 * so that we are allowed not to be bothered by order of our actions,
1039 * when multiple events arrive simultaneously. (see the function below).
1040 *
1041 * Reordering detection.
1042 * --------------------
1043 * Reordering metric is maximal distance, which a packet can be displaced
1044 * in packet stream. With SACKs we can estimate it:
1045 *
1046 * 1. SACK fills old hole and the corresponding segment was not
1047 * ever retransmitted -> reordering. Alas, we cannot use it
1048 * when segment was retransmitted.
1049 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1050 * for retransmitted and already SACKed segment -> reordering..
1051 * Both of these heuristics are not used in Loss state, when we cannot
1052 * account for retransmits accurately.
5b3c9882
IJ
1053 *
1054 * SACK block validation.
1055 * ----------------------
1056 *
1057 * SACK block range validation checks that the received SACK block fits to
1058 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1059 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1060 * it means that the receiver is rather inconsistent with itself reporting
1061 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1062 * perfectly valid, however, in light of RFC2018 which explicitly states
1063 * that "SACK block MUST reflect the newest segment. Even if the newest
1064 * segment is going to be discarded ...", not that it looks very clever
1065 * in case of head skb. Due to potentional receiver driven attacks, we
1066 * choose to avoid immediate execution of a walk in write queue due to
1067 * reneging and defer head skb's loss recovery to standard loss recovery
1068 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1069 *
1070 * Implements also blockage to start_seq wrap-around. Problem lies in the
1071 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1072 * there's no guarantee that it will be before snd_nxt (n). The problem
1073 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1074 * wrap (s_w):
1075 *
1076 * <- outs wnd -> <- wrapzone ->
1077 * u e n u_w e_w s n_w
1078 * | | | | | | |
1079 * |<------------+------+----- TCP seqno space --------------+---------->|
1080 * ...-- <2^31 ->| |<--------...
1081 * ...---- >2^31 ------>| |<--------...
1082 *
1083 * Current code wouldn't be vulnerable but it's better still to discard such
1084 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1085 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1086 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1087 * equal to the ideal case (infinite seqno space without wrap caused issues).
1088 *
1089 * With D-SACK the lower bound is extended to cover sequence space below
1090 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1091 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1092 * for the normal SACK blocks, explained above). But there all simplicity
1093 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1094 * fully below undo_marker they do not affect behavior in anyway and can
1095 * therefore be safely ignored. In rare cases (which are more or less
1096 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1097 * fragmentation and packet reordering past skb's retransmission. To consider
1098 * them correctly, the acceptable range must be extended even more though
1099 * the exact amount is rather hard to quantify. However, tp->max_window can
1100 * be used as an exaggerated estimate.
1da177e4 1101 */
5b3c9882
IJ
1102static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1103 u32 start_seq, u32 end_seq)
1104{
1105 /* Too far in future, or reversed (interpretation is ambiguous) */
1106 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1107 return 0;
1108
1109 /* Nasty start_seq wrap-around check (see comments above) */
1110 if (!before(start_seq, tp->snd_nxt))
1111 return 0;
1112
564262c1 1113 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1114 * start_seq == snd_una is non-sensical (see comments above)
1115 */
1116 if (after(start_seq, tp->snd_una))
1117 return 1;
1118
1119 if (!is_dsack || !tp->undo_marker)
1120 return 0;
1121
1122 /* ...Then it's D-SACK, and must reside below snd_una completely */
1123 if (!after(end_seq, tp->snd_una))
1124 return 0;
1125
1126 if (!before(start_seq, tp->undo_marker))
1127 return 1;
1128
1129 /* Too old */
1130 if (!after(end_seq, tp->undo_marker))
1131 return 0;
1132
1133 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1134 * start_seq < undo_marker and end_seq >= undo_marker.
1135 */
1136 return !before(start_seq, end_seq - tp->max_window);
1137}
1138
1c1e87ed
IJ
1139/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1140 * Event "C". Later note: FACK people cheated me again 8), we have to account
1141 * for reordering! Ugly, but should help.
f785a8e2
IJ
1142 *
1143 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1144 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1145 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1146 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1147 */
407ef1de 1148static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1149{
9f58f3b7 1150 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1151 struct tcp_sock *tp = tcp_sk(sk);
1152 struct sk_buff *skb;
f785a8e2 1153 int cnt = 0;
df2e014b 1154 u32 new_low_seq = tp->snd_nxt;
6859d494 1155 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1156
1157 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1158 !after(received_upto, tp->lost_retrans_low) ||
1159 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1160 return;
1c1e87ed
IJ
1161
1162 tcp_for_write_queue(skb, sk) {
1163 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1164
1165 if (skb == tcp_send_head(sk))
1166 break;
f785a8e2 1167 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1168 break;
1169 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1170 continue;
1171
f785a8e2
IJ
1172 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1173 continue;
1174
d0af4160
IJ
1175 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1176 * constraint here (see above) but figuring out that at
1177 * least tp->reordering SACK blocks reside between ack_seq
1178 * and received_upto is not easy task to do cheaply with
1179 * the available datastructures.
1180 *
1181 * Whether FACK should check here for tp->reordering segs
1182 * in-between one could argue for either way (it would be
1183 * rather simple to implement as we could count fack_count
1184 * during the walk and do tp->fackets_out - fack_count).
1185 */
1186 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1187 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1188 tp->retrans_out -= tcp_skb_pcount(skb);
1189
006f582c 1190 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1192 } else {
df2e014b 1193 if (before(ack_seq, new_low_seq))
b08d6cb2 1194 new_low_seq = ack_seq;
f785a8e2 1195 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1196 }
1197 }
b08d6cb2
IJ
1198
1199 if (tp->retrans_out)
1200 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1201}
5b3c9882 1202
1ed83465 1203static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
d06e021d
DM
1204 struct tcp_sack_block_wire *sp, int num_sacks,
1205 u32 prior_snd_una)
1206{
1ed83465 1207 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1208 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1209 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
d06e021d
DM
1210 int dup_sack = 0;
1211
1212 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1213 dup_sack = 1;
e60402d0 1214 tcp_dsack_seen(tp);
de0744af 1215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1216 } else if (num_sacks > 1) {
d3e2ce3b
HH
1217 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1218 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1219
1220 if (!after(end_seq_0, end_seq_1) &&
1221 !before(start_seq_0, start_seq_1)) {
1222 dup_sack = 1;
e60402d0 1223 tcp_dsack_seen(tp);
de0744af
PE
1224 NET_INC_STATS_BH(sock_net(sk),
1225 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1226 }
1227 }
1228
1229 /* D-SACK for already forgotten data... Do dumb counting. */
1230 if (dup_sack &&
1231 !after(end_seq_0, prior_snd_una) &&
1232 after(end_seq_0, tp->undo_marker))
1233 tp->undo_retrans--;
1234
1235 return dup_sack;
1236}
1237
a1197f5a
IJ
1238struct tcp_sacktag_state {
1239 int reord;
1240 int fack_count;
1241 int flag;
1242};
1243
d1935942
IJ
1244/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1245 * the incoming SACK may not exactly match but we can find smaller MSS
1246 * aligned portion of it that matches. Therefore we might need to fragment
1247 * which may fail and creates some hassle (caller must handle error case
1248 * returns).
832d11c5
IJ
1249 *
1250 * FIXME: this could be merged to shift decision code
d1935942 1251 */
0f79efdc
AB
1252static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1253 u32 start_seq, u32 end_seq)
d1935942
IJ
1254{
1255 int in_sack, err;
1256 unsigned int pkt_len;
adb92db8 1257 unsigned int mss;
d1935942
IJ
1258
1259 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1260 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1261
1262 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1263 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1264 mss = tcp_skb_mss(skb);
d1935942
IJ
1265 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1266
adb92db8 1267 if (!in_sack) {
d1935942 1268 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1269 if (pkt_len < mss)
1270 pkt_len = mss;
1271 } else {
d1935942 1272 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1273 if (pkt_len < mss)
1274 return -EINVAL;
1275 }
1276
1277 /* Round if necessary so that SACKs cover only full MSSes
1278 * and/or the remaining small portion (if present)
1279 */
1280 if (pkt_len > mss) {
1281 unsigned int new_len = (pkt_len / mss) * mss;
1282 if (!in_sack && new_len < pkt_len) {
1283 new_len += mss;
1284 if (new_len > skb->len)
1285 return 0;
1286 }
1287 pkt_len = new_len;
1288 }
1289 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1290 if (err < 0)
1291 return err;
1292 }
1293
1294 return in_sack;
1295}
1296
a1197f5a
IJ
1297static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1298 struct tcp_sacktag_state *state,
1299 int dup_sack, int pcount)
9e10c47c 1300{
6859d494 1301 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c 1302 u8 sacked = TCP_SKB_CB(skb)->sacked;
a1197f5a 1303 int fack_count = state->fack_count;
9e10c47c
IJ
1304
1305 /* Account D-SACK for retransmitted packet. */
1306 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1307 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1308 tp->undo_retrans--;
ede9f3b1 1309 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1310 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1311 }
1312
1313 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
a1197f5a 1315 return sacked;
9e10c47c
IJ
1316
1317 if (!(sacked & TCPCB_SACKED_ACKED)) {
1318 if (sacked & TCPCB_SACKED_RETRANS) {
1319 /* If the segment is not tagged as lost,
1320 * we do not clear RETRANS, believing
1321 * that retransmission is still in flight.
1322 */
1323 if (sacked & TCPCB_LOST) {
a1197f5a 1324 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1325 tp->lost_out -= pcount;
1326 tp->retrans_out -= pcount;
9e10c47c
IJ
1327 }
1328 } else {
1329 if (!(sacked & TCPCB_RETRANS)) {
1330 /* New sack for not retransmitted frame,
1331 * which was in hole. It is reordering.
1332 */
1333 if (before(TCP_SKB_CB(skb)->seq,
1334 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1335 state->reord = min(fack_count,
1336 state->reord);
9e10c47c
IJ
1337
1338 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1339 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
a1197f5a 1340 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1341 }
1342
1343 if (sacked & TCPCB_LOST) {
a1197f5a 1344 sacked &= ~TCPCB_LOST;
f58b22fd 1345 tp->lost_out -= pcount;
9e10c47c
IJ
1346 }
1347 }
1348
a1197f5a
IJ
1349 sacked |= TCPCB_SACKED_ACKED;
1350 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1351 tp->sacked_out += pcount;
9e10c47c 1352
f58b22fd 1353 fack_count += pcount;
9e10c47c
IJ
1354
1355 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1356 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1357 before(TCP_SKB_CB(skb)->seq,
1358 TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1359 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1360
1361 if (fack_count > tp->fackets_out)
1362 tp->fackets_out = fack_count;
9e10c47c
IJ
1363 }
1364
1365 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1366 * frames and clear it. undo_retrans is decreased above, L|R frames
1367 * are accounted above as well.
1368 */
a1197f5a
IJ
1369 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1370 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1371 tp->retrans_out -= pcount;
9e10c47c
IJ
1372 }
1373
a1197f5a 1374 return sacked;
9e10c47c
IJ
1375}
1376
50133161 1377static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
a1197f5a 1378 struct tcp_sacktag_state *state,
9ec06ff5
IJ
1379 unsigned int pcount, int shifted, int mss,
1380 int dup_sack)
832d11c5
IJ
1381{
1382 struct tcp_sock *tp = tcp_sk(sk);
50133161 1383 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
832d11c5
IJ
1384
1385 BUG_ON(!pcount);
1386
92ee76b6
IJ
1387 /* Tweak before seqno plays */
1388 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1389 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1390 tp->lost_cnt_hint += pcount;
1391
832d11c5
IJ
1392 TCP_SKB_CB(prev)->end_seq += shifted;
1393 TCP_SKB_CB(skb)->seq += shifted;
1394
1395 skb_shinfo(prev)->gso_segs += pcount;
1396 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1397 skb_shinfo(skb)->gso_segs -= pcount;
1398
1399 /* When we're adding to gso_segs == 1, gso_size will be zero,
1400 * in theory this shouldn't be necessary but as long as DSACK
1401 * code can come after this skb later on it's better to keep
1402 * setting gso_size to something.
1403 */
1404 if (!skb_shinfo(prev)->gso_size) {
1405 skb_shinfo(prev)->gso_size = mss;
1406 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1407 }
1408
1409 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1410 if (skb_shinfo(skb)->gso_segs <= 1) {
1411 skb_shinfo(skb)->gso_size = 0;
1412 skb_shinfo(skb)->gso_type = 0;
1413 }
1414
a1197f5a 1415 /* We discard results */
9ec06ff5 1416 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
832d11c5
IJ
1417
1418 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1419 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1420
832d11c5
IJ
1421 if (skb->len > 0) {
1422 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1423 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
832d11c5
IJ
1424 return 0;
1425 }
1426
1427 /* Whole SKB was eaten :-) */
1428
92ee76b6
IJ
1429 if (skb == tp->retransmit_skb_hint)
1430 tp->retransmit_skb_hint = prev;
1431 if (skb == tp->scoreboard_skb_hint)
1432 tp->scoreboard_skb_hint = prev;
1433 if (skb == tp->lost_skb_hint) {
1434 tp->lost_skb_hint = prev;
1435 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1436 }
1437
832d11c5
IJ
1438 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1439 if (skb == tcp_highest_sack(sk))
1440 tcp_advance_highest_sack(sk, skb);
1441
1442 tcp_unlink_write_queue(skb, sk);
1443 sk_wmem_free_skb(sk, skb);
1444
111cc8b9
IJ
1445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1446
832d11c5
IJ
1447 return 1;
1448}
1449
1450/* I wish gso_size would have a bit more sane initialization than
1451 * something-or-zero which complicates things
1452 */
775ffabf 1453static int tcp_skb_seglen(struct sk_buff *skb)
832d11c5 1454{
775ffabf 1455 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1456}
1457
1458/* Shifting pages past head area doesn't work */
1459static int skb_can_shift(struct sk_buff *skb)
1460{
1461 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1462}
1463
1464/* Try collapsing SACK blocks spanning across multiple skbs to a single
1465 * skb.
1466 */
1467static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1468 struct tcp_sacktag_state *state,
832d11c5 1469 u32 start_seq, u32 end_seq,
a1197f5a 1470 int dup_sack)
832d11c5
IJ
1471{
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 struct sk_buff *prev;
1474 int mss;
1475 int pcount = 0;
1476 int len;
1477 int in_sack;
1478
1479 if (!sk_can_gso(sk))
1480 goto fallback;
1481
1482 /* Normally R but no L won't result in plain S */
1483 if (!dup_sack &&
9969ca5f 1484 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1485 goto fallback;
1486 if (!skb_can_shift(skb))
1487 goto fallback;
1488 /* This frame is about to be dropped (was ACKed). */
1489 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490 goto fallback;
1491
1492 /* Can only happen with delayed DSACK + discard craziness */
1493 if (unlikely(skb == tcp_write_queue_head(sk)))
1494 goto fallback;
1495 prev = tcp_write_queue_prev(sk, skb);
1496
1497 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498 goto fallback;
1499
1500 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1502
1503 if (in_sack) {
1504 len = skb->len;
1505 pcount = tcp_skb_pcount(skb);
775ffabf 1506 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1507
1508 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509 * drop this restriction as unnecessary
1510 */
775ffabf 1511 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1512 goto fallback;
1513 } else {
1514 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515 goto noop;
1516 /* CHECKME: This is non-MSS split case only?, this will
1517 * cause skipped skbs due to advancing loop btw, original
1518 * has that feature too
1519 */
1520 if (tcp_skb_pcount(skb) <= 1)
1521 goto noop;
1522
1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524 if (!in_sack) {
1525 /* TODO: head merge to next could be attempted here
1526 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527 * though it might not be worth of the additional hassle
1528 *
1529 * ...we can probably just fallback to what was done
1530 * previously. We could try merging non-SACKed ones
1531 * as well but it probably isn't going to buy off
1532 * because later SACKs might again split them, and
1533 * it would make skb timestamp tracking considerably
1534 * harder problem.
1535 */
1536 goto fallback;
1537 }
1538
1539 len = end_seq - TCP_SKB_CB(skb)->seq;
1540 BUG_ON(len < 0);
1541 BUG_ON(len > skb->len);
1542
1543 /* MSS boundaries should be honoured or else pcount will
1544 * severely break even though it makes things bit trickier.
1545 * Optimize common case to avoid most of the divides
1546 */
1547 mss = tcp_skb_mss(skb);
1548
1549 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550 * drop this restriction as unnecessary
1551 */
775ffabf 1552 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1553 goto fallback;
1554
1555 if (len == mss) {
1556 pcount = 1;
1557 } else if (len < mss) {
1558 goto noop;
1559 } else {
1560 pcount = len / mss;
1561 len = pcount * mss;
1562 }
1563 }
1564
1565 if (!skb_shift(prev, skb, len))
1566 goto fallback;
9ec06ff5 1567 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1568 goto out;
1569
1570 /* Hole filled allows collapsing with the next as well, this is very
1571 * useful when hole on every nth skb pattern happens
1572 */
1573 if (prev == tcp_write_queue_tail(sk))
1574 goto out;
1575 skb = tcp_write_queue_next(sk, prev);
1576
f0bc52f3
IJ
1577 if (!skb_can_shift(skb) ||
1578 (skb == tcp_send_head(sk)) ||
1579 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1580 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1581 goto out;
1582
1583 len = skb->len;
1584 if (skb_shift(prev, skb, len)) {
1585 pcount += tcp_skb_pcount(skb);
9ec06ff5 1586 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1587 }
1588
1589out:
a1197f5a 1590 state->fack_count += pcount;
832d11c5
IJ
1591 return prev;
1592
1593noop:
1594 return skb;
1595
1596fallback:
111cc8b9 1597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1598 return NULL;
1599}
1600
68f8353b
IJ
1601static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1602 struct tcp_sack_block *next_dup,
a1197f5a 1603 struct tcp_sacktag_state *state,
68f8353b 1604 u32 start_seq, u32 end_seq,
a1197f5a 1605 int dup_sack_in)
68f8353b 1606{
832d11c5
IJ
1607 struct tcp_sock *tp = tcp_sk(sk);
1608 struct sk_buff *tmp;
1609
68f8353b
IJ
1610 tcp_for_write_queue_from(skb, sk) {
1611 int in_sack = 0;
1612 int dup_sack = dup_sack_in;
1613
1614 if (skb == tcp_send_head(sk))
1615 break;
1616
1617 /* queue is in-order => we can short-circuit the walk early */
1618 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1619 break;
1620
1621 if ((next_dup != NULL) &&
1622 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1623 in_sack = tcp_match_skb_to_sack(sk, skb,
1624 next_dup->start_seq,
1625 next_dup->end_seq);
1626 if (in_sack > 0)
1627 dup_sack = 1;
1628 }
1629
832d11c5
IJ
1630 /* skb reference here is a bit tricky to get right, since
1631 * shifting can eat and free both this skb and the next,
1632 * so not even _safe variant of the loop is enough.
1633 */
1634 if (in_sack <= 0) {
a1197f5a
IJ
1635 tmp = tcp_shift_skb_data(sk, skb, state,
1636 start_seq, end_seq, dup_sack);
832d11c5
IJ
1637 if (tmp != NULL) {
1638 if (tmp != skb) {
1639 skb = tmp;
1640 continue;
1641 }
1642
1643 in_sack = 0;
1644 } else {
1645 in_sack = tcp_match_skb_to_sack(sk, skb,
1646 start_seq,
1647 end_seq);
1648 }
1649 }
1650
68f8353b
IJ
1651 if (unlikely(in_sack < 0))
1652 break;
1653
832d11c5 1654 if (in_sack) {
a1197f5a
IJ
1655 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1656 state,
1657 dup_sack,
1658 tcp_skb_pcount(skb));
68f8353b 1659
832d11c5
IJ
1660 if (!before(TCP_SKB_CB(skb)->seq,
1661 tcp_highest_sack_seq(tp)))
1662 tcp_advance_highest_sack(sk, skb);
1663 }
1664
a1197f5a 1665 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1666 }
1667 return skb;
1668}
1669
1670/* Avoid all extra work that is being done by sacktag while walking in
1671 * a normal way
1672 */
1673static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1674 struct tcp_sacktag_state *state,
1675 u32 skip_to_seq)
68f8353b
IJ
1676{
1677 tcp_for_write_queue_from(skb, sk) {
1678 if (skb == tcp_send_head(sk))
1679 break;
1680
e8bae275 1681 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1682 break;
d152a7d8 1683
a1197f5a 1684 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1685 }
1686 return skb;
1687}
1688
1689static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1690 struct sock *sk,
1691 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1692 struct tcp_sacktag_state *state,
1693 u32 skip_to_seq)
68f8353b
IJ
1694{
1695 if (next_dup == NULL)
1696 return skb;
1697
1698 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1699 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1700 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1701 next_dup->start_seq, next_dup->end_seq,
1702 1);
68f8353b
IJ
1703 }
1704
1705 return skb;
1706}
1707
1708static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1709{
1710 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1711}
1712
1da177e4 1713static int
056834d9
IJ
1714tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1715 u32 prior_snd_una)
1da177e4 1716{
6687e988 1717 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1718 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1719 unsigned char *ptr = (skb_transport_header(ack_skb) +
1720 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1721 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1722 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1723 struct tcp_sack_block *cache;
a1197f5a 1724 struct tcp_sacktag_state state;
68f8353b 1725 struct sk_buff *skb;
4389dded 1726 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1727 int used_sacks;
7769f406 1728 int found_dup_sack = 0;
68f8353b 1729 int i, j;
fda03fbb 1730 int first_sack_index;
1da177e4 1731
a1197f5a
IJ
1732 state.flag = 0;
1733 state.reord = tp->packets_out;
1734
d738cd8f 1735 if (!tp->sacked_out) {
de83c058
IJ
1736 if (WARN_ON(tp->fackets_out))
1737 tp->fackets_out = 0;
6859d494 1738 tcp_highest_sack_reset(sk);
d738cd8f 1739 }
1da177e4 1740
1ed83465 1741 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1742 num_sacks, prior_snd_una);
1743 if (found_dup_sack)
a1197f5a 1744 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1745
1746 /* Eliminate too old ACKs, but take into
1747 * account more or less fresh ones, they can
1748 * contain valid SACK info.
1749 */
1750 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1751 return 0;
1752