]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
__d_materialise_dentry(): flip the order of arguments
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
1da177e4
LT
112/* Statistics gathering. */
113struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115};
116
3942c07c 117static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 118static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
121
122/*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
3942c07c 134static long get_nr_dentry(void)
3e880fb5
NP
135{
136 int i;
3942c07c 137 long sum = 0;
3e880fb5
NP
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141}
142
62d36c77
DC
143static long get_nr_dentry_unused(void)
144{
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150}
151
1f7e0616 152int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
153 size_t *lenp, loff_t *ppos)
154{
3e880fb5 155 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 156 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
158}
159#endif
160
5483f18e
LT
161/*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
e419b4cc
LT
165#ifdef CONFIG_DCACHE_WORD_ACCESS
166
167#include <asm/word-at-a-time.h>
168/*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
94753db5 177static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 178{
bfcfaa77 179 unsigned long a,b,mask;
bfcfaa77
LT
180
181 for (;;) {
12f8ad4b 182 a = *(unsigned long *)cs;
e419b4cc 183 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
a5c21dce 194 mask = bytemask_from_count(tcount);
bfcfaa77 195 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
196}
197
bfcfaa77 198#else
e419b4cc 199
94753db5 200static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 201{
5483f18e
LT
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210}
211
e419b4cc
LT
212#endif
213
94753db5
LT
214static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215{
6326c71f 216 const unsigned char *cs;
94753db5
LT
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
6326c71f
LT
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
236}
237
9c82ab9c 238static void __d_free(struct rcu_head *head)
1da177e4 239{
9c82ab9c
CH
240 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
241
b3d9b7a3 242 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
243 if (dname_external(dentry))
244 kfree(dentry->d_name.name);
245 kmem_cache_free(dentry_cache, dentry);
246}
247
b4f0354e
AV
248static void dentry_free(struct dentry *dentry)
249{
250 /* if dentry was never visible to RCU, immediate free is OK */
251 if (!(dentry->d_flags & DCACHE_RCUACCESS))
252 __d_free(&dentry->d_u.d_rcu);
253 else
254 call_rcu(&dentry->d_u.d_rcu, __d_free);
255}
256
31e6b01f
NP
257/**
258 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 259 * @dentry: the target dentry
31e6b01f
NP
260 * After this call, in-progress rcu-walk path lookup will fail. This
261 * should be called after unhashing, and after changing d_inode (if
262 * the dentry has not already been unhashed).
263 */
264static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
265{
266 assert_spin_locked(&dentry->d_lock);
267 /* Go through a barrier */
268 write_seqcount_barrier(&dentry->d_seq);
269}
270
1da177e4
LT
271/*
272 * Release the dentry's inode, using the filesystem
31e6b01f
NP
273 * d_iput() operation if defined. Dentry has no refcount
274 * and is unhashed.
1da177e4 275 */
858119e1 276static void dentry_iput(struct dentry * dentry)
31f3e0b3 277 __releases(dentry->d_lock)
873feea0 278 __releases(dentry->d_inode->i_lock)
1da177e4
LT
279{
280 struct inode *inode = dentry->d_inode;
281 if (inode) {
282 dentry->d_inode = NULL;
b3d9b7a3 283 hlist_del_init(&dentry->d_alias);
1da177e4 284 spin_unlock(&dentry->d_lock);
873feea0 285 spin_unlock(&inode->i_lock);
f805fbda
LT
286 if (!inode->i_nlink)
287 fsnotify_inoderemove(inode);
1da177e4
LT
288 if (dentry->d_op && dentry->d_op->d_iput)
289 dentry->d_op->d_iput(dentry, inode);
290 else
291 iput(inode);
292 } else {
293 spin_unlock(&dentry->d_lock);
1da177e4
LT
294 }
295}
296
31e6b01f
NP
297/*
298 * Release the dentry's inode, using the filesystem
299 * d_iput() operation if defined. dentry remains in-use.
300 */
301static void dentry_unlink_inode(struct dentry * dentry)
302 __releases(dentry->d_lock)
873feea0 303 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
304{
305 struct inode *inode = dentry->d_inode;
b18825a7 306 __d_clear_type(dentry);
31e6b01f 307 dentry->d_inode = NULL;
b3d9b7a3 308 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
309 dentry_rcuwalk_barrier(dentry);
310 spin_unlock(&dentry->d_lock);
873feea0 311 spin_unlock(&inode->i_lock);
31e6b01f
NP
312 if (!inode->i_nlink)
313 fsnotify_inoderemove(inode);
314 if (dentry->d_op && dentry->d_op->d_iput)
315 dentry->d_op->d_iput(dentry, inode);
316 else
317 iput(inode);
318}
319
89dc77bc
LT
320/*
321 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
322 * is in use - which includes both the "real" per-superblock
323 * LRU list _and_ the DCACHE_SHRINK_LIST use.
324 *
325 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
326 * on the shrink list (ie not on the superblock LRU list).
327 *
328 * The per-cpu "nr_dentry_unused" counters are updated with
329 * the DCACHE_LRU_LIST bit.
330 *
331 * These helper functions make sure we always follow the
332 * rules. d_lock must be held by the caller.
333 */
334#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
335static void d_lru_add(struct dentry *dentry)
336{
337 D_FLAG_VERIFY(dentry, 0);
338 dentry->d_flags |= DCACHE_LRU_LIST;
339 this_cpu_inc(nr_dentry_unused);
340 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
341}
342
343static void d_lru_del(struct dentry *dentry)
344{
345 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
346 dentry->d_flags &= ~DCACHE_LRU_LIST;
347 this_cpu_dec(nr_dentry_unused);
348 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
349}
350
351static void d_shrink_del(struct dentry *dentry)
352{
353 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
354 list_del_init(&dentry->d_lru);
355 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
356 this_cpu_dec(nr_dentry_unused);
357}
358
359static void d_shrink_add(struct dentry *dentry, struct list_head *list)
360{
361 D_FLAG_VERIFY(dentry, 0);
362 list_add(&dentry->d_lru, list);
363 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
364 this_cpu_inc(nr_dentry_unused);
365}
366
367/*
368 * These can only be called under the global LRU lock, ie during the
369 * callback for freeing the LRU list. "isolate" removes it from the
370 * LRU lists entirely, while shrink_move moves it to the indicated
371 * private list.
372 */
373static void d_lru_isolate(struct dentry *dentry)
374{
375 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
376 dentry->d_flags &= ~DCACHE_LRU_LIST;
377 this_cpu_dec(nr_dentry_unused);
378 list_del_init(&dentry->d_lru);
379}
380
381static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
382{
383 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
384 dentry->d_flags |= DCACHE_SHRINK_LIST;
385 list_move_tail(&dentry->d_lru, list);
386}
387
da3bbdd4 388/*
f6041567 389 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
390 */
391static void dentry_lru_add(struct dentry *dentry)
392{
89dc77bc
LT
393 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
394 d_lru_add(dentry);
da3bbdd4
KM
395}
396
789680d1
NP
397/**
398 * d_drop - drop a dentry
399 * @dentry: dentry to drop
400 *
401 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
402 * be found through a VFS lookup any more. Note that this is different from
403 * deleting the dentry - d_delete will try to mark the dentry negative if
404 * possible, giving a successful _negative_ lookup, while d_drop will
405 * just make the cache lookup fail.
406 *
407 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
408 * reason (NFS timeouts or autofs deletes).
409 *
410 * __d_drop requires dentry->d_lock.
411 */
412void __d_drop(struct dentry *dentry)
413{
dea3667b 414 if (!d_unhashed(dentry)) {
b61625d2 415 struct hlist_bl_head *b;
7632e465
BF
416 /*
417 * Hashed dentries are normally on the dentry hashtable,
418 * with the exception of those newly allocated by
419 * d_obtain_alias, which are always IS_ROOT:
420 */
421 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
422 b = &dentry->d_sb->s_anon;
423 else
424 b = d_hash(dentry->d_parent, dentry->d_name.hash);
425
426 hlist_bl_lock(b);
427 __hlist_bl_del(&dentry->d_hash);
428 dentry->d_hash.pprev = NULL;
429 hlist_bl_unlock(b);
dea3667b 430 dentry_rcuwalk_barrier(dentry);
789680d1
NP
431 }
432}
433EXPORT_SYMBOL(__d_drop);
434
435void d_drop(struct dentry *dentry)
436{
789680d1
NP
437 spin_lock(&dentry->d_lock);
438 __d_drop(dentry);
439 spin_unlock(&dentry->d_lock);
789680d1
NP
440}
441EXPORT_SYMBOL(d_drop);
442
e55fd011 443static void __dentry_kill(struct dentry *dentry)
77812a1e 444{
41edf278
AV
445 struct dentry *parent = NULL;
446 bool can_free = true;
41edf278 447 if (!IS_ROOT(dentry))
77812a1e 448 parent = dentry->d_parent;
31e6b01f 449
0d98439e
LT
450 /*
451 * The dentry is now unrecoverably dead to the world.
452 */
453 lockref_mark_dead(&dentry->d_lockref);
454
f0023bc6 455 /*
f0023bc6
SW
456 * inform the fs via d_prune that this dentry is about to be
457 * unhashed and destroyed.
458 */
590fb51f 459 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
460 dentry->d_op->d_prune(dentry);
461
01b60351
AV
462 if (dentry->d_flags & DCACHE_LRU_LIST) {
463 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
464 d_lru_del(dentry);
01b60351 465 }
77812a1e
NP
466 /* if it was on the hash then remove it */
467 __d_drop(dentry);
03b3b889
AV
468 list_del(&dentry->d_u.d_child);
469 /*
470 * Inform d_walk() that we are no longer attached to the
471 * dentry tree
472 */
473 dentry->d_flags |= DCACHE_DENTRY_KILLED;
474 if (parent)
475 spin_unlock(&parent->d_lock);
476 dentry_iput(dentry);
477 /*
478 * dentry_iput drops the locks, at which point nobody (except
479 * transient RCU lookups) can reach this dentry.
480 */
481 BUG_ON((int)dentry->d_lockref.count > 0);
482 this_cpu_dec(nr_dentry);
483 if (dentry->d_op && dentry->d_op->d_release)
484 dentry->d_op->d_release(dentry);
485
41edf278
AV
486 spin_lock(&dentry->d_lock);
487 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
488 dentry->d_flags |= DCACHE_MAY_FREE;
489 can_free = false;
490 }
491 spin_unlock(&dentry->d_lock);
41edf278
AV
492 if (likely(can_free))
493 dentry_free(dentry);
e55fd011
AV
494}
495
496/*
497 * Finish off a dentry we've decided to kill.
498 * dentry->d_lock must be held, returns with it unlocked.
499 * If ref is non-zero, then decrement the refcount too.
500 * Returns dentry requiring refcount drop, or NULL if we're done.
501 */
8cbf74da 502static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
503 __releases(dentry->d_lock)
504{
505 struct inode *inode = dentry->d_inode;
506 struct dentry *parent = NULL;
507
508 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
509 goto failed;
510
511 if (!IS_ROOT(dentry)) {
512 parent = dentry->d_parent;
513 if (unlikely(!spin_trylock(&parent->d_lock))) {
514 if (inode)
515 spin_unlock(&inode->i_lock);
516 goto failed;
517 }
518 }
519
520 __dentry_kill(dentry);
03b3b889 521 return parent;
e55fd011
AV
522
523failed:
8cbf74da
AV
524 spin_unlock(&dentry->d_lock);
525 cpu_relax();
e55fd011 526 return dentry; /* try again with same dentry */
77812a1e
NP
527}
528
046b961b
AV
529static inline struct dentry *lock_parent(struct dentry *dentry)
530{
531 struct dentry *parent = dentry->d_parent;
532 if (IS_ROOT(dentry))
533 return NULL;
c2338f2d
AV
534 if (unlikely((int)dentry->d_lockref.count < 0))
535 return NULL;
046b961b
AV
536 if (likely(spin_trylock(&parent->d_lock)))
537 return parent;
046b961b 538 rcu_read_lock();
c2338f2d 539 spin_unlock(&dentry->d_lock);
046b961b
AV
540again:
541 parent = ACCESS_ONCE(dentry->d_parent);
542 spin_lock(&parent->d_lock);
543 /*
544 * We can't blindly lock dentry until we are sure
545 * that we won't violate the locking order.
546 * Any changes of dentry->d_parent must have
547 * been done with parent->d_lock held, so
548 * spin_lock() above is enough of a barrier
549 * for checking if it's still our child.
550 */
551 if (unlikely(parent != dentry->d_parent)) {
552 spin_unlock(&parent->d_lock);
553 goto again;
554 }
555 rcu_read_unlock();
556 if (parent != dentry)
9f12600f 557 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
558 else
559 parent = NULL;
560 return parent;
561}
562
1da177e4
LT
563/*
564 * This is dput
565 *
566 * This is complicated by the fact that we do not want to put
567 * dentries that are no longer on any hash chain on the unused
568 * list: we'd much rather just get rid of them immediately.
569 *
570 * However, that implies that we have to traverse the dentry
571 * tree upwards to the parents which might _also_ now be
572 * scheduled for deletion (it may have been only waiting for
573 * its last child to go away).
574 *
575 * This tail recursion is done by hand as we don't want to depend
576 * on the compiler to always get this right (gcc generally doesn't).
577 * Real recursion would eat up our stack space.
578 */
579
580/*
581 * dput - release a dentry
582 * @dentry: dentry to release
583 *
584 * Release a dentry. This will drop the usage count and if appropriate
585 * call the dentry unlink method as well as removing it from the queues and
586 * releasing its resources. If the parent dentries were scheduled for release
587 * they too may now get deleted.
1da177e4 588 */
1da177e4
LT
589void dput(struct dentry *dentry)
590{
8aab6a27 591 if (unlikely(!dentry))
1da177e4
LT
592 return;
593
594repeat:
98474236 595 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 596 return;
1da177e4 597
8aab6a27
LT
598 /* Unreachable? Get rid of it */
599 if (unlikely(d_unhashed(dentry)))
600 goto kill_it;
601
602 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 603 if (dentry->d_op->d_delete(dentry))
61f3dee4 604 goto kill_it;
1da177e4 605 }
265ac902 606
358eec18
LT
607 if (!(dentry->d_flags & DCACHE_REFERENCED))
608 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 609 dentry_lru_add(dentry);
265ac902 610
98474236 611 dentry->d_lockref.count--;
61f3dee4 612 spin_unlock(&dentry->d_lock);
1da177e4
LT
613 return;
614
d52b9086 615kill_it:
8cbf74da 616 dentry = dentry_kill(dentry);
d52b9086
MS
617 if (dentry)
618 goto repeat;
1da177e4 619}
ec4f8605 620EXPORT_SYMBOL(dput);
1da177e4
LT
621
622/**
623 * d_invalidate - invalidate a dentry
624 * @dentry: dentry to invalidate
625 *
626 * Try to invalidate the dentry if it turns out to be
627 * possible. If there are other dentries that can be
628 * reached through this one we can't delete it and we
629 * return -EBUSY. On success we return 0.
630 *
631 * no dcache lock.
632 */
633
634int d_invalidate(struct dentry * dentry)
635{
636 /*
637 * If it's already been dropped, return OK.
638 */
da502956 639 spin_lock(&dentry->d_lock);
1da177e4 640 if (d_unhashed(dentry)) {
da502956 641 spin_unlock(&dentry->d_lock);
1da177e4
LT
642 return 0;
643 }
644 /*
645 * Check whether to do a partial shrink_dcache
646 * to get rid of unused child entries.
647 */
648 if (!list_empty(&dentry->d_subdirs)) {
da502956 649 spin_unlock(&dentry->d_lock);
1da177e4 650 shrink_dcache_parent(dentry);
da502956 651 spin_lock(&dentry->d_lock);
1da177e4
LT
652 }
653
654 /*
655 * Somebody else still using it?
656 *
657 * If it's a directory, we can't drop it
658 * for fear of somebody re-populating it
659 * with children (even though dropping it
660 * would make it unreachable from the root,
661 * we might still populate it if it was a
662 * working directory or similar).
50e69630
AV
663 * We also need to leave mountpoints alone,
664 * directory or not.
1da177e4 665 */
98474236 666 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 667 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 668 spin_unlock(&dentry->d_lock);
1da177e4
LT
669 return -EBUSY;
670 }
671 }
672
673 __d_drop(dentry);
674 spin_unlock(&dentry->d_lock);
1da177e4
LT
675 return 0;
676}
ec4f8605 677EXPORT_SYMBOL(d_invalidate);
1da177e4 678
b5c84bf6 679/* This must be called with d_lock held */
dc0474be 680static inline void __dget_dlock(struct dentry *dentry)
23044507 681{
98474236 682 dentry->d_lockref.count++;
23044507
NP
683}
684
dc0474be 685static inline void __dget(struct dentry *dentry)
1da177e4 686{
98474236 687 lockref_get(&dentry->d_lockref);
1da177e4
LT
688}
689
b7ab39f6
NP
690struct dentry *dget_parent(struct dentry *dentry)
691{
df3d0bbc 692 int gotref;
b7ab39f6
NP
693 struct dentry *ret;
694
df3d0bbc
WL
695 /*
696 * Do optimistic parent lookup without any
697 * locking.
698 */
699 rcu_read_lock();
700 ret = ACCESS_ONCE(dentry->d_parent);
701 gotref = lockref_get_not_zero(&ret->d_lockref);
702 rcu_read_unlock();
703 if (likely(gotref)) {
704 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
705 return ret;
706 dput(ret);
707 }
708
b7ab39f6 709repeat:
a734eb45
NP
710 /*
711 * Don't need rcu_dereference because we re-check it was correct under
712 * the lock.
713 */
714 rcu_read_lock();
b7ab39f6 715 ret = dentry->d_parent;
a734eb45
NP
716 spin_lock(&ret->d_lock);
717 if (unlikely(ret != dentry->d_parent)) {
718 spin_unlock(&ret->d_lock);
719 rcu_read_unlock();
b7ab39f6
NP
720 goto repeat;
721 }
a734eb45 722 rcu_read_unlock();
98474236
WL
723 BUG_ON(!ret->d_lockref.count);
724 ret->d_lockref.count++;
b7ab39f6 725 spin_unlock(&ret->d_lock);
b7ab39f6
NP
726 return ret;
727}
728EXPORT_SYMBOL(dget_parent);
729
1da177e4
LT
730/**
731 * d_find_alias - grab a hashed alias of inode
732 * @inode: inode in question
1da177e4
LT
733 *
734 * If inode has a hashed alias, or is a directory and has any alias,
735 * acquire the reference to alias and return it. Otherwise return NULL.
736 * Notice that if inode is a directory there can be only one alias and
737 * it can be unhashed only if it has no children, or if it is the root
738 * of a filesystem.
739 *
21c0d8fd 740 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 741 * any other hashed alias over that one.
1da177e4 742 */
52ed46f0 743static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 744{
da502956 745 struct dentry *alias, *discon_alias;
1da177e4 746
da502956
NP
747again:
748 discon_alias = NULL;
b67bfe0d 749 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 750 spin_lock(&alias->d_lock);
1da177e4 751 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 752 if (IS_ROOT(alias) &&
da502956 753 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 754 discon_alias = alias;
52ed46f0 755 } else {
dc0474be 756 __dget_dlock(alias);
da502956
NP
757 spin_unlock(&alias->d_lock);
758 return alias;
759 }
760 }
761 spin_unlock(&alias->d_lock);
762 }
763 if (discon_alias) {
764 alias = discon_alias;
765 spin_lock(&alias->d_lock);
766 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
767 __dget_dlock(alias);
768 spin_unlock(&alias->d_lock);
769 return alias;
1da177e4 770 }
da502956
NP
771 spin_unlock(&alias->d_lock);
772 goto again;
1da177e4 773 }
da502956 774 return NULL;
1da177e4
LT
775}
776
da502956 777struct dentry *d_find_alias(struct inode *inode)
1da177e4 778{
214fda1f
DH
779 struct dentry *de = NULL;
780
b3d9b7a3 781 if (!hlist_empty(&inode->i_dentry)) {
873feea0 782 spin_lock(&inode->i_lock);
52ed46f0 783 de = __d_find_alias(inode);
873feea0 784 spin_unlock(&inode->i_lock);
214fda1f 785 }
1da177e4
LT
786 return de;
787}
ec4f8605 788EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
789
790/*
791 * Try to kill dentries associated with this inode.
792 * WARNING: you must own a reference to inode.
793 */
794void d_prune_aliases(struct inode *inode)
795{
0cdca3f9 796 struct dentry *dentry;
1da177e4 797restart:
873feea0 798 spin_lock(&inode->i_lock);
b67bfe0d 799 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 800 spin_lock(&dentry->d_lock);
98474236 801 if (!dentry->d_lockref.count) {
590fb51f
YZ
802 /*
803 * inform the fs via d_prune that this dentry
804 * is about to be unhashed and destroyed.
805 */
806 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
807 !d_unhashed(dentry))
808 dentry->d_op->d_prune(dentry);
809
dc0474be 810 __dget_dlock(dentry);
1da177e4
LT
811 __d_drop(dentry);
812 spin_unlock(&dentry->d_lock);
873feea0 813 spin_unlock(&inode->i_lock);
1da177e4
LT
814 dput(dentry);
815 goto restart;
816 }
817 spin_unlock(&dentry->d_lock);
818 }
873feea0 819 spin_unlock(&inode->i_lock);
1da177e4 820}
ec4f8605 821EXPORT_SYMBOL(d_prune_aliases);
1da177e4 822
3049cfe2 823static void shrink_dentry_list(struct list_head *list)
1da177e4 824{
5c47e6d0 825 struct dentry *dentry, *parent;
da3bbdd4 826
60942f2f 827 while (!list_empty(list)) {
ff2fde99 828 struct inode *inode;
60942f2f 829 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 830 spin_lock(&dentry->d_lock);
046b961b
AV
831 parent = lock_parent(dentry);
832
dd1f6b2e
DC
833 /*
834 * The dispose list is isolated and dentries are not accounted
835 * to the LRU here, so we can simply remove it from the list
836 * here regardless of whether it is referenced or not.
837 */
89dc77bc 838 d_shrink_del(dentry);
dd1f6b2e 839
1da177e4
LT
840 /*
841 * We found an inuse dentry which was not removed from
dd1f6b2e 842 * the LRU because of laziness during lookup. Do not free it.
1da177e4 843 */
41edf278 844 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 845 spin_unlock(&dentry->d_lock);
046b961b
AV
846 if (parent)
847 spin_unlock(&parent->d_lock);
1da177e4
LT
848 continue;
849 }
77812a1e 850
64fd72e0
AV
851
852 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
853 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
854 spin_unlock(&dentry->d_lock);
046b961b
AV
855 if (parent)
856 spin_unlock(&parent->d_lock);
64fd72e0
AV
857 if (can_free)
858 dentry_free(dentry);
859 continue;
860 }
861
ff2fde99
AV
862 inode = dentry->d_inode;
863 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 864 d_shrink_add(dentry, list);
dd1f6b2e 865 spin_unlock(&dentry->d_lock);
046b961b
AV
866 if (parent)
867 spin_unlock(&parent->d_lock);
5c47e6d0 868 continue;
dd1f6b2e 869 }
ff2fde99 870
ff2fde99 871 __dentry_kill(dentry);
046b961b 872
5c47e6d0
AV
873 /*
874 * We need to prune ancestors too. This is necessary to prevent
875 * quadratic behavior of shrink_dcache_parent(), but is also
876 * expected to be beneficial in reducing dentry cache
877 * fragmentation.
878 */
879 dentry = parent;
b2b80195
AV
880 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
881 parent = lock_parent(dentry);
882 if (dentry->d_lockref.count != 1) {
883 dentry->d_lockref.count--;
884 spin_unlock(&dentry->d_lock);
885 if (parent)
886 spin_unlock(&parent->d_lock);
887 break;
888 }
889 inode = dentry->d_inode; /* can't be NULL */
890 if (unlikely(!spin_trylock(&inode->i_lock))) {
891 spin_unlock(&dentry->d_lock);
892 if (parent)
893 spin_unlock(&parent->d_lock);
894 cpu_relax();
895 continue;
896 }
897 __dentry_kill(dentry);
898 dentry = parent;
899 }
da3bbdd4 900 }
3049cfe2
CH
901}
902
f6041567
DC
903static enum lru_status
904dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
905{
906 struct list_head *freeable = arg;
907 struct dentry *dentry = container_of(item, struct dentry, d_lru);
908
909
910 /*
911 * we are inverting the lru lock/dentry->d_lock here,
912 * so use a trylock. If we fail to get the lock, just skip
913 * it
914 */
915 if (!spin_trylock(&dentry->d_lock))
916 return LRU_SKIP;
917
918 /*
919 * Referenced dentries are still in use. If they have active
920 * counts, just remove them from the LRU. Otherwise give them
921 * another pass through the LRU.
922 */
923 if (dentry->d_lockref.count) {
89dc77bc 924 d_lru_isolate(dentry);
f6041567
DC
925 spin_unlock(&dentry->d_lock);
926 return LRU_REMOVED;
927 }
928
929 if (dentry->d_flags & DCACHE_REFERENCED) {
930 dentry->d_flags &= ~DCACHE_REFERENCED;
931 spin_unlock(&dentry->d_lock);
932
933 /*
934 * The list move itself will be made by the common LRU code. At
935 * this point, we've dropped the dentry->d_lock but keep the
936 * lru lock. This is safe to do, since every list movement is
937 * protected by the lru lock even if both locks are held.
938 *
939 * This is guaranteed by the fact that all LRU management
940 * functions are intermediated by the LRU API calls like
941 * list_lru_add and list_lru_del. List movement in this file
942 * only ever occur through this functions or through callbacks
943 * like this one, that are called from the LRU API.
944 *
945 * The only exceptions to this are functions like
946 * shrink_dentry_list, and code that first checks for the
947 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
948 * operating only with stack provided lists after they are
949 * properly isolated from the main list. It is thus, always a
950 * local access.
951 */
952 return LRU_ROTATE;
953 }
954
89dc77bc 955 d_lru_shrink_move(dentry, freeable);
f6041567
DC
956 spin_unlock(&dentry->d_lock);
957
958 return LRU_REMOVED;
959}
960
3049cfe2 961/**
b48f03b3
DC
962 * prune_dcache_sb - shrink the dcache
963 * @sb: superblock
f6041567 964 * @nr_to_scan : number of entries to try to free
9b17c623 965 * @nid: which node to scan for freeable entities
b48f03b3 966 *
f6041567 967 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
968 * done when we need more memory an called from the superblock shrinker
969 * function.
3049cfe2 970 *
b48f03b3
DC
971 * This function may fail to free any resources if all the dentries are in
972 * use.
3049cfe2 973 */
9b17c623
DC
974long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
975 int nid)
3049cfe2 976{
f6041567
DC
977 LIST_HEAD(dispose);
978 long freed;
3049cfe2 979
9b17c623
DC
980 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
981 &dispose, &nr_to_scan);
f6041567 982 shrink_dentry_list(&dispose);
0a234c6d 983 return freed;
da3bbdd4 984}
23044507 985
4e717f5c
GC
986static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
987 spinlock_t *lru_lock, void *arg)
dd1f6b2e 988{
4e717f5c
GC
989 struct list_head *freeable = arg;
990 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 991
4e717f5c
GC
992 /*
993 * we are inverting the lru lock/dentry->d_lock here,
994 * so use a trylock. If we fail to get the lock, just skip
995 * it
996 */
997 if (!spin_trylock(&dentry->d_lock))
998 return LRU_SKIP;
999
89dc77bc 1000 d_lru_shrink_move(dentry, freeable);
4e717f5c 1001 spin_unlock(&dentry->d_lock);
ec33679d 1002
4e717f5c 1003 return LRU_REMOVED;
da3bbdd4
KM
1004}
1005
4e717f5c 1006
1da177e4
LT
1007/**
1008 * shrink_dcache_sb - shrink dcache for a superblock
1009 * @sb: superblock
1010 *
3049cfe2
CH
1011 * Shrink the dcache for the specified super block. This is used to free
1012 * the dcache before unmounting a file system.
1da177e4 1013 */
3049cfe2 1014void shrink_dcache_sb(struct super_block *sb)
1da177e4 1015{
4e717f5c
GC
1016 long freed;
1017
1018 do {
1019 LIST_HEAD(dispose);
1020
1021 freed = list_lru_walk(&sb->s_dentry_lru,
1022 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1023
4e717f5c
GC
1024 this_cpu_sub(nr_dentry_unused, freed);
1025 shrink_dentry_list(&dispose);
1026 } while (freed > 0);
1da177e4 1027}
ec4f8605 1028EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1029
db14fc3a
MS
1030/**
1031 * enum d_walk_ret - action to talke during tree walk
1032 * @D_WALK_CONTINUE: contrinue walk
1033 * @D_WALK_QUIT: quit walk
1034 * @D_WALK_NORETRY: quit when retry is needed
1035 * @D_WALK_SKIP: skip this dentry and its children
1036 */
1037enum d_walk_ret {
1038 D_WALK_CONTINUE,
1039 D_WALK_QUIT,
1040 D_WALK_NORETRY,
1041 D_WALK_SKIP,
1042};
c826cb7d 1043
1da177e4 1044/**
db14fc3a
MS
1045 * d_walk - walk the dentry tree
1046 * @parent: start of walk
1047 * @data: data passed to @enter() and @finish()
1048 * @enter: callback when first entering the dentry
1049 * @finish: callback when successfully finished the walk
1da177e4 1050 *
db14fc3a 1051 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1052 */
db14fc3a
MS
1053static void d_walk(struct dentry *parent, void *data,
1054 enum d_walk_ret (*enter)(void *, struct dentry *),
1055 void (*finish)(void *))
1da177e4 1056{
949854d0 1057 struct dentry *this_parent;
1da177e4 1058 struct list_head *next;
48f5ec21 1059 unsigned seq = 0;
db14fc3a
MS
1060 enum d_walk_ret ret;
1061 bool retry = true;
949854d0 1062
58db63d0 1063again:
48f5ec21 1064 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1065 this_parent = parent;
2fd6b7f5 1066 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1067
1068 ret = enter(data, this_parent);
1069 switch (ret) {
1070 case D_WALK_CONTINUE:
1071 break;
1072 case D_WALK_QUIT:
1073 case D_WALK_SKIP:
1074 goto out_unlock;
1075 case D_WALK_NORETRY:
1076 retry = false;
1077 break;
1078 }
1da177e4
LT
1079repeat:
1080 next = this_parent->d_subdirs.next;
1081resume:
1082 while (next != &this_parent->d_subdirs) {
1083 struct list_head *tmp = next;
5160ee6f 1084 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1085 next = tmp->next;
2fd6b7f5
NP
1086
1087 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1088
1089 ret = enter(data, dentry);
1090 switch (ret) {
1091 case D_WALK_CONTINUE:
1092 break;
1093 case D_WALK_QUIT:
2fd6b7f5 1094 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1095 goto out_unlock;
1096 case D_WALK_NORETRY:
1097 retry = false;
1098 break;
1099 case D_WALK_SKIP:
1100 spin_unlock(&dentry->d_lock);
1101 continue;
2fd6b7f5 1102 }
db14fc3a 1103
1da177e4 1104 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1105 spin_unlock(&this_parent->d_lock);
1106 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1107 this_parent = dentry;
2fd6b7f5 1108 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1109 goto repeat;
1110 }
2fd6b7f5 1111 spin_unlock(&dentry->d_lock);
1da177e4
LT
1112 }
1113 /*
1114 * All done at this level ... ascend and resume the search.
1115 */
1116 if (this_parent != parent) {
c826cb7d 1117 struct dentry *child = this_parent;
31dec132
AV
1118 this_parent = child->d_parent;
1119
1120 rcu_read_lock();
1121 spin_unlock(&child->d_lock);
1122 spin_lock(&this_parent->d_lock);
1123
1124 /*
1125 * might go back up the wrong parent if we have had a rename
1126 * or deletion
1127 */
1128 if (this_parent != child->d_parent ||
1129 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1130 need_seqretry(&rename_lock, seq)) {
1131 spin_unlock(&this_parent->d_lock);
1132 rcu_read_unlock();
949854d0 1133 goto rename_retry;
31dec132
AV
1134 }
1135 rcu_read_unlock();
949854d0 1136 next = child->d_u.d_child.next;
1da177e4
LT
1137 goto resume;
1138 }
48f5ec21 1139 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1140 spin_unlock(&this_parent->d_lock);
949854d0 1141 goto rename_retry;
db14fc3a
MS
1142 }
1143 if (finish)
1144 finish(data);
1145
1146out_unlock:
1147 spin_unlock(&this_parent->d_lock);
48f5ec21 1148 done_seqretry(&rename_lock, seq);
db14fc3a 1149 return;
58db63d0
NP
1150
1151rename_retry:
db14fc3a
MS
1152 if (!retry)
1153 return;
48f5ec21 1154 seq = 1;
58db63d0 1155 goto again;
1da177e4 1156}
db14fc3a
MS
1157
1158/*
1159 * Search for at least 1 mount point in the dentry's subdirs.
1160 * We descend to the next level whenever the d_subdirs
1161 * list is non-empty and continue searching.
1162 */
1163
db14fc3a
MS
1164static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1165{
1166 int *ret = data;
1167 if (d_mountpoint(dentry)) {
1168 *ret = 1;
1169 return D_WALK_QUIT;
1170 }
1171 return D_WALK_CONTINUE;
1172}
1173
69c88dc7
RD
1174/**
1175 * have_submounts - check for mounts over a dentry
1176 * @parent: dentry to check.
1177 *
1178 * Return true if the parent or its subdirectories contain
1179 * a mount point
1180 */
db14fc3a
MS
1181int have_submounts(struct dentry *parent)
1182{
1183 int ret = 0;
1184
1185 d_walk(parent, &ret, check_mount, NULL);
1186
1187 return ret;
1188}
ec4f8605 1189EXPORT_SYMBOL(have_submounts);
1da177e4 1190
eed81007
MS
1191/*
1192 * Called by mount code to set a mountpoint and check if the mountpoint is
1193 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1194 * subtree can become unreachable).
1195 *
1196 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1197 * this reason take rename_lock and d_lock on dentry and ancestors.
1198 */
1199int d_set_mounted(struct dentry *dentry)
1200{
1201 struct dentry *p;
1202 int ret = -ENOENT;
1203 write_seqlock(&rename_lock);
1204 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1205 /* Need exclusion wrt. check_submounts_and_drop() */
1206 spin_lock(&p->d_lock);
1207 if (unlikely(d_unhashed(p))) {
1208 spin_unlock(&p->d_lock);
1209 goto out;
1210 }
1211 spin_unlock(&p->d_lock);
1212 }
1213 spin_lock(&dentry->d_lock);
1214 if (!d_unlinked(dentry)) {
1215 dentry->d_flags |= DCACHE_MOUNTED;
1216 ret = 0;
1217 }
1218 spin_unlock(&dentry->d_lock);
1219out:
1220 write_sequnlock(&rename_lock);
1221 return ret;
1222}
1223
1da177e4 1224/*
fd517909 1225 * Search the dentry child list of the specified parent,
1da177e4
LT
1226 * and move any unused dentries to the end of the unused
1227 * list for prune_dcache(). We descend to the next level
1228 * whenever the d_subdirs list is non-empty and continue
1229 * searching.
1230 *
1231 * It returns zero iff there are no unused children,
1232 * otherwise it returns the number of children moved to
1233 * the end of the unused list. This may not be the total
1234 * number of unused children, because select_parent can
1235 * drop the lock and return early due to latency
1236 * constraints.
1237 */
1da177e4 1238
db14fc3a
MS
1239struct select_data {
1240 struct dentry *start;
1241 struct list_head dispose;
1242 int found;
1243};
23044507 1244
db14fc3a
MS
1245static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1246{
1247 struct select_data *data = _data;
1248 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1249
db14fc3a
MS
1250 if (data->start == dentry)
1251 goto out;
2fd6b7f5 1252
fe91522a 1253 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1254 data->found++;
fe91522a
AV
1255 } else {
1256 if (dentry->d_flags & DCACHE_LRU_LIST)
1257 d_lru_del(dentry);
1258 if (!dentry->d_lockref.count) {
1259 d_shrink_add(dentry, &data->dispose);
1260 data->found++;
1261 }
1da177e4 1262 }
db14fc3a
MS
1263 /*
1264 * We can return to the caller if we have found some (this
1265 * ensures forward progress). We'll be coming back to find
1266 * the rest.
1267 */
fe91522a
AV
1268 if (!list_empty(&data->dispose))
1269 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1270out:
db14fc3a 1271 return ret;
1da177e4
LT
1272}
1273
1274/**
1275 * shrink_dcache_parent - prune dcache
1276 * @parent: parent of entries to prune
1277 *
1278 * Prune the dcache to remove unused children of the parent dentry.
1279 */
db14fc3a 1280void shrink_dcache_parent(struct dentry *parent)
1da177e4 1281{
db14fc3a
MS
1282 for (;;) {
1283 struct select_data data;
1da177e4 1284
db14fc3a
MS
1285 INIT_LIST_HEAD(&data.dispose);
1286 data.start = parent;
1287 data.found = 0;
1288
1289 d_walk(parent, &data, select_collect, NULL);
1290 if (!data.found)
1291 break;
1292
1293 shrink_dentry_list(&data.dispose);
421348f1
GT
1294 cond_resched();
1295 }
1da177e4 1296}
ec4f8605 1297EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1298
9c8c10e2 1299static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1300{
9c8c10e2
AV
1301 /* it has busy descendents; complain about those instead */
1302 if (!list_empty(&dentry->d_subdirs))
1303 return D_WALK_CONTINUE;
42c32608 1304
9c8c10e2
AV
1305 /* root with refcount 1 is fine */
1306 if (dentry == _data && dentry->d_lockref.count == 1)
1307 return D_WALK_CONTINUE;
1308
1309 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1310 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1311 dentry,
1312 dentry->d_inode ?
1313 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1314 dentry,
42c32608
AV
1315 dentry->d_lockref.count,
1316 dentry->d_sb->s_type->name,
1317 dentry->d_sb->s_id);
9c8c10e2
AV
1318 WARN_ON(1);
1319 return D_WALK_CONTINUE;
1320}
1321
1322static void do_one_tree(struct dentry *dentry)
1323{
1324 shrink_dcache_parent(dentry);
1325 d_walk(dentry, dentry, umount_check, NULL);
1326 d_drop(dentry);
1327 dput(dentry);
42c32608
AV
1328}
1329
1330/*
1331 * destroy the dentries attached to a superblock on unmounting
1332 */
1333void shrink_dcache_for_umount(struct super_block *sb)
1334{
1335 struct dentry *dentry;
1336
9c8c10e2 1337 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1338
1339 dentry = sb->s_root;
1340 sb->s_root = NULL;
9c8c10e2 1341 do_one_tree(dentry);
42c32608
AV
1342
1343 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1344 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1345 do_one_tree(dentry);
42c32608
AV
1346 }
1347}
1348
848ac114
MS
1349static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1350{
1351 struct select_data *data = _data;
1352
1353 if (d_mountpoint(dentry)) {
1354 data->found = -EBUSY;
1355 return D_WALK_QUIT;
1356 }
1357
1358 return select_collect(_data, dentry);
1359}
1360
1361static void check_and_drop(void *_data)
1362{
1363 struct select_data *data = _data;
1364
1365 if (d_mountpoint(data->start))
1366 data->found = -EBUSY;
1367 if (!data->found)
1368 __d_drop(data->start);
1369}
1370
1371/**
1372 * check_submounts_and_drop - prune dcache, check for submounts and drop
1373 *
1374 * All done as a single atomic operation relative to has_unlinked_ancestor().
1375 * Returns 0 if successfully unhashed @parent. If there were submounts then
1376 * return -EBUSY.
1377 *
1378 * @dentry: dentry to prune and drop
1379 */
1380int check_submounts_and_drop(struct dentry *dentry)
1381{
1382 int ret = 0;
1383
1384 /* Negative dentries can be dropped without further checks */
1385 if (!dentry->d_inode) {
1386 d_drop(dentry);
1387 goto out;
1388 }
1389
1390 for (;;) {
1391 struct select_data data;
1392
1393 INIT_LIST_HEAD(&data.dispose);
1394 data.start = dentry;
1395 data.found = 0;
1396
1397 d_walk(dentry, &data, check_and_collect, check_and_drop);
1398 ret = data.found;
1399
1400 if (!list_empty(&data.dispose))
1401 shrink_dentry_list(&data.dispose);
1402
1403 if (ret <= 0)
1404 break;
1405
1406 cond_resched();
1407 }
1408
1409out:
1410 return ret;
1411}
1412EXPORT_SYMBOL(check_submounts_and_drop);
1413
1da177e4 1414/**
a4464dbc
AV
1415 * __d_alloc - allocate a dcache entry
1416 * @sb: filesystem it will belong to
1da177e4
LT
1417 * @name: qstr of the name
1418 *
1419 * Allocates a dentry. It returns %NULL if there is insufficient memory
1420 * available. On a success the dentry is returned. The name passed in is
1421 * copied and the copy passed in may be reused after this call.
1422 */
1423
a4464dbc 1424struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1425{
1426 struct dentry *dentry;
1427 char *dname;
1428
e12ba74d 1429 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1430 if (!dentry)
1431 return NULL;
1432
6326c71f
LT
1433 /*
1434 * We guarantee that the inline name is always NUL-terminated.
1435 * This way the memcpy() done by the name switching in rename
1436 * will still always have a NUL at the end, even if we might
1437 * be overwriting an internal NUL character
1438 */
1439 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1440 if (name->len > DNAME_INLINE_LEN-1) {
1441 dname = kmalloc(name->len + 1, GFP_KERNEL);
1442 if (!dname) {
1443 kmem_cache_free(dentry_cache, dentry);
1444 return NULL;
1445 }
1446 } else {
1447 dname = dentry->d_iname;
1448 }
1da177e4
LT
1449
1450 dentry->d_name.len = name->len;
1451 dentry->d_name.hash = name->hash;
1452 memcpy(dname, name->name, name->len);
1453 dname[name->len] = 0;
1454
6326c71f
LT
1455 /* Make sure we always see the terminating NUL character */
1456 smp_wmb();
1457 dentry->d_name.name = dname;
1458
98474236 1459 dentry->d_lockref.count = 1;
dea3667b 1460 dentry->d_flags = 0;
1da177e4 1461 spin_lock_init(&dentry->d_lock);
31e6b01f 1462 seqcount_init(&dentry->d_seq);
1da177e4 1463 dentry->d_inode = NULL;
a4464dbc
AV
1464 dentry->d_parent = dentry;
1465 dentry->d_sb = sb;
1da177e4
LT
1466 dentry->d_op = NULL;
1467 dentry->d_fsdata = NULL;
ceb5bdc2 1468 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1469 INIT_LIST_HEAD(&dentry->d_lru);
1470 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1471 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1472 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1473 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1474
3e880fb5 1475 this_cpu_inc(nr_dentry);
312d3ca8 1476
1da177e4
LT
1477 return dentry;
1478}
a4464dbc
AV
1479
1480/**
1481 * d_alloc - allocate a dcache entry
1482 * @parent: parent of entry to allocate
1483 * @name: qstr of the name
1484 *
1485 * Allocates a dentry. It returns %NULL if there is insufficient memory
1486 * available. On a success the dentry is returned. The name passed in is
1487 * copied and the copy passed in may be reused after this call.
1488 */
1489struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1490{
1491 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1492 if (!dentry)
1493 return NULL;
1494
1495 spin_lock(&parent->d_lock);
1496 /*
1497 * don't need child lock because it is not subject
1498 * to concurrency here
1499 */
1500 __dget_dlock(parent);
1501 dentry->d_parent = parent;
1502 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1503 spin_unlock(&parent->d_lock);
1504
1505 return dentry;
1506}
ec4f8605 1507EXPORT_SYMBOL(d_alloc);
1da177e4 1508
e1a24bb0
BF
1509/**
1510 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1511 * @sb: the superblock
1512 * @name: qstr of the name
1513 *
1514 * For a filesystem that just pins its dentries in memory and never
1515 * performs lookups at all, return an unhashed IS_ROOT dentry.
1516 */
4b936885
NP
1517struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1518{
e1a24bb0 1519 return __d_alloc(sb, name);
4b936885
NP
1520}
1521EXPORT_SYMBOL(d_alloc_pseudo);
1522
1da177e4
LT
1523struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1524{
1525 struct qstr q;
1526
1527 q.name = name;
1528 q.len = strlen(name);
1529 q.hash = full_name_hash(q.name, q.len);
1530 return d_alloc(parent, &q);
1531}
ef26ca97 1532EXPORT_SYMBOL(d_alloc_name);
1da177e4 1533
fb045adb
NP
1534void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1535{
6f7f7caa
LT
1536 WARN_ON_ONCE(dentry->d_op);
1537 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1538 DCACHE_OP_COMPARE |
1539 DCACHE_OP_REVALIDATE |
ecf3d1f1 1540 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1541 DCACHE_OP_DELETE ));
1542 dentry->d_op = op;
1543 if (!op)
1544 return;
1545 if (op->d_hash)
1546 dentry->d_flags |= DCACHE_OP_HASH;
1547 if (op->d_compare)
1548 dentry->d_flags |= DCACHE_OP_COMPARE;
1549 if (op->d_revalidate)
1550 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1551 if (op->d_weak_revalidate)
1552 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1553 if (op->d_delete)
1554 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1555 if (op->d_prune)
1556 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1557
1558}
1559EXPORT_SYMBOL(d_set_d_op);
1560
b18825a7
DH
1561static unsigned d_flags_for_inode(struct inode *inode)
1562{
1563 unsigned add_flags = DCACHE_FILE_TYPE;
1564
1565 if (!inode)
1566 return DCACHE_MISS_TYPE;
1567
1568 if (S_ISDIR(inode->i_mode)) {
1569 add_flags = DCACHE_DIRECTORY_TYPE;
1570 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1571 if (unlikely(!inode->i_op->lookup))
1572 add_flags = DCACHE_AUTODIR_TYPE;
1573 else
1574 inode->i_opflags |= IOP_LOOKUP;
1575 }
1576 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1577 if (unlikely(inode->i_op->follow_link))
1578 add_flags = DCACHE_SYMLINK_TYPE;
1579 else
1580 inode->i_opflags |= IOP_NOFOLLOW;
1581 }
1582
1583 if (unlikely(IS_AUTOMOUNT(inode)))
1584 add_flags |= DCACHE_NEED_AUTOMOUNT;
1585 return add_flags;
1586}
1587
360da900
OH
1588static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1589{
b18825a7
DH
1590 unsigned add_flags = d_flags_for_inode(inode);
1591
b23fb0a6 1592 spin_lock(&dentry->d_lock);
22213318 1593 __d_set_type(dentry, add_flags);
b18825a7 1594 if (inode)
b3d9b7a3 1595 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1596 dentry->d_inode = inode;
31e6b01f 1597 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1598 spin_unlock(&dentry->d_lock);
360da900
OH
1599 fsnotify_d_instantiate(dentry, inode);
1600}
1601
1da177e4
LT
1602/**
1603 * d_instantiate - fill in inode information for a dentry
1604 * @entry: dentry to complete
1605 * @inode: inode to attach to this dentry
1606 *
1607 * Fill in inode information in the entry.
1608 *
1609 * This turns negative dentries into productive full members
1610 * of society.
1611 *
1612 * NOTE! This assumes that the inode count has been incremented
1613 * (or otherwise set) by the caller to indicate that it is now
1614 * in use by the dcache.
1615 */
1616
1617void d_instantiate(struct dentry *entry, struct inode * inode)
1618{
b3d9b7a3 1619 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1620 if (inode)
1621 spin_lock(&inode->i_lock);
360da900 1622 __d_instantiate(entry, inode);
873feea0
NP
1623 if (inode)
1624 spin_unlock(&inode->i_lock);
1da177e4
LT
1625 security_d_instantiate(entry, inode);
1626}
ec4f8605 1627EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1628
1629/**
1630 * d_instantiate_unique - instantiate a non-aliased dentry
1631 * @entry: dentry to instantiate
1632 * @inode: inode to attach to this dentry
1633 *
1634 * Fill in inode information in the entry. On success, it returns NULL.
1635 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1636 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1637 *
1638 * Note that in order to avoid conflicts with rename() etc, the caller
1639 * had better be holding the parent directory semaphore.
e866cfa9
OD
1640 *
1641 * This also assumes that the inode count has been incremented
1642 * (or otherwise set) by the caller to indicate that it is now
1643 * in use by the dcache.
1da177e4 1644 */
770bfad8
DH
1645static struct dentry *__d_instantiate_unique(struct dentry *entry,
1646 struct inode *inode)
1da177e4
LT
1647{
1648 struct dentry *alias;
1649 int len = entry->d_name.len;
1650 const char *name = entry->d_name.name;
1651 unsigned int hash = entry->d_name.hash;
1652
770bfad8 1653 if (!inode) {
360da900 1654 __d_instantiate(entry, NULL);
770bfad8
DH
1655 return NULL;
1656 }
1657
b67bfe0d 1658 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1659 /*
1660 * Don't need alias->d_lock here, because aliases with
1661 * d_parent == entry->d_parent are not subject to name or
1662 * parent changes, because the parent inode i_mutex is held.
1663 */
12f8ad4b 1664 if (alias->d_name.hash != hash)
1da177e4
LT
1665 continue;
1666 if (alias->d_parent != entry->d_parent)
1667 continue;
ee983e89
LT
1668 if (alias->d_name.len != len)
1669 continue;
12f8ad4b 1670 if (dentry_cmp(alias, name, len))
1da177e4 1671 continue;
dc0474be 1672 __dget(alias);
1da177e4
LT
1673 return alias;
1674 }
770bfad8 1675
360da900 1676 __d_instantiate(entry, inode);
1da177e4
LT
1677 return NULL;
1678}
770bfad8
DH
1679
1680struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1681{
1682 struct dentry *result;
1683
b3d9b7a3 1684 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1685
873feea0
NP
1686 if (inode)
1687 spin_lock(&inode->i_lock);
770bfad8 1688 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1689 if (inode)
1690 spin_unlock(&inode->i_lock);
770bfad8
DH
1691
1692 if (!result) {
1693 security_d_instantiate(entry, inode);
1694 return NULL;
1695 }
1696
1697 BUG_ON(!d_unhashed(result));
1698 iput(inode);
1699 return result;
1700}
1701
1da177e4
LT
1702EXPORT_SYMBOL(d_instantiate_unique);
1703
b70a80e7
MS
1704/**
1705 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1706 * @entry: dentry to complete
1707 * @inode: inode to attach to this dentry
1708 *
1709 * Fill in inode information in the entry. If a directory alias is found, then
1710 * return an error (and drop inode). Together with d_materialise_unique() this
1711 * guarantees that a directory inode may never have more than one alias.
1712 */
1713int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1714{
1715 BUG_ON(!hlist_unhashed(&entry->d_alias));
1716
1717 spin_lock(&inode->i_lock);
1718 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1719 spin_unlock(&inode->i_lock);
1720 iput(inode);
1721 return -EBUSY;
1722 }
1723 __d_instantiate(entry, inode);
1724 spin_unlock(&inode->i_lock);
1725 security_d_instantiate(entry, inode);
1726
1727 return 0;
1728}
1729EXPORT_SYMBOL(d_instantiate_no_diralias);
1730
adc0e91a
AV
1731struct dentry *d_make_root(struct inode *root_inode)
1732{
1733 struct dentry *res = NULL;
1734
1735 if (root_inode) {
26fe5750 1736 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1737
1738 res = __d_alloc(root_inode->i_sb, &name);
1739 if (res)
1740 d_instantiate(res, root_inode);
1741 else
1742 iput(root_inode);
1743 }
1744 return res;
1745}
1746EXPORT_SYMBOL(d_make_root);
1747
d891eedb
BF
1748static struct dentry * __d_find_any_alias(struct inode *inode)
1749{
1750 struct dentry *alias;
1751
b3d9b7a3 1752 if (hlist_empty(&inode->i_dentry))
d891eedb 1753 return NULL;
b3d9b7a3 1754 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1755 __dget(alias);
1756 return alias;
1757}
1758
46f72b34
SW
1759/**
1760 * d_find_any_alias - find any alias for a given inode
1761 * @inode: inode to find an alias for
1762 *
1763 * If any aliases exist for the given inode, take and return a
1764 * reference for one of them. If no aliases exist, return %NULL.
1765 */
1766struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1767{
1768 struct dentry *de;
1769
1770 spin_lock(&inode->i_lock);
1771 de = __d_find_any_alias(inode);
1772 spin_unlock(&inode->i_lock);
1773 return de;
1774}
46f72b34 1775EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1776
49c7dd28 1777static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1778{
b911a6bd 1779 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1780 struct dentry *tmp;
1781 struct dentry *res;
b18825a7 1782 unsigned add_flags;
4ea3ada2
CH
1783
1784 if (!inode)
44003728 1785 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1786 if (IS_ERR(inode))
1787 return ERR_CAST(inode);
1788
d891eedb 1789 res = d_find_any_alias(inode);
9308a612
CH
1790 if (res)
1791 goto out_iput;
1792
a4464dbc 1793 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1794 if (!tmp) {
1795 res = ERR_PTR(-ENOMEM);
1796 goto out_iput;
4ea3ada2 1797 }
b5c84bf6 1798
873feea0 1799 spin_lock(&inode->i_lock);
d891eedb 1800 res = __d_find_any_alias(inode);
9308a612 1801 if (res) {
873feea0 1802 spin_unlock(&inode->i_lock);
9308a612
CH
1803 dput(tmp);
1804 goto out_iput;
1805 }
1806
1807 /* attach a disconnected dentry */
1a0a397e
BF
1808 add_flags = d_flags_for_inode(inode);
1809
1810 if (disconnected)
1811 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1812
9308a612 1813 spin_lock(&tmp->d_lock);
9308a612 1814 tmp->d_inode = inode;
b18825a7 1815 tmp->d_flags |= add_flags;
b3d9b7a3 1816 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1817 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1818 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1819 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1820 spin_unlock(&tmp->d_lock);
873feea0 1821 spin_unlock(&inode->i_lock);
24ff6663 1822 security_d_instantiate(tmp, inode);
9308a612 1823
9308a612
CH
1824 return tmp;
1825
1826 out_iput:
24ff6663
JB
1827 if (res && !IS_ERR(res))
1828 security_d_instantiate(res, inode);
9308a612
CH
1829 iput(inode);
1830 return res;
4ea3ada2 1831}
1a0a397e
BF
1832
1833/**
1834 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1835 * @inode: inode to allocate the dentry for
1836 *
1837 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1838 * similar open by handle operations. The returned dentry may be anonymous,
1839 * or may have a full name (if the inode was already in the cache).
1840 *
1841 * When called on a directory inode, we must ensure that the inode only ever
1842 * has one dentry. If a dentry is found, that is returned instead of
1843 * allocating a new one.
1844 *
1845 * On successful return, the reference to the inode has been transferred
1846 * to the dentry. In case of an error the reference on the inode is released.
1847 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1848 * be passed in and the error will be propagated to the return value,
1849 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1850 */
1851struct dentry *d_obtain_alias(struct inode *inode)
1852{
1853 return __d_obtain_alias(inode, 1);
1854}
adc48720 1855EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1856
1a0a397e
BF
1857/**
1858 * d_obtain_root - find or allocate a dentry for a given inode
1859 * @inode: inode to allocate the dentry for
1860 *
1861 * Obtain an IS_ROOT dentry for the root of a filesystem.
1862 *
1863 * We must ensure that directory inodes only ever have one dentry. If a
1864 * dentry is found, that is returned instead of allocating a new one.
1865 *
1866 * On successful return, the reference to the inode has been transferred
1867 * to the dentry. In case of an error the reference on the inode is
1868 * released. A %NULL or IS_ERR inode may be passed in and will be the
1869 * error will be propagate to the return value, with a %NULL @inode
1870 * replaced by ERR_PTR(-ESTALE).
1871 */
1872struct dentry *d_obtain_root(struct inode *inode)
1873{
1874 return __d_obtain_alias(inode, 0);
1875}
1876EXPORT_SYMBOL(d_obtain_root);
1877
9403540c
BN
1878/**
1879 * d_add_ci - lookup or allocate new dentry with case-exact name
1880 * @inode: the inode case-insensitive lookup has found
1881 * @dentry: the negative dentry that was passed to the parent's lookup func
1882 * @name: the case-exact name to be associated with the returned dentry
1883 *
1884 * This is to avoid filling the dcache with case-insensitive names to the
1885 * same inode, only the actual correct case is stored in the dcache for
1886 * case-insensitive filesystems.
1887 *
1888 * For a case-insensitive lookup match and if the the case-exact dentry
1889 * already exists in in the dcache, use it and return it.
1890 *
1891 * If no entry exists with the exact case name, allocate new dentry with
1892 * the exact case, and return the spliced entry.
1893 */
e45b590b 1894struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1895 struct qstr *name)
1896{
9403540c
BN
1897 struct dentry *found;
1898 struct dentry *new;
1899
b6520c81
CH
1900 /*
1901 * First check if a dentry matching the name already exists,
1902 * if not go ahead and create it now.
1903 */
9403540c 1904 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1905 if (unlikely(IS_ERR(found)))
1906 goto err_out;
9403540c
BN
1907 if (!found) {
1908 new = d_alloc(dentry->d_parent, name);
1909 if (!new) {
4f522a24 1910 found = ERR_PTR(-ENOMEM);
9403540c
BN
1911 goto err_out;
1912 }
b6520c81 1913
9403540c
BN
1914 found = d_splice_alias(inode, new);
1915 if (found) {
1916 dput(new);
1917 return found;
1918 }
1919 return new;
1920 }
b6520c81
CH
1921
1922 /*
1923 * If a matching dentry exists, and it's not negative use it.
1924 *
1925 * Decrement the reference count to balance the iget() done
1926 * earlier on.
1927 */
9403540c
BN
1928 if (found->d_inode) {
1929 if (unlikely(found->d_inode != inode)) {
1930 /* This can't happen because bad inodes are unhashed. */
1931 BUG_ON(!is_bad_inode(inode));
1932 BUG_ON(!is_bad_inode(found->d_inode));
1933 }
9403540c
BN
1934 iput(inode);
1935 return found;
1936 }
b6520c81 1937
9403540c 1938 /*
9403540c 1939 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1940 * already has a dentry.
9403540c 1941 */
4513d899
AV
1942 new = d_splice_alias(inode, found);
1943 if (new) {
1944 dput(found);
1945 found = new;
9403540c 1946 }
4513d899 1947 return found;
9403540c
BN
1948
1949err_out:
1950 iput(inode);
4f522a24 1951 return found;
9403540c 1952}
ec4f8605 1953EXPORT_SYMBOL(d_add_ci);
1da177e4 1954
12f8ad4b
LT
1955/*
1956 * Do the slow-case of the dentry name compare.
1957 *
1958 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1959 * load the name and length information, so that the
12f8ad4b
LT
1960 * filesystem can rely on them, and can use the 'name' and
1961 * 'len' information without worrying about walking off the
1962 * end of memory etc.
1963 *
1964 * Thus the read_seqcount_retry() and the "duplicate" info
1965 * in arguments (the low-level filesystem should not look
1966 * at the dentry inode or name contents directly, since
1967 * rename can change them while we're in RCU mode).
1968 */
1969enum slow_d_compare {
1970 D_COMP_OK,
1971 D_COMP_NOMATCH,
1972 D_COMP_SEQRETRY,
1973};
1974
1975static noinline enum slow_d_compare slow_dentry_cmp(
1976 const struct dentry *parent,
12f8ad4b
LT
1977 struct dentry *dentry,
1978 unsigned int seq,
1979 const struct qstr *name)
1980{
1981 int tlen = dentry->d_name.len;
1982 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1983
1984 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1985 cpu_relax();
1986 return D_COMP_SEQRETRY;
1987 }
da53be12 1988 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1989 return D_COMP_NOMATCH;
1990 return D_COMP_OK;
1991}
1992
31e6b01f
NP
1993/**
1994 * __d_lookup_rcu - search for a dentry (racy, store-free)
1995 * @parent: parent dentry
1996 * @name: qstr of name we wish to find
1f1e6e52 1997 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1998 * Returns: dentry, or NULL
1999 *
2000 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2001 * resolution (store-free path walking) design described in
2002 * Documentation/filesystems/path-lookup.txt.
2003 *
2004 * This is not to be used outside core vfs.
2005 *
2006 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2007 * held, and rcu_read_lock held. The returned dentry must not be stored into
2008 * without taking d_lock and checking d_seq sequence count against @seq
2009 * returned here.
2010 *
15570086 2011 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2012 * function.
2013 *
2014 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2015 * the returned dentry, so long as its parent's seqlock is checked after the
2016 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2017 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2018 *
2019 * NOTE! The caller *has* to check the resulting dentry against the sequence
2020 * number we've returned before using any of the resulting dentry state!
31e6b01f 2021 */
8966be90
LT
2022struct dentry *__d_lookup_rcu(const struct dentry *parent,
2023 const struct qstr *name,
da53be12 2024 unsigned *seqp)
31e6b01f 2025{
26fe5750 2026 u64 hashlen = name->hash_len;
31e6b01f 2027 const unsigned char *str = name->name;
26fe5750 2028 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2029 struct hlist_bl_node *node;
31e6b01f
NP
2030 struct dentry *dentry;
2031
2032 /*
2033 * Note: There is significant duplication with __d_lookup_rcu which is
2034 * required to prevent single threaded performance regressions
2035 * especially on architectures where smp_rmb (in seqcounts) are costly.
2036 * Keep the two functions in sync.
2037 */
2038
2039 /*
2040 * The hash list is protected using RCU.
2041 *
2042 * Carefully use d_seq when comparing a candidate dentry, to avoid
2043 * races with d_move().
2044 *
2045 * It is possible that concurrent renames can mess up our list
2046 * walk here and result in missing our dentry, resulting in the
2047 * false-negative result. d_lookup() protects against concurrent
2048 * renames using rename_lock seqlock.
2049 *
b0a4bb83 2050 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2051 */
b07ad996 2052 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2053 unsigned seq;
31e6b01f 2054
31e6b01f 2055seqretry:
12f8ad4b
LT
2056 /*
2057 * The dentry sequence count protects us from concurrent
da53be12 2058 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2059 *
2060 * The caller must perform a seqcount check in order
da53be12 2061 * to do anything useful with the returned dentry.
12f8ad4b
LT
2062 *
2063 * NOTE! We do a "raw" seqcount_begin here. That means that
2064 * we don't wait for the sequence count to stabilize if it
2065 * is in the middle of a sequence change. If we do the slow
2066 * dentry compare, we will do seqretries until it is stable,
2067 * and if we end up with a successful lookup, we actually
2068 * want to exit RCU lookup anyway.
2069 */
2070 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2071 if (dentry->d_parent != parent)
2072 continue;
2e321806
LT
2073 if (d_unhashed(dentry))
2074 continue;
12f8ad4b 2075
830c0f0e 2076 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2077 if (dentry->d_name.hash != hashlen_hash(hashlen))
2078 continue;
da53be12
LT
2079 *seqp = seq;
2080 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2081 case D_COMP_OK:
2082 return dentry;
2083 case D_COMP_NOMATCH:
31e6b01f 2084 continue;
12f8ad4b
LT
2085 default:
2086 goto seqretry;
2087 }
31e6b01f 2088 }
12f8ad4b 2089
26fe5750 2090 if (dentry->d_name.hash_len != hashlen)
ee983e89 2091 continue;
da53be12 2092 *seqp = seq;
26fe5750 2093 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2094 return dentry;
31e6b01f
NP
2095 }
2096 return NULL;
2097}
2098
1da177e4
LT
2099/**
2100 * d_lookup - search for a dentry
2101 * @parent: parent dentry
2102 * @name: qstr of name we wish to find
b04f784e 2103 * Returns: dentry, or NULL
1da177e4 2104 *
b04f784e
NP
2105 * d_lookup searches the children of the parent dentry for the name in
2106 * question. If the dentry is found its reference count is incremented and the
2107 * dentry is returned. The caller must use dput to free the entry when it has
2108 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2109 */
da2d8455 2110struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2111{
31e6b01f 2112 struct dentry *dentry;
949854d0 2113 unsigned seq;
1da177e4
LT
2114
2115 do {
2116 seq = read_seqbegin(&rename_lock);
2117 dentry = __d_lookup(parent, name);
2118 if (dentry)
2119 break;
2120 } while (read_seqretry(&rename_lock, seq));
2121 return dentry;
2122}
ec4f8605 2123EXPORT_SYMBOL(d_lookup);
1da177e4 2124
31e6b01f 2125/**
b04f784e
NP
2126 * __d_lookup - search for a dentry (racy)
2127 * @parent: parent dentry
2128 * @name: qstr of name we wish to find
2129 * Returns: dentry, or NULL
2130 *
2131 * __d_lookup is like d_lookup, however it may (rarely) return a
2132 * false-negative result due to unrelated rename activity.
2133 *
2134 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2135 * however it must be used carefully, eg. with a following d_lookup in
2136 * the case of failure.
2137 *
2138 * __d_lookup callers must be commented.
2139 */
a713ca2a 2140struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2141{
2142 unsigned int len = name->len;
2143 unsigned int hash = name->hash;
2144 const unsigned char *str = name->name;
b07ad996 2145 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2146 struct hlist_bl_node *node;
31e6b01f 2147 struct dentry *found = NULL;
665a7583 2148 struct dentry *dentry;
1da177e4 2149
31e6b01f
NP
2150 /*
2151 * Note: There is significant duplication with __d_lookup_rcu which is
2152 * required to prevent single threaded performance regressions
2153 * especially on architectures where smp_rmb (in seqcounts) are costly.
2154 * Keep the two functions in sync.
2155 */
2156
b04f784e
NP
2157 /*
2158 * The hash list is protected using RCU.
2159 *
2160 * Take d_lock when comparing a candidate dentry, to avoid races
2161 * with d_move().
2162 *
2163 * It is possible that concurrent renames can mess up our list
2164 * walk here and result in missing our dentry, resulting in the
2165 * false-negative result. d_lookup() protects against concurrent
2166 * renames using rename_lock seqlock.
2167 *
b0a4bb83 2168 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2169 */
1da177e4
LT
2170 rcu_read_lock();
2171
b07ad996 2172 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2173
1da177e4
LT
2174 if (dentry->d_name.hash != hash)
2175 continue;
1da177e4
LT
2176
2177 spin_lock(&dentry->d_lock);
1da177e4
LT
2178 if (dentry->d_parent != parent)
2179 goto next;
d0185c08
LT
2180 if (d_unhashed(dentry))
2181 goto next;
2182
1da177e4
LT
2183 /*
2184 * It is safe to compare names since d_move() cannot
2185 * change the qstr (protected by d_lock).
2186 */
fb045adb 2187 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2188 int tlen = dentry->d_name.len;
2189 const char *tname = dentry->d_name.name;
da53be12 2190 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2191 goto next;
2192 } else {
ee983e89
LT
2193 if (dentry->d_name.len != len)
2194 goto next;
12f8ad4b 2195 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2196 goto next;
2197 }
2198
98474236 2199 dentry->d_lockref.count++;
d0185c08 2200 found = dentry;
1da177e4
LT
2201 spin_unlock(&dentry->d_lock);
2202 break;
2203next:
2204 spin_unlock(&dentry->d_lock);
2205 }
2206 rcu_read_unlock();
2207
2208 return found;
2209}
2210
3e7e241f
EB
2211/**
2212 * d_hash_and_lookup - hash the qstr then search for a dentry
2213 * @dir: Directory to search in
2214 * @name: qstr of name we wish to find
2215 *
4f522a24 2216 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2217 */
2218struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2219{
3e7e241f
EB
2220 /*
2221 * Check for a fs-specific hash function. Note that we must
2222 * calculate the standard hash first, as the d_op->d_hash()
2223 * routine may choose to leave the hash value unchanged.
2224 */
2225 name->hash = full_name_hash(name->name, name->len);
fb045adb 2226 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2227 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2228 if (unlikely(err < 0))
2229 return ERR_PTR(err);
3e7e241f 2230 }
4f522a24 2231 return d_lookup(dir, name);
3e7e241f 2232}
4f522a24 2233EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2234
1da177e4 2235/**
786a5e15 2236 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2237 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2238 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2239 *
2240 * An insecure source has sent us a dentry, here we verify it and dget() it.
2241 * This is used by ncpfs in its readdir implementation.
2242 * Zero is returned in the dentry is invalid.
786a5e15
NP
2243 *
2244 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2245 */
d3a23e16 2246int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2247{
786a5e15 2248 struct dentry *child;
d3a23e16 2249
2fd6b7f5 2250 spin_lock(&dparent->d_lock);
786a5e15
NP
2251 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2252 if (dentry == child) {
2fd6b7f5 2253 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2254 __dget_dlock(dentry);
2fd6b7f5
NP
2255 spin_unlock(&dentry->d_lock);
2256 spin_unlock(&dparent->d_lock);
1da177e4
LT
2257 return 1;
2258 }
2259 }
2fd6b7f5 2260 spin_unlock(&dparent->d_lock);
786a5e15 2261
1da177e4
LT
2262 return 0;
2263}
ec4f8605 2264EXPORT_SYMBOL(d_validate);
1da177e4
LT
2265
2266/*
2267 * When a file is deleted, we have two options:
2268 * - turn this dentry into a negative dentry
2269 * - unhash this dentry and free it.
2270 *
2271 * Usually, we want to just turn this into
2272 * a negative dentry, but if anybody else is
2273 * currently using the dentry or the inode
2274 * we can't do that and we fall back on removing
2275 * it from the hash queues and waiting for
2276 * it to be deleted later when it has no users
2277 */
2278
2279/**
2280 * d_delete - delete a dentry
2281 * @dentry: The dentry to delete
2282 *
2283 * Turn the dentry into a negative dentry if possible, otherwise
2284 * remove it from the hash queues so it can be deleted later
2285 */
2286
2287void d_delete(struct dentry * dentry)
2288{
873feea0 2289 struct inode *inode;
7a91bf7f 2290 int isdir = 0;
1da177e4
LT
2291 /*
2292 * Are we the only user?
2293 */
357f8e65 2294again:
1da177e4 2295 spin_lock(&dentry->d_lock);
873feea0
NP
2296 inode = dentry->d_inode;
2297 isdir = S_ISDIR(inode->i_mode);
98474236 2298 if (dentry->d_lockref.count == 1) {
1fe0c023 2299 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2300 spin_unlock(&dentry->d_lock);
2301 cpu_relax();
2302 goto again;
2303 }
13e3c5e5 2304 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2305 dentry_unlink_inode(dentry);
7a91bf7f 2306 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2307 return;
2308 }
2309
2310 if (!d_unhashed(dentry))
2311 __d_drop(dentry);
2312
2313 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2314
2315 fsnotify_nameremove(dentry, isdir);
1da177e4 2316}
ec4f8605 2317EXPORT_SYMBOL(d_delete);
1da177e4 2318
b07ad996 2319static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2320{
ceb5bdc2 2321 BUG_ON(!d_unhashed(entry));
1879fd6a 2322 hlist_bl_lock(b);
dea3667b 2323 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2324 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2325 hlist_bl_unlock(b);
1da177e4
LT
2326}
2327
770bfad8
DH
2328static void _d_rehash(struct dentry * entry)
2329{
2330 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2331}
2332
1da177e4
LT
2333/**
2334 * d_rehash - add an entry back to the hash
2335 * @entry: dentry to add to the hash
2336 *
2337 * Adds a dentry to the hash according to its name.
2338 */
2339
2340void d_rehash(struct dentry * entry)
2341{
1da177e4 2342 spin_lock(&entry->d_lock);
770bfad8 2343 _d_rehash(entry);
1da177e4 2344 spin_unlock(&entry->d_lock);
1da177e4 2345}
ec4f8605 2346EXPORT_SYMBOL(d_rehash);
1da177e4 2347
fb2d5b86
NP
2348/**
2349 * dentry_update_name_case - update case insensitive dentry with a new name
2350 * @dentry: dentry to be updated
2351 * @name: new name
2352 *
2353 * Update a case insensitive dentry with new case of name.
2354 *
2355 * dentry must have been returned by d_lookup with name @name. Old and new
2356 * name lengths must match (ie. no d_compare which allows mismatched name
2357 * lengths).
2358 *
2359 * Parent inode i_mutex must be held over d_lookup and into this call (to
2360 * keep renames and concurrent inserts, and readdir(2) away).
2361 */
2362void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2363{
7ebfa57f 2364 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2365 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2366
fb2d5b86 2367 spin_lock(&dentry->d_lock);
31e6b01f 2368 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2369 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2370 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2371 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2372}
2373EXPORT_SYMBOL(dentry_update_name_case);
2374
1da177e4
LT
2375static void switch_names(struct dentry *dentry, struct dentry *target)
2376{
2377 if (dname_external(target)) {
2378 if (dname_external(dentry)) {
2379 /*
2380 * Both external: swap the pointers
2381 */
9a8d5bb4 2382 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2383 } else {
2384 /*
2385 * dentry:internal, target:external. Steal target's
2386 * storage and make target internal.
2387 */
321bcf92
BF
2388 memcpy(target->d_iname, dentry->d_name.name,
2389 dentry->d_name.len + 1);
1da177e4
LT
2390 dentry->d_name.name = target->d_name.name;
2391 target->d_name.name = target->d_iname;
2392 }
2393 } else {
2394 if (dname_external(dentry)) {
2395 /*
2396 * dentry:external, target:internal. Give dentry's
2397 * storage to target and make dentry internal
2398 */
2399 memcpy(dentry->d_iname, target->d_name.name,
2400 target->d_name.len + 1);
2401 target->d_name.name = dentry->d_name.name;
2402 dentry->d_name.name = dentry->d_iname;
2403 } else {
2404 /*
da1ce067 2405 * Both are internal.
1da177e4 2406 */
da1ce067
MS
2407 unsigned int i;
2408 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2409 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2410 swap(((long *) &dentry->d_iname)[i],
2411 ((long *) &target->d_iname)[i]);
2412 }
1da177e4
LT
2413 }
2414 }
9a8d5bb4 2415 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2416}
2417
2fd6b7f5
NP
2418static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2419{
2420 /*
2421 * XXXX: do we really need to take target->d_lock?
2422 */
2423 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2424 spin_lock(&target->d_parent->d_lock);
2425 else {
2426 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2427 spin_lock(&dentry->d_parent->d_lock);
2428 spin_lock_nested(&target->d_parent->d_lock,
2429 DENTRY_D_LOCK_NESTED);
2430 } else {
2431 spin_lock(&target->d_parent->d_lock);
2432 spin_lock_nested(&dentry->d_parent->d_lock,
2433 DENTRY_D_LOCK_NESTED);
2434 }
2435 }
2436 if (target < dentry) {
2437 spin_lock_nested(&target->d_lock, 2);
2438 spin_lock_nested(&dentry->d_lock, 3);
2439 } else {
2440 spin_lock_nested(&dentry->d_lock, 2);
2441 spin_lock_nested(&target->d_lock, 3);
2442 }
2443}
2444
2445static void dentry_unlock_parents_for_move(struct dentry *dentry,
2446 struct dentry *target)
2447{
2448 if (target->d_parent != dentry->d_parent)
2449 spin_unlock(&dentry->d_parent->d_lock);
2450 if (target->d_parent != target)
2451 spin_unlock(&target->d_parent->d_lock);
2452}
2453
1da177e4 2454/*
2fd6b7f5
NP
2455 * When switching names, the actual string doesn't strictly have to
2456 * be preserved in the target - because we're dropping the target
2457 * anyway. As such, we can just do a simple memcpy() to copy over
2458 * the new name before we switch.
2459 *
2460 * Note that we have to be a lot more careful about getting the hash
2461 * switched - we have to switch the hash value properly even if it
2462 * then no longer matches the actual (corrupted) string of the target.
2463 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2464 */
9eaef27b 2465/*
18367501 2466 * __d_move - move a dentry
1da177e4
LT
2467 * @dentry: entry to move
2468 * @target: new dentry
da1ce067 2469 * @exchange: exchange the two dentries
1da177e4
LT
2470 *
2471 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2472 * dcache entries should not be moved in this way. Caller must hold
2473 * rename_lock, the i_mutex of the source and target directories,
2474 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2475 */
da1ce067
MS
2476static void __d_move(struct dentry *dentry, struct dentry *target,
2477 bool exchange)
1da177e4 2478{
1da177e4
LT
2479 if (!dentry->d_inode)
2480 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2481
2fd6b7f5
NP
2482 BUG_ON(d_ancestor(dentry, target));
2483 BUG_ON(d_ancestor(target, dentry));
2484
2fd6b7f5 2485 dentry_lock_for_move(dentry, target);
1da177e4 2486
31e6b01f 2487 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2488 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2489
ceb5bdc2
NP
2490 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2491
2492 /*
2493 * Move the dentry to the target hash queue. Don't bother checking
2494 * for the same hash queue because of how unlikely it is.
2495 */
2496 __d_drop(dentry);
789680d1 2497 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2498
da1ce067
MS
2499 /*
2500 * Unhash the target (d_delete() is not usable here). If exchanging
2501 * the two dentries, then rehash onto the other's hash queue.
2502 */
1da177e4 2503 __d_drop(target);
da1ce067
MS
2504 if (exchange) {
2505 __d_rehash(target,
2506 d_hash(dentry->d_parent, dentry->d_name.hash));
2507 }
1da177e4 2508
1da177e4
LT
2509
2510 /* Switch the names.. */
2511 switch_names(dentry, target);
9a8d5bb4 2512 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2513
2514 /* ... and switch the parents */
2515 if (IS_ROOT(dentry)) {
2516 dentry->d_parent = target->d_parent;
2517 target->d_parent = target;
9d8cd306 2518 list_del_init(&target->d_u.d_child);
1da177e4 2519 } else {
9a8d5bb4 2520 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2521
2522 /* And add them back to the (new) parent lists */
9d8cd306 2523 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2524 }
2525
9d8cd306 2526 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2527
31e6b01f
NP
2528 write_seqcount_end(&target->d_seq);
2529 write_seqcount_end(&dentry->d_seq);
2530
2fd6b7f5 2531 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2532 if (exchange)
2533 fsnotify_d_move(target);
1da177e4 2534 spin_unlock(&target->d_lock);
c32ccd87 2535 fsnotify_d_move(dentry);
1da177e4 2536 spin_unlock(&dentry->d_lock);
18367501
AV
2537}
2538
2539/*
2540 * d_move - move a dentry
2541 * @dentry: entry to move
2542 * @target: new dentry
2543 *
2544 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2545 * dcache entries should not be moved in this way. See the locking
2546 * requirements for __d_move.
18367501
AV
2547 */
2548void d_move(struct dentry *dentry, struct dentry *target)
2549{
2550 write_seqlock(&rename_lock);
da1ce067 2551 __d_move(dentry, target, false);
1da177e4 2552 write_sequnlock(&rename_lock);
9eaef27b 2553}
ec4f8605 2554EXPORT_SYMBOL(d_move);
1da177e4 2555
da1ce067
MS
2556/*
2557 * d_exchange - exchange two dentries
2558 * @dentry1: first dentry
2559 * @dentry2: second dentry
2560 */
2561void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2562{
2563 write_seqlock(&rename_lock);
2564
2565 WARN_ON(!dentry1->d_inode);
2566 WARN_ON(!dentry2->d_inode);
2567 WARN_ON(IS_ROOT(dentry1));
2568 WARN_ON(IS_ROOT(dentry2));
2569
2570 __d_move(dentry1, dentry2, true);
2571
2572 write_sequnlock(&rename_lock);
2573}
2574
e2761a11
OH
2575/**
2576 * d_ancestor - search for an ancestor
2577 * @p1: ancestor dentry
2578 * @p2: child dentry
2579 *
2580 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2581 * an ancestor of p2, else NULL.
9eaef27b 2582 */
e2761a11 2583struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2584{
2585 struct dentry *p;
2586
871c0067 2587 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2588 if (p->d_parent == p1)
e2761a11 2589 return p;
9eaef27b 2590 }
e2761a11 2591 return NULL;
9eaef27b
TM
2592}
2593
2594/*
2595 * This helper attempts to cope with remotely renamed directories
2596 *
2597 * It assumes that the caller is already holding
18367501 2598 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2599 *
2600 * Note: If ever the locking in lock_rename() changes, then please
2601 * remember to update this too...
9eaef27b 2602 */
873feea0
NP
2603static struct dentry *__d_unalias(struct inode *inode,
2604 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2605{
2606 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2607 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2608
2609 /* If alias and dentry share a parent, then no extra locks required */
2610 if (alias->d_parent == dentry->d_parent)
2611 goto out_unalias;
2612
9eaef27b 2613 /* See lock_rename() */
9eaef27b
TM
2614 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2615 goto out_err;
2616 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2617 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2618 goto out_err;
2619 m2 = &alias->d_parent->d_inode->i_mutex;
2620out_unalias:
ee3efa91 2621 if (likely(!d_mountpoint(alias))) {
da1ce067 2622 __d_move(alias, dentry, false);
ee3efa91
AV
2623 ret = alias;
2624 }
9eaef27b 2625out_err:
873feea0 2626 spin_unlock(&inode->i_lock);
9eaef27b
TM
2627 if (m2)
2628 mutex_unlock(m2);
2629 if (m1)
2630 mutex_unlock(m1);
2631 return ret;
2632}
2633
770bfad8
DH
2634/*
2635 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2636 * named dentry in place of the dentry to be replaced.
2637 */
4453641f 2638static void __d_materialise_dentry(struct dentry *dentry, struct dentry *target)
770bfad8 2639{
4453641f 2640 dentry_lock_for_move(dentry, target);
770bfad8 2641
31e6b01f 2642 write_seqcount_begin(&dentry->d_seq);
4453641f 2643 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
770bfad8 2644
4453641f
AV
2645 switch_names(dentry, target);
2646 swap(dentry->d_name.hash, target->d_name.hash);
2fd6b7f5 2647
4453641f
AV
2648 dentry->d_parent = target->d_parent;
2649 target->d_parent = target;
2650 list_del_init(&target->d_u.d_child);
2651 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2652 if (likely(!d_unhashed(dentry))) {
2653 hlist_bl_lock(&dentry->d_sb->s_anon);
2654 __hlist_bl_del(&dentry->d_hash);
2655 dentry->d_hash.pprev = NULL;
2656 hlist_bl_unlock(&dentry->d_sb->s_anon);
6f18493e 2657 }
4453641f 2658 __d_rehash(dentry, d_hash(dentry->d_parent, dentry->d_name.hash));
770bfad8 2659
4453641f 2660 write_seqcount_end(&target->d_seq);
31e6b01f 2661 write_seqcount_end(&dentry->d_seq);
31e6b01f 2662
4453641f
AV
2663 dentry_unlock_parents_for_move(dentry, target);
2664 spin_unlock(&target->d_lock);
2fd6b7f5 2665 spin_unlock(&dentry->d_lock);
770bfad8
DH
2666}
2667
3f70bd51
BF
2668/**
2669 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2670 * @inode: the inode which may have a disconnected dentry
2671 * @dentry: a negative dentry which we want to point to the inode.
2672 *
da093a9b
BF
2673 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2674 * place of the given dentry and return it, else simply d_add the inode
2675 * to the dentry and return NULL.
3f70bd51 2676 *
908790fa
BF
2677 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2678 * we should error out: directories can't have multiple aliases.
2679 *
3f70bd51
BF
2680 * This is needed in the lookup routine of any filesystem that is exportable
2681 * (via knfsd) so that we can build dcache paths to directories effectively.
2682 *
2683 * If a dentry was found and moved, then it is returned. Otherwise NULL
2684 * is returned. This matches the expected return value of ->lookup.
2685 *
2686 * Cluster filesystems may call this function with a negative, hashed dentry.
2687 * In that case, we know that the inode will be a regular file, and also this
2688 * will only occur during atomic_open. So we need to check for the dentry
2689 * being already hashed only in the final case.
2690 */
2691struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2692{
2693 struct dentry *new = NULL;
2694
2695 if (IS_ERR(inode))
2696 return ERR_CAST(inode);
2697
2698 if (inode && S_ISDIR(inode->i_mode)) {
2699 spin_lock(&inode->i_lock);
908790fa 2700 new = __d_find_any_alias(inode);
3f70bd51 2701 if (new) {
da093a9b 2702 if (!IS_ROOT(new)) {
908790fa
BF
2703 spin_unlock(&inode->i_lock);
2704 dput(new);
2705 return ERR_PTR(-EIO);
2706 }
95ad5c29
BF
2707 if (d_ancestor(new, dentry)) {
2708 spin_unlock(&inode->i_lock);
2709 dput(new);
2710 return ERR_PTR(-EIO);
2711 }
75a2352d 2712 write_seqlock(&rename_lock);
4453641f 2713 __d_materialise_dentry(new, dentry);
75a2352d 2714 write_sequnlock(&rename_lock);
3f70bd51
BF
2715 spin_unlock(&inode->i_lock);
2716 security_d_instantiate(new, inode);
3f70bd51
BF
2717 iput(inode);
2718 } else {
2719 /* already taking inode->i_lock, so d_add() by hand */
2720 __d_instantiate(dentry, inode);
2721 spin_unlock(&inode->i_lock);
2722 security_d_instantiate(dentry, inode);
2723 d_rehash(dentry);
2724 }
2725 } else {
2726 d_instantiate(dentry, inode);
2727 if (d_unhashed(dentry))
2728 d_rehash(dentry);
2729 }
2730 return new;
2731}
2732EXPORT_SYMBOL(d_splice_alias);
2733
770bfad8
DH
2734/**
2735 * d_materialise_unique - introduce an inode into the tree
2736 * @dentry: candidate dentry
2737 * @inode: inode to bind to the dentry, to which aliases may be attached
2738 *
2739 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2740 * root directory alias in its place if there is one. Caller must hold the
2741 * i_mutex of the parent directory.
770bfad8
DH
2742 */
2743struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2744{
9eaef27b 2745 struct dentry *actual;
770bfad8
DH
2746
2747 BUG_ON(!d_unhashed(dentry));
2748
770bfad8
DH
2749 if (!inode) {
2750 actual = dentry;
360da900 2751 __d_instantiate(dentry, NULL);
357f8e65
NP
2752 d_rehash(actual);
2753 goto out_nolock;
770bfad8
DH
2754 }
2755
873feea0 2756 spin_lock(&inode->i_lock);
357f8e65 2757
9eaef27b
TM
2758 if (S_ISDIR(inode->i_mode)) {
2759 struct dentry *alias;
2760
2761 /* Does an aliased dentry already exist? */
52ed46f0 2762 alias = __d_find_alias(inode);
9eaef27b
TM
2763 if (alias) {
2764 actual = alias;
18367501
AV
2765 write_seqlock(&rename_lock);
2766
2767 if (d_ancestor(alias, dentry)) {
2768 /* Check for loops */
2769 actual = ERR_PTR(-ELOOP);
b18dafc8 2770 spin_unlock(&inode->i_lock);
18367501
AV
2771 } else if (IS_ROOT(alias)) {
2772 /* Is this an anonymous mountpoint that we
2773 * could splice into our tree? */
4453641f 2774 __d_materialise_dentry(alias, dentry);
18367501 2775 write_sequnlock(&rename_lock);
9eaef27b 2776 goto found;
18367501
AV
2777 } else {
2778 /* Nope, but we must(!) avoid directory
b18dafc8 2779 * aliasing. This drops inode->i_lock */
18367501 2780 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2781 }
18367501 2782 write_sequnlock(&rename_lock);
dd179946
DH
2783 if (IS_ERR(actual)) {
2784 if (PTR_ERR(actual) == -ELOOP)
2785 pr_warn_ratelimited(
2786 "VFS: Lookup of '%s' in %s %s"
2787 " would have caused loop\n",
2788 dentry->d_name.name,
2789 inode->i_sb->s_type->name,
2790 inode->i_sb->s_id);
9eaef27b 2791 dput(alias);
dd179946 2792 }
9eaef27b
TM
2793 goto out_nolock;
2794 }
770bfad8
DH
2795 }
2796
2797 /* Add a unique reference */
2798 actual = __d_instantiate_unique(dentry, inode);
2799 if (!actual)
2800 actual = dentry;
770bfad8 2801
8527dd71 2802 d_rehash(actual);
5cc3821b 2803found:
873feea0 2804 spin_unlock(&inode->i_lock);
9eaef27b 2805out_nolock:
770bfad8
DH
2806 if (actual == dentry) {
2807 security_d_instantiate(dentry, inode);
2808 return NULL;
2809 }
2810
2811 iput(inode);
2812 return actual;
770bfad8 2813}
ec4f8605 2814EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2815
cdd16d02 2816static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2817{
2818 *buflen -= namelen;
2819 if (*buflen < 0)
2820 return -ENAMETOOLONG;
2821 *buffer -= namelen;
2822 memcpy(*buffer, str, namelen);
2823 return 0;
2824}
2825
232d2d60
WL
2826/**
2827 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2828 * @buffer: buffer pointer
2829 * @buflen: allocated length of the buffer
2830 * @name: name string and length qstr structure
232d2d60
WL
2831 *
2832 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2833 * make sure that either the old or the new name pointer and length are
2834 * fetched. However, there may be mismatch between length and pointer.
2835 * The length cannot be trusted, we need to copy it byte-by-byte until
2836 * the length is reached or a null byte is found. It also prepends "/" at
2837 * the beginning of the name. The sequence number check at the caller will
2838 * retry it again when a d_move() does happen. So any garbage in the buffer
2839 * due to mismatched pointer and length will be discarded.
2840 */
cdd16d02
MS
2841static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2842{
232d2d60
WL
2843 const char *dname = ACCESS_ONCE(name->name);
2844 u32 dlen = ACCESS_ONCE(name->len);
2845 char *p;
2846
232d2d60 2847 *buflen -= dlen + 1;
e825196d
AV
2848 if (*buflen < 0)
2849 return -ENAMETOOLONG;
232d2d60
WL
2850 p = *buffer -= dlen + 1;
2851 *p++ = '/';
2852 while (dlen--) {
2853 char c = *dname++;
2854 if (!c)
2855 break;
2856 *p++ = c;
2857 }
2858 return 0;
cdd16d02
MS
2859}
2860
1da177e4 2861/**
208898c1 2862 * prepend_path - Prepend path string to a buffer
9d1bc601 2863 * @path: the dentry/vfsmount to report
02125a82 2864 * @root: root vfsmnt/dentry
f2eb6575
MS
2865 * @buffer: pointer to the end of the buffer
2866 * @buflen: pointer to buffer length
552ce544 2867 *
18129977
WL
2868 * The function will first try to write out the pathname without taking any
2869 * lock other than the RCU read lock to make sure that dentries won't go away.
2870 * It only checks the sequence number of the global rename_lock as any change
2871 * in the dentry's d_seq will be preceded by changes in the rename_lock
2872 * sequence number. If the sequence number had been changed, it will restart
2873 * the whole pathname back-tracing sequence again by taking the rename_lock.
2874 * In this case, there is no need to take the RCU read lock as the recursive
2875 * parent pointer references will keep the dentry chain alive as long as no
2876 * rename operation is performed.
1da177e4 2877 */
02125a82
AV
2878static int prepend_path(const struct path *path,
2879 const struct path *root,
f2eb6575 2880 char **buffer, int *buflen)
1da177e4 2881{
ede4cebc
AV
2882 struct dentry *dentry;
2883 struct vfsmount *vfsmnt;
2884 struct mount *mnt;
f2eb6575 2885 int error = 0;
48a066e7 2886 unsigned seq, m_seq = 0;
232d2d60
WL
2887 char *bptr;
2888 int blen;
6092d048 2889
48f5ec21 2890 rcu_read_lock();
48a066e7
AV
2891restart_mnt:
2892 read_seqbegin_or_lock(&mount_lock, &m_seq);
2893 seq = 0;
4ec6c2ae 2894 rcu_read_lock();
232d2d60
WL
2895restart:
2896 bptr = *buffer;
2897 blen = *buflen;
48a066e7 2898 error = 0;
ede4cebc
AV
2899 dentry = path->dentry;
2900 vfsmnt = path->mnt;
2901 mnt = real_mount(vfsmnt);
232d2d60 2902 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2903 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2904 struct dentry * parent;
2905
1da177e4 2906 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2907 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2908 /* Global root? */
48a066e7
AV
2909 if (mnt != parent) {
2910 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2911 mnt = parent;
232d2d60
WL
2912 vfsmnt = &mnt->mnt;
2913 continue;
2914 }
2915 /*
2916 * Filesystems needing to implement special "root names"
2917 * should do so with ->d_dname()
2918 */
2919 if (IS_ROOT(dentry) &&
2920 (dentry->d_name.len != 1 ||
2921 dentry->d_name.name[0] != '/')) {
2922 WARN(1, "Root dentry has weird name <%.*s>\n",
2923 (int) dentry->d_name.len,
2924 dentry->d_name.name);
2925 }
2926 if (!error)
2927 error = is_mounted(vfsmnt) ? 1 : 2;
2928 break;
1da177e4
LT
2929 }
2930 parent = dentry->d_parent;
2931 prefetch(parent);
232d2d60 2932 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2933 if (error)
2934 break;
2935
1da177e4
LT
2936 dentry = parent;
2937 }
48f5ec21
AV
2938 if (!(seq & 1))
2939 rcu_read_unlock();
2940 if (need_seqretry(&rename_lock, seq)) {
2941 seq = 1;
232d2d60 2942 goto restart;
48f5ec21
AV
2943 }
2944 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2945
2946 if (!(m_seq & 1))
2947 rcu_read_unlock();
48a066e7
AV
2948 if (need_seqretry(&mount_lock, m_seq)) {
2949 m_seq = 1;
2950 goto restart_mnt;
2951 }
2952 done_seqretry(&mount_lock, m_seq);
1da177e4 2953
232d2d60
WL
2954 if (error >= 0 && bptr == *buffer) {
2955 if (--blen < 0)
2956 error = -ENAMETOOLONG;
2957 else
2958 *--bptr = '/';
2959 }
2960 *buffer = bptr;
2961 *buflen = blen;
7ea600b5 2962 return error;
f2eb6575 2963}
be285c71 2964
f2eb6575
MS
2965/**
2966 * __d_path - return the path of a dentry
2967 * @path: the dentry/vfsmount to report
02125a82 2968 * @root: root vfsmnt/dentry
cd956a1c 2969 * @buf: buffer to return value in
f2eb6575
MS
2970 * @buflen: buffer length
2971 *
ffd1f4ed 2972 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2973 *
2974 * Returns a pointer into the buffer or an error code if the
2975 * path was too long.
2976 *
be148247 2977 * "buflen" should be positive.
f2eb6575 2978 *
02125a82 2979 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2980 */
02125a82
AV
2981char *__d_path(const struct path *path,
2982 const struct path *root,
f2eb6575
MS
2983 char *buf, int buflen)
2984{
2985 char *res = buf + buflen;
2986 int error;
2987
2988 prepend(&res, &buflen, "\0", 1);
f2eb6575 2989 error = prepend_path(path, root, &res, &buflen);
be148247 2990
02125a82
AV
2991 if (error < 0)
2992 return ERR_PTR(error);
2993 if (error > 0)
2994 return NULL;
2995 return res;
2996}
2997
2998char *d_absolute_path(const struct path *path,
2999 char *buf, int buflen)
3000{
3001 struct path root = {};
3002 char *res = buf + buflen;
3003 int error;
3004
3005 prepend(&res, &buflen, "\0", 1);
02125a82 3006 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3007
3008 if (error > 1)
3009 error = -EINVAL;
3010 if (error < 0)
f2eb6575 3011 return ERR_PTR(error);
f2eb6575 3012 return res;
1da177e4
LT
3013}
3014
ffd1f4ed
MS
3015/*
3016 * same as __d_path but appends "(deleted)" for unlinked files.
3017 */
02125a82
AV
3018static int path_with_deleted(const struct path *path,
3019 const struct path *root,
3020 char **buf, int *buflen)
ffd1f4ed
MS
3021{
3022 prepend(buf, buflen, "\0", 1);
3023 if (d_unlinked(path->dentry)) {
3024 int error = prepend(buf, buflen, " (deleted)", 10);
3025 if (error)
3026 return error;
3027 }
3028
3029 return prepend_path(path, root, buf, buflen);
3030}
3031
8df9d1a4
MS
3032static int prepend_unreachable(char **buffer, int *buflen)
3033{
3034 return prepend(buffer, buflen, "(unreachable)", 13);
3035}
3036
68f0d9d9
LT
3037static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3038{
3039 unsigned seq;
3040
3041 do {
3042 seq = read_seqcount_begin(&fs->seq);
3043 *root = fs->root;
3044 } while (read_seqcount_retry(&fs->seq, seq));
3045}
3046
a03a8a70
JB
3047/**
3048 * d_path - return the path of a dentry
cf28b486 3049 * @path: path to report
a03a8a70
JB
3050 * @buf: buffer to return value in
3051 * @buflen: buffer length
3052 *
3053 * Convert a dentry into an ASCII path name. If the entry has been deleted
3054 * the string " (deleted)" is appended. Note that this is ambiguous.
3055 *
52afeefb
AV
3056 * Returns a pointer into the buffer or an error code if the path was
3057 * too long. Note: Callers should use the returned pointer, not the passed
3058 * in buffer, to use the name! The implementation often starts at an offset
3059 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3060 *
31f3e0b3 3061 * "buflen" should be positive.
a03a8a70 3062 */
20d4fdc1 3063char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3064{
ffd1f4ed 3065 char *res = buf + buflen;
6ac08c39 3066 struct path root;
ffd1f4ed 3067 int error;
1da177e4 3068
c23fbb6b
ED
3069 /*
3070 * We have various synthetic filesystems that never get mounted. On
3071 * these filesystems dentries are never used for lookup purposes, and
3072 * thus don't need to be hashed. They also don't need a name until a
3073 * user wants to identify the object in /proc/pid/fd/. The little hack
3074 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3075 *
3076 * Some pseudo inodes are mountable. When they are mounted
3077 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3078 * and instead have d_path return the mounted path.
c23fbb6b 3079 */
f48cfddc
EB
3080 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3081 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3082 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3083
68f0d9d9
LT
3084 rcu_read_lock();
3085 get_fs_root_rcu(current->fs, &root);
02125a82 3086 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3087 rcu_read_unlock();
3088
02125a82 3089 if (error < 0)
ffd1f4ed 3090 res = ERR_PTR(error);
1da177e4
LT
3091 return res;
3092}
ec4f8605 3093EXPORT_SYMBOL(d_path);
1da177e4 3094
c23fbb6b
ED
3095/*
3096 * Helper function for dentry_operations.d_dname() members
3097 */
3098char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3099 const char *fmt, ...)
3100{
3101 va_list args;
3102 char temp[64];
3103 int sz;
3104
3105 va_start(args, fmt);
3106 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3107 va_end(args);
3108
3109 if (sz > sizeof(temp) || sz > buflen)
3110 return ERR_PTR(-ENAMETOOLONG);
3111
3112 buffer += buflen - sz;
3113 return memcpy(buffer, temp, sz);
3114}
3115
118b2302
AV
3116char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3117{
3118 char *end = buffer + buflen;
3119 /* these dentries are never renamed, so d_lock is not needed */
3120 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3121 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3122 prepend(&end, &buflen, "/", 1))
3123 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3124 return end;
118b2302 3125}
31bbe16f 3126EXPORT_SYMBOL(simple_dname);
118b2302 3127
6092d048
RP
3128/*
3129 * Write full pathname from the root of the filesystem into the buffer.
3130 */
f6500801 3131static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3132{
f6500801 3133 struct dentry *dentry;
232d2d60
WL
3134 char *end, *retval;
3135 int len, seq = 0;
3136 int error = 0;
6092d048 3137
f6500801
AV
3138 if (buflen < 2)
3139 goto Elong;
3140
48f5ec21 3141 rcu_read_lock();
232d2d60 3142restart:
f6500801 3143 dentry = d;
232d2d60
WL
3144 end = buf + buflen;
3145 len = buflen;
3146 prepend(&end, &len, "\0", 1);
6092d048
RP
3147 /* Get '/' right */
3148 retval = end-1;
3149 *retval = '/';
232d2d60 3150 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3151 while (!IS_ROOT(dentry)) {
3152 struct dentry *parent = dentry->d_parent;
6092d048 3153
6092d048 3154 prefetch(parent);
232d2d60
WL
3155 error = prepend_name(&end, &len, &dentry->d_name);
3156 if (error)
3157 break;
6092d048
RP
3158
3159 retval = end;
3160 dentry = parent;
3161 }
48f5ec21
AV
3162 if (!(seq & 1))
3163 rcu_read_unlock();
3164 if (need_seqretry(&rename_lock, seq)) {
3165 seq = 1;
232d2d60 3166 goto restart;
48f5ec21
AV
3167 }
3168 done_seqretry(&rename_lock, seq);
232d2d60
WL
3169 if (error)
3170 goto Elong;
c103135c
AV
3171 return retval;
3172Elong:
3173 return ERR_PTR(-ENAMETOOLONG);
3174}
ec2447c2
NP
3175
3176char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3177{
232d2d60 3178 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3179}
3180EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3181
3182char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3183{
3184 char *p = NULL;
3185 char *retval;
3186
c103135c
AV
3187 if (d_unlinked(dentry)) {
3188 p = buf + buflen;
3189 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3190 goto Elong;
3191 buflen++;
3192 }
3193 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3194 if (!IS_ERR(retval) && p)
3195 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3196 return retval;
3197Elong:
6092d048
RP
3198 return ERR_PTR(-ENAMETOOLONG);
3199}
3200
8b19e341
LT
3201static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3202 struct path *pwd)
5762482f 3203{
8b19e341
LT
3204 unsigned seq;
3205
3206 do {
3207 seq = read_seqcount_begin(&fs->seq);
3208 *root = fs->root;
3209 *pwd = fs->pwd;
3210 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3211}
3212
1da177e4
LT
3213/*
3214 * NOTE! The user-level library version returns a
3215 * character pointer. The kernel system call just
3216 * returns the length of the buffer filled (which
3217 * includes the ending '\0' character), or a negative
3218 * error value. So libc would do something like
3219 *
3220 * char *getcwd(char * buf, size_t size)
3221 * {
3222 * int retval;
3223 *
3224 * retval = sys_getcwd(buf, size);
3225 * if (retval >= 0)
3226 * return buf;
3227 * errno = -retval;
3228 * return NULL;
3229 * }
3230 */
3cdad428 3231SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3232{
552ce544 3233 int error;
6ac08c39 3234 struct path pwd, root;
3272c544 3235 char *page = __getname();
1da177e4
LT
3236
3237 if (!page)
3238 return -ENOMEM;
3239
8b19e341
LT
3240 rcu_read_lock();
3241 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3242
552ce544 3243 error = -ENOENT;
f3da392e 3244 if (!d_unlinked(pwd.dentry)) {
552ce544 3245 unsigned long len;
3272c544
LT
3246 char *cwd = page + PATH_MAX;
3247 int buflen = PATH_MAX;
1da177e4 3248
8df9d1a4 3249 prepend(&cwd, &buflen, "\0", 1);
02125a82 3250 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3251 rcu_read_unlock();
552ce544 3252
02125a82 3253 if (error < 0)
552ce544
LT
3254 goto out;
3255
8df9d1a4 3256 /* Unreachable from current root */
02125a82 3257 if (error > 0) {
8df9d1a4
MS
3258 error = prepend_unreachable(&cwd, &buflen);
3259 if (error)
3260 goto out;
3261 }
3262
552ce544 3263 error = -ERANGE;
3272c544 3264 len = PATH_MAX + page - cwd;
552ce544
LT
3265 if (len <= size) {
3266 error = len;
3267 if (copy_to_user(buf, cwd, len))
3268 error = -EFAULT;
3269 }
949854d0 3270 } else {
ff812d72 3271 rcu_read_unlock();
949854d0 3272 }
1da177e4
LT
3273
3274out:
3272c544 3275 __putname(page);
1da177e4
LT
3276 return error;
3277}
3278
3279/*
3280 * Test whether new_dentry is a subdirectory of old_dentry.
3281 *
3282 * Trivially implemented using the dcache structure
3283 */
3284
3285/**
3286 * is_subdir - is new dentry a subdirectory of old_dentry
3287 * @new_dentry: new dentry
3288 * @old_dentry: old dentry
3289 *
3290 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3291 * Returns 0 otherwise.
3292 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3293 */
3294
e2761a11 3295int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3296{
3297 int result;
949854d0 3298 unsigned seq;
1da177e4 3299
e2761a11
OH
3300 if (new_dentry == old_dentry)
3301 return 1;
3302
e2761a11 3303 do {
1da177e4 3304 /* for restarting inner loop in case of seq retry */
1da177e4 3305 seq = read_seqbegin(&rename_lock);
949854d0
NP
3306 /*
3307 * Need rcu_readlock to protect against the d_parent trashing
3308 * due to d_move
3309 */
3310 rcu_read_lock();
e2761a11 3311 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3312 result = 1;
e2761a11
OH
3313 else
3314 result = 0;
949854d0 3315 rcu_read_unlock();
1da177e4 3316 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3317
3318 return result;
3319}
3320
db14fc3a 3321static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3322{
db14fc3a
MS
3323 struct dentry *root = data;
3324 if (dentry != root) {
3325 if (d_unhashed(dentry) || !dentry->d_inode)
3326 return D_WALK_SKIP;
1da177e4 3327
01ddc4ed
MS
3328 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3329 dentry->d_flags |= DCACHE_GENOCIDE;
3330 dentry->d_lockref.count--;
3331 }
1da177e4 3332 }
db14fc3a
MS
3333 return D_WALK_CONTINUE;
3334}
58db63d0 3335
db14fc3a
MS
3336void d_genocide(struct dentry *parent)
3337{
3338 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3339}
3340
60545d0d 3341void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3342{
60545d0d
AV
3343 inode_dec_link_count(inode);
3344 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3345 !hlist_unhashed(&dentry->d_alias) ||
3346 !d_unlinked(dentry));
3347 spin_lock(&dentry->d_parent->d_lock);
3348 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3349 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3350 (unsigned long long)inode->i_ino);
3351 spin_unlock(&dentry->d_lock);
3352 spin_unlock(&dentry->d_parent->d_lock);
3353 d_instantiate(dentry, inode);
1da177e4 3354}
60545d0d 3355EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3356
3357static __initdata unsigned long dhash_entries;
3358static int __init set_dhash_entries(char *str)
3359{
3360 if (!str)
3361 return 0;
3362 dhash_entries = simple_strtoul(str, &str, 0);
3363 return 1;
3364}
3365__setup("dhash_entries=", set_dhash_entries);
3366
3367static void __init dcache_init_early(void)
3368{
074b8517 3369 unsigned int loop;
1da177e4
LT
3370
3371 /* If hashes are distributed across NUMA nodes, defer
3372 * hash allocation until vmalloc space is available.
3373 */
3374 if (hashdist)
3375 return;
3376
3377 dentry_hashtable =
3378 alloc_large_system_hash("Dentry cache",
b07ad996 3379 sizeof(struct hlist_bl_head),
1da177e4
LT
3380 dhash_entries,
3381 13,
3382 HASH_EARLY,
3383 &d_hash_shift,
3384 &d_hash_mask,
31fe62b9 3385 0,
1da177e4
LT
3386 0);
3387
074b8517 3388 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3389 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3390}
3391
74bf17cf 3392static void __init dcache_init(void)
1da177e4 3393{
074b8517 3394 unsigned int loop;
1da177e4
LT
3395
3396 /*
3397 * A constructor could be added for stable state like the lists,
3398 * but it is probably not worth it because of the cache nature
3399 * of the dcache.
3400 */
0a31bd5f
CL
3401 dentry_cache = KMEM_CACHE(dentry,
3402 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3403
3404 /* Hash may have been set up in dcache_init_early */
3405 if (!hashdist)
3406 return;
3407
3408 dentry_hashtable =
3409 alloc_large_system_hash("Dentry cache",
b07ad996 3410 sizeof(struct hlist_bl_head),
1da177e4
LT
3411 dhash_entries,
3412 13,
3413 0,
3414 &d_hash_shift,
3415 &d_hash_mask,
31fe62b9 3416 0,
1da177e4
LT
3417 0);
3418
074b8517 3419 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3420 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3421}
3422
3423/* SLAB cache for __getname() consumers */
e18b890b 3424struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3425EXPORT_SYMBOL(names_cachep);
1da177e4 3426
1da177e4
LT
3427EXPORT_SYMBOL(d_genocide);
3428
1da177e4
LT
3429void __init vfs_caches_init_early(void)
3430{
3431 dcache_init_early();
3432 inode_init_early();
3433}
3434
3435void __init vfs_caches_init(unsigned long mempages)
3436{
3437 unsigned long reserve;
3438
3439 /* Base hash sizes on available memory, with a reserve equal to
3440 150% of current kernel size */
3441
3442 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3443 mempages -= reserve;
3444
3445 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3446 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3447
74bf17cf
DC
3448 dcache_init();
3449 inode_init();
1da177e4 3450 files_init(mempages);
74bf17cf 3451 mnt_init();
1da177e4
LT
3452 bdev_cache_init();
3453 chrdev_init();
3454}